/*************************************************************************/ /* math_2d.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef MATH_2D_H #define MATH_2D_H #include "math_funcs.h" #include "ustring.h" /** @author Juan Linietsky */ enum Margin { MARGIN_LEFT, MARGIN_TOP, MARGIN_RIGHT, MARGIN_BOTTOM }; enum Orientation { HORIZONTAL, VERTICAL }; enum HAlign { HALIGN_LEFT, HALIGN_CENTER, HALIGN_RIGHT }; enum VAlign { VALIGN_TOP, VALIGN_CENTER, VALIGN_BOTTOM }; struct Vector2 { union { real_t x; real_t width; }; union { real_t y; real_t height; }; _FORCE_INLINE_ real_t &operator[](int p_idx) { return p_idx ? y : x; } _FORCE_INLINE_ const real_t &operator[](int p_idx) const { return p_idx ? y : x; } void normalize(); Vector2 normalized() const; bool is_normalized() const; real_t length() const; real_t length_squared() const; real_t distance_to(const Vector2 &p_vector2) const; real_t distance_squared_to(const Vector2 &p_vector2) const; real_t angle_to(const Vector2 &p_vector2) const; real_t angle_to_point(const Vector2 &p_vector2) const; real_t dot(const Vector2 &p_other) const; real_t cross(const Vector2 &p_other) const; Vector2 cross(real_t p_other) const; Vector2 project(const Vector2 &p_vec) const; Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const; Vector2 clamped(real_t p_len) const; _FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t); _FORCE_INLINE_ Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const; Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const; Vector2 cubic_interpolate_soft(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const; Vector2 slide(const Vector2 &p_vec) const; Vector2 bounce(const Vector2 &p_vec) const; Vector2 reflect(const Vector2 &p_vec) const; Vector2 operator+(const Vector2 &p_v) const; void operator+=(const Vector2 &p_v); Vector2 operator-(const Vector2 &p_v) const; void operator-=(const Vector2 &p_v); Vector2 operator*(const Vector2 &p_v1) const; Vector2 operator*(const real_t &rvalue) const; void operator*=(const real_t &rvalue); void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } Vector2 operator/(const Vector2 &p_v1) const; Vector2 operator/(const real_t &rvalue) const; void operator/=(const real_t &rvalue); Vector2 operator-() const; bool operator==(const Vector2 &p_vec2) const; bool operator!=(const Vector2 &p_vec2) const; bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); } real_t angle() const; void set_rotation(real_t p_radians) { x = Math::cos(p_radians); y = Math::sin(p_radians); } _FORCE_INLINE_ Vector2 abs() const { return Vector2(Math::abs(x), Math::abs(y)); } Vector2 rotated(real_t p_by) const; Vector2 tangent() const { return Vector2(y, -x); } Vector2 floor() const; Vector2 snapped(const Vector2 &p_by) const; real_t aspect() const { return width / height; } operator String() const { return String::num(x) + ", " + String::num(y); } _FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) { x = p_x; y = p_y; } _FORCE_INLINE_ Vector2() { x = 0; y = 0; } }; _FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const { return p_vec - *this * (dot(p_vec) - p_d); } _FORCE_INLINE_ Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) { return p_vec * p_scalar; } Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const { Vector2 res = *this; res.x += (p_t * (p_b.x - x)); res.y += (p_t * (p_b.y - y)); return res; } Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) { Vector2 res = p_a; res.x += (p_t * (p_b.x - p_a.x)); res.y += (p_t * (p_b.y - p_a.y)); return res; } typedef Vector2 Size2; typedef Vector2 Point2; struct Transform2D; struct Rect2 { Point2 pos; Size2 size; const Vector2 &get_pos() const { return pos; } void set_pos(const Vector2 &p_pos) { pos = p_pos; } const Vector2 &get_size() const { return size; } void set_size(const Vector2 &p_size) { size = p_size; } real_t get_area() const { return size.width * size.height; } inline bool intersects(const Rect2 &p_rect) const { if (pos.x >= (p_rect.pos.x + p_rect.size.width)) return false; if ((pos.x + size.width) <= p_rect.pos.x) return false; if (pos.y >= (p_rect.pos.y + p_rect.size.height)) return false; if ((pos.y + size.height) <= p_rect.pos.y) return false; return true; } inline real_t distance_to(const Vector2 &p_point) const { real_t dist = 1e20; if (p_point.x < pos.x) { dist = MIN(dist, pos.x - p_point.x); } if (p_point.y < pos.y) { dist = MIN(dist, pos.y - p_point.y); } if (p_point.x >= (pos.x + size.x)) { dist = MIN(p_point.x - (pos.x + size.x), dist); } if (p_point.y >= (pos.y + size.y)) { dist = MIN(p_point.y - (pos.y + size.y), dist); } if (dist == 1e20) return 0; else return dist; } _FORCE_INLINE_ bool intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const; bool intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos = NULL, Point2 *r_normal = NULL) const; inline bool encloses(const Rect2 &p_rect) const { return (p_rect.pos.x >= pos.x) && (p_rect.pos.y >= pos.y) && ((p_rect.pos.x + p_rect.size.x) < (pos.x + size.x)) && ((p_rect.pos.y + p_rect.size.y) < (pos.y + size.y)); } inline bool has_no_area() const { return (size.x <= 0 || size.y <= 0); } inline Rect2 clip(const Rect2 &p_rect) const { /// return a clipped rect Rect2 new_rect = p_rect; if (!intersects(new_rect)) return Rect2(); new_rect.pos.x = MAX(p_rect.pos.x, pos.x); new_rect.pos.y = MAX(p_rect.pos.y, pos.y); Point2 p_rect_end = p_rect.pos + p_rect.size; Point2 end = pos + size; new_rect.size.x = MIN(p_rect_end.x, end.x) - new_rect.pos.x; new_rect.size.y = MIN(p_rect_end.y, end.y) - new_rect.pos.y; return new_rect; } inline Rect2 merge(const Rect2 &p_rect) const { ///< return a merged rect Rect2 new_rect; new_rect.pos.x = MIN(p_rect.pos.x, pos.x); new_rect.pos.y = MIN(p_rect.pos.y, pos.y); new_rect.size.x = MAX(p_rect.pos.x + p_rect.size.x, pos.x + size.x); new_rect.size.y = MAX(p_rect.pos.y + p_rect.size.y, pos.y + size.y); new_rect.size = new_rect.size - new_rect.pos; //make relative again return new_rect; }; inline bool has_point(const Point2 &p_point) const { if (p_point.x < pos.x) return false; if (p_point.y < pos.y) return false; if (p_point.x >= (pos.x + size.x)) return false; if (p_point.y >= (pos.y + size.y)) return false; return true; } inline bool no_area() const { return (size.width <= 0 || size.height <= 0); } bool operator==(const Rect2 &p_rect) const { return pos == p_rect.pos && size == p_rect.size; } bool operator!=(const Rect2 &p_rect) const { return pos != p_rect.pos || size != p_rect.size; } inline Rect2 grow(real_t p_by) const { Rect2 g = *this; g.pos.x -= p_by; g.pos.y -= p_by; g.size.width += p_by * 2; g.size.height += p_by * 2; return g; } inline Rect2 expand(const Vector2 &p_vector) const { Rect2 r = *this; r.expand_to(p_vector); return r; } inline void expand_to(const Vector2 &p_vector) { //in place function for speed Vector2 begin = pos; Vector2 end = pos + size; if (p_vector.x < begin.x) begin.x = p_vector.x; if (p_vector.y < begin.y) begin.y = p_vector.y; if (p_vector.x > end.x) end.x = p_vector.x; if (p_vector.y > end.y) end.y = p_vector.y; pos = begin; size = end - begin; } operator String() const { return String(pos) + ", " + String(size); } Rect2() {} Rect2(real_t p_x, real_t p_y, real_t p_width, real_t p_height) { pos = Point2(p_x, p_y); size = Size2(p_width, p_height); } Rect2(const Point2 &p_pos, const Size2 &p_size) { pos = p_pos; size = p_size; } }; /* INTEGER STUFF */ struct Point2i { union { int x; int width; }; union { int y; int height; }; _FORCE_INLINE_ int &operator[](int p_idx) { return p_idx ? y : x; } _FORCE_INLINE_ const int &operator[](int p_idx) const { return p_idx ? y : x; } Point2i operator+(const Point2i &p_v) const; void operator+=(const Point2i &p_v); Point2i operator-(const Point2i &p_v) const; void operator-=(const Point2i &p_v); Point2i operator*(const Point2i &p_v1) const; Point2i operator*(const int &rvalue) const; void operator*=(const int &rvalue); Point2i operator/(const Point2i &p_v1) const; Point2i operator/(const int &rvalue) const; void operator/=(const int &rvalue); Point2i operator-() const; bool operator<(const Point2i &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } bool operator>(const Point2i &p_vec2) const { return (x == p_vec2.x) ? (y > p_vec2.y) : (x > p_vec2.x); } bool operator==(const Point2i &p_vec2) const; bool operator!=(const Point2i &p_vec2) const; real_t get_aspect() const { return width / (real_t)height; } operator String() const { return String::num(x) + ", " + String::num(y); } operator Vector2() const { return Vector2(x, y); } inline Point2i(const Vector2 &p_vec2) { x = (int)p_vec2.x; y = (int)p_vec2.y; } inline Point2i(int p_x, int p_y) { x = p_x; y = p_y; } inline Point2i() { x = 0; y = 0; } }; typedef Point2i Size2i; struct Rect2i { Point2i pos; Size2i size; const Point2i &get_pos() const { return pos; } void set_pos(const Point2i &p_pos) { pos = p_pos; } const Point2i &get_size() const { return size; } void set_size(const Point2i &p_size) { size = p_size; } int get_area() const { return size.width * size.height; } inline bool intersects(const Rect2i &p_rect) const { if (pos.x > (p_rect.pos.x + p_rect.size.width)) return false; if ((pos.x + size.width) < p_rect.pos.x) return false; if (pos.y > (p_rect.pos.y + p_rect.size.height)) return false; if ((pos.y + size.height) < p_rect.pos.y) return false; return true; } inline bool encloses(const Rect2i &p_rect) const { return (p_rect.pos.x >= pos.x) && (p_rect.pos.y >= pos.y) && ((p_rect.pos.x + p_rect.size.x) < (pos.x + size.x)) && ((p_rect.pos.y + p_rect.size.y) < (pos.y + size.y)); } inline bool has_no_area() const { return (size.x <= 0 || size.y <= 0); } inline Rect2i clip(const Rect2i &p_rect) const { /// return a clipped rect Rect2i new_rect = p_rect; if (!intersects(new_rect)) return Rect2i(); new_rect.pos.x = MAX(p_rect.pos.x, pos.x); new_rect.pos.y = MAX(p_rect.pos.y, pos.y); Point2 p_rect_end = p_rect.pos + p_rect.size; Point2 end = pos + size; new_rect.size.x = (int)(MIN(p_rect_end.x, end.x) - new_rect.pos.x); new_rect.size.y = (int)(MIN(p_rect_end.y, end.y) - new_rect.pos.y); return new_rect; } inline Rect2i merge(const Rect2i &p_rect) const { ///< return a merged rect Rect2i new_rect; new_rect.pos.x = MIN(p_rect.pos.x, pos.x); new_rect.pos.y = MIN(p_rect.pos.y, pos.y); new_rect.size.x = MAX(p_rect.pos.x + p_rect.size.x, pos.x + size.x); new_rect.size.y = MAX(p_rect.pos.y + p_rect.size.y, pos.y + size.y); new_rect.size = new_rect.size - new_rect.pos; //make relative again return new_rect; }; bool has_point(const Point2 &p_point) const { if (p_point.x < pos.x) return false; if (p_point.y < pos.y) return false; if (p_point.x >= (pos.x + size.x)) return false; if (p_point.y >= (pos.y + size.y)) return false; return true; } bool no_area() { return (size.width <= 0 || size.height <= 0); } bool operator==(const Rect2i &p_rect) const { return pos == p_rect.pos && size == p_rect.size; } bool operator!=(const Rect2i &p_rect) const { return pos != p_rect.pos || size != p_rect.size; } Rect2i grow(int p_by) const { Rect2i g = *this; g.pos.x -= p_by; g.pos.y -= p_by; g.size.width += p_by * 2; g.size.height += p_by * 2; return g; } inline void expand_to(const Point2i &p_vector) { Point2i begin = pos; Point2i end = pos + size; if (p_vector.x < begin.x) begin.x = p_vector.x; if (p_vector.y < begin.y) begin.y = p_vector.y; if (p_vector.x > end.x) end.x = p_vector.x; if (p_vector.y > end.y) end.y = p_vector.y; pos = begin; size = end - begin; } operator String() const { return String(pos) + ", " + String(size); } operator Rect2() const { return Rect2(pos, size); } Rect2i(const Rect2 &p_r2) { pos = p_r2.pos; size = p_r2.size; } Rect2i() {} Rect2i(int p_x, int p_y, int p_width, int p_height) { pos = Point2(p_x, p_y); size = Size2(p_width, p_height); } Rect2i(const Point2 &p_pos, const Size2 &p_size) { pos = p_pos; size = p_size; } }; struct Transform2D { // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": // M = (elements[0][0] elements[1][0]) // (elements[0][1] elements[1][1]) // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, // and angle is measure from +X to +Y in a clockwise-fashion. Vector2 elements[3]; _FORCE_INLINE_ real_t tdotx(const Vector2 &v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } _FORCE_INLINE_ real_t tdoty(const Vector2 &v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } const Vector2 &operator[](int p_idx) const { return elements[p_idx]; } Vector2 &operator[](int p_idx) { return elements[p_idx]; } _FORCE_INLINE_ Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis, 3, Vector2()); return elements[p_axis]; } _FORCE_INLINE_ void set_axis(int p_axis, const Vector2 &p_vec) { ERR_FAIL_INDEX(p_axis, 3); elements[p_axis] = p_vec; } void invert(); Transform2D inverse() const; void affine_invert(); Transform2D affine_inverse() const; void set_rotation(real_t p_phi); real_t get_rotation() const; _FORCE_INLINE_ void set_rotation_and_scale(real_t p_phi, const Size2 &p_scale); void rotate(real_t p_phi); void scale(const Size2 &p_scale); void scale_basis(const Size2 &p_scale); void translate(real_t p_tx, real_t p_ty); void translate(const Vector2 &p_translation); real_t basis_determinant() const; Size2 get_scale() const; _FORCE_INLINE_ const Vector2 &get_origin() const { return elements[2]; } _FORCE_INLINE_ void set_origin(const Vector2 &p_origin) { elements[2] = p_origin; } Transform2D scaled(const Size2 &p_scale) const; Transform2D basis_scaled(const Size2 &p_scale) const; Transform2D translated(const Vector2 &p_offset) const; Transform2D rotated(real_t p_phi) const; Transform2D untranslated() const; void orthonormalize(); Transform2D orthonormalized() const; bool operator==(const Transform2D &p_transform) const; bool operator!=(const Transform2D &p_transform) const; void operator*=(const Transform2D &p_transform); Transform2D operator*(const Transform2D &p_transform) const; Transform2D interpolate_with(const Transform2D &p_transform, real_t p_c) const; _FORCE_INLINE_ Vector2 basis_xform(const Vector2 &p_vec) const; _FORCE_INLINE_ Vector2 basis_xform_inv(const Vector2 &p_vec) const; _FORCE_INLINE_ Vector2 xform(const Vector2 &p_vec) const; _FORCE_INLINE_ Vector2 xform_inv(const Vector2 &p_vec) const; _FORCE_INLINE_ Rect2 xform(const Rect2 &p_vec) const; _FORCE_INLINE_ Rect2 xform_inv(const Rect2 &p_vec) const; operator String() const; Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) { elements[0][0] = xx; elements[0][1] = xy; elements[1][0] = yx; elements[1][1] = yy; elements[2][0] = ox; elements[2][1] = oy; } Transform2D(real_t p_rot, const Vector2 &p_pos); Transform2D() { elements[0][0] = 1.0; elements[1][1] = 1.0; } }; bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const { //SAT intersection between local and transformed rect2 Vector2 xf_points[4] = { p_xform.xform(p_rect.pos), p_xform.xform(Vector2(p_rect.pos.x + p_rect.size.x, p_rect.pos.y)), p_xform.xform(Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.y)), p_xform.xform(Vector2(p_rect.pos.x + p_rect.size.x, p_rect.pos.y + p_rect.size.y)), }; real_t low_limit; //base rect2 first (faster) if (xf_points[0].y > pos.y) goto next1; if (xf_points[1].y > pos.y) goto next1; if (xf_points[2].y > pos.y) goto next1; if (xf_points[3].y > pos.y) goto next1; return false; next1: low_limit = pos.y + size.y; if (xf_points[0].y < low_limit) goto next2; if (xf_points[1].y < low_limit) goto next2; if (xf_points[2].y < low_limit) goto next2; if (xf_points[3].y < low_limit) goto next2; return false; next2: if (xf_points[0].x > pos.x) goto next3; if (xf_points[1].x > pos.x) goto next3; if (xf_points[2].x > pos.x) goto next3; if (xf_points[3].x > pos.x) goto next3; return false; next3: low_limit = pos.x + size.x; if (xf_points[0].x < low_limit) goto next4; if (xf_points[1].x < low_limit) goto next4; if (xf_points[2].x < low_limit) goto next4; if (xf_points[3].x < low_limit) goto next4; return false; next4: Vector2 xf_points2[4] = { pos, Vector2(pos.x + size.x, pos.y), Vector2(pos.x, pos.y + size.y), Vector2(pos.x + size.x, pos.y + size.y), }; real_t maxa = p_xform.elements[0].dot(xf_points2[0]); real_t mina = maxa; real_t dp = p_xform.elements[0].dot(xf_points2[1]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.elements[0].dot(xf_points2[2]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.elements[0].dot(xf_points2[3]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); real_t maxb = p_xform.elements[0].dot(xf_points[0]); real_t minb = maxb; dp = p_xform.elements[0].dot(xf_points[1]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.elements[0].dot(xf_points[2]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.elements[0].dot(xf_points[3]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); if (mina > maxb) return false; if (minb > maxa) return false; maxa = p_xform.elements[1].dot(xf_points2[0]); mina = maxa; dp = p_xform.elements[1].dot(xf_points2[1]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.elements[1].dot(xf_points2[2]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.elements[1].dot(xf_points2[3]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); maxb = p_xform.elements[1].dot(xf_points[0]); minb = maxb; dp = p_xform.elements[1].dot(xf_points[1]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.elements[1].dot(xf_points[2]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.elements[1].dot(xf_points[3]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); if (mina > maxb) return false; if (minb > maxa) return false; return true; } Vector2 Transform2D::basis_xform(const Vector2 &v) const { return Vector2( tdotx(v), tdoty(v)); } Vector2 Transform2D::basis_xform_inv(const Vector2 &v) const { return Vector2( elements[0].dot(v), elements[1].dot(v)); } Vector2 Transform2D::xform(const Vector2 &v) const { return Vector2( tdotx(v), tdoty(v)) + elements[2]; } Vector2 Transform2D::xform_inv(const Vector2 &p_vec) const { Vector2 v = p_vec - elements[2]; return Vector2( elements[0].dot(v), elements[1].dot(v)); } Rect2 Transform2D::xform(const Rect2 &p_rect) const { Vector2 x = elements[0] * p_rect.size.x; Vector2 y = elements[1] * p_rect.size.y; Vector2 pos = xform(p_rect.pos); Rect2 new_rect; new_rect.pos = pos; new_rect.expand_to(pos + x); new_rect.expand_to(pos + y); new_rect.expand_to(pos + x + y); return new_rect; } void Transform2D::set_rotation_and_scale(real_t p_rot, const Size2 &p_scale) { elements[0][0] = Math::cos(p_rot) * p_scale.x; elements[1][1] = Math::cos(p_rot) * p_scale.y; elements[1][0] = -Math::sin(p_rot) * p_scale.y; elements[0][1] = Math::sin(p_rot) * p_scale.x; } Rect2 Transform2D::xform_inv(const Rect2 &p_rect) const { Vector2 ends[4] = { xform_inv(p_rect.pos), xform_inv(Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.y)), xform_inv(Vector2(p_rect.pos.x + p_rect.size.x, p_rect.pos.y + p_rect.size.y)), xform_inv(Vector2(p_rect.pos.x + p_rect.size.x, p_rect.pos.y)) }; Rect2 new_rect; new_rect.pos = ends[0]; new_rect.expand_to(ends[1]); new_rect.expand_to(ends[2]); new_rect.expand_to(ends[3]); return new_rect; } #endif