/*************************************************************************/ /* aabb.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef AABB_H #define AABB_H #include "core/math/math_defs.h" #include "core/math/plane.h" #include "core/math/vector3.h" /** * AABB / AABB (Axis Aligned Bounding Box) * This is implemented by a point (position) and the box size */ class Variant; class AABB { public: Vector3 position; Vector3 size; real_t get_volume() const; _FORCE_INLINE_ bool has_no_volume() const { return (size.x <= 0 || size.y <= 0 || size.z <= 0); } _FORCE_INLINE_ bool has_no_surface() const { return (size.x <= 0 && size.y <= 0 && size.z <= 0); } const Vector3 &get_position() const { return position; } void set_position(const Vector3 &p_pos) { position = p_pos; } const Vector3 &get_size() const { return size; } void set_size(const Vector3 &p_size) { size = p_size; } bool operator==(const AABB &p_rval) const; bool operator!=(const AABB &p_rval) const; bool is_equal_approx(const AABB &p_aabb) const; _FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap _FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap _FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this AABB merge(const AABB &p_with) const; void merge_with(const AABB &p_aabb); ///merge with another AABB AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const; _FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const; _FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const; bool intersects_plane(const Plane &p_plane) const; _FORCE_INLINE_ bool has_point(const Vector3 &p_point) const; _FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const; Vector3 get_longest_axis() const; int get_longest_axis_index() const; _FORCE_INLINE_ real_t get_longest_axis_size() const; Vector3 get_shortest_axis() const; int get_shortest_axis_index() const; _FORCE_INLINE_ real_t get_shortest_axis_size() const; AABB grow(real_t p_by) const; _FORCE_INLINE_ void grow_by(real_t p_amount); void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const; _FORCE_INLINE_ Vector3 get_endpoint(int p_point) const; AABB expand(const Vector3 &p_vector) const; _FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const; _FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */ _FORCE_INLINE_ AABB abs() const { return AABB(Vector3(position.x + MIN(size.x, 0), position.y + MIN(size.y, 0), position.z + MIN(size.z, 0)), size.abs()); } Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const; Variant intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const; _FORCE_INLINE_ void quantize(real_t p_unit); _FORCE_INLINE_ AABB quantized(real_t p_unit) const; _FORCE_INLINE_ void set_end(const Vector3 &p_end) { size = p_end - position; } _FORCE_INLINE_ Vector3 get_end() const { return position + size; } _FORCE_INLINE_ Vector3 get_center() const { return position + (size * 0.5); } operator String() const; _FORCE_INLINE_ AABB() {} inline AABB(const Vector3 &p_pos, const Vector3 &p_size) : position(p_pos), size(p_size) { } }; inline bool AABB::intersects(const AABB &p_aabb) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif if (position.x >= (p_aabb.position.x + p_aabb.size.x)) { return false; } if ((position.x + size.x) <= p_aabb.position.x) { return false; } if (position.y >= (p_aabb.position.y + p_aabb.size.y)) { return false; } if ((position.y + size.y) <= p_aabb.position.y) { return false; } if (position.z >= (p_aabb.position.z + p_aabb.size.z)) { return false; } if ((position.z + size.z) <= p_aabb.position.z) { return false; } return true; } inline bool AABB::intersects_inclusive(const AABB &p_aabb) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif if (position.x > (p_aabb.position.x + p_aabb.size.x)) { return false; } if ((position.x + size.x) < p_aabb.position.x) { return false; } if (position.y > (p_aabb.position.y + p_aabb.size.y)) { return false; } if ((position.y + size.y) < p_aabb.position.y) { return false; } if (position.z > (p_aabb.position.z + p_aabb.size.z)) { return false; } if ((position.z + size.z) < p_aabb.position.z) { return false; } return true; } inline bool AABB::encloses(const AABB &p_aabb) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif Vector3 src_min = position; Vector3 src_max = position + size; Vector3 dst_min = p_aabb.position; Vector3 dst_max = p_aabb.position + p_aabb.size; return ( (src_min.x <= dst_min.x) && (src_max.x > dst_max.x) && (src_min.y <= dst_min.y) && (src_max.y > dst_max.y) && (src_min.z <= dst_min.z) && (src_max.z > dst_max.z)); } Vector3 AABB::get_support(const Vector3 &p_normal) const { Vector3 half_extents = size * 0.5; Vector3 ofs = position + half_extents; return Vector3( (p_normal.x > 0) ? half_extents.x : -half_extents.x, (p_normal.y > 0) ? half_extents.y : -half_extents.y, (p_normal.z > 0) ? half_extents.z : -half_extents.z) + ofs; } Vector3 AABB::get_endpoint(int p_point) const { switch (p_point) { case 0: return Vector3(position.x, position.y, position.z); case 1: return Vector3(position.x, position.y, position.z + size.z); case 2: return Vector3(position.x, position.y + size.y, position.z); case 3: return Vector3(position.x, position.y + size.y, position.z + size.z); case 4: return Vector3(position.x + size.x, position.y, position.z); case 5: return Vector3(position.x + size.x, position.y, position.z + size.z); case 6: return Vector3(position.x + size.x, position.y + size.y, position.z); case 7: return Vector3(position.x + size.x, position.y + size.y, position.z + size.z); } ERR_FAIL_V(Vector3()); } bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const { Vector3 half_extents = size * 0.5; Vector3 ofs = position + half_extents; for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; Vector3 point( (p.normal.x > 0) ? -half_extents.x : half_extents.x, (p.normal.y > 0) ? -half_extents.y : half_extents.y, (p.normal.z > 0) ? -half_extents.z : half_extents.z); point += ofs; if (p.is_point_over(point)) { return false; } } // Make sure all points in the shape aren't fully separated from the AABB on // each axis. int bad_point_counts_positive[3] = { 0 }; int bad_point_counts_negative[3] = { 0 }; for (int k = 0; k < 3; k++) { for (int i = 0; i < p_point_count; i++) { if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) { bad_point_counts_positive[k]++; } if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) { bad_point_counts_negative[k]++; } } if (bad_point_counts_negative[k] == p_point_count) { return false; } if (bad_point_counts_positive[k] == p_point_count) { return false; } } return true; } bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const { Vector3 half_extents = size * 0.5; Vector3 ofs = position + half_extents; for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; Vector3 point( (p.normal.x < 0) ? -half_extents.x : half_extents.x, (p.normal.y < 0) ? -half_extents.y : half_extents.y, (p.normal.z < 0) ? -half_extents.z : half_extents.z); point += ofs; if (p.is_point_over(point)) { return false; } } return true; } bool AABB::has_point(const Vector3 &p_point) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif if (p_point.x < position.x) { return false; } if (p_point.y < position.y) { return false; } if (p_point.z < position.z) { return false; } if (p_point.x > position.x + size.x) { return false; } if (p_point.y > position.y + size.y) { return false; } if (p_point.z > position.z + size.z) { return false; } return true; } inline void AABB::expand_to(const Vector3 &p_vector) { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif Vector3 begin = position; Vector3 end = position + size; if (p_vector.x < begin.x) { begin.x = p_vector.x; } if (p_vector.y < begin.y) { begin.y = p_vector.y; } if (p_vector.z < begin.z) { begin.z = p_vector.z; } if (p_vector.x > end.x) { end.x = p_vector.x; } if (p_vector.y > end.y) { end.y = p_vector.y; } if (p_vector.z > end.z) { end.z = p_vector.z; } position = begin; size = end - begin; } void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const { Vector3 half_extents(size.x * 0.5, size.y * 0.5, size.z * 0.5); Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z); real_t length = p_plane.normal.abs().dot(half_extents); real_t distance = p_plane.distance_to(center); r_min = distance - length; r_max = distance + length; } inline real_t AABB::get_longest_axis_size() const { real_t max_size = size.x; if (size.y > max_size) { max_size = size.y; } if (size.z > max_size) { max_size = size.z; } return max_size; } inline real_t AABB::get_shortest_axis_size() const { real_t max_size = size.x; if (size.y < max_size) { max_size = size.y; } if (size.z < max_size) { max_size = size.z; } return max_size; } bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif real_t divx = 1.0 / p_dir.x; real_t divy = 1.0 / p_dir.y; real_t divz = 1.0 / p_dir.z; Vector3 upbound = position + size; real_t tmin, tmax, tymin, tymax, tzmin, tzmax; if (p_dir.x >= 0) { tmin = (position.x - p_from.x) * divx; tmax = (upbound.x - p_from.x) * divx; } else { tmin = (upbound.x - p_from.x) * divx; tmax = (position.x - p_from.x) * divx; } if (p_dir.y >= 0) { tymin = (position.y - p_from.y) * divy; tymax = (upbound.y - p_from.y) * divy; } else { tymin = (upbound.y - p_from.y) * divy; tymax = (position.y - p_from.y) * divy; } if ((tmin > tymax) || (tymin > tmax)) { return false; } if (tymin > tmin) { tmin = tymin; } if (tymax < tmax) { tmax = tymax; } if (p_dir.z >= 0) { tzmin = (position.z - p_from.z) * divz; tzmax = (upbound.z - p_from.z) * divz; } else { tzmin = (upbound.z - p_from.z) * divz; tzmax = (position.z - p_from.z) * divz; } if ((tmin > tzmax) || (tzmin > tmax)) { return false; } if (tzmin > tmin) { tmin = tzmin; } if (tzmax < tmax) { tmax = tzmax; } return ((tmin < t1) && (tmax > t0)); } void AABB::grow_by(real_t p_amount) { position.x -= p_amount; position.y -= p_amount; position.z -= p_amount; size.x += 2.0 * p_amount; size.y += 2.0 * p_amount; size.z += 2.0 * p_amount; } void AABB::quantize(real_t p_unit) { size += position; position.x -= Math::fposmodp(position.x, p_unit); position.y -= Math::fposmodp(position.y, p_unit); position.z -= Math::fposmodp(position.z, p_unit); size.x -= Math::fposmodp(size.x, p_unit); size.y -= Math::fposmodp(size.y, p_unit); size.z -= Math::fposmodp(size.z, p_unit); size.x += p_unit; size.y += p_unit; size.z += p_unit; size -= position; } AABB AABB::quantized(real_t p_unit) const { AABB ret = *this; ret.quantize(p_unit); return ret; } #endif // AABB_H