/**************************************************************************/ /* input.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "input.h" #include "core/config/project_settings.h" #include "core/input/default_controller_mappings.h" #include "core/input/input_map.h" #include "core/os/os.h" static const char *_joy_buttons[(size_t)JoyButton::SDL_MAX] = { "a", "b", "x", "y", "back", "guide", "start", "leftstick", "rightstick", "leftshoulder", "rightshoulder", "dpup", "dpdown", "dpleft", "dpright", "misc1", "paddle1", "paddle2", "paddle3", "paddle4", "touchpad", }; static const char *_joy_axes[(size_t)JoyAxis::SDL_MAX] = { "leftx", "lefty", "rightx", "righty", "lefttrigger", "righttrigger", }; Input *Input::singleton = nullptr; void (*Input::set_mouse_mode_func)(Input::MouseMode) = nullptr; Input::MouseMode (*Input::get_mouse_mode_func)() = nullptr; void (*Input::warp_mouse_func)(const Vector2 &p_position) = nullptr; Input::CursorShape (*Input::get_current_cursor_shape_func)() = nullptr; void (*Input::set_custom_mouse_cursor_func)(const Ref &, Input::CursorShape, const Vector2 &) = nullptr; Input *Input::get_singleton() { return singleton; } void Input::set_mouse_mode(MouseMode p_mode) { ERR_FAIL_INDEX((int)p_mode, 5); set_mouse_mode_func(p_mode); } Input::MouseMode Input::get_mouse_mode() const { return get_mouse_mode_func(); } void Input::_bind_methods() { ClassDB::bind_method(D_METHOD("is_anything_pressed"), &Input::is_anything_pressed); ClassDB::bind_method(D_METHOD("is_key_pressed", "keycode"), &Input::is_key_pressed); ClassDB::bind_method(D_METHOD("is_physical_key_pressed", "keycode"), &Input::is_physical_key_pressed); ClassDB::bind_method(D_METHOD("is_key_label_pressed", "keycode"), &Input::is_key_label_pressed); ClassDB::bind_method(D_METHOD("is_mouse_button_pressed", "button"), &Input::is_mouse_button_pressed); ClassDB::bind_method(D_METHOD("is_joy_button_pressed", "device", "button"), &Input::is_joy_button_pressed); ClassDB::bind_method(D_METHOD("is_action_pressed", "action", "exact_match"), &Input::is_action_pressed, DEFVAL(false)); ClassDB::bind_method(D_METHOD("is_action_just_pressed", "action", "exact_match"), &Input::is_action_just_pressed, DEFVAL(false)); ClassDB::bind_method(D_METHOD("is_action_just_released", "action", "exact_match"), &Input::is_action_just_released, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_action_strength", "action", "exact_match"), &Input::get_action_strength, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_action_raw_strength", "action", "exact_match"), &Input::get_action_raw_strength, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_axis", "negative_action", "positive_action"), &Input::get_axis); ClassDB::bind_method(D_METHOD("get_vector", "negative_x", "positive_x", "negative_y", "positive_y", "deadzone"), &Input::get_vector, DEFVAL(-1.0f)); ClassDB::bind_method(D_METHOD("add_joy_mapping", "mapping", "update_existing"), &Input::add_joy_mapping, DEFVAL(false)); ClassDB::bind_method(D_METHOD("remove_joy_mapping", "guid"), &Input::remove_joy_mapping); ClassDB::bind_method(D_METHOD("is_joy_known", "device"), &Input::is_joy_known); ClassDB::bind_method(D_METHOD("get_joy_axis", "device", "axis"), &Input::get_joy_axis); ClassDB::bind_method(D_METHOD("get_joy_name", "device"), &Input::get_joy_name); ClassDB::bind_method(D_METHOD("get_joy_guid", "device"), &Input::get_joy_guid); ClassDB::bind_method(D_METHOD("get_connected_joypads"), &Input::get_connected_joypads); ClassDB::bind_method(D_METHOD("get_joy_vibration_strength", "device"), &Input::get_joy_vibration_strength); ClassDB::bind_method(D_METHOD("get_joy_vibration_duration", "device"), &Input::get_joy_vibration_duration); ClassDB::bind_method(D_METHOD("start_joy_vibration", "device", "weak_magnitude", "strong_magnitude", "duration"), &Input::start_joy_vibration, DEFVAL(0)); ClassDB::bind_method(D_METHOD("stop_joy_vibration", "device"), &Input::stop_joy_vibration); ClassDB::bind_method(D_METHOD("vibrate_handheld", "duration_ms"), &Input::vibrate_handheld, DEFVAL(500)); ClassDB::bind_method(D_METHOD("get_gravity"), &Input::get_gravity); ClassDB::bind_method(D_METHOD("get_accelerometer"), &Input::get_accelerometer); ClassDB::bind_method(D_METHOD("get_magnetometer"), &Input::get_magnetometer); ClassDB::bind_method(D_METHOD("get_gyroscope"), &Input::get_gyroscope); ClassDB::bind_method(D_METHOD("set_gravity", "value"), &Input::set_gravity); ClassDB::bind_method(D_METHOD("set_accelerometer", "value"), &Input::set_accelerometer); ClassDB::bind_method(D_METHOD("set_magnetometer", "value"), &Input::set_magnetometer); ClassDB::bind_method(D_METHOD("set_gyroscope", "value"), &Input::set_gyroscope); ClassDB::bind_method(D_METHOD("get_last_mouse_velocity"), &Input::get_last_mouse_velocity); ClassDB::bind_method(D_METHOD("get_mouse_button_mask"), &Input::get_mouse_button_mask); ClassDB::bind_method(D_METHOD("set_mouse_mode", "mode"), &Input::set_mouse_mode); ClassDB::bind_method(D_METHOD("get_mouse_mode"), &Input::get_mouse_mode); ClassDB::bind_method(D_METHOD("warp_mouse", "position"), &Input::warp_mouse); ClassDB::bind_method(D_METHOD("action_press", "action", "strength"), &Input::action_press, DEFVAL(1.f)); ClassDB::bind_method(D_METHOD("action_release", "action"), &Input::action_release); ClassDB::bind_method(D_METHOD("set_default_cursor_shape", "shape"), &Input::set_default_cursor_shape, DEFVAL(CURSOR_ARROW)); ClassDB::bind_method(D_METHOD("get_current_cursor_shape"), &Input::get_current_cursor_shape); ClassDB::bind_method(D_METHOD("set_custom_mouse_cursor", "image", "shape", "hotspot"), &Input::set_custom_mouse_cursor, DEFVAL(CURSOR_ARROW), DEFVAL(Vector2())); ClassDB::bind_method(D_METHOD("parse_input_event", "event"), &Input::parse_input_event); ClassDB::bind_method(D_METHOD("set_use_accumulated_input", "enable"), &Input::set_use_accumulated_input); ClassDB::bind_method(D_METHOD("is_using_accumulated_input"), &Input::is_using_accumulated_input); ClassDB::bind_method(D_METHOD("flush_buffered_events"), &Input::flush_buffered_events); ADD_PROPERTY(PropertyInfo(Variant::INT, "mouse_mode"), "set_mouse_mode", "get_mouse_mode"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_accumulated_input"), "set_use_accumulated_input", "is_using_accumulated_input"); BIND_ENUM_CONSTANT(MOUSE_MODE_VISIBLE); BIND_ENUM_CONSTANT(MOUSE_MODE_HIDDEN); BIND_ENUM_CONSTANT(MOUSE_MODE_CAPTURED); BIND_ENUM_CONSTANT(MOUSE_MODE_CONFINED); BIND_ENUM_CONSTANT(MOUSE_MODE_CONFINED_HIDDEN); BIND_ENUM_CONSTANT(CURSOR_ARROW); BIND_ENUM_CONSTANT(CURSOR_IBEAM); BIND_ENUM_CONSTANT(CURSOR_POINTING_HAND); BIND_ENUM_CONSTANT(CURSOR_CROSS); BIND_ENUM_CONSTANT(CURSOR_WAIT); BIND_ENUM_CONSTANT(CURSOR_BUSY); BIND_ENUM_CONSTANT(CURSOR_DRAG); BIND_ENUM_CONSTANT(CURSOR_CAN_DROP); BIND_ENUM_CONSTANT(CURSOR_FORBIDDEN); BIND_ENUM_CONSTANT(CURSOR_VSIZE); BIND_ENUM_CONSTANT(CURSOR_HSIZE); BIND_ENUM_CONSTANT(CURSOR_BDIAGSIZE); BIND_ENUM_CONSTANT(CURSOR_FDIAGSIZE); BIND_ENUM_CONSTANT(CURSOR_MOVE); BIND_ENUM_CONSTANT(CURSOR_VSPLIT); BIND_ENUM_CONSTANT(CURSOR_HSPLIT); BIND_ENUM_CONSTANT(CURSOR_HELP); ADD_SIGNAL(MethodInfo("joy_connection_changed", PropertyInfo(Variant::INT, "device"), PropertyInfo(Variant::BOOL, "connected"))); } void Input::get_argument_options(const StringName &p_function, int p_idx, List *r_options) const { String pf = p_function; if ((p_idx == 0 && (pf == "is_action_pressed" || pf == "action_press" || pf == "action_release" || pf == "is_action_just_pressed" || pf == "is_action_just_released" || pf == "get_action_strength" || pf == "get_action_raw_strength")) || (p_idx < 2 && pf == "get_axis") || (p_idx < 4 && pf == "get_vector")) { List pinfo; ProjectSettings::get_singleton()->get_property_list(&pinfo); for (const PropertyInfo &pi : pinfo) { if (!pi.name.begins_with("input/")) { continue; } String name = pi.name.substr(pi.name.find("/") + 1, pi.name.length()); r_options->push_back(name.quote()); } } } void Input::VelocityTrack::update(const Vector2 &p_delta_p) { uint64_t tick = OS::get_singleton()->get_ticks_usec(); uint32_t tdiff = tick - last_tick; float delta_t = tdiff / 1000000.0; last_tick = tick; if (delta_t > max_ref_frame) { // First movement in a long time, reset and start again. velocity = Vector2(); accum = p_delta_p; accum_t = 0; return; } accum += p_delta_p; accum_t += delta_t; if (accum_t < min_ref_frame) { // Not enough time has passed to calculate speed precisely. return; } velocity = accum / accum_t; accum = Vector2(); accum_t = 0; } void Input::VelocityTrack::reset() { last_tick = OS::get_singleton()->get_ticks_usec(); velocity = Vector2(); accum = Vector2(); accum_t = 0; } Input::VelocityTrack::VelocityTrack() { min_ref_frame = 0.1; max_ref_frame = 3.0; reset(); } bool Input::is_anything_pressed() const { _THREAD_SAFE_METHOD_ for (const KeyValue &E : action_state) { if (E.value.pressed) { return true; } } return !keys_pressed.is_empty() || !joy_buttons_pressed.is_empty() || !mouse_button_mask.is_empty(); } bool Input::is_key_pressed(Key p_keycode) const { _THREAD_SAFE_METHOD_ return keys_pressed.has(p_keycode); } bool Input::is_physical_key_pressed(Key p_keycode) const { _THREAD_SAFE_METHOD_ return physical_keys_pressed.has(p_keycode); } bool Input::is_key_label_pressed(Key p_keycode) const { _THREAD_SAFE_METHOD_ return key_label_pressed.has(p_keycode); } bool Input::is_mouse_button_pressed(MouseButton p_button) const { _THREAD_SAFE_METHOD_ return mouse_button_mask.has_flag(mouse_button_to_mask(p_button)); } static JoyAxis _combine_device(JoyAxis p_value, int p_device) { return JoyAxis((int)p_value | (p_device << 20)); } static JoyButton _combine_device(JoyButton p_value, int p_device) { return JoyButton((int)p_value | (p_device << 20)); } bool Input::is_joy_button_pressed(int p_device, JoyButton p_button) const { _THREAD_SAFE_METHOD_ return joy_buttons_pressed.has(_combine_device(p_button, p_device)); } bool Input::is_action_pressed(const StringName &p_action, bool p_exact) const { ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action)); return action_state.has(p_action) && action_state[p_action].pressed && (p_exact ? action_state[p_action].exact : true); } bool Input::is_action_just_pressed(const StringName &p_action, bool p_exact) const { ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action)); HashMap::ConstIterator E = action_state.find(p_action); if (!E) { return false; } if (p_exact && E->value.exact == false) { return false; } if (Engine::get_singleton()->is_in_physics_frame()) { return E->value.pressed && E->value.physics_frame == Engine::get_singleton()->get_physics_frames(); } else { return E->value.pressed && E->value.process_frame == Engine::get_singleton()->get_process_frames(); } } bool Input::is_action_just_released(const StringName &p_action, bool p_exact) const { ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), false, InputMap::get_singleton()->suggest_actions(p_action)); HashMap::ConstIterator E = action_state.find(p_action); if (!E) { return false; } if (p_exact && E->value.exact == false) { return false; } if (Engine::get_singleton()->is_in_physics_frame()) { return !E->value.pressed && E->value.physics_frame == Engine::get_singleton()->get_physics_frames(); } else { return !E->value.pressed && E->value.process_frame == Engine::get_singleton()->get_process_frames(); } } float Input::get_action_strength(const StringName &p_action, bool p_exact) const { ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), 0.0, InputMap::get_singleton()->suggest_actions(p_action)); HashMap::ConstIterator E = action_state.find(p_action); if (!E) { return 0.0f; } if (p_exact && E->value.exact == false) { return 0.0f; } return E->value.strength; } float Input::get_action_raw_strength(const StringName &p_action, bool p_exact) const { ERR_FAIL_COND_V_MSG(!InputMap::get_singleton()->has_action(p_action), 0.0, InputMap::get_singleton()->suggest_actions(p_action)); HashMap::ConstIterator E = action_state.find(p_action); if (!E) { return 0.0f; } if (p_exact && E->value.exact == false) { return 0.0f; } return E->value.raw_strength; } float Input::get_axis(const StringName &p_negative_action, const StringName &p_positive_action) const { return get_action_strength(p_positive_action) - get_action_strength(p_negative_action); } Vector2 Input::get_vector(const StringName &p_negative_x, const StringName &p_positive_x, const StringName &p_negative_y, const StringName &p_positive_y, float p_deadzone) const { Vector2 vector = Vector2( get_action_raw_strength(p_positive_x) - get_action_raw_strength(p_negative_x), get_action_raw_strength(p_positive_y) - get_action_raw_strength(p_negative_y)); if (p_deadzone < 0.0f) { // If the deadzone isn't specified, get it from the average of the actions. p_deadzone = 0.25 * (InputMap::get_singleton()->action_get_deadzone(p_positive_x) + InputMap::get_singleton()->action_get_deadzone(p_negative_x) + InputMap::get_singleton()->action_get_deadzone(p_positive_y) + InputMap::get_singleton()->action_get_deadzone(p_negative_y)); } // Circular length limiting and deadzone. float length = vector.length(); if (length <= p_deadzone) { return Vector2(); } else if (length > 1.0f) { return vector / length; } else { // Inverse lerp length to map (p_deadzone, 1) to (0, 1). return vector * (Math::inverse_lerp(p_deadzone, 1.0f, length) / length); } } float Input::get_joy_axis(int p_device, JoyAxis p_axis) const { _THREAD_SAFE_METHOD_ JoyAxis c = _combine_device(p_axis, p_device); if (_joy_axis.has(c)) { return _joy_axis[c]; } else { return 0; } } String Input::get_joy_name(int p_idx) { _THREAD_SAFE_METHOD_ return joy_names[p_idx].name; } Vector2 Input::get_joy_vibration_strength(int p_device) { if (joy_vibration.has(p_device)) { return Vector2(joy_vibration[p_device].weak_magnitude, joy_vibration[p_device].strong_magnitude); } else { return Vector2(0, 0); } } uint64_t Input::get_joy_vibration_timestamp(int p_device) { if (joy_vibration.has(p_device)) { return joy_vibration[p_device].timestamp; } else { return 0; } } float Input::get_joy_vibration_duration(int p_device) { if (joy_vibration.has(p_device)) { return joy_vibration[p_device].duration; } else { return 0.f; } } static String _hex_str(uint8_t p_byte) { static const char *dict = "0123456789abcdef"; char ret[3]; ret[2] = 0; ret[0] = dict[p_byte >> 4]; ret[1] = dict[p_byte & 0xf]; return ret; } void Input::joy_connection_changed(int p_idx, bool p_connected, String p_name, String p_guid) { _THREAD_SAFE_METHOD_ Joypad js; js.name = p_connected ? p_name : ""; js.uid = p_connected ? p_guid : ""; if (p_connected) { String uidname = p_guid; if (p_guid.is_empty()) { int uidlen = MIN(p_name.length(), 16); for (int i = 0; i < uidlen; i++) { uidname = uidname + _hex_str(p_name[i]); } } js.uid = uidname; js.connected = true; int mapping = fallback_mapping; for (int i = 0; i < map_db.size(); i++) { if (js.uid == map_db[i].uid) { mapping = i; js.name = map_db[i].name; } } js.mapping = mapping; } else { js.connected = false; for (int i = 0; i < (int)JoyButton::MAX; i++) { JoyButton c = _combine_device((JoyButton)i, p_idx); joy_buttons_pressed.erase(c); } for (int i = 0; i < (int)JoyAxis::MAX; i++) { set_joy_axis(p_idx, (JoyAxis)i, 0.0f); } } joy_names[p_idx] = js; emit_signal(SNAME("joy_connection_changed"), p_idx, p_connected); } Vector3 Input::get_gravity() const { _THREAD_SAFE_METHOD_ return gravity; } Vector3 Input::get_accelerometer() const { _THREAD_SAFE_METHOD_ return accelerometer; } Vector3 Input::get_magnetometer() const { _THREAD_SAFE_METHOD_ return magnetometer; } Vector3 Input::get_gyroscope() const { _THREAD_SAFE_METHOD_ return gyroscope; } void Input::_parse_input_event_impl(const Ref &p_event, bool p_is_emulated) { // Notes on mouse-touch emulation: // - Emulated mouse events are parsed, that is, re-routed to this method, so they make the same effects // as true mouse events. The only difference is the situation is flagged as emulated so they are not // emulated back to touch events in an endless loop. // - Emulated touch events are handed right to the main loop (i.e., the SceneTree) because they don't // require additional handling by this class. Ref k = p_event; if (k.is_valid() && !k->is_echo() && k->get_keycode() != Key::NONE) { if (k->is_pressed()) { keys_pressed.insert(k->get_keycode()); } else { keys_pressed.erase(k->get_keycode()); } } if (k.is_valid() && !k->is_echo() && k->get_physical_keycode() != Key::NONE) { if (k->is_pressed()) { physical_keys_pressed.insert(k->get_physical_keycode()); } else { physical_keys_pressed.erase(k->get_physical_keycode()); } } if (k.is_valid() && !k->is_echo() && k->get_key_label() != Key::NONE) { if (k->is_pressed()) { key_label_pressed.insert(k->get_key_label()); } else { key_label_pressed.erase(k->get_key_label()); } } Ref mb = p_event; if (mb.is_valid()) { if (mb->is_pressed()) { mouse_button_mask.set_flag(mouse_button_to_mask(mb->get_button_index())); } else { mouse_button_mask.clear_flag(mouse_button_to_mask(mb->get_button_index())); } Point2 pos = mb->get_global_position(); if (mouse_pos != pos) { set_mouse_position(pos); } if (event_dispatch_function && emulate_touch_from_mouse && !p_is_emulated && mb->get_button_index() == MouseButton::LEFT) { Ref touch_event; touch_event.instantiate(); touch_event->set_pressed(mb->is_pressed()); touch_event->set_position(mb->get_position()); touch_event->set_double_tap(mb->is_double_click()); event_dispatch_function(touch_event); } } Ref mm = p_event; if (mm.is_valid()) { Point2 position = mm->get_global_position(); if (mouse_pos != position) { set_mouse_position(position); } Vector2 relative = mm->get_relative(); mouse_velocity_track.update(relative); if (event_dispatch_function && emulate_touch_from_mouse && !p_is_emulated && mm->get_button_mask().has_flag(MouseButtonMask::LEFT)) { Ref drag_event; drag_event.instantiate(); drag_event->set_position(position); drag_event->set_relative(relative); drag_event->set_tilt(mm->get_tilt()); drag_event->set_pen_inverted(mm->get_pen_inverted()); drag_event->set_pressure(mm->get_pressure()); drag_event->set_velocity(get_last_mouse_velocity()); event_dispatch_function(drag_event); } } Ref st = p_event; if (st.is_valid()) { if (st->is_pressed()) { VelocityTrack &track = touch_velocity_track[st->get_index()]; track.reset(); } else { // Since a pointer index may not occur again (OSs may or may not reuse them), // imperatively remove it from the map to keep no fossil entries in it touch_velocity_track.erase(st->get_index()); } if (emulate_mouse_from_touch) { bool translate = false; if (st->is_pressed()) { if (mouse_from_touch_index == -1) { translate = true; mouse_from_touch_index = st->get_index(); } } else { if (st->get_index() == mouse_from_touch_index) { translate = true; mouse_from_touch_index = -1; } } if (translate) { Ref button_event; button_event.instantiate(); button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); button_event->set_position(st->get_position()); button_event->set_global_position(st->get_position()); button_event->set_pressed(st->is_pressed()); button_event->set_button_index(MouseButton::LEFT); button_event->set_double_click(st->is_double_tap()); BitField ev_bm = mouse_button_mask; if (st->is_pressed()) { ev_bm.set_flag(MouseButtonMask::LEFT); } else { ev_bm.clear_flag(MouseButtonMask::LEFT); } button_event->set_button_mask(ev_bm); _parse_input_event_impl(button_event, true); } } } Ref sd = p_event; if (sd.is_valid()) { VelocityTrack &track = touch_velocity_track[sd->get_index()]; track.update(sd->get_relative()); sd->set_velocity(track.velocity); if (emulate_mouse_from_touch && sd->get_index() == mouse_from_touch_index) { Ref motion_event; motion_event.instantiate(); motion_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); motion_event->set_tilt(sd->get_tilt()); motion_event->set_pen_inverted(sd->get_pen_inverted()); motion_event->set_pressure(sd->get_pressure()); motion_event->set_position(sd->get_position()); motion_event->set_global_position(sd->get_position()); motion_event->set_relative(sd->get_relative()); motion_event->set_velocity(sd->get_velocity()); motion_event->set_button_mask(mouse_button_mask); _parse_input_event_impl(motion_event, true); } } Ref jb = p_event; if (jb.is_valid()) { JoyButton c = _combine_device(jb->get_button_index(), jb->get_device()); if (jb->is_pressed()) { joy_buttons_pressed.insert(c); } else { joy_buttons_pressed.erase(c); } } Ref jm = p_event; if (jm.is_valid()) { set_joy_axis(jm->get_device(), jm->get_axis(), jm->get_axis_value()); } Ref ge = p_event; if (ge.is_valid()) { if (event_dispatch_function) { event_dispatch_function(ge); } } for (const KeyValue &E : InputMap::get_singleton()->get_action_map()) { if (InputMap::get_singleton()->event_is_action(p_event, E.key)) { // If not echo and action pressed state has changed if (!p_event->is_echo() && is_action_pressed(E.key, false) != p_event->is_action_pressed(E.key)) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.process_frame = Engine::get_singleton()->get_process_frames(); action.pressed = p_event->is_action_pressed(E.key); action.strength = 0.0f; action.raw_strength = 0.0f; action.exact = InputMap::get_singleton()->event_is_action(p_event, E.key, true); action_state[E.key] = action; } action_state[E.key].strength = p_event->get_action_strength(E.key); action_state[E.key].raw_strength = p_event->get_action_raw_strength(E.key); } } if (event_dispatch_function) { event_dispatch_function(p_event); } } void Input::set_joy_axis(int p_device, JoyAxis p_axis, float p_value) { _THREAD_SAFE_METHOD_ JoyAxis c = _combine_device(p_axis, p_device); _joy_axis[c] = p_value; } void Input::start_joy_vibration(int p_device, float p_weak_magnitude, float p_strong_magnitude, float p_duration) { _THREAD_SAFE_METHOD_ if (p_weak_magnitude < 0.f || p_weak_magnitude > 1.f || p_strong_magnitude < 0.f || p_strong_magnitude > 1.f) { return; } VibrationInfo vibration; vibration.weak_magnitude = p_weak_magnitude; vibration.strong_magnitude = p_strong_magnitude; vibration.duration = p_duration; vibration.timestamp = OS::get_singleton()->get_ticks_usec(); joy_vibration[p_device] = vibration; } void Input::stop_joy_vibration(int p_device) { _THREAD_SAFE_METHOD_ VibrationInfo vibration; vibration.weak_magnitude = 0; vibration.strong_magnitude = 0; vibration.duration = 0; vibration.timestamp = OS::get_singleton()->get_ticks_usec(); joy_vibration[p_device] = vibration; } void Input::vibrate_handheld(int p_duration_ms) { OS::get_singleton()->vibrate_handheld(p_duration_ms); } void Input::set_gravity(const Vector3 &p_gravity) { _THREAD_SAFE_METHOD_ gravity = p_gravity; } void Input::set_accelerometer(const Vector3 &p_accel) { _THREAD_SAFE_METHOD_ accelerometer = p_accel; } void Input::set_magnetometer(const Vector3 &p_magnetometer) { _THREAD_SAFE_METHOD_ magnetometer = p_magnetometer; } void Input::set_gyroscope(const Vector3 &p_gyroscope) { _THREAD_SAFE_METHOD_ gyroscope = p_gyroscope; } void Input::set_mouse_position(const Point2 &p_posf) { mouse_pos = p_posf; } Point2 Input::get_mouse_position() const { return mouse_pos; } Point2 Input::get_last_mouse_velocity() { mouse_velocity_track.update(Vector2()); return mouse_velocity_track.velocity; } BitField Input::get_mouse_button_mask() const { return mouse_button_mask; // do not trust OS implementation, should remove it - OS::get_singleton()->get_mouse_button_state(); } void Input::warp_mouse(const Vector2 &p_position) { warp_mouse_func(p_position); } Point2i Input::warp_mouse_motion(const Ref &p_motion, const Rect2 &p_rect) { // The relative distance reported for the next event after a warp is in the boundaries of the // size of the rect on that axis, but it may be greater, in which case there's no problem as fmod() // will warp it, but if the pointer has moved in the opposite direction between the pointer relocation // and the subsequent event, the reported relative distance will be less than the size of the rect // and thus fmod() will be disabled for handling the situation. // And due to this mouse warping mechanism being stateless, we need to apply some heuristics to // detect the warp: if the relative distance is greater than the half of the size of the relevant rect // (checked per each axis), it will be considered as the consequence of a former pointer warp. const Point2i rel_sign(p_motion->get_relative().x >= 0.0f ? 1 : -1, p_motion->get_relative().y >= 0.0 ? 1 : -1); const Size2i warp_margin = p_rect.size * 0.5f; const Point2i rel_warped( Math::fmod(p_motion->get_relative().x + rel_sign.x * warp_margin.x, p_rect.size.x) - rel_sign.x * warp_margin.x, Math::fmod(p_motion->get_relative().y + rel_sign.y * warp_margin.y, p_rect.size.y) - rel_sign.y * warp_margin.y); const Point2i pos_local = p_motion->get_global_position() - p_rect.position; const Point2i pos_warped(Math::fposmod(pos_local.x, p_rect.size.x), Math::fposmod(pos_local.y, p_rect.size.y)); if (pos_warped != pos_local) { warp_mouse(pos_warped + p_rect.position); } return rel_warped; } void Input::action_press(const StringName &p_action, float p_strength) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.process_frame = Engine::get_singleton()->get_process_frames(); action.pressed = true; action.strength = p_strength; action.raw_strength = p_strength; action.exact = true; action_state[p_action] = action; } void Input::action_release(const StringName &p_action) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.process_frame = Engine::get_singleton()->get_process_frames(); action.pressed = false; action.strength = 0.f; action.raw_strength = 0.f; action.exact = true; action_state[p_action] = action; } void Input::set_emulate_touch_from_mouse(bool p_emulate) { emulate_touch_from_mouse = p_emulate; } bool Input::is_emulating_touch_from_mouse() const { return emulate_touch_from_mouse; } // Calling this whenever the game window is focused helps unsticking the "touch mouse" // if the OS or its abstraction class hasn't properly reported that touch pointers raised void Input::ensure_touch_mouse_raised() { if (mouse_from_touch_index != -1) { mouse_from_touch_index = -1; Ref button_event; button_event.instantiate(); button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); button_event->set_position(mouse_pos); button_event->set_global_position(mouse_pos); button_event->set_pressed(false); button_event->set_button_index(MouseButton::LEFT); BitField ev_bm = mouse_button_mask; ev_bm.clear_flag(MouseButtonMask::LEFT); button_event->set_button_mask(ev_bm); _parse_input_event_impl(button_event, true); } } void Input::set_emulate_mouse_from_touch(bool p_emulate) { emulate_mouse_from_touch = p_emulate; } bool Input::is_emulating_mouse_from_touch() const { return emulate_mouse_from_touch; } Input::CursorShape Input::get_default_cursor_shape() const { return default_shape; } void Input::set_default_cursor_shape(CursorShape p_shape) { if (default_shape == p_shape) { return; } default_shape = p_shape; // The default shape is set in Viewport::_gui_input_event. To instantly // see the shape in the viewport we need to trigger a mouse motion event. Ref mm; mm.instantiate(); mm->set_position(mouse_pos); mm->set_global_position(mouse_pos); parse_input_event(mm); } Input::CursorShape Input::get_current_cursor_shape() const { return get_current_cursor_shape_func(); } void Input::set_custom_mouse_cursor(const Ref &p_cursor, CursorShape p_shape, const Vector2 &p_hotspot) { if (Engine::get_singleton()->is_editor_hint()) { return; } ERR_FAIL_INDEX(p_shape, CursorShape::CURSOR_MAX); set_custom_mouse_cursor_func(p_cursor, p_shape, p_hotspot); } void Input::parse_input_event(const Ref &p_event) { _THREAD_SAFE_METHOD_ ERR_FAIL_COND(p_event.is_null()); if (use_accumulated_input) { if (buffered_events.is_empty() || !buffered_events.back()->get()->accumulate(p_event)) { buffered_events.push_back(p_event); } } else if (use_input_buffering) { buffered_events.push_back(p_event); } else { _parse_input_event_impl(p_event, false); } } void Input::flush_buffered_events() { _THREAD_SAFE_METHOD_ while (buffered_events.front()) { _parse_input_event_impl(buffered_events.front()->get(), false); buffered_events.pop_front(); } } bool Input::is_using_input_buffering() { return use_input_buffering; } void Input::set_use_input_buffering(bool p_enable) { use_input_buffering = p_enable; } void Input::set_use_accumulated_input(bool p_enable) { use_accumulated_input = p_enable; } bool Input::is_using_accumulated_input() { return use_accumulated_input; } void Input::release_pressed_events() { flush_buffered_events(); // this is needed to release actions strengths keys_pressed.clear(); physical_keys_pressed.clear(); key_label_pressed.clear(); joy_buttons_pressed.clear(); _joy_axis.clear(); for (const KeyValue &E : action_state) { if (E.value.pressed) { action_release(E.key); } } } void Input::set_event_dispatch_function(EventDispatchFunc p_function) { event_dispatch_function = p_function; } void Input::joy_button(int p_device, JoyButton p_button, bool p_pressed) { _THREAD_SAFE_METHOD_; Joypad &joy = joy_names[p_device]; ERR_FAIL_INDEX((int)p_button, (int)JoyButton::MAX); if (joy.last_buttons[(size_t)p_button] == p_pressed) { return; } joy.last_buttons[(size_t)p_button] = p_pressed; if (joy.mapping == -1) { _button_event(p_device, p_button, p_pressed); return; } JoyEvent map = _get_mapped_button_event(map_db[joy.mapping], p_button); if (map.type == TYPE_BUTTON) { _button_event(p_device, (JoyButton)map.index, p_pressed); return; } if (map.type == TYPE_AXIS) { _axis_event(p_device, (JoyAxis)map.index, p_pressed ? map.value : 0.0); } // no event? } void Input::joy_axis(int p_device, JoyAxis p_axis, float p_value) { _THREAD_SAFE_METHOD_; ERR_FAIL_INDEX((int)p_axis, (int)JoyAxis::MAX); Joypad &joy = joy_names[p_device]; if (joy.last_axis[(size_t)p_axis] == p_value) { return; } joy.last_axis[(size_t)p_axis] = p_value; if (joy.mapping == -1) { _axis_event(p_device, p_axis, p_value); return; } JoyEvent map = _get_mapped_axis_event(map_db[joy.mapping], p_axis, p_value); if (map.type == TYPE_BUTTON) { bool pressed = map.value > 0.5; if (pressed != joy_buttons_pressed.has(_combine_device((JoyButton)map.index, p_device))) { _button_event(p_device, (JoyButton)map.index, pressed); } // Ensure opposite D-Pad button is also released. switch ((JoyButton)map.index) { case JoyButton::DPAD_UP: if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_DOWN, p_device))) { _button_event(p_device, JoyButton::DPAD_DOWN, false); } break; case JoyButton::DPAD_DOWN: if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_UP, p_device))) { _button_event(p_device, JoyButton::DPAD_UP, false); } break; case JoyButton::DPAD_LEFT: if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_RIGHT, p_device))) { _button_event(p_device, JoyButton::DPAD_RIGHT, false); } break; case JoyButton::DPAD_RIGHT: if (joy_buttons_pressed.has(_combine_device(JoyButton::DPAD_LEFT, p_device))) { _button_event(p_device, JoyButton::DPAD_LEFT, false); } break; default: // Nothing to do. break; } return; } if (map.type == TYPE_AXIS) { JoyAxis axis = JoyAxis(map.index); float value = map.value; if (axis == JoyAxis::TRIGGER_LEFT || axis == JoyAxis::TRIGGER_RIGHT) { // Convert to a value between 0.0f and 1.0f. value = 0.5f + value / 2.0f; } _axis_event(p_device, axis, value); return; } } void Input::joy_hat(int p_device, BitField p_val) { _THREAD_SAFE_METHOD_; const Joypad &joy = joy_names[p_device]; JoyEvent map[(size_t)HatDir::MAX]; map[(size_t)HatDir::UP].type = TYPE_BUTTON; map[(size_t)HatDir::UP].index = (int)JoyButton::DPAD_UP; map[(size_t)HatDir::UP].value = 0; map[(size_t)HatDir::RIGHT].type = TYPE_BUTTON; map[(size_t)HatDir::RIGHT].index = (int)JoyButton::DPAD_RIGHT; map[(size_t)HatDir::RIGHT].value = 0; map[(size_t)HatDir::DOWN].type = TYPE_BUTTON; map[(size_t)HatDir::DOWN].index = (int)JoyButton::DPAD_DOWN; map[(size_t)HatDir::DOWN].value = 0; map[(size_t)HatDir::LEFT].type = TYPE_BUTTON; map[(size_t)HatDir::LEFT].index = (int)JoyButton::DPAD_LEFT; map[(size_t)HatDir::LEFT].value = 0; if (joy.mapping != -1) { _get_mapped_hat_events(map_db[joy.mapping], (HatDir)0, map); } int cur_val = joy_names[p_device].hat_current; for (int hat_direction = 0, hat_mask = 1; hat_direction < (int)HatDir::MAX; hat_direction++, hat_mask <<= 1) { if (((int)p_val & hat_mask) != (cur_val & hat_mask)) { if (map[hat_direction].type == TYPE_BUTTON) { _button_event(p_device, (JoyButton)map[hat_direction].index, (int)p_val & hat_mask); } if (map[hat_direction].type == TYPE_AXIS) { _axis_event(p_device, (JoyAxis)map[hat_direction].index, ((int)p_val & hat_mask) ? map[hat_direction].value : 0.0); } } } joy_names[p_device].hat_current = (int)p_val; } void Input::_button_event(int p_device, JoyButton p_index, bool p_pressed) { Ref ievent; ievent.instantiate(); ievent->set_device(p_device); ievent->set_button_index(p_index); ievent->set_pressed(p_pressed); parse_input_event(ievent); } void Input::_axis_event(int p_device, JoyAxis p_axis, float p_value) { Ref ievent; ievent.instantiate(); ievent->set_device(p_device); ievent->set_axis(p_axis); ievent->set_axis_value(p_value); parse_input_event(ievent); } Input::JoyEvent Input::_get_mapped_button_event(const JoyDeviceMapping &mapping, JoyButton p_button) { JoyEvent event; for (int i = 0; i < mapping.bindings.size(); i++) { const JoyBinding binding = mapping.bindings[i]; if (binding.inputType == TYPE_BUTTON && binding.input.button == p_button) { event.type = binding.outputType; switch (binding.outputType) { case TYPE_BUTTON: event.index = (int)binding.output.button; return event; case TYPE_AXIS: event.index = (int)binding.output.axis.axis; switch (binding.output.axis.range) { case POSITIVE_HALF_AXIS: event.value = 1; break; case NEGATIVE_HALF_AXIS: event.value = -1; break; case FULL_AXIS: // It doesn't make sense for a button to map to a full axis, // but keeping as a default for a trigger with a positive half-axis. event.value = 1; break; } return event; default: ERR_PRINT_ONCE("Joypad button mapping error."); } } } return event; } Input::JoyEvent Input::_get_mapped_axis_event(const JoyDeviceMapping &mapping, JoyAxis p_axis, float p_value) { JoyEvent event; for (int i = 0; i < mapping.bindings.size(); i++) { const JoyBinding binding = mapping.bindings[i]; if (binding.inputType == TYPE_AXIS && binding.input.axis.axis == p_axis) { float value = p_value; if (binding.input.axis.invert) { value = -value; } if (binding.input.axis.range == FULL_AXIS || (binding.input.axis.range == POSITIVE_HALF_AXIS && value >= 0) || (binding.input.axis.range == NEGATIVE_HALF_AXIS && value < 0)) { event.type = binding.outputType; float shifted_positive_value = 0; switch (binding.input.axis.range) { case POSITIVE_HALF_AXIS: shifted_positive_value = value; break; case NEGATIVE_HALF_AXIS: shifted_positive_value = value + 1; break; case FULL_AXIS: shifted_positive_value = (value + 1) / 2; break; } switch (binding.outputType) { case TYPE_BUTTON: event.index = (int)binding.output.button; switch (binding.input.axis.range) { case POSITIVE_HALF_AXIS: event.value = shifted_positive_value; break; case NEGATIVE_HALF_AXIS: event.value = 1 - shifted_positive_value; break; case FULL_AXIS: // It doesn't make sense for a full axis to map to a button, // but keeping as a default for a trigger with a positive half-axis. event.value = (shifted_positive_value * 2) - 1; break; } return event; case TYPE_AXIS: event.index = (int)binding.output.axis.axis; event.value = value; if (binding.output.axis.range != binding.input.axis.range) { switch (binding.output.axis.range) { case POSITIVE_HALF_AXIS: event.value = shifted_positive_value; break; case NEGATIVE_HALF_AXIS: event.value = shifted_positive_value - 1; break; case FULL_AXIS: event.value = (shifted_positive_value * 2) - 1; break; } } return event; default: ERR_PRINT_ONCE("Joypad axis mapping error."); } } } } return event; } void Input::_get_mapped_hat_events(const JoyDeviceMapping &mapping, HatDir p_hat, JoyEvent r_events[(size_t)HatDir::MAX]) { for (int i = 0; i < mapping.bindings.size(); i++) { const JoyBinding binding = mapping.bindings[i]; if (binding.inputType == TYPE_HAT && binding.input.hat.hat == p_hat) { HatDir hat_direction; switch (binding.input.hat.hat_mask) { case HatMask::UP: hat_direction = HatDir::UP; break; case HatMask::RIGHT: hat_direction = HatDir::RIGHT; break; case HatMask::DOWN: hat_direction = HatDir::DOWN; break; case HatMask::LEFT: hat_direction = HatDir::LEFT; break; default: ERR_PRINT_ONCE("Joypad button mapping error."); continue; } r_events[(size_t)hat_direction].type = binding.outputType; switch (binding.outputType) { case TYPE_BUTTON: r_events[(size_t)hat_direction].index = (int)binding.output.button; break; case TYPE_AXIS: r_events[(size_t)hat_direction].index = (int)binding.output.axis.axis; switch (binding.output.axis.range) { case POSITIVE_HALF_AXIS: r_events[(size_t)hat_direction].value = 1; break; case NEGATIVE_HALF_AXIS: r_events[(size_t)hat_direction].value = -1; break; case FULL_AXIS: // It doesn't make sense for a hat direction to map to a full axis, // but keeping as a default for a trigger with a positive half-axis. r_events[(size_t)hat_direction].value = 1; break; } break; default: ERR_PRINT_ONCE("Joypad button mapping error."); } } } } JoyButton Input::_get_output_button(String output) { for (int i = 0; i < (int)JoyButton::SDL_MAX; i++) { if (output == _joy_buttons[i]) { return JoyButton(i); } } return JoyButton::INVALID; } JoyAxis Input::_get_output_axis(String output) { for (int i = 0; i < (int)JoyAxis::SDL_MAX; i++) { if (output == _joy_axes[i]) { return JoyAxis(i); } } return JoyAxis::INVALID; } void Input::parse_mapping(String p_mapping) { _THREAD_SAFE_METHOD_; JoyDeviceMapping mapping; Vector entry = p_mapping.split(","); if (entry.size() < 2) { return; } CharString uid; uid.resize(17); mapping.uid = entry[0]; mapping.name = entry[1]; int idx = 1; while (++idx < entry.size()) { if (entry[idx].is_empty()) { continue; } String output = entry[idx].get_slice(":", 0).replace(" ", ""); String input = entry[idx].get_slice(":", 1).replace(" ", ""); ERR_CONTINUE_MSG(output.length() < 1 || input.length() < 2, vformat("Invalid device mapping entry \"%s\" in mapping:\n%s", entry[idx], p_mapping)); if (output == "platform" || output == "hint") { continue; } JoyAxisRange output_range = FULL_AXIS; if (output[0] == '+' || output[0] == '-') { ERR_CONTINUE_MSG(output.length() < 2, vformat("Invalid output entry \"%s\" in mapping:\n%s", entry[idx], p_mapping)); if (output[0] == '+') { output_range = POSITIVE_HALF_AXIS; } else if (output[0] == '-') { output_range = NEGATIVE_HALF_AXIS; } output = output.substr(1); } JoyAxisRange input_range = FULL_AXIS; if (input[0] == '+') { input_range = POSITIVE_HALF_AXIS; input = input.substr(1); } else if (input[0] == '-') { input_range = NEGATIVE_HALF_AXIS; input = input.substr(1); } bool invert_axis = false; if (input[input.length() - 1] == '~') { invert_axis = true; input = input.left(input.length() - 1); } JoyButton output_button = _get_output_button(output); JoyAxis output_axis = _get_output_axis(output); ERR_CONTINUE_MSG(output_button == JoyButton::INVALID && output_axis == JoyAxis::INVALID, vformat("Unrecognized output string \"%s\" in mapping:\n%s", output, p_mapping)); ERR_CONTINUE_MSG(output_button != JoyButton::INVALID && output_axis != JoyAxis::INVALID, vformat("Output string \"%s\" matched both button and axis in mapping:\n%s", output, p_mapping)); JoyBinding binding; if (output_button != JoyButton::INVALID) { binding.outputType = TYPE_BUTTON; binding.output.button = output_button; } else if (output_axis != JoyAxis::INVALID) { binding.outputType = TYPE_AXIS; binding.output.axis.axis = output_axis; binding.output.axis.range = output_range; } switch (input[0]) { case 'b': binding.inputType = TYPE_BUTTON; binding.input.button = (JoyButton)input.substr(1).to_int(); break; case 'a': binding.inputType = TYPE_AXIS; binding.input.axis.axis = (JoyAxis)input.substr(1).to_int(); binding.input.axis.range = input_range; binding.input.axis.invert = invert_axis; break; case 'h': ERR_CONTINUE_MSG(input.length() != 4 || input[2] != '.', vformat("Invalid had input \"%s\" in mapping:\n%s", input, p_mapping)); binding.inputType = TYPE_HAT; binding.input.hat.hat = (HatDir)input.substr(1, 1).to_int(); binding.input.hat.hat_mask = static_cast(input.substr(3).to_int()); break; default: ERR_CONTINUE_MSG(true, vformat("Unrecognized input string \"%s\" in mapping:\n%s", input, p_mapping)); } mapping.bindings.push_back(binding); } map_db.push_back(mapping); } void Input::add_joy_mapping(String p_mapping, bool p_update_existing) { parse_mapping(p_mapping); if (p_update_existing) { Vector entry = p_mapping.split(","); String uid = entry[0]; for (KeyValue &E : joy_names) { Joypad &joy = E.value; if (joy.uid == uid) { joy.mapping = map_db.size() - 1; } } } } void Input::remove_joy_mapping(String p_guid) { for (int i = map_db.size() - 1; i >= 0; i--) { if (p_guid == map_db[i].uid) { map_db.remove_at(i); } } for (KeyValue &E : joy_names) { Joypad &joy = E.value; if (joy.uid == p_guid) { joy.mapping = -1; } } } void Input::set_fallback_mapping(String p_guid) { for (int i = 0; i < map_db.size(); i++) { if (map_db[i].uid == p_guid) { fallback_mapping = i; return; } } } //platforms that use the remapping system can override and call to these ones bool Input::is_joy_known(int p_device) { if (joy_names.has(p_device)) { int mapping = joy_names[p_device].mapping; if (mapping != -1 && mapping != fallback_mapping) { return true; } } return false; } String Input::get_joy_guid(int p_device) const { ERR_FAIL_COND_V(!joy_names.has(p_device), ""); return joy_names[p_device].uid; } TypedArray Input::get_connected_joypads() { TypedArray ret; HashMap::Iterator elem = joy_names.begin(); while (elem) { if (elem->value.connected) { ret.push_back(elem->key); } ++elem; } return ret; } int Input::get_unused_joy_id() { for (int i = 0; i < JOYPADS_MAX; i++) { if (!joy_names.has(i) || !joy_names[i].connected) { return i; } } return -1; } Input::Input() { singleton = this; // Parse default mappings. { int i = 0; while (DefaultControllerMappings::mappings[i]) { parse_mapping(DefaultControllerMappings::mappings[i++]); } } // If defined, parse SDL_GAMECONTROLLERCONFIG for possible new mappings/overrides. String env_mapping = OS::get_singleton()->get_environment("SDL_GAMECONTROLLERCONFIG"); if (!env_mapping.is_empty()) { Vector entries = env_mapping.split("\n"); for (int i = 0; i < entries.size(); i++) { if (entries[i].is_empty()) { continue; } parse_mapping(entries[i]); } } } Input::~Input() { singleton = nullptr; } //////////////////////////////////////////////////////////