/*************************************************************************/ /* basis.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "basis.h" #include "core/math/math_funcs.h" #include "core/os/copymem.h" #include "core/print_string.h" #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Basis::from_z(const Vector3 &p_z) { if (Math::abs(p_z.z) > Math_SQRT12) { // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); } else { // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); } elements[2] = p_z; } void Basis::invert() { real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = elements[0][0] * co[0] + elements[0][1] * co[1] + elements[0][2] * co[2]; #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif real_t s = 1.0 / det; set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); } void Basis::orthonormalize() { // Gram-Schmidt Process Vector3 x = get_axis(0); Vector3 y = get_axis(1); Vector3 z = get_axis(2); x.normalize(); y = (y - x * (x.dot(y))); y.normalize(); z = (z - x * (x.dot(z)) - y * (y.dot(z))); z.normalize(); set_axis(0, x); set_axis(1, y); set_axis(2, z); } Basis Basis::orthonormalized() const { Basis c = *this; c.orthonormalize(); return c; } bool Basis::is_orthogonal() const { Basis identity; Basis m = (*this) * transposed(); return m.is_equal_approx(identity); } bool Basis::is_diagonal() const { return ( Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) && Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) && Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1])); } bool Basis::is_rotation() const { return Math::is_equal_approx(determinant(), 1, UNIT_EPSILON) && is_orthogonal(); } bool Basis::is_symmetric() const { if (!Math::is_equal_approx_ratio(elements[0][1], elements[1][0], UNIT_EPSILON)) { return false; } if (!Math::is_equal_approx_ratio(elements[0][2], elements[2][0], UNIT_EPSILON)) { return false; } if (!Math::is_equal_approx_ratio(elements[1][2], elements[2][1], UNIT_EPSILON)) { return false; } return true; } Basis Basis::diagonalize() { //NOTE: only implemented for symmetric matrices //with the Jacobi iterative method method #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_symmetric(), Basis()); #endif const int ite_max = 1024; real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; int ite = 0; Basis acc_rot; while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { real_t el01_2 = elements[0][1] * elements[0][1]; real_t el02_2 = elements[0][2] * elements[0][2]; real_t el12_2 = elements[1][2] * elements[1][2]; // Find the pivot element int i, j; if (el01_2 > el02_2) { if (el12_2 > el01_2) { i = 1; j = 2; } else { i = 0; j = 1; } } else { if (el12_2 > el02_2) { i = 1; j = 2; } else { i = 0; j = 2; } } // Compute the rotation angle real_t angle; if (Math::is_equal_approx(elements[j][j], elements[i][i])) { angle = Math_PI / 4; } else { angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); } // Compute the rotation matrix Basis rot; rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); // Update the off matrix norm off_matrix_norm_2 -= elements[i][j] * elements[i][j]; // Apply the rotation *this = rot * *this * rot.transposed(); acc_rot = rot * acc_rot; } return acc_rot; } Basis Basis::inverse() const { Basis inv = *this; inv.invert(); return inv; } void Basis::transpose() { SWAP(elements[0][1], elements[1][0]); SWAP(elements[0][2], elements[2][0]); SWAP(elements[1][2], elements[2][1]); } Basis Basis::transposed() const { Basis tr = *this; tr.transpose(); return tr; } // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { elements[0][0] *= p_scale.x; elements[0][1] *= p_scale.x; elements[0][2] *= p_scale.x; elements[1][0] *= p_scale.y; elements[1][1] *= p_scale.y; elements[1][2] *= p_scale.y; elements[2][0] *= p_scale.z; elements[2][1] *= p_scale.z; elements[2][2] *= p_scale.z; } Basis Basis::scaled(const Vector3 &p_scale) const { Basis m = *this; m.scale(p_scale); return m; } void Basis::scale_local(const Vector3 &p_scale) { // performs a scaling in object-local coordinate system: // M -> (M.S.Minv).M = M.S. *this = scaled_local(p_scale); } float Basis::get_uniform_scale() const { return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; } void Basis::make_scale_uniform() { float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; for (int i = 0; i < 3; i++) { elements[i].normalize(); elements[i] *= l; } } Basis Basis::scaled_local(const Vector3 &p_scale) const { Basis b; b.set_diagonal(p_scale); return (*this) * b; } Vector3 Basis::get_scale_abs() const { return Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } Vector3 Basis::get_scale_local() const { real_t det_sign = SGN(determinant()); return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); } // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. Vector3 Basis::get_scale() const { // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). // // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. // Therefore, we are going to do this decomposition by sticking to a particular convention. // This may lead to confusion for some users though. // // The convention we use here is to absorb the sign flip into the scaling matrix. // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ... // // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the // matrix elements. // // The rotation part of this decomposition is returned by get_rotation* functions. real_t det_sign = SGN(determinant()); return det_sign * Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3. // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so. Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(determinant() == 0, Vector3()); Basis m = transposed() * (*this); ERR_FAIL_COND_V(!m.is_diagonal(), Vector3()); #endif Vector3 scale = get_scale(); Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale rotref = (*this) * inv_scale; #ifdef MATH_CHECKS ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3()); #endif return scale.abs(); } // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // // The main use of Basis is as Transform.basis, which is used a the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { return Basis(p_axis, p_phi) * (*this); } void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { // performs a rotation in object-local coordinate system: // M -> (M.R.Minv).M = M.R. *this = rotated_local(p_axis, p_phi); } Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { return (*this) * Basis(p_axis, p_phi); } Basis Basis::rotated(const Vector3 &p_euler) const { return Basis(p_euler) * (*this); } void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } Basis Basis::rotated(const Quat &p_quat) const { return Basis(p_quat) * (*this); } void Basis::rotate(const Quat &p_quat) { *this = rotated(p_quat); } Vector3 Basis::get_rotation_euler() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. Basis m = orthonormalized(); real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. m.scale(Vector3(-1, -1, -1)); } return m.get_euler(); } Quat Basis::get_rotation_quat() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. Basis m = orthonormalized(); real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. m.scale(Vector3(-1, -1, -1)); } return m.get_quat(); } void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. Basis m = orthonormalized(); real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. m.scale(Vector3(-1, -1, -1)); } m.get_axis_angle(p_axis, p_angle); } void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. Basis m = transposed(); m.orthonormalize(); real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. m.scale(Vector3(-1, -1, -1)); } m.get_axis_angle(p_axis, p_angle); p_angle = -p_angle; } // get_euler_xyz returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). // // The current implementation uses XYZ convention (Z is the first rotation), // so euler.z is the angle of the (first) rotation around Z axis and so on, // // And thus, assuming the matrix is a rotation matrix, this function returns // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. Vector3 Basis::get_euler_xyz() const { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_rotation(), euler); #endif real_t sy = elements[0][2]; if (sy < 1.0) { if (sy > -1.0) { // is this a pure Y rotation? if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = 0; euler.y = atan2(elements[0][2], elements[0][0]); euler.z = 0; } else { euler.x = Math::atan2(-elements[1][2], elements[2][2]); euler.y = Math::asin(sy); euler.z = Math::atan2(-elements[0][1], elements[0][0]); } } else { euler.x = -Math::atan2(elements[0][1], elements[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { euler.x = Math::atan2(elements[0][1], elements[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } return euler; } // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). void Basis::set_euler_xyz(const Vector3 &p_euler) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway *this = xmat * (ymat * zmat); } // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { /* checking this is a bad idea, because obtaining from scaled transform is a valid use case #ifdef MATH_CHECKS ERR_FAIL_COND(!is_rotation()); #endif */ // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy // cx*sz cx*cz -sx // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx Vector3 euler; real_t m12 = elements[1][2]; if (m12 < 1) { if (m12 > -1) { // is this a pure X rotation? if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = atan2(-m12, elements[1][1]); euler.y = 0; euler.z = 0; } else { euler.x = asin(-m12); euler.y = atan2(elements[0][2], elements[2][2]); euler.z = atan2(elements[1][0], elements[1][1]); } } else { // m12 == -1 euler.x = Math_PI * 0.5; euler.y = -atan2(-elements[0][1], elements[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; euler.y = -atan2(-elements[0][1], elements[0][0]); euler.z = 0; } return euler; } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // The current implementation uses YXZ convention (Z is the first rotation). void Basis::set_euler_yxz(const Vector3 &p_euler) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway *this = ymat * xmat * zmat; } bool Basis::is_equal_approx(const Basis &p_basis) const { return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); } bool Basis::is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (!Math::is_equal_approx_ratio(a.elements[i][j], b.elements[i][j], p_epsilon)) { return false; } } } return true; } bool Basis::operator==(const Basis &p_matrix) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (elements[i][j] != p_matrix.elements[i][j]) { return false; } } } return true; } bool Basis::operator!=(const Basis &p_matrix) const { return (!(*this == p_matrix)); } Basis::operator String() const { String mtx; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (i != 0 || j != 0) { mtx += ", "; } mtx += rtos(elements[i][j]); } } return mtx; } Quat Basis::get_quat() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_rotation(), Quat(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quat() or call orthonormalized() instead."); #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; real_t temp[4]; if (trace > 0.0) { real_t s = Math::sqrt(trace + 1.0); temp[3] = (s * 0.5); s = 0.5 / s; temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; } return Quat(temp[0], temp[1], temp[2], temp[3]); } static const Basis _ortho_bases[24] = { Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) }; int Basis::get_orthogonal_index() const { //could be sped up if i come up with a way Basis orth = *this; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { real_t v = orth[i][j]; if (v > 0.5) { v = 1.0; } else if (v < -0.5) { v = -1.0; } else { v = 0; } orth[i][j] = v; } } for (int i = 0; i < 24; i++) { if (_ortho_bases[i] == orth) { return i; } } return 0; } void Basis::set_orthogonal_index(int p_index) { //there only exist 24 orthogonal bases in r3 ERR_FAIL_INDEX(p_index, 24); *this = _ortho_bases[p_index]; } void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { /* checking this is a bad idea, because obtaining from scaled transform is a valid use case #ifdef MATH_CHECKS ERR_FAIL_COND(!is_rotation()); #endif */ real_t angle, x, y, z; // variables for result real_t epsilon = 0.01; // margin to allow for rounding errors real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonaland zero in other terms if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); r_angle = 0; return; } // otherwise this singularity is angle = 180 angle = Math_PI; real_t xx = (elements[0][0] + 1) / 2; real_t yy = (elements[1][1] + 1) / 2; real_t zz = (elements[2][2] + 1) / 2; real_t xy = (elements[1][0] + elements[0][1]) / 4; real_t xz = (elements[2][0] + elements[0][2]) / 4; real_t yz = (elements[2][1] + elements[1][2]) / 4; if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term if (xx < epsilon) { x = 0; y = Math_SQRT12; z = Math_SQRT12; } else { x = Math::sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { // elements[1][1] is the largest diagonal term if (yy < epsilon) { x = Math_SQRT12; y = 0; z = Math_SQRT12; } else { y = Math::sqrt(yy); x = xy / y; z = yz / y; } } else { // elements[2][2] is the largest diagonal term so base result on this if (zz < epsilon) { x = Math_SQRT12; y = Math_SQRT12; z = 0; } else { z = Math::sqrt(zz); x = xz / z; y = yz / z; } } r_axis = Vector3(x, y, z); r_angle = angle; return; } // as we have reached here there are no singularities so we can handle normally real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); if (angle < 0) { s = -s; } x = (elements[2][1] - elements[1][2]) / s; y = (elements[0][2] - elements[2][0]) / s; z = (elements[1][0] - elements[0][1]) / s; r_axis = Vector3(x, y, z); r_angle = angle; } void Basis::set_quat(const Quat &p_quat) { real_t d = p_quat.length_squared(); real_t s = 2.0 / d; real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; set(1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)); } void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); real_t cosine = Math::cos(p_phi); elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); real_t sine = Math::sin(p_phi); real_t t = 1 - cosine; real_t xyzt = p_axis.x * p_axis.y * t; real_t zyxs = p_axis.z * sine; elements[0][1] = xyzt - zyxs; elements[1][0] = xyzt + zyxs; xyzt = p_axis.x * p_axis.z * t; zyxs = p_axis.y * sine; elements[0][2] = xyzt + zyxs; elements[2][0] = xyzt - zyxs; xyzt = p_axis.y * p_axis.z * t; zyxs = p_axis.x * sine; elements[1][2] = xyzt - zyxs; elements[2][1] = xyzt + zyxs; } void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_diagonal(p_scale); rotate(p_axis, p_phi); } void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { set_diagonal(p_scale); rotate(p_euler); } void Basis::set_quat_scale(const Quat &p_quat, const Vector3 &p_scale) { set_diagonal(p_scale); rotate(p_quat); } void Basis::set_diagonal(const Vector3 &p_diag) { elements[0][0] = p_diag.x; elements[0][1] = 0; elements[0][2] = 0; elements[1][0] = 0; elements[1][1] = p_diag.y; elements[1][2] = 0; elements[2][0] = 0; elements[2][1] = 0; elements[2][2] = p_diag.z; } Basis Basis::slerp(const Basis &target, const real_t &t) const { //consider scale Quat from(*this); Quat to(target); Basis b(from.slerp(to, t)); b.elements[0] *= Math::lerp(elements[0].length(), target.elements[0].length(), t); b.elements[1] *= Math::lerp(elements[1].length(), target.elements[1].length(), t); b.elements[2] *= Math::lerp(elements[2].length(), target.elements[2].length(), t); return b; } void Basis::rotate_sh(real_t *p_values) { // code by John Hable // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/ // this code is Public Domain const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi)) const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi)) const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi)) const static real_t s_c_scale = 1.0 / 0.91529123286551084; const static real_t s_c_scale_inv = 0.91529123286551084; const static real_t s_rc2 = 1.5853309190550713 * s_c_scale; const static real_t s_c4_div_c3 = s_c4 / s_c3; const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0; const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; real_t m00 = elements[0][0]; real_t m01 = elements[0][1]; real_t m02 = elements[0][2]; real_t m10 = elements[1][0]; real_t m11 = elements[1][1]; real_t m12 = elements[1][2]; real_t m20 = elements[2][0]; real_t m21 = elements[2][1]; real_t m22 = elements[2][2]; p_values[0] = src[0]; p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3]; p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3]; real_t sh0 = src[7] + src[8] + src[8] - src[5]; real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8]; real_t sh2 = src[4]; real_t sh3 = -src[7]; real_t sh4 = -src[5]; // Rotations. R0 and R1 just use the raw matrix columns real_t r2x = m00 + m01; real_t r2y = m10 + m11; real_t r2z = m20 + m21; real_t r3x = m00 + m02; real_t r3y = m10 + m12; real_t r3z = m20 + m22; real_t r4x = m01 + m02; real_t r4y = m11 + m12; real_t r4z = m21 + m22; // dense matrix multiplication one column at a time // column 0 real_t sh0_x = sh0 * m00; real_t sh0_y = sh0 * m10; real_t d0 = sh0_x * m10; real_t d1 = sh0_y * m20; real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3); real_t d3 = sh0_x * m20; real_t d4 = sh0_x * m00 - sh0_y * m10; // column 1 real_t sh1_x = sh1 * m02; real_t sh1_y = sh1 * m12; d0 += sh1_x * m12; d1 += sh1_y * m22; d2 += sh1 * (m22 * m22 + s_c4_div_c3); d3 += sh1_x * m22; d4 += sh1_x * m02 - sh1_y * m12; // column 2 real_t sh2_x = sh2 * r2x; real_t sh2_y = sh2 * r2y; d0 += sh2_x * r2y; d1 += sh2_y * r2z; d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2); d3 += sh2_x * r2z; d4 += sh2_x * r2x - sh2_y * r2y; // column 3 real_t sh3_x = sh3 * r3x; real_t sh3_y = sh3 * r3y; d0 += sh3_x * r3y; d1 += sh3_y * r3z; d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2); d3 += sh3_x * r3z; d4 += sh3_x * r3x - sh3_y * r3y; // column 4 real_t sh4_x = sh4 * r4x; real_t sh4_y = sh4 * r4y; d0 += sh4_x * r4y; d1 += sh4_y * r4z; d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2); d3 += sh4_x * r4z; d4 += sh4_x * r4x - sh4_y * r4y; // extra multipliers p_values[4] = d0; p_values[5] = -d1; p_values[6] = d2 * s_scale_dst2; p_values[7] = -d3; p_values[8] = d4 * s_scale_dst4; }