/*************************************************************************/ /* aabb.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "aabb.h" #include "core/string/print_string.h" #include "core/variant/variant.h" real_t AABB::get_volume() const { return size.x * size.y * size.z; } bool AABB::operator==(const AABB &p_rval) const { return ((position == p_rval.position) && (size == p_rval.size)); } bool AABB::operator!=(const AABB &p_rval) const { return ((position != p_rval.position) || (size != p_rval.size)); } void AABB::merge_with(const AABB &p_aabb) { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif Vector3 beg_1, beg_2; Vector3 end_1, end_2; Vector3 min, max; beg_1 = position; beg_2 = p_aabb.position; end_1 = size + beg_1; end_2 = p_aabb.size + beg_2; min.x = (beg_1.x < beg_2.x) ? beg_1.x : beg_2.x; min.y = (beg_1.y < beg_2.y) ? beg_1.y : beg_2.y; min.z = (beg_1.z < beg_2.z) ? beg_1.z : beg_2.z; max.x = (end_1.x > end_2.x) ? end_1.x : end_2.x; max.y = (end_1.y > end_2.y) ? end_1.y : end_2.y; max.z = (end_1.z > end_2.z) ? end_1.z : end_2.z; position = min; size = max - min; } bool AABB::is_equal_approx(const AABB &p_aabb) const { return position.is_equal_approx(p_aabb.position) && size.is_equal_approx(p_aabb.size); } AABB AABB::intersection(const AABB &p_aabb) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif Vector3 src_min = position; Vector3 src_max = position + size; Vector3 dst_min = p_aabb.position; Vector3 dst_max = p_aabb.position + p_aabb.size; Vector3 min, max; if (src_min.x > dst_max.x || src_max.x < dst_min.x) { return AABB(); } else { min.x = (src_min.x > dst_min.x) ? src_min.x : dst_min.x; max.x = (src_max.x < dst_max.x) ? src_max.x : dst_max.x; } if (src_min.y > dst_max.y || src_max.y < dst_min.y) { return AABB(); } else { min.y = (src_min.y > dst_min.y) ? src_min.y : dst_min.y; max.y = (src_max.y < dst_max.y) ? src_max.y : dst_max.y; } if (src_min.z > dst_max.z || src_max.z < dst_min.z) { return AABB(); } else { min.z = (src_min.z > dst_min.z) ? src_min.z : dst_min.z; max.z = (src_max.z < dst_max.z) ? src_max.z : dst_max.z; } return AABB(min, max - min); } bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif Vector3 c1, c2; Vector3 end = position + size; real_t near = -1e20; real_t far = 1e20; int axis = 0; for (int i = 0; i < 3; i++) { if (p_dir[i] == 0) { if ((p_from[i] < position[i]) || (p_from[i] > end[i])) { return false; } } else { // ray not parallel to planes in this direction c1[i] = (position[i] - p_from[i]) / p_dir[i]; c2[i] = (end[i] - p_from[i]) / p_dir[i]; if (c1[i] > c2[i]) { SWAP(c1, c2); } if (c1[i] > near) { near = c1[i]; axis = i; } if (c2[i] < far) { far = c2[i]; } if ((near > far) || (far < 0)) { return false; } } } if (r_clip) { *r_clip = c1; } if (r_normal) { *r_normal = Vector3(); (*r_normal)[axis] = p_dir[axis] ? -1 : 1; } return true; } bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip, Vector3 *r_normal) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif real_t min = 0, max = 1; int axis = 0; real_t sign = 0; for (int i = 0; i < 3; i++) { real_t seg_from = p_from[i]; real_t seg_to = p_to[i]; real_t box_begin = position[i]; real_t box_end = box_begin + size[i]; real_t cmin, cmax; real_t csign; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; csign = -1.0; } else { if (seg_to > box_end || seg_from < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; csign = 1.0; } if (cmin > min) { min = cmin; axis = i; sign = csign; } if (cmax < max) { max = cmax; } if (max < min) { return false; } } Vector3 rel = p_to - p_from; if (r_normal) { Vector3 normal; normal[axis] = sign; *r_normal = normal; } if (r_clip) { *r_clip = p_from + rel * min; } return true; } bool AABB::intersects_plane(const Plane &p_plane) const { Vector3 points[8] = { Vector3(position.x, position.y, position.z), Vector3(position.x, position.y, position.z + size.z), Vector3(position.x, position.y + size.y, position.z), Vector3(position.x, position.y + size.y, position.z + size.z), Vector3(position.x + size.x, position.y, position.z), Vector3(position.x + size.x, position.y, position.z + size.z), Vector3(position.x + size.x, position.y + size.y, position.z), Vector3(position.x + size.x, position.y + size.y, position.z + size.z), }; bool over = false; bool under = false; for (int i = 0; i < 8; i++) { if (p_plane.distance_to(points[i]) > 0) { over = true; } else { under = true; } } return under && over; } Vector3 AABB::get_longest_axis() const { Vector3 axis(1, 0, 0); real_t max_size = size.x; if (size.y > max_size) { axis = Vector3(0, 1, 0); max_size = size.y; } if (size.z > max_size) { axis = Vector3(0, 0, 1); } return axis; } int AABB::get_longest_axis_index() const { int axis = 0; real_t max_size = size.x; if (size.y > max_size) { axis = 1; max_size = size.y; } if (size.z > max_size) { axis = 2; } return axis; } Vector3 AABB::get_shortest_axis() const { Vector3 axis(1, 0, 0); real_t min_size = size.x; if (size.y < min_size) { axis = Vector3(0, 1, 0); min_size = size.y; } if (size.z < min_size) { axis = Vector3(0, 0, 1); } return axis; } int AABB::get_shortest_axis_index() const { int axis = 0; real_t min_size = size.x; if (size.y < min_size) { axis = 1; min_size = size.y; } if (size.z < min_size) { axis = 2; } return axis; } AABB AABB::merge(const AABB &p_with) const { AABB aabb = *this; aabb.merge_with(p_with); return aabb; } AABB AABB::expand(const Vector3 &p_vector) const { AABB aabb = *this; aabb.expand_to(p_vector); return aabb; } AABB AABB::grow(real_t p_by) const { AABB aabb = *this; aabb.grow_by(p_by); return aabb; } void AABB::get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const { ERR_FAIL_INDEX(p_edge, 12); switch (p_edge) { case 0: { r_from = Vector3(position.x + size.x, position.y, position.z); r_to = Vector3(position.x, position.y, position.z); } break; case 1: { r_from = Vector3(position.x + size.x, position.y, position.z + size.z); r_to = Vector3(position.x + size.x, position.y, position.z); } break; case 2: { r_from = Vector3(position.x, position.y, position.z + size.z); r_to = Vector3(position.x + size.x, position.y, position.z + size.z); } break; case 3: { r_from = Vector3(position.x, position.y, position.z); r_to = Vector3(position.x, position.y, position.z + size.z); } break; case 4: { r_from = Vector3(position.x, position.y + size.y, position.z); r_to = Vector3(position.x + size.x, position.y + size.y, position.z); } break; case 5: { r_from = Vector3(position.x + size.x, position.y + size.y, position.z); r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); } break; case 6: { r_from = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); r_to = Vector3(position.x, position.y + size.y, position.z + size.z); } break; case 7: { r_from = Vector3(position.x, position.y + size.y, position.z + size.z); r_to = Vector3(position.x, position.y + size.y, position.z); } break; case 8: { r_from = Vector3(position.x, position.y, position.z + size.z); r_to = Vector3(position.x, position.y + size.y, position.z + size.z); } break; case 9: { r_from = Vector3(position.x, position.y, position.z); r_to = Vector3(position.x, position.y + size.y, position.z); } break; case 10: { r_from = Vector3(position.x + size.x, position.y, position.z); r_to = Vector3(position.x + size.x, position.y + size.y, position.z); } break; case 11: { r_from = Vector3(position.x + size.x, position.y, position.z + size.z); r_to = Vector3(position.x + size.x, position.y + size.y, position.z + size.z); } break; } } Variant AABB::intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const { Vector3 inters; if (intersects_segment(p_from, p_to, &inters)) { return inters; } return Variant(); } Variant AABB::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const { Vector3 inters; if (intersects_ray(p_from, p_dir, &inters)) { return inters; } return Variant(); } AABB::operator String() const { return "[P: " + position.operator String() + ", S: " + size + "]"; }