/*************************************************************************/ /* marshalls.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "marshalls.h" #include "print_string.h" #include "os/keyboard.h" #include Error decode_variant(Variant& r_variant,const uint8_t *p_buffer, int p_len,int *r_len) { const uint8_t * buf=p_buffer; int len=p_len; ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t type=decode_uint32(buf); ERR_FAIL_COND_V(type>=Variant::VARIANT_MAX,ERR_INVALID_DATA); buf+=4; len-=4; if (r_len) *r_len=4; switch(type) { case Variant::NIL: { r_variant=Variant(); } break; case Variant::BOOL: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); bool val = decode_uint32(buf); r_variant=val; if (r_len) (*r_len)+=4; } break; case Variant::INT: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); int val = decode_uint32(buf); r_variant=val; if (r_len) (*r_len)+=4; } break; case Variant::REAL: { ERR_FAIL_COND_V(len<(int)4,ERR_INVALID_DATA); float val = decode_float(buf); r_variant=val; if (r_len) (*r_len)+=4; } break; case Variant::STRING: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t strlen = decode_uint32(buf); buf+=4; len-=4; ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA); String str; str.parse_utf8((const char*)buf,strlen); r_variant=str; if (r_len) { if (strlen%4) (*r_len)+=4-strlen%4; (*r_len)+=4+strlen; } } break; // math types case Variant::VECTOR2: { ERR_FAIL_COND_V(len<(int)4*2,ERR_INVALID_DATA); Vector2 val; val.x=decode_float(&buf[0]); val.y=decode_float(&buf[4]); r_variant=val; if (r_len) (*r_len)+=4*2; } break; // 5 case Variant::RECT2: { ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA); Rect2 val; val.pos.x=decode_float(&buf[0]); val.pos.y=decode_float(&buf[4]); val.size.x=decode_float(&buf[8]); val.size.y=decode_float(&buf[12]); r_variant=val; if (r_len) (*r_len)+=4*4; } break; case Variant::VECTOR3: { ERR_FAIL_COND_V(len<(int)4*3,ERR_INVALID_DATA); Vector3 val; val.x=decode_float(&buf[0]); val.y=decode_float(&buf[4]); val.z=decode_float(&buf[8]); r_variant=val; if (r_len) (*r_len)+=4*3; } break; case Variant::PLANE: { ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA); Plane val; val.normal.x=decode_float(&buf[0]); val.normal.y=decode_float(&buf[4]); val.normal.z=decode_float(&buf[8]); val.d=decode_float(&buf[12]); r_variant=val; if (r_len) (*r_len)+=4*4; } break; case Variant::QUAT: { ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA); Quat val; val.x=decode_float(&buf[0]); val.y=decode_float(&buf[4]); val.z=decode_float(&buf[8]); val.w=decode_float(&buf[12]); r_variant=val; if (r_len) (*r_len)+=4*4; } break; case Variant::_AABB: { ERR_FAIL_COND_V(len<(int)4*6,ERR_INVALID_DATA); AABB val; val.pos.x=decode_float(&buf[0]); val.pos.y=decode_float(&buf[4]); val.pos.z=decode_float(&buf[8]); val.size.x=decode_float(&buf[12]); val.size.y=decode_float(&buf[16]); val.size.z=decode_float(&buf[20]); r_variant=val; if (r_len) (*r_len)+=4*6; } break; case Variant::MATRIX3: { ERR_FAIL_COND_V(len<(int)4*9,ERR_INVALID_DATA); Matrix3 val; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { val.elements[i][j]=decode_float(&buf[(i*3+j)*4]); } } r_variant=val; if (r_len) (*r_len)+=4*9; } break; case Variant::TRANSFORM: { ERR_FAIL_COND_V(len<(int)4*12,ERR_INVALID_DATA); Transform val; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { val.basis.elements[i][j]=decode_float(&buf[(i*3+j)*4]); } } val.origin[0]=decode_float(&buf[36]); val.origin[1]=decode_float(&buf[40]); val.origin[2]=decode_float(&buf[44]); r_variant=val; if (r_len) (*r_len)+=4*12; } break; // misc types case Variant::COLOR: { ERR_FAIL_COND_V(len<(int)4*4,ERR_INVALID_DATA); Color val; val.r=decode_float(&buf[0]); val.g=decode_float(&buf[4]); val.b=decode_float(&buf[8]); val.a=decode_float(&buf[12]); r_variant=val; if (r_len) (*r_len)+=4*4; } break; case Variant::IMAGE: { ERR_FAIL_COND_V(len<(int)5*4,ERR_INVALID_DATA); Image::Format fmt = (Image::Format)decode_uint32(&buf[0]); ERR_FAIL_INDEX_V( fmt, Image::FORMAT_MAX, ERR_INVALID_DATA); uint32_t mipmaps = decode_uint32(&buf[4]); uint32_t w = decode_uint32(&buf[8]); uint32_t h = decode_uint32(&buf[12]); uint32_t datalen = decode_uint32(&buf[16]); Image img; if (datalen>0) { len-=5*4; ERR_FAIL_COND_V( len < datalen, ERR_INVALID_DATA ); DVector data; data.resize(datalen); DVector::Write wr = data.write(); copymem(&wr[0],&buf[20],datalen); wr = DVector::Write(); img=Image(w,h,mipmaps,fmt,data); } r_variant=img; if (r_len) (*r_len)+=4*5+datalen; } break; case Variant::NODE_PATH: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t strlen = decode_uint32(buf); buf+=4; len-=4; ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA); String str; str.parse_utf8((const char*)buf,strlen); r_variant=NodePath(str); if (r_len) (*r_len)+=4+strlen; } break; /*case Variant::RESOURCE: { ERR_EXPLAIN("Can't marshallize resources"); ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go } break;*/ case Variant::_RID: { r_variant = RID(); } break; case Variant::OBJECT: { r_variant = (Object*)NULL; } break; case Variant::INPUT_EVENT: { InputEvent ie; ie.type=decode_uint32(&buf[0]); ie.device=decode_uint32(&buf[4]); uint32_t len = decode_uint32(&buf[8])-12; if (r_len) (*r_len)+=12; switch(ie.type) { case InputEvent::KEY: { uint32_t mods=decode_uint32(&buf[12]); if (mods&KEY_MASK_SHIFT) ie.key.mod.shift=true; if (mods&KEY_MASK_CTRL) ie.key.mod.control=true; if (mods&KEY_MASK_ALT) ie.key.mod.alt=true; if (mods&KEY_MASK_META) ie.key.mod.meta=true; ie.key.scancode=decode_uint32(&buf[16]); if (r_len) (*r_len)+=8; } break; case InputEvent::MOUSE_BUTTON: { ie.mouse_button.button_index=decode_uint32(&buf[12]); if (r_len) (*r_len)+=4; } break; case InputEvent::JOYSTICK_BUTTON: { ie.joy_button.button_index=decode_uint32(&buf[12]); if (r_len) (*r_len)+=4; } break; case InputEvent::SCREEN_TOUCH: { ie.screen_touch.index=decode_uint32(&buf[12]); if (r_len) (*r_len)+=4; } break; case InputEvent::JOYSTICK_MOTION: { ie.joy_motion.axis=decode_uint32(&buf[12]); if (r_len) (*r_len)+=4; } break; } r_variant = ie; } break; case Variant::DICTIONARY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); bool shared = count&0x80000000; count&=0x7FFFFFFF; buf+=4; len-=4; if (r_len) { (*r_len)+=4; } Dictionary d(shared); for(uint32_t i=0;ilen,ERR_INVALID_DATA); DVector data; if (count) { data.resize(count); DVector::Write w = data.write(); for(int i=0;i::Write(); } r_variant=data; if (r_len) { if (count%4) (*r_len)+=4-count%4; (*r_len)+=4+count; } } break; case Variant::INT_ARRAY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); buf+=4; len-=4; ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA); DVector data; if (count) { //const int*rbuf=(const int*)buf; data.resize(count); DVector::Write w = data.write(); for(int i=0;i::Write(); } r_variant=Variant(data); if (r_len) { (*r_len)+=4+count*sizeof(int); } } break; case Variant::REAL_ARRAY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); buf+=4; len-=4; ERR_FAIL_COND_V((int)count*4>len,ERR_INVALID_DATA); DVector data; if (count) { //const float*rbuf=(const float*)buf; data.resize(count); DVector::Write w = data.write(); for(int i=0;i::Write(); } r_variant=data; if (r_len) { (*r_len)+=4+count*sizeof(float); } } break; case Variant::STRING_ARRAY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA); DVector strings; buf+=4; len-=4; if (r_len) (*r_len)+=4; //printf("string count: %i\n",count); for(int i=0;i<(int)count;i++) { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t strlen = decode_uint32(buf); buf+=4; len-=4; ERR_FAIL_COND_V((int)strlen>len,ERR_INVALID_DATA); //printf("loaded string: %s\n",(const char*)buf); String str; str.parse_utf8((const char*)buf,strlen); strings.push_back(str); buf+=strlen; len-=strlen; if (r_len) (*r_len)+=4+strlen; if (strlen%4) { int pad = 4-(strlen%4); buf+=pad; len-=pad; if (r_len) { (*r_len)+=pad; } } } r_variant=strings; } break; case Variant::VECTOR3_ARRAY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA); buf+=4; len-=4; ERR_FAIL_COND_V((int)count*4*3>len,ERR_INVALID_DATA); DVector varray; if (r_len) { (*r_len)+=4; } if (count) { varray.resize(count); DVector::Write w = varray.write(); const float *r = (const float*)buf; for(int i=0;i<(int)count;i++) { w[i].x=decode_float(buf+i*4*3+4*0); w[i].y=decode_float(buf+i*4*3+4*1); w[i].z=decode_float(buf+i*4*3+4*2); } int adv = 4*3*count; if (r_len) (*r_len)+=adv; len-=adv; buf+=adv; } r_variant=varray; } break; case Variant::COLOR_ARRAY: { ERR_FAIL_COND_V(len<4,ERR_INVALID_DATA); uint32_t count = decode_uint32(buf); ERR_FAIL_COND_V(count<0,ERR_INVALID_DATA); buf+=4; len-=4; ERR_FAIL_COND_V((int)count*4*4>len,ERR_INVALID_DATA); DVector carray; if (r_len) { (*r_len)+=4; } if (count) { carray.resize(count); DVector::Write w = carray.write(); const float *r = (const float*)buf; for(int i=0;i<(int)count;i++) { w[i].r=decode_float(buf+i*4*4+4*0); w[i].g=decode_float(buf+i*4*4+4*1); w[i].b=decode_float(buf+i*4*4+4*2); w[i].a=decode_float(buf+i*4*4+4*3); } int adv = 4*4*count; if (r_len) (*r_len)+=adv; len-=adv; buf+=adv; } r_variant=carray; } break; default: { ERR_FAIL_V(ERR_BUG); } } return OK; } Error encode_variant(const Variant& p_variant, uint8_t *r_buffer, int &r_len) { uint8_t * buf=r_buffer; r_len=0; if (buf) { encode_uint32(p_variant.get_type(),buf); buf+=4; } r_len+=4; switch(p_variant.get_type()) { case Variant::NIL: { //nothing to do } break; case Variant::BOOL: { if (buf) { encode_uint32(p_variant.operator bool(),buf); } r_len+=4; } break; case Variant::INT: { if (buf) { encode_uint32(p_variant.operator int(),buf); } r_len+=4; } break; case Variant::REAL: { if (buf) { encode_float(p_variant.operator float(),buf); } r_len+=4; } break; case Variant::NODE_PATH: case Variant::STRING: { CharString utf8 = p_variant.operator String().utf8(); if (buf) { encode_uint32(utf8.length(),buf); buf+=4; copymem(buf,utf8.get_data(),utf8.length()); } r_len+=4+utf8.length(); while (r_len%4) r_len++; //pad } break; // math types case Variant::VECTOR2: { if (buf) { Vector2 v2=p_variant; encode_float(v2.x,&buf[0]); encode_float(v2.y,&buf[4]); } r_len+=2*4; } break; // 5 case Variant::RECT2: { if (buf) { Rect2 r2=p_variant; encode_float(r2.pos.x,&buf[0]); encode_float(r2.pos.y,&buf[4]); encode_float(r2.size.x,&buf[8]); encode_float(r2.size.y,&buf[12]); } r_len+=4*4; } break; case Variant::VECTOR3: { if (buf) { Vector3 v3=p_variant; encode_float(v3.x,&buf[0]); encode_float(v3.y,&buf[4]); encode_float(v3.z,&buf[8]); } r_len+=3*4; } break; case Variant::PLANE: { if (buf) { Plane p=p_variant; encode_float(p.normal.x,&buf[0]); encode_float(p.normal.y,&buf[4]); encode_float(p.normal.z,&buf[8]); encode_float(p.d,&buf[12]); } r_len+=4*4; } break; case Variant::QUAT: { if (buf) { Quat q=p_variant; encode_float(q.x,&buf[0]); encode_float(q.y,&buf[4]); encode_float(q.z,&buf[8]); encode_float(q.w,&buf[12]); } r_len+=4*4; } break; case Variant::_AABB: { if (buf) { AABB aabb=p_variant; encode_float(aabb.pos.x,&buf[0]); encode_float(aabb.pos.y,&buf[4]); encode_float(aabb.pos.z,&buf[8]); encode_float(aabb.size.x,&buf[12]); encode_float(aabb.size.y,&buf[16]); encode_float(aabb.size.z,&buf[20]); } r_len+=6*4; } break; case Variant::MATRIX3: { if (buf) { Matrix3 val=p_variant; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { copymem(&buf[(i*3+j)*4],&val.elements[i][j],sizeof(float)); } } } r_len+=9*4; } break; case Variant::TRANSFORM: { if (buf) { Transform val=p_variant; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { copymem(&buf[(i*3+j)*4],&val.basis.elements[i][j],sizeof(float)); } } encode_float(val.origin.x,&buf[36]); encode_float(val.origin.y,&buf[40]); encode_float(val.origin.z,&buf[44]); } r_len+=12*4; } break; // misc types case Variant::COLOR: { if (buf) { Color c=p_variant; encode_float(c.r,&buf[0]); encode_float(c.g,&buf[4]); encode_float(c.b,&buf[8]); encode_float(c.a,&buf[12]); } r_len+=4*4; } break; case Variant::IMAGE: { Image image = p_variant; DVector data=image.get_data(); if (buf) { encode_uint32(image.get_format(),&buf[0]); encode_uint32(image.get_mipmaps(),&buf[4]); encode_uint32(image.get_width(),&buf[8]); encode_uint32(image.get_height(),&buf[12]); int ds=data.size(); encode_uint32(ds,&buf[16]); DVector::Read r = data.read(); copymem(&buf[20],&r[0],ds); } r_len+=data.size()+5*4; } break; /*case Variant::RESOURCE: { ERR_EXPLAIN("Can't marshallize resources"); ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go } break;*/ case Variant::_RID: case Variant::OBJECT: { } break; case Variant::INPUT_EVENT: { InputEvent ie=p_variant; if (buf) { encode_uint32(ie.type,&buf[0]); encode_uint32(ie.device,&buf[4]); encode_uint32(0,&buf[8]); } int llen=12; switch(ie.type) { case InputEvent::KEY: { if (buf) { uint32_t mods=0; if (ie.key.mod.shift) mods|=KEY_MASK_SHIFT; if (ie.key.mod.control) mods|=KEY_MASK_CTRL; if (ie.key.mod.alt) mods|=KEY_MASK_ALT; if (ie.key.mod.meta) mods|=KEY_MASK_META; encode_uint32(mods,&buf[llen]); encode_uint32(ie.key.scancode,&buf[llen+4]); } llen+=8; } break; case InputEvent::MOUSE_BUTTON: { if (buf) { encode_uint32(ie.mouse_button.button_index,&buf[llen]); } llen+=4; } break; case InputEvent::JOYSTICK_BUTTON: { if (buf) { encode_uint32(ie.joy_button.button_index,&buf[llen]); } llen+=4; } break; case InputEvent::SCREEN_TOUCH: { if (buf) { encode_uint32(ie.screen_touch.index,&buf[llen]); } llen+=4; } break; case InputEvent::JOYSTICK_MOTION: { if (buf) { int axis = ie.joy_motion.axis; encode_uint32(axis,&buf[llen]); } llen+=4; } break; } if (buf) encode_uint32(llen,&buf[8]); r_len+=llen; // not supported } break; case Variant::DICTIONARY: { Dictionary d = p_variant; if (buf) { encode_uint32(uint32_t(d.size())|(d.is_shared()?0x80000000:0),buf); buf+=4; } r_len+=4; List keys; d.get_key_list(&keys); for(List::Element *E=keys.front();E;E=E->next()) { /* CharString utf8 = E->->utf8(); if (buf) { encode_uint32(utf8.length()+1,buf); buf+=4; copymem(buf,utf8.get_data(),utf8.length()+1); } r_len+=4+utf8.length()+1; while (r_len%4) r_len++; //pad */ int len; encode_variant(E->get(),buf,len); ERR_FAIL_COND_V(len%4,ERR_BUG); r_len+=len; if (buf) buf += len; encode_variant(d[E->get()],buf,len); ERR_FAIL_COND_V(len%4,ERR_BUG); r_len+=len; if (buf) buf += len; } } break; case Variant::ARRAY: { Array v = p_variant; if (buf) { encode_uint32(uint32_t(v.size())|(v.is_shared()?0x80000000:0),buf); buf+=4; } r_len+=4; for(int i=0;i data = p_variant; int datalen=data.size(); int datasize=sizeof(uint8_t); if (buf) { encode_uint32(datalen,buf); buf+=4; DVector::Read r = data.read(); copymem(buf,&r[0],datalen*datasize); } r_len+=4+datalen*datasize; while(r_len%4) r_len++; } break; case Variant::INT_ARRAY: { DVector data = p_variant; int datalen=data.size(); int datasize=sizeof(int32_t); if (buf) { encode_uint32(datalen,buf); buf+=4; DVector::Read r = data.read(); for(int i=0;i data = p_variant; int datalen=data.size(); int datasize=sizeof(real_t); if (buf) { encode_uint32(datalen,buf); buf+=4; DVector::Read r = data.read(); for(int i=0;i data = p_variant; int len=data.size(); if (buf) { encode_uint32(len,buf); buf+=4; } r_len+=4; for(int i=0;i data = p_variant; int len=data.size(); if (buf) { encode_uint32(len,buf); buf+=4; } r_len+=4; if (buf) { for(int i=0;i data = p_variant; int len=data.size(); if (buf) { encode_uint32(len,buf); buf+=4; } r_len+=4; if (buf) { for(int i=0;i