/*************************************************************************/ /* geometry_3d.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef GEOMETRY_3D_H #define GEOMETRY_3D_H #include "core/math/face3.h" #include "core/object.h" #include "core/vector.h" class Geometry3D { Geometry3D(); public: static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) { // Do the function 'd' as defined by pb. I think is is dot product of some sort. #define d_of(m, n, o, p) ((m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z)) // Calculate the parametric position on the 2 curves, mua and mub. real_t mua = (d_of(p1, q1, q2, q1) * d_of(q2, q1, p2, p1) - d_of(p1, q1, p2, p1) * d_of(q2, q1, q2, q1)) / (d_of(p2, p1, p2, p1) * d_of(q2, q1, q2, q1) - d_of(q2, q1, p2, p1) * d_of(q2, q1, p2, p1)); real_t mub = (d_of(p1, q1, q2, q1) + mua * d_of(q2, q1, p2, p1)) / d_of(q2, q1, q2, q1); // Clip the value between [0..1] constraining the solution to lie on the original curves. if (mua < 0) { mua = 0; } if (mub < 0) { mub = 0; } if (mua > 1) { mua = 1; } if (mub > 1) { mub = 1; } c1 = p1.lerp(p2, mua); c2 = q1.lerp(q2, mub); } static real_t get_closest_distance_between_segments(const Vector3 &p_from_a, const Vector3 &p_to_a, const Vector3 &p_from_b, const Vector3 &p_to_b) { Vector3 u = p_to_a - p_from_a; Vector3 v = p_to_b - p_from_b; Vector3 w = p_from_a - p_to_a; real_t a = u.dot(u); // Always >= 0 real_t b = u.dot(v); real_t c = v.dot(v); // Always >= 0 real_t d = u.dot(w); real_t e = v.dot(w); real_t D = a * c - b * b; // Always >= 0 real_t sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0 real_t tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0 // Compute the line parameters of the two closest points. if (D < CMP_EPSILON) { // The lines are almost parallel. sN = 0.0; // Force using point P0 on segment S1 sD = 1.0; // to prevent possible division by 0.0 later. tN = e; tD = c; } else { // Get the closest points on the infinite lines sN = (b * e - c * d); tN = (a * e - b * d); if (sN < 0.0) { // sc < 0 => the s=0 edge is visible. sN = 0.0; tN = e; tD = c; } else if (sN > sD) { // sc > 1 => the s=1 edge is visible. sN = sD; tN = e + b; tD = c; } } if (tN < 0.0) { // tc < 0 => the t=0 edge is visible. tN = 0.0; // Recompute sc for this edge. if (-d < 0.0) { sN = 0.0; } else if (-d > a) { sN = sD; } else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible. tN = tD; // Recompute sc for this edge. if ((-d + b) < 0.0) { sN = 0; } else if ((-d + b) > a) { sN = sD; } else { sN = (-d + b); sD = a; } } // Finally do the division to get sc and tc. sc = (Math::is_zero_approx(sN) ? 0.0 : sN / sD); tc = (Math::is_zero_approx(tN) ? 0.0 : tN / tD); // Get the difference of the two closest points. Vector3 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc) return dP.length(); // Return the closest distance. } static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = p_dir.cross(e2); real_t a = e1.dot(h); if (Math::is_zero_approx(a)) { // Parallel test. return false; } real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); if (u < 0.0 || u > 1.0) { return false; } Vector3 q = s.cross(e1); real_t v = f * p_dir.dot(q); if (v < 0.0 || u + v > 1.0) { return false; } // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > 0.00001) { // ray intersection if (r_res) { *r_res = p_from + p_dir * t; } return true; } else { // This means that there is a line intersection but not a ray intersection. return false; } } static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = nullptr) { Vector3 rel = p_to - p_from; Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = rel.cross(e2); real_t a = e1.dot(h); if (Math::is_zero_approx(a)) { // Parallel test. return false; } real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); if (u < 0.0 || u > 1.0) { return false; } Vector3 q = s.cross(e1); real_t v = f * rel.dot(q); if (v < 0.0 || u + v > 1.0) { return false; } // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > CMP_EPSILON && t <= 1.0) { // Ray intersection. if (r_res) { *r_res = p_from + rel * t; } return true; } else { // This means that there is a line intersection but not a ray intersection. return false; } } static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { Vector3 sphere_pos = p_sphere_pos - p_from; Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) { return false; // Both points are the same. } Vector3 normal = rel / rel_l; real_t sphere_d = normal.dot(sphere_pos); real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); if (ray_distance >= p_sphere_radius) { return false; } real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; real_t inters_d = sphere_d; if (inters_d2 >= CMP_EPSILON) { inters_d -= Math::sqrt(inters_d2); } // Check in segment. if (inters_d < 0 || inters_d > rel_l) { return false; } Vector3 result = p_from + normal * inters_d; if (r_res) { *r_res = result; } if (r_norm) { *r_norm = (result - p_sphere_pos).normalized(); } return true; } static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = nullptr, Vector3 *r_norm = nullptr) { Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) { return false; // Both points are the same. } // First check if they are parallel. Vector3 normal = (rel / rel_l); Vector3 crs = normal.cross(Vector3(0, 0, 1)); real_t crs_l = crs.length(); Vector3 z_dir; if (crs_l < CMP_EPSILON) { z_dir = Vector3(1, 0, 0); // Any x/y vector OK. } else { z_dir = crs / crs_l; } real_t dist = z_dir.dot(p_from); if (dist >= p_radius) { return false; // Too far away. } // Convert to 2D. real_t w2 = p_radius * p_radius - dist * dist; if (w2 < CMP_EPSILON) { return false; // Avoid numerical error. } Size2 size(Math::sqrt(w2), p_height * 0.5); Vector3 x_dir = z_dir.cross(Vector3(0, 0, 1)).normalized(); Vector2 from2D(x_dir.dot(p_from), p_from.z); Vector2 to2D(x_dir.dot(p_to), p_to.z); real_t min = 0, max = 1; int axis = -1; for (int i = 0; i < 2; i++) { real_t seg_from = from2D[i]; real_t seg_to = to2D[i]; real_t box_begin = -size[i]; real_t box_end = size[i]; real_t cmin, cmax; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; } else { if (seg_to > box_end || seg_from < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; } if (cmin > min) { min = cmin; axis = i; } if (cmax < max) { max = cmax; } if (max < min) { return false; } } // Convert to 3D again. Vector3 result = p_from + (rel * min); Vector3 res_normal = result; if (axis == 0) { res_normal.z = 0; } else { res_normal.x = 0; res_normal.y = 0; } res_normal.normalize(); if (r_res) { *r_res = result; } if (r_norm) { *r_norm = res_normal; } return true; } static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { real_t min = -1e20, max = 1e20; Vector3 rel = p_to - p_from; real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) { return false; } Vector3 dir = rel / rel_l; int min_index = -1; for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; real_t den = p.normal.dot(dir); if (Math::abs(den) <= CMP_EPSILON) { continue; // Ignore parallel plane. } real_t dist = -p.distance_to(p_from) / den; if (den > 0) { // Backwards facing plane. if (dist < max) { max = dist; } } else { // Front facing plane. if (dist > min) { min = dist; min_index = i; } } } if (max <= min || min < 0 || min > rel_l || min_index == -1) { // Exit conditions. return false; // No intersection. } if (p_res) { *p_res = p_from + dir * min; } if (p_norm) { *p_norm = p_planes[min_index].normal; } return true; } static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. } real_t d = n.dot(p) / l2; if (d <= 0.0) { return p_segment[0]; // Before first point. } else if (d >= 1.0) { return p_segment[1]; // After first point. } else { return p_segment[0] + n * d; // Inside. } } static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) { return p_segment[0]; // Both points are the same, just give any. } real_t d = n.dot(p) / l2; return p_segment[0] + n * d; // Inside. } static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); if (face_n.dot(n1) < 0) { return false; } Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); if (face_n.dot(n2) < 0) { return false; } Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); if (face_n.dot(n3) < 0) { return false; } return true; } static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); if (d > p_sphere_radius || d < -p_sphere_radius) { // Not touching the plane of the face, return. return false; } Vector3 contact = p_sphere_pos - (p_normal * d); /** 2nd) TEST INSIDE TRIANGLE **/ if (Geometry3D::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) { r_triangle_contact = contact; r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius; //printf("solved inside triangle\n"); return true; } /** 3rd TEST INSIDE EDGE CYLINDERS **/ const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly for (int i = 0; i < 3; i++) { // Check edge cylinder. Vector3 n1 = verts[i] - verts[i + 1]; Vector3 n2 = p_sphere_pos - verts[i + 1]; ///@TODO Maybe discard by range here to make the algorithm quicker. // Check point within cylinder radius. Vector3 axis = n1.cross(n2).cross(n1); axis.normalize(); real_t ad = axis.dot(n2); if (ABS(ad) > p_sphere_radius) { // No chance with this edge, too far away. continue; } // Check point within edge capsule cylinder. /** 4th TEST INSIDE EDGE POINTS **/ real_t sphere_at = n1.dot(n2); if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; // Point inside here. return true; } real_t r2 = p_sphere_radius * p_sphere_radius; if (n2.length_squared() < r2) { Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); r_triangle_contact = verts[i + 1]; r_sphere_contact = p_sphere_pos - n * p_sphere_radius; return true; } if (n2.distance_squared_to(n1) < r2) { Vector3 n = (p_sphere_pos - verts[i]).normalized(); r_triangle_contact = verts[i]; r_sphere_contact = p_sphere_pos - n * p_sphere_radius; return true; } break; // It's pointless to continue at this point, so save some CPU cycles. } return false; } static inline Vector clip_polygon(const Vector &polygon, const Plane &p_plane) { enum LocationCache { LOC_INSIDE = 1, LOC_BOUNDARY = 0, LOC_OUTSIDE = -1 }; if (polygon.size() == 0) { return polygon; } int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); int inside_count = 0; int outside_count = 0; for (int a = 0; a < polygon.size(); a++) { real_t dist = p_plane.distance_to(polygon[a]); if (dist < -CMP_POINT_IN_PLANE_EPSILON) { location_cache[a] = LOC_INSIDE; inside_count++; } else { if (dist > CMP_POINT_IN_PLANE_EPSILON) { location_cache[a] = LOC_OUTSIDE; outside_count++; } else { location_cache[a] = LOC_BOUNDARY; } } } if (outside_count == 0) { return polygon; // No changes. } else if (inside_count == 0) { return Vector(); // Empty. } long previous = polygon.size() - 1; Vector clipped; for (int index = 0; index < polygon.size(); index++) { int loc = location_cache[index]; if (loc == LOC_OUTSIDE) { if (location_cache[previous] == LOC_INSIDE) { const Vector3 &v1 = polygon[previous]; const Vector3 &v2 = polygon[index]; Vector3 segment = v1 - v2; real_t den = p_plane.normal.dot(segment); real_t dist = p_plane.distance_to(v1) / den; dist = -dist; clipped.push_back(v1 + segment * dist); } } else { const Vector3 &v1 = polygon[index]; if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) { const Vector3 &v2 = polygon[previous]; Vector3 segment = v1 - v2; real_t den = p_plane.normal.dot(segment); real_t dist = p_plane.distance_to(v1) / den; dist = -dist; clipped.push_back(v1 + segment * dist); } clipped.push_back(v1); } previous = index; } return clipped; } static Vector> separate_objects(Vector p_array); // Create a "wrap" that encloses the given geometry. static Vector wrap_geometry(Vector p_array, real_t *p_error = nullptr); struct MeshData { struct Face { Plane plane; Vector indices; }; Vector faces; struct Edge { int a, b; }; Vector edges; Vector vertices; void optimize_vertices(); }; static MeshData build_convex_mesh(const Vector &p_planes); static Vector build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z); static Vector build_box_planes(const Vector3 &p_extents); static Vector build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z); static Vector build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z); static Vector compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); #define FINDMINMAX(x0, x1, x2, min, max) \ min = max = x0; \ if (x1 < min) { \ min = x1; \ } \ if (x1 > max) { \ max = x1; \ } \ if (x2 < min) { \ min = x2; \ } \ if (x2 > max) { \ max = x2; \ } _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { int q; Vector3 vmin, vmax; for (q = 0; q <= 2; q++) { if (normal[q] > 0.0f) { vmin[q] = -maxbox[q]; vmax[q] = maxbox[q]; } else { vmin[q] = maxbox[q]; vmax[q] = -maxbox[q]; } } if (normal.dot(vmin) + d > 0.0f) { return false; } if (normal.dot(vmax) + d >= 0.0f) { return true; } return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p2 = a * v2.y - b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) { \ return false; \ } #define AXISTEST_X2(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p1 = a * v1.y - b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) { \ return false; \ } /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p2 = -a * v2.x + b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) { \ return false; \ } #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p1 = -a * v1.x + b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) { \ return false; \ } /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a * v1.x - b * v1.y; \ p2 = a * v2.x - b * v2.y; \ if (p2 < p1) { \ min = p2; \ max = p1; \ } else { \ min = p1; \ max = p2; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) { \ return false; \ } #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a * v0.x - b * v0.y; \ p1 = a * v1.x - b * v1.y; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) { \ return false; \ } _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0, v1, v2; float min, max, d, p0, p1, p2, rad, fex, fey, fez; Vector3 normal, e0, e1, e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0 = triverts[0] - boxcenter; v1 = triverts[1] - boxcenter; v2 = triverts[2] - boxcenter; /* compute triangle edges */ e0 = v1 - v0; /* tri edge 0 */ e1 = v2 - v1; /* tri edge 1 */ e2 = v0 - v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x, v1.x, v2.x, min, max); if (min > boxhalfsize.x || max < -boxhalfsize.x) { return false; } /* test in Y-direction */ FINDMINMAX(v0.y, v1.y, v2.y, min, max); if (min > boxhalfsize.y || max < -boxhalfsize.y) { return false; } /* test in Z-direction */ FINDMINMAX(v0.z, v1.z, v2.z, min, max); if (min > boxhalfsize.z || max < -boxhalfsize.z) { return false; } /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal = e0.cross(e1); d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ } static Vector generate_edf(const Vector &p_voxels, const Vector3i &p_size, bool p_negative); static Vector generate_sdf8(const Vector &p_positive, const Vector &p_negative); static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { Vector3 v0 = p_b - p_a; Vector3 v1 = p_c - p_a; Vector3 v2 = p_pos - p_a; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) { return Vector3(); //invalid triangle, return empty } float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return Vector3(u, v, w); } static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { Vector3 vap = p_pos - p_a; Vector3 vbp = p_pos - p_b; Vector3 vab = p_b - p_a; Vector3 vac = p_c - p_a; Vector3 vad = p_d - p_a; Vector3 vbc = p_c - p_b; Vector3 vbd = p_d - p_b; // ScTP computes the scalar triple product #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) float va6 = STP(vbp, vbd, vbc); float vb6 = STP(vap, vac, vad); float vc6 = STP(vap, vad, vab); float vd6 = STP(vap, vab, vac); float v6 = 1 / STP(vab, vac, vad); return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); #undef STP } _FORCE_INLINE_ static Vector3 octahedron_map_decode(const Vector2 &p_uv) { // https://twitter.com/Stubbesaurus/status/937994790553227264 Vector2 f = p_uv * 2.0 - Vector2(1.0, 1.0); Vector3 n = Vector3(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); float t = CLAMP(-n.z, 0.0, 1.0); n.x += n.x >= 0 ? -t : t; n.y += n.y >= 0 ? -t : t; return n.normalized(); } }; #endif // GEOMETRY_3D_H