/*************************************************************************/ /* math_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "math_2d.h" real_t Vector2::angle() const { return Math::atan2(x,y); } float Vector2::length() const { return Math::sqrt( x*x + y*y ); } float Vector2::length_squared() const { return x*x + y*y; } void Vector2::normalize() { float l = x*x + y*y; if (l!=0) { l=Math::sqrt(l); x/=l; y/=l; } } Vector2 Vector2::normalized() const { Vector2 v=*this; v.normalize(); return v; } float Vector2::distance_to(const Vector2& p_vector2) const { return Math::sqrt( (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y)); } float Vector2::distance_squared_to(const Vector2& p_vector2) const { return (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y); } float Vector2::angle_to(const Vector2& p_vector2) const { return Math::atan2( tangent().dot(p_vector2), dot(p_vector2) ); } float Vector2::angle_to_point(const Vector2& p_vector2) const { return Math::atan2( x-p_vector2.x, y - p_vector2.y ); } float Vector2::dot(const Vector2& p_other) const { return x*p_other.x + y*p_other.y; } float Vector2::cross(const Vector2& p_other) const { return x*p_other.y - y*p_other.x; } Vector2 Vector2::cross(real_t p_other) const { return Vector2(p_other*y,-p_other*x); } Vector2 Vector2::operator+(const Vector2& p_v) const { return Vector2(x+p_v.x,y+p_v.y); } void Vector2::operator+=(const Vector2& p_v) { x+=p_v.x; y+=p_v.y; } Vector2 Vector2::operator-(const Vector2& p_v) const { return Vector2(x-p_v.x,y-p_v.y); } void Vector2::operator-=(const Vector2& p_v) { x-=p_v.x; y-=p_v.y; } Vector2 Vector2::operator*(const Vector2 &p_v1) const { return Vector2(x * p_v1.x, y * p_v1.y); }; Vector2 Vector2::operator*(const float &rvalue) const { return Vector2(x * rvalue, y * rvalue); }; void Vector2::operator*=(const float &rvalue) { x *= rvalue; y *= rvalue; }; Vector2 Vector2::operator/(const Vector2 &p_v1) const { return Vector2(x / p_v1.x, y / p_v1.y); }; Vector2 Vector2::operator/(const float &rvalue) const { return Vector2(x / rvalue, y / rvalue); }; void Vector2::operator/=(const float &rvalue) { x /= rvalue; y /= rvalue; }; Vector2 Vector2::operator-() const { return Vector2(-x,-y); } bool Vector2::operator==(const Vector2& p_vec2) const { return x==p_vec2.x && y==p_vec2.y; } bool Vector2::operator!=(const Vector2& p_vec2) const { return x!=p_vec2.x || y!=p_vec2.y; } Vector2 Vector2::floor() const { return Vector2( Math::floor(x), Math::floor(y) ); } Vector2 Vector2::rotated(float p_by) const { Vector2 v; v.set_rotation(angle()+p_by); v*=length(); return v; } Vector2 Vector2::project(const Vector2& p_vec) const { Vector2 v1=p_vec; Vector2 v2=*this; return v2 * ( v1.dot(v2) / v2.dot(v2)); } Vector2 Vector2::snapped(const Vector2& p_by) const { return Vector2( Math::stepify(x,p_by.x), Math::stepify(y,p_by.y) ); } Vector2 Vector2::clamped(real_t p_len) const { real_t l = length(); Vector2 v = *this; if (l>0 && p_lendot(p_vec); } Vector2 Vector2::reflect(const Vector2& p_vec) const { return p_vec - *this * this->dot(p_vec) * 2.0; } bool Rect2::intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos,Point2* r_normal) const { real_t min=0,max=1; int axis=0; float sign=0; for(int i=0;i<2;i++) { real_t seg_from=p_from[i]; real_t seg_to=p_to[i]; real_t box_begin=pos[i]; real_t box_end=box_begin+size[i]; real_t cmin,cmax; float csign; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) return false; real_t length=seg_to-seg_from; cmin = (seg_from < box_begin)?((box_begin - seg_from)/length):0; cmax = (seg_to > box_end)?((box_end - seg_from)/length):1; csign=-1.0; } else { if (seg_to > box_end || seg_from < box_begin) return false; real_t length=seg_to-seg_from; cmin = (seg_from > box_end)?(box_end - seg_from)/length:0; cmax = (seg_to < box_begin)?(box_begin - seg_from)/length:1; csign=1.0; } if (cmin > min) { min = cmin; axis=i; sign=csign; } if (cmax < max) max = cmax; if (max < min) return false; } Vector2 rel=p_to-p_from; if (r_normal) { Vector2 normal; normal[axis]=sign; *r_normal=normal; } if (r_pos) *r_pos=p_from+rel*min; return true; } /* Point2i */ Point2i Point2i::operator+(const Point2i& p_v) const { return Point2i(x+p_v.x,y+p_v.y); } void Point2i::operator+=(const Point2i& p_v) { x+=p_v.x; y+=p_v.y; } Point2i Point2i::operator-(const Point2i& p_v) const { return Point2i(x-p_v.x,y-p_v.y); } void Point2i::operator-=(const Point2i& p_v) { x-=p_v.x; y-=p_v.y; } Point2i Point2i::operator*(const Point2i &p_v1) const { return Point2i(x * p_v1.x, y * p_v1.y); }; Point2i Point2i::operator*(const int &rvalue) const { return Point2i(x * rvalue, y * rvalue); }; void Point2i::operator*=(const int &rvalue) { x *= rvalue; y *= rvalue; }; Point2i Point2i::operator/(const Point2i &p_v1) const { return Point2i(x / p_v1.x, y / p_v1.y); }; Point2i Point2i::operator/(const int &rvalue) const { return Point2i(x / rvalue, y / rvalue); }; void Point2i::operator/=(const int &rvalue) { x /= rvalue; y /= rvalue; }; Point2i Point2i::operator-() const { return Point2i(-x,-y); } bool Point2i::operator==(const Point2i& p_vec2) const { return x==p_vec2.x && y==p_vec2.y; } bool Point2i::operator!=(const Point2i& p_vec2) const { return x!=p_vec2.x || y!=p_vec2.y; } void Matrix32::invert() { SWAP(elements[0][1],elements[1][0]); elements[2] = basis_xform(-elements[2]); } Matrix32 Matrix32::inverse() const { Matrix32 inv=*this; inv.invert(); return inv; } void Matrix32::affine_invert() { float det = elements[0][0]*elements[1][1] - elements[1][0]*elements[0][1]; ERR_FAIL_COND(det==0); float idet = 1.0 / det; SWAP( elements[0][0],elements[1][1] ); elements[0]*=Vector2(idet,-idet); elements[1]*=Vector2(-idet,idet); elements[2] = basis_xform(-elements[2]); } Matrix32 Matrix32::affine_inverse() const { Matrix32 inv=*this; inv.affine_invert(); return inv; } void Matrix32::rotate(real_t p_phi) { Matrix32 rot(p_phi,Vector2()); *this *= rot; } real_t Matrix32::get_rotation() const { return Math::atan2(elements[1].x,elements[1].y); } void Matrix32::set_rotation(real_t p_rot) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); elements[0][0]=cr; elements[1][1]=cr; elements[0][1]=-sr; elements[1][0]=sr; } Matrix32::Matrix32(real_t p_rot, const Vector2& p_pos) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); elements[0][0]=cr; elements[1][1]=cr; elements[0][1]=-sr; elements[1][0]=sr; elements[2]=p_pos; } Vector2 Matrix32::get_scale() const { return Vector2( elements[0].length(), elements[1].length() ); } void Matrix32::scale(const Vector2& p_scale) { elements[0]*=p_scale; elements[1]*=p_scale; elements[2]*=p_scale; } void Matrix32::scale_basis(const Vector2& p_scale) { elements[0]*=p_scale; elements[1]*=p_scale; } void Matrix32::translate( real_t p_tx, real_t p_ty) { translate(Vector2(p_tx,p_ty)); } void Matrix32::translate( const Vector2& p_translation ) { elements[2]+=basis_xform(p_translation); } void Matrix32::orthonormalize() { // Gram-Schmidt Process Vector2 x=elements[0]; Vector2 y=elements[1]; x.normalize(); y = (y-x*(x.dot(y))); y.normalize(); elements[0]=x; elements[1]=y; } Matrix32 Matrix32::orthonormalized() const { Matrix32 on=*this; on.orthonormalize(); return on; } bool Matrix32::operator==(const Matrix32& p_transform) const { for(int i=0;i<3;i++) { if (elements[i]!=p_transform.elements[i]) return false; } return true; } bool Matrix32::operator!=(const Matrix32& p_transform) const { for(int i=0;i<3;i++) { if (elements[i]!=p_transform.elements[i]) return true; } return false; } void Matrix32::operator*=(const Matrix32& p_transform) { elements[2] = xform(p_transform.elements[2]); float x0,x1,y0,y1; /* x0 = p_transform.tdotx(elements[0]); x1 = p_transform.tdoty(elements[0]); y0 = p_transform.tdotx(elements[1]); y1 = p_transform.tdoty(elements[1]);*/ x0 = tdotx(p_transform.elements[0]); x1 = tdoty(p_transform.elements[0]); y0 = tdotx(p_transform.elements[1]); y1 = tdoty(p_transform.elements[1]); elements[0][0]=x0; elements[0][1]=x1; elements[1][0]=y0; elements[1][1]=y1; } Matrix32 Matrix32::operator*(const Matrix32& p_transform) const { Matrix32 t = *this; t*=p_transform; return t; } Matrix32 Matrix32::scaled(const Vector2& p_scale) const { Matrix32 copy=*this; copy.scale(p_scale); return copy; } Matrix32 Matrix32::basis_scaled(const Vector2& p_scale) const { Matrix32 copy=*this; copy.scale_basis(p_scale); return copy; } Matrix32 Matrix32::untranslated() const { Matrix32 copy=*this; copy.elements[2]=Vector2(); return copy; } Matrix32 Matrix32::translated(const Vector2& p_offset) const { Matrix32 copy=*this; copy.translate(p_offset); return copy; } Matrix32 Matrix32::rotated(float p_phi) const { Matrix32 copy=*this; copy.rotate(p_phi); return copy; } float Matrix32::basis_determinant() const { return elements[0].x * elements[1].y - elements[0].y * elements[1].x; } Matrix32 Matrix32::interpolate_with(const Matrix32& p_transform, float p_c) const { //extract parameters Vector2 p1 = get_origin(); Vector2 p2 = p_transform.get_origin(); real_t r1 = get_rotation(); real_t r2 = p_transform.get_rotation(); Vector2 s1 = get_scale(); Vector2 s2 = p_transform.get_scale(); //slerp rotation Vector2 v1(Math::cos(r1), Math::sin(r1)); Vector2 v2(Math::cos(r2), Math::sin(r2)); real_t dot = v1.dot(v2); dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1] Vector2 v; if (dot > 0.9995) { v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues } else { real_t angle = p_c*Math::acos(dot); Vector2 v3 = (v2 - v1*dot).normalized(); v = v1*Math::cos(angle) + v3*Math::sin(angle); } //construct matrix Matrix32 res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c)); res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c)); return res; } Matrix32::operator String() const { return "("+String(String()+elements[0]+", "+elements[1]+", "+elements[2])+")"; }