/*************************************************************************/ /* geometry.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "geometry.h" #include "print_string.h" void Geometry::MeshData::optimize_vertices() { Map<int, int> vtx_remap; for (int i = 0; i < faces.size(); i++) { for (int j = 0; j < faces[i].indices.size(); j++) { int idx = faces[i].indices[j]; if (!vtx_remap.has(idx)) { int ni = vtx_remap.size(); vtx_remap[idx] = ni; } faces[i].indices[j] = vtx_remap[idx]; } } for (int i = 0; i < edges.size(); i++) { int a = edges[i].a; int b = edges[i].b; if (!vtx_remap.has(a)) { int ni = vtx_remap.size(); vtx_remap[a] = ni; } if (!vtx_remap.has(b)) { int ni = vtx_remap.size(); vtx_remap[b] = ni; } edges[i].a = vtx_remap[a]; edges[i].b = vtx_remap[b]; } Vector<Vector3> new_vertices; new_vertices.resize(vtx_remap.size()); for (int i = 0; i < vertices.size(); i++) { if (vtx_remap.has(i)) new_vertices[vtx_remap[i]] = vertices[i]; } vertices = new_vertices; } Vector<Vector<Vector2> > (*Geometry::_decompose_func)(const Vector<Vector2> &p_polygon) = NULL; struct _FaceClassify { struct _Link { int face; int edge; void clear() { face = -1; edge = -1; } _Link() { face = -1; edge = -1; } }; bool valid; int group; _Link links[3]; Face3 face; _FaceClassify() { group = -1; valid = false; }; }; static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) { /* connect faces, error will occur if an edge is shared between more than 2 faces */ /* clear connections */ bool error = false; for (int i = 0; i < len; i++) { for (int j = 0; j < 3; j++) { p_faces[i].links[j].clear(); } } for (int i = 0; i < len; i++) { if (p_faces[i].group != p_group) continue; for (int j = i + 1; j < len; j++) { if (p_faces[j].group != p_group) continue; for (int k = 0; k < 3; k++) { Vector3 vi1 = p_faces[i].face.vertex[k]; Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3]; for (int l = 0; l < 3; l++) { Vector3 vj2 = p_faces[j].face.vertex[l]; Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3]; if (vi1.distance_to(vj1) < 0.00001 && vi2.distance_to(vj2) < 0.00001) { if (p_faces[i].links[k].face != -1) { ERR_PRINT("already linked\n"); error = true; break; } if (p_faces[j].links[l].face != -1) { ERR_PRINT("already linked\n"); error = true; break; } p_faces[i].links[k].face = j; p_faces[i].links[k].edge = l; p_faces[j].links[l].face = i; p_faces[j].links[l].edge = k; } } if (error) break; } if (error) break; } if (error) break; } for (int i = 0; i < len; i++) { p_faces[i].valid = true; for (int j = 0; j < 3; j++) { if (p_faces[i].links[j].face == -1) p_faces[i].valid = false; } /*printf("face %i is valid: %i, group %i. connected to %i:%i,%i:%i,%i:%i\n",i,p_faces[i].valid,p_faces[i].group, p_faces[i].links[0].face, p_faces[i].links[0].edge, p_faces[i].links[1].face, p_faces[i].links[1].edge, p_faces[i].links[2].face, p_faces[i].links[2].edge);*/ } return error; } static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) { if (p_faces[p_index].group >= 0) return false; p_faces[p_index].group = p_group; for (int i = 0; i < 3; i++) { ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true); _group_face(p_faces, len, p_faces[p_index].links[i].face, p_group); } return true; } PoolVector<PoolVector<Face3> > Geometry::separate_objects(PoolVector<Face3> p_array) { PoolVector<PoolVector<Face3> > objects; int len = p_array.size(); PoolVector<Face3>::Read r = p_array.read(); const Face3 *arrayptr = r.ptr(); PoolVector<_FaceClassify> fc; fc.resize(len); PoolVector<_FaceClassify>::Write fcw = fc.write(); _FaceClassify *_fcptr = fcw.ptr(); for (int i = 0; i < len; i++) { _fcptr[i].face = arrayptr[i]; } bool error = _connect_faces(_fcptr, len, -1); if (error) { ERR_FAIL_COND_V(error, PoolVector<PoolVector<Face3> >()); // invalid geometry } /* group connected faces in separate objects */ int group = 0; for (int i = 0; i < len; i++) { if (!_fcptr[i].valid) continue; if (_group_face(_fcptr, len, i, group)) { group++; } } /* group connected faces in separate objects */ for (int i = 0; i < len; i++) { _fcptr[i].face = arrayptr[i]; } if (group >= 0) { objects.resize(group); PoolVector<PoolVector<Face3> >::Write obw = objects.write(); PoolVector<Face3> *group_faces = obw.ptr(); for (int i = 0; i < len; i++) { if (!_fcptr[i].valid) continue; if (_fcptr[i].group >= 0 && _fcptr[i].group < group) { group_faces[_fcptr[i].group].push_back(_fcptr[i].face); } } } return objects; } /*** GEOMETRY WRAPPER ***/ enum _CellFlags { _CELL_SOLID = 1, _CELL_EXTERIOR = 2, _CELL_STEP_MASK = 0x1C, _CELL_STEP_NONE = 0 << 2, _CELL_STEP_Y_POS = 1 << 2, _CELL_STEP_Y_NEG = 2 << 2, _CELL_STEP_X_POS = 3 << 2, _CELL_STEP_X_NEG = 4 << 2, _CELL_STEP_Z_POS = 5 << 2, _CELL_STEP_Z_NEG = 6 << 2, _CELL_STEP_DONE = 7 << 2, _CELL_PREV_MASK = 0xE0, _CELL_PREV_NONE = 0 << 5, _CELL_PREV_Y_POS = 1 << 5, _CELL_PREV_Y_NEG = 2 << 5, _CELL_PREV_X_POS = 3 << 5, _CELL_PREV_X_NEG = 4 << 5, _CELL_PREV_Z_POS = 5 << 5, _CELL_PREV_Z_NEG = 6 << 5, _CELL_PREV_FIRST = 7 << 5, }; static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) { AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z)); aabb.position = aabb.position * voxelsize; aabb.size = aabb.size * voxelsize; if (!p_face.intersects_aabb(aabb)) return; if (len_x == 1 && len_y == 1 && len_z == 1) { p_cell_status[x][y][z] = _CELL_SOLID; return; } int div_x = len_x > 1 ? 2 : 1; int div_y = len_y > 1 ? 2 : 1; int div_z = len_z > 1 ? 2 : 1; #define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \ if (m_div == 1) { \ m_new_v = m_v; \ m_new_len_v = 1; \ } else if (m_i == 0) { \ m_new_v = m_v; \ m_new_len_v = m_len_v / 2; \ } else { \ m_new_v = m_v + m_len_v / 2; \ m_new_len_v = m_len_v - m_len_v / 2; \ } int new_x; int new_len_x; int new_y; int new_len_y; int new_z; int new_len_z; for (int i = 0; i < div_x; i++) { _SPLIT(i, div_x, x, len_x, new_x, new_len_x); for (int j = 0; j < div_y; j++) { _SPLIT(j, div_y, y, len_y, new_y, new_len_y); for (int k = 0; k < div_z; k++) { _SPLIT(k, div_z, z, len_z, new_z, new_len_z); _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face); } } } } static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) { if (p_cell_status[x][y][z] & 3) return; // nothing to do, already used and/or visited p_cell_status[x][y][z] = _CELL_PREV_FIRST; while (true) { uint8_t &c = p_cell_status[x][y][z]; //printf("at %i,%i,%i\n",x,y,z); if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) { /* Haven't been in here, mark as outside */ p_cell_status[x][y][z] |= _CELL_EXTERIOR; //printf("not marked as anything, marking exterior\n"); } //printf("cell step is %i\n",(c&_CELL_STEP_MASK)); if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) { /* if not done, increase step */ c += 1 << 2; //printf("incrementing cell step\n"); } if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) { /* Go back */ //printf("done, going back a cell\n"); switch (c & _CELL_PREV_MASK) { case _CELL_PREV_FIRST: { //printf("at end, finished marking\n"); return; } break; case _CELL_PREV_Y_POS: { y++; ERR_FAIL_COND(y >= len_y); } break; case _CELL_PREV_Y_NEG: { y--; ERR_FAIL_COND(y < 0); } break; case _CELL_PREV_X_POS: { x++; ERR_FAIL_COND(x >= len_x); } break; case _CELL_PREV_X_NEG: { x--; ERR_FAIL_COND(x < 0); } break; case _CELL_PREV_Z_POS: { z++; ERR_FAIL_COND(z >= len_z); } break; case _CELL_PREV_Z_NEG: { z--; ERR_FAIL_COND(z < 0); } break; default: { ERR_FAIL(); } } continue; } //printf("attempting new cell!\n"); int next_x = x, next_y = y, next_z = z; uint8_t prev = 0; switch (c & _CELL_STEP_MASK) { case _CELL_STEP_Y_POS: { next_y++; prev = _CELL_PREV_Y_NEG; } break; case _CELL_STEP_Y_NEG: { next_y--; prev = _CELL_PREV_Y_POS; } break; case _CELL_STEP_X_POS: { next_x++; prev = _CELL_PREV_X_NEG; } break; case _CELL_STEP_X_NEG: { next_x--; prev = _CELL_PREV_X_POS; } break; case _CELL_STEP_Z_POS: { next_z++; prev = _CELL_PREV_Z_NEG; } break; case _CELL_STEP_Z_NEG: { next_z--; prev = _CELL_PREV_Z_POS; } break; default: ERR_FAIL(); } //printf("testing if new cell will be ok...!\n"); if (next_x < 0 || next_x >= len_x) continue; if (next_y < 0 || next_y >= len_y) continue; if (next_z < 0 || next_z >= len_z) continue; //printf("testing if new cell is traversable\n"); if (p_cell_status[next_x][next_y][next_z] & 3) continue; //printf("move to it\n"); x = next_x; y = next_y; z = next_z; p_cell_status[x][y][z] |= prev; } } static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, PoolVector<Face3> &p_faces) { ERR_FAIL_INDEX(x, len_x); ERR_FAIL_INDEX(y, len_y); ERR_FAIL_INDEX(z, len_z); if (p_cell_status[x][y][z] & _CELL_EXTERIOR) return; /* static const Vector3 vertices[8]={ Vector3(0,0,0), Vector3(0,0,1), Vector3(0,1,0), Vector3(0,1,1), Vector3(1,0,0), Vector3(1,0,1), Vector3(1,1,0), Vector3(1,1,1), }; */ #define vert(m_idx) Vector3((m_idx & 4) >> 2, (m_idx & 2) >> 1, m_idx & 1) static const uint8_t indices[6][4] = { { 7, 6, 4, 5 }, { 7, 3, 2, 6 }, { 7, 5, 1, 3 }, { 0, 2, 3, 1 }, { 0, 1, 5, 4 }, { 0, 4, 6, 2 }, }; /* {0,1,2,3}, {0,1,4,5}, {0,2,4,6}, {4,5,6,7}, {2,3,7,6}, {1,3,5,7}, {0,2,3,1}, {0,1,5,4}, {0,4,6,2}, {7,6,4,5}, {7,3,2,6}, {7,5,1,3}, */ for (int i = 0; i < 6; i++) { Vector3 face_points[4]; int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0); bool plot = false; if (disp_x < 0 || disp_x >= len_x) plot = true; if (disp_y < 0 || disp_y >= len_y) plot = true; if (disp_z < 0 || disp_z >= len_z) plot = true; if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) plot = true; if (!plot) continue; for (int j = 0; j < 4; j++) face_points[j] = vert(indices[i][j]) + Vector3(x, y, z); p_faces.push_back( Face3( face_points[0], face_points[1], face_points[2])); p_faces.push_back( Face3( face_points[2], face_points[3], face_points[0])); } } PoolVector<Face3> Geometry::wrap_geometry(PoolVector<Face3> p_array, real_t *p_error) { #define _MIN_SIZE 1.0 #define _MAX_LENGTH 20 int face_count = p_array.size(); PoolVector<Face3>::Read facesr = p_array.read(); const Face3 *faces = facesr.ptr(); AABB global_aabb; for (int i = 0; i < face_count; i++) { if (i == 0) { global_aabb = faces[i].get_aabb(); } else { global_aabb.merge_with(faces[i].get_aabb()); } } global_aabb.grow_by(0.01); // avoid numerical error // determine amount of cells in grid axis int div_x, div_y, div_z; if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH) div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1; else div_x = _MAX_LENGTH; if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH) div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1; else div_y = _MAX_LENGTH; if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH) div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1; else div_z = _MAX_LENGTH; Vector3 voxelsize = global_aabb.size; voxelsize.x /= div_x; voxelsize.y /= div_y; voxelsize.z /= div_z; // create and initialize cells to zero //print_line("Wrapper: Initializing Cells"); uint8_t ***cell_status = memnew_arr(uint8_t **, div_x); for (int i = 0; i < div_x; i++) { cell_status[i] = memnew_arr(uint8_t *, div_y); for (int j = 0; j < div_y; j++) { cell_status[i][j] = memnew_arr(uint8_t, div_z); for (int k = 0; k < div_z; k++) { cell_status[i][j][k] = 0; } } } // plot faces into cells //print_line("Wrapper (1/6): Plotting Faces"); for (int i = 0; i < face_count; i++) { Face3 f = faces[i]; for (int j = 0; j < 3; j++) { f.vertex[j] -= global_aabb.position; } _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f); } // determine which cells connect to the outside by traversing the outside and recursively flood-fill marking //print_line("Wrapper (2/6): Flood Filling"); for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z); _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z); } } for (int i = 0; i < div_z; i++) { for (int j = 0; j < div_y; j++) { _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z); _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z); } } for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_z; j++) { _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z); _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z); } } // build faces for the inside-outside cell divisors //print_line("Wrapper (3/6): Building Faces"); PoolVector<Face3> wrapped_faces; for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { for (int k = 0; k < div_z; k++) { _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces); } } } //print_line("Wrapper (4/6): Transforming Back Vertices"); // transform face vertices to global coords int wrapped_faces_count = wrapped_faces.size(); PoolVector<Face3>::Write wrapped_facesw = wrapped_faces.write(); Face3 *wrapped_faces_ptr = wrapped_facesw.ptr(); for (int i = 0; i < wrapped_faces_count; i++) { for (int j = 0; j < 3; j++) { Vector3 &v = wrapped_faces_ptr[i].vertex[j]; v = v * voxelsize; v += global_aabb.position; } } // clean up grid //print_line("Wrapper (5/6): Grid Cleanup"); for (int i = 0; i < div_x; i++) { for (int j = 0; j < div_y; j++) { memdelete_arr(cell_status[i][j]); } memdelete_arr(cell_status[i]); } memdelete_arr(cell_status); if (p_error) *p_error = voxelsize.length(); //print_line("Wrapper (6/6): Finished."); return wrapped_faces; } Geometry::MeshData Geometry::build_convex_mesh(const PoolVector<Plane> &p_planes) { MeshData mesh; #define SUBPLANE_SIZE 1024.0 real_t subplane_size = 1024.0; // should compute this from the actual plane for (int i = 0; i < p_planes.size(); i++) { Plane p = p_planes[i]; Vector3 ref = Vector3(0.0, 1.0, 0.0); if (ABS(p.normal.dot(ref)) > 0.95) ref = Vector3(0.0, 0.0, 1.0); // change axis Vector3 right = p.normal.cross(ref).normalized(); Vector3 up = p.normal.cross(right).normalized(); Vector<Vector3> vertices; Vector3 center = p.get_any_point(); // make a quad clockwise vertices.push_back(center - up * subplane_size + right * subplane_size); vertices.push_back(center - up * subplane_size - right * subplane_size); vertices.push_back(center + up * subplane_size - right * subplane_size); vertices.push_back(center + up * subplane_size + right * subplane_size); for (int j = 0; j < p_planes.size(); j++) { if (j == i) continue; Vector<Vector3> new_vertices; Plane clip = p_planes[j]; if (clip.normal.dot(p.normal) > 0.95) continue; if (vertices.size() < 3) break; for (int k = 0; k < vertices.size(); k++) { int k_n = (k + 1) % vertices.size(); Vector3 edge0_A = vertices[k]; Vector3 edge1_A = vertices[k_n]; real_t dist0 = clip.distance_to(edge0_A); real_t dist1 = clip.distance_to(edge1_A); if (dist0 <= 0) { // behind plane new_vertices.push_back(vertices[k]); } // check for different sides and non coplanar if ((dist0 * dist1) < 0) { // calculate intersection Vector3 rel = edge1_A - edge0_A; real_t den = clip.normal.dot(rel); if (Math::abs(den) < CMP_EPSILON) continue; // point too short real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den; Vector3 inters = edge0_A + rel * dist; new_vertices.push_back(inters); } } vertices = new_vertices; } if (vertices.size() < 3) continue; //result is a clockwise face MeshData::Face face; // add face indices for (int j = 0; j < vertices.size(); j++) { int idx = -1; for (int k = 0; k < mesh.vertices.size(); k++) { if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) { idx = k; break; } } if (idx == -1) { idx = mesh.vertices.size(); mesh.vertices.push_back(vertices[j]); } face.indices.push_back(idx); } face.plane = p; mesh.faces.push_back(face); //add edge for (int j = 0; j < face.indices.size(); j++) { int a = face.indices[j]; int b = face.indices[(j + 1) % face.indices.size()]; bool found = false; for (int k = 0; k < mesh.edges.size(); k++) { if (mesh.edges[k].a == a && mesh.edges[k].b == b) { found = true; break; } if (mesh.edges[k].b == a && mesh.edges[k].a == b) { found = true; break; } } if (found) continue; MeshData::Edge edge; edge.a = a; edge.b = b; mesh.edges.push_back(edge); } } return mesh; } PoolVector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) { PoolVector<Plane> planes; planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x)); planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x)); planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y)); planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y)); planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z)); planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z)); return planes; } PoolVector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) { PoolVector<Plane> planes; for (int i = 0; i < p_sides; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides); normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides); planes.push_back(Plane(normal, p_radius)); } Vector3 axis; axis[p_axis] = 1.0; planes.push_back(Plane(axis, p_height * 0.5)); planes.push_back(Plane(-axis, p_height * 0.5)); return planes; } PoolVector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) { PoolVector<Plane> planes; Vector3 axis; axis[p_axis] = 1.0; Vector3 axis_neg; axis_neg[(p_axis + 1) % 3] = 1.0; axis_neg[(p_axis + 2) % 3] = 1.0; axis_neg[p_axis] = -1.0; for (int i = 0; i < p_lons; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons); normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons); planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { //todo this is stupid, fix Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized(); Vector3 pos = angle * p_radius; planes.push_back(Plane(pos, angle)); planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); } } return planes; } PoolVector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) { PoolVector<Plane> planes; Vector3 axis; axis[p_axis] = 1.0; Vector3 axis_neg; axis_neg[(p_axis + 1) % 3] = 1.0; axis_neg[(p_axis + 2) % 3] = 1.0; axis_neg[p_axis] = -1.0; for (int i = 0; i < p_sides; i++) { Vector3 normal; normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides); normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides); planes.push_back(Plane(normal, p_radius)); for (int j = 1; j <= p_lats; j++) { Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized(); Vector3 pos = axis * p_height * 0.5 + angle * p_radius; planes.push_back(Plane(pos, angle)); planes.push_back(Plane(pos * axis_neg, angle * axis_neg)); } } return planes; } struct _AtlasWorkRect { Size2i s; Point2i p; int idx; _FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; }; }; struct _AtlasWorkRectResult { Vector<_AtlasWorkRect> result; int max_w; int max_h; }; void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) { //super simple, almost brute force scanline stacking fitter //it's pretty basic for now, but it tries to make sure that the aspect ratio of the //resulting atlas is somehow square. This is necessary because video cards have limits //on texture size (usually 2048 or 4096), so the more square a texture, the more chances //it will work in every hardware. // for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a // 256x8192 atlas (won't work anywhere). ERR_FAIL_COND(p_rects.size() == 0); Vector<_AtlasWorkRect> wrects; wrects.resize(p_rects.size()); for (int i = 0; i < p_rects.size(); i++) { wrects[i].s = p_rects[i]; wrects[i].idx = i; } wrects.sort(); int widest = wrects[0].s.width; Vector<_AtlasWorkRectResult> results; for (int i = 0; i <= 12; i++) { int w = 1 << i; int max_h = 0; int max_w = 0; if (w < widest) continue; Vector<int> hmax; hmax.resize(w); for (int j = 0; j < w; j++) hmax[j] = 0; //place them int ofs = 0; int limit_h = 0; for (int j = 0; j < wrects.size(); j++) { if (ofs + wrects[j].s.width > w) { ofs = 0; } int from_y = 0; for (int k = 0; k < wrects[j].s.width; k++) { if (hmax[ofs + k] > from_y) from_y = hmax[ofs + k]; } wrects[j].p.x = ofs; wrects[j].p.y = from_y; int end_h = from_y + wrects[j].s.height; int end_w = ofs + wrects[j].s.width; if (ofs == 0) limit_h = end_h; for (int k = 0; k < wrects[j].s.width; k++) { hmax[ofs + k] = end_h; } if (end_h > max_h) max_h = end_h; if (end_w > max_w) max_w = end_w; if (ofs == 0 || end_h > limit_h) //while h limit not reached, keep stacking ofs += wrects[j].s.width; } _AtlasWorkRectResult result; result.result = wrects; result.max_h = max_h; result.max_w = max_w; results.push_back(result); } //find the result with the best aspect ratio int best = -1; real_t best_aspect = 1e20; for (int i = 0; i < results.size(); i++) { real_t h = next_power_of_2(results[i].max_h); real_t w = next_power_of_2(results[i].max_w); real_t aspect = h > w ? h / w : w / h; if (aspect < best_aspect) { best = i; best_aspect = aspect; } } r_result.resize(p_rects.size()); for (int i = 0; i < p_rects.size(); i++) { r_result[results[best].result[i].idx] = results[best].result[i].p; } r_size = Size2(results[best].max_w, results[best].max_h); }