/*************************************************************************/ /* geometry.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef GEOMETRY_H #define GEOMETRY_H #include "core/math/delaunay_2d.h" #include "core/math/face3.h" #include "core/math/rect2.h" #include "core/math/triangulate.h" #include "core/math/vector3.h" #include "core/object.h" #include "core/print_string.h" #include "core/vector.h" class Geometry { Geometry(); public: static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) { Vector2 d1 = q1 - p1; // Direction vector of segment S1. Vector2 d2 = q2 - p2; // Direction vector of segment S2. Vector2 r = p1 - p2; real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative. real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative. real_t f = d2.dot(r); real_t s, t; // Check if either or both segments degenerate into points. if (a <= CMP_EPSILON && e <= CMP_EPSILON) { // Both segments degenerate into points. c1 = p1; c2 = p2; return Math::sqrt((c1 - c2).dot(c1 - c2)); } if (a <= CMP_EPSILON) { // First segment degenerates into a point. s = 0.0; t = f / e; // s = 0 => t = (b*s + f) / e = f / e t = CLAMP(t, 0.0, 1.0); } else { real_t c = d1.dot(r); if (e <= CMP_EPSILON) { // Second segment degenerates into a point. t = 0.0; s = CLAMP(-c / a, 0.0, 1.0); // t = 0 => s = (b*t - c) / a = -c / a } else { // The general nondegenerate case starts here. real_t b = d1.dot(d2); real_t denom = a * e - b * b; // Always nonnegative. // If segments not parallel, compute closest point on L1 to L2 and // clamp to segment S1. Else pick arbitrary s (here 0). if (denom != 0.0) { s = CLAMP((b * f - c * e) / denom, 0.0, 1.0); } else s = 0.0; // Compute point on L2 closest to S1(s) using // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e t = (b * s + f) / e; //If t in [0,1] done. Else clamp t, recompute s for the new value // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a // and clamp s to [0, 1]. if (t < 0.0) { t = 0.0; s = CLAMP(-c / a, 0.0, 1.0); } else if (t > 1.0) { t = 1.0; s = CLAMP((b - c) / a, 0.0, 1.0); } } } c1 = p1 + d1 * s; c2 = p2 + d2 * t; return Math::sqrt((c1 - c2).dot(c1 - c2)); } static void get_closest_points_between_segments(const Vector3 &p1, const Vector3 &p2, const Vector3 &q1, const Vector3 &q2, Vector3 &c1, Vector3 &c2) { // Do the function 'd' as defined by pb. I think is is dot product of some sort. #define d_of(m, n, o, p) ((m.x - n.x) * (o.x - p.x) + (m.y - n.y) * (o.y - p.y) + (m.z - n.z) * (o.z - p.z)) // Calculate the parametric position on the 2 curves, mua and mub. real_t mua = (d_of(p1, q1, q2, q1) * d_of(q2, q1, p2, p1) - d_of(p1, q1, p2, p1) * d_of(q2, q1, q2, q1)) / (d_of(p2, p1, p2, p1) * d_of(q2, q1, q2, q1) - d_of(q2, q1, p2, p1) * d_of(q2, q1, p2, p1)); real_t mub = (d_of(p1, q1, q2, q1) + mua * d_of(q2, q1, p2, p1)) / d_of(q2, q1, q2, q1); // Clip the value between [0..1] constraining the solution to lie on the original curves. if (mua < 0) mua = 0; if (mub < 0) mub = 0; if (mua > 1) mua = 1; if (mub > 1) mub = 1; c1 = p1.lerp(p2, mua); c2 = q1.lerp(q2, mub); } static real_t get_closest_distance_between_segments(const Vector3 &p_from_a, const Vector3 &p_to_a, const Vector3 &p_from_b, const Vector3 &p_to_b) { Vector3 u = p_to_a - p_from_a; Vector3 v = p_to_b - p_from_b; Vector3 w = p_from_a - p_to_a; real_t a = u.dot(u); // Always >= 0 real_t b = u.dot(v); real_t c = v.dot(v); // Always >= 0 real_t d = u.dot(w); real_t e = v.dot(w); real_t D = a * c - b * b; // Always >= 0 real_t sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0 real_t tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0 // Compute the line parameters of the two closest points. if (D < CMP_EPSILON) { // The lines are almost parallel. sN = 0.0; // Force using point P0 on segment S1 sD = 1.0; // to prevent possible division by 0.0 later. tN = e; tD = c; } else { // Get the closest points on the infinite lines sN = (b * e - c * d); tN = (a * e - b * d); if (sN < 0.0) { // sc < 0 => the s=0 edge is visible. sN = 0.0; tN = e; tD = c; } else if (sN > sD) { // sc > 1 => the s=1 edge is visible. sN = sD; tN = e + b; tD = c; } } if (tN < 0.0) { // tc < 0 => the t=0 edge is visible. tN = 0.0; // Recompute sc for this edge. if (-d < 0.0) sN = 0.0; else if (-d > a) sN = sD; else { sN = -d; sD = a; } } else if (tN > tD) { // tc > 1 => the t=1 edge is visible. tN = tD; // Recompute sc for this edge. if ((-d + b) < 0.0) sN = 0; else if ((-d + b) > a) sN = sD; else { sN = (-d + b); sD = a; } } // Finally do the division to get sc and tc. sc = (Math::is_zero_approx(sN) ? 0.0 : sN / sD); tc = (Math::is_zero_approx(tN) ? 0.0 : tN / tD); // Get the difference of the two closest points. Vector3 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc) return dP.length(); // Return the closest distance. } static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) { Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = p_dir.cross(e2); real_t a = e1.dot(h); if (Math::is_zero_approx(a)) // Parallel test. return false; real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); if (u < 0.0 || u > 1.0) return false; Vector3 q = s.cross(e1); real_t v = f * p_dir.dot(q); if (v < 0.0 || u + v > 1.0) return false; // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > 0.00001) { // ray intersection if (r_res) *r_res = p_from + p_dir * t; return true; } else // This means that there is a line intersection but not a ray intersection. return false; } static inline bool segment_intersects_triangle(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_v0, const Vector3 &p_v1, const Vector3 &p_v2, Vector3 *r_res = 0) { Vector3 rel = p_to - p_from; Vector3 e1 = p_v1 - p_v0; Vector3 e2 = p_v2 - p_v0; Vector3 h = rel.cross(e2); real_t a = e1.dot(h); if (Math::is_zero_approx(a)) // Parallel test. return false; real_t f = 1.0 / a; Vector3 s = p_from - p_v0; real_t u = f * s.dot(h); if (u < 0.0 || u > 1.0) return false; Vector3 q = s.cross(e1); real_t v = f * rel.dot(q); if (v < 0.0 || u + v > 1.0) return false; // At this stage we can compute t to find out where // the intersection point is on the line. real_t t = f * e2.dot(q); if (t > CMP_EPSILON && t <= 1.0) { // Ray intersection. if (r_res) *r_res = p_from + rel * t; return true; } else // This means that there is a line intersection but not a ray intersection. return false; } static inline bool segment_intersects_sphere(const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) { Vector3 sphere_pos = p_sphere_pos - p_from; Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) return false; // Both points are the same. Vector3 normal = rel / rel_l; real_t sphere_d = normal.dot(sphere_pos); real_t ray_distance = sphere_pos.distance_to(normal * sphere_d); if (ray_distance >= p_sphere_radius) return false; real_t inters_d2 = p_sphere_radius * p_sphere_radius - ray_distance * ray_distance; real_t inters_d = sphere_d; if (inters_d2 >= CMP_EPSILON) inters_d -= Math::sqrt(inters_d2); // Check in segment. if (inters_d < 0 || inters_d > rel_l) return false; Vector3 result = p_from + normal * inters_d; if (r_res) *r_res = result; if (r_norm) *r_norm = (result - p_sphere_pos).normalized(); return true; } static inline bool segment_intersects_cylinder(const Vector3 &p_from, const Vector3 &p_to, real_t p_height, real_t p_radius, Vector3 *r_res = 0, Vector3 *r_norm = 0) { Vector3 rel = (p_to - p_from); real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) return false; // Both points are the same. // First check if they are parallel. Vector3 normal = (rel / rel_l); Vector3 crs = normal.cross(Vector3(0, 0, 1)); real_t crs_l = crs.length(); Vector3 z_dir; if (crs_l < CMP_EPSILON) { z_dir = Vector3(1, 0, 0); // Any x/y vector OK. } else { z_dir = crs / crs_l; } real_t dist = z_dir.dot(p_from); if (dist >= p_radius) return false; // Too far away. // Convert to 2D. real_t w2 = p_radius * p_radius - dist * dist; if (w2 < CMP_EPSILON) return false; // Avoid numerical error. Size2 size(Math::sqrt(w2), p_height * 0.5); Vector3 x_dir = z_dir.cross(Vector3(0, 0, 1)).normalized(); Vector2 from2D(x_dir.dot(p_from), p_from.z); Vector2 to2D(x_dir.dot(p_to), p_to.z); real_t min = 0, max = 1; int axis = -1; for (int i = 0; i < 2; i++) { real_t seg_from = from2D[i]; real_t seg_to = to2D[i]; real_t box_begin = -size[i]; real_t box_end = size[i]; real_t cmin, cmax; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) return false; real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; } else { if (seg_to > box_end || seg_from < box_begin) return false; real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; } if (cmin > min) { min = cmin; axis = i; } if (cmax < max) max = cmax; if (max < min) return false; } // Convert to 3D again. Vector3 result = p_from + (rel * min); Vector3 res_normal = result; if (axis == 0) { res_normal.z = 0; } else { res_normal.x = 0; res_normal.y = 0; } res_normal.normalize(); if (r_res) *r_res = result; if (r_norm) *r_norm = res_normal; return true; } static bool segment_intersects_convex(const Vector3 &p_from, const Vector3 &p_to, const Plane *p_planes, int p_plane_count, Vector3 *p_res, Vector3 *p_norm) { real_t min = -1e20, max = 1e20; Vector3 rel = p_to - p_from; real_t rel_l = rel.length(); if (rel_l < CMP_EPSILON) return false; Vector3 dir = rel / rel_l; int min_index = -1; for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; real_t den = p.normal.dot(dir); if (Math::abs(den) <= CMP_EPSILON) continue; // Ignore parallel plane. real_t dist = -p.distance_to(p_from) / den; if (den > 0) { // Backwards facing plane. if (dist < max) max = dist; } else { // Front facing plane. if (dist > min) { min = dist; min_index = i; } } } if (max <= min || min < 0 || min > rel_l || min_index == -1) // Exit conditions. return false; // No intersection. if (p_res) *p_res = p_from + dir * min; if (p_norm) *p_norm = p_planes[min_index].normal; return true; } static Vector3 get_closest_point_to_segment(const Vector3 &p_point, const Vector3 *p_segment) { Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) return p_segment[0]; // Both points are the same, just give any. real_t d = n.dot(p) / l2; if (d <= 0.0) return p_segment[0]; // Before first point. else if (d >= 1.0) return p_segment[1]; // After first point. else return p_segment[0] + n * d; // Inside. } static Vector3 get_closest_point_to_segment_uncapped(const Vector3 &p_point, const Vector3 *p_segment) { Vector3 p = p_point - p_segment[0]; Vector3 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) return p_segment[0]; // Both points are the same, just give any. real_t d = n.dot(p) / l2; return p_segment[0] + n * d; // Inside. } static Vector2 get_closest_point_to_segment_2d(const Vector2 &p_point, const Vector2 *p_segment) { Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) return p_segment[0]; // Both points are the same, just give any. real_t d = n.dot(p) / l2; if (d <= 0.0) return p_segment[0]; // Before first point. else if (d >= 1.0) return p_segment[1]; // After first point. else return p_segment[0] + n * d; // Inside. } static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) { Vector2 an = a - s; Vector2 bn = b - s; Vector2 cn = c - s; bool orientation = an.cross(bn) > 0; if ((bn.cross(cn) > 0) != orientation) return false; return (cn.cross(an) > 0) == orientation; } static Vector2 get_closest_point_to_segment_uncapped_2d(const Vector2 &p_point, const Vector2 *p_segment) { Vector2 p = p_point - p_segment[0]; Vector2 n = p_segment[1] - p_segment[0]; real_t l2 = n.length_squared(); if (l2 < 1e-20) return p_segment[0]; // Both points are the same, just give any. real_t d = n.dot(p) / l2; return p_segment[0] + n * d; // Inside. } static bool line_intersects_line_2d(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) { // See http://paulbourke.net/geometry/pointlineplane/ const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y; if (Math::is_zero_approx(denom)) { // Parallel? return false; } const Vector2 v = p_from_a - p_from_b; const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom; r_result = p_from_a + t * p_dir_a; return true; } static bool segment_intersects_segment_2d(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) { Vector2 B = p_to_a - p_from_a; Vector2 C = p_from_b - p_from_a; Vector2 D = p_to_b - p_from_a; real_t ABlen = B.dot(B); if (ABlen <= 0) return false; Vector2 Bn = B / ABlen; C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y); D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y); if ((C.y < 0 && D.y < 0) || (C.y >= 0 && D.y >= 0)) return false; real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y); // Fail if segment C-D crosses line A-B outside of segment A-B. if (ABpos < 0 || ABpos > 1.0) return false; // (4) Apply the discovered position to line A-B in the original coordinate system. if (r_result) *r_result = p_from_a + B * ABpos; return true; } static inline bool point_in_projected_triangle(const Vector3 &p_point, const Vector3 &p_v1, const Vector3 &p_v2, const Vector3 &p_v3) { Vector3 face_n = (p_v1 - p_v3).cross(p_v1 - p_v2); Vector3 n1 = (p_point - p_v3).cross(p_point - p_v2); if (face_n.dot(n1) < 0) return false; Vector3 n2 = (p_v1 - p_v3).cross(p_v1 - p_point); if (face_n.dot(n2) < 0) return false; Vector3 n3 = (p_v1 - p_point).cross(p_v1 - p_v2); if (face_n.dot(n3) < 0) return false; return true; } static inline bool triangle_sphere_intersection_test(const Vector3 *p_triangle, const Vector3 &p_normal, const Vector3 &p_sphere_pos, real_t p_sphere_radius, Vector3 &r_triangle_contact, Vector3 &r_sphere_contact) { real_t d = p_normal.dot(p_sphere_pos) - p_normal.dot(p_triangle[0]); if (d > p_sphere_radius || d < -p_sphere_radius) // Not touching the plane of the face, return. return false; Vector3 contact = p_sphere_pos - (p_normal * d); /** 2nd) TEST INSIDE TRIANGLE **/ if (Geometry::point_in_projected_triangle(contact, p_triangle[0], p_triangle[1], p_triangle[2])) { r_triangle_contact = contact; r_sphere_contact = p_sphere_pos - p_normal * p_sphere_radius; //printf("solved inside triangle\n"); return true; } /** 3rd TEST INSIDE EDGE CYLINDERS **/ const Vector3 verts[4] = { p_triangle[0], p_triangle[1], p_triangle[2], p_triangle[0] }; // for() friendly for (int i = 0; i < 3; i++) { // Check edge cylinder. Vector3 n1 = verts[i] - verts[i + 1]; Vector3 n2 = p_sphere_pos - verts[i + 1]; ///@TODO Maybe discard by range here to make the algorithm quicker. // Check point within cylinder radius. Vector3 axis = n1.cross(n2).cross(n1); axis.normalize(); real_t ad = axis.dot(n2); if (ABS(ad) > p_sphere_radius) { // No chance with this edge, too far away. continue; } // Check point within edge capsule cylinder. /** 4th TEST INSIDE EDGE POINTS **/ real_t sphere_at = n1.dot(n2); if (sphere_at >= 0 && sphere_at < n1.dot(n1)) { r_triangle_contact = p_sphere_pos - axis * (axis.dot(n2)); r_sphere_contact = p_sphere_pos - axis * p_sphere_radius; // Point inside here. return true; } real_t r2 = p_sphere_radius * p_sphere_radius; if (n2.length_squared() < r2) { Vector3 n = (p_sphere_pos - verts[i + 1]).normalized(); r_triangle_contact = verts[i + 1]; r_sphere_contact = p_sphere_pos - n * p_sphere_radius; return true; } if (n2.distance_squared_to(n1) < r2) { Vector3 n = (p_sphere_pos - verts[i]).normalized(); r_triangle_contact = verts[i]; r_sphere_contact = p_sphere_pos - n * p_sphere_radius; return true; } break; // It's pointless to continue at this point, so save some CPU cycles. } return false; } static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) { return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius; } static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) { Vector2 line_vec = p_to - p_from; Vector2 vec_to_line = p_from - p_circle_pos; // Create a quadratic formula of the form ax^2 + bx + c = 0 real_t a, b, c; a = line_vec.dot(line_vec); b = 2 * vec_to_line.dot(line_vec); c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius; // Solve for t. real_t sqrtterm = b * b - 4 * a * c; // If the term we intend to square root is less than 0 then the answer won't be real, // so it definitely won't be t in the range 0 to 1. if (sqrtterm < 0) return -1; // If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection) // then the following can be skipped and we can just return the equivalent of res1. sqrtterm = Math::sqrt(sqrtterm); real_t res1 = (-b - sqrtterm) / (2 * a); real_t res2 = (-b + sqrtterm) / (2 * a); if (res1 >= 0 && res1 <= 1) return res1; if (res2 >= 0 && res2 <= 1) return res2; return -1; } static inline Vector clip_polygon(const Vector &polygon, const Plane &p_plane) { enum LocationCache { LOC_INSIDE = 1, LOC_BOUNDARY = 0, LOC_OUTSIDE = -1 }; if (polygon.size() == 0) return polygon; int *location_cache = (int *)alloca(sizeof(int) * polygon.size()); int inside_count = 0; int outside_count = 0; for (int a = 0; a < polygon.size(); a++) { real_t dist = p_plane.distance_to(polygon[a]); if (dist < -CMP_POINT_IN_PLANE_EPSILON) { location_cache[a] = LOC_INSIDE; inside_count++; } else { if (dist > CMP_POINT_IN_PLANE_EPSILON) { location_cache[a] = LOC_OUTSIDE; outside_count++; } else { location_cache[a] = LOC_BOUNDARY; } } } if (outside_count == 0) { return polygon; // No changes. } else if (inside_count == 0) { return Vector(); // Empty. } long previous = polygon.size() - 1; Vector clipped; for (int index = 0; index < polygon.size(); index++) { int loc = location_cache[index]; if (loc == LOC_OUTSIDE) { if (location_cache[previous] == LOC_INSIDE) { const Vector3 &v1 = polygon[previous]; const Vector3 &v2 = polygon[index]; Vector3 segment = v1 - v2; real_t den = p_plane.normal.dot(segment); real_t dist = p_plane.distance_to(v1) / den; dist = -dist; clipped.push_back(v1 + segment * dist); } } else { const Vector3 &v1 = polygon[index]; if ((loc == LOC_INSIDE) && (location_cache[previous] == LOC_OUTSIDE)) { const Vector3 &v2 = polygon[previous]; Vector3 segment = v1 - v2; real_t den = p_plane.normal.dot(segment); real_t dist = p_plane.distance_to(v1) / den; dist = -dist; clipped.push_back(v1 + segment * dist); } clipped.push_back(v1); } previous = index; } return clipped; } enum PolyBooleanOperation { OPERATION_UNION, OPERATION_DIFFERENCE, OPERATION_INTERSECTION, OPERATION_XOR }; enum PolyJoinType { JOIN_SQUARE, JOIN_ROUND, JOIN_MITER }; enum PolyEndType { END_POLYGON, END_JOINED, END_BUTT, END_SQUARE, END_ROUND }; static Vector> merge_polygons_2d(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b); } static Vector> clip_polygons_2d(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b); } static Vector> intersect_polygons_2d(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b); } static Vector> exclude_polygons_2d(const Vector &p_polygon_a, const Vector &p_polygon_b) { return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b); } static Vector> clip_polyline_with_polygon_2d(const Vector &p_polyline, const Vector &p_polygon) { return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true); } static Vector> intersect_polyline_with_polygon_2d(const Vector &p_polyline, const Vector &p_polygon) { return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true); } static Vector> offset_polygon_2d(const Vector &p_polygon, real_t p_delta, PolyJoinType p_join_type) { return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON); } static Vector> offset_polyline_2d(const Vector &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) { ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead)."); return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type); } static Vector triangulate_delaunay_2d(const Vector &p_points) { Vector tr = Delaunay2D::triangulate(p_points); Vector triangles; for (int i = 0; i < tr.size(); i++) { triangles.push_back(tr[i].points[0]); triangles.push_back(tr[i].points[1]); triangles.push_back(tr[i].points[2]); } return triangles; } static Vector triangulate_polygon(const Vector &p_polygon) { Vector triangles; if (!Triangulate::triangulate(p_polygon, triangles)) return Vector(); //fail return triangles; } static bool is_polygon_clockwise(const Vector &p_polygon) { int c = p_polygon.size(); if (c < 3) return false; const Vector2 *p = p_polygon.ptr(); real_t sum = 0; for (int i = 0; i < c; i++) { const Vector2 &v1 = p[i]; const Vector2 &v2 = p[(i + 1) % c]; sum += (v2.x - v1.x) * (v2.y + v1.y); } return sum > 0.0f; } // Alternate implementation that should be faster. static bool is_point_in_polygon(const Vector2 &p_point, const Vector &p_polygon) { int c = p_polygon.size(); if (c < 3) return false; const Vector2 *p = p_polygon.ptr(); Vector2 further_away(-1e20, -1e20); Vector2 further_away_opposite(1e20, 1e20); for (int i = 0; i < c; i++) { further_away.x = MAX(p[i].x, further_away.x); further_away.y = MAX(p[i].y, further_away.y); further_away_opposite.x = MIN(p[i].x, further_away_opposite.x); further_away_opposite.y = MIN(p[i].y, further_away_opposite.y); } // Make point outside that won't intersect with points in segment from p_point. further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312); int intersections = 0; for (int i = 0; i < c; i++) { const Vector2 &v1 = p[i]; const Vector2 &v2 = p[(i + 1) % c]; if (segment_intersects_segment_2d(v1, v2, p_point, further_away, nullptr)) { intersections++; } } return (intersections & 1); } static Vector> separate_objects(Vector p_array); // Create a "wrap" that encloses the given geometry. static Vector wrap_geometry(Vector p_array, real_t *p_error = nullptr); struct MeshData { struct Face { Plane plane; Vector indices; }; Vector faces; struct Edge { int a, b; }; Vector edges; Vector vertices; void optimize_vertices(); }; _FORCE_INLINE_ static int get_uv84_normal_bit(const Vector3 &p_vector) { int lat = Math::fast_ftoi(Math::floor(Math::acos(p_vector.dot(Vector3(0, 1, 0))) * 4.0 / Math_PI + 0.5)); if (lat == 0) { return 24; } else if (lat == 4) { return 25; } int lon = Math::fast_ftoi(Math::floor((Math_PI + Math::atan2(p_vector.x, p_vector.z)) * 8.0 / (Math_PI * 2.0) + 0.5)) % 8; return lon + (lat - 1) * 8; } _FORCE_INLINE_ static int get_uv84_normal_bit_neighbors(int p_idx) { if (p_idx == 24) { return 1 | 2 | 4 | 8; } else if (p_idx == 25) { return (1 << 23) | (1 << 22) | (1 << 21) | (1 << 20); } else { int ret = 0; if ((p_idx % 8) == 0) ret |= (1 << (p_idx + 7)); else ret |= (1 << (p_idx - 1)); if ((p_idx % 8) == 7) ret |= (1 << (p_idx - 7)); else ret |= (1 << (p_idx + 1)); int mask = ret | (1 << p_idx); if (p_idx < 8) ret |= 24; else ret |= mask >> 8; if (p_idx >= 16) ret |= 25; else ret |= mask << 8; return ret; } } static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) { return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x); } // Returns a list of points on the convex hull in counter-clockwise order. // Note: the last point in the returned list is the same as the first one. static Vector convex_hull_2d(Vector P) { int n = P.size(), k = 0; Vector H; H.resize(2 * n); // Sort points lexicographically. P.sort(); // Build lower hull. for (int i = 0; i < n; ++i) { while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) k--; H.write[k++] = P[i]; } // Build upper hull. for (int i = n - 2, t = k + 1; i >= 0; i--) { while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) k--; H.write[k++] = P[i]; } H.resize(k); return H; } static Vector> decompose_polygon_in_convex(Vector polygon); static MeshData build_convex_mesh(const Vector &p_planes); static Vector build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis = Vector3::AXIS_Z); static Vector build_box_planes(const Vector3 &p_extents); static Vector build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis = Vector3::AXIS_Z); static Vector build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis = Vector3::AXIS_Z); static void make_atlas(const Vector &p_rects, Vector &r_result, Size2i &r_size); static Vector compute_convex_mesh_points(const Plane *p_planes, int p_plane_count); #define FINDMINMAX(x0, x1, x2, min, max) \ min = max = x0; \ if (x1 < min) \ min = x1; \ if (x1 > max) \ max = x1; \ if (x2 < min) \ min = x2; \ if (x2 > max) \ max = x2; _FORCE_INLINE_ static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { int q; Vector3 vmin, vmax; for (q = 0; q <= 2; q++) { if (normal[q] > 0.0f) { vmin[q] = -maxbox[q]; vmax[q] = maxbox[q]; } else { vmin[q] = maxbox[q]; vmax[q] = -maxbox[q]; } } if (normal.dot(vmin) + d > 0.0f) return false; if (normal.dot(vmax) + d >= 0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p2 = a * v2.y - b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) \ return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p1 = a * v1.y - b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) \ return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p2 = -a * v2.x + b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) \ return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p1 = -a * v1.x + b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) \ return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a * v1.x - b * v1.y; \ p2 = a * v2.x - b * v2.y; \ if (p2 < p1) { \ min = p2; \ max = p1; \ } else { \ min = p1; \ max = p2; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) \ return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a * v0.x - b * v0.y; \ p1 = a * v1.x - b * v1.y; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) \ return false; _FORCE_INLINE_ static bool triangle_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0, v1, v2; float min, max, d, p0, p1, p2, rad, fex, fey, fez; Vector3 normal, e0, e1, e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0 = triverts[0] - boxcenter; v1 = triverts[1] - boxcenter; v2 = triverts[2] - boxcenter; /* compute triangle edges */ e0 = v1 - v0; /* tri edge 0 */ e1 = v2 - v1; /* tri edge 1 */ e2 = v0 - v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x, v1.x, v2.x, min, max); if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y, v1.y, v2.y, min, max); if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z, v1.z, v2.z, min, max); if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal = e0.cross(e1); d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ } static Vector pack_rects(const Vector &p_sizes, const Size2i &p_atlas_size); static Vector partial_pack_rects(const Vector &p_sizes, const Size2i &p_atlas_size); static Vector generate_edf(const Vector &p_voxels, const Vector3i &p_size, bool p_negative); static Vector generate_sdf8(const Vector &p_positive, const Vector &p_negative); static Vector3 triangle_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_pos) { Vector3 v0 = p_b - p_a; Vector3 v1 = p_c - p_a; Vector3 v2 = p_pos - p_a; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) { return Vector3(); //invalid triangle, return empty } float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; return Vector3(u, v, w); } static Color tetrahedron_get_barycentric_coords(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector3 &p_d, const Vector3 &p_pos) { Vector3 vap = p_pos - p_a; Vector3 vbp = p_pos - p_b; Vector3 vab = p_b - p_a; Vector3 vac = p_c - p_a; Vector3 vad = p_d - p_a; Vector3 vbc = p_c - p_b; Vector3 vbd = p_d - p_b; // ScTP computes the scalar triple product #define STP(m_a, m_b, m_c) ((m_a).dot((m_b).cross((m_c)))) float va6 = STP(vbp, vbd, vbc); float vb6 = STP(vap, vac, vad); float vc6 = STP(vap, vad, vab); float vd6 = STP(vap, vab, vac); float v6 = 1 / STP(vab, vac, vad); return Color(va6 * v6, vb6 * v6, vc6 * v6, vd6 * v6); #undef STP } private: static Vector> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector &p_polypath_a, const Vector &p_polypath_b, bool is_a_open = false); static Vector> _polypath_offset(const Vector &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type); }; #endif // GEOMETRY_H