/*************************************************************************/ /* math_funcs.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef MATH_FUNCS_H #define MATH_FUNCS_H #include "typedefs.h" #include "math_defs.h" #include "pcg.h" #ifndef NO_MATH_H #include #endif #define Math_PI 3.14159265358979323846 #define Math_SQRT12 0.7071067811865475244008443621048490 class Math { static pcg32_random_t default_pcg; public: Math() {} // useless to instance enum { RANDOM_MAX=2147483647L }; static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); } static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); } static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); } static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); } static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); } static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); } static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); } static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); } static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); } static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y,p_x); } static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y*Math_PI/180.0; } static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y*180.0/Math_PI; } static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); } static _ALWAYS_INLINE_ double fmod(double p_x,double p_y) { return ::fmod(p_x,p_y); } static _ALWAYS_INLINE_ double fposmod(double p_x,double p_y) { if (p_x>=0) { return fmod(p_x,p_y); } else { return p_y-fmod(-p_x,p_y); } } static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); } static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); } static uint32_t rand_from_seed(uint64_t *seed); static double ease(double p_x, double p_c); static int step_decimals(double p_step); static double stepify(double p_value,double p_step); static void seed(uint64_t x=0); static void randomize(); static uint32_t larger_prime(uint32_t p_val); static double dectime(double p_value,double p_amount, double p_step); static inline double linear2db(double p_linear) { return Math::log( p_linear ) * 8.6858896380650365530225783783321; } static inline double db2linear(double p_db) { return Math::exp( p_db * 0.11512925464970228420089957273422 ); } static _ALWAYS_INLINE_ bool is_nan(double p_val) { return (p_val!=p_val); } static _ALWAYS_INLINE_ bool is_inf(double p_val) { #ifdef _MSC_VER return !_finite(p_val); #else return isinf(p_val); #endif } static uint32_t rand(); static double randf(); static double round(double p_val); static double random(double from, double to); static _FORCE_INLINE_ bool isequal_approx(real_t a, real_t b) { // TODO: Comparing floats for approximate-equality is non-trivial. // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators. // A proper implementation in terms of ULPs should eventually replace the contents of this function. // See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details. return abs(a-b) < CMP_EPSILON; } static _FORCE_INLINE_ real_t abs(real_t g) { #ifdef REAL_T_IS_DOUBLE return absd(g); #else return absf(g); #endif } static _FORCE_INLINE_ float absf(float g) { union { float f; uint32_t i; } u; u.f=g; u.i&=2147483647u; return u.f; } static _FORCE_INLINE_ double absd(double g) { union { double d; uint64_t i; } u; u.d=g; u.i&=(uint64_t)9223372036854775807ll; return u.d; } //this function should be as fast as possible and rounding mode should not matter static _FORCE_INLINE_ int fast_ftoi(float a) { static int b; #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone? b = (int)((a>0.0f) ? (a + 0.5f):(a -0.5f)); #elif defined(_MSC_VER) && _MSC_VER < 1800 __asm fld a __asm fistp b /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) ) // use AT&T inline assembly style, document that // we use memory as output (=m) and input (m) __asm__ __volatile__ ( "flds %1 \n\t" "fistpl %0 \n\t" : "=m" (b) : "m" (a));*/ #else b=lrintf(a); //assuming everything but msvc 2012 or earlier has lrint #endif return b; } #if defined(__GNUC__) static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE #else static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE #endif static _FORCE_INLINE_ float lerp(float a, float b, float c) { return a+(b-a)*c; } static double pow(double x, double y); static double log(double x); static double exp(double x); static _FORCE_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) { uint16_t h_exp, h_sig; uint32_t f_sgn, f_exp, f_sig; h_exp = (h&0x7c00u); f_sgn = ((uint32_t)h&0x8000u) << 16; switch (h_exp) { case 0x0000u: /* 0 or subnormal */ h_sig = (h&0x03ffu); /* Signed zero */ if (h_sig == 0) { return f_sgn; } /* Subnormal */ h_sig <<= 1; while ((h_sig&0x0400u) == 0) { h_sig <<= 1; h_exp++; } f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23; f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13; return f_sgn + f_exp + f_sig; case 0x7c00u: /* inf or NaN */ /* All-ones exponent and a copy of the significand */ return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13); default: /* normalized */ /* Just need to adjust the exponent and shift */ return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13); } } static _FORCE_INLINE_ float halfptr_to_float(const uint16_t *h) { union { uint32_t u32; float f32; } u; u.u32=halfbits_to_floatbits(*h); return u.f32; } static _FORCE_INLINE_ uint16_t make_half_float(float f) { union { float fv; uint32_t ui; } ci; ci.fv=f; uint32_t x = ci.ui; uint32_t sign = (unsigned short)(x >> 31); uint32_t mantissa; uint32_t exp; uint16_t hf; // get mantissa mantissa = x & ((1 << 23) - 1); // get exponent bits exp = x & (0xFF << 23); if (exp >= 0x47800000) { // check if the original single precision float number is a NaN if (mantissa && (exp == (0xFF << 23))) { // we have a single precision NaN mantissa = (1 << 23) - 1; } else { // 16-bit half-float representation stores number as Inf mantissa = 0; } hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | (uint16_t)(mantissa >> 13); } // check if exponent is <= -15 else if (exp <= 0x38000000) { /*// store a denorm half-float value or zero exp = (0x38000000 - exp) >> 23; mantissa >>= (14 + exp); hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa); */ hf=0; //denormals do not work for 3D, convert to zero } else { hf = (((uint16_t)sign) << 15) | (uint16_t)((exp - 0x38000000) >> 13) | (uint16_t)(mantissa >> 13); } return hf; } }; #endif // MATH_FUNCS_H