/*************************************************************************/ /* bvh.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef BVH_H #define BVH_H // BVH // This class provides a wrapper around BVH tree, which contains most of the functionality // for a dynamic BVH with templated leaf size. // However BVH also adds facilities for pairing, to maintain compatibility with Godot 3.2. // Pairing is a collision pairing system, on top of the basic BVH. // Some notes on the use of BVH / Octree from Godot 3.2. // This is not well explained elsewhere. // The rendering tree mask and types that are sent to the BVH are NOT layer masks. // They are INSTANCE_TYPES (defined in visual_server.h), e.g. MESH, MULTIMESH, PARTICLES etc. // Thus the lights do no cull by layer mask in the BVH. // Layer masks are implemented in the renderers as a later step, and light_cull_mask appears to be // implemented in GLES3 but not GLES2. Layer masks are not yet implemented for directional lights. #include "bvh_tree.h" #define BVHTREE_CLASS BVH_Tree<T, 2, MAX_ITEMS, USE_PAIRS, Bounds, Point> template <class T, bool USE_PAIRS = false, int MAX_ITEMS = 32, class Bounds = AABB, class Point = Vector3> class BVH_Manager { public: // note we are using uint32_t instead of BVHHandle, losing type safety, but this // is for compatibility with octree typedef void *(*PairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int); typedef void (*UnpairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int, void *); // these 2 are crucial for fine tuning, and can be applied manually // see the variable declarations for more info. void params_set_node_expansion(real_t p_value) { if (p_value >= 0.0) { tree._node_expansion = p_value; tree._auto_node_expansion = false; } else { tree._auto_node_expansion = true; } } void params_set_pairing_expansion(real_t p_value) { if (p_value >= 0.0) { tree._pairing_expansion = p_value; tree._auto_pairing_expansion = false; } else { tree._auto_pairing_expansion = true; } } void set_pair_callback(PairCallback p_callback, void *p_userdata) { pair_callback = p_callback; pair_callback_userdata = p_userdata; } void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) { unpair_callback = p_callback; unpair_callback_userdata = p_userdata; } BVHHandle create(T *p_userdata, bool p_active, const Bounds &p_aabb = Bounds(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1) { // not sure if absolutely necessary to flush collisions here. It will cost performance to, instead // of waiting for update, so only uncomment this if there are bugs. if (USE_PAIRS) { //_check_for_collisions(); } #ifdef TOOLS_ENABLED if (!USE_PAIRS) { if (p_pairable) { WARN_PRINT_ONCE("creating pairable item in BVH with USE_PAIRS set to false"); } } #endif BVHHandle h = tree.item_add(p_userdata, p_active, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask); if (USE_PAIRS) { // for safety initialize the expanded AABB Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb; expanded_aabb = p_aabb; expanded_aabb.grow_by(tree._pairing_expansion); // force a collision check no matter the AABB if (p_active) { _add_changed_item(h, p_aabb, false); _check_for_collisions(true); } } return h; } //////////////////////////////////////////////////// // wrapper versions that use uint32_t instead of handle // for backward compatibility. Less type safe void move(uint32_t p_handle, const Bounds &p_aabb) { BVHHandle h; h.set(p_handle); move(h, p_aabb); } void erase(uint32_t p_handle) { BVHHandle h; h.set(p_handle); erase(h); } void force_collision_check(uint32_t p_handle) { BVHHandle h; h.set(p_handle); force_collision_check(h); } bool activate(uint32_t p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) { BVHHandle h; h.set(p_handle); return activate(h, p_aabb, p_delay_collision_check); } bool deactivate(uint32_t p_handle) { BVHHandle h; h.set(p_handle); return deactivate(h); } void set_pairable(uint32_t p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) { BVHHandle h; h.set(p_handle); set_pairable(h, p_pairable, p_pairable_type, p_pairable_mask, p_force_collision_check); } bool is_pairable(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_is_pairable(h); } int get_subindex(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_get_subindex(h); } T *get(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_get_userdata(h); } //////////////////////////////////////////////////// void move(BVHHandle p_handle, const Bounds &p_aabb) { if (tree.item_move(p_handle, p_aabb)) { if (USE_PAIRS) { _add_changed_item(p_handle, p_aabb); } } } void erase(BVHHandle p_handle) { // call unpair and remove all references to the item // before deleting from the tree if (USE_PAIRS) { _remove_changed_item(p_handle); } tree.item_remove(p_handle); _check_for_collisions(true); } // use in conjunction with activate if you have deferred the collision check, and // set pairable has never been called. // (deferred collision checks are a workaround for rendering server for historical reasons) void force_collision_check(BVHHandle p_handle) { if (USE_PAIRS) { // the aabb should already be up to date in the BVH Bounds aabb; item_get_AABB(p_handle, aabb); // add it as changed even if aabb not different _add_changed_item(p_handle, aabb, false); // force an immediate full collision check, much like calls to set_pairable _check_for_collisions(true); } } // these should be read as set_visible for render trees, // but generically this makes items add or remove from the // tree internally, to speed things up by ignoring inactive items bool activate(BVHHandle p_handle, const Bounds &p_aabb, bool p_delay_collision_check = false) { // sending the aabb here prevents the need for the BVH to maintain // a redundant copy of the aabb. // returns success if (tree.item_activate(p_handle, p_aabb)) { if (USE_PAIRS) { // in the special case of the render tree, when setting visibility we are using the combination of // activate then set_pairable. This would case 2 sets of collision checks. For efficiency here we allow // deferring to have a single collision check at the set_pairable call. // Watch for bugs! This may cause bugs if set_pairable is not called. if (!p_delay_collision_check) { _add_changed_item(p_handle, p_aabb, false); // force an immediate collision check, much like calls to set_pairable _check_for_collisions(true); } } return true; } return false; } bool deactivate(BVHHandle p_handle) { // returns success if (tree.item_deactivate(p_handle)) { // call unpair and remove all references to the item // before deleting from the tree if (USE_PAIRS) { _remove_changed_item(p_handle); // force check for collisions, much like an erase was called _check_for_collisions(true); } return true; } return false; } bool get_active(BVHHandle p_handle) const { return tree.item_get_active(p_handle); } // call e.g. once per frame (this does a trickle optimize) void update() { tree.update(); _check_for_collisions(); #ifdef BVH_INTEGRITY_CHECKS tree.integrity_check_all(); #endif } // this can be called more frequently than per frame if necessary void update_collisions() { _check_for_collisions(); } // prefer calling this directly as type safe void set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask, bool p_force_collision_check = true) { // Returns true if the pairing state has changed. bool state_changed = tree.item_set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask); if (USE_PAIRS) { // not sure if absolutely necessary to flush collisions here. It will cost performance to, instead // of waiting for update, so only uncomment this if there are bugs. //_check_for_collisions(); if ((p_force_collision_check || state_changed) && get_active(p_handle)) { // when the pairable state changes, we need to force a collision check because newly pairable // items may be in collision, and unpairable items might move out of collision. // We cannot depend on waiting for the next update, because that may come much later. Bounds aabb; item_get_AABB(p_handle, aabb); // passing false disables the optimization which prevents collision checks if // the aabb hasn't changed _add_changed_item(p_handle, aabb, false); // force an immediate collision check (probably just for this one item) // but it must be a FULL collision check, also checking pairable state and masks. // This is because AABB intersecting objects may have changed pairable state / mask // such that they should no longer be paired. E.g. lights. _check_for_collisions(true); } // only if active } } // cull tests int cull_aabb(const Bounds &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.pairable_type = 0; params.test_pairable_only = false; params.abb.from(p_aabb); tree.cull_aabb(params); return params.result_count_overall; } int cull_segment(const Point &p_from, const Point &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.pairable_type = 0; params.segment.from = p_from; params.segment.to = p_to; tree.cull_segment(params); return params.result_count_overall; } int cull_point(const Point &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.pairable_type = 0; params.point = p_point; tree.cull_point(params); return params.result_count_overall; } int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) { if (!p_convex.size()) { return 0; } Vector<Vector3> convex_points = Geometry3D::compute_convex_mesh_points(&p_convex[0], p_convex.size()); if (convex_points.size() == 0) { return 0; } typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = nullptr; params.mask = p_mask; params.pairable_type = 0; params.hull.planes = &p_convex[0]; params.hull.num_planes = p_convex.size(); params.hull.points = &convex_points[0]; params.hull.num_points = convex_points.size(); tree.cull_convex(params); return params.result_count_overall; } private: // do this after moving etc. void _check_for_collisions(bool p_full_check = false) { if (!changed_items.size()) { // noop return; } Bounds bb; typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = INT_MAX; params.result_array = nullptr; params.subindex_array = nullptr; params.mask = 0xFFFFFFFF; params.pairable_type = 0; for (unsigned int n = 0; n < changed_items.size(); n++) { const BVHHandle &h = changed_items[n]; // use the expanded aabb for pairing const Bounds &expanded_aabb = tree._pairs[h.id()].expanded_aabb; BVHABB_CLASS abb; abb.from(expanded_aabb); // find all the existing paired aabbs that are no longer // paired, and send callbacks _find_leavers(h, abb, p_full_check); uint32_t changed_item_ref_id = h.id(); // set up the test from this item. // this includes whether to test the non pairable tree, // and the item mask. tree.item_fill_cullparams(h, params); params.abb = abb; params.result_count_overall = 0; // might not be needed tree.cull_aabb(params, false); for (unsigned int i = 0; i < tree._cull_hits.size(); i++) { uint32_t ref_id = tree._cull_hits[i]; // don't collide against ourself if (ref_id == changed_item_ref_id) { continue; } #ifdef BVH_CHECKS // if neither are pairable, they should ignore each other // THIS SHOULD NEVER HAPPEN .. now we only test the pairable tree // if the changed item is not pairable CRASH_COND(params.test_pairable_only && !tree._extra[ref_id].pairable); #endif // checkmasks is already done in the cull routine. BVHHandle h_collidee; h_collidee.set_id(ref_id); // find NEW enterers, and send callbacks for them only _collide(h, h_collidee); } } _reset(); } public: void item_get_AABB(BVHHandle p_handle, Bounds &r_aabb) { BVHABB_CLASS abb; tree.item_get_ABB(p_handle, abb); abb.to(r_aabb); } private: // supplemental funcs bool item_is_pairable(BVHHandle p_handle) const { return _get_extra(p_handle).pairable; } T *item_get_userdata(BVHHandle p_handle) const { return _get_extra(p_handle).userdata; } int item_get_subindex(BVHHandle p_handle) const { return _get_extra(p_handle).subindex; } void _unpair(BVHHandle p_from, BVHHandle p_to) { tree._handle_sort(p_from, p_to); typename BVHTREE_CLASS::ItemExtra &exa = tree._extra[p_from.id()]; typename BVHTREE_CLASS::ItemExtra &exb = tree._extra[p_to.id()]; // if the userdata is the same, no collisions should occur if ((exa.userdata == exb.userdata) && exa.userdata) { return; } typename BVHTREE_CLASS::ItemPairs &pairs_from = tree._pairs[p_from.id()]; typename BVHTREE_CLASS::ItemPairs &pairs_to = tree._pairs[p_to.id()]; void *ud_from = pairs_from.remove_pair_to(p_to); pairs_to.remove_pair_to(p_from); // callback if (unpair_callback) { unpair_callback(pair_callback_userdata, p_from, exa.userdata, exa.subindex, p_to, exb.userdata, exb.subindex, ud_from); } } // returns true if unpair bool _find_leavers_process_pair(typename BVHTREE_CLASS::ItemPairs &p_pairs_from, const BVHABB_CLASS &p_abb_from, BVHHandle p_from, BVHHandle p_to, bool p_full_check) { BVHABB_CLASS abb_to; tree.item_get_ABB(p_to, abb_to); // do they overlap? if (p_abb_from.intersects(abb_to)) { // the full check for pairable / non pairable and mask changes is extra expense // this need not be done in most cases (for speed) except in the case where set_pairable is called // where the masks etc of the objects in question may have changed if (!p_full_check) { return false; } const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_from); const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_to); // one of the two must be pairable to still pair // if neither are pairable, we always unpair if (exa.pairable || exb.pairable) { // the masks must still be compatible to pair // i.e. if there is a hit between the two, then they should stay paired if (tree._cull_pairing_mask_test_hit(exa.pairable_mask, exa.pairable_type, exb.pairable_mask, exb.pairable_type)) { return false; } } } _unpair(p_from, p_to); return true; } // find all the existing paired aabbs that are no longer // paired, and send callbacks void _find_leavers(BVHHandle p_handle, const BVHABB_CLASS &expanded_abb_from, bool p_full_check) { typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; BVHABB_CLASS abb_from = expanded_abb_from; // remove from pairing list for every partner for (unsigned int n = 0; n < p_from.extended_pairs.size(); n++) { BVHHandle h_to = p_from.extended_pairs[n].handle; if (_find_leavers_process_pair(p_from, abb_from, p_handle, h_to, p_full_check)) { // we need to keep the counter n up to date if we deleted a pair // as the number of items in p_from.extended_pairs will have decreased by 1 // and we don't want to miss an item n--; } } } // find NEW enterers, and send callbacks for them only // handle a and b void _collide(BVHHandle p_ha, BVHHandle p_hb) { // only have to do this oneway, lower ID then higher ID tree._handle_sort(p_ha, p_hb); const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_ha); const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_hb); // if the userdata is the same, no collisions should occur if ((exa.userdata == exb.userdata) && exa.userdata) { return; } typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_ha.id()]; typename BVHTREE_CLASS::ItemPairs &p_to = tree._pairs[p_hb.id()]; // does this pair exist already? // or only check the one with lower number of pairs for greater speed if (p_from.num_pairs <= p_to.num_pairs) { if (p_from.contains_pair_to(p_hb)) { return; } } else { if (p_to.contains_pair_to(p_ha)) { return; } } // callback void *callback_userdata = nullptr; if (pair_callback) { callback_userdata = pair_callback(pair_callback_userdata, p_ha, exa.userdata, exa.subindex, p_hb, exb.userdata, exb.subindex); } // new pair! .. only really need to store the userdata on the lower handle, but both have storage so... p_from.add_pair_to(p_hb, callback_userdata); p_to.add_pair_to(p_ha, callback_userdata); } // if we remove an item, we need to immediately remove the pairs, to prevent reading the pair after deletion void _remove_pairs_containing(BVHHandle p_handle) { typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; // remove from pairing list for every partner. // can't easily use a for loop here, because removing changes the size of the list while (p_from.extended_pairs.size()) { BVHHandle h_to = p_from.extended_pairs[0].handle; _unpair(p_handle, h_to); } } private: const typename BVHTREE_CLASS::ItemExtra &_get_extra(BVHHandle p_handle) const { return tree._extra[p_handle.id()]; } const typename BVHTREE_CLASS::ItemRef &_get_ref(BVHHandle p_handle) const { return tree._refs[p_handle.id()]; } void _reset() { changed_items.clear(); _tick++; } void _add_changed_item(BVHHandle p_handle, const Bounds &aabb, bool p_check_aabb = true) { // Note that non pairable items can pair with pairable, // so all types must be added to the list // aabb check with expanded aabb. This greatly decreases processing // at the cost of slightly less accurate pairing checks // Note this pairing AABB is separate from the AABB in the actual tree Bounds &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb; // passing p_check_aabb false disables the optimization which prevents collision checks if // the aabb hasn't changed. This is needed where set_pairable has been called, but the position // has not changed. if (p_check_aabb && expanded_aabb.encloses(aabb)) { return; } // ALWAYS update the new expanded aabb, even if already changed once // this tick, because it is vital that the AABB is kept up to date expanded_aabb = aabb; expanded_aabb.grow_by(tree._pairing_expansion); // this code is to ensure that changed items only appear once on the updated list // collision checking them multiple times is not needed, and repeats the same thing uint32_t &last_updated_tick = tree._extra[p_handle.id()].last_updated_tick; if (last_updated_tick == _tick) { return; // already on changed list } // mark as on list last_updated_tick = _tick; // add to the list changed_items.push_back(p_handle); } void _remove_changed_item(BVHHandle p_handle) { // Care has to be taken here for items that are deleted. The ref ID // could be reused on the same tick for new items. This is probably // rare but should be taken into consideration // callbacks _remove_pairs_containing(p_handle); // remove from changed items (not very efficient yet) for (int n = 0; n < (int)changed_items.size(); n++) { if (changed_items[n] == p_handle) { changed_items.remove_unordered(n); // because we are using an unordered remove, // the last changed item will now be at spot 'n', // and we need to redo it, so we prevent moving on to // the next n at the next for iteration. n--; } } // reset the last updated tick (may not be necessary but just in case) tree._extra[p_handle.id()].last_updated_tick = 0; } PairCallback pair_callback; UnpairCallback unpair_callback; void *pair_callback_userdata; void *unpair_callback_userdata; BVHTREE_CLASS tree; // for collision pairing, // maintain a list of all items moved etc on each frame / tick LocalVector<BVHHandle, uint32_t, true> changed_items; uint32_t _tick; public: BVH_Manager() { _tick = 1; // start from 1 so items with 0 indicate never updated pair_callback = nullptr; unpair_callback = nullptr; pair_callback_userdata = nullptr; unpair_callback_userdata = nullptr; } }; #undef BVHTREE_CLASS #endif // BVH_H