From 648a10514bfd574eebcd332ff5b672659ead5850 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pedro=20J=2E=20Est=C3=A9banez?= Date: Sat, 12 Feb 2022 12:07:28 +0100 Subject: vk_mem_alloc: Update to latest commit --- thirdparty/README.md | 4 +- .../vulkan/patches/01-VMA-fix-nullability.patch | 80 + thirdparty/vulkan/patches/02-VMA-use-volk.patch | 17 + thirdparty/vulkan/patches/VMA-use-volk.patch | 17 - thirdparty/vulkan/vk_mem_alloc.h | 31944 ++++++++++--------- 5 files changed, 16139 insertions(+), 15923 deletions(-) create mode 100644 thirdparty/vulkan/patches/01-VMA-fix-nullability.patch create mode 100644 thirdparty/vulkan/patches/02-VMA-use-volk.patch delete mode 100644 thirdparty/vulkan/patches/VMA-use-volk.patch (limited to 'thirdparty') diff --git a/thirdparty/README.md b/thirdparty/README.md index f467d6a64b..d4d974a5f6 100644 --- a/thirdparty/README.md +++ b/thirdparty/README.md @@ -665,10 +665,10 @@ Files extracted from upstream source: SDK release: https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/layers/generated/vk_enum_string_helper.h `vk_mem_alloc.h` is taken from https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator -Version: 3.0.0-development (2021-07-07), branch `feature-small-buffers`, commit `cfea2f72851f9ee4a399769f18865047b83711f1` +Version: 3.0.0-development (2022-02-08), commit `a1895bc76547370564d604faa27e0b73de747df1` `vk_mem_alloc.cpp` is a Godot file and should be preserved on updates. -Patches in the `patches` directory should be re-applied after updates. +Patches in the `patches` directory should be re-applied after updates (order must be followed among the number-prefixed ones). ## wslay diff --git a/thirdparty/vulkan/patches/01-VMA-fix-nullability.patch b/thirdparty/vulkan/patches/01-VMA-fix-nullability.patch new file mode 100644 index 0000000000..7deada97b0 --- /dev/null +++ b/thirdparty/vulkan/patches/01-VMA-fix-nullability.patch @@ -0,0 +1,80 @@ +diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h +index 52b403bede..d88c305a7c 100644 +--- a/thirdparty/vulkan/vk_mem_alloc.h ++++ b/thirdparty/vulkan/vk_mem_alloc.h +@@ -2366,7 +2366,7 @@ VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( + */ + VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- VmaVirtualAllocation allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); ++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); + + /** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. + +diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h +index d1138a7bc8..74c66b9789 100644 +--- a/thirdparty/vulkan/vk_mem_alloc.h ++++ b/thirdparty/vulkan/vk_mem_alloc.h +@@ -2386,7 +2386,7 @@ If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF + VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, +- VmaVirtualAllocation* VMA_NOT_NULL pAllocation, ++ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset); + + /** \brief Frees virtual allocation inside given #VmaVirtualBlock. +@@ -2391,7 +2391,7 @@ It is correct to call this function with `allocation == VK_NULL_HANDLE` - it doe + */ + VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- VmaVirtualAllocation allocation); ++ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); + + /** \brief Frees all virtual allocations inside given #VmaVirtualBlock. + +@@ -2408,7 +2408,7 @@ VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( + */ + VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- VmaVirtualAllocation allocation, ++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, + void* VMA_NULLABLE pUserData); + + /** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. +@@ -17835,7 +17835,7 @@ VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_N + } + + VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- VmaVirtualAllocation allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) ++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); +@@ -17853,7 +17853,7 @@ VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_N + return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); + } + +-VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation allocation) ++VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) + { + if(allocation != VK_NULL_HANDLE) + { +@@ -17873,7 +17873,7 @@ VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NUL + } + + VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- VmaVirtualAllocation allocation, void* VMA_NULLABLE pUserData) ++ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); +@@ -17848,7 +17848,7 @@ VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_ + } + + VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, +- const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation* VMA_NOT_NULL pAllocation, ++ const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); diff --git a/thirdparty/vulkan/patches/02-VMA-use-volk.patch b/thirdparty/vulkan/patches/02-VMA-use-volk.patch new file mode 100644 index 0000000000..1b6e0f04b8 --- /dev/null +++ b/thirdparty/vulkan/patches/02-VMA-use-volk.patch @@ -0,0 +1,17 @@ +diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h +index 52b403bede..7c450be211 100644 +--- a/thirdparty/vulkan/vk_mem_alloc.h ++++ b/thirdparty/vulkan/vk_mem_alloc.h +@@ -127,7 +127,11 @@ extern "C" { + #endif + + #ifndef VULKAN_H_ +- #include ++ #ifdef USE_VOLK ++ #include ++ #else ++ #include ++ #endif + #endif + + // Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, diff --git a/thirdparty/vulkan/patches/VMA-use-volk.patch b/thirdparty/vulkan/patches/VMA-use-volk.patch deleted file mode 100644 index 81bfcccd89..0000000000 --- a/thirdparty/vulkan/patches/VMA-use-volk.patch +++ /dev/null @@ -1,17 +0,0 @@ -diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h -index 65d6243419..9890f20f7c 100644 ---- a/thirdparty/vulkan/vk_mem_alloc.h -+++ b/thirdparty/vulkan/vk_mem_alloc.h -@@ -2063,7 +2063,11 @@ available through VmaAllocatorCreateInfo::pRecordSettings. - #endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES - - #ifndef VULKAN_H_ -- #include -+ #ifdef USE_VOLK -+ #include -+ #else -+ #include -+ #endif - #endif - - // Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h index 9890f20f7c..74c66b9789 100644 --- a/thirdparty/vulkan/vk_mem_alloc.h +++ b/thirdparty/vulkan/vk_mem_alloc.h @@ -1,5 +1,5 @@ // -// Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved. +/// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal @@ -25,12 +25,12 @@ /** \mainpage Vulkan Memory Allocator -Version 3.0.0-development (2021-06-21) +Version 3.0.0-development -Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved. \n +Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n License: MIT -Documentation of all members: vk_mem_alloc.h +API documentation divided into groups: [Modules](modules.html) \section main_table_of_contents Table of contents @@ -67,18 +67,18 @@ Documentation of all members: vk_mem_alloc.h - [Defragmenting GPU memory](@ref defragmentation_gpu) - [Additional notes](@ref defragmentation_additional_notes) - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) - - \subpage lost_allocations - \subpage statistics - [Numeric statistics](@ref statistics_numeric_statistics) - [JSON dump](@ref statistics_json_dump) - \subpage allocation_annotation - [Allocation user data](@ref allocation_user_data) - [Allocation names](@ref allocation_names) + - \subpage virtual_allocator - \subpage debugging_memory_usage - [Memory initialization](@ref debugging_memory_usage_initialization) - [Margins](@ref debugging_memory_usage_margins) - [Corruption detection](@ref debugging_memory_usage_corruption_detection) - - \subpage record_and_replay + - \subpage opengl_interop - \subpage usage_patterns - [Common mistakes](@ref usage_patterns_common_mistakes) - [Simple patterns](@ref usage_patterns_simple) @@ -102,7023 +102,8795 @@ Documentation of all members: vk_mem_alloc.h - [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) - [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) +\defgroup group_init Library initialization +\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object. +\defgroup group_alloc Memory allocation -\page quick_start Quick start +\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images. +Most basic ones being: vmaCreateBuffer(), vmaCreateImage(). -\section quick_start_project_setup Project setup +\defgroup group_virtual Virtual allocator -Vulkan Memory Allocator comes in form of a "stb-style" single header file. -You don't need to build it as a separate library project. -You can add this file directly to your project and submit it to code repository next to your other source files. +\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm +for user-defined purpose without allocating any real GPU memory. -"Single header" doesn't mean that everything is contained in C/C++ declarations, -like it tends to be in case of inline functions or C++ templates. -It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. -If you don't do it properly, you will get linker errors. +\defgroup group_stats Statistics -To do it properly: +\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format. +*/ --# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. - This includes declarations of all members of the library. --# In exactly one CPP file define following macro before this include. - It enables also internal definitions. -\code -#define VMA_IMPLEMENTATION -#include "vk_mem_alloc.h" -\endcode +#ifdef __cplusplus +extern "C" { +#endif -It may be a good idea to create dedicated CPP file just for this purpose. +#ifndef VULKAN_H_ + #ifdef USE_VOLK + #include + #else + #include + #endif +#endif -Note on language: This library is written in C++, but has C-compatible interface. -Thus you can include and use vk_mem_alloc.h in C or C++ code, but full -implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. +// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, +// where AAA = major, BBB = minor, CCC = patch. +// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. +#if !defined(VMA_VULKAN_VERSION) + #if defined(VK_VERSION_1_3) + #define VMA_VULKAN_VERSION 1003000 + #elif defined(VK_VERSION_1_2) + #define VMA_VULKAN_VERSION 1002000 + #elif defined(VK_VERSION_1_1) + #define VMA_VULKAN_VERSION 1001000 + #else + #define VMA_VULKAN_VERSION 1000000 + #endif +#endif -Please note that this library includes header ``, which in turn -includes `` on Windows. If you need some specific macros defined -before including these headers (like `WIN32_LEAN_AND_MEAN` or -`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define -them before every `#include` of this library. +#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS + extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; + extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; + extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; + extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; + extern PFN_vkAllocateMemory vkAllocateMemory; + extern PFN_vkFreeMemory vkFreeMemory; + extern PFN_vkMapMemory vkMapMemory; + extern PFN_vkUnmapMemory vkUnmapMemory; + extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + extern PFN_vkBindBufferMemory vkBindBufferMemory; + extern PFN_vkBindImageMemory vkBindImageMemory; + extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + extern PFN_vkCreateBuffer vkCreateBuffer; + extern PFN_vkDestroyBuffer vkDestroyBuffer; + extern PFN_vkCreateImage vkCreateImage; + extern PFN_vkDestroyImage vkDestroyImage; + extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; + #if VMA_VULKAN_VERSION >= 1001000 + extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; + extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; + extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; + extern PFN_vkBindImageMemory2 vkBindImageMemory2; + extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; + #endif // #if VMA_VULKAN_VERSION >= 1001000 +#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES -You may need to configure the way you import Vulkan functions. +#if !defined(VK_VERSION_1_2) + // This one is tricky. Vulkan specification defines this code as available since + // Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131. + // See pull request #207. + #define VK_ERROR_UNKNOWN ((VkResult)-13) +#endif -- By default, VMA assumes you you link statically with Vulkan API. If this is not the case, - `#define VMA_STATIC_VULKAN_FUNCTIONS 0` before `#include` of the VMA implementation and use another way. -- You can `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1` and make sure `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` globals are defined. - All the remaining Vulkan functions will be fetched automatically. -- Finally, you can provide your own pointers to all Vulkan functions needed by VMA using structure member - VmaAllocatorCreateInfo::pVulkanFunctions, if you fetched them in some custom way e.g. using some loader like [Volk](https://github.com/zeux/volk). +#if !defined(VMA_DEDICATED_ALLOCATION) + #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation + #define VMA_DEDICATED_ALLOCATION 1 + #else + #define VMA_DEDICATED_ALLOCATION 0 + #endif +#endif +#if !defined(VMA_BIND_MEMORY2) + #if VK_KHR_bind_memory2 + #define VMA_BIND_MEMORY2 1 + #else + #define VMA_BIND_MEMORY2 0 + #endif +#endif -\section quick_start_initialization Initialization +#if !defined(VMA_MEMORY_BUDGET) + #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) + #define VMA_MEMORY_BUDGET 1 + #else + #define VMA_MEMORY_BUDGET 0 + #endif +#endif -At program startup: +// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. +#if !defined(VMA_BUFFER_DEVICE_ADDRESS) + #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 + #define VMA_BUFFER_DEVICE_ADDRESS 1 + #else + #define VMA_BUFFER_DEVICE_ADDRESS 0 + #endif +#endif --# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object. --# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by - calling vmaCreateAllocator(). +// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. +#if !defined(VMA_MEMORY_PRIORITY) + #if VK_EXT_memory_priority + #define VMA_MEMORY_PRIORITY 1 + #else + #define VMA_MEMORY_PRIORITY 0 + #endif +#endif -\code -VmaAllocatorCreateInfo allocatorInfo = {}; -allocatorInfo.vulkanApiVersion = VK_API_VERSION_1_2; -allocatorInfo.physicalDevice = physicalDevice; -allocatorInfo.device = device; -allocatorInfo.instance = instance; +// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. +#if !defined(VMA_EXTERNAL_MEMORY) + #if VK_KHR_external_memory + #define VMA_EXTERNAL_MEMORY 1 + #else + #define VMA_EXTERNAL_MEMORY 0 + #endif +#endif -VmaAllocator allocator; -vmaCreateAllocator(&allocatorInfo, &allocator); -\endcode +// Define these macros to decorate all public functions with additional code, +// before and after returned type, appropriately. This may be useful for +// exporting the functions when compiling VMA as a separate library. Example: +// #define VMA_CALL_PRE __declspec(dllexport) +// #define VMA_CALL_POST __cdecl +#ifndef VMA_CALL_PRE + #define VMA_CALL_PRE +#endif +#ifndef VMA_CALL_POST + #define VMA_CALL_POST +#endif -Only members `physicalDevice`, `device`, `instance` are required. -However, you should inform the library which Vulkan version do you use by setting -VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable -by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address). -Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. +// Define this macro to decorate pointers with an attribute specifying the +// length of the array they point to if they are not null. +// +// The length may be one of +// - The name of another parameter in the argument list where the pointer is declared +// - The name of another member in the struct where the pointer is declared +// - The name of a member of a struct type, meaning the value of that member in +// the context of the call. For example +// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), +// this means the number of memory heaps available in the device associated +// with the VmaAllocator being dealt with. +#ifndef VMA_LEN_IF_NOT_NULL + #define VMA_LEN_IF_NOT_NULL(len) +#endif +// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nullable +#ifndef VMA_NULLABLE + #ifdef __clang__ + #define VMA_NULLABLE _Nullable + #else + #define VMA_NULLABLE + #endif +#endif -\section quick_start_resource_allocation Resource allocation +// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull +#ifndef VMA_NOT_NULL + #ifdef __clang__ + #define VMA_NOT_NULL _Nonnull + #else + #define VMA_NOT_NULL + #endif +#endif -When you want to create a buffer or image: +// If non-dispatchable handles are represented as pointers then we can give +// then nullability annotations +#ifndef VMA_NOT_NULL_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL + #else + #define VMA_NOT_NULL_NON_DISPATCHABLE + #endif +#endif --# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. --# Fill VmaAllocationCreateInfo structure. --# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory - already allocated and bound to it. +#ifndef VMA_NULLABLE_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE + #else + #define VMA_NULLABLE_NON_DISPATCHABLE + #endif +#endif -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; +#ifndef VMA_STATS_STRING_ENABLED + #define VMA_STATS_STRING_ENABLED 1 +#endif -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// INTERFACE +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode +// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE. +#ifndef _VMA_ENUM_DECLARATIONS -Don't forget to destroy your objects when no longer needed: +/** +\addtogroup group_init +@{ +*/ -\code -vmaDestroyBuffer(allocator, buffer, allocation); -vmaDestroyAllocator(allocator); -\endcode +/// Flags for created #VmaAllocator. +typedef enum VmaAllocatorCreateFlagBits +{ + /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. + Using this flag may increase performance because internal mutexes are not used. + */ + VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, + /** \brief Enables usage of VK_KHR_dedicated_allocation extension. -\page choosing_memory_type Choosing memory type + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. -Physical devices in Vulkan support various combinations of memory heaps and -types. Help with choosing correct and optimal memory type for your specific -resource is one of the key features of this library. You can use it by filling -appropriate members of VmaAllocationCreateInfo structure, as described below. -You can also combine multiple methods. + Using this extension will automatically allocate dedicated blocks of memory for + some buffers and images instead of suballocating place for them out of bigger + memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT + flag) when it is recommended by the driver. It may improve performance on some + GPUs. --# If you just want to find memory type index that meets your requirements, you - can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), - vmaFindMemoryTypeIndexForImageInfo(). --# If you want to allocate a region of device memory without association with any - specific image or buffer, you can use function vmaAllocateMemory(). Usage of - this function is not recommended and usually not needed. - vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, - which may be useful for sparse binding. --# If you already have a buffer or an image created, you want to allocate memory - for it and then you will bind it yourself, you can use function - vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). - For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() - or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). --# If you want to create a buffer or an image, allocate memory for it and bind - them together, all in one call, you can use function vmaCreateBuffer(), - vmaCreateImage(). This is the easiest and recommended way to use this library. + You may set this flag only if you found out that following device extensions are + supported, you enabled them while creating Vulkan device passed as + VmaAllocatorCreateInfo::device, and you want them to be used internally by this + library: -When using 3. or 4., the library internally queries Vulkan for memory types -supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) -and uses only one of these types. + - VK_KHR_get_memory_requirements2 (device extension) + - VK_KHR_dedicated_allocation (device extension) -If no memory type can be found that meets all the requirements, these functions -return `VK_ERROR_FEATURE_NOT_PRESENT`. + When this flag is set, you can experience following warnings reported by Vulkan + validation layer. You can ignore them. -You can leave VmaAllocationCreateInfo structure completely filled with zeros. -It means no requirements are specified for memory type. -It is valid, although not very useful. + > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. + */ + VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + /** + Enables usage of VK_KHR_bind_memory2 extension. -\section choosing_memory_type_usage Usage + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. -The easiest way to specify memory requirements is to fill member -VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. -It defines high level, common usage types. -For more details, see description of this enum. + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library. -For example, if you want to create a uniform buffer that will be filled using -transfer only once or infrequently and used for rendering every frame, you can -do it using following code: + The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, + which allow to pass a chain of `pNext` structures while binding. + This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). + */ + VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, + /** + Enables usage of VK_EXT_memory_budget extension. -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library, along with another instance extension + VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + The extension provides query for current memory usage and budget, which will probably + be more accurate than an estimation used by the library otherwise. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, + /** + Enables usage of VK_AMD_device_coherent_memory extension. -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode + You may set this flag only if you: -\section choosing_memory_type_required_preferred_flags Required and preferred flags + - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, + - want it to be used internally by this library. -You can specify more detailed requirements by filling members -VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags -with a combination of bits from enum `VkMemoryPropertyFlags`. For example, -if you want to create a buffer that will be persistently mapped on host (so it -must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, -use following code: + The extension and accompanying device feature provide access to memory types with + `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. + They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. -\code -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; -allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; -allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. + To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, + returning `VK_ERROR_FEATURE_NOT_PRESENT`. + */ + VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, + /** + Enables usage of "buffer device address" feature, which allows you to use function + `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode + You may set this flag only if you: -A memory type is chosen that has all the required flags and as many preferred -flags set as possible. + 1. (For Vulkan version < 1.2) Found as available and enabled device extension + VK_KHR_buffer_device_address. + This extension is promoted to core Vulkan 1.2. + 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. -If you use VmaAllocationCreateInfo::usage, it is just internally converted to -a set of required and preferred flags. + When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. + The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to + allocated memory blocks wherever it might be needed. -\section choosing_memory_type_explicit_memory_types Explicit memory types + For more information, see documentation chapter \ref enabling_buffer_device_address. + */ + VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, + /** + Enables usage of VK_EXT_memory_priority extension in the library. -If you inspected memory types available on the physical device and you have -a preference for memory types that you want to use, you can fill member -VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set -means that a memory type with that index is allowed to be used for the -allocation. Special value 0, just like `UINT32_MAX`, means there are no -restrictions to memory type index. + You may set this flag only if you found available and enabled this device extension, + along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, + while creating Vulkan device passed as VmaAllocatorCreateInfo::device. -Please note that this member is NOT just a memory type index. -Still you can use it to choose just one, specific memory type. -For example, if you already determined that your buffer should be created in -memory type 2, use following code: + When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority + are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. -\code -uint32_t memoryTypeIndex = 2; + A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. + Larger values are higher priority. The granularity of the priorities is implementation-dependent. + It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. + The value to be used for default priority is 0.5. + For more details, see the documentation of the VK_EXT_memory_priority extension. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.memoryTypeBits = 1u << memoryTypeIndex; + VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocatorCreateFlagBits; +typedef VkFlags VmaAllocatorCreateFlags; -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode +/** @} */ +/** +\addtogroup group_alloc +@{ +*/ -\section choosing_memory_type_custom_memory_pools Custom memory pools +/// \brief Intended usage of the allocated memory. +typedef enum VmaMemoryUsage +{ + /** No intended memory usage specified. + Use other members of VmaAllocationCreateInfo to specify your requirements. + */ + VMA_MEMORY_USAGE_UNKNOWN = 0, + /** Memory will be used on device only, so fast access from the device is preferred. + It usually means device-local GPU (video) memory. + No need to be mappable on host. + It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. -If you allocate from custom memory pool, all the ways of specifying memory -requirements described above are not applicable and the aforementioned members -of VmaAllocationCreateInfo structure are ignored. Memory type is selected -explicitly when creating the pool and then used to make all the allocations from -that pool. For further details, see \ref custom_memory_pools. + Usage: -\section choosing_memory_type_dedicated_allocations Dedicated allocations + - Resources written and read by device, e.g. images used as attachments. + - Resources transferred from host once (immutable) or infrequently and read by + device multiple times, e.g. textures to be sampled, vertex buffers, uniform + (constant) buffers, and majority of other types of resources used on GPU. -Memory for allocations is reserved out of larger block of `VkDeviceMemory` -allocated from Vulkan internally. That's the main feature of this whole library. -You can still request a separate memory block to be created for an allocation, -just like you would do in a trivial solution without using any allocator. -In that case, a buffer or image is always bound to that memory at offset 0. -This is called a "dedicated allocation". -You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -The library can also internally decide to use dedicated allocation in some cases, e.g.: + Allocation may still end up in `HOST_VISIBLE` memory on some implementations. + In such case, you are free to map it. + You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. + */ + VMA_MEMORY_USAGE_GPU_ONLY = 1, + /** Memory will be mappable on host. + It usually means CPU (system) memory. + Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. + CPU access is typically uncached. Writes may be write-combined. + Resources created in this pool may still be accessible to the device, but access to them can be slow. + It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. -- When the size of the allocation is large. -- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled - and it reports that dedicated allocation is required or recommended for the resource. -- When allocation of next big memory block fails due to not enough device memory, - but allocation with the exact requested size succeeds. + Usage: Staging copy of resources used as transfer source. + */ + VMA_MEMORY_USAGE_CPU_ONLY = 2, + /** + Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. + CPU access is typically uncached. Writes may be write-combined. + Usage: Resources written frequently by host (dynamic), read by device. E.g. textures (with LINEAR layout), vertex buffers, uniform buffers updated every frame or every draw call. + */ + VMA_MEMORY_USAGE_CPU_TO_GPU = 3, + /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. + It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. -\page memory_mapping Memory mapping + Usage: -To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, -to be able to read from it or write to it in CPU code. -Mapping is possible only of memory allocated from a memory type that has -`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. -Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. -You can use them directly with memory allocated by this library, -but it is not recommended because of following issue: -Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. -This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. -Because of this, Vulkan Memory Allocator provides following facilities: + - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. + - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. + */ + VMA_MEMORY_USAGE_GPU_TO_CPU = 4, + /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`. -\section memory_mapping_mapping_functions Mapping functions + Usage: Staging copy of resources moved from GPU memory to CPU memory as part + of custom paging/residency mechanism, to be moved back to GPU memory when needed. + */ + VMA_MEMORY_USAGE_CPU_COPY = 5, + /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. + Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. -The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). -They are safer and more convenient to use than standard Vulkan functions. -You can map an allocation multiple times simultaneously - mapping is reference-counted internally. -You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. -The way it's implemented is that the library always maps entire memory block, not just region of the allocation. -For further details, see description of vmaMapMemory() function. -Example: + Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. -\code -// Having these objects initialized: + Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + */ + VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, -struct ConstantBuffer + VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF +} VmaMemoryUsage; + +/// Flags to be passed as VmaAllocationCreateInfo::flags. +typedef enum VmaAllocationCreateFlagBits { - ... -}; -ConstantBuffer constantBufferData; + /** \brief Set this flag if the allocation should have its own memory block. -VmaAllocator allocator; -VkBuffer constantBuffer; -VmaAllocation constantBufferAllocation; + Use it for special, big resources, like fullscreen images used as attachments. + */ + VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, -// You can map and fill your buffer using following code: + /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. -void* mappedData; -vmaMapMemory(allocator, constantBufferAllocation, &mappedData); -memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); -vmaUnmapMemory(allocator, constantBufferAllocation); -\endcode - -When mapping, you may see a warning from Vulkan validation layer similar to this one: + If new allocation cannot be placed in any of the existing blocks, allocation + fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. -Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. + You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and + #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. -It happens because the library maps entire `VkDeviceMemory` block, where different -types of images and buffers may end up together, especially on GPUs with unified memory like Intel. -You can safely ignore it if you are sure you access only memory of the intended -object that you wanted to map. + If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ + VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, + /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. + Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. -\section memory_mapping_persistently_mapped_memory Persistently mapped memory + It is valid to use this flag for allocation made from memory type that is not + `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is + useful if you need an allocation that is efficient to use on GPU + (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that + support it (e.g. Intel GPU). + */ + VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, + /// \deprecated Removed. Do not use. + VMA_ALLOCATION_CREATE_RESERVED_1_BIT = 0x00000008, + /// \deprecated Removed. Do not use. + VMA_ALLOCATION_CREATE_RESERVED_2_BIT = 0x00000010, + /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a + null-terminated string. Instead of copying pointer value, a local copy of the + string is made and stored in allocation's `pUserData`. The string is automatically + freed together with the allocation. It is also used in vmaBuildStatsString(). + */ + VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, + /** Allocation will be created from upper stack in a double stack pool. -Kepping your memory persistently mapped is generally OK in Vulkan. -You don't need to unmap it before using its data on the GPU. -The library provides a special feature designed for that: -Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in -VmaAllocationCreateInfo::flags stay mapped all the time, -so you can just access CPU pointer to it any time -without a need to call any "map" or "unmap" function. -Example: + This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, + /** Create both buffer/image and allocation, but don't bind them together. + It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. + The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). + Otherwise it is ignored. + */ + VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, + /** Create allocation only if additional device memory required for it, if any, won't exceed + memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + */ + VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, + /** \brief Set this flag if the allocated memory will have aliasing resources. + * + Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified. + Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors. + */ + VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200, + /** Allocation strategy that chooses smallest possible free range for the allocation + to minimize memory usage and fragmentation, possibly at the expense of allocation time. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000, + /** Allocation strategy that chooses first suitable free range for the allocation - + not necessarily in terms of the smallest offset but the one that is easiest and fastest to find + to minimize allocation time, possibly at the expense of allocation quality. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** A bit mask to extract only `STRATEGY` bits from entire set of flags. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MASK = + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocationCreateFlagBits; +typedef VkFlags VmaAllocationCreateFlags; -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; +/// Flags to be passed as VmaPoolCreateInfo::flags. +typedef enum VmaPoolCreateFlagBits +{ + /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + This is an optional optimization flag. -// Buffer is already mapped. You can access its memory. -memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); -\endcode + If you always allocate using vmaCreateBuffer(), vmaCreateImage(), + vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator + knows exact type of your allocations so it can handle Buffer-Image Granularity + in the optimal way. -There are some exceptions though, when you should consider mapping memory only for a short period of time: + If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), + exact type of such allocations is not known, so allocator must be conservative + in handling Buffer-Image Granularity, which can lead to suboptimal allocation + (wasted memory). In that case, if you can make sure you always allocate only + buffers and linear images or only optimal images out of this pool, use this flag + to make allocator disregard Buffer-Image Granularity and so make allocations + faster and more optimal. + */ + VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, -- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), - device is discrete AMD GPU, - and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory - (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), - then whenever a memory block allocated from this memory type stays mapped - for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this - block is migrated by WDDM to system RAM, which degrades performance. It doesn't - matter if that particular memory block is actually used by the command buffer - being submitted. -- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. + /** \brief Enables alternative, linear allocation algorithm in this pool. -\section memory_mapping_cache_control Cache flush and invalidate + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. -Memory in Vulkan doesn't need to be unmapped before using it on GPU, -but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, -you need to manually **invalidate** cache before reading of mapped pointer -and **flush** cache after writing to mapped pointer. -Map/unmap operations don't do that automatically. -Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, -`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient -functions that refer to given allocation object: vmaFlushAllocation(), -vmaInvalidateAllocation(), -or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, -Regions of memory specified for flush/invalidate must be aligned to -`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. -In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations -within blocks are aligned to this value, so their offsets are always multiply of -`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + /** \brief Enables alternative, buddy allocation algorithm in this pool. -Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. + It operates on a tree of blocks, each having size that is a power of two and + a half of its parent's size. Comparing to default algorithm, this one provides + faster allocation and deallocation and decreased external fragmentation, + at the expense of more memory wasted (internal fragmentation). + For details, see documentation chapter \ref buddy_algorithm. + */ + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, -Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA) -currently provide `HOST_COHERENT` flag on all memory types that are -`HOST_VISIBLE`, so on this platform you may not need to bother. + /** \brief Enables alternative, Two-Level Segregated Fit (TLSF) allocation algorithm in this pool. -\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable + This algorithm is based on 2-level lists dividing address space into smaller + chunks. The first level is aligned to power of two which serves as buckets for requested + memory to fall into, and the second level is lineary subdivided into lists of free memory. + This algorithm aims to achieve bounded response time even in the worst case scenario. + Allocation time can be sometimes slightly longer than compared to other algorithms + but in return the application can avoid stalls in case of fragmentation, giving + predictable results, suitable for real-time use cases. + */ + VMA_POOL_CREATE_TLSF_ALGORITHM_BIT = 0x00000010, -It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) -despite it wasn't explicitly requested. -For example, application may work on integrated graphics with unified memory (like Intel) or -allocation from video memory might have failed, so the library chose system memory as fallback. + /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_POOL_CREATE_ALGORITHM_MASK = + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | + VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT | + VMA_POOL_CREATE_TLSF_ALGORITHM_BIT, -You can detect this case and map such allocation to access its memory on CPU directly, -instead of launching a transfer operation. -In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(), -and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type. + VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaPoolCreateFlagBits; +/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits. +typedef VkFlags VmaPoolCreateFlags; -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; +/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. +typedef enum VmaDefragmentationFlagBits +{ + VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, + VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaDefragmentationFlagBits; +typedef VkFlags VmaDefragmentationFlags; -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +/** @} */ -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); +/** +\addtogroup group_virtual +@{ +*/ -VkMemoryPropertyFlags memFlags; -vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags); -if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) -{ - // Allocation ended up in mappable memory. You can map it and access it directly. - void* mappedData; - vmaMapMemory(allocator, alloc, &mappedData); - memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); - vmaUnmapMemory(allocator, alloc); -} -else +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. +typedef enum VmaVirtualBlockCreateFlagBits { - // Allocation ended up in non-mappable memory. - // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. -} -\endcode + /** \brief Enables alternative, linear allocation algorithm in this virtual block. -You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations -that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). -If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. -If not, the flag is just ignored. -Example: + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001, -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + /** \brief Enables alternative, buddy allocation algorithm in this virtual block. -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + It operates on a tree of blocks, each having size that is a power of two and + a half of its parent's size. Comparing to default algorithm, this one provides + faster allocation and deallocation and decreased external fragmentation, + at the expense of more memory wasted (internal fragmentation). + For details, see documentation chapter \ref buddy_algorithm. + */ + VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT = 0x00000002, -if(allocInfo.pMappedData != nullptr) -{ - // Allocation ended up in mappable memory. - // It's persistently mapped. You can access it directly. - memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); -} -else -{ - // Allocation ended up in non-mappable memory. - // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. -} -\endcode + /** \brief Enables alternative, TLSF allocation algorithm in virtual block. + This algorithm is based on 2-level lists dividing address space into smaller + chunks. The first level is aligned to power of two which serves as buckets for requested + memory to fall into, and the second level is lineary subdivided into lists of free memory. + This algorithm aims to achieve bounded response time even in the worst case scenario. + Allocation time can be sometimes slightly longer than compared to other algorithms + but in return the application can avoid stalls in case of fragmentation, giving + predictable results, suitable for real-time use cases. + */ + VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT = 0x00000004, -\page staying_within_budget Staying within budget + /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK = + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT | + VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT | + VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT, -When developing a graphics-intensive game or program, it is important to avoid allocating -more GPU memory than it's physically available. When the memory is over-committed, -various bad things can happen, depending on the specific GPU, graphics driver, and -operating system: + VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualBlockCreateFlagBits; +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits. +typedef VkFlags VmaVirtualBlockCreateFlags; -- It may just work without any problems. -- The application may slow down because some memory blocks are moved to system RAM - and the GPU has to access them through PCI Express bus. -- A new allocation may take very long time to complete, even few seconds, and possibly - freeze entire system. -- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` - returned somewhere later. +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. +typedef enum VmaVirtualAllocationCreateFlagBits +{ + /** \brief Allocation will be created from upper stack in a double stack pool. -\section staying_within_budget_querying_for_budget Querying for budget + This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT, + /** \brief Allocation strategy that tries to minimize memory usage. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** \brief Allocation strategy that tries to minimize allocation time. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags. -To query for current memory usage and available budget, use function vmaGetBudget(). -Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. + These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK, -Please note that this function returns different information and works faster than -vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every -allocation, while vmaCalculateStats() is intended to be used rarely, -only to obtain statistical information, e.g. for debugging purposes. + VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualAllocationCreateFlagBits; +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits. +typedef VkFlags VmaVirtualAllocationCreateFlags; -It is recommended to use VK_EXT_memory_budget device extension to obtain information -about the budget from Vulkan device. VMA is able to use this extension automatically. -When not enabled, the allocator behaves same way, but then it estimates current usage -and available budget based on its internal information and Vulkan memory heap sizes, -which may be less precise. In order to use this extension: - -1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 - required by it are available and enable them. Please note that the first is a device - extension and the second is instance extension! -2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. -3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from - Vulkan inside of it to avoid overhead of querying it with every allocation. +/** @} */ -\section staying_within_budget_controlling_memory_usage Controlling memory usage +#endif // _VMA_ENUM_DECLARATIONS -There are many ways in which you can try to stay within the budget. +#ifndef _VMA_DATA_TYPES_DECLARATIONS -First, when making new allocation requires allocating a new memory block, the library -tries not to exceed the budget automatically. If a block with default recommended size -(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even -dedicated memory for just this resource. +/** +\addtogroup group_init +@{ */ -If the size of the requested resource plus current memory usage is more than the -budget, by default the library still tries to create it, leaving it to the Vulkan -implementation whether the allocation succeeds or fails. You can change this behavior -by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is -not made if it would exceed the budget or if the budget is already exceeded. -Some other allocations become lost instead to make room for it, if the mechanism of -[lost allocations](@ref lost_allocations) is used. -If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag -when creating resources that are not essential for the application (e.g. the texture -of a specific object) and not to pass it when creating critically important resources -(e.g. render targets). +/** \struct VmaAllocator +\brief Represents main object of this library initialized. -Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure -a new allocation is created only when it fits inside one of the existing memory blocks. -If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -This also ensures that the function call is very fast because it never goes to Vulkan -to obtain a new block. +Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. +Call function vmaDestroyAllocator() to destroy it. -Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount -set to more than 0 will try to allocate memory blocks without checking whether they -fit within budget. +It is recommended to create just one object of this type per `VkDevice` object, +right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. +*/ +VK_DEFINE_HANDLE(VmaAllocator) +/** @} */ -\page resource_aliasing Resource aliasing (overlap) +/** +\addtogroup group_alloc +@{ +*/ -New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory -management, give an opportunity to alias (overlap) multiple resources in the -same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). -It can be useful to save video memory, but it must be used with caution. +/** \struct VmaPool +\brief Represents custom memory pool -For example, if you know the flow of your whole render frame in advance, you -are going to use some intermediate textures or buffers only during a small range of render passes, -and you know these ranges don't overlap in time, you can bind these resources to -the same place in memory, even if they have completely different parameters (width, height, format etc.). +Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. +Call function vmaDestroyPool() to destroy it. -![Resource aliasing (overlap)](../gfx/Aliasing.png) +For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +*/ +VK_DEFINE_HANDLE(VmaPool) -Such scenario is possible using VMA, but you need to create your images manually. -Then you need to calculate parameters of an allocation to be made using formula: +/** \struct VmaAllocation +\brief Represents single memory allocation. -- allocation size = max(size of each image) -- allocation alignment = max(alignment of each image) -- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) +It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type +plus unique offset. -Following example shows two different images bound to the same place in memory, -allocated to fit largest of them. +There are multiple ways to create such object. +You need to fill structure VmaAllocationCreateInfo. +For more information see [Choosing memory type](@ref choosing_memory_type). -\code -// A 512x512 texture to be sampled. -VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; -img1CreateInfo.extent.width = 512; -img1CreateInfo.extent.height = 512; -img1CreateInfo.extent.depth = 1; -img1CreateInfo.mipLevels = 10; -img1CreateInfo.arrayLayers = 1; -img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; -img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; -img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; +Although the library provides convenience functions that create Vulkan buffer or image, +allocate memory for it and bind them together, +binding of the allocation to a buffer or an image is out of scope of the allocation itself. +Allocation object can exist without buffer/image bound, +binding can be done manually by the user, and destruction of it can be done +independently of destruction of the allocation. -// A full screen texture to be used as color attachment. -VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; -img2CreateInfo.extent.width = 1920; -img2CreateInfo.extent.height = 1080; -img2CreateInfo.extent.depth = 1; -img2CreateInfo.mipLevels = 1; -img2CreateInfo.arrayLayers = 1; -img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; -img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; -img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; +The object also remembers its size and some other information. +To retrieve this information, use function vmaGetAllocationInfo() and inspect +returned structure VmaAllocationInfo. +*/ +VK_DEFINE_HANDLE(VmaAllocation) -VkImage img1; -res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); -VkImage img2; -res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); +/** \struct VmaDefragmentationContext +\brief Represents Opaque object that represents started defragmentation process. -VkMemoryRequirements img1MemReq; -vkGetImageMemoryRequirements(device, img1, &img1MemReq); -VkMemoryRequirements img2MemReq; -vkGetImageMemoryRequirements(device, img2, &img2MemReq); +Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. +Call function vmaDefragmentationEnd() to destroy it. +*/ +VK_DEFINE_HANDLE(VmaDefragmentationContext) -VkMemoryRequirements finalMemReq = {}; -finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); -finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); -finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; -// Validate if(finalMemReq.memoryTypeBits != 0) +/** @} */ -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +/** +\addtogroup group_virtual +@{ +*/ -VmaAllocation alloc; -res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); +/** \struct VmaVirtualAllocation +\brief Represents single memory allocation done inside VmaVirtualBlock. -res = vmaBindImageMemory(allocator, alloc, img1); -res = vmaBindImageMemory(allocator, alloc, img2); +Use it as a unique identifier to virtual allocation within the single block. -// You can use img1, img2 here, but not at the same time! +Use value `VK_NULL_HANDLE` to represent a null/invalid allocation. +*/ +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation); -vmaFreeMemory(allocator, alloc); -vkDestroyImage(allocator, img2, nullptr); -vkDestroyImage(allocator, img1, nullptr); -\endcode +/** @} */ -Remember that using resources that alias in memory requires proper synchronization. -You need to issue a memory barrier to make sure commands that use `img1` and `img2` -don't overlap on GPU timeline. -You also need to treat a resource after aliasing as uninitialized - containing garbage data. -For example, if you use `img1` and then want to use `img2`, you need to issue -an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. +/** +\addtogroup group_virtual +@{ +*/ -Additional considerations: +/** \struct VmaVirtualBlock +\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory. -- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. -See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. -- You can create more complex layout where different images and buffers are bound -at different offsets inside one large allocation. For example, one can imagine -a big texture used in some render passes, aliasing with a set of many small buffers -used between in some further passes. To bind a resource at non-zero offset of an allocation, -use vmaBindBufferMemory2() / vmaBindImageMemory2(). -- Before allocating memory for the resources you want to alias, check `memoryTypeBits` -returned in memory requirements of each resource to make sure the bits overlap. -Some GPUs may expose multiple memory types suitable e.g. only for buffers or -images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your -resources may be disjoint. Aliasing them is not possible in that case. +Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it. +For more information, see documentation chapter \ref virtual_allocator. +This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally. +*/ +VK_DEFINE_HANDLE(VmaVirtualBlock) -\page custom_memory_pools Custom memory pools +/** @} */ -A memory pool contains a number of `VkDeviceMemory` blocks. -The library automatically creates and manages default pool for each memory type available on the device. -Default memory pool automatically grows in size. -Size of allocated blocks is also variable and managed automatically. +/** +\addtogroup group_init +@{ +*/ -You can create custom pool and allocate memory out of it. -It can be useful if you want to: +/// Callback function called after successful vkAllocateMemory. +typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); -- Keep certain kind of allocations separate from others. -- Enforce particular, fixed size of Vulkan memory blocks. -- Limit maximum amount of Vulkan memory allocated for that pool. -- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. +/// Callback function called before vkFreeMemory. +typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); -To use custom memory pools: +/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. --# Fill VmaPoolCreateInfo structure. --# Call vmaCreatePool() to obtain #VmaPool handle. --# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. - You don't need to specify any other parameters of this structure, like `usage`. +Provided for informative purpose, e.g. to gather statistics about number of +allocations or total amount of memory allocated in Vulkan. -Example: +Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +*/ +typedef struct VmaDeviceMemoryCallbacks +{ + /// Optional, can be null. + PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; + /// Optional, can be null. + PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; + /// Optional, can be null. + void* VMA_NULLABLE pUserData; +} VmaDeviceMemoryCallbacks; -\code -// Create a pool that can have at most 2 blocks, 128 MiB each. -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = ... -poolCreateInfo.blockSize = 128ull * 1024 * 1024; -poolCreateInfo.maxBlockCount = 2; +/** \brief Pointers to some Vulkan functions - a subset used by the library. -VmaPool pool; -vmaCreatePool(allocator, &poolCreateInfo, &pool); +Used in VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +typedef struct VmaVulkanFunctions +{ + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr; + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr; + PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; + PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; + PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; + PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; + PFN_vkMapMemory VMA_NULLABLE vkMapMemory; + PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; + PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; + PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; + PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; + PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; + PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; + PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; + PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; + PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; + PFN_vkCreateImage VMA_NULLABLE vkCreateImage; + PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; + PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; + /// Fetch "vkGetImageMemoryRequirements 2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; + /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; +#endif +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; +#endif +} VmaVulkanFunctions; -// Allocate a buffer out of it. -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 1024; -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.pool = pool; +/// Description of a Allocator to be created. +typedef struct VmaAllocatorCreateInfo +{ + /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. + VmaAllocatorCreateFlags flags; + /// Vulkan physical device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /// Vulkan device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkDevice VMA_NOT_NULL device; + /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. + /** Set to 0 to use default, which is currently 256 MiB. */ + VkDeviceSize preferredLargeHeapBlockSize; + /// Custom CPU memory allocation callbacks. Optional. + /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; + /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. + /** Optional, can be null. */ + const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; + /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); -\endcode + If not NULL, it must be a pointer to an array of + `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on + maximum number of bytes that can be allocated out of particular Vulkan memory + heap. -You have to free all allocations made from this pool before destroying it. + Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that + heap. This is also the default in case of `pHeapSizeLimit` = NULL. -\code -vmaDestroyBuffer(allocator, buf, alloc); -vmaDestroyPool(allocator, pool); -\endcode + If there is a limit defined for a heap: -\section custom_memory_pools_MemTypeIndex Choosing memory type index + - If user tries to allocate more memory from that heap using this allocator, + the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the + value of this limit will be reported instead when using vmaGetMemoryProperties(). -When creating a pool, you must explicitly specify memory type index. -To find the one suitable for your buffers or images, you can use helper functions -vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). -You need to provide structures with example parameters of buffers or images -that you are going to create in that pool. + Warning! Using this feature may not be equivalent to installing a GPU with + smaller amount of memory, because graphics driver doesn't necessary fail new + allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is + exceeded. It may return success and just silently migrate some device memory + blocks to system RAM. This driver behavior can also be controlled using + VK_AMD_memory_overallocation_behavior extension. + */ + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; -\code -VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -exampleBufCreateInfo.size = 1024; // Whatever. -exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. + /** \brief Pointers to Vulkan functions. Can be null. -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. + For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). + */ + const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; + /** \brief Handle to Vulkan instance object. -uint32_t memTypeIndex; -vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + Starting from version 3.0.0 this member is no longer optional, it must be set! + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Optional. The highest version of Vulkan that the application is designed to use. -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = memTypeIndex; -// ... -\endcode + It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. + The patch version number specified is ignored. Only the major and minor versions are considered. + It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. + Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation. + Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. + */ + uint32_t vulkanApiVersion; +#if VMA_EXTERNAL_MEMORY + /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. -When creating buffers/images allocated in that pool, provide following parameters: + If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` + elements, defining external memory handle types of particular Vulkan memory type, + to be passed using `VkExportMemoryAllocateInfoKHR`. -- `VkBufferCreateInfo`: Prefer to pass same parameters as above. - Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. - Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers - or the other way around. -- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. - Other members are ignored anyway. + Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. + This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. + */ + const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; +#endif // #if VMA_EXTERNAL_MEMORY +} VmaAllocatorCreateInfo; -\section linear_algorithm Linear allocation algorithm +/// Information about existing #VmaAllocator object. +typedef struct VmaAllocatorInfo +{ + /** \brief Handle to Vulkan instance object. -Each Vulkan memory block managed by this library has accompanying metadata that -keeps track of used and unused regions. By default, the metadata structure and -algorithm tries to find best place for new allocations among free regions to -optimize memory usage. This way you can allocate and free objects in any order. + This is the same value as has been passed through VmaAllocatorCreateInfo::instance. + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Handle to Vulkan physical device object. -![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. + */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /** \brief Handle to Vulkan device object. -Sometimes there is a need to use simpler, linear allocation algorithm. You can -create custom pool that uses such algorithm by adding flag -#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating -#VmaPool object. Then an alternative metadata management is used. It always -creates new allocations after last one and doesn't reuse free regions after -allocations freed in the middle. It results in better allocation performance and -less memory consumed by metadata. + This is the same value as has been passed through VmaAllocatorCreateInfo::device. + */ + VkDevice VMA_NOT_NULL device; +} VmaAllocatorInfo; -![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) +/** @} */ -With this one flag, you can create a custom pool that can be used in many ways: -free-at-once, stack, double stack, and ring buffer. See below for details. +/** +\addtogroup group_stats +@{ +*/ -\subsection linear_algorithm_free_at_once Free-at-once +/// Calculated statistics of memory usage in entire allocator. +typedef struct VmaStatInfo +{ + /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. + uint32_t blockCount; + /// Number of #VmaAllocation allocation objects allocated. + uint32_t allocationCount; + /// Number of free ranges of memory between allocations. + uint32_t unusedRangeCount; + /// Total number of bytes occupied by all allocations. + VkDeviceSize usedBytes; + /// Total number of bytes occupied by unused ranges. + VkDeviceSize unusedBytes; + VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; + VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; +} VmaStatInfo; -In a pool that uses linear algorithm, you still need to free all the allocations -individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free -them in any order. New allocations are always made after last one - free space -in the middle is not reused. However, when you release all the allocation and -the pool becomes empty, allocation starts from the beginning again. This way you -can use linear algorithm to speed up creation of allocations that you are going -to release all at once. +/// General statistics from current state of Allocator. +typedef struct VmaStats +{ + VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; + VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; + VmaStatInfo total; +} VmaStats; -![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) +/// Statistics of current memory usage and available budget, in bytes, for specific memory heap. +typedef struct VmaBudget +{ + /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. + */ + VkDeviceSize blockBytes; -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. + /** \brief Sum size of all allocations created in particular heap, in bytes. -\subsection linear_algorithm_stack Stack + Usually less or equal than `blockBytes`. + Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - + available for new allocations or wasted due to fragmentation. + */ + VkDeviceSize allocationBytes; -When you free an allocation that was created last, its space can be reused. -Thanks to this, if you always release allocations in the order opposite to their -creation (LIFO - Last In First Out), you can achieve behavior of a stack. + /** \brief Estimated current memory usage of the program, in bytes. -![Stack](../gfx/Linear_allocator_4_stack.png) + Fetched from system using `VK_EXT_memory_budget` extension if enabled. -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. + It might be different than `blockBytes` (usually higher) due to additional implicit objects + also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or + `VkDeviceMemory` blocks allocated outside of this library, if any. + */ + VkDeviceSize usage; -\subsection linear_algorithm_double_stack Double stack + /** \brief Estimated amount of memory available to the program, in bytes. -The space reserved by a custom pool with linear algorithm may be used by two -stacks: + Fetched from system using `VK_EXT_memory_budget` extension if enabled. -- First, default one, growing up from offset 0. -- Second, "upper" one, growing down from the end towards lower offsets. + It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors + external to the program, like other programs also consuming system resources. + Difference `budget - usage` is the amount of additional memory that can probably + be allocated without problems. Exceeding the budget may result in various problems. + */ + VkDeviceSize budget; +} VmaBudget; -To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT -to VmaAllocationCreateInfo::flags. +/** @} */ -![Double stack](../gfx/Linear_allocator_7_double_stack.png) +/** +\addtogroup group_alloc +@{ +*/ -Double stack is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. +typedef struct VmaAllocationCreateInfo +{ + /// Use #VmaAllocationCreateFlagBits enum. + VmaAllocationCreateFlags flags; + /** \brief Intended usage of memory. -When the two stacks' ends meet so there is not enough space between them for a -new allocation, such allocation fails with usual -`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. -\subsection linear_algorithm_ring_buffer Ring buffer + Leave 0 if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. -When you free some allocations from the beginning and there is not enough free space -for a new one at the end of a pool, allocator's "cursor" wraps around to the -beginning and starts allocation there. Thanks to this, if you always release -allocations in the same order as you created them (FIFO - First In First Out), -you can achieve behavior of a ring buffer / queue. + Set to 0 if no additional flags are preferred. \n + If `pool` is not null, this member is ignored. */ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. -![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n + If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. -Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer. -If there is not enough free space for a new allocation, but existing allocations -from the front of the queue can become lost, they become lost and the allocation -succeeds. + Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: + `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). -![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png) - -Ring buffer is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either + null or pointer to a null-terminated string. The string will be then copied to + internal buffer, so it doesn't need to be valid after allocation call. + */ + void* VMA_NULLABLE pUserData; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. -\section buddy_algorithm Buddy allocation algorithm + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object + and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. + */ + float priority; +} VmaAllocationCreateInfo; -There is another allocation algorithm that can be used with custom pools, called -"buddy". Its internal data structure is based on a tree of blocks, each having -size that is a power of two and a half of its parent's size. When you want to -allocate memory of certain size, a free node in the tree is located. If it's too -large, it is recursively split into two halves (called "buddies"). However, if -requested allocation size is not a power of two, the size of a tree node is -aligned up to the nearest power of two and the remaining space is wasted. When -two buddy nodes become free, they are merged back into one larger node. +/// Describes parameter of created #VmaPool. +typedef struct VmaPoolCreateInfo +{ + /** \brief Vulkan memory type index to allocate this pool from. + */ + uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; + /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. -![Buddy allocator](../gfx/Buddy_allocator.png) + Specify nonzero to set explicit, constant size of memory blocks used by this + pool. -The advantage of buddy allocation algorithm over default algorithm is faster -allocation and deallocation, as well as smaller external fragmentation. The -disadvantage is more wasted space (internal fragmentation). + Leave 0 to use default and let the library manage block sizes automatically. + Sizes of particular blocks may vary. + In this case, the pool will also support dedicated allocations. + */ + VkDeviceSize blockSize; + /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. -For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation) -or other sources that describe this concept in general. + Set to 0 to have no preallocated blocks and allow the pool be completely empty. + */ + size_t minBlockCount; + /** \brief Maximum number of blocks that can be allocated in this pool. Optional. -To use buddy allocation algorithm with a custom pool, add flag -#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating -#VmaPool object. + Set to 0 to use default, which is `SIZE_MAX`, which means no limit. -Several limitations apply to pools that use buddy algorithm: + Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated + throughout whole lifetime of this pool. + */ + size_t maxBlockCount; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. -- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. - Otherwise, only largest power of two smaller than the size is used for - allocations. The remaining space always stays unused. -- [Margins](@ref debugging_memory_usage_margins) and - [corruption detection](@ref debugging_memory_usage_corruption_detection) - don't work in such pools. -- [Lost allocations](@ref lost_allocations) don't work in such pools. You can - use them, but they never become lost. Support may be added in the future. -- [Defragmentation](@ref defragmentation) doesn't work with allocations made from - such pool. + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. + Otherwise, this variable is ignored. + */ + float priority; + /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. -\page defragmentation Defragmentation + Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. + It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, + e.g. when doing interop with OpenGL. + */ + VkDeviceSize minAllocationAlignment; + /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. -Interleaved allocations and deallocations of many objects of varying size can -cause fragmentation over time, which can lead to a situation where the library is unable -to find a continuous range of free memory for a new allocation despite there is -enough free space, just scattered across many small free ranges between existing -allocations. + Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. + It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. + Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. -To mitigate this problem, you can use defragmentation feature: -structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). -Given set of allocations, -this function can move them to compact used memory, ensure more continuous free -space and possibly also free some `VkDeviceMemory` blocks. + Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, + can be attached automatically by this library when using other, more convenient of its features. + */ + void* VMA_NULLABLE pMemoryAllocateNext; +} VmaPoolCreateInfo; -What the defragmentation does is: +/** @} */ -- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. - After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or - VmaAllocationInfo::offset changes. You must query them again using - vmaGetAllocationInfo() if you need them. -- Moves actual data in memory. +/** +\addtogroup group_stats +@{ +*/ -What it doesn't do, so you need to do it yourself: +/// Describes parameter of existing #VmaPool. +typedef struct VmaPoolStats +{ + /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. + */ + VkDeviceSize size; + /** \brief Total number of bytes in the pool not used by any #VmaAllocation. + */ + VkDeviceSize unusedSize; + /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed. + */ + size_t allocationCount; + /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. + */ + size_t unusedRangeCount; + /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. + */ + size_t blockCount; +} VmaPoolStats; -- Recreate buffers and images that were bound to allocations that were defragmented and - bind them with their new places in memory. - You must use `vkDestroyBuffer()`, `vkDestroyImage()`, - `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() - for that purpose and NOT vmaDestroyBuffer(), - vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to - destroy or create allocation objects! -- Recreate views and update descriptors that point to these buffers and images. +/** @} */ -\section defragmentation_cpu Defragmenting CPU memory +/** +\addtogroup group_alloc +@{ +*/ -Following example demonstrates how you can run defragmentation on CPU. -Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. -Others are ignored. +/// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). +typedef struct VmaAllocationInfo +{ + /** \brief Memory type index that this allocation was allocated from. -The way it works is: + It never changes. + */ + uint32_t memoryType; + /** \brief Handle to Vulkan memory object. -- It temporarily maps entire memory blocks when necessary. -- It moves data using `memmove()` function. + Same memory object can be shared by multiple allocations. -\code -// Given following variables already initialized: -VkDevice device; -VmaAllocator allocator; -std::vector buffers; -std::vector allocations; + It can change after call to vmaDefragment() if this allocation is passed to the function. + */ + VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; + /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. + You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function + vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, + not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation + and apply this offset automatically. -const uint32_t allocCount = (uint32_t)allocations.size(); -std::vector allocationsChanged(allocCount); + It can change after call to vmaDefragment() if this allocation is passed to the function. + */ + VkDeviceSize offset; + /** \brief Size of this allocation, in bytes. -VmaDefragmentationInfo2 defragInfo = {}; -defragInfo.allocationCount = allocCount; -defragInfo.pAllocations = allocations.data(); -defragInfo.pAllocationsChanged = allocationsChanged.data(); -defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. -defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. + It never changes. -VmaDefragmentationContext defragCtx; -vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); -vmaDefragmentationEnd(allocator, defragCtx); + \note Allocation size returned in this variable may be greater than the size + requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the + allocation is accessible for operations on memory e.g. using a pointer after + mapping with vmaMapMemory(), but operations on the resource e.g. using + `vkCmdCopyBuffer` must be limited to the size of the resource. + */ + VkDeviceSize size; + /** \brief Pointer to the beginning of this allocation as mapped data. -for(uint32_t i = 0; i < allocCount; ++i) -{ - if(allocationsChanged[i]) - { - // Destroy buffer that is immutably bound to memory region which is no longer valid. - vkDestroyBuffer(device, buffers[i], nullptr); + If the allocation hasn't been mapped using vmaMapMemory() and hasn't been + created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. - // Create new buffer with same parameters. - VkBufferCreateInfo bufferInfo = ...; - vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + It can change after call to vmaMapMemory(), vmaUnmapMemory(). + It can also change after call to vmaDefragment() if this allocation is passed to the function. + */ + void* VMA_NULLABLE pMappedData; + /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). - // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + It can change after call to vmaSetAllocationUserData() for this allocation. + */ + void* VMA_NULLABLE pUserData; +} VmaAllocationInfo; - // Bind new buffer to new memory region. Data contained in it is already moved. - VmaAllocationInfo allocInfo; - vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); - vmaBindBufferMemory(allocator, allocations[i], buffers[i]); - } -} -\endcode +/** \brief Parameters for defragmentation. -Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. -This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index -has been modified during defragmentation. -You can pass null, but you then need to query every allocation passed to defragmentation -for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. +To be used with function vmaDefragmentationBegin(). +*/ +typedef struct VmaDefragmentationInfo2 +{ + /** \brief Reserved for future use. Should be 0. + */ + VmaDefragmentationFlags flags; + /** \brief Number of allocations in `pAllocations` array. + */ + uint32_t allocationCount; + /** \brief Pointer to array of allocations that can be defragmented. -If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), -you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools -instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations -to defragment all allocations in given pools. -You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. -You can also combine both methods. + The array should have `allocationCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same allocation cannot occur twice. + All allocations not present in this array are considered non-moveable during this defragmentation. + */ + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations; + /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. -\section defragmentation_gpu Defragmenting GPU memory + The array should have `allocationCount` elements. + You can pass null if you are not interested in this information. + */ + VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged; + /** \brief Numer of pools in `pPools` array. + */ + uint32_t poolCount; + /** \brief Either null or pointer to array of pools to be defragmented. -It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. -To do that, you need to pass a command buffer that meets requirements as described in -VmaDefragmentationInfo2::commandBuffer. The way it works is: + All the allocations in the specified pools can be moved during defragmentation + and there is no way to check if they were really moved as in `pAllocationsChanged`, + so you must query all the allocations in all these pools for new `VkDeviceMemory` + and offset using vmaGetAllocationInfo() if you might need to recreate buffers + and images bound to them. -- It creates temporary buffers and binds them to entire memory blocks when necessary. -- It issues `vkCmdCopyBuffer()` to passed command buffer. + The array should have `poolCount` elements. + The array should not contain nulls. + Elements in the array should be unique - same pool cannot occur twice. -Example: - -\code -// Given following variables already initialized: -VkDevice device; -VmaAllocator allocator; -VkCommandBuffer commandBuffer; -std::vector buffers; -std::vector allocations; + Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. + It might be more efficient. + */ + const VmaPool VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxCpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. -const uint32_t allocCount = (uint32_t)allocations.size(); -std::vector allocationsChanged(allocCount); + `UINT32_MAX` means no limit. + */ + uint32_t maxCpuAllocationsToMove; + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. -VkCommandBufferBeginInfo cmdBufBeginInfo = ...; -vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); + `VK_WHOLE_SIZE` means no limit. + */ + VkDeviceSize maxGpuBytesToMove; + /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. -VmaDefragmentationInfo2 defragInfo = {}; -defragInfo.allocationCount = allocCount; -defragInfo.pAllocations = allocations.data(); -defragInfo.pAllocationsChanged = allocationsChanged.data(); -defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time. -defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time. -defragInfo.commandBuffer = commandBuffer; + `UINT32_MAX` means no limit. + */ + uint32_t maxGpuAllocationsToMove; + /** \brief Optional. Command buffer where GPU copy commands will be posted. -VmaDefragmentationContext defragCtx; -vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); + If not null, it must be a valid command buffer handle that supports Transfer queue type. + It must be in the recording state and outside of a render pass instance. + You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). -vkEndCommandBuffer(commandBuffer); + Passing null means that only CPU defragmentation will be performed. + */ + VkCommandBuffer VMA_NULLABLE commandBuffer; +} VmaDefragmentationInfo2; -// Submit commandBuffer. -// Wait for a fence that ensures commandBuffer execution finished. +typedef struct VmaDefragmentationPassMoveInfo +{ + VmaAllocation VMA_NOT_NULL allocation; + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory; + VkDeviceSize offset; +} VmaDefragmentationPassMoveInfo; -vmaDefragmentationEnd(allocator, defragCtx); +/** \brief Parameters for incremental defragmentation steps. -for(uint32_t i = 0; i < allocCount; ++i) +To be used with function vmaBeginDefragmentationPass(). +*/ +typedef struct VmaDefragmentationPassInfo { - if(allocationsChanged[i]) - { - // Destroy buffer that is immutably bound to memory region which is no longer valid. - vkDestroyBuffer(device, buffers[i], nullptr); - - // Create new buffer with same parameters. - VkBufferCreateInfo bufferInfo = ...; - vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + uint32_t moveCount; + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves; +} VmaDefragmentationPassInfo; - // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. +/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). - // Bind new buffer to new memory region. Data contained in it is already moved. - VmaAllocationInfo allocInfo; - vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); - vmaBindBufferMemory(allocator, allocations[i], buffers[i]); - } -} -\endcode +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. +*/ +typedef struct VmaDefragmentationInfo +{ + /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. -You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. -The library automatically chooses best method to defragment each memory pool. + Default is `VK_WHOLE_SIZE`, which means no limit. + */ + VkDeviceSize maxBytesToMove; + /** \brief Maximum number of allocations that can be moved to different place. -You may try not to block your entire program to wait until defragmentation finishes, -but do it in the background, as long as you carefully fullfill requirements described -in function vmaDefragmentationBegin(). + Default is `UINT32_MAX`, which means no limit. + */ + uint32_t maxAllocationsToMove; +} VmaDefragmentationInfo; -\section defragmentation_additional_notes Additional notes +/// Statistics returned by function vmaDefragment(). +typedef struct VmaDefragmentationStats +{ + /// Total number of bytes that have been copied while moving allocations to different places. + VkDeviceSize bytesMoved; + /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. + VkDeviceSize bytesFreed; + /// Number of allocations that have been moved to different places. + uint32_t allocationsMoved; + /// Number of empty `VkDeviceMemory` objects that have been released to the system. + uint32_t deviceMemoryBlocksFreed; +} VmaDefragmentationStats; -It is only legal to defragment allocations bound to: +/** @} */ -- buffers -- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and - being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. +/** +\addtogroup group_virtual +@{ +*/ -Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other -layout may give undefined results. +/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock(). +typedef struct VmaVirtualBlockCreateInfo +{ + /** \brief Total size of the virtual block. -If you defragment allocations bound to images, new images to be bound to new -memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` -and then transitioned to their original layout from before defragmentation if -needed using an image memory barrier. + Sizes can be expressed in bytes or any units you want as long as you are consistent in using them. + For example, if you allocate from some array of structures, 1 can mean single instance of entire structure. + */ + VkDeviceSize size; -While using defragmentation, you may experience validation layer warnings, which you just need to ignore. -See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). + /** \brief Use combination of #VmaVirtualBlockCreateFlagBits. + */ + VmaVirtualBlockCreateFlags flags; -Please don't expect memory to be fully compacted after defragmentation. -Algorithms inside are based on some heuristics that try to maximize number of Vulkan -memory blocks to make totally empty to release them, as well as to maximize continuous -empty space inside remaining blocks, while minimizing the number and size of allocations that -need to be moved. Some fragmentation may still remain - this is normal. + /** \brief Custom CPU memory allocation callbacks. Optional. -\section defragmentation_custom_algorithm Writing custom defragmentation algorithm + Optional, can be null. When specified, they will be used for all CPU-side memory allocations. + */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; +} VmaVirtualBlockCreateInfo; -If you want to implement your own, custom defragmentation algorithm, -there is infrastructure prepared for that, -but it is not exposed through the library API - you need to hack its source code. -Here are steps needed to do this: +/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate(). +typedef struct VmaVirtualAllocationCreateInfo +{ + /** \brief Size of the allocation. --# Main thing you need to do is to define your own class derived from base abstract - class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. - See definition and comments of this class for details. --# Your code needs to interact with device memory block metadata. - If you need more access to its data than it's provided by its public interface, - declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. --# If you want to create a flag that would enable your algorithm or pass some additional - flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in - VmaDefragmentationInfo2::flags. --# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object - of your new class whenever needed. + Cannot be zero. + */ + VkDeviceSize size; + /** \brief Required alignment of the allocation. Optional. + Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset. + */ + VkDeviceSize alignment; + /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits. + */ + VmaVirtualAllocationCreateFlags flags; + /** \brief Custom pointer to be associated with the allocation. Optional. -\page lost_allocations Lost allocations + It can be any value and can be used for user-defined purposes. It can be fetched or changed later. + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationCreateInfo; -If your game oversubscribes video memory, if may work OK in previous-generation -graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically -paged to system RAM. In Vulkan you can't do it because when you run out of -memory, an allocation just fails. If you have more data (e.g. textures) that can -fit into VRAM and you don't need it all at once, you may want to upload them to -GPU on demand and "push out" ones that are not used for a long time to make room -for the new ones, effectively using VRAM (or a cartain memory pool) as a form of -cache. Vulkan Memory Allocator can help you with that by supporting a concept of -"lost allocations". +/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo(). +typedef struct VmaVirtualAllocationInfo +{ + /** \brief Offset of the allocation. -To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT -flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to -such allocation in every new frame, you need to query it if it's not lost. -To check it, call vmaTouchAllocation(). -If the allocation is lost, you should not use it or buffer/image bound to it. -You mustn't forget to destroy this allocation and this buffer/image. -vmaGetAllocationInfo() can also be used for checking status of the allocation. -Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`. + Offset at which the allocation was made. + */ + VkDeviceSize offset; + /** \brief Size of the allocation. -To create an allocation that can make some other allocations lost to make room -for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will -usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time. + Same value as passed in VmaVirtualAllocationCreateInfo::size. + */ + VkDeviceSize size; + /** \brief Custom pointer associated with the allocation. -Warning! Current implementation uses quite naive, brute force algorithm, -which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT -flag quite slow. A new, more optimal algorithm and data structure to speed this -up is planned for the future. + Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData(). + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationInfo; -Q: When interleaving creation of new allocations with usage of existing ones, -how do you make sure that an allocation won't become lost while it's used in the -current frame? +/** @} */ -It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation -status/parameters and checks whether it's not lost, but when it's not, it also -atomically marks it as used in the current frame, which makes it impossible to -become lost in that frame. It uses lockless algorithm, so it works fast and -doesn't involve locking any internal mutex. +#endif // _VMA_DATA_TYPES_DECLARATIONS -Q: What if my allocation may still be in use by the GPU when it's rendering a -previous frame while I already submit new frame on the CPU? +#ifndef _VMA_FUNCTION_HEADERS -You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not -become lost for a number of additional frames back from the current one by -specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default -memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool). +/** +\addtogroup group_init +@{ +*/ -Q: How do you inform the library when new frame starts? +/// Creates #VmaAllocator object. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); -You need to call function vmaSetCurrentFrameIndex(). +/// Destroys allocator object. +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator VMA_NULLABLE allocator); -Example code: +/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. -\code -struct MyBuffer -{ - VkBuffer m_Buf = nullptr; - VmaAllocation m_Alloc = nullptr; +It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to +`VkPhysicalDevice`, `VkDevice` etc. every time using this function. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); - // Called when the buffer is really needed in the current frame. - void EnsureBuffer(); -}; +/** +PhysicalDeviceProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); -void MyBuffer::EnsureBuffer() -{ - // Buffer has been created. - if(m_Buf != VK_NULL_HANDLE) - { - // Check if its allocation is not lost + mark it as used in current frame. - if(vmaTouchAllocation(allocator, m_Alloc)) - { - // It's all OK - safe to use m_Buf. - return; - } - } +/** +PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); - // Buffer not yet exists or lost - destroy and recreate it. +/** +\brief Given Memory Type Index, returns Property Flags of this memory type. - vmaDestroyBuffer(allocator, m_Buf, m_Alloc); +This is just a convenience function. Same information can be obtained using +vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); - VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; - bufCreateInfo.size = 1024; - bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; +/** \brief Sets index of the current frame. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t frameIndex); - VmaAllocationCreateInfo allocCreateInfo = {}; - allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT | - VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; +/** @} */ - vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr); -} -\endcode +/** +\addtogroup group_stats +@{ +*/ -When using lost allocations, you may see some Vulkan validation layer warnings -about overlapping regions of memory bound to different kinds of buffers and -images. This is still valid as long as you implement proper handling of lost -allocations (like in the example above) and don't use them. +/** \brief Retrieves statistics from current state of the Allocator. -You can create an allocation that is already in lost state from the beginning using function -vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null. +This function is called "calculate" not "get" because it has to traverse all +internal data structures, so it may be quite slow. For faster but more brief statistics +suitable to be called every frame or every allocation, use vmaGetHeapBudgets(). -You can call function vmaMakePoolAllocationsLost() to set all eligible allocations -in a specified custom pool to lost state. -Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back -cannot become lost. +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( + VmaAllocator VMA_NOT_NULL allocator, + VmaStats* VMA_NOT_NULL pStats); -Q: Can I touch allocation that cannot become lost? +/** \brief Retrieves information about current memory budget for all memory heaps. -Yes, although it has no visible effect. -Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index -also for allocations that cannot become lost, but the only way to observe it is to dump -internal allocator state using vmaBuildStatsString(). -You can use this feature for debugging purposes to explicitly mark allocations that you use -in current frame and then analyze JSON dump to see for how long each allocation stays unused. +\param allocator +\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used. +This function is called "get" not "calculate" because it is very fast, suitable to be called +every frame or every allocation. For more detailed statistics use vmaCalculateStats(). -\page statistics Statistics +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator VMA_NOT_NULL allocator, + VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets); -This library contains functions that return information about its internal state, -especially the amount of memory allocated from Vulkan. -Please keep in mind that these functions need to traverse all internal data structures -to gather these information, so they may be quite time-consuming. -Don't call them too often. +/** @} */ -\section statistics_numeric_statistics Numeric statistics +/** +\addtogroup group_alloc +@{ +*/ -You can query for overall statistics of the allocator using function vmaCalculateStats(). -Information are returned using structure #VmaStats. -It contains #VmaStatInfo - number of allocated blocks, number of allocations -(occupied ranges in these blocks), number of unused (free) ranges in these blocks, -number of bytes used and unused (but still allocated from Vulkan) and other information. -They are summed across memory heaps, memory types and total for whole allocator. +/** +\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. -You can query for statistics of a custom pool using function vmaGetPoolStats(). -Information are returned using structure #VmaPoolStats. +This algorithm tries to find a memory type that: -You can query for information about specific allocation using function vmaGetAllocationInfo(). -It fill structure #VmaAllocationInfo. +- Is allowed by memoryTypeBits. +- Contains all the flags from pAllocationCreateInfo->requiredFlags. +- Matches intended usage. +- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. -\section statistics_json_dump JSON dump - -You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). -The result is guaranteed to be correct JSON. -It uses ANSI encoding. -Any strings provided by user (see [Allocation names](@ref allocation_names)) -are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, -this JSON string can be treated as using this encoding. -It must be freed using function vmaFreeStatsString(). +\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result +from this function or any other allocating function probably means that your +device doesn't support any memory type with requested features for the specific +type of resource you want to use it for. Please check parameters of your +resource, like image layout (OPTIMAL versus LINEAR) or mip level count. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); -The format of this JSON string is not part of official documentation of the library, -but it will not change in backward-incompatible way without increasing library major version number -and appropriate mention in changelog. +/** +\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. -The JSON string contains all the data that can be obtained using vmaCalculateStats(). -It can also contain detailed map of allocated memory blocks and their regions - -free and occupied by allocations. -This allows e.g. to visualize the memory or assess fragmentation. +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy buffer that never has memory bound. +It is just a convenience function, equivalent to calling: +- `vkCreateBuffer` +- `vkGetBufferMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyBuffer` +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); -\page allocation_annotation Allocation names and user data +/** +\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. -\section allocation_user_data Allocation user data +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy image that never has memory bound. +It is just a convenience function, equivalent to calling: -You can annotate allocations with your own information, e.g. for debugging purposes. -To do that, fill VmaAllocationCreateInfo::pUserData field when creating -an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer, -some handle, index, key, ordinal number or any other value that would associate -the allocation with your custom metadata. +- `vkCreateImage` +- `vkGetImageMemoryRequirements` +- `vmaFindMemoryTypeIndex` +- `vkDestroyImage` +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -// Fill bufferInfo... +/** \brief Allocates Vulkan device memory and creates #VmaPool object. -MyBufferMetadata* pMetadata = CreateBufferMetadata(); +\param allocator Allocator object. +\param pCreateInfo Parameters of pool to create. +\param[out] pPool Handle to created pool. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator VMA_NOT_NULL allocator, + const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.pUserData = pMetadata; +/** \brief Destroys #VmaPool object and frees Vulkan device memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NULLABLE pool); -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); -\endcode +/** @} */ -The pointer may be later retrieved as VmaAllocationInfo::pUserData: +/** +\addtogroup group_stats +@{ +*/ -\code -VmaAllocationInfo allocInfo; -vmaGetAllocationInfo(allocator, allocation, &allocInfo); -MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; -\endcode +/** \brief Retrieves statistics of existing #VmaPool object. -It can also be changed using function vmaSetAllocationUserData(). +\param allocator Allocator object. +\param pool Pool object. +\param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + VmaPoolStats* VMA_NOT_NULL pPoolStats); -Values of (non-zero) allocations' `pUserData` are printed in JSON report created by -vmaBuildStatsString(), in hexadecimal form. +/** @} */ -\section allocation_names Allocation names +/** +\addtogroup group_alloc +@{ +*/ -There is alternative mode available where `pUserData` pointer is used to point to -a null-terminated string, giving a name to the allocation. To use this mode, -set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. -Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to -vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. -The library creates internal copy of the string, so the pointer you pass doesn't need -to be valid for whole lifetime of the allocation. You can free it after the call. +/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. -\code -VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -// Fill imageInfo... +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). -std::string imageName = "Texture: "; -imageName += fileName; +Possible return values: -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; -allocCreateInfo.pUserData = imageName.c_str(); +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool); -VkImage image; -VmaAllocation allocation; -vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); -\endcode +/** \brief Retrieves name of a custom pool. -The value of `pUserData` pointer of the allocation will be different than the one -you passed when setting allocation's name - pointing to a buffer managed -internally that holds copy of the string. +After the call `ppName` is either null or points to an internally-owned null-terminated string +containing name of the pool that was previously set. The pointer becomes invalid when the pool is +destroyed or its name is changed using vmaSetPoolName(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE* VMA_NOT_NULL ppName); -\code -VmaAllocationInfo allocInfo; -vmaGetAllocationInfo(allocator, allocation, &allocInfo); -const char* imageName = (const char*)allocInfo.pUserData; -printf("Image name: %s\n", imageName); -\endcode +/** \brief Sets name of a custom pool. -That string is also printed in JSON report created by vmaBuildStatsString(). +`pName` can be either null or pointer to a null-terminated string with new name for the pool. +Function makes internal copy of the string, so it can be changed or freed immediately after this call. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE pName); -\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. -You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. +/** \brief General purpose memory allocation. +\param allocator +\param pVkMemoryRequirements +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). -\page debugging_memory_usage Debugging incorrect memory usage +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). -If you suspect a bug with memory usage, like usage of uninitialized memory or -memory being overwritten out of bounds of an allocation, -you can use debug features of this library to verify this. +It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), +vmaCreateBuffer(), vmaCreateImage() instead whenever possible. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -\section debugging_memory_usage_initialization Memory initialization +/** \brief General purpose memory allocation for multiple allocation objects at once. -If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, -you can enable automatic memory initialization to verify this. -To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. +\param allocator Allocator object. +\param pVkMemoryRequirements Memory requirements for each allocation. +\param pCreateInfo Creation parameters for each allocation. +\param allocationCount Number of allocations to make. +\param[out] pAllocations Pointer to array that will be filled with handles to created allocations. +\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. -\code -#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 -#include "vk_mem_alloc.h" -\endcode +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). -It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. -Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. -Memory is automatically mapped and unmapped if necessary. +Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. +It is just a general purpose allocation function able to make multiple allocations at once. +It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. -If you find these values while debugging your program, good chances are that you incorrectly -read Vulkan memory that is allocated but not initialized, or already freed, respectively. +All allocations are made using same parameters. All of them are created out of the same memory pool and type. +If any allocation fails, all allocations already made within this function call are also freed, so that when +returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, + size_t allocationCount, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, + VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); -Memory initialization works only with memory types that are `HOST_VISIBLE`. -It works also with dedicated allocations. -It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -as they cannot be mapped. +/** +\param allocator +\param buffer +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). -\section debugging_memory_usage_margins Margins +You should free the memory using vmaFreeMemory(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -By default, allocations are laid out in memory blocks next to each other if possible -(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). +/// Function similar to vmaAllocateMemoryForBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -![Allocations without margin](../gfx/Margins_1.png) +/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). -Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified -number of bytes as a margin before and after every allocation. +Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VmaAllocation VMA_NULLABLE allocation); -\code -#define VMA_DEBUG_MARGIN 16 -#include "vk_mem_alloc.h" -\endcode +/** \brief Frees memory and destroys multiple allocations. -![Allocations with margin](../gfx/Margins_2.png) +Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. +It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), +vmaAllocateMemoryPages() and other functions. +It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. -If your bug goes away after enabling margins, it means it may be caused by memory -being overwritten outside of allocation boundaries. It is not 100% certain though. -Change in application behavior may also be caused by different order and distribution -of allocations across memory blocks after margins are applied. +Allocations in `pAllocations` array can come from any memory pools and types. +Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + size_t allocationCount, + const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); -The margin is applied also before first and after last allocation in a block. -It may occur only once between two adjacent allocations. +/** \brief Returns current information about specified allocation. -Margins work with all types of memory. +Current paramteres of given allocation are returned in `pAllocationInfo`. -Margin is applied only to allocations made out of memory blocks and not to dedicated -allocations, which have their own memory block of specific size. -It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag -or those automatically decided to put into dedicated allocations, e.g. due to its -large size or recommended by VK_KHR_dedicated_allocation extension. -Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. - -Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. +Although this function doesn't lock any mutex, so it should be quite efficient, +you should avoid calling it too often. +You can retrieve same VmaAllocationInfo structure while creating your resource, from function +vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change +(e.g. due to defragmentation). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); -Note that enabling margins increases memory usage and fragmentation. +/** \brief Sets pUserData in given allocation to new value. -\section debugging_memory_usage_corruption_detection Corruption detection +If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, +pUserData must be either null, or pointer to a null-terminated string. The function +makes local copy of the string and sets it as allocation's `pUserData`. String +passed as pUserData doesn't need to be valid for whole lifetime of the allocation - +you can free it after this call. String previously pointed by allocation's +pUserData is freed from memory. -You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation -of contents of the margins. +If the flag was not used, the value of pointer `pUserData` is just copied to +allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. +as a pointer, ordinal number or some handle to you own data. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE pUserData); -\code -#define VMA_DEBUG_MARGIN 16 -#define VMA_DEBUG_DETECT_CORRUPTION 1 -#include "vk_mem_alloc.h" -\endcode +/** +\brief Given an allocation, returns Property Flags of its memory type. -When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` -(it must be multiply of 4) before and after every allocation is filled with a magic number. -This idea is also know as "canary". -Memory is automatically mapped and unmapped if necessary. +This is just a convenience function. Same information can be obtained using +vmaGetAllocationInfo() + vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); -This number is validated automatically when the allocation is destroyed. -If it's not equal to the expected value, `VMA_ASSERT()` is executed. -It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, -which indicates a serious bug. +/** \brief Maps memory represented by given allocation and returns pointer to it. -You can also explicitly request checking margins of all allocations in all memory blocks -that belong to specified memory types by using function vmaCheckCorruption(), -or in memory blocks that belong to specified custom pool, by using function -vmaCheckPoolCorruption(). +Maps memory represented by given allocation to make it accessible to CPU code. +When succeeded, `*ppData` contains pointer to first byte of this memory. -Margin validation (corruption detection) works only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. +\warning +If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is +correctly offsetted to the beginning of region assigned to this particular allocation. +Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block. +You should not add VmaAllocationInfo::offset to it! +Mapping is internally reference-counted and synchronized, so despite raw Vulkan +function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` +multiple times simultaneously, it is safe to call this function on allocations +assigned to the same memory block. Actual Vulkan memory will be mapped on first +mapping and unmapped on last unmapping. -\page record_and_replay Record and replay +If the function succeeded, you must call vmaUnmapMemory() to unmap the +allocation when mapping is no longer needed or before freeing the allocation, at +the latest. -\section record_and_replay_introduction Introduction +It also safe to call this function multiple times on the same allocation. You +must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). -While using the library, sequence of calls to its functions together with their -parameters can be recorded to a file and later replayed using standalone player -application. It can be useful to: +It is also safe to call this function on allocation created with +#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. +You must still call vmaUnmapMemory() same number of times as you called +vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the +"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. -- Test correctness - check if same sequence of calls will not cause crash or - failures on a target platform. -- Gather statistics - see number of allocations, peak memory usage, number of - calls etc. -- Benchmark performance - see how much time it takes to replay the whole - sequence. +This function fails when used on allocation made in memory type that is not +`HOST_VISIBLE`. -\section record_and_replay_usage Usage +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE* VMA_NOT_NULL ppData); -Recording functionality is disabled by default. -To enable it, define following macro before every include of this library: +/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). -\code -#define VMA_RECORDING_ENABLED 1 -\endcode +For details, see description of vmaMapMemory(). -To record sequence of calls to a file: Fill in -VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator -object. File is opened and written during whole lifetime of the allocator. +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation); -To replay file: Use VmaReplay - standalone command-line program. -Precompiled binary can be found in "bin" directory. -Its source can be found in "src/VmaReplay" directory. -Its project is generated by Premake. -Command line syntax is printed when the program is launched without parameters. -Basic usage: +/** \brief Flushes memory of given allocation. - VmaReplay.exe MyRecording.csv +Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. +Unmap operation doesn't do that automatically. -Documentation of file format can be found in file: "docs/Recording file format.md". -It's a human-readable, text file in CSV format (Comma Separated Values). +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. -\section record_and_replay_additional_considerations Additional considerations +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! -- Replaying file that was recorded on a different GPU (with different parameters - like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different - set of memory heaps and types) may give different performance and memory usage - results, as well as issue some warnings and errors. -- Current implementation of recording in VMA, as well as VmaReplay application, is - coded and tested only on Windows. Inclusion of recording code is driven by - `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to - add. Contributions are welcomed. +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); +/** \brief Invalidates memory of given allocation. -\page usage_patterns Recommended usage patterns +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. +Map operation doesn't do that automatically. -See also slides from talk: -[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! -\section usage_patterns_common_mistakes Common mistakes +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if +it is called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); -Use of CPU_TO_GPU instead of CPU_ONLY memory +/** \brief Flushes memory of given set of allocations. -#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be -mapped and written by the CPU, as well as read directly by the GPU - like some -buffers or textures updated every frame (dynamic). If you create a staging copy -of a resource to be written by CPU and then used as a source of transfer to -another resource placed in the GPU memory, that staging resource should be -created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these -enums carefully for details. +Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaFlushAllocation(). -Unnecessary use of custom pools +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. -\ref custom_memory_pools may be useful for special purposes - when you want to -keep certain type of resources separate e.g. to reserve minimum amount of memory -for them, limit maximum amount of memory they can occupy, or make some of them -push out the other through the mechanism of \ref lost_allocations. For most -resources this is not needed and so it is not recommended to create #VmaPool -objects and allocations out of them. Allocating from the default pool is sufficient. +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); -\section usage_patterns_simple Simple patterns +/** \brief Invalidates memory of given set of allocations. -\subsection usage_patterns_simple_render_targets Render targets +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaInvalidateAllocation(). -When: -Any resources that you frequently write and read on GPU, -e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, -images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. -What to do: -Create them in video memory that is fastest to access from GPU using -#VMA_MEMORY_USAGE_GPU_ONLY. +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); -Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension -and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, -especially if they are large or if you plan to destroy and recreate them e.g. when -display resolution changes. -Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. +/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. -\subsection usage_patterns_simple_immutable_resources Immutable resources +\param allocator +\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. -When: -Any resources that you fill on CPU only once (aka "immutable") or infrequently -and then read frequently on GPU, -e.g. textures, vertex and index buffers, constant buffers that don't change often. +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). -What to do: -Create them in video memory that is fastest to access from GPU using -#VMA_MEMORY_USAGE_GPU_ONLY. +Possible return values: -To initialize content of such resource, create a CPU-side (aka "staging") copy of it -in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, -and submit a transfer from it to the GPU resource. -You can keep the staging copy if you need it for another upload transfer in the future. -If you don't, you can destroy it or reuse this buffer for uploading different resource -after the transfer finishes. +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits); -Prefer to create just buffers in system memory rather than images, even for uploading textures. -Use `vkCmdCopyBufferToImage()`. -Dont use images with `VK_IMAGE_TILING_LINEAR`. +/** \brief Begins defragmentation process. -\subsection usage_patterns_dynamic_resources Dynamic resources +\param allocator Allocator object. +\param pInfo Structure filled with parameters of defragmentation. +\param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. +\param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. +\return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. -When: -Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, -written on CPU, read on GPU. +Use this function instead of old, deprecated vmaDefragment(). -What to do: -Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. -You can map it and write to it directly on CPU, as well as read from it on GPU. +Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): -This is a more complex situation. Different solutions are possible, -and the best one depends on specific GPU type, but you can use this simple approach for the start. -Prefer to write to such resource sequentially (e.g. using `memcpy`). -Don't perform random access or any reads from it on CPU, as it may be very slow. -Also note that textures written directly from the host through a mapped pointer need to be in LINEAR not OPTIMAL layout. +- You should not use any of allocations passed as `pInfo->pAllocations` or + any allocations that belong to pools passed as `pInfo->pPools`, + including calling vmaGetAllocationInfo(), or access + their data. +- Some mutexes protecting internal data structures may be locked, so trying to + make or free any allocations, bind buffers or images, map memory, or launch + another simultaneous defragmentation in between may cause stall (when done on + another thread) or deadlock (when done on the same thread), unless you are + 100% sure that defragmented allocations are in different pools. +- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. + They become valid after call to vmaDefragmentationEnd(). +- If `pInfo->commandBuffer` is not null, you must submit that command buffer + and make sure it finished execution before calling vmaDefragmentationEnd(). -\subsection usage_patterns_readback Readback - -When: -Resources that contain data written by GPU that you want to read back on CPU, -e.g. results of some computations. +For more information and important limitations regarding defragmentation, see documentation chapter: +[Defragmentation](@ref defragmentation). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( + VmaAllocator VMA_NOT_NULL allocator, + const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo, + VmaDefragmentationStats* VMA_NULLABLE pStats, + VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); -What to do: -Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. -You can write to them directly on GPU, as well as map and read them on CPU. +/** \brief Ends defragmentation process. -\section usage_patterns_advanced Advanced patterns +Use this function to finish defragmentation started by vmaDefragmentationBegin(). +It is safe to pass `context == null`. The function then does nothing. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NULLABLE context); -\subsection usage_patterns_integrated_graphics Detecting integrated graphics +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NULLABLE context, + VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo); -You can support integrated graphics (like Intel HD Graphics, AMD APU) better -by detecting it in Vulkan. -To do it, call `vkGetPhysicalDeviceProperties()`, inspect -`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. -When you find it, you can assume that memory is unified and all memory types are comparably fast -to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NULLABLE context); -You can then sum up sizes of all available memory heaps and treat them as useful for -your GPU resources, instead of only `DEVICE_LOCAL` ones. -You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them -directly instead of submitting explicit transfer (see below). +/** \brief Deprecated. Compacts memory by moving allocations. -\subsection usage_patterns_direct_vs_transfer Direct access versus transfer +\param allocator +\param pAllocations Array of allocations that can be moved during this compation. +\param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. +\param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. +\param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. +\param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. +\return `VK_SUCCESS` if completed, negative error code in case of error. -For resources that you frequently write on CPU and read on GPU, many solutions are possible: +\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. --# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, - second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit transfer each time. --# Create just a single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, - read it directly on GPU. --# Create just a single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, - read it directly on GPU. +This function works by moving allocations to different places (different +`VkDeviceMemory` objects and/or different offsets) in order to optimize memory +usage. Only allocations that are in `pAllocations` array can be moved. All other +allocations are considered nonmovable in this call. Basic rules: -Which solution is the most efficient depends on your resource and especially on the GPU. -It is best to measure it and then make the decision. -Some general recommendations: +- Only allocations made in memory types that have + `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` + flags can be compacted. You may pass other allocations but it makes no sense - + these will never be moved. +- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or + #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations + passed to this function that come from such pools are ignored. +- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or + created as dedicated allocations for any other reason are also ignored. +- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT + flag can be compacted. If not persistently mapped, memory will be mapped + temporarily inside this function if needed. +- You must not pass same #VmaAllocation object multiple times in `pAllocations` array. -- On integrated graphics use (2) or (3) to avoid unnecessary time and memory overhead - related to using a second copy and making transfer. -- For small resources (e.g. constant buffers) use (2). - Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. - Even if the resource ends up in system memory, its data may be cached on GPU after first - fetch over PCIe bus. -- For larger resources (e.g. textures), decide between (1) and (2). - You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is - both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). +The function also frees empty `VkDeviceMemory` blocks. -Similarly, for resources that you frequently write on GPU and read on CPU, multiple -solutions are possible: +Warning: This function may be time-consuming, so you shouldn't call it too often +(like after every resource creation/destruction). +You can call it on special occasions (like when reloading a game level or +when you just destroyed a lot of objects). Calling it every frame may be OK, but +you should measure that on your platform. --# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, - second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. --# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, - map it and read it on CPU. +For more information, see [Defragmentation](@ref defragmentation) chapter. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( + VmaAllocator VMA_NOT_NULL allocator, + const VmaAllocation VMA_NOT_NULL* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, + size_t allocationCount, + VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged, + const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo, + VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats); -You should take some measurements to decide which option is faster in case of your specific -resource. +/** \brief Binds buffer to allocation. -Note that textures accessed directly from the host through a mapped pointer need to be in LINEAR layout, -which may slow down their usage on the device. -Textures accessed only by the device and transfer operations can use OPTIMAL layout. +Binds specified buffer to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create a buffer, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindBufferMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). -If you don't want to specialize your code for specific types of GPUs, you can still make -an simple optimization for cases when your resource ends up in mappable memory to use it -directly in this case instead of creating CPU-side staging copy. -For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). +It is recommended to use function vmaCreateBuffer() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); +/** \brief Binds buffer to allocation with additional parameters. -\page configuration Configuration +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param buffer +\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. -Please check "CONFIGURATION SECTION" in the code to find macros that you can define -before each include of this file or change directly in this file to provide -your own implementation of basic facilities like assert, `min()` and `max()` functions, -mutex, atomic etc. -The library uses its own implementation of containers by default, but you can switch to using -STL containers instead. +This function is similar to vmaBindBufferMemory(), but it provides additional parameters. -For example, define `VMA_ASSERT(expr)` before including the library to provide -custom implementation of the assertion, compatible with your project. -By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration -and empty otherwise. +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const void* VMA_NULLABLE pNext); -\section config_Vulkan_functions Pointers to Vulkan functions +/** \brief Binds image to allocation. -There are multiple ways to import pointers to Vulkan functions in the library. -In the simplest case you don't need to do anything. -If the compilation or linking of your program or the initialization of the #VmaAllocator -doesn't work for you, you can try to reconfigure it. +Binds specified image to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create an image, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindImageMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). -First, the allocator tries to fetch pointers to Vulkan functions linked statically, -like this: +It is recommended to use function vmaCreateImage() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); -\code -m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; -\endcode +/** \brief Binds image to allocation with additional parameters. -If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param image +\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. -Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. -You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or -by using a helper library like [volk](https://github.com/zeux/volk). +This function is similar to vmaBindImageMemory(), but it provides additional parameters. -Third, VMA tries to fetch remaining pointers that are still null by calling -`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. -If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const void* VMA_NULLABLE pNext); -Finally, all the function pointers required by the library (considering selected -Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. +/** +\param allocator +\param pBufferCreateInfo +\param pAllocationCreateInfo +\param[out] pBuffer Buffer that was created. +\param[out] pAllocation Allocation that was created. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). +This function automatically: -\section custom_memory_allocator Custom host memory allocator +-# Creates buffer. +-# Allocates appropriate memory for it. +-# Binds the buffer with the memory. -If you use custom allocator for CPU memory rather than default operator `new` -and `delete` from C++, you can make this library using your allocator as well -by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These -functions will be passed to Vulkan, as well as used by the library itself to -make any CPU-side allocations. +If any of these operations fail, buffer and allocation are not created, +returned value is negative error code, *pBuffer and *pAllocation are null. -\section allocation_callbacks Device memory allocation callbacks +If the function succeeded, you must destroy both buffer and allocation when you +no longer need them using either convenience function vmaDestroyBuffer() or +separately, using `vkDestroyBuffer()` and vmaFreeMemory(). -The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. -You can setup callbacks to be informed about these calls, e.g. for the purpose -of gathering some statistics. To do it, fill optional member -VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, +VK_KHR_dedicated_allocation extension is used internally to query driver whether +it requires or prefers the new buffer to have dedicated allocation. If yes, +and if dedicated allocation is possible +(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated +allocation for this buffer, just like when using +#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -\section heap_memory_limit Device heap memory limit +\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, +although recommended as a good practice, is out of scope of this library and could be implemented +by the user as a higher-level logic on top of VMA. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -When device memory of certain heap runs out of free space, new allocations may -fail (returning error code) or they may succeed, silently pushing some existing -memory blocks from GPU VRAM to system RAM (which degrades performance). This -behavior is implementation-dependent - it depends on GPU vendor and graphics -driver. +/** \brief Creates a buffer with additional minimum alignment. -On AMD cards it can be controlled while creating Vulkan device object by using -VK_AMD_memory_overallocation_behavior extension, if available. +Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom, +minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g. +for interop with OpenGL. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -Alternatively, if you want to test how your program behaves with limited amount of Vulkan device -memory available without switching your graphics card to one that really has -smaller VRAM, you can use a feature of this library intended for this purpose. -To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. +/** \brief Destroys Vulkan buffer and frees allocated memory. +This is just a convenience function equivalent to: +\code +vkDestroyBuffer(device, buffer, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode -\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation +It it safe to pass null as buffer and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, + VmaAllocation VMA_NULLABLE allocation); -VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve -performance on some GPUs. It augments Vulkan API with possibility to query -driver whether it prefers particular buffer or image to have its own, dedicated -allocation (separate `VkDeviceMemory` block) for better efficiency - to be able -to do some internal optimizations. - -The extension is supported by this library. It will be used automatically when -enabled. To enable it: - -1 . When creating Vulkan device, check if following 2 device extensions are -supported (call `vkEnumerateDeviceExtensionProperties()`). -If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). - -- VK_KHR_get_memory_requirements2 -- VK_KHR_dedicated_allocation +/// Function similar to vmaCreateBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); -If you enabled these extensions: +/** \brief Destroys Vulkan image and frees allocated memory. -2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating -your #VmaAllocator`to inform the library that you enabled required extensions -and you want the library to use them. +This is just a convenience function equivalent to: \code -allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; - -vmaCreateAllocator(&allocatorInfo, &allocator); +vkDestroyImage(device, image, allocationCallbacks); +vmaFreeMemory(allocator, allocation); \endcode -That's all. The extension will be automatically used whenever you create a -buffer using vmaCreateBuffer() or image using vmaCreateImage(). +It it safe to pass null as image and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NULLABLE_NON_DISPATCHABLE image, + VmaAllocation VMA_NULLABLE allocation); -When using the extension together with Vulkan Validation Layer, you will receive -warnings like this: +/** @} */ - vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. +/** +\addtogroup group_virtual +@{ +*/ -It is OK, you should just ignore it. It happens because you use function -`vkGetBufferMemoryRequirements2KHR()` instead of standard -`vkGetBufferMemoryRequirements()`, while the validation layer seems to be -unaware of it. +/** \brief Creates new #VmaVirtualBlock object. -To learn more about this extension, see: +\param pCreateInfo Parameters for creation. +\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock); -- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) -- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) +/** \brief Destroys #VmaVirtualBlock object. +Please note that you should consciously handle virtual allocations that could remain unfreed in the block. +You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock() +if you are sure this is what you want. If you do neither, an assert is called. +If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`, +don't forget to free them. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock( + VmaVirtualBlock VMA_NULLABLE virtualBlock); -\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory +/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations. +*/ +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); -VK_AMD_device_coherent_memory is a device extension that enables access to -additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and -`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for -allocation of buffers intended for writing "breadcrumb markers" in between passes -or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. +/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); -When the extension is available but has not been enabled, Vulkan physical device -still exposes those memory types, but their usage is forbidden. VMA automatically -takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt -to allocate memory of such type is made. +/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. -If you want to use this extension in connection with VMA, follow these steps: +If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned +(despite the function doesn't ever allocate actual GPU memory). +`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`. -\section vk_amd_device_coherent_memory_initialization Initialization +\param virtualBlock Virtual block +\param pCreateInfo Parameters for the allocation +\param[out] pAllocation Returned handle of the new allocation +\param[out] pOffset Returned offset of the new allocation. Optional, can be null. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset); -1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. -Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". +/** \brief Frees virtual allocation inside given #VmaVirtualBlock. -2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. -Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. -Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. +It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); -3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" -to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. +/** \brief Frees all virtual allocations inside given #VmaVirtualBlock. -4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. -Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. -Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to -`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. +You must either call this function or free each virtual allocation individually with vmaVirtualFree() +before destroying a virtual block. Otherwise, an assert is called. -5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you -have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT -to VmaAllocatorCreateInfo::flags. +If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`, +don't forget to free it as well. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); -\section vk_amd_device_coherent_memory_usage Usage +/** \brief Changes custom pointer associated with given virtual allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, + void* VMA_NULLABLE pUserData); -After following steps described above, you can create VMA allocations and custom pools -out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible -devices. There are multiple ways to do it, for example: +/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatInfo* VMA_NOT_NULL pStatInfo); -- You can request or prefer to allocate out of such memory types by adding - `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags - or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with - other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. -- If you manually found memory type index to use for this purpose, force allocation - from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. +/** @} */ -\section vk_amd_device_coherent_memory_more_information More information +#if VMA_STATS_STRING_ENABLED +/** +\addtogroup group_stats +@{ +*/ -To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_AMD_device_coherent_memory) +/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock. +\param virtualBlock Virtual block. +\param[out] ppStatsString Returned string. +\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStats(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces. -Example use of this extension can be found in the code of the sample and test suite -accompanying this library. +Returned string must be freed using vmaFreeVirtualBlockStatsString(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); +/// Frees a string returned by vmaBuildVirtualBlockStatsString(). +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString); -\page enabling_buffer_device_address Enabling buffer device address +/** \brief Builds and returns statistics as a null-terminated string in JSON format. +\param allocator +\param[out] ppStatsString Must be freed using vmaFreeStatsString() function. +\param detailedMap +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); -Device extension VK_KHR_buffer_device_address -allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. -It is promoted to core Vulkan 1.2. +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE pStatsString); -If you want to use this feature in connection with VMA, follow these steps: +/** @} */ -\section enabling_buffer_device_address_initialization Initialization +#endif // VMA_STATS_STRING_ENABLED -1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. -Check if the extension is supported - if returned array of `VkExtensionProperties` contains -"VK_KHR_buffer_device_address". +#endif // _VMA_FUNCTION_HEADERS -2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. -Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. -Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress` is true. +#ifdef __cplusplus +} +#endif -3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add -"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. +#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H -4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. -Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. -Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to -`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// -5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you -have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT -to VmaAllocatorCreateInfo::flags. +// For Visual Studio IntelliSense. +#if defined(__cplusplus) && defined(__INTELLISENSE__) +#define VMA_IMPLEMENTATION +#endif -\section enabling_buffer_device_address_usage Usage +#ifdef VMA_IMPLEMENTATION +#undef VMA_IMPLEMENTATION -After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. -The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to -allocated memory blocks wherever it might be needed. +#include +#include +#include +#include -Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. -The second part of this functionality related to "capture and replay" is not supported, -as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. +/******************************************************************************* +CONFIGURATION SECTION -\section enabling_buffer_device_address_more_information More information +Define some of these macros before each #include of this header or change them +here if you need other then default behavior depending on your environment. +*/ +#ifndef _VMA_CONFIGURATION -To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: -Example use of this extension can be found in the code of the sample and test suite -accompanying this library. + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; +*/ +#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) + #define VMA_STATIC_VULKAN_FUNCTIONS 1 +#endif -\page general_considerations General considerations +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: -\section general_considerations_thread_safety Thread safety + vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory"); -- The library has no global state, so separate #VmaAllocator objects can be used - independently. - There should be no need to create multiple such objects though - one per `VkDevice` is enough. -- By default, all calls to functions that take #VmaAllocator as first parameter - are safe to call from multiple threads simultaneously because they are - synchronized internally when needed. -- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT - flag, calls to functions that take such #VmaAllocator object must be - synchronized externally. -- Access to a #VmaAllocation object must be externally synchronized. For example, - you must not call vmaGetAllocationInfo() and vmaMapMemory() from different - threads at the same time if you pass the same #VmaAllocation object to these - functions. +To use this feature in new versions of VMA you now have to pass +VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as +VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null. +*/ +#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) + #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#endif -\section general_considerations_validation_layer_warnings Validation layer warnings +#ifndef VMA_USE_STL_SHARED_MUTEX + // Compiler conforms to C++17. + #if __cplusplus >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus + // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. + #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + #else + #define VMA_USE_STL_SHARED_MUTEX 0 + #endif +#endif -When using this library, you can meet following types of warnings issued by -Vulkan validation layer. They don't necessarily indicate a bug, so you may need -to just ignore them. +/* +Define this macro to include custom header files without having to edit this file directly, e.g.: -- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* - - It happens when VK_KHR_dedicated_allocation extension is enabled. - `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. -- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* - - It happens when you map a buffer or image, because the library maps entire - `VkDeviceMemory` block, where different types of images and buffers may end - up together, especially on GPUs with unified memory like Intel. -- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* - - It happens when you use lost allocations, and a new image or buffer is - created in place of an existing object that became lost. - - It may happen also when you use [defragmentation](@ref defragmentation). + // Inside of "my_vma_configuration_user_includes.h": -\section general_considerations_allocation_algorithm Allocation algorithm + #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT + #include "my_custom_min.h" // for my_custom_min + #include + #include -The library uses following algorithm for allocation, in order: + // Inside a different file, which includes "vk_mem_alloc.h": --# Try to find free range of memory in existing blocks. --# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. --# If failed, try to create such block with size/2, size/4, size/8. --# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was - specified, try to find space in existing blocks, possilby making some other - allocations lost. --# If failed, try to allocate separate `VkDeviceMemory` for this allocation, - just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. --# If failed, choose other memory type that meets the requirements specified in - VmaAllocationCreateInfo and go to point 1. --# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h" + #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr) + #define VMA_MIN(v1, v2) (my_custom_min(v1, v2)) + #include "vk_mem_alloc.h" + ... -\section general_considerations_features_not_supported Features not supported +The following headers are used in this CONFIGURATION section only, so feel free to +remove them if not needed. +*/ +#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H) + #include // for assert + #include // for min, max + #include +#else + #include VMA_CONFIGURATION_USER_INCLUDES_H +#endif -Features deliberately excluded from the scope of this library: +#ifndef VMA_NULL + // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. + #define VMA_NULL nullptr +#endif -- Data transfer. Uploading (streaming) and downloading data of buffers and images - between CPU and GPU memory and related synchronization is responsibility of the user. - Defining some "texture" object that would automatically stream its data from a - staging copy in CPU memory to GPU memory would rather be a feature of another, - higher-level library implemented on top of VMA. -- Allocations for imported/exported external memory. They tend to require - explicit memory type index and dedicated allocation anyway, so they don't - interact with main features of this library. Such special purpose allocations - should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`. -- Sub-allocation of parts of one large buffer. Although recommended as a good practice, - it is the user's responsibility to implement such logic on top of VMA. -- Recreation of buffers and images. Although the library has functions for - buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to - recreate these objects yourself after defragmentation. That's because the big - structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in - #VmaAllocation object. -- Handling CPU memory allocation failures. When dynamically creating small C++ - objects in CPU memory (not Vulkan memory), allocation failures are not checked - and handled gracefully, because that would complicate code significantly and - is usually not needed in desktop PC applications anyway. - Success of an allocation is just checked with an assert. -- Code free of any compiler warnings. Maintaining the library to compile and - work correctly on so many different platforms is hard enough. Being free of - any warnings, on any version of any compiler, is simply not feasible. -- This is a C++ library with C interface. - Bindings or ports to any other programming languages are welcomed as external projects and - are not going to be included into this repository. +#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) +#include +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } -*/ + return memalign(alignment, size); +} +#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) +#include -#ifdef __cplusplus -extern "C" { +#if defined(__APPLE__) +#include #endif -/* -Define this macro to 0/1 to disable/enable support for recording functionality, -available through VmaAllocatorCreateInfo::pRecordSettings. -*/ -#ifndef VMA_RECORDING_ENABLED - #define VMA_RECORDING_ENABLED 0 +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4) + // Therefore, for now disable this specific exception until a proper solution is found. + //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) + //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 + // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only + // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds + // // MAC_OS_X_VERSION_10_16), even though the function is marked + // // availabe for 10.15. That is why the preprocessor checks for 10.16 but + // // the __builtin_available checks for 10.15. + // // People who use C++17 could call aligned_alloc with the 10.15 SDK already. + // if (__builtin_available(macOS 10.15, iOS 13, *)) + // return aligned_alloc(alignment, size); + //#endif + //#endif + + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + void *pointer; + if(posix_memalign(&pointer, alignment, size) == 0) + return pointer; + return VMA_NULL; +} +#elif defined(_WIN32) +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return _aligned_malloc(size, alignment); +} +#else +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return aligned_alloc(alignment, size); +} #endif -#if !defined(NOMINMAX) && defined(VMA_IMPLEMENTATION) - #define NOMINMAX // For windows.h +#if defined(_WIN32) +static void vma_aligned_free(void* ptr) +{ + _aligned_free(ptr); +} +#else +static void vma_aligned_free(void* VMA_NULLABLE ptr) +{ + free(ptr); +} #endif -#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS - extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; - extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; - extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; - extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; - extern PFN_vkAllocateMemory vkAllocateMemory; - extern PFN_vkFreeMemory vkFreeMemory; - extern PFN_vkMapMemory vkMapMemory; - extern PFN_vkUnmapMemory vkUnmapMemory; - extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; - extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; - extern PFN_vkBindBufferMemory vkBindBufferMemory; - extern PFN_vkBindImageMemory vkBindImageMemory; - extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; - extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; - extern PFN_vkCreateBuffer vkCreateBuffer; - extern PFN_vkDestroyBuffer vkDestroyBuffer; - extern PFN_vkCreateImage vkCreateImage; - extern PFN_vkDestroyImage vkDestroyImage; - extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; - #if VMA_VULKAN_VERSION >= 1001000 - extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; - extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; - extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; - extern PFN_vkBindImageMemory2 vkBindImageMemory2; - extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; - #endif // #if VMA_VULKAN_VERSION >= 1001000 -#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES +// If your compiler is not compatible with C++11 and definition of +// aligned_alloc() function is missing, uncommeting following line may help: -#ifndef VULKAN_H_ - #ifdef USE_VOLK - #include - #else - #include - #endif -#endif +//#include -// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, -// where AAA = major, BBB = minor, CCC = patch. -// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. -#if !defined(VMA_VULKAN_VERSION) - #if defined(VK_VERSION_1_2) - #define VMA_VULKAN_VERSION 1002000 - #elif defined(VK_VERSION_1_1) - #define VMA_VULKAN_VERSION 1001000 - #else - #define VMA_VULKAN_VERSION 1000000 - #endif +// Normal assert to check for programmer's errors, especially in Debug configuration. +#ifndef VMA_ASSERT + #ifdef NDEBUG + #define VMA_ASSERT(expr) + #else + #define VMA_ASSERT(expr) assert(expr) + #endif #endif -#if !defined(VMA_DEDICATED_ALLOCATION) - #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation - #define VMA_DEDICATED_ALLOCATION 1 - #else - #define VMA_DEDICATED_ALLOCATION 0 - #endif +// Assert that will be called very often, like inside data structures e.g. operator[]. +// Making it non-empty can make program slow. +#ifndef VMA_HEAVY_ASSERT + #ifdef NDEBUG + #define VMA_HEAVY_ASSERT(expr) + #else + #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) + #endif #endif -#if !defined(VMA_BIND_MEMORY2) - #if VK_KHR_bind_memory2 - #define VMA_BIND_MEMORY2 1 - #else - #define VMA_BIND_MEMORY2 0 - #endif +#ifndef VMA_ALIGN_OF + #define VMA_ALIGN_OF(type) (__alignof(type)) #endif -#if !defined(VMA_MEMORY_BUDGET) - #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) - #define VMA_MEMORY_BUDGET 1 - #else - #define VMA_MEMORY_BUDGET 0 - #endif +#ifndef VMA_SYSTEM_ALIGNED_MALLOC + #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) #endif -// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. -#if !defined(VMA_BUFFER_DEVICE_ADDRESS) - #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 - #define VMA_BUFFER_DEVICE_ADDRESS 1 - #else - #define VMA_BUFFER_DEVICE_ADDRESS 0 +#ifndef VMA_SYSTEM_ALIGNED_FREE + // VMA_SYSTEM_FREE is the old name, but might have been defined by the user + #if defined(VMA_SYSTEM_FREE) + #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) + #else + #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) #endif #endif -// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. -#if !defined(VMA_MEMORY_PRIORITY) - #if VK_EXT_memory_priority - #define VMA_MEMORY_PRIORITY 1 - #else - #define VMA_MEMORY_PRIORITY 0 - #endif +#ifndef VMA_BITSCAN_LSB + // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask) #endif -// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. -#if !defined(VMA_EXTERNAL_MEMORY) - #if VK_KHR_external_memory - #define VMA_EXTERNAL_MEMORY 1 - #else - #define VMA_EXTERNAL_MEMORY 0 - #endif +#ifndef VMA_BITSCAN_MSB + // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask) #endif -// Define these macros to decorate all public functions with additional code, -// before and after returned type, appropriately. This may be useful for -// exporting the functions when compiling VMA as a separate library. Example: -// #define VMA_CALL_PRE __declspec(dllexport) -// #define VMA_CALL_POST __cdecl -#ifndef VMA_CALL_PRE - #define VMA_CALL_PRE -#endif -#ifndef VMA_CALL_POST - #define VMA_CALL_POST +#ifndef VMA_MIN + #define VMA_MIN(v1, v2) ((std::min)((v1), (v2))) #endif -// Define this macro to decorate pointers with an attribute specifying the -// length of the array they point to if they are not null. -// -// The length may be one of -// - The name of another parameter in the argument list where the pointer is declared -// - The name of another member in the struct where the pointer is declared -// - The name of a member of a struct type, meaning the value of that member in -// the context of the call. For example -// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), -// this means the number of memory heaps available in the device associated -// with the VmaAllocator being dealt with. -#ifndef VMA_LEN_IF_NOT_NULL - #define VMA_LEN_IF_NOT_NULL(len) +#ifndef VMA_MAX + #define VMA_MAX(v1, v2) ((std::max)((v1), (v2))) #endif -// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. -// see: https://clang.llvm.org/docs/AttributeReference.html#nullable -#ifndef VMA_NULLABLE - #ifdef __clang__ - #define VMA_NULLABLE _Nullable - #else - #define VMA_NULLABLE - #endif +#ifndef VMA_SWAP + #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) #endif -// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. -// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull -#ifndef VMA_NOT_NULL - #ifdef __clang__ - #define VMA_NOT_NULL _Nonnull - #else - #define VMA_NOT_NULL - #endif +#ifndef VMA_SORT + #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) #endif -// If non-dispatchable handles are represented as pointers then we can give -// then nullability annotations -#ifndef VMA_NOT_NULL_NON_DISPATCHABLE - #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) - #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL - #else - #define VMA_NOT_NULL_NON_DISPATCHABLE - #endif +#ifndef VMA_DEBUG_LOG + #define VMA_DEBUG_LOG(format, ...) + /* + #define VMA_DEBUG_LOG(format, ...) do { \ + printf(format, __VA_ARGS__); \ + printf("\n"); \ + } while(false) + */ #endif -#ifndef VMA_NULLABLE_NON_DISPATCHABLE - #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) - #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE - #else - #define VMA_NULLABLE_NON_DISPATCHABLE - #endif +// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. +#if VMA_STATS_STRING_ENABLED + static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) + { + snprintf(outStr, strLen, "%u", static_cast(num)); + } + static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) + { + snprintf(outStr, strLen, "%llu", static_cast(num)); + } + static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) + { + snprintf(outStr, strLen, "%p", ptr); + } #endif -/** \struct VmaAllocator -\brief Represents main object of this library initialized. - -Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. -Call function vmaDestroyAllocator() to destroy it. - -It is recommended to create just one object of this type per `VkDevice` object, -right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. -*/ -VK_DEFINE_HANDLE(VmaAllocator) - -/// Callback function called after successful vkAllocateMemory. -typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryType, - VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, - VkDeviceSize size, - void* VMA_NULLABLE pUserData); -/// Callback function called before vkFreeMemory. -typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryType, - VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, - VkDeviceSize size, - void* VMA_NULLABLE pUserData); - -/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. +#ifndef VMA_MUTEX + class VmaMutex + { + public: + void Lock() { m_Mutex.lock(); } + void Unlock() { m_Mutex.unlock(); } + bool TryLock() { return m_Mutex.try_lock(); } + private: + std::mutex m_Mutex; + }; + #define VMA_MUTEX VmaMutex +#endif -Provided for informative purpose, e.g. to gather statistics about number of -allocations or total amount of memory allocated in Vulkan. +// Read-write mutex, where "read" is shared access, "write" is exclusive access. +#ifndef VMA_RW_MUTEX + #if VMA_USE_STL_SHARED_MUTEX + // Use std::shared_mutex from C++17. + #include + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.lock_shared(); } + void UnlockRead() { m_Mutex.unlock_shared(); } + bool TryLockRead() { return m_Mutex.try_lock_shared(); } + void LockWrite() { m_Mutex.lock(); } + void UnlockWrite() { m_Mutex.unlock(); } + bool TryLockWrite() { return m_Mutex.try_lock(); } + private: + std::shared_mutex m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 + // Use SRWLOCK from WinAPI. + // Minimum supported client = Windows Vista, server = Windows Server 2008. + class VmaRWMutex + { + public: + VmaRWMutex() { InitializeSRWLock(&m_Lock); } + void LockRead() { AcquireSRWLockShared(&m_Lock); } + void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } + bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } + void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } + void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } + bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } + private: + SRWLOCK m_Lock; + }; + #define VMA_RW_MUTEX VmaRWMutex + #else + // Less efficient fallback: Use normal mutex. + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.Lock(); } + void UnlockRead() { m_Mutex.Unlock(); } + bool TryLockRead() { return m_Mutex.TryLock(); } + void LockWrite() { m_Mutex.Lock(); } + void UnlockWrite() { m_Mutex.Unlock(); } + bool TryLockWrite() { return m_Mutex.TryLock(); } + private: + VMA_MUTEX m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #endif // #if VMA_USE_STL_SHARED_MUTEX +#endif // #ifndef VMA_RW_MUTEX -Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +/* +If providing your own implementation, you need to implement a subset of std::atomic. */ -typedef struct VmaDeviceMemoryCallbacks { - /// Optional, can be null. - PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; - /// Optional, can be null. - PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; - /// Optional, can be null. - void* VMA_NULLABLE pUserData; -} VmaDeviceMemoryCallbacks; +#ifndef VMA_ATOMIC_UINT32 + #include + #define VMA_ATOMIC_UINT32 std::atomic +#endif -/// Flags for created #VmaAllocator. -typedef enum VmaAllocatorCreateFlagBits { - /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. +#ifndef VMA_ATOMIC_UINT64 + #include + #define VMA_ATOMIC_UINT64 std::atomic +#endif - Using this flag may increase performance because internal mutexes are not used. +#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY + /** + Every allocation will have its own memory block. + Define to 1 for debugging purposes only. */ - VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, - /** \brief Enables usage of VK_KHR_dedicated_allocation extension. - - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. - - Using this extension will automatically allocate dedicated blocks of memory for - some buffers and images instead of suballocating place for them out of bigger - memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT - flag) when it is recommended by the driver. It may improve performance on some - GPUs. - - You may set this flag only if you found out that following device extensions are - supported, you enabled them while creating Vulkan device passed as - VmaAllocatorCreateInfo::device, and you want them to be used internally by this - library: + #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) +#endif - - VK_KHR_get_memory_requirements2 (device extension) - - VK_KHR_dedicated_allocation (device extension) +#ifndef VMA_MIN_ALIGNMENT + /** + Minimum alignment of all allocations, in bytes. + Set to more than 1 for debugging purposes. Must be power of two. + */ + #ifdef VMA_DEBUG_ALIGNMENT // Old name + #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT + #else + #define VMA_MIN_ALIGNMENT (1) + #endif +#endif - When this flag is set, you can experience following warnings reported by Vulkan - validation layer. You can ignore them. +#ifndef VMA_DEBUG_MARGIN + /** + Minimum margin after every allocation, in bytes. + Set nonzero for debugging purposes only. + */ + #define VMA_DEBUG_MARGIN (0) +#endif - > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. +#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS + /** + Define this macro to 1 to automatically fill new allocations and destroyed + allocations with some bit pattern. */ - VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) +#endif + +#ifndef VMA_DEBUG_DETECT_CORRUPTION /** - Enables usage of VK_KHR_bind_memory2 extension. + Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to + enable writing magic value to the margin after every allocation and + validating it, so that memory corruptions (out-of-bounds writes) are detected. + */ + #define VMA_DEBUG_DETECT_CORRUPTION (0) +#endif - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. +#ifndef VMA_DEBUG_GLOBAL_MUTEX + /** + Set this to 1 for debugging purposes only, to enable single mutex protecting all + entry calls to the library. Can be useful for debugging multithreading issues. + */ + #define VMA_DEBUG_GLOBAL_MUTEX (0) +#endif - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library. +#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY + /** + Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. + Set to more than 1 for debugging purposes only. Must be power of two. + */ + #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) +#endif - The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, - which allow to pass a chain of `pNext` structures while binding. - This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). +#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + /* + Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount + and return error instead of leaving up to Vulkan implementation what to do in such cases. */ - VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, - /** - Enables usage of VK_EXT_memory_budget extension. + #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) +#endif - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library, along with another instance extension - VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). +#ifndef VMA_SMALL_HEAP_MAX_SIZE + /// Maximum size of a memory heap in Vulkan to consider it "small". + #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) +#endif - The extension provides query for current memory usage and budget, which will probably - be more accurate than an estimation used by the library otherwise. - */ - VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, - /** - Enables usage of VK_AMD_device_coherent_memory extension. +#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE + /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. + #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) +#endif - You may set this flag only if you: +#ifndef VMA_CLASS_NO_COPY + #define VMA_CLASS_NO_COPY(className) \ + private: \ + className(const className&) = delete; \ + className& operator=(const className&) = delete; +#endif - - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, - - want it to be used internally by this library. +#define VMA_VALIDATE(cond) do { if(!(cond)) { \ + VMA_ASSERT(0 && "Validation failed: " #cond); \ + return false; \ + } } while(false) - The extension and accompanying device feature provide access to memory types with - `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. - They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. +/******************************************************************************* +END OF CONFIGURATION +*/ +#endif // _VMA_CONFIGURATION - When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. - To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, - returning `VK_ERROR_FEATURE_NOT_PRESENT`. - */ - VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, - /** - Enables usage of "buffer device address" feature, which allows you to use function - `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. - You may set this flag only if you: +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; +// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. +static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; - 1. (For Vulkan version < 1.2) Found as available and enabled device extension - VK_KHR_buffer_device_address. - This extension is promoted to core Vulkan 1.2. - 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. +// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; +static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; +static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; +static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; +static const uint32_t VMA_VENDOR_ID_AMD = 4098; - When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. - The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to - allocated memory blocks wherever it might be needed. - For more information, see documentation chapter \ref enabling_buffer_device_address. - */ - VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, - /** - Enables usage of VK_EXT_memory_priority extension in the library. - - You may set this flag only if you found available and enabled this device extension, - along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, - while creating Vulkan device passed as VmaAllocatorCreateInfo::device. - - When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority - are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. - - A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. - Larger values are higher priority. The granularity of the priorities is implementation-dependent. - It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. - The value to be used for default priority is 0.5. - For more details, see the documentation of the VK_EXT_memory_priority extension. - */ - VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, - - VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocatorCreateFlagBits; -typedef VkFlags VmaAllocatorCreateFlags; - -/** \brief Pointers to some Vulkan functions - a subset used by the library. - -Used in VmaAllocatorCreateInfo::pVulkanFunctions. -*/ -typedef struct VmaVulkanFunctions { - PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; - PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; - PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; - PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; - PFN_vkMapMemory VMA_NULLABLE vkMapMemory; - PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; - PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; - PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; - PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; - PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; - PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; - PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; - PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; - PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; - PFN_vkCreateImage VMA_NULLABLE vkCreateImage; - PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; - PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; - PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; -#endif -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; - PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; -#endif -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; +#if VMA_STATS_STRING_ENABLED +// Correspond to values of enum VmaSuballocationType. +static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = +{ + "FREE", + "UNKNOWN", + "BUFFER", + "IMAGE_UNKNOWN", + "IMAGE_LINEAR", + "IMAGE_OPTIMAL", +}; #endif -} VmaVulkanFunctions; -/// Flags to be used in VmaRecordSettings::flags. -typedef enum VmaRecordFlagBits { - /** \brief Enables flush after recording every function call. +static VkAllocationCallbacks VmaEmptyAllocationCallbacks = + { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; - Enable it if you expect your application to crash, which may leave recording file truncated. - It may degrade performance though. - */ - VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001, - VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaRecordFlagBits; -typedef VkFlags VmaRecordFlags; +#ifndef _VMA_ENUM_DECLARATIONS -/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings. -typedef struct VmaRecordSettings +enum VmaSuballocationType { - /// Flags for recording. Use #VmaRecordFlagBits enum. - VmaRecordFlags flags; - /** \brief Path to the file that should be written by the recording. + VMA_SUBALLOCATION_TYPE_FREE = 0, + VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, + VMA_SUBALLOCATION_TYPE_BUFFER = 2, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, + VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +}; - Suggested extension: "csv". - If the file already exists, it will be overwritten. - It will be opened for the whole time #VmaAllocator object is alive. - If opening this file fails, creation of the whole allocator object fails. - */ - const char* VMA_NOT_NULL pFilePath; -} VmaRecordSettings; +enum VMA_CACHE_OPERATION +{ + VMA_CACHE_FLUSH, + VMA_CACHE_INVALIDATE +}; -/// Description of a Allocator to be created. -typedef struct VmaAllocatorCreateInfo +enum class VmaAllocationRequestType { - /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. - VmaAllocatorCreateFlags flags; - /// Vulkan physical device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkPhysicalDevice VMA_NOT_NULL physicalDevice; - /// Vulkan device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkDevice VMA_NOT_NULL device; - /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. - /** Set to 0 to use default, which is currently 256 MiB. */ - VkDeviceSize preferredLargeHeapBlockSize; - /// Custom CPU memory allocation callbacks. Optional. - /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ - const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; - /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. - /** Optional, can be null. */ - const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; - /** \brief Maximum number of additional frames that are in use at the same time as current frame. + Normal, + TLSF, + // Used by "Linear" algorithm. + UpperAddress, + EndOf1st, + EndOf2nd, +}; - This value is used only when you make allocations with - VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become - lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. +#endif // _VMA_ENUM_DECLARATIONS - For example, if you double-buffer your command buffers, so resources used for - rendering in previous frame may still be in use by the GPU at the moment you - allocate resources needed for the current frame, set this value to 1. +#ifndef _VMA_FORWARD_DECLARATIONS +// Opaque handle used by allocation algorithms to identify single allocation in any conforming way. +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle); - If you want to allow any allocations other than used in the current frame to - become lost, set this value to 0. - */ - uint32_t frameInUseCount; - /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. +struct VmaMutexLock; +struct VmaMutexLockRead; +struct VmaMutexLockWrite; - If not NULL, it must be a pointer to an array of - `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on - maximum number of bytes that can be allocated out of particular Vulkan memory - heap. +template +struct AtomicTransactionalIncrement; - Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that - heap. This is also the default in case of `pHeapSizeLimit` = NULL. +template +struct VmaStlAllocator; - If there is a limit defined for a heap: +template +class VmaVector; - - If user tries to allocate more memory from that heap using this allocator, - the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the - value of this limit will be reported instead when using vmaGetMemoryProperties(). +template +class VmaSmallVector; - Warning! Using this feature may not be equivalent to installing a GPU with - smaller amount of memory, because graphics driver doesn't necessary fail new - allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is - exceeded. It may return success and just silently migrate some device memory - blocks to system RAM. This driver behavior can also be controlled using - VK_AMD_memory_overallocation_behavior extension. - */ - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; +template +class VmaPoolAllocator; - /** \brief Pointers to Vulkan functions. Can be null. +template +struct VmaListItem; - For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). - */ - const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; - /** \brief Parameters for recording of VMA calls. Can be null. +template +class VmaRawList; - If not null, it enables recording of calls to VMA functions to a file. - If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro, - creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`. - */ - const VmaRecordSettings* VMA_NULLABLE pRecordSettings; - /** \brief Handle to Vulkan instance object. +template +class VmaList; - Starting from version 3.0.0 this member is no longer optional, it must be set! - */ - VkInstance VMA_NOT_NULL instance; - /** \brief Optional. The highest version of Vulkan that the application is designed to use. +template +class VmaIntrusiveLinkedList; - It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. - The patch version number specified is ignored. Only the major and minor versions are considered. - It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. - Only versions 1.0, 1.1, 1.2 are supported by the current implementation. - Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. - */ - uint32_t vulkanApiVersion; -#if VMA_EXTERNAL_MEMORY - /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. +// Unused in this version +#if 0 +template +struct VmaPair; +template +struct VmaPairFirstLess; - If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` - elements, defining external memory handle types of particular Vulkan memory type, - to be passed using `VkExportMemoryAllocateInfoKHR`. +template +class VmaMap; +#endif - Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. - This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. - */ - const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; -#endif // #if VMA_EXTERNAL_MEMORY -} VmaAllocatorCreateInfo; +#if VMA_STATS_STRING_ENABLED +class VmaStringBuilder; +class VmaJsonWriter; +#endif -/// Creates Allocator object. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocator VMA_NULLABLE * VMA_NOT_NULL pAllocator); +class VmaDeviceMemoryBlock; -/// Destroys allocator object. -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator VMA_NULLABLE allocator); +struct VmaDedicatedAllocationListItemTraits; +class VmaDedicatedAllocationList; -/** \brief Information about existing #VmaAllocator object. -*/ -typedef struct VmaAllocatorInfo -{ - /** \brief Handle to Vulkan instance object. +struct VmaSuballocation; +struct VmaSuballocationOffsetLess; +struct VmaSuballocationOffsetGreater; +struct VmaSuballocationItemSizeLess; - This is the same value as has been passed through VmaAllocatorCreateInfo::instance. - */ - VkInstance VMA_NOT_NULL instance; - /** \brief Handle to Vulkan physical device object. +typedef VmaList> VmaSuballocationList; - This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. - */ - VkPhysicalDevice VMA_NOT_NULL physicalDevice; - /** \brief Handle to Vulkan device object. +struct VmaAllocationRequest; - This is the same value as has been passed through VmaAllocatorCreateInfo::device. - */ - VkDevice VMA_NOT_NULL device; -} VmaAllocatorInfo; +class VmaBlockMetadata; +class VmaBlockMetadata_Generic; +class VmaBlockMetadata_Linear; +class VmaBlockMetadata_Buddy; +class VmaBlockMetadata_TLSF; -/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. +class VmaBlockVector; -It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to -`VkPhysicalDevice`, `VkDevice` etc. every time using this function. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); +struct VmaDefragmentationMove; +class VmaDefragmentationAlgorithm; +class VmaDefragmentationAlgorithm_Generic; +class VmaDefragmentationAlgorithm_Fast; -/** -PhysicalDeviceProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator VMA_NOT_NULL allocator, - const VkPhysicalDeviceProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceProperties); +struct VmaPoolListItemTraits; -/** -PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator VMA_NOT_NULL allocator, - const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); +struct VmaBlockDefragmentationContext; +class VmaBlockVectorDefragmentationContext; -/** -\brief Given Memory Type Index, returns Property Flags of this memory type. +struct VmaCurrentBudgetData; -This is just a convenience function. Same information can be obtained using -vmaGetMemoryProperties(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); +class VmaAllocationObjectAllocator; -/** \brief Sets index of the current frame. +#endif // _VMA_FORWARD_DECLARATIONS -This function must be used if you make allocations with -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and -#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator -when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot -become lost in the current frame. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t frameIndex); -/** \brief Calculated statistics of memory usage in entire allocator. -*/ -typedef struct VmaStatInfo +#ifndef _VMA_FUNCTIONS +// Returns number of bits set to 1 in (v). +static inline uint32_t VmaCountBitsSet(uint32_t v) { - /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. - uint32_t blockCount; - /// Number of #VmaAllocation allocation objects allocated. - uint32_t allocationCount; - /// Number of free ranges of memory between allocations. - uint32_t unusedRangeCount; - /// Total number of bytes occupied by all allocations. - VkDeviceSize usedBytes; - /// Total number of bytes occupied by unused ranges. - VkDeviceSize unusedBytes; - VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; - VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; -} VmaStatInfo; +#ifdef _MSC_VER + return __popcnt(v); +#elif defined __GNUC__ || defined __clang__ + return static_cast(__builtin_popcount(v)); +#else + uint32_t c = v - ((v >> 1) & 0x55555555); + c = ((c >> 2) & 0x33333333) + (c & 0x33333333); + c = ((c >> 4) + c) & 0x0F0F0F0F; + c = ((c >> 8) + c) & 0x00FF00FF; + c = ((c >> 16) + c) & 0x0000FFFF; + return c; +#endif +} -/// General statistics from current state of Allocator. -typedef struct VmaStats +static inline uint8_t VmaBitScanLSB(uint64_t mask) { - VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; - VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; - VmaStatInfo total; -} VmaStats; - -/** \brief Retrieves statistics from current state of the Allocator. - -This function is called "calculate" not "get" because it has to traverse all -internal data structures, so it may be quite slow. For faster but more brief statistics -suitable to be called every frame or every allocation, use vmaGetBudget(). - -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( - VmaAllocator VMA_NOT_NULL allocator, - VmaStats* VMA_NOT_NULL pStats); +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanForward64(&pos, mask)) + return static_cast(pos); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast(__builtin_ffsll(mask)) - 1U; +#else + uint8_t pos = 0; + uint64_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 63); + return UINT8_MAX; +#endif +} -/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap. -*/ -typedef struct VmaBudget +static inline uint8_t VmaBitScanLSB(uint32_t mask) { - /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. - */ - VkDeviceSize blockBytes; - - /** \brief Sum size of all allocations created in particular heap, in bytes. - - Usually less or equal than `blockBytes`. - Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - - available for new allocations or wasted due to fragmentation. +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanForward(&pos, mask)) + return static_cast(pos); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast(__builtin_ffs(mask)) - 1U; +#else + uint8_t pos = 0; + uint32_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 31); + return UINT8_MAX; +#endif +} - It might be greater than `blockBytes` if there are some allocations in lost state, as they account - to this value as well. - */ - VkDeviceSize allocationBytes; +static inline uint8_t VmaBitScanMSB(uint64_t mask) +{ +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanReverse64(&pos, mask)) + return static_cast(pos); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 63 - static_cast(__builtin_clzll(mask)); +#else + uint8_t pos = 63; + uint64_t bit = 1ULL << 63; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} - /** \brief Estimated current memory usage of the program, in bytes. +static inline uint8_t VmaBitScanMSB(uint32_t mask) +{ +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanReverse(&pos, mask)) + return static_cast(pos); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 31 - static_cast(__builtin_clz(mask)); +#else + uint8_t pos = 31; + uint32_t bit = 1UL << 31; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} - Fetched from system using `VK_EXT_memory_budget` extension if enabled. +/* +Returns true if given number is a power of two. +T must be unsigned integer number or signed integer but always nonnegative. +For 0 returns true. +*/ +template +inline bool VmaIsPow2(T x) +{ + return (x & (x - 1)) == 0; +} - It might be different than `blockBytes` (usually higher) due to additional implicit objects - also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or - `VkDeviceMemory` blocks allocated outside of this library, if any. - */ - VkDeviceSize usage; +// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignUp(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return (val + alignment - 1) & ~(alignment - 1); +} - /** \brief Estimated amount of memory available to the program, in bytes. +// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. +// Use types like uint32_t, uint64_t as T. +template +static inline T VmaAlignDown(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return val & ~(alignment - 1); +} - Fetched from system using `VK_EXT_memory_budget` extension if enabled. +// Division with mathematical rounding to nearest number. +template +static inline T VmaRoundDiv(T x, T y) +{ + return (x + (y / (T)2)) / y; +} - It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors - external to the program, like other programs also consuming system resources. - Difference `budget - usage` is the amount of additional memory that can probably - be allocated without problems. Exceeding the budget may result in various problems. - */ - VkDeviceSize budget; -} VmaBudget; +// Divide by 'y' and round up to nearest integer. +template +static inline T VmaDivideRoundingUp(T x, T y) +{ + return (x + y - (T)1) / y; +} -/** \brief Retrieves information about current memory budget for all memory heaps. +// Returns smallest power of 2 greater or equal to v. +static inline uint32_t VmaNextPow2(uint32_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} -\param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used. +static inline uint64_t VmaNextPow2(uint64_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v++; + return v; +} -This function is called "get" not "calculate" because it is very fast, suitable to be called -every frame or every allocation. For more detailed statistics use vmaCalculateStats(). +// Returns largest power of 2 less or equal to v. +static inline uint32_t VmaPrevPow2(uint32_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v = v ^ (v >> 1); + return v; +} -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( - VmaAllocator VMA_NOT_NULL allocator, - VmaBudget* VMA_NOT_NULL pBudget); +static inline uint64_t VmaPrevPow2(uint64_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v = v ^ (v >> 1); + return v; +} -#ifndef VMA_STATS_STRING_ENABLED -#define VMA_STATS_STRING_ENABLED 1 -#endif +static inline bool VmaStrIsEmpty(const char* pStr) +{ + return pStr == VMA_NULL || *pStr == '\0'; +} #if VMA_STATS_STRING_ENABLED +static const char* VmaAlgorithmToStr(uint32_t algorithm) +{ + switch (algorithm) + { + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + return "Linear"; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + return "Buddy"; + case VMA_POOL_CREATE_TLSF_ALGORITHM_BIT: + return "TLSF"; + case 0: + return "Default"; + default: + VMA_ASSERT(0); + return ""; + } +} +#endif // VMA_STATS_STRING_ENABLED -/// Builds and returns statistics as string in JSON format. -/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator VMA_NOT_NULL allocator, - char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, - VkBool32 detailedMap); - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator VMA_NOT_NULL allocator, - char* VMA_NULLABLE pStatsString); +#ifndef VMA_SORT +template +Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) +{ + Iterator centerValue = end; --centerValue; + Iterator insertIndex = beg; + for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) + { + if (cmp(*memTypeIndex, *centerValue)) + { + if (insertIndex != memTypeIndex) + { + VMA_SWAP(*memTypeIndex, *insertIndex); + } + ++insertIndex; + } + } + if (insertIndex != centerValue) + { + VMA_SWAP(*insertIndex, *centerValue); + } + return insertIndex; +} -#endif // #if VMA_STATS_STRING_ENABLED +template +void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) +{ + if (beg < end) + { + Iterator it = VmaQuickSortPartition(beg, end, cmp); + VmaQuickSort(beg, it, cmp); + VmaQuickSort(it + 1, end, cmp); + } +} -/** \struct VmaPool -\brief Represents custom memory pool +#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) +#endif // VMA_SORT -Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. -Call function vmaDestroyPool() to destroy it. +/* +Returns true if two memory blocks occupy overlapping pages. +ResourceA must be in less memory offset than ResourceB. -For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" +chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". */ -VK_DEFINE_HANDLE(VmaPool) - -typedef enum VmaMemoryUsage +static inline bool VmaBlocksOnSamePage( + VkDeviceSize resourceAOffset, + VkDeviceSize resourceASize, + VkDeviceSize resourceBOffset, + VkDeviceSize pageSize) { - /** No intended memory usage specified. - Use other members of VmaAllocationCreateInfo to specify your requirements. - */ - VMA_MEMORY_USAGE_UNKNOWN = 0, - /** Memory will be used on device only, so fast access from the device is preferred. - It usually means device-local GPU (video) memory. - No need to be mappable on host. - It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`. - - Usage: + VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); + VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; + VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); + VkDeviceSize resourceBStart = resourceBOffset; + VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); + return resourceAEndPage == resourceBStartPage; +} - - Resources written and read by device, e.g. images used as attachments. - - Resources transferred from host once (immutable) or infrequently and read by - device multiple times, e.g. textures to be sampled, vertex buffers, uniform - (constant) buffers, and majority of other types of resources used on GPU. +/* +Returns true if given suballocation types could conflict and must respect +VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer +or linear image and another one is optimal image. If type is unknown, behave +conservatively. +*/ +static inline bool VmaIsBufferImageGranularityConflict( + VmaSuballocationType suballocType1, + VmaSuballocationType suballocType2) +{ + if (suballocType1 > suballocType2) + { + VMA_SWAP(suballocType1, suballocType2); + } - Allocation may still end up in `HOST_VISIBLE` memory on some implementations. - In such case, you are free to map it. - You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type. - */ - VMA_MEMORY_USAGE_GPU_ONLY = 1, - /** Memory will be mappable on host. - It usually means CPU (system) memory. - Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`. - CPU access is typically uncached. Writes may be write-combined. - Resources created in this pool may still be accessible to the device, but access to them can be slow. - It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`. - - Usage: Staging copy of resources used as transfer source. - */ - VMA_MEMORY_USAGE_CPU_ONLY = 2, - /** - Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU. - CPU access is typically uncached. Writes may be write-combined. + switch (suballocType1) + { + case VMA_SUBALLOCATION_TYPE_FREE: + return false; + case VMA_SUBALLOCATION_TYPE_UNKNOWN: + return true; + case VMA_SUBALLOCATION_TYPE_BUFFER: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: + return false; + default: + VMA_ASSERT(0); + return true; + } +} - Usage: Resources written frequently by host (dynamic), read by device. E.g. textures (with LINEAR layout), vertex buffers, uniform buffers updated every frame or every draw call. - */ - VMA_MEMORY_USAGE_CPU_TO_GPU = 3, - /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached. - It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`. +static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + uint32_t* pDst = (uint32_t*)((char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pDst) + { + *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + } +#else + // no-op +#endif +} - Usage: +static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pSrc) + { + if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) + { + return false; + } + } +#endif + return true; +} - - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping. - - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection. - */ - VMA_MEMORY_USAGE_GPU_TO_CPU = 4, - /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`. +/* +Fills structure with parameters of an example buffer to be used for transfers +during GPU memory defragmentation. +*/ +static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) +{ + memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); + outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. +} - Usage: Staging copy of resources moved from GPU memory to CPU memory as part - of custom paging/residency mechanism, to be moved back to GPU memory when needed. - */ - VMA_MEMORY_USAGE_CPU_COPY = 5, - /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. - Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. - Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. +/* +Performs binary search and returns iterator to first element that is greater or +equal to (key), according to comparison (cmp). - Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - */ - VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, +Cmp should return true if first argument is less than second argument. - VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF -} VmaMemoryUsage; +Returned value is the found element, if present in the collection or place where +new element with value (key) should be inserted. +*/ +template +static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) +{ + size_t down = 0, up = (end - beg); + while (down < up) + { + const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation + if (cmp(*(beg + mid), key)) + { + down = mid + 1; + } + else + { + up = mid; + } + } + return beg + down; +} -/// Flags to be passed as VmaAllocationCreateInfo::flags. -typedef enum VmaAllocationCreateFlagBits { - /** \brief Set this flag if the allocation should have its own memory block. +template +IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) +{ + IterT it = VmaBinaryFindFirstNotLess( + beg, end, value, cmp); + if (it == end || + (!cmp(*it, value) && !cmp(value, *it))) + { + return it; + } + return end; +} - Use it for special, big resources, like fullscreen images used as attachments. +/* +Returns true if all pointers in the array are not-null and unique. +Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. +T must be pointer type, e.g. VmaAllocation, VmaPool. +*/ +template +static bool VmaValidatePointerArray(uint32_t count, const T* arr) +{ + for (uint32_t i = 0; i < count; ++i) + { + const T iPtr = arr[i]; + if (iPtr == VMA_NULL) + { + return false; + } + for (uint32_t j = i + 1; j < count; ++j) + { + if (iPtr == arr[j]) + { + return false; + } + } + } + return true; +} - You should not use this flag if VmaAllocationCreateInfo::pool is not null. - */ - VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, +template +static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) +{ + newStruct->pNext = mainStruct->pNext; + mainStruct->pNext = newStruct; +} - /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation - If new allocation cannot be placed in any of the existing blocks, allocation - fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. +static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) +{ + void* result = VMA_NULL; + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnAllocation != VMA_NULL)) + { + result = (*pAllocationCallbacks->pfnAllocation)( + pAllocationCallbacks->pUserData, + size, + alignment, + VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); + } + else + { + result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + } + VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); + return result; +} - You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and - #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. +static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) +{ + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnFree != VMA_NULL)) + { + (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + } + else + { + VMA_SYSTEM_ALIGNED_FREE(ptr); + } +} - If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ - VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, - /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. +template +static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); +} - Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. +template +static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); +} - It is valid to use this flag for allocation made from memory type that is not - `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is - useful if you need an allocation that is efficient to use on GPU - (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that - support it (e.g. Intel GPU). +#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) - You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT. - */ - VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, - /** Allocation created with this flag can become lost as a result of another - allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you - must check it before use. +#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) - To check if allocation is not lost, call vmaGetAllocationInfo() and check if - VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`. +template +static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) +{ + ptr->~T(); + VmaFree(pAllocationCallbacks, ptr); +} - For details about supporting lost allocations, see Lost Allocations - chapter of User Guide on Main Page. +template +static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) +{ + if (ptr != VMA_NULL) + { + for (size_t i = count; i--; ) + { + ptr[i].~T(); + } + VmaFree(pAllocationCallbacks, ptr); + } +} - You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT. - */ - VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008, - /** While creating allocation using this flag, other allocations that were - created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost. +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) +{ + if (srcStr != VMA_NULL) + { + const size_t len = strlen(srcStr); + char* const result = vma_new_array(allocs, char, len + 1); + memcpy(result, srcStr, len + 1); + return result; + } + return VMA_NULL; +} - For details about supporting lost allocations, see Lost Allocations - chapter of User Guide on Main Page. - */ - VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010, - /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a - null-terminated string. Instead of copying pointer value, a local copy of the - string is made and stored in allocation's `pUserData`. The string is automatically - freed together with the allocation. It is also used in vmaBuildStatsString(). - */ - VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, - /** Allocation will be created from upper stack in a double stack pool. +#if VMA_STATS_STRING_ENABLED +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen) +{ + if (srcStr != VMA_NULL) + { + char* const result = vma_new_array(allocs, char, strLen + 1); + memcpy(result, srcStr, strLen); + result[strLen] = '\0'; + return result; + } + return VMA_NULL; +} +#endif // VMA_STATS_STRING_ENABLED - This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. - */ - VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, - /** Create both buffer/image and allocation, but don't bind them together. - It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. - The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). - Otherwise it is ignored. - */ - VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, - /** Create allocation only if additional device memory required for it, if any, won't exceed - memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - */ - VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, +static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) +{ + if (str != VMA_NULL) + { + const size_t len = strlen(str); + vma_delete_array(allocs, str, len + 1); + } +} - /** Allocation strategy that chooses smallest possible free range for the - allocation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000, - /** Allocation strategy that chooses biggest possible free range for the - allocation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000, - /** Allocation strategy that chooses first suitable free range for the - allocation. +template +size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + vector.data(), + vector.data() + vector.size(), + value, + CmpLess()) - vector.data(); + VmaVectorInsert(vector, indexToInsert, value); + return indexToInsert; +} - "First" doesn't necessarily means the one with smallest offset in memory, - but rather the one that is easiest and fastest to find. - */ - VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000, +template +bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + CmpLess comparator; + typename VectorT::iterator it = VmaBinaryFindFirstNotLess( + vector.begin(), + vector.end(), + value, + comparator); + if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) + { + size_t indexToRemove = it - vector.begin(); + VmaVectorRemove(vector, indexToRemove); + return true; + } + return false; +} +#endif // _VMA_FUNCTIONS - /** Allocation strategy that tries to minimize memory usage. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT, - /** Allocation strategy that tries to minimize allocation time. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, - /** Allocation strategy that tries to minimize memory fragmentation. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT, +#ifndef _VMA_STAT_INFO_FUNCTIONS +static void VmaInitStatInfo(VmaStatInfo& outInfo) +{ + memset(&outInfo, 0, sizeof(outInfo)); + outInfo.allocationSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMin = UINT64_MAX; +} - /** A bit mask to extract only `STRATEGY` bits from entire set of flags. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MASK = - VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT, +// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. +static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) +{ + inoutInfo.blockCount += srcInfo.blockCount; + inoutInfo.allocationCount += srcInfo.allocationCount; + inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; + inoutInfo.usedBytes += srcInfo.usedBytes; + inoutInfo.unusedBytes += srcInfo.unusedBytes; + inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); + inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); + inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); + inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); +} - VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocationCreateFlagBits; -typedef VkFlags VmaAllocationCreateFlags; +static void VmaAddStatInfoAllocation(VmaStatInfo& inoutInfo, VkDeviceSize size) +{ + ++inoutInfo.allocationCount; + inoutInfo.usedBytes += size; + if (size < inoutInfo.allocationSizeMin) + { + inoutInfo.allocationSizeMin = size; + } + if (size > inoutInfo.allocationSizeMax) + { + inoutInfo.allocationSizeMax = size; + } +} -typedef struct VmaAllocationCreateInfo +static void VmaAddStatInfoUnusedRange(VmaStatInfo& inoutInfo, VkDeviceSize size) { - /// Use #VmaAllocationCreateFlagBits enum. - VmaAllocationCreateFlags flags; - /** \brief Intended usage of memory. + ++inoutInfo.unusedRangeCount; + inoutInfo.unusedBytes += size; + if (size < inoutInfo.unusedRangeSizeMin) + { + inoutInfo.unusedRangeSizeMin = size; + } + if (size > inoutInfo.unusedRangeSizeMax) + { + inoutInfo.unusedRangeSizeMax = size; + } +} - You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored. - */ - VmaMemoryUsage usage; - /** \brief Flags that must be set in a Memory Type chosen for an allocation. +static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) +{ + inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? + VmaRoundDiv(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; + inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? + VmaRoundDiv(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; +} +#endif // _VMA_STAT_INFO_FUNCTIONS - Leave 0 if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored.*/ - VkMemoryPropertyFlags requiredFlags; - /** \brief Flags that preferably should be set in a memory type chosen for an allocation. - Set to 0 if no additional flags are preferred. \n - If `pool` is not null, this member is ignored. */ - VkMemoryPropertyFlags preferredFlags; - /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. +#ifndef _VMA_MUTEX_LOCK +// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). +struct VmaMutexLock +{ + VMA_CLASS_NO_COPY(VmaMutexLock) +public: + VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->Lock(); } + } + ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } } - Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if - it meets other requirements specified by this structure, with no further - restrictions on memory type index. \n - If `pool` is not null, this member is ignored. - */ - uint32_t memoryTypeBits; - /** \brief Pool that this allocation should be created in. +private: + VMA_MUTEX* m_pMutex; +}; - Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: - `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. - */ - VmaPool VMA_NULLABLE pool; - /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. +struct VmaMutexLockRead +{ + VMA_CLASS_NO_COPY(VmaMutexLockRead) +public: + VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockRead(); } + } + ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } - If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either - null or pointer to a null-terminated string. The string will be then copied to - internal buffer, so it doesn't need to be valid after allocation call. - */ - void* VMA_NULLABLE pUserData; - /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. +private: + VMA_RW_MUTEX* m_pMutex; +}; - It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object - and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. - */ - float priority; -} VmaAllocationCreateInfo; +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. +struct VmaMutexLockWrite +{ + VMA_CLASS_NO_COPY(VmaMutexLockWrite) +public: + VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) + : m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockWrite(); } + } + ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } -/** -\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. +private: + VMA_RW_MUTEX* m_pMutex; +}; -This algorithm tries to find a memory type that: +#if VMA_DEBUG_GLOBAL_MUTEX + static VMA_MUTEX gDebugGlobalMutex; + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); +#else + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK +#endif +#endif // _VMA_MUTEX_LOCK -- Is allowed by memoryTypeBits. -- Contains all the flags from pAllocationCreateInfo->requiredFlags. -- Matches intended usage. -- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. +#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT +// An object that increments given atomic but decrements it back in the destructor unless Commit() is called. +template +struct AtomicTransactionalIncrement +{ +public: + typedef std::atomic AtomicT; -\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result -from this function or any other allocating function probably means that your -device doesn't support any memory type with requested features for the specific -type of resource you want to use it for. Please check parameters of your -resource, like image layout (OPTIMAL versus LINEAR) or mip level count. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + ~AtomicTransactionalIncrement() + { + if(m_Atomic) + --(*m_Atomic); + } -/** -\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. + void Commit() { m_Atomic = nullptr; } + T Increment(AtomicT* atomic) + { + m_Atomic = atomic; + return m_Atomic->fetch_add(1); + } -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy buffer that never has memory bound. -It is just a convenience function, equivalent to calling: +private: + AtomicT* m_Atomic = nullptr; +}; +#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT -- `vkCreateBuffer` -- `vkGetBufferMemoryRequirements` -- `vmaFindMemoryTypeIndex` -- `vkDestroyBuffer` -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator VMA_NOT_NULL allocator, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); +#ifndef _VMA_STL_ALLOCATOR +// STL-compatible allocator. +template +struct VmaStlAllocator +{ + const VkAllocationCallbacks* const m_pCallbacks; + typedef T value_type; -/** -\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. + VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {} + template + VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) {} + VmaStlAllocator(const VmaStlAllocator&) = default; + VmaStlAllocator& operator=(const VmaStlAllocator&) = delete; -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy image that never has memory bound. -It is just a convenience function, equivalent to calling: + T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } + void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } -- `vkCreateImage` -- `vkGetImageMemoryRequirements` -- `vmaFindMemoryTypeIndex` -- `vkDestroyImage` -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator VMA_NOT_NULL allocator, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); - -/// Flags to be passed as VmaPoolCreateInfo::flags. -typedef enum VmaPoolCreateFlagBits { - /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. - - This is an optional optimization flag. + template + bool operator==(const VmaStlAllocator& rhs) const + { + return m_pCallbacks == rhs.m_pCallbacks; + } + template + bool operator!=(const VmaStlAllocator& rhs) const + { + return m_pCallbacks != rhs.m_pCallbacks; + } +}; +#endif // _VMA_STL_ALLOCATOR - If you always allocate using vmaCreateBuffer(), vmaCreateImage(), - vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator - knows exact type of your allocations so it can handle Buffer-Image Granularity - in the optimal way. +#ifndef _VMA_VECTOR +/* Class with interface compatible with subset of std::vector. +T must be POD because constructors and destructors are not called and memcpy is +used for these objects. */ +template +class VmaVector +{ +public: + typedef T value_type; + typedef T* iterator; + typedef const T* const_iterator; - If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), - exact type of such allocations is not known, so allocator must be conservative - in handling Buffer-Image Granularity, which can lead to suboptimal allocation - (wasted memory). In that case, if you can make sure you always allocate only - buffers and linear images or only optimal images out of this pool, use this flag - to make allocator disregard Buffer-Image Granularity and so make allocations - faster and more optimal. - */ - VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, + VmaVector(const AllocatorT& allocator); + VmaVector(size_t count, const AllocatorT& allocator); + // This version of the constructor is here for compatibility with pre-C++14 std::vector. + // value is unused. + VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {} + VmaVector(const VmaVector& src); + VmaVector& operator=(const VmaVector& rhs); + ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); } - /** \brief Enables alternative, linear allocation algorithm in this pool. + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_pArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } + const T* data() const { return m_pArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } - Specify this flag to enable linear allocation algorithm, which always creates - new allocations after last one and doesn't reuse space from allocations freed in - between. It trades memory consumption for simplified algorithm and data - structure, which has better performance and uses less memory for metadata. + iterator begin() { return m_pArray; } + iterator end() { return m_pArray + m_Count; } + const_iterator cbegin() const { return m_pArray; } + const_iterator cend() const { return m_pArray + m_Count; } + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } - By using this flag, you can achieve behavior of free-at-once, stack, - ring buffer, and double stack. For details, see documentation chapter - \ref linear_algorithm. + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } - When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default). + void push_back(const T& src); + void reserve(size_t newCapacity, bool freeMemory = false); + void resize(size_t newCount); + void clear() { resize(0); } + void shrink_to_fit(); + void insert(size_t index, const T& src); + void remove(size_t index); - For more details, see [Linear allocation algorithm](@ref linear_algorithm). - */ - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } - /** \brief Enables alternative, buddy allocation algorithm in this pool. +private: + AllocatorT m_Allocator; + T* m_pArray; + size_t m_Count; + size_t m_Capacity; +}; - It operates on a tree of blocks, each having size that is a power of two and - a half of its parent's size. Comparing to default algorithm, this one provides - faster allocation and deallocation and decreased external fragmentation, - at the expense of more memory wasted (internal fragmentation). +#ifndef _VMA_VECTOR_FUNCTIONS +template +VmaVector::VmaVector(const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(VMA_NULL), + m_Count(0), + m_Capacity(0) {} - For more details, see [Buddy allocation algorithm](@ref buddy_algorithm). - */ - VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, +template +VmaVector::VmaVector(size_t count, const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), + m_Count(count), + m_Capacity(count) {} - /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. - */ - VMA_POOL_CREATE_ALGORITHM_MASK = - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | - VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT, +template +VmaVector::VmaVector(const VmaVector& src) + : m_Allocator(src.m_Allocator), + m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), + m_Count(src.m_Count), + m_Capacity(src.m_Count) +{ + if (m_Count != 0) + { + memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + } +} - VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaPoolCreateFlagBits; -typedef VkFlags VmaPoolCreateFlags; +template +VmaVector& VmaVector::operator=(const VmaVector& rhs) +{ + if (&rhs != this) + { + resize(rhs.m_Count); + if (m_Count != 0) + { + memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + } + } + return *this; +} -/** \brief Describes parameter of created #VmaPool. -*/ -typedef struct VmaPoolCreateInfo { - /** \brief Vulkan memory type index to allocate this pool from. - */ - uint32_t memoryTypeIndex; - /** \brief Use combination of #VmaPoolCreateFlagBits. - */ - VmaPoolCreateFlags flags; - /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. +template +void VmaVector::push_back(const T& src) +{ + const size_t newIndex = size(); + resize(newIndex + 1); + m_pArray[newIndex] = src; +} - Specify nonzero to set explicit, constant size of memory blocks used by this - pool. +template +void VmaVector::reserve(size_t newCapacity, bool freeMemory) +{ + newCapacity = VMA_MAX(newCapacity, m_Count); - Leave 0 to use default and let the library manage block sizes automatically. - Sizes of particular blocks may vary. - */ - VkDeviceSize blockSize; - /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. + if ((newCapacity < m_Capacity) && !freeMemory) + { + newCapacity = m_Capacity; + } - Set to 0 to have no preallocated blocks and allow the pool be completely empty. - */ - size_t minBlockCount; - /** \brief Maximum number of blocks that can be allocated in this pool. Optional. + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; + if (m_Count != 0) + { + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } +} - Set to 0 to use default, which is `SIZE_MAX`, which means no limit. +template +void VmaVector::resize(size_t newCount) +{ + size_t newCapacity = m_Capacity; + if (newCount > m_Capacity) + { + newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + } - Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated - throughout whole lifetime of this pool. - */ - size_t maxBlockCount; - /** \brief Maximum number of additional frames that are in use at the same time as current frame. + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; + const size_t elementsToCopy = VMA_MIN(m_Count, newCount); + if (elementsToCopy != 0) + { + memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } - This value is used only when you make allocations with - #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become - lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount. + m_Count = newCount; +} - For example, if you double-buffer your command buffers, so resources used for - rendering in previous frame may still be in use by the GPU at the moment you - allocate resources needed for the current frame, set this value to 1. +template +void VmaVector::shrink_to_fit() +{ + if (m_Capacity > m_Count) + { + T* newArray = VMA_NULL; + if (m_Count > 0) + { + newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count); + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = m_Count; + m_pArray = newArray; + } +} - If you want to allow any allocations other than used in the current frame to - become lost, set this value to 0. - */ - uint32_t frameInUseCount; - /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. +template +void VmaVector::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + if (index < oldCount) + { + memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + } + m_pArray[index] = src; +} - It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. - Otherwise, this variable is ignored. - */ - float priority; - /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. +template +void VmaVector::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_VECTOR_FUNCTIONS - Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. - It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, - e.g. when doing interop with OpenGL. - */ - VkDeviceSize minAllocationAlignment; - /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. +template +static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) +{ + vec.insert(index, item); +} - Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. - It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. - Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. +template +static void VmaVectorRemove(VmaVector& vec, size_t index) +{ + vec.remove(index); +} +#endif // _VMA_VECTOR - Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, - can be attached automatically by this library when using other, more convenient of its features. - */ - void* VMA_NULLABLE pMemoryAllocateNext; -} VmaPoolCreateInfo; +#ifndef _VMA_SMALL_VECTOR +/* +This is a vector (a variable-sized array), optimized for the case when the array is small. -/** \brief Describes parameter of existing #VmaPool. +It contains some number of elements in-place, which allows it to avoid heap allocation +when the actual number of elements is below that threshold. This allows normal "small" +cases to be fast without losing generality for large inputs. */ -typedef struct VmaPoolStats { - /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. - */ - VkDeviceSize size; - /** \brief Total number of bytes in the pool not used by any #VmaAllocation. - */ - VkDeviceSize unusedSize; - /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost. - */ - size_t allocationCount; - /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. - */ - size_t unusedRangeCount; - /** \brief Size of the largest continuous free memory region available for new allocation. +template +class VmaSmallVector +{ +public: + typedef T value_type; + typedef T* iterator; - Making a new allocation of that size is not guaranteed to succeed because of - possible additional margin required to respect alignment and buffer/image - granularity. - */ - VkDeviceSize unusedRangeSizeMax; - /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. - */ - size_t blockCount; -} VmaPoolStats; + VmaSmallVector(const AllocatorT& allocator); + VmaSmallVector(size_t count, const AllocatorT& allocator); + template + VmaSmallVector(const VmaSmallVector&) = delete; + template + VmaSmallVector& operator=(const VmaSmallVector&) = delete; + ~VmaSmallVector() = default; -/** \brief Allocates Vulkan device memory and creates #VmaPool object. + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } + const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } -@param allocator Allocator object. -@param pCreateInfo Parameters of pool to create. -@param[out] pPool Handle to created pool. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator VMA_NOT_NULL allocator, - const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaPool VMA_NULLABLE * VMA_NOT_NULL pPool); + iterator begin() { return data(); } + iterator end() { return data() + m_Count; } -/** \brief Destroys #VmaPool object and frees Vulkan device memory. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NULLABLE pool); + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } -/** \brief Retrieves statistics of existing #VmaPool object. + void push_back(const T& src); + void resize(size_t newCount, bool freeMemory = false); + void clear(bool freeMemory = false); + void insert(size_t index, const T& src); + void remove(size_t index); -@param allocator Allocator object. -@param pool Pool object. -@param[out] pPoolStats Statistics of specified pool. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - VmaPoolStats* VMA_NOT_NULL pPoolStats); + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } -/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now. +private: + size_t m_Count; + T m_StaticArray[N]; // Used when m_Size <= N + VmaVector m_DynamicArray; // Used when m_Size > N +}; -@param allocator Allocator object. -@param pool Pool. -@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - size_t* VMA_NULLABLE pLostAllocationCount); +#ifndef _VMA_SMALL_VECTOR_FUNCTIONS +template +VmaSmallVector::VmaSmallVector(const AllocatorT& allocator) + : m_Count(0), + m_DynamicArray(allocator) {} -/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. - -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). +template +VmaSmallVector::VmaSmallVector(size_t count, const AllocatorT& allocator) + : m_Count(count), + m_DynamicArray(count > N ? count : 0, allocator) {} -Possible return values: +template +void VmaSmallVector::push_back(const T& src) +{ + resize(m_Count + 1); + data()[m_Count] = src; +} -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool); +template +void VmaSmallVector::resize(size_t newCount, bool freeMemory) +{ + if (newCount > N && m_Count > N) + { + // Any direction, staying in m_DynamicArray + m_DynamicArray.resize(newCount); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else if (newCount > N && m_Count <= N) + { + // Growing, moving from m_StaticArray to m_DynamicArray + m_DynamicArray.resize(newCount); + if (m_Count > 0) + { + memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); + } + } + else if (newCount <= N && m_Count > N) + { + // Shrinking, moving from m_DynamicArray to m_StaticArray + if (newCount > 0) + { + memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); + } + m_DynamicArray.resize(0); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else + { + // Any direction, staying in m_StaticArray - nothing to do here + } + m_Count = newCount; +} -/** \brief Retrieves name of a custom pool. +template +void VmaSmallVector::clear(bool freeMemory) +{ + m_DynamicArray.clear(); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + m_Count = 0; +} -After the call `ppName` is either null or points to an internally-owned null-terminated string -containing name of the pool that was previously set. The pointer becomes invalid when the pool is -destroyed or its name is changed using vmaSetPoolName(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - const char* VMA_NULLABLE * VMA_NOT_NULL ppName); +template +void VmaSmallVector::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + T* const dataPtr = data(); + if (index < oldCount) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. + memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); + } + dataPtr[index] = src; +} -/** \brief Sets name of a custom pool. +template +void VmaSmallVector::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. + T* const dataPtr = data(); + memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_SMALL_VECTOR_FUNCTIONS +#endif // _VMA_SMALL_VECTOR -`pName` can be either null or pointer to a null-terminated string with new name for the pool. -Function makes internal copy of the string, so it can be changed or freed immediately after this call. +#ifndef _VMA_POOL_ALLOCATOR +/* +Allocator for objects of type T using a list of arrays (pools) to speed up +allocation. Number of elements that can be allocated is not bounded because +allocator can create multiple blocks. */ -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - const char* VMA_NULLABLE pName); +template +class VmaPoolAllocator +{ + VMA_CLASS_NO_COPY(VmaPoolAllocator) +public: + VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); + ~VmaPoolAllocator(); + template T* Alloc(Types&&... args); + void Free(T* ptr); -/** \struct VmaAllocation -\brief Represents single memory allocation. +private: + union Item + { + uint32_t NextFreeIndex; + alignas(T) char Value[sizeof(T)]; + }; + struct ItemBlock + { + Item* pItems; + uint32_t Capacity; + uint32_t FirstFreeIndex; + }; -It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type -plus unique offset. + const VkAllocationCallbacks* m_pAllocationCallbacks; + const uint32_t m_FirstBlockCapacity; + VmaVector> m_ItemBlocks; -There are multiple ways to create such object. -You need to fill structure VmaAllocationCreateInfo. -For more information see [Choosing memory type](@ref choosing_memory_type). + ItemBlock& CreateNewBlock(); +}; -Although the library provides convenience functions that create Vulkan buffer or image, -allocate memory for it and bind them together, -binding of the allocation to a buffer or an image is out of scope of the allocation itself. -Allocation object can exist without buffer/image bound, -binding can be done manually by the user, and destruction of it can be done -independently of destruction of the allocation. +#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS +template +VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_FirstBlockCapacity(firstBlockCapacity), + m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) +{ + VMA_ASSERT(m_FirstBlockCapacity > 1); +} -The object also remembers its size and some other information. -To retrieve this information, use function vmaGetAllocationInfo() and inspect -returned structure VmaAllocationInfo. +template +VmaPoolAllocator::~VmaPoolAllocator() +{ + for (size_t i = m_ItemBlocks.size(); i--;) + vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); + m_ItemBlocks.clear(); +} -Some kinds allocations can be in lost state. -For more information, see [Lost allocations](@ref lost_allocations). -*/ -VK_DEFINE_HANDLE(VmaAllocation) +template +template T* VmaPoolAllocator::Alloc(Types&&... args) +{ + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + // This block has some free items: Use first one. + if (block.FirstFreeIndex != UINT32_MAX) + { + Item* const pItem = &block.pItems[block.FirstFreeIndex]; + block.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result)T(std::forward(args)...); // Explicit constructor call. + return result; + } + } -/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). -*/ -typedef struct VmaAllocationInfo { - /** \brief Memory type index that this allocation was allocated from. + // No block has free item: Create new one and use it. + ItemBlock& newBlock = CreateNewBlock(); + Item* const pItem = &newBlock.pItems[0]; + newBlock.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result) T(std::forward(args)...); // Explicit constructor call. + return result; +} - It never changes. - */ - uint32_t memoryType; - /** \brief Handle to Vulkan memory object. +template +void VmaPoolAllocator::Free(T* ptr) +{ + // Search all memory blocks to find ptr. + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; - Same memory object can be shared by multiple allocations. + // Casting to union. + Item* pItemPtr; + memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); - It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. + // Check if pItemPtr is in address range of this block. + if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) + { + ptr->~T(); // Explicit destructor call. + const uint32_t index = static_cast(pItemPtr - block.pItems); + pItemPtr->NextFreeIndex = block.FirstFreeIndex; + block.FirstFreeIndex = index; + return; + } + } + VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); +} - If the allocation is lost, it is equal to `VK_NULL_HANDLE`. - */ - VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; - /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. +template +typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() +{ + const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? + m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; - You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function - vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, - not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation - and apply this offset automatically. + const ItemBlock newBlock = + { + vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), + newBlockCapacity, + 0 + }; - It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost. - */ - VkDeviceSize offset; - /** \brief Size of this allocation, in bytes. + m_ItemBlocks.push_back(newBlock); - It never changes, unless allocation is lost. + // Setup singly-linked list of all free items in this block. + for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) + newBlock.pItems[i].NextFreeIndex = i + 1; + newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; + return m_ItemBlocks.back(); +} +#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS +#endif // _VMA_POOL_ALLOCATOR - \note Allocation size returned in this variable may be greater than the size - requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the - allocation is accessible for operations on memory e.g. using a pointer after - mapping with vmaMapMemory(), but operations on the resource e.g. using - `vkCmdCopyBuffer` must be limited to the size of the resource. - */ - VkDeviceSize size; - /** \brief Pointer to the beginning of this allocation as mapped data. +#ifndef _VMA_RAW_LIST +template +struct VmaListItem +{ + VmaListItem* pPrev; + VmaListItem* pNext; + T Value; +}; - If the allocation hasn't been mapped using vmaMapMemory() and hasn't been - created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. +// Doubly linked list. +template +class VmaRawList +{ + VMA_CLASS_NO_COPY(VmaRawList) +public: + typedef VmaListItem ItemType; - It can change after call to vmaMapMemory(), vmaUnmapMemory(). - It can also change after call to vmaDefragment() if this allocation is passed to the function. - */ - void* VMA_NULLABLE pMappedData; - /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). + VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); + // Intentionally not calling Clear, because that would be unnecessary + // computations to return all items to m_ItemAllocator as free. + ~VmaRawList() = default; - It can change after call to vmaSetAllocationUserData() for this allocation. - */ - void* VMA_NULLABLE pUserData; -} VmaAllocationInfo; + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } -/** \brief General purpose memory allocation. + ItemType* Front() { return m_pFront; } + ItemType* Back() { return m_pBack; } + const ItemType* Front() const { return m_pFront; } + const ItemType* Back() const { return m_pBack; } -@param[out] pAllocation Handle to allocated memory. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + ItemType* PushFront(); + ItemType* PushBack(); + ItemType* PushFront(const T& value); + ItemType* PushBack(const T& value); + void PopFront(); + void PopBack(); -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + // Item can be null - it means PushBack. + ItemType* InsertBefore(ItemType* pItem); + // Item can be null - it means PushFront. + ItemType* InsertAfter(ItemType* pItem); + ItemType* InsertBefore(ItemType* pItem, const T& value); + ItemType* InsertAfter(ItemType* pItem, const T& value); -It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), -vmaCreateBuffer(), vmaCreateImage() instead whenever possible. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator VMA_NOT_NULL allocator, - const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + void Clear(); + void Remove(ItemType* pItem); -/** \brief General purpose memory allocation for multiple allocation objects at once. +private: + const VkAllocationCallbacks* const m_pAllocationCallbacks; + VmaPoolAllocator m_ItemAllocator; + ItemType* m_pFront; + ItemType* m_pBack; + size_t m_Count; +}; -@param allocator Allocator object. -@param pVkMemoryRequirements Memory requirements for each allocation. -@param pCreateInfo Creation parameters for each alloction. -@param allocationCount Number of allocations to make. -@param[out] pAllocations Pointer to array that will be filled with handles to created allocations. -@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. +#ifndef _VMA_RAW_LIST_FUNCTIONS +template +VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_ItemAllocator(pAllocationCallbacks, 128), + m_pFront(VMA_NULL), + m_pBack(VMA_NULL), + m_Count(0) {} -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). +template +VmaListItem* VmaRawList::PushFront() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pPrev = VMA_NULL; + if (IsEmpty()) + { + pNewItem->pNext = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pNext = m_pFront; + m_pFront->pPrev = pNewItem; + m_pFront = pNewItem; + ++m_Count; + } + return pNewItem; +} -Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. -It is just a general purpose allocation function able to make multiple allocations at once. -It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. +template +VmaListItem* VmaRawList::PushBack() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pNext = VMA_NULL; + if(IsEmpty()) + { + pNewItem->pPrev = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pPrev = m_pBack; + m_pBack->pNext = pNewItem; + m_pBack = pNewItem; + ++m_Count; + } + return pNewItem; +} -All allocations are made using same parameters. All of them are created out of the same memory pool and type. -If any allocation fails, all allocations already made within this function call are also freed, so that when -returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator VMA_NOT_NULL allocator, - const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, - const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, - size_t allocationCount, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, - VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); +template +VmaListItem* VmaRawList::PushFront(const T& value) +{ + ItemType* const pNewItem = PushFront(); + pNewItem->Value = value; + return pNewItem; +} -/** -@param[out] pAllocation Handle to allocated memory. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). +template +VmaListItem* VmaRawList::PushBack(const T& value) +{ + ItemType* const pNewItem = PushBack(); + pNewItem->Value = value; + return pNewItem; +} -You should free the memory using vmaFreeMemory(). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); +template +void VmaRawList::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pFrontItem = m_pFront; + ItemType* const pNextItem = pFrontItem->pNext; + if (pNextItem != VMA_NULL) + { + pNextItem->pPrev = VMA_NULL; + } + m_pFront = pNextItem; + m_ItemAllocator.Free(pFrontItem); + --m_Count; +} -/// Function similar to vmaAllocateMemoryForBuffer(). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator VMA_NOT_NULL allocator, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); +template +void VmaRawList::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pBackItem = m_pBack; + ItemType* const pPrevItem = pBackItem->pPrev; + if(pPrevItem != VMA_NULL) + { + pPrevItem->pNext = VMA_NULL; + } + m_pBack = pPrevItem; + m_ItemAllocator.Free(pBackItem); + --m_Count; +} -/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). +template +void VmaRawList::Clear() +{ + if (IsEmpty() == false) + { + ItemType* pItem = m_pBack; + while (pItem != VMA_NULL) + { + ItemType* const pPrevItem = pItem->pPrev; + m_ItemAllocator.Free(pItem); + pItem = pPrevItem; + } + m_pFront = VMA_NULL; + m_pBack = VMA_NULL; + m_Count = 0; + } +} -Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator VMA_NOT_NULL allocator, - const VmaAllocation VMA_NULLABLE allocation); +template +void VmaRawList::Remove(ItemType* pItem) +{ + VMA_HEAVY_ASSERT(pItem != VMA_NULL); + VMA_HEAVY_ASSERT(m_Count > 0); -/** \brief Frees memory and destroys multiple allocations. + if(pItem->pPrev != VMA_NULL) + { + pItem->pPrev->pNext = pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = pItem->pNext; + } -Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. -It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), -vmaAllocateMemoryPages() and other functions. -It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. + if(pItem->pNext != VMA_NULL) + { + pItem->pNext->pPrev = pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = pItem->pPrev; + } -Allocations in `pAllocations` array can come from any memory pools and types. -Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator VMA_NOT_NULL allocator, - size_t allocationCount, - const VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); + m_ItemAllocator.Free(pItem); + --m_Count; +} -/** \brief Returns current information about specified allocation and atomically marks it as used in current frame. +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const prevItem = pItem->pPrev; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pPrev = prevItem; + newItem->pNext = pItem; + pItem->pPrev = newItem; + if(prevItem != VMA_NULL) + { + prevItem->pNext = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = newItem; + } + ++m_Count; + return newItem; + } + else + return PushBack(); +} -Current paramteres of given allocation are returned in `pAllocationInfo`. +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const nextItem = pItem->pNext; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pNext = nextItem; + newItem->pPrev = pItem; + pItem->pNext = newItem; + if(nextItem != VMA_NULL) + { + nextItem->pPrev = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = newItem; + } + ++m_Count; + return newItem; + } + else + return PushFront(); +} -This function also atomically "touches" allocation - marks it as used in current frame, -just like vmaTouchAllocation(). -If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`. +template +VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertBefore(pItem); + newItem->Value = value; + return newItem; +} -Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient, -you can avoid calling it too often. +template +VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertAfter(pItem); + newItem->Value = value; + return newItem; +} +#endif // _VMA_RAW_LIST_FUNCTIONS +#endif // _VMA_RAW_LIST -- You can retrieve same VmaAllocationInfo structure while creating your resource, from function - vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change - (e.g. due to defragmentation or allocation becoming lost). -- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); +#ifndef _VMA_LIST +template +class VmaList +{ + VMA_CLASS_NO_COPY(VmaList) +public: + class reverse_iterator; + class const_iterator; + class const_reverse_iterator; -/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame. + class iterator + { + friend class VmaList; + public: + iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} -If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -this function returns `VK_TRUE` if it's not in lost state, so it can still be used. -It then also atomically "touches" the allocation - marks it as used in current frame, -so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames. + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } -If the allocation is in lost state, the function returns `VK_FALSE`. -Memory of such allocation, as well as buffer or image bound to it, should not be used. -Lost allocation and the buffer/image still need to be destroyed. + bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } -If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag, -this function always returns `VK_TRUE`. -*/ -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation); + iterator operator++(int) { iterator result = *this; ++*this; return result; } + iterator operator--(int) { iterator result = *this; --*this; return result; } -/** \brief Sets pUserData in given allocation to new value. + iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + iterator& operator--(); -If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, -pUserData must be either null, or pointer to a null-terminated string. The function -makes local copy of the string and sets it as allocation's `pUserData`. String -passed as pUserData doesn't need to be valid for whole lifetime of the allocation - -you can free it after this call. String previously pointed by allocation's -pUserData is freed from memory. + private: + VmaRawList* m_pList; + VmaListItem* m_pItem; -If the flag was not used, the value of pointer `pUserData` is just copied to -allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. -as a pointer, ordinal number or some handle to you own data. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - void* VMA_NULLABLE pUserData); + iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class reverse_iterator + { + friend class VmaList; + public: + reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} -/** \brief Creates new allocation that is in lost state from the beginning. + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } -It can be useful if you need a dummy, non-null allocation. + bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } -You still need to destroy created object using vmaFreeMemory(). + reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; } + reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; } -Returned allocation is not tied to any specific memory pool or memory type and -not bound to any image or buffer. It has size = 0. It cannot be turned into -a real, non-empty allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation); + reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + reverse_iterator& operator--(); -/** \brief Maps memory represented by given allocation and returns pointer to it. + private: + VmaRawList* m_pList; + VmaListItem* m_pItem; -Maps memory represented by given allocation to make it accessible to CPU code. -When succeeded, `*ppData` contains pointer to first byte of this memory. -If the allocation is part of bigger `VkDeviceMemory` block, the pointer is -correctly offsetted to the beginning of region assigned to this particular -allocation. + reverse_iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_iterator + { + friend class VmaList; + public: + const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} -Mapping is internally reference-counted and synchronized, so despite raw Vulkan -function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` -multiple times simultaneously, it is safe to call this function on allocations -assigned to the same memory block. Actual Vulkan memory will be mapped on first -mapping and unmapped on last unmapping. + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } -If the function succeeded, you must call vmaUnmapMemory() to unmap the -allocation when mapping is no longer needed or before freeing the allocation, at -the latest. + bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } -It also safe to call this function multiple times on the same allocation. You -must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). + const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; } + const_iterator operator--(int) { const_iterator result = *this; --* this; return result; } -It is also safe to call this function on allocation created with -#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. -You must still call vmaUnmapMemory() same number of times as you called -vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the -"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. + const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + const_iterator& operator--(); -This function fails when used on allocation made in memory type that is not -`HOST_VISIBLE`. + private: + const VmaRawList* m_pList; + const VmaListItem* m_pItem; -This function always fails when called for allocation that was created with -#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be -mapped. + const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_reverse_iterator + { + friend class VmaList; + public: + const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - void* VMA_NULLABLE * VMA_NOT_NULL ppData); + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } -/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). + bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } -For details, see description of vmaMapMemory(). + const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; } + const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; } -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation); + const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + const_reverse_iterator& operator--(); -/** \brief Flushes memory of given allocation. + private: + const VmaRawList* m_pList; + const VmaListItem* m_pItem; -Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. -Unmap operation doesn't do that automatically. + const_reverse_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} + }; -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. + VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {} -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! + bool empty() const { return m_RawList.IsEmpty(); } + size_t size() const { return m_RawList.GetCount(); } -This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize offset, - VkDeviceSize size); + iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } + iterator end() { return iterator(&m_RawList, VMA_NULL); } -/** \brief Invalidates memory of given allocation. + const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } + const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } -Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. -Map operation doesn't do that automatically. + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. + reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); } + reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); } -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! + const_reverse_iterator crbegin() { return const_reverse_iterator(&m_RawList, m_RawList.Back()); } + const_reverse_iterator crend() { return const_reverse_iterator(&m_RawList, VMA_NULL); } -This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if -it is called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize offset, - VkDeviceSize size); + const_reverse_iterator rbegin() const { return crbegin(); } + const_reverse_iterator rend() const { return crend(); } -/** \brief Flushes memory of given set of allocations. + void push_back(const T& value) { m_RawList.PushBack(value); } + iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } -Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. -For more information, see documentation of vmaFlushAllocation(). + void clear() { m_RawList.Clear(); } + void erase(iterator it) { m_RawList.Remove(it.m_pItem); } -\param allocator -\param allocationCount -\param allocations -\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. -\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. +private: + VmaRawList m_RawList; +}; -This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t allocationCount, - const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); +#ifndef _VMA_LIST_FUNCTIONS +template +typename VmaList::iterator& VmaList::iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} -/** \brief Invalidates memory of given set of allocations. +template +typename VmaList::reverse_iterator& VmaList::reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Front(); + } + return *this; +} -Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. -For more information, see documentation of vmaInvalidateAllocation(). +template +typename VmaList::const_iterator& VmaList::const_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} -\param allocator -\param allocationCount -\param allocations -\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. -\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. +template +typename VmaList::const_reverse_iterator& VmaList::const_reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} +#endif // _VMA_LIST_FUNCTIONS +#endif // _VMA_LIST -This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. +#ifndef _VMA_INTRUSIVE_LINKED_LIST +/* +Expected interface of ItemTypeTraits: +struct MyItemTypeTraits +{ + typedef MyItem ItemType; + static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } + static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } + static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } + static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } +}; */ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t allocationCount, - const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); +template +class VmaIntrusiveLinkedList +{ +public: + typedef typename ItemTypeTraits::ItemType ItemType; + static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } + static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } -/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. + // Movable, not copyable. + VmaIntrusiveLinkedList() = default; + VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src); + VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete; + VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src); + VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete; + ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); } -@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + ItemType* Front() { return m_Front; } + ItemType* Back() { return m_Back; } + const ItemType* Front() const { return m_Front; } + const ItemType* Back() const { return m_Back; } -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + void PushBack(ItemType* item); + void PushFront(ItemType* item); + ItemType* PopBack(); + ItemType* PopFront(); -Possible return values: + // MyItem can be null - it means PushBack. + void InsertBefore(ItemType* existingItem, ItemType* newItem); + // MyItem can be null - it means PushFront. + void InsertAfter(ItemType* existingItem, ItemType* newItem); + void Remove(ItemType* item); + void RemoveAll(); -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits); +private: + ItemType* m_Front = VMA_NULL; + ItemType* m_Back = VMA_NULL; + size_t m_Count = 0; +}; -/** \struct VmaDefragmentationContext -\brief Represents Opaque object that represents started defragmentation process. - -Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. -Call function vmaDefragmentationEnd() to destroy it. -*/ -VK_DEFINE_HANDLE(VmaDefragmentationContext) - -/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. -typedef enum VmaDefragmentationFlagBits { - VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, - VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaDefragmentationFlagBits; -typedef VkFlags VmaDefragmentationFlags; - -/** \brief Parameters for defragmentation. +#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +template +VmaIntrusiveLinkedList::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) + : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) +{ + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; +} -To be used with function vmaDefragmentationBegin(). -*/ -typedef struct VmaDefragmentationInfo2 { - /** \brief Reserved for future use. Should be 0. - */ - VmaDefragmentationFlags flags; - /** \brief Number of allocations in `pAllocations` array. - */ - uint32_t allocationCount; - /** \brief Pointer to array of allocations that can be defragmented. +template +VmaIntrusiveLinkedList& VmaIntrusiveLinkedList::operator=(VmaIntrusiveLinkedList&& src) +{ + if (&src != this) + { + VMA_HEAVY_ASSERT(IsEmpty()); + m_Front = src.m_Front; + m_Back = src.m_Back; + m_Count = src.m_Count; + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; + } + return *this; +} - The array should have `allocationCount` elements. - The array should not contain nulls. - Elements in the array should be unique - same allocation cannot occur twice. - It is safe to pass allocations that are in the lost state - they are ignored. - All allocations not present in this array are considered non-moveable during this defragmentation. - */ - const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations; - /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. +template +void VmaIntrusiveLinkedList::PushBack(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessPrev(item) = m_Back; + ItemTypeTraits::AccessNext(m_Back) = item; + m_Back = item; + ++m_Count; + } +} - The array should have `allocationCount` elements. - You can pass null if you are not interested in this information. - */ - VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged; - /** \brief Numer of pools in `pPools` array. - */ - uint32_t poolCount; - /** \brief Either null or pointer to array of pools to be defragmented. +template +void VmaIntrusiveLinkedList::PushFront(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessNext(item) = m_Front; + ItemTypeTraits::AccessPrev(m_Front) = item; + m_Front = item; + ++m_Count; + } +} - All the allocations in the specified pools can be moved during defragmentation - and there is no way to check if they were really moved as in `pAllocationsChanged`, - so you must query all the allocations in all these pools for new `VkDeviceMemory` - and offset using vmaGetAllocationInfo() if you might need to recreate buffers - and images bound to them. +template +typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const backItem = m_Back; + ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; + } + m_Back = prevItem; + --m_Count; + ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; + ItemTypeTraits::AccessNext(backItem) = VMA_NULL; + return backItem; +} - The array should have `poolCount` elements. - The array should not contain nulls. - Elements in the array should be unique - same pool cannot occur twice. +template +typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const frontItem = m_Front; + ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; + } + m_Front = nextItem; + --m_Count; + ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; + ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; + return frontItem; +} - Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. - It might be more efficient. - */ - const VmaPool VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools; - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. +template +void VmaIntrusiveLinkedList::InsertBefore(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); + ItemTypeTraits::AccessPrev(newItem) = prevItem; + ItemTypeTraits::AccessNext(newItem) = existingItem; + ItemTypeTraits::AccessPrev(existingItem) = newItem; + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Front == existingItem); + m_Front = newItem; + } + ++m_Count; + } + else + PushBack(newItem); +} - `VK_WHOLE_SIZE` means no limit. - */ - VkDeviceSize maxCpuBytesToMove; - /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. +template +void VmaIntrusiveLinkedList::InsertAfter(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); + ItemTypeTraits::AccessNext(newItem) = nextItem; + ItemTypeTraits::AccessPrev(newItem) = existingItem; + ItemTypeTraits::AccessNext(existingItem) = newItem; + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Back == existingItem); + m_Back = newItem; + } + ++m_Count; + } + else + return PushFront(newItem); +} - `UINT32_MAX` means no limit. - */ - uint32_t maxCpuAllocationsToMove; - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. +template +void VmaIntrusiveLinkedList::Remove(ItemType* item) +{ + VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); + if (ItemTypeTraits::GetPrev(item) != VMA_NULL) + { + ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); + } + else + { + VMA_HEAVY_ASSERT(m_Front == item); + m_Front = ItemTypeTraits::GetNext(item); + } - `VK_WHOLE_SIZE` means no limit. - */ - VkDeviceSize maxGpuBytesToMove; - /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. + if (ItemTypeTraits::GetNext(item) != VMA_NULL) + { + ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); + } + else + { + VMA_HEAVY_ASSERT(m_Back == item); + m_Back = ItemTypeTraits::GetPrev(item); + } + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + --m_Count; +} - `UINT32_MAX` means no limit. - */ - uint32_t maxGpuAllocationsToMove; - /** \brief Optional. Command buffer where GPU copy commands will be posted. +template +void VmaIntrusiveLinkedList::RemoveAll() +{ + if (!IsEmpty()) + { + ItemType* item = m_Back; + while (item != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + item = prevItem; + } + m_Front = VMA_NULL; + m_Back = VMA_NULL; + m_Count = 0; + } +} +#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +#endif // _VMA_INTRUSIVE_LINKED_LIST - If not null, it must be a valid command buffer handle that supports Transfer queue type. - It must be in the recording state and outside of a render pass instance. - You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). +// Unused in this version. +#if 0 - Passing null means that only CPU defragmentation will be performed. - */ - VkCommandBuffer VMA_NULLABLE commandBuffer; -} VmaDefragmentationInfo2; +#ifndef _VMA_PAIR +template +struct VmaPair +{ + T1 first; + T2 second; -typedef struct VmaDefragmentationPassMoveInfo { - VmaAllocation VMA_NOT_NULL allocation; - VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory; - VkDeviceSize offset; -} VmaDefragmentationPassMoveInfo; + VmaPair() : first(), second() {} + VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {} +}; -/** \brief Parameters for incremental defragmentation steps. +template +struct VmaPairFirstLess +{ + bool operator()(const VmaPair& lhs, const VmaPair& rhs) const + { + return lhs.first < rhs.first; + } + bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const + { + return lhs.first < rhsFirst; + } +}; +#endif // _VMA_PAIR -To be used with function vmaBeginDefragmentationPass(). +#ifndef _VMA_MAP +/* Class compatible with subset of interface of std::unordered_map. +KeyT, ValueT must be POD because they will be stored in VmaVector. */ -typedef struct VmaDefragmentationPassInfo { - uint32_t moveCount; - VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves; -} VmaDefragmentationPassInfo; +template +class VmaMap +{ +public: + typedef VmaPair PairType; + typedef PairType* iterator; -/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). + VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) {} -\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. -*/ -typedef struct VmaDefragmentationInfo { - /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. + iterator begin() { return m_Vector.begin(); } + iterator end() { return m_Vector.end(); } - Default is `VK_WHOLE_SIZE`, which means no limit. - */ - VkDeviceSize maxBytesToMove; - /** \brief Maximum number of allocations that can be moved to different place. + void insert(const PairType& pair); + iterator find(const KeyT& key); + void erase(iterator it); - Default is `UINT32_MAX`, which means no limit. - */ - uint32_t maxAllocationsToMove; -} VmaDefragmentationInfo; +private: + VmaVector< PairType, VmaStlAllocator > m_Vector; +}; -/** \brief Statistics returned by function vmaDefragment(). */ -typedef struct VmaDefragmentationStats { - /// Total number of bytes that have been copied while moving allocations to different places. - VkDeviceSize bytesMoved; - /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. - VkDeviceSize bytesFreed; - /// Number of allocations that have been moved to different places. - uint32_t allocationsMoved; - /// Number of empty `VkDeviceMemory` objects that have been released to the system. - uint32_t deviceMemoryBlocksFreed; -} VmaDefragmentationStats; +#ifndef _VMA_MAP_FUNCTIONS +template +void VmaMap::insert(const PairType& pair) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + pair, + VmaPairFirstLess()) - m_Vector.data(); + VmaVectorInsert(m_Vector, indexToInsert, pair); +} -/** \brief Begins defragmentation process. +template +VmaPair* VmaMap::find(const KeyT& key) +{ + PairType* it = VmaBinaryFindFirstNotLess( + m_Vector.data(), + m_Vector.data() + m_Vector.size(), + key, + VmaPairFirstLess()); + if ((it != m_Vector.end()) && (it->first == key)) + { + return it; + } + else + { + return m_Vector.end(); + } +} -@param allocator Allocator object. -@param pInfo Structure filled with parameters of defragmentation. -@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. -@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. -@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. +template +void VmaMap::erase(iterator it) +{ + VmaVectorRemove(m_Vector, it - m_Vector.begin()); +} +#endif // _VMA_MAP_FUNCTIONS +#endif // _VMA_MAP -Use this function instead of old, deprecated vmaDefragment(). +#endif // #if 0 -Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): +#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED +class VmaStringBuilder +{ +public: + VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator(allocationCallbacks)) {} + ~VmaStringBuilder() = default; -- You should not use any of allocations passed as `pInfo->pAllocations` or - any allocations that belong to pools passed as `pInfo->pPools`, - including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access - their data. -- Some mutexes protecting internal data structures may be locked, so trying to - make or free any allocations, bind buffers or images, map memory, or launch - another simultaneous defragmentation in between may cause stall (when done on - another thread) or deadlock (when done on the same thread), unless you are - 100% sure that defragmented allocations are in different pools. -- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. - They become valid after call to vmaDefragmentationEnd(). -- If `pInfo->commandBuffer` is not null, you must submit that command buffer - and make sure it finished execution before calling vmaDefragmentationEnd(). + size_t GetLength() const { return m_Data.size(); } + const char* GetData() const { return m_Data.data(); } + void AddNewLine() { Add('\n'); } + void Add(char ch) { m_Data.push_back(ch); } -For more information and important limitations regarding defragmentation, see documentation chapter: -[Defragmentation](@ref defragmentation). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( - VmaAllocator VMA_NOT_NULL allocator, - const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo, - VmaDefragmentationStats* VMA_NULLABLE pStats, - VmaDefragmentationContext VMA_NULLABLE * VMA_NOT_NULL pContext); + void Add(const char* pStr); + void AddNumber(uint32_t num); + void AddNumber(uint64_t num); + void AddPointer(const void* ptr); -/** \brief Ends defragmentation process. +private: + VmaVector> m_Data; +}; -Use this function to finish defragmentation started by vmaDefragmentationBegin(). -It is safe to pass `context == null`. The function then does nothing. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NULLABLE context); +#ifndef _VMA_STRING_BUILDER_FUNCTIONS +void VmaStringBuilder::Add(const char* pStr) +{ + const size_t strLen = strlen(pStr); + if (strLen > 0) + { + const size_t oldCount = m_Data.size(); + m_Data.resize(oldCount + strLen); + memcpy(m_Data.data() + oldCount, pStr, strLen); + } +} -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NULLABLE context, - VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo -); -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NULLABLE context -); +void VmaStringBuilder::AddNumber(uint32_t num) +{ + char buf[11]; + buf[10] = '\0'; + char* p = &buf[10]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } while (num); + Add(p); +} -/** \brief Deprecated. Compacts memory by moving allocations. +void VmaStringBuilder::AddNumber(uint64_t num) +{ + char buf[21]; + buf[20] = '\0'; + char* p = &buf[20]; + do + { + *--p = '0' + (num % 10); + num /= 10; + } while (num); + Add(p); +} -@param pAllocations Array of allocations that can be moved during this compation. -@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. -@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. -@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. -@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. -@return `VK_SUCCESS` if completed, negative error code in case of error. +void VmaStringBuilder::AddPointer(const void* ptr) +{ + char buf[21]; + VmaPtrToStr(buf, sizeof(buf), ptr); + Add(buf); +} +#endif //_VMA_STRING_BUILDER_FUNCTIONS +#endif // _VMA_STRING_BUILDER -\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. +#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED +/* +Allows to conveniently build a correct JSON document to be written to the +VmaStringBuilder passed to the constructor. +*/ +class VmaJsonWriter +{ + VMA_CLASS_NO_COPY(VmaJsonWriter) +public: + // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object. + VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); + ~VmaJsonWriter(); -This function works by moving allocations to different places (different -`VkDeviceMemory` objects and/or different offsets) in order to optimize memory -usage. Only allocations that are in `pAllocations` array can be moved. All other -allocations are considered nonmovable in this call. Basic rules: + // Begins object by writing "{". + // Inside an object, you must call pairs of WriteString and a value, e.g.: + // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject(); + // Will write: { "A": 1, "B": 2 } + void BeginObject(bool singleLine = false); + // Ends object by writing "}". + void EndObject(); -- Only allocations made in memory types that have - `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` - flags can be compacted. You may pass other allocations but it makes no sense - - these will never be moved. -- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or - #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations - passed to this function that come from such pools are ignored. -- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or - created as dedicated allocations for any other reason are also ignored. -- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT - flag can be compacted. If not persistently mapped, memory will be mapped - temporarily inside this function if needed. -- You must not pass same #VmaAllocation object multiple times in `pAllocations` array. + // Begins array by writing "[". + // Inside an array, you can write a sequence of any values. + void BeginArray(bool singleLine = false); + // Ends array by writing "[". + void EndArray(); -The function also frees empty `VkDeviceMemory` blocks. + // Writes a string value inside "". + // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped. + void WriteString(const char* pStr); -Warning: This function may be time-consuming, so you shouldn't call it too often -(like after every resource creation/destruction). -You can call it on special occasions (like when reloading a game level or -when you just destroyed a lot of objects). Calling it every frame may be OK, but -you should measure that on your platform. + // Begins writing a string value. + // Call BeginString, ContinueString, ContinueString, ..., EndString instead of + // WriteString to conveniently build the string content incrementally, made of + // parts including numbers. + void BeginString(const char* pStr = VMA_NULL); + // Posts next part of an open string. + void ContinueString(const char* pStr); + // Posts next part of an open string. The number is converted to decimal characters. + void ContinueString(uint32_t n); + void ContinueString(uint64_t n); + // Posts next part of an open string. Pointer value is converted to characters + // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00 + void ContinueString_Pointer(const void* ptr); + // Ends writing a string value by writing '"'. + void EndString(const char* pStr = VMA_NULL); -For more information, see [Defragmentation](@ref defragmentation) chapter. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( - VmaAllocator VMA_NOT_NULL allocator, - const VmaAllocation VMA_NOT_NULL * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, - size_t allocationCount, - VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged, - const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo, - VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats); + // Writes a number value. + void WriteNumber(uint32_t n); + void WriteNumber(uint64_t n); + // Writes a boolean value - false or true. + void WriteBool(bool b); + // Writes a null value. + void WriteNull(); -/** \brief Binds buffer to allocation. +private: + enum COLLECTION_TYPE + { + COLLECTION_TYPE_OBJECT, + COLLECTION_TYPE_ARRAY, + }; + struct StackItem + { + COLLECTION_TYPE type; + uint32_t valueCount; + bool singleLineMode; + }; -Binds specified buffer to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create a buffer, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindBufferMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). + static const char* const INDENT; -It is recommended to use function vmaCreateBuffer() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); + VmaStringBuilder& m_SB; + VmaVector< StackItem, VmaStlAllocator > m_Stack; + bool m_InsideString; -/** \brief Binds buffer to allocation with additional parameters. + void BeginValue(bool isString); + void WriteIndent(bool oneLess = false); +}; +const char* const VmaJsonWriter::INDENT = " "; -@param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. -@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. +#ifndef _VMA_JSON_WRITER_FUNCTIONS +VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) + : m_SB(sb), + m_Stack(VmaStlAllocator(pAllocationCallbacks)), + m_InsideString(false) {} -This function is similar to vmaBindBufferMemory(), but it provides additional parameters. +VmaJsonWriter::~VmaJsonWriter() +{ + VMA_ASSERT(!m_InsideString); + VMA_ASSERT(m_Stack.empty()); +} -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, - const void* VMA_NULLABLE pNext); +void VmaJsonWriter::BeginObject(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); -/** \brief Binds image to allocation. + BeginValue(false); + m_SB.Add('{'); -Binds specified image to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create an image, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindImageMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). + StackItem item; + item.type = COLLECTION_TYPE_OBJECT; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} -It is recommended to use function vmaCreateImage() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); +void VmaJsonWriter::EndObject() +{ + VMA_ASSERT(!m_InsideString); -/** \brief Binds image to allocation with additional parameters. + WriteIndent(true); + m_SB.Add('}'); -@param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. -@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); + m_Stack.pop_back(); +} -This function is similar to vmaBindImageMemory(), but it provides additional parameters. +void VmaJsonWriter::BeginArray(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, - const void* VMA_NULLABLE pNext); + BeginValue(false); + m_SB.Add('['); -/** -@param[out] pBuffer Buffer that was created. -@param[out] pAllocation Allocation that was created. -@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + StackItem item; + item.type = COLLECTION_TYPE_ARRAY; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} -This function automatically: +void VmaJsonWriter::EndArray() +{ + VMA_ASSERT(!m_InsideString); --# Creates buffer. --# Allocates appropriate memory for it. --# Binds the buffer with the memory. - -If any of these operations fail, buffer and allocation are not created, -returned value is negative error code, *pBuffer and *pAllocation are null. - -If the function succeeded, you must destroy both buffer and allocation when you -no longer need them using either convenience function vmaDestroyBuffer() or -separately, using `vkDestroyBuffer()` and vmaFreeMemory(). - -If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, -VK_KHR_dedicated_allocation extension is used internally to query driver whether -it requires or prefers the new buffer to have dedicated allocation. If yes, -and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null -and #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated -allocation for this buffer, just like when using -#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + WriteIndent(true); + m_SB.Add(']'); -\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, -although recommended as a good practice, is out of scope of this library and could be implemented -by the user as a higher-level logic on top of VMA. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator VMA_NOT_NULL allocator, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pBuffer, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); + m_Stack.pop_back(); +} -/** \brief Destroys Vulkan buffer and frees allocated memory. +void VmaJsonWriter::WriteString(const char* pStr) +{ + BeginString(pStr); + EndString(); +} -This is just a convenience function equivalent to: +void VmaJsonWriter::BeginString(const char* pStr) +{ + VMA_ASSERT(!m_InsideString); -\code -vkDestroyBuffer(device, buffer, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode + BeginValue(true); + m_SB.Add('"'); + m_InsideString = true; + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } +} -It it safe to pass null as buffer and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, - VmaAllocation VMA_NULLABLE allocation); +void VmaJsonWriter::ContinueString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); -/// Function similar to vmaCreateBuffer(). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator VMA_NOT_NULL allocator, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pImage, - VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + const size_t strLen = strlen(pStr); + for (size_t i = 0; i < strLen; ++i) + { + char ch = pStr[i]; + if (ch == '\\') + { + m_SB.Add("\\\\"); + } + else if (ch == '"') + { + m_SB.Add("\\\""); + } + else if (ch >= 32) + { + m_SB.Add(ch); + } + else switch (ch) + { + case '\b': + m_SB.Add("\\b"); + break; + case '\f': + m_SB.Add("\\f"); + break; + case '\n': + m_SB.Add("\\n"); + break; + case '\r': + m_SB.Add("\\r"); + break; + case '\t': + m_SB.Add("\\t"); + break; + default: + VMA_ASSERT(0 && "Character not currently supported."); + break; + } + } +} -/** \brief Destroys Vulkan image and frees allocated memory. +void VmaJsonWriter::ContinueString(uint32_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} -This is just a convenience function equivalent to: +void VmaJsonWriter::ContinueString(uint64_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} -\code -vkDestroyImage(device, image, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode +void VmaJsonWriter::ContinueString_Pointer(const void* ptr) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddPointer(ptr); +} -It it safe to pass null as image and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator VMA_NOT_NULL allocator, - VkImage VMA_NULLABLE_NON_DISPATCHABLE image, - VmaAllocation VMA_NULLABLE allocation); +void VmaJsonWriter::EndString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } + m_SB.Add('"'); + m_InsideString = false; +} -#ifdef __cplusplus +void VmaJsonWriter::WriteNumber(uint32_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); } -#endif -#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H +void VmaJsonWriter::WriteNumber(uint64_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} -// For Visual Studio IntelliSense. -#if defined(__cplusplus) && defined(__INTELLISENSE__) -#define VMA_IMPLEMENTATION -#endif +void VmaJsonWriter::WriteBool(bool b) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add(b ? "true" : "false"); +} -#ifdef VMA_IMPLEMENTATION -#undef VMA_IMPLEMENTATION +void VmaJsonWriter::WriteNull() +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add("null"); +} -#include -#include -#include -#include +void VmaJsonWriter::BeginValue(bool isString) +{ + if (!m_Stack.empty()) + { + StackItem& currItem = m_Stack.back(); + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 == 0) + { + VMA_ASSERT(isString); + } -#if VMA_RECORDING_ENABLED - #include - #if defined(_WIN32) - #include - #else - #include - #include - #endif -#endif + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 != 0) + { + m_SB.Add(": "); + } + else if (currItem.valueCount > 0) + { + m_SB.Add(", "); + WriteIndent(); + } + else + { + WriteIndent(); + } + ++currItem.valueCount; + } +} -/******************************************************************************* -CONFIGURATION SECTION +void VmaJsonWriter::WriteIndent(bool oneLess) +{ + if (!m_Stack.empty() && !m_Stack.back().singleLineMode) + { + m_SB.AddNewLine(); -Define some of these macros before each #include of this header or change them -here if you need other then default behavior depending on your environment. -*/ + size_t count = m_Stack.size(); + if (count > 0 && oneLess) + { + --count; + } + for (size_t i = 0; i < count; ++i) + { + m_SB.Add(INDENT); + } + } +} +#endif // _VMA_JSON_WRITER_FUNCTIONS -/* -Define this macro to 1 to make the library fetch pointers to Vulkan functions -internally, like: +static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) +{ + json.BeginObject(); - vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; -*/ -#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) - #define VMA_STATIC_VULKAN_FUNCTIONS 1 -#endif + json.WriteString("Blocks"); + json.WriteNumber(stat.blockCount); -/* -Define this macro to 1 to make the library fetch pointers to Vulkan functions -internally, like: + json.WriteString("Allocations"); + json.WriteNumber(stat.allocationCount); - vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(m_hDevice, vkAllocateMemory); -*/ -#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) - #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 - #if defined(VK_NO_PROTOTYPES) - extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; - extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; - #endif -#endif + json.WriteString("UnusedRanges"); + json.WriteNumber(stat.unusedRangeCount); -// Define this macro to 1 to make the library use STL containers instead of its own implementation. -//#define VMA_USE_STL_CONTAINERS 1 + json.WriteString("UsedBytes"); + json.WriteNumber(stat.usedBytes); -/* Set this macro to 1 to make the library including and using STL containers: -std::pair, std::vector, std::list, std::unordered_map. + json.WriteString("UnusedBytes"); + json.WriteNumber(stat.unusedBytes); -Set it to 0 or undefined to make the library using its own implementation of -the containers. -*/ -#if VMA_USE_STL_CONTAINERS - #define VMA_USE_STL_VECTOR 1 - #define VMA_USE_STL_UNORDERED_MAP 1 - #define VMA_USE_STL_LIST 1 -#endif + if (stat.allocationCount > 1) + { + json.WriteString("AllocationSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.allocationSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.allocationSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.allocationSizeMax); + json.EndObject(); + } -#ifndef VMA_USE_STL_SHARED_MUTEX - // Compiler conforms to C++17. - #if __cplusplus >= 201703L - #define VMA_USE_STL_SHARED_MUTEX 1 - // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus - // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. - // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/ - #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L - #define VMA_USE_STL_SHARED_MUTEX 1 - #else - #define VMA_USE_STL_SHARED_MUTEX 0 - #endif -#endif + if (stat.unusedRangeCount > 1) + { + json.WriteString("UnusedRangeSize"); + json.BeginObject(true); + json.WriteString("Min"); + json.WriteNumber(stat.unusedRangeSizeMin); + json.WriteString("Avg"); + json.WriteNumber(stat.unusedRangeSizeAvg); + json.WriteString("Max"); + json.WriteNumber(stat.unusedRangeSizeMax); + json.EndObject(); + } + + json.EndObject(); +} +#endif // _VMA_JSON_WRITER +#ifndef _VMA_DEVICE_MEMORY_BLOCK /* -THESE INCLUDES ARE NOT ENABLED BY DEFAULT. -Library has its own container implementation. +Represents a single block of device memory (`VkDeviceMemory`) with all the +data about its regions (aka suballocations, #VmaAllocation), assigned and free. + +Thread-safety: This class must be externally synchronized. */ -#if VMA_USE_STL_VECTOR - #include -#endif +class VmaDeviceMemoryBlock +{ + VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) +public: + VmaBlockMetadata* m_pMetadata; -#if VMA_USE_STL_UNORDERED_MAP - #include -#endif + VmaDeviceMemoryBlock(VmaAllocator hAllocator); + ~VmaDeviceMemoryBlock(); -#if VMA_USE_STL_LIST - #include -#endif + // Always call after construction. + void Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity); + // Always call before destruction. + void Destroy(VmaAllocator allocator); -/* -Following headers are used in this CONFIGURATION section only, so feel free to -remove them if not needed. -*/ -#include // for assert -#include // for min, max -#include + VmaPool GetParentPool() const { return m_hParentPool; } + VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + uint32_t GetId() const { return m_Id; } + void* GetMappedData() const { return m_pMappedData; } -#ifndef VMA_NULL - // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. - #define VMA_NULL nullptr -#endif + // Validates all data structures inside this object. If not valid, returns false. + bool Validate() const; + VkResult CheckCorruption(VmaAllocator hAllocator); -#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) -#include -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } + // ppData can be null. + VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); + void Unmap(VmaAllocator hAllocator, uint32_t count); - return memalign(alignment, size); -} -#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) -#include + VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); -#if defined(__APPLE__) -#include -#endif + VkResult BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ -#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) -#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 - // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only - // with the MacOSX11.0 SDK in Xcode 12 (which is what adds - // MAC_OS_X_VERSION_10_16), even though the function is marked - // availabe for 10.15. That's why the preprocessor checks for 10.16 but - // the __builtin_available checks for 10.15. - // People who use C++17 could call aligned_alloc with the 10.15 SDK already. - if (__builtin_available(macOS 10.15, iOS 13, *)) - return aligned_alloc(alignment, size); -#endif -#endif - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } +private: + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + uint32_t m_MemoryTypeIndex; + uint32_t m_Id; + VkDeviceMemory m_hMemory; - void *pointer; - if(posix_memalign(&pointer, alignment, size) == 0) - return pointer; - return VMA_NULL; -} -#elif defined(_WIN32) -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - return _aligned_malloc(size, alignment); -} -#else -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - return aligned_alloc(alignment, size); -} -#endif + /* + Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. + Also protects m_MapCount, m_pMappedData. + Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. + */ + VMA_MUTEX m_Mutex; + uint32_t m_MapCount; + void* m_pMappedData; +}; +#endif // _VMA_DEVICE_MEMORY_BLOCK -#if defined(_WIN32) -static void vma_aligned_free(void* ptr) -{ - _aligned_free(ptr); -} -#else -static void vma_aligned_free(void* VMA_NULLABLE ptr) +#ifndef _VMA_ALLOCATION_T +struct VmaAllocation_T { - free(ptr); -} -#endif + friend struct VmaDedicatedAllocationListItemTraits; -// If your compiler is not compatible with C++11 and definition of -// aligned_alloc() function is missing, uncommeting following line may help: + static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; -//#include + enum FLAGS { FLAG_USER_DATA_STRING = 0x01 }; -// Normal assert to check for programmer's errors, especially in Debug configuration. -#ifndef VMA_ASSERT - #ifdef NDEBUG - #define VMA_ASSERT(expr) - #else - #define VMA_ASSERT(expr) assert(expr) - #endif -#endif +public: + enum ALLOCATION_TYPE + { + ALLOCATION_TYPE_NONE, + ALLOCATION_TYPE_BLOCK, + ALLOCATION_TYPE_DEDICATED, + }; -// Assert that will be called very often, like inside data structures e.g. operator[]. -// Making it non-empty can make program slow. -#ifndef VMA_HEAVY_ASSERT - #ifdef NDEBUG - #define VMA_HEAVY_ASSERT(expr) - #else - #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) - #endif -#endif + // This struct is allocated using VmaPoolAllocator. + VmaAllocation_T(bool userDataString); + ~VmaAllocation_T(); -#ifndef VMA_ALIGN_OF - #define VMA_ALIGN_OF(type) (__alignof(type)) -#endif + void InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped); + // pMappedData not null means allocation is created with MAPPED flag. + void InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size); -#ifndef VMA_SYSTEM_ALIGNED_MALLOC - #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) -#endif + ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } + VkDeviceSize GetAlignment() const { return m_Alignment; } + VkDeviceSize GetSize() const { return m_Size; } + bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } + void* GetUserData() const { return m_pUserData; } + VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } -#ifndef VMA_SYSTEM_ALIGNED_FREE - // VMA_SYSTEM_FREE is the old name, but might have been defined by the user - #if defined(VMA_SYSTEM_FREE) - #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) - #else - #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) - #endif -#endif + VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } -#ifndef VMA_MIN - #define VMA_MIN(v1, v2) (std::min((v1), (v2))) -#endif + void SetUserData(VmaAllocator hAllocator, void* pUserData); + void ChangeBlockAllocation(VmaAllocator hAllocator, VmaDeviceMemoryBlock* block, VmaAllocHandle allocHandle); + void ChangeAllocHandle(VmaAllocHandle newAllocHandle); + VmaAllocHandle GetAllocHandle() const; + VkDeviceSize GetOffset() const; + VmaPool GetParentPool() const; + VkDeviceMemory GetMemory() const; + void* GetMappedData() const; -#ifndef VMA_MAX - #define VMA_MAX(v1, v2) (std::max((v1), (v2))) -#endif + void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo); -#ifndef VMA_SWAP - #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) -#endif + void BlockAllocMap(); + void BlockAllocUnmap(); + VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); + void DedicatedAllocUnmap(VmaAllocator hAllocator); -#ifndef VMA_SORT - #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) -#endif +#if VMA_STATS_STRING_ENABLED + uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } -#ifndef VMA_DEBUG_LOG - #define VMA_DEBUG_LOG(format, ...) - /* - #define VMA_DEBUG_LOG(format, ...) do { \ - printf(format, __VA_ARGS__); \ - printf("\n"); \ - } while(false) - */ + void InitBufferImageUsage(uint32_t bufferImageUsage); + void PrintParameters(class VmaJsonWriter& json) const; #endif -// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. -#if VMA_STATS_STRING_ENABLED - static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) +private: + // Allocation out of VmaDeviceMemoryBlock. + struct BlockAllocation { - snprintf(outStr, strLen, "%u", static_cast(num)); - } - static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) + VmaDeviceMemoryBlock* m_Block; + VmaAllocHandle m_AllocHandle; + }; + // Allocation for an object that has its own private VkDeviceMemory. + struct DedicatedAllocation { - snprintf(outStr, strLen, "%llu", static_cast(num)); - } - static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + VkDeviceMemory m_hMemory; + void* m_pMappedData; // Not null means memory is mapped. + VmaAllocation_T* m_Prev; + VmaAllocation_T* m_Next; + }; + union { - snprintf(outStr, strLen, "%p", ptr); - } -#endif - -#ifndef VMA_MUTEX - class VmaMutex - { - public: - void Lock() { m_Mutex.lock(); } - void Unlock() { m_Mutex.unlock(); } - bool TryLock() { return m_Mutex.try_lock(); } - private: - std::mutex m_Mutex; + // Allocation out of VmaDeviceMemoryBlock. + BlockAllocation m_BlockAllocation; + // Allocation for an object that has its own private VkDeviceMemory. + DedicatedAllocation m_DedicatedAllocation; }; - #define VMA_MUTEX VmaMutex -#endif - -// Read-write mutex, where "read" is shared access, "write" is exclusive access. -#ifndef VMA_RW_MUTEX - #if VMA_USE_STL_SHARED_MUTEX - // Use std::shared_mutex from C++17. - #include - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.lock_shared(); } - void UnlockRead() { m_Mutex.unlock_shared(); } - bool TryLockRead() { return m_Mutex.try_lock_shared(); } - void LockWrite() { m_Mutex.lock(); } - void UnlockWrite() { m_Mutex.unlock(); } - bool TryLockWrite() { return m_Mutex.try_lock(); } - private: - std::shared_mutex m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 - // Use SRWLOCK from WinAPI. - // Minimum supported client = Windows Vista, server = Windows Server 2008. - class VmaRWMutex - { - public: - VmaRWMutex() { InitializeSRWLock(&m_Lock); } - void LockRead() { AcquireSRWLockShared(&m_Lock); } - void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } - bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } - void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } - void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } - bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } - private: - SRWLOCK m_Lock; - }; - #define VMA_RW_MUTEX VmaRWMutex - #else - // Less efficient fallback: Use normal mutex. - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.Lock(); } - void UnlockRead() { m_Mutex.Unlock(); } - bool TryLockRead() { return m_Mutex.TryLock(); } - void LockWrite() { m_Mutex.Lock(); } - void UnlockWrite() { m_Mutex.Unlock(); } - bool TryLockWrite() { return m_Mutex.TryLock(); } - private: - VMA_MUTEX m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #endif // #if VMA_USE_STL_SHARED_MUTEX -#endif // #ifndef VMA_RW_MUTEX - -/* -If providing your own implementation, you need to implement a subset of std::atomic. -*/ -#ifndef VMA_ATOMIC_UINT32 - #include - #define VMA_ATOMIC_UINT32 std::atomic -#endif - -#ifndef VMA_ATOMIC_UINT64 - #include - #define VMA_ATOMIC_UINT64 std::atomic -#endif -#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY - /** - Every allocation will have its own memory block. - Define to 1 for debugging purposes only. - */ - #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) + VkDeviceSize m_Alignment; + VkDeviceSize m_Size; + void* m_pUserData; + uint32_t m_MemoryTypeIndex; + uint8_t m_Type; // ALLOCATION_TYPE + uint8_t m_SuballocationType; // VmaSuballocationType + // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. + // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). + uint8_t m_MapCount; + uint8_t m_Flags; // enum FLAGS +#if VMA_STATS_STRING_ENABLED + uint32_t m_BufferImageUsage; // 0 if unknown. #endif -#ifndef VMA_MIN_ALIGNMENT - /** - Minimum alignment of all allocations, in bytes. - Set to more than 1 for debugging purposes. Must be power of two. - */ - #ifdef VMA_DEBUG_ALIGNMENT // Old name - #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT - #else - #define VMA_MIN_ALIGNMENT (1) - #endif -#endif + void FreeUserDataString(VmaAllocator hAllocator); +}; +#endif // _VMA_ALLOCATION_T -#ifndef VMA_DEBUG_MARGIN - /** - Minimum margin before and after every allocation, in bytes. - Set nonzero for debugging purposes only. - */ - #define VMA_DEBUG_MARGIN (0) -#endif +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS +struct VmaDedicatedAllocationListItemTraits +{ + typedef VmaAllocation_T ItemType; -#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS - /** - Define this macro to 1 to automatically fill new allocations and destroyed - allocations with some bit pattern. - */ - #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) -#endif + static ItemType* GetPrev(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType* GetNext(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } + static ItemType*& AccessPrev(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType*& AccessNext(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } +}; +#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS -#ifndef VMA_DEBUG_DETECT_CORRUPTION - /** - Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to - enable writing magic value to the margin before and after every allocation and - validating it, so that memory corruptions (out-of-bounds writes) are detected. - */ - #define VMA_DEBUG_DETECT_CORRUPTION (0) -#endif +#ifndef _VMA_DEDICATED_ALLOCATION_LIST +/* +Stores linked list of VmaAllocation_T objects. +Thread-safe, synchronized internally. +*/ +class VmaDedicatedAllocationList +{ +public: + VmaDedicatedAllocationList() {} + ~VmaDedicatedAllocationList(); -#ifndef VMA_DEBUG_GLOBAL_MUTEX - /** - Set this to 1 for debugging purposes only, to enable single mutex protecting all - entry calls to the library. Can be useful for debugging multithreading issues. - */ - #define VMA_DEBUG_GLOBAL_MUTEX (0) -#endif + void Init(bool useMutex) { m_UseMutex = useMutex; } + bool Validate(); -#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY - /** - Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. - Set to more than 1 for debugging purposes only. Must be power of two. - */ - #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) + void AddStats(VmaStats* stats, uint32_t memTypeIndex, uint32_t memHeapIndex); + void AddPoolStats(VmaPoolStats* stats); +#if VMA_STATS_STRING_ENABLED + // Writes JSON array with the list of allocations. + void BuildStatsString(VmaJsonWriter& json); #endif -#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT - /* - Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount - and return error instead of leaving up to Vulkan implementation what to do in such cases. - */ - #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) -#endif + bool IsEmpty(); + void Register(VmaAllocation alloc); + void Unregister(VmaAllocation alloc); -#ifndef VMA_SMALL_HEAP_MAX_SIZE - /// Maximum size of a memory heap in Vulkan to consider it "small". - #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) -#endif +private: + typedef VmaIntrusiveLinkedList DedicatedAllocationLinkedList; -#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE - /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. - #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) -#endif + bool m_UseMutex = true; + VMA_RW_MUTEX m_Mutex; + DedicatedAllocationLinkedList m_AllocationList; +}; -#ifndef VMA_CLASS_NO_COPY - #define VMA_CLASS_NO_COPY(className) \ - private: \ - className(const className&) = delete; \ - className& operator=(const className&) = delete; -#endif +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS -static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX; +VmaDedicatedAllocationList::~VmaDedicatedAllocationList() +{ + VMA_HEAVY_ASSERT(Validate()); -// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. -static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; + if (!m_AllocationList.IsEmpty()) + { + VMA_ASSERT(false && "Unfreed dedicated allocations found!"); + } +} -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; +bool VmaDedicatedAllocationList::Validate() +{ + const size_t declaredCount = m_AllocationList.GetCount(); + size_t actualCount = 0; + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + ++actualCount; + } + VMA_VALIDATE(actualCount == declaredCount); -/******************************************************************************* -END OF CONFIGURATION -*/ + return true; +} -// # Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. +void VmaDedicatedAllocationList::AddStats(VmaStats* stats, uint32_t memTypeIndex, uint32_t memHeapIndex) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + VmaStatInfo allocationStatInfo; + alloc->DedicatedAllocCalcStatsInfo(allocationStatInfo); + VmaAddStatInfo(stats->total, allocationStatInfo); + VmaAddStatInfo(stats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(stats->memoryHeap[memHeapIndex], allocationStatInfo); + } +} -static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; -static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; -static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; +void VmaDedicatedAllocationList::AddPoolStats(VmaPoolStats* stats) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); -static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; + const size_t allocCount = m_AllocationList.GetCount(); + stats->allocationCount += allocCount; + stats->blockCount += allocCount; -static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { - VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; + for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item)) + { + stats->size += item->GetSize(); + } +} -// Returns number of bits set to 1 in (v). -static inline uint32_t VmaCountBitsSet(uint32_t v) +#if VMA_STATS_STRING_ENABLED +void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json) { - uint32_t c = v - ((v >> 1) & 0x55555555); - c = ((c >> 2) & 0x33333333) + (c & 0x33333333); - c = ((c >> 4) + c) & 0x0F0F0F0F; - c = ((c >> 8) + c) & 0x00FF00FF; - c = ((c >> 16) + c) & 0x0000FFFF; - return c; + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + json.BeginArray(); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + json.BeginObject(true); + alloc->PrintParameters(json); + json.EndObject(); + } + json.EndArray(); } +#endif // VMA_STATS_STRING_ENABLED -/* -Returns true if given number is a power of two. -T must be unsigned integer number or signed integer but always nonnegative. -For 0 returns true. -*/ -template -inline bool VmaIsPow2(T x) +bool VmaDedicatedAllocationList::IsEmpty() { - return (x & (x-1)) == 0; + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + return m_AllocationList.IsEmpty(); } -// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignUp(T val, T alignment) +void VmaDedicatedAllocationList::Register(VmaAllocation alloc) { - VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); - return (val + alignment - 1) & ~(alignment - 1); + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.PushBack(alloc); } -// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignDown(T val, T alignment) + +void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc) { - VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); - return val & ~(alignment - 1); + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.Remove(alloc); } +#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS +#endif // _VMA_DEDICATED_ALLOCATION_LIST -// Division with mathematical rounding to nearest number. -template -static inline T VmaRoundDiv(T x, T y) +#ifndef _VMA_SUBALLOCATION +/* +Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as +allocated memory block or free. +*/ +struct VmaSuballocation { - return (x + (y / (T)2)) / y; -} + VkDeviceSize offset; + VkDeviceSize size; + void* userData; + VmaSuballocationType type; +}; -// Returns smallest power of 2 greater or equal to v. -static inline uint32_t VmaNextPow2(uint32_t v) +// Comparator for offsets. +struct VmaSuballocationOffsetLess { - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v++; - return v; -} -static inline uint64_t VmaNextPow2(uint64_t v) + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset < rhs.offset; + } +}; + +struct VmaSuballocationOffsetGreater { - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v++; - return v; -} + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset > rhs.offset; + } +}; -// Returns largest power of 2 less or equal to v. -static inline uint32_t VmaPrevPow2(uint32_t v) +struct VmaSuballocationItemSizeLess { - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v = v ^ (v >> 1); - return v; -} -static inline uint64_t VmaPrevPow2(uint64_t v) + bool operator()(const VmaSuballocationList::iterator lhs, + const VmaSuballocationList::iterator rhs) const + { + return lhs->size < rhs->size; + } + + bool operator()(const VmaSuballocationList::iterator lhs, + VkDeviceSize rhsSize) const + { + return lhs->size < rhsSize; + } +}; +#endif // _VMA_SUBALLOCATION + +#ifndef _VMA_ALLOCATION_REQUEST +/* +Parameters of planned allocation inside a VmaDeviceMemoryBlock. +item points to a FREE suballocation. +*/ +struct VmaAllocationRequest { - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v = v ^ (v >> 1); - return v; -} + VmaAllocHandle allocHandle; + VkDeviceSize size; + VmaSuballocationList::iterator item; + void* customData; + uint64_t algorithmData; + VmaAllocationRequestType type; +}; +#endif // _VMA_ALLOCATION_REQUEST -static inline bool VmaStrIsEmpty(const char* pStr) +#ifndef _VMA_BLOCK_METADATA +/* +Data structure used for bookkeeping of allocations and unused ranges of memory +in a single VkDeviceMemory block. +*/ +class VmaBlockMetadata { - return pStr == VMA_NULL || *pStr == '\0'; -} +public: + // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object. + VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata() = default; + + virtual void Init(VkDeviceSize size) { m_Size = size; } + bool IsVirtual() const { return m_IsVirtual; } + VkDeviceSize GetSize() const { return m_Size; } + + // Validates all data structures inside this object. If not valid, returns false. + virtual bool Validate() const = 0; + virtual size_t GetAllocationCount() const = 0; + virtual VkDeviceSize GetSumFreeSize() const = 0; + // Returns true if this block is empty - contains only single free suballocation. + virtual bool IsEmpty() const = 0; + virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0; + virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0; + + // Must set blockCount to 1. + virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; + // Shouldn't modify blockCount. + virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; #if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; +#endif -static const char* VmaAlgorithmToStr(uint32_t algorithm) + // Tries to find a place for suballocation with given parameters inside this block. + // If succeeded, fills pAllocationRequest and returns true. + // If failed, returns false. + virtual bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) = 0; + + virtual VkResult CheckCorruption(const void* pBlockData) = 0; + + // Makes actual allocation based on request. Request must already be checked and valid. + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) = 0; + + // Frees suballocation assigned to given memory region. + virtual void Free(VmaAllocHandle allocHandle) = 0; + + // Frees all allocations. + // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations! + virtual void Clear() = 0; + + virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0; + virtual void DebugLogAllAllocations() const = 0; + +protected: + const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + VkDeviceSize GetDebugMargin() const { return IsVirtual() ? 0 : VMA_DEBUG_MARGIN; } + + void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const; +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const; + void PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const; + void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, + VkDeviceSize size) const; + void PrintDetailedMap_End(class VmaJsonWriter& json) const; +#endif + +private: + VkDeviceSize m_Size; + const VkAllocationCallbacks* m_pAllocationCallbacks; + const VkDeviceSize m_BufferImageGranularity; + const bool m_IsVirtual; +}; + +#ifndef _VMA_BLOCK_METADATA_FUNCTIONS +VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : m_Size(0), + m_pAllocationCallbacks(pAllocationCallbacks), + m_BufferImageGranularity(bufferImageGranularity), + m_IsVirtual(isVirtual) {} + +void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const { - switch(algorithm) + if (IsVirtual()) { - case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: - return "Linear"; - case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: - return "Buddy"; - case 0: - return "Default"; - default: - VMA_ASSERT(0); - return ""; + VMA_DEBUG_LOG("UNFREED VIRTUAL ALLOCATION; Offset: %llu; Size: %llu; UserData: %p", offset, size, userData); + } + else + { + VMA_ASSERT(userData != VMA_NULL); + VmaAllocation allocation = reinterpret_cast(userData); + + userData = allocation->GetUserData(); + +#if VMA_STATS_STRING_ENABLED + if (userData != VMA_NULL && allocation->IsUserDataString()) + { + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %s; Type: %s; Usage: %u", + offset, size, reinterpret_cast(userData), + VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], + allocation->GetBufferImageUsage()); + } + else + { + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Type: %s; Usage: %u", + offset, size, userData, + VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], + allocation->GetBufferImageUsage()); + } +#else + if (userData != VMA_NULL && allocation->IsUserDataString()) + { + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %s; Type: %u", + offset, size, reinterpret_cast(userData), + (uint32_t)allocation->GetSuballocationType()); + } + else + { + VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Type: %u", + offset, size, userData, + (uint32_t)allocation->GetSuballocationType()); + } +#endif // VMA_STATS_STRING_ENABLED } + } -#endif // #if VMA_STATS_STRING_ENABLED +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const +{ + json.BeginObject(); -#ifndef VMA_SORT + json.WriteString("TotalBytes"); + json.WriteNumber(GetSize()); -template -Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) + json.WriteString("UnusedBytes"); + json.WriteNumber(unusedBytes); + + json.WriteString("Allocations"); + json.WriteNumber((uint64_t)allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber((uint64_t)unusedRangeCount); + + json.WriteString("Suballocations"); + json.BeginArray(); +} + +void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const { - Iterator centerValue = end; --centerValue; - Iterator insertIndex = beg; - for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + if (IsVirtual()) { - if(cmp(*memTypeIndex, *centerValue)) + json.WriteString("Type"); + json.WriteString("VirtualAllocation"); + + json.WriteString("Size"); + json.WriteNumber(size); + + if (userData != VMA_NULL) { - if(insertIndex != memTypeIndex) - { - VMA_SWAP(*memTypeIndex, *insertIndex); - } - ++insertIndex; + json.WriteString("UserData"); + json.BeginString(); + json.ContinueString_Pointer(userData); + json.EndString(); } } - if(insertIndex != centerValue) + else { - VMA_SWAP(*insertIndex, *centerValue); + ((VmaAllocation)userData)->PrintParameters(json); } - return insertIndex; -} -template -void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) -{ - if(beg < end) - { - Iterator it = VmaQuickSortPartition(beg, end, cmp); - VmaQuickSort(beg, it, cmp); - VmaQuickSort(it + 1, end, cmp); - } + json.EndObject(); } -#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) +void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size) const +{ + json.BeginObject(true); -#endif // #ifndef VMA_SORT + json.WriteString("Offset"); + json.WriteNumber(offset); -/* -Returns true if two memory blocks occupy overlapping pages. -ResourceA must be in less memory offset than ResourceB. + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); -Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" -chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". -*/ -static inline bool VmaBlocksOnSamePage( - VkDeviceSize resourceAOffset, - VkDeviceSize resourceASize, - VkDeviceSize resourceBOffset, - VkDeviceSize pageSize) + json.WriteString("Size"); + json.WriteNumber(size); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const { - VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); - VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; - VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); - VkDeviceSize resourceBStart = resourceBOffset; - VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); - return resourceAEndPage == resourceBStartPage; + json.EndArray(); + json.EndObject(); } +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_BLOCK_METADATA_FUNCTIONS +#endif // _VMA_BLOCK_METADATA -enum VmaSuballocationType +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY +// Before deleting object of this class remember to call 'Destroy()' +class VmaBlockBufferImageGranularity final { - VMA_SUBALLOCATION_TYPE_FREE = 0, - VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, - VMA_SUBALLOCATION_TYPE_BUFFER = 2, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, - VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +public: + struct ValidationContext + { + const VkAllocationCallbacks* allocCallbacks; + uint16_t* pageAllocs; + }; + + VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity); + ~VmaBlockBufferImageGranularity(); + + bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; } + + void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size); + // Before destroying object you must call free it's memory + void Destroy(const VkAllocationCallbacks* pAllocationCallbacks); + + void RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const; + + bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const; + + void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size); + void FreePages(VkDeviceSize offset, VkDeviceSize size); + void Clear(); + + ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks, + bool isVirutal) const; + bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const; + bool FinishValidation(ValidationContext& ctx) const; + +private: + static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256; + + struct RegionInfo + { + uint8_t allocType; + uint16_t allocCount; + }; + + VkDeviceSize m_BufferImageGranularity; + uint32_t m_RegionCount; + RegionInfo* m_RegionInfo; + + uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); } + uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); } + + uint32_t OffsetToPageIndex(VkDeviceSize offset) const; + void AllocPage(RegionInfo& page, uint8_t allocType); }; -/* -Returns true if given suballocation types could conflict and must respect -VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer -or linear image and another one is optimal image. If type is unknown, behave -conservatively. -*/ -static inline bool VmaIsBufferImageGranularityConflict( - VmaSuballocationType suballocType1, - VmaSuballocationType suballocType2) +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity) + : m_BufferImageGranularity(bufferImageGranularity), + m_RegionCount(0), + m_RegionInfo(VMA_NULL) {} + +VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity() { - if(suballocType1 > suballocType2) - { - VMA_SWAP(suballocType1, suballocType2); - } + VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!"); +} - switch(suballocType1) +void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size) +{ + if (IsEnabled()) { - case VMA_SUBALLOCATION_TYPE_FREE: - return false; - case VMA_SUBALLOCATION_TYPE_UNKNOWN: - return true; - case VMA_SUBALLOCATION_TYPE_BUFFER: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: - return false; - default: - VMA_ASSERT(0); - return true; + m_RegionCount = static_cast(VmaDivideRoundingUp(size, m_BufferImageGranularity)); + m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount); + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); } } -static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) +void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks) { -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - uint32_t* pDst = (uint32_t*)((char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for(size_t i = 0; i < numberCount; ++i, ++pDst) + if (m_RegionInfo) { - *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount); + m_RegionInfo = VMA_NULL; } -#else - // no-op -#endif } -static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) +void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const { -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for(size_t i = 0; i < numberCount; ++i, ++pSrc) + if (m_BufferImageGranularity > 1 && + m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY) { - if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) { - return false; + inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity); + inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity); } } -#endif - return true; -} - -/* -Fills structure with parameters of an example buffer to be used for transfers -during GPU memory defragmentation. -*/ -static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) -{ - memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); - outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; - outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. } -// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). -struct VmaMutexLock -{ - VMA_CLASS_NO_COPY(VmaMutexLock) -public: - VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->Lock(); } } - ~VmaMutexLock() - { if(m_pMutex) { m_pMutex->Unlock(); } } -private: - VMA_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. -struct VmaMutexLockRead -{ - VMA_CLASS_NO_COPY(VmaMutexLockRead) -public: - VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->LockRead(); } } - ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } } -private: - VMA_RW_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. -struct VmaMutexLockWrite -{ - VMA_CLASS_NO_COPY(VmaMutexLockWrite) -public: - VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { if(m_pMutex) { m_pMutex->LockWrite(); } } - ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } } -private: - VMA_RW_MUTEX* m_pMutex; -}; - -#if VMA_DEBUG_GLOBAL_MUTEX - static VMA_MUTEX gDebugGlobalMutex; - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); -#else - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK -#endif - -// Minimum size of a free suballocation to register it in the free suballocation collection. -static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16; - -/* -Performs binary search and returns iterator to first element that is greater or -equal to (key), according to comparison (cmp). - -Cmp should return true if first argument is less than second argument. - -Returned value is the found element, if present in the collection or place where -new element with value (key) should be inserted. -*/ -template -static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp) +bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const { - size_t down = 0, up = (end - beg); - while(down < up) + if (IsEnabled()) { - const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation - if(cmp(*(beg+mid), key)) + uint32_t startPage = GetStartPage(inOutAllocOffset); + if (m_RegionInfo[startPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[startPage].allocType), allocType)) { - down = mid + 1; + inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity); + if (blockSize < allocSize + inOutAllocOffset - blockOffset) + return true; + ++startPage; } - else + uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize); + if (endPage != startPage && + m_RegionInfo[endPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[endPage].allocType), allocType)) { - up = mid; + return true; } } - return beg + down; + return false; } -template -IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) +void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size) { - IterT it = VmaBinaryFindFirstNotLess( - beg, end, value, cmp); - if(it == end || - (!cmp(*it, value) && !cmp(value, *it))) + if (IsEnabled()) { - return it; + uint32_t startPage = GetStartPage(offset); + AllocPage(m_RegionInfo[startPage], allocType); + + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) + AllocPage(m_RegionInfo[endPage], allocType); } - return end; } -/* -Returns true if all pointers in the array are not-null and unique. -Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. -T must be pointer type, e.g. VmaAllocation, VmaPool. -*/ -template -static bool VmaValidatePointerArray(uint32_t count, const T* arr) +void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size) { - for(uint32_t i = 0; i < count; ++i) + if (IsEnabled()) { - const T iPtr = arr[i]; - if(iPtr == VMA_NULL) + uint32_t startPage = GetStartPage(offset); + --m_RegionInfo[startPage].allocCount; + if (m_RegionInfo[startPage].allocCount == 0) + m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) { - return false; - } - for(uint32_t j = i + 1; j < count; ++j) - { - if(iPtr == arr[j]) - { - return false; - } + --m_RegionInfo[endPage].allocCount; + if (m_RegionInfo[endPage].allocCount == 0) + m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; } } - return true; } -template -static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) +void VmaBlockBufferImageGranularity::Clear() { - newStruct->pNext = mainStruct->pNext; - mainStruct->pNext = newStruct; + if (m_RegionInfo) + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); } -//////////////////////////////////////////////////////////////////////////////// -// Memory allocation - -static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) +VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation( + const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const { - void* result = VMA_NULL; - if((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnAllocation != VMA_NULL)) - { - result = (*pAllocationCallbacks->pfnAllocation)( - pAllocationCallbacks->pUserData, - size, - alignment, - VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); - } - else + ValidationContext ctx{ pAllocationCallbacks, VMA_NULL }; + if (!isVirutal && IsEnabled()) { - result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount); + memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t)); } - VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); - return result; + return ctx; } -static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) +bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx, + VkDeviceSize offset, VkDeviceSize size) const { - if((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnFree != VMA_NULL)) + if (IsEnabled()) { - (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + uint32_t start = GetStartPage(offset); + ++ctx.pageAllocs[start]; + VMA_VALIDATE(m_RegionInfo[start].allocCount > 0); + + uint32_t end = GetEndPage(offset, size); + if (start != end) + { + ++ctx.pageAllocs[end]; + VMA_VALIDATE(m_RegionInfo[end].allocCount > 0); + } } - else + return true; +} + +bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const +{ + // Check proper page structure + if (IsEnabled()) { - VMA_SYSTEM_ALIGNED_FREE(ptr); + VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!"); + + for (uint32_t page = 0; page < m_RegionCount; ++page) + { + VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount); + } + vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount); + ctx.pageAllocs = VMA_NULL; } + return true; } -template -static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) +uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const { - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); + return static_cast(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity)); } -template -static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) +void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType) { - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); + // When current alloc type is free then it can be overriden by new type + if (page.allocCount == 0 || page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE) + page.allocType = allocType; + + ++page.allocCount; } +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY -#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) +#ifndef _VMA_BLOCK_METADATA_GENERIC +class VmaBlockMetadata_Generic : public VmaBlockMetadata +{ + friend class VmaDefragmentationAlgorithm_Generic; + friend class VmaDefragmentationAlgorithm_Fast; + VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) +public: + VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Generic() = default; -#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) + size_t GetAllocationCount() const override { return m_Suballocations.size() - m_FreeCount; } + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } + bool IsEmpty() const override { return (m_Suballocations.size() == 1) && (m_FreeCount == 1); } + void Free(VmaAllocHandle allocHandle) override { FreeSuballocation(FindAtOffset((VkDeviceSize)allocHandle - 1)); } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; -template -static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) -{ - ptr->~T(); - VmaFree(pAllocationCallbacks, ptr); -} + void Init(VkDeviceSize size) override; + bool Validate() const override; -template -static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) -{ - if(ptr != VMA_NULL) - { - for(size_t i = count; i--; ) - { - ptr[i].~T(); - } - VmaFree(pAllocationCallbacks, ptr); - } -} + void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; + void AddPoolStats(VmaPoolStats& inoutStats) const override; -static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) -{ - if(srcStr != VMA_NULL) - { - const size_t len = strlen(srcStr); - char* const result = vma_new_array(allocs, char, len + 1); - memcpy(result, srcStr, len + 1); - return result; - } - else - { - return VMA_NULL; - } -} +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif -static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) -{ - if(str != VMA_NULL) - { - const size_t len = strlen(str); - vma_delete_array(allocs, str, len + 1); - } -} + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; -// STL-compatible allocator. -template -class VmaStlAllocator -{ -public: - const VkAllocationCallbacks* const m_pCallbacks; - typedef T value_type; + VkResult CheckCorruption(const void* pBlockData) override; - VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { } - template VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) { } + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; - T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } - void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; - template - bool operator==(const VmaStlAllocator& rhs) const - { - return m_pCallbacks == rhs.m_pCallbacks; - } - template - bool operator!=(const VmaStlAllocator& rhs) const - { - return m_pCallbacks != rhs.m_pCallbacks; - } + // For defragmentation + bool IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType& inOutPrevSuballocType) const; - VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete; - VmaStlAllocator(const VmaStlAllocator&) = default; -}; +private: + uint32_t m_FreeCount; + VkDeviceSize m_SumFreeSize; + VmaSuballocationList m_Suballocations; + // Suballocations that are free. Sorted by size, ascending. + VmaVector> m_FreeSuballocationsBySize; -#if VMA_USE_STL_VECTOR + VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16); } -#define VmaVector std::vector + VmaSuballocationList::iterator FindAtOffset(VkDeviceSize offset); + bool ValidateFreeSuballocationList() const; -template -static void VmaVectorInsert(std::vector& vec, size_t index, const T& item) -{ - vec.insert(vec.begin() + index, item); -} + // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. + // If yes, fills pOffset and returns true. If no, returns false. + bool CheckAllocation( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + VmaAllocHandle* pAllocHandle) const; -template -static void VmaVectorRemove(std::vector& vec, size_t index) + // Given free suballocation, it merges it with following one, which must also be free. + void MergeFreeWithNext(VmaSuballocationList::iterator item); + // Releases given suballocation, making it free. + // Merges it with adjacent free suballocations if applicable. + // Returns iterator to new free suballocation at this place. + VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); + // Given free suballocation, it inserts it into sorted list of + // m_FreeSuballocationsBySize if it is suitable. + void RegisterFreeSuballocation(VmaSuballocationList::iterator item); + // Given free suballocation, it removes it from sorted list of + // m_FreeSuballocationsBySize if it is suitable. + void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); +}; + +#ifndef _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS +VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_FreeCount(0), + m_SumFreeSize(0), + m_Suballocations(VmaStlAllocator(pAllocationCallbacks)), + m_FreeSuballocationsBySize(VmaStlAllocator(pAllocationCallbacks)) {} + +void VmaBlockMetadata_Generic::Init(VkDeviceSize size) { - vec.erase(vec.begin() + index); -} + VmaBlockMetadata::Init(size); -#else // #if VMA_USE_STL_VECTOR + m_FreeCount = 1; + m_SumFreeSize = size; -/* Class with interface compatible with subset of std::vector. -T must be POD because constructors and destructors are not called and memcpy is -used for these objects. */ -template -class VmaVector + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + + m_Suballocations.push_back(suballoc); + m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); +} + +bool VmaBlockMetadata_Generic::Validate() const { -public: - typedef T value_type; + VMA_VALIDATE(!m_Suballocations.empty()); - VmaVector(const AllocatorT& allocator) : - m_Allocator(allocator), - m_pArray(VMA_NULL), - m_Count(0), - m_Capacity(0) - { - } + // Expected offset of new suballocation as calculated from previous ones. + VkDeviceSize calculatedOffset = 0; + // Expected number of free suballocations as calculated from traversing their list. + uint32_t calculatedFreeCount = 0; + // Expected sum size of free suballocations as calculated from traversing their list. + VkDeviceSize calculatedSumFreeSize = 0; + // Expected number of free suballocations that should be registered in + // m_FreeSuballocationsBySize calculated from traversing their list. + size_t freeSuballocationsToRegister = 0; + // True if previous visited suballocation was free. + bool prevFree = false; - VmaVector(size_t count, const AllocatorT& allocator) : - m_Allocator(allocator), - m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), - m_Count(count), - m_Capacity(count) + const VkDeviceSize debugMargin = GetDebugMargin(); + + for (const auto& subAlloc : m_Suballocations) { - } + // Actual offset of this suballocation doesn't match expected one. + VMA_VALIDATE(subAlloc.offset == calculatedOffset); - // This version of the constructor is here for compatibility with pre-C++14 std::vector. - // value is unused. - VmaVector(size_t count, const T& value, const AllocatorT& allocator) - : VmaVector(count, allocator) {} + const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); + // Two adjacent free suballocations are invalid. They should be merged. + VMA_VALIDATE(!prevFree || !currFree); - VmaVector(const VmaVector& src) : - m_Allocator(src.m_Allocator), - m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), - m_Count(src.m_Count), - m_Capacity(src.m_Count) - { - if(m_Count != 0) + VmaAllocation alloc = (VmaAllocation)subAlloc.userData; + if (!IsVirtual()) { - memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } - } - ~VmaVector() - { - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - } + if (currFree) + { + calculatedSumFreeSize += subAlloc.size; + ++calculatedFreeCount; + ++freeSuballocationsToRegister; - VmaVector& operator=(const VmaVector& rhs) - { - if(&rhs != this) + // Margin required between allocations - every free space must be at least that large. + VMA_VALIDATE(subAlloc.size >= debugMargin); + } + else { - resize(rhs.m_Count); - if(m_Count != 0) + if (!IsVirtual()) { - memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == subAlloc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == subAlloc.size); } + + // Margin required between allocations - previous allocation must be free. + VMA_VALIDATE(debugMargin == 0 || prevFree); } - return *this; + + calculatedOffset += subAlloc.size; + prevFree = currFree; } - bool empty() const { return m_Count == 0; } - size_t size() const { return m_Count; } - T* data() { return m_pArray; } - const T* data() const { return m_pArray; } + // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't + // match expected one. + VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); - T& operator[](size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - return m_pArray[index]; - } - const T& operator[](size_t index) const + VkDeviceSize lastSize = 0; + for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) { - VMA_HEAVY_ASSERT(index < m_Count); - return m_pArray[index]; - } + VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; - T& front() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[0]; - } - const T& front() const - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[0]; - } - T& back() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[m_Count - 1]; - } - const T& back() const - { - VMA_HEAVY_ASSERT(m_Count > 0); - return m_pArray[m_Count - 1]; + // Only free suballocations can be registered in m_FreeSuballocationsBySize. + VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); + // They must be sorted by size ascending. + VMA_VALIDATE(suballocItem->size >= lastSize); + + lastSize = suballocItem->size; } - void reserve(size_t newCapacity, bool freeMemory = false) - { - newCapacity = VMA_MAX(newCapacity, m_Count); + // Check if totals match calculated values. + VMA_VALIDATE(ValidateFreeSuballocationList()); + VMA_VALIDATE(calculatedOffset == GetSize()); + VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); + VMA_VALIDATE(calculatedFreeCount == m_FreeCount); - if((newCapacity < m_Capacity) && !freeMemory) - { - newCapacity = m_Capacity; - } + return true; +} - if(newCapacity != m_Capacity) - { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; - if(m_Count != 0) - { - memcpy(newArray, m_pArray, m_Count * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; - } - } +void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + VmaInitStatInfo(outInfo); + outInfo.blockCount = 1; - void resize(size_t newCount) + for (const auto& suballoc : m_Suballocations) { - size_t newCapacity = m_Capacity; - if(newCount > m_Capacity) + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { - newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + VmaAddStatInfoAllocation(outInfo, suballoc.size); } - - if(newCapacity != m_Capacity) + else { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; - const size_t elementsToCopy = VMA_MIN(m_Count, newCount); - if(elementsToCopy != 0) - { - memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; + VmaAddStatInfoUnusedRange(outInfo, suballoc.size); } - - m_Count = newCount; } +} - void clear() - { - resize(0); - } +void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const +{ + const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); - void shrink_to_fit() - { - if(m_Capacity > m_Count) - { - T* newArray = VMA_NULL; - if(m_Count > 0) - { - newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count); - memcpy(newArray, m_pArray, m_Count * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = m_Count; - m_pArray = newArray; - } - } + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize; + inoutStats.allocationCount += rangeCount - m_FreeCount; + inoutStats.unusedRangeCount += m_FreeCount; +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const +{ + PrintDetailedMap_Begin(json, + m_SumFreeSize, // unusedBytes + m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount + m_FreeCount); // unusedRangeCount - void insert(size_t index, const T& src) + for (const auto& suballoc : m_Suballocations) { - VMA_HEAVY_ASSERT(index <= m_Count); - const size_t oldCount = size(); - resize(oldCount + 1); - if(index < oldCount) + if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) { - memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size); } - m_pArray[index] = src; - } - - void remove(size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - const size_t oldCount = size(); - if(index < oldCount - 1) + else { - memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); } - resize(oldCount - 1); - } - - void push_back(const T& src) - { - const size_t newIndex = size(); - resize(newIndex + 1); - m_pArray[newIndex] = src; - } - - void pop_back() - { - VMA_HEAVY_ASSERT(m_Count > 0); - resize(size() - 1); - } - - void push_front(const T& src) - { - insert(0, src); } - void pop_front() - { - VMA_HEAVY_ASSERT(m_Count > 0); - remove(0); - } + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED - typedef T* iterator; - typedef const T* const_iterator; - - iterator begin() { return m_pArray; } - iterator end() { return m_pArray + m_Count; } - const_iterator cbegin() const { return m_pArray; } - const_iterator cend() const { return m_pArray + m_Count; } - const_iterator begin() const { return cbegin(); } - const_iterator end() const { return cend(); } - -private: - AllocatorT m_Allocator; - T* m_pArray; - size_t m_Count; - size_t m_Capacity; -}; - -template -static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) -{ - vec.insert(index, item); -} - -template -static void VmaVectorRemove(VmaVector& vec, size_t index) -{ - vec.remove(index); -} - -#endif // #if VMA_USE_STL_VECTOR - -template -size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - const size_t indexToInsert = VmaBinaryFindFirstNotLess( - vector.data(), - vector.data() + vector.size(), - value, - CmpLess()) - vector.data(); - VmaVectorInsert(vector, indexToInsert, value); - return indexToInsert; -} - -template -bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - CmpLess comparator; - typename VectorT::iterator it = VmaBinaryFindFirstNotLess( - vector.begin(), - vector.end(), - value, - comparator); - if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) - { - size_t indexToRemove = it - vector.begin(); - VmaVectorRemove(vector, indexToRemove); - return true; - } - return false; -} - -//////////////////////////////////////////////////////////////////////////////// -// class VmaSmallVector - -/* -This is a vector (a variable-sized array), optimized for the case when the array is small. - -It contains some number of elements in-place, which allows it to avoid heap allocation -when the actual number of elements is below that threshold. This allows normal "small" -cases to be fast without losing generality for large inputs. -*/ - -template -class VmaSmallVector +bool VmaBlockMetadata_Generic::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) { -public: - typedef T value_type; + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(!upperAddress); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); - VmaSmallVector(const AllocatorT& allocator) : - m_Count(0), - m_DynamicArray(allocator) - { - } - VmaSmallVector(size_t count, const AllocatorT& allocator) : - m_Count(count), - m_DynamicArray(count > N ? count : 0, allocator) - { - } - template - VmaSmallVector(const VmaSmallVector& src) = delete; - template - VmaSmallVector& operator=(const VmaSmallVector& rhs) = delete; + allocSize = AlignAllocationSize(allocSize); - bool empty() const { return m_Count == 0; } - size_t size() const { return m_Count; } - T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } - const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->size = allocSize; - T& operator[](size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - return data()[index]; - } - const T& operator[](size_t index) const - { - VMA_HEAVY_ASSERT(index < m_Count); - return data()[index]; - } + const VkDeviceSize debugMargin = GetDebugMargin(); - T& front() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return data()[0]; - } - const T& front() const - { - VMA_HEAVY_ASSERT(m_Count > 0); - return data()[0]; - } - T& back() - { - VMA_HEAVY_ASSERT(m_Count > 0); - return data()[m_Count - 1]; - } - const T& back() const + // There is not enough total free space in this block to fulfill the request: Early return. + if (m_SumFreeSize < allocSize + debugMargin) { - VMA_HEAVY_ASSERT(m_Count > 0); - return data()[m_Count - 1]; + return false; } - void resize(size_t newCount, bool freeMemory = false) + // New algorithm, efficiently searching freeSuballocationsBySize. + const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); + if (freeSuballocCount > 0) { - if(newCount > N && m_Count > N) + if (strategy == 0 || + strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) { - // Any direction, staying in m_DynamicArray - m_DynamicArray.resize(newCount); - if(freeMemory) + // Find first free suballocation with size not less than allocSize + debugMargin. + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + freeSuballocCount, + allocSize + debugMargin, + VmaSuballocationItemSizeLess()); + size_t index = it - m_FreeSuballocationsBySize.data(); + for (; index < freeSuballocCount; ++index) { - m_DynamicArray.shrink_to_fit(); + if (CheckAllocation( + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } } } - else if(newCount > N && m_Count <= N) + else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) { - // Growing, moving from m_StaticArray to m_DynamicArray - m_DynamicArray.resize(newCount); - if(m_Count > 0) + for (VmaSuballocationList::iterator it = m_Suballocations.begin(); + it != m_Suballocations.end(); + ++it) { - memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); + if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( + allocSize, + allocAlignment, + allocType, + it, + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = it; + return true; + } } } - else if(newCount <= N && m_Count > N) + else { - // Shrinking, moving from m_DynamicArray to m_StaticArray - if(newCount > 0) - { - memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); - } - m_DynamicArray.resize(0); - if(freeMemory) + VMA_ASSERT(strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT); + // Search staring from biggest suballocations. + for (size_t index = freeSuballocCount; index--; ) { - m_DynamicArray.shrink_to_fit(); + if (CheckAllocation( + allocSize, + allocAlignment, + allocType, + m_FreeSuballocationsBySize[index], + &pAllocationRequest->allocHandle)) + { + pAllocationRequest->item = m_FreeSuballocationsBySize[index]; + return true; + } } } - else - { - // Any direction, staying in m_StaticArray - nothing to do here - } - m_Count = newCount; } - void clear(bool freeMemory = false) - { - m_DynamicArray.clear(); - if(freeMemory) - { - m_DynamicArray.shrink_to_fit(); - } - m_Count = 0; - } + return false; +} - void insert(size_t index, const T& src) +VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) +{ + for (auto& suballoc : m_Suballocations) { - VMA_HEAVY_ASSERT(index <= m_Count); - const size_t oldCount = size(); - resize(oldCount + 1); - T* const dataPtr = data(); - if(index < oldCount) + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { - // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. - memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN; + } } - dataPtr[index] = src; } - void remove(size_t index) - { - VMA_HEAVY_ASSERT(index < m_Count); - const size_t oldCount = size(); - if(index < oldCount - 1) - { - // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. - T* const dataPtr = data(); - memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); - } - resize(oldCount - 1); - } + return VK_SUCCESS; +} + +void VmaBlockMetadata_Generic::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); + VMA_ASSERT(request.item != m_Suballocations.end()); + VmaSuballocation& suballoc = *request.item; + // Given suballocation is a free block. + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + // Given offset is inside this suballocation. + VMA_ASSERT((VkDeviceSize)request.allocHandle - 1 >= suballoc.offset); + const VkDeviceSize paddingBegin = (VkDeviceSize)request.allocHandle - suballoc.offset - 1; + VMA_ASSERT(suballoc.size >= paddingBegin + request.size); + const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size; + + // Unregister this free suballocation from m_FreeSuballocationsBySize and update + // it to become used. + UnregisterFreeSuballocation(request.item); + + suballoc.offset = (VkDeviceSize)request.allocHandle - 1; + suballoc.size = request.size; + suballoc.type = type; + suballoc.userData = userData; - void push_back(const T& src) + // If there are any free bytes remaining at the end, insert new free suballocation after current one. + if (paddingEnd) { - const size_t newIndex = size(); - resize(newIndex + 1); - data()[newIndex] = src; + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = suballoc.offset + suballoc.size; + paddingSuballoc.size = paddingEnd; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + VmaSuballocationList::iterator next = request.item; + ++next; + const VmaSuballocationList::iterator paddingEndItem = + m_Suballocations.insert(next, paddingSuballoc); + RegisterFreeSuballocation(paddingEndItem); } - void pop_back() + // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. + if (paddingBegin) { - VMA_HEAVY_ASSERT(m_Count > 0); - resize(size() - 1); + VmaSuballocation paddingSuballoc = {}; + paddingSuballoc.offset = suballoc.offset - paddingBegin; + paddingSuballoc.size = paddingBegin; + paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + const VmaSuballocationList::iterator paddingBeginItem = + m_Suballocations.insert(request.item, paddingSuballoc); + RegisterFreeSuballocation(paddingBeginItem); } - void push_front(const T& src) + // Update totals. + m_FreeCount = m_FreeCount - 1; + if (paddingBegin > 0) { - insert(0, src); + ++m_FreeCount; } - - void pop_front() + if (paddingEnd > 0) { - VMA_HEAVY_ASSERT(m_Count > 0); - remove(0); + ++m_FreeCount; } + m_SumFreeSize -= request.size; +} - typedef T* iterator; +void VmaBlockMetadata_Generic::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + outInfo.offset = (VkDeviceSize)allocHandle - 1; + const VmaSuballocation& suballoc = *FindAtOffset(outInfo.offset); + outInfo.size = suballoc.size; + outInfo.pUserData = suballoc.userData; +} - iterator begin() { return data(); } - iterator end() { return data() + m_Count; } +void VmaBlockMetadata_Generic::Clear() +{ + const VkDeviceSize size = GetSize(); -private: - size_t m_Count; - T m_StaticArray[N]; // Used when m_Size <= N - VmaVector m_DynamicArray; // Used when m_Size > N -}; + VMA_ASSERT(IsVirtual()); + m_FreeCount = 1; + m_SumFreeSize = size; + m_Suballocations.clear(); + m_FreeSuballocationsBySize.clear(); -//////////////////////////////////////////////////////////////////////////////// -// class VmaPoolAllocator + VmaSuballocation suballoc = {}; + suballoc.offset = 0; + suballoc.size = size; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + m_Suballocations.push_back(suballoc); -/* -Allocator for objects of type T using a list of arrays (pools) to speed up -allocation. Number of elements that can be allocated is not bounded because -allocator can create multiple blocks. -*/ -template -class VmaPoolAllocator + m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); +} + +void VmaBlockMetadata_Generic::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) { - VMA_CLASS_NO_COPY(VmaPoolAllocator) -public: - VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); - ~VmaPoolAllocator(); - template T* Alloc(Types... args); - void Free(T* ptr); + VmaSuballocation& suballoc = *FindAtOffset((VkDeviceSize)allocHandle - 1); + suballoc.userData = userData; +} -private: - union Item +void VmaBlockMetadata_Generic::DebugLogAllAllocations() const +{ + for (const auto& suballoc : m_Suballocations) { - uint32_t NextFreeIndex; - alignas(T) char Value[sizeof(T)]; - }; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(suballoc.offset, suballoc.size, suballoc.userData); + } +} - struct ItemBlock +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffset(VkDeviceSize offset) +{ + VMA_HEAVY_ASSERT(!m_Suballocations.empty()); + const VkDeviceSize last = m_Suballocations.rbegin()->offset; + if (last == offset) + return m_Suballocations.rbegin(); + const VkDeviceSize first = m_Suballocations.begin()->offset; + if (first == offset) + return m_Suballocations.begin(); + + const size_t suballocCount = m_Suballocations.size(); + const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount; + auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator { - Item* pItems; - uint32_t Capacity; - uint32_t FirstFreeIndex; + for (auto suballocItem = begin; + suballocItem != end; + ++suballocItem) + { + VmaSuballocation& suballoc = *suballocItem; + if (suballoc.offset == offset) + return suballocItem; + } + VMA_ASSERT(false && "Not found!"); + return m_Suballocations.end(); }; - - const VkAllocationCallbacks* m_pAllocationCallbacks; - const uint32_t m_FirstBlockCapacity; - VmaVector< ItemBlock, VmaStlAllocator > m_ItemBlocks; - - ItemBlock& CreateNewBlock(); -}; - -template -VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) : - m_pAllocationCallbacks(pAllocationCallbacks), - m_FirstBlockCapacity(firstBlockCapacity), - m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) -{ - VMA_ASSERT(m_FirstBlockCapacity > 1); + // If requested offset is closer to the end of range, search from the end + if (offset - first > suballocCount * step / 2) + { + return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend()); + } + return findSuballocation(m_Suballocations.begin(), m_Suballocations.end()); } -template -VmaPoolAllocator::~VmaPoolAllocator() +bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const { - for(size_t i = m_ItemBlocks.size(); i--; ) - vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); - m_ItemBlocks.clear(); + VkDeviceSize lastSize = 0; + for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) + { + const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; + + VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_VALIDATE(it->size >= lastSize); + lastSize = it->size; + } + return true; } -template -template T* VmaPoolAllocator::Alloc(Types... args) +bool VmaBlockMetadata_Generic::CheckAllocation( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaSuballocationList::const_iterator suballocItem, + VmaAllocHandle* pAllocHandle) const { - for(size_t i = m_ItemBlocks.size(); i--; ) + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(suballocItem != m_Suballocations.cend()); + VMA_ASSERT(pAllocHandle != VMA_NULL); + + const VkDeviceSize debugMargin = GetDebugMargin(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + + const VmaSuballocation& suballoc = *suballocItem; + VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + // Size of this suballocation is too small for this request: Early return. + if (suballoc.size < allocSize) { - ItemBlock& block = m_ItemBlocks[i]; - // This block has some free items: Use first one. - if(block.FirstFreeIndex != UINT32_MAX) - { - Item* const pItem = &block.pItems[block.FirstFreeIndex]; - block.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result)T(std::forward(args)...); // Explicit constructor call. - return result; - } + return false; } - // No block has free item: Create new one and use it. - ItemBlock& newBlock = CreateNewBlock(); - Item* const pItem = &newBlock.pItems[0]; - newBlock.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result)T(std::forward(args)...); // Explicit constructor call. - return result; -} + // Start from offset equal to beginning of this suballocation. + VkDeviceSize offset = suballoc.offset + (suballocItem == m_Suballocations.cbegin() ? 0 : GetDebugMargin()); -template -void VmaPoolAllocator::Free(T* ptr) -{ - // Search all memory blocks to find ptr. - for(size_t i = m_ItemBlocks.size(); i--; ) + // Apply debugMargin from the end of previous alloc. + if (debugMargin > 0) { - ItemBlock& block = m_ItemBlocks[i]; + offset += debugMargin; + } - // Casting to union. - Item* pItemPtr; - memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); + // Apply alignment. + offset = VmaAlignUp(offset, allocAlignment); - // Check if pItemPtr is in address range of this block. - if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) + { + bool bufferImageGranularityConflict = false; + VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; + while (prevSuballocItem != m_Suballocations.cbegin()) { - ptr->~T(); // Explicit destructor call. - const uint32_t index = static_cast(pItemPtr - block.pItems); - pItemPtr->NextFreeIndex = block.FirstFreeIndex; - block.FirstFreeIndex = index; - return; + --prevSuballocItem; + const VmaSuballocation& prevSuballoc = *prevSuballocItem; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + offset = VmaAlignUp(offset, bufferImageGranularity); } } - VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); -} -template -typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() -{ - const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? - m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; + // Calculate padding at the beginning based on current offset. + const VkDeviceSize paddingBegin = offset - suballoc.offset; - const ItemBlock newBlock = { - vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), - newBlockCapacity, - 0 }; + // Fail if requested size plus margin after is bigger than size of this suballocation. + if (paddingBegin + allocSize + debugMargin > suballoc.size) + { + return false; + } - m_ItemBlocks.push_back(newBlock); + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (allocSize % bufferImageGranularity || offset % bufferImageGranularity) + { + VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; + ++nextSuballocItem; + while (nextSuballocItem != m_Suballocations.cend()) + { + const VmaSuballocation& nextSuballoc = *nextSuballocItem; + if (VmaBlocksOnSamePage(offset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + ++nextSuballocItem; + } + } - // Setup singly-linked list of all free items in this block. - for(uint32_t i = 0; i < newBlockCapacity - 1; ++i) - newBlock.pItems[i].NextFreeIndex = i + 1; - newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; - return m_ItemBlocks.back(); + *pAllocHandle = (VmaAllocHandle)(offset + 1); + // All tests passed: Success. pAllocHandle is already filled. + return true; } -//////////////////////////////////////////////////////////////////////////////// -// class VmaRawList, VmaList - -#if VMA_USE_STL_LIST +void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item != m_Suballocations.end()); + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); -#define VmaList std::list + VmaSuballocationList::iterator nextItem = item; + ++nextItem; + VMA_ASSERT(nextItem != m_Suballocations.end()); + VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); -#else // #if VMA_USE_STL_LIST + item->size += nextItem->size; + --m_FreeCount; + m_Suballocations.erase(nextItem); +} -template -struct VmaListItem +VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) { - VmaListItem* pPrev; - VmaListItem* pNext; - T Value; -}; + // Change this suballocation to be marked as free. + VmaSuballocation& suballoc = *suballocItem; + suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + suballoc.userData = VMA_NULL; -// Doubly linked list. -template -class VmaRawList -{ - VMA_CLASS_NO_COPY(VmaRawList) -public: - typedef VmaListItem ItemType; + // Update totals. + ++m_FreeCount; + m_SumFreeSize += suballoc.size; - VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); - ~VmaRawList(); - void Clear(); + // Merge with previous and/or next suballocation if it's also free. + bool mergeWithNext = false; + bool mergeWithPrev = false; - size_t GetCount() const { return m_Count; } - bool IsEmpty() const { return m_Count == 0; } + VmaSuballocationList::iterator nextItem = suballocItem; + ++nextItem; + if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) + { + mergeWithNext = true; + } - ItemType* Front() { return m_pFront; } - const ItemType* Front() const { return m_pFront; } - ItemType* Back() { return m_pBack; } - const ItemType* Back() const { return m_pBack; } + VmaSuballocationList::iterator prevItem = suballocItem; + if (suballocItem != m_Suballocations.begin()) + { + --prevItem; + if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) + { + mergeWithPrev = true; + } + } - ItemType* PushBack(); - ItemType* PushFront(); - ItemType* PushBack(const T& value); - ItemType* PushFront(const T& value); - void PopBack(); - void PopFront(); + if (mergeWithNext) + { + UnregisterFreeSuballocation(nextItem); + MergeFreeWithNext(suballocItem); + } - // Item can be null - it means PushBack. - ItemType* InsertBefore(ItemType* pItem); - // Item can be null - it means PushFront. - ItemType* InsertAfter(ItemType* pItem); + if (mergeWithPrev) + { + UnregisterFreeSuballocation(prevItem); + MergeFreeWithNext(prevItem); + RegisterFreeSuballocation(prevItem); + return prevItem; + } + else + { + RegisterFreeSuballocation(suballocItem); + return suballocItem; + } +} - ItemType* InsertBefore(ItemType* pItem, const T& value); - ItemType* InsertAfter(ItemType* pItem, const T& value); +void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) +{ + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); - void Remove(ItemType* pItem); + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); -private: - const VkAllocationCallbacks* const m_pAllocationCallbacks; - VmaPoolAllocator m_ItemAllocator; - ItemType* m_pFront; - ItemType* m_pBack; - size_t m_Count; -}; + if (m_FreeSuballocationsBySize.empty()) + { + m_FreeSuballocationsBySize.push_back(item); + } + else + { + VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); + } -template -VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : - m_pAllocationCallbacks(pAllocationCallbacks), - m_ItemAllocator(pAllocationCallbacks, 128), - m_pFront(VMA_NULL), - m_pBack(VMA_NULL), - m_Count(0) -{ + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); } -template -VmaRawList::~VmaRawList() +void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) { - // Intentionally not calling Clear, because that would be unnecessary - // computations to return all items to m_ItemAllocator as free. -} + VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(item->size > 0); -template -void VmaRawList::Clear() -{ - if(IsEmpty() == false) + // You may want to enable this validation at the beginning or at the end of + // this function, depending on what do you want to check. + VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + + VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( + m_FreeSuballocationsBySize.data(), + m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), + item, + VmaSuballocationItemSizeLess()); + for (size_t index = it - m_FreeSuballocationsBySize.data(); + index < m_FreeSuballocationsBySize.size(); + ++index) { - ItemType* pItem = m_pBack; - while(pItem != VMA_NULL) + if (m_FreeSuballocationsBySize[index] == item) { - ItemType* const pPrevItem = pItem->pPrev; - m_ItemAllocator.Free(pItem); - pItem = pPrevItem; + VmaVectorRemove(m_FreeSuballocationsBySize, index); + return; } - m_pFront = VMA_NULL; - m_pBack = VMA_NULL; - m_Count = 0; + VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); } -} + VMA_ASSERT(0 && "Not found."); -template -VmaListItem* VmaRawList::PushBack() -{ - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pNext = VMA_NULL; - if(IsEmpty()) - { - pNewItem->pPrev = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; - } - else - { - pNewItem->pPrev = m_pBack; - m_pBack->pNext = pNewItem; - m_pBack = pNewItem; - ++m_Count; - } - return pNewItem; + //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); } -template -VmaListItem* VmaRawList::PushFront() +bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( + VkDeviceSize bufferImageGranularity, + VmaSuballocationType& inOutPrevSuballocType) const { - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pPrev = VMA_NULL; - if(IsEmpty()) + if (bufferImageGranularity == 1 || IsEmpty() || IsVirtual()) { - pNewItem->pNext = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; + return false; } - else + + VkDeviceSize minAlignment = VK_WHOLE_SIZE; + bool typeConflictFound = false; + for (const auto& suballoc : m_Suballocations) { - pNewItem->pNext = m_pFront; - m_pFront->pPrev = pNewItem; - m_pFront = pNewItem; - ++m_Count; + const VmaSuballocationType suballocType = suballoc.type; + if (suballocType != VMA_SUBALLOCATION_TYPE_FREE) + { + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + minAlignment = VMA_MIN(minAlignment, alloc->GetAlignment()); + if (VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) + { + typeConflictFound = true; + } + inOutPrevSuballocType = suballocType; + } } - return pNewItem; -} -template -VmaListItem* VmaRawList::PushBack(const T& value) -{ - ItemType* const pNewItem = PushBack(); - pNewItem->Value = value; - return pNewItem; + return typeConflictFound || minAlignment >= bufferImageGranularity; } +#endif // _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_GENERIC -template -VmaListItem* VmaRawList::PushFront(const T& value) -{ - ItemType* const pNewItem = PushFront(); - pNewItem->Value = value; - return pNewItem; -} +#ifndef _VMA_BLOCK_METADATA_LINEAR +/* +Allocations and their references in internal data structure look like this: -template -void VmaRawList::PopBack() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pBackItem = m_pBack; - ItemType* const pPrevItem = pBackItem->pPrev; - if(pPrevItem != VMA_NULL) - { - pPrevItem->pNext = VMA_NULL; - } - m_pBack = pPrevItem; - m_ItemAllocator.Free(pBackItem); - --m_Count; -} +if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): -template -void VmaRawList::PopFront() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pFrontItem = m_pFront; - ItemType* const pNextItem = pFrontItem->pNext; - if(pNextItem != VMA_NULL) - { - pNextItem->pPrev = VMA_NULL; - } - m_pFront = pNextItem; - m_ItemAllocator.Free(pFrontItem); - --m_Count; -} + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | +GetSize() +-------+ -template -void VmaRawList::Remove(ItemType* pItem) -{ - VMA_HEAVY_ASSERT(pItem != VMA_NULL); - VMA_HEAVY_ASSERT(m_Count > 0); +if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): - if(pItem->pPrev != VMA_NULL) - { - pItem->pPrev->pNext = pItem->pNext; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = pItem->pNext; - } + 0 +-------+ + | Alloc | 2nd[0] + +-------+ + | Alloc | 2nd[1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | +GetSize() +-------+ - if(pItem->pNext != VMA_NULL) - { - pItem->pNext->pPrev = pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = pItem->pPrev; - } +if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): - m_ItemAllocator.Free(pItem); - --m_Count; -} + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[1] + +-------+ + | Alloc | 2nd[0] +GetSize() +-------+ -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) +*/ +class VmaBlockMetadata_Linear : public VmaBlockMetadata { - if(pItem != VMA_NULL) - { - ItemType* const prevItem = pItem->pPrev; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pPrev = prevItem; - newItem->pNext = pItem; - pItem->pPrev = newItem; - if(prevItem != VMA_NULL) - { - prevItem->pNext = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = newItem; - } - ++m_Count; - return newItem; - } - else - return PushBack(); -} + VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) +public: + VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Linear() = default; -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) -{ - if(pItem != VMA_NULL) - { - ItemType* const nextItem = pItem->pNext; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pNext = nextItem; - newItem->pPrev = pItem; - pItem->pNext = newItem; - if(nextItem != VMA_NULL) - { - nextItem->pPrev = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = newItem; - } - ++m_Count; - return newItem; - } - else - return PushFront(); -} + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } + bool IsEmpty() const override { return GetAllocationCount() == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertBefore(pItem); - newItem->Value = value; - return newItem; -} + void Init(VkDeviceSize size) override; + bool Validate() const override; + size_t GetAllocationCount() const override; -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertAfter(pItem); - newItem->Value = value; - return newItem; -} + void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; + void AddPoolStats(VmaPoolStats& inoutStats) const override; -template -class VmaList +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + /* + There are two suballocation vectors, used in ping-pong way. + The one with index m_1stVectorIndex is called 1st. + The one with index (m_1stVectorIndex ^ 1) is called 2nd. + 2nd can be non-empty only when 1st is not empty. + When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. + */ + typedef VmaVector> SuballocationVectorType; + + enum SECOND_VECTOR_MODE + { + SECOND_VECTOR_EMPTY, + /* + Suballocations in 2nd vector are created later than the ones in 1st, but they + all have smaller offset. + */ + SECOND_VECTOR_RING_BUFFER, + /* + Suballocations in 2nd vector are upper side of double stack. + They all have offsets higher than those in 1st vector. + Top of this stack means smaller offsets, but higher indices in this vector. + */ + SECOND_VECTOR_DOUBLE_STACK, + }; + + VkDeviceSize m_SumFreeSize; + SuballocationVectorType m_Suballocations0, m_Suballocations1; + uint32_t m_1stVectorIndex; + SECOND_VECTOR_MODE m_2ndVectorMode; + // Number of items in 1st vector with hAllocation = null at the beginning. + size_t m_1stNullItemsBeginCount; + // Number of other items in 1st vector with hAllocation = null somewhere in the middle. + size_t m_1stNullItemsMiddleCount; + // Number of items in 2nd vector with hAllocation = null. + size_t m_2ndNullItemsCount; + + SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + + VmaSuballocation& FindSuballocation(VkDeviceSize offset); + bool ShouldCompact1st() const; + void CleanupAfterFree(); + + bool CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + bool CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_SumFreeSize(0), + m_Suballocations0(VmaStlAllocator(pAllocationCallbacks)), + m_Suballocations1(VmaStlAllocator(pAllocationCallbacks)), + m_1stVectorIndex(0), + m_2ndVectorMode(SECOND_VECTOR_EMPTY), + m_1stNullItemsBeginCount(0), + m_1stNullItemsMiddleCount(0), + m_2ndNullItemsCount(0) {} + +void VmaBlockMetadata_Linear::Init(VkDeviceSize size) { - VMA_CLASS_NO_COPY(VmaList) -public: - class iterator + VmaBlockMetadata::Init(size); + m_SumFreeSize = size; +} + +bool VmaBlockMetadata_Linear::Validate() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); + VMA_VALIDATE(!suballocations1st.empty() || + suballocations2nd.empty() || + m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + + if (!suballocations1st.empty()) { - public: - iterator() : - m_pList(VMA_NULL), - m_pItem(VMA_NULL) - { - } + // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. + VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE); + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } + if (!suballocations2nd.empty()) + { + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } - T& operator*() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return m_pItem->Value; - } - T* operator->() const - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return &m_pItem->Value; - } + VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); + VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); - iterator& operator++() - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - m_pItem = m_pItem->pNext; - return *this; - } - iterator& operator--() + VkDeviceSize sumUsedSize = 0; + const size_t suballoc1stCount = suballocations1st.size(); + const VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize offset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = 0; i < suballoc2ndCount; ++i) { - if(m_pItem != VMA_NULL) + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) { - m_pItem = m_pItem->pPrev; + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; } else { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); + ++nullItem2ndCount; } - return *this; - } - - iterator operator++(int) - { - iterator result = *this; - ++*this; - return result; - } - iterator operator--(int) - { - iterator result = *this; - --*this; - return result; - } - bool operator==(const iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem == rhs.m_pItem; - } - bool operator!=(const iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem != rhs.m_pItem; + offset = suballoc.offset + suballoc.size + debugMargin; } - private: - VmaRawList* m_pList; - VmaListItem* m_pItem; + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } - iterator(VmaRawList* pList, VmaListItem* pItem) : - m_pList(pList), - m_pItem(pItem) - { - } + for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && + suballoc.userData == VMA_NULL); + } - friend class VmaList; - }; + size_t nullItem1stCount = m_1stNullItemsBeginCount; - class const_iterator + for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) { - public: - const_iterator() : - m_pList(VMA_NULL), - m_pItem(VMA_NULL) - { - } + const VmaSuballocation& suballoc = suballocations1st[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - const_iterator(const iterator& src) : - m_pList(src.m_pList), - m_pItem(src.m_pItem) + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } + VMA_VALIDATE(suballoc.offset >= offset); + VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); - const T& operator*() const + if (!currFree) { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return m_pItem->Value; + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; } - const T* operator->() const + else { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - return &m_pItem->Value; + ++nullItem1stCount; } - const_iterator& operator++() - { - VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); - m_pItem = m_pItem->pNext; - return *this; - } - const_iterator& operator--() + offset = suballoc.offset + suballoc.size + debugMargin; + } + VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = suballoc2ndCount; i--; ) { - if(m_pItem != VMA_NULL) + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) { - m_pItem = m_pItem->pPrev; + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; } else { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); + ++nullItem2ndCount; } - return *this; - } - - const_iterator operator++(int) - { - const_iterator result = *this; - ++*this; - return result; - } - const_iterator operator--(int) - { - const_iterator result = *this; - --*this; - return result; - } - bool operator==(const const_iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem == rhs.m_pItem; - } - bool operator!=(const const_iterator& rhs) const - { - VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); - return m_pItem != rhs.m_pItem; + offset = suballoc.offset + suballoc.size + debugMargin; } - private: - const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : - m_pList(pList), - m_pItem(pItem) - { - } + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } - const VmaRawList* m_pList; - const VmaListItem* m_pItem; + VMA_VALIDATE(offset <= GetSize()); + VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); - friend class VmaList; - }; + return true; +} - VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { } +size_t VmaBlockMetadata_Linear::GetAllocationCount() const +{ + return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount + + AccessSuballocations2nd().size() - m_2ndNullItemsCount; +} - bool empty() const { return m_RawList.IsEmpty(); } - size_t size() const { return m_RawList.GetCount(); } +void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); - iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } - iterator end() { return iterator(&m_RawList, VMA_NULL); } + VmaInitStatInfo(outInfo); + outInfo.blockCount = 1; - const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } - const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } + VkDeviceSize lastOffset = 0; - const_iterator begin() const { return cbegin(); } - const_iterator end() const { return cend(); } + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } - void clear() { m_RawList.Clear(); } - void push_back(const T& value) { m_RawList.PushBack(value); } - void erase(iterator it) { m_RawList.Remove(it.m_pItem); } - iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; -private: - VmaRawList m_RawList; -}; + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } -#endif // #if VMA_USE_STL_LIST - -//////////////////////////////////////////////////////////////////////////////// -// class VmaIntrusiveLinkedList + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddStatInfoAllocation(outInfo, suballoc.size); -/* -Expected interface of ItemTypeTraits: -struct MyItemTypeTraits -{ - typedef MyItem ItemType; - static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } - static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } - static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } - static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } -}; -*/ -template -class VmaIntrusiveLinkedList -{ -public: - typedef typename ItemTypeTraits::ItemType ItemType; - static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } - static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } - // Movable, not copyable. - VmaIntrusiveLinkedList() { } - VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList& src) = delete; - VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) : - m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) - { - src.m_Front = src.m_Back = VMA_NULL; - src.m_Count = 0; - } - ~VmaIntrusiveLinkedList() - { - VMA_HEAVY_ASSERT(IsEmpty()); - } - VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList& src) = delete; - VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src) - { - if(&src != this) - { - VMA_HEAVY_ASSERT(IsEmpty()); - m_Front = src.m_Front; - m_Back = src.m_Back; - m_Count = src.m_Count; - src.m_Front = src.m_Back = VMA_NULL; - src.m_Count = 0; - } - return *this; - } - void RemoveAll() - { - if(!IsEmpty()) - { - ItemType* item = m_Back; - while(item != VMA_NULL) + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else { - ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); - ItemTypeTraits::AccessPrev(item) = VMA_NULL; - ItemTypeTraits::AccessNext(item) = VMA_NULL; - item = prevItem; + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + if (lastOffset < freeSpace2ndTo1stEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; } - m_Front = VMA_NULL; - m_Back = VMA_NULL; - m_Count = 0; } } - size_t GetCount() const { return m_Count; } - bool IsEmpty() const { return m_Count == 0; } - ItemType* Front() { return m_Front; } - const ItemType* Front() const { return m_Front; } - ItemType* Back() { return m_Back; } - const ItemType* Back() const { return m_Back; } - void PushBack(ItemType* item) + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) { - VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); - if(IsEmpty()) - { - m_Front = item; - m_Back = item; - m_Count = 1; - } - else + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { - ItemTypeTraits::AccessPrev(item) = m_Back; - ItemTypeTraits::AccessNext(m_Back) = item; - m_Back = item; - ++m_Count; + ++nextAlloc1stIndex; } - } - void PushFront(ItemType* item) - { - VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); - if(IsEmpty()) + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { - m_Front = item; - m_Back = item; - m_Count = 1; + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddStatInfoAllocation(outInfo, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; } + // We are at the end. else { - ItemTypeTraits::AccessNext(item) = m_Front; - ItemTypeTraits::AccessPrev(m_Front) = item; - m_Front = item; - ++m_Count; - } - } - ItemType* PopBack() - { - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const backItem = m_Back; - ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); - if(prevItem != VMA_NULL) - { - ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; - } - m_Back = prevItem; - --m_Count; - ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; - ItemTypeTraits::AccessNext(backItem) = VMA_NULL; - return backItem; - } - ItemType* PopFront() - { - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const frontItem = m_Front; - ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); - if(nextItem != VMA_NULL) - { - ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + if (lastOffset < freeSpace1stTo2ndEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; } - m_Front = nextItem; - --m_Count; - ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; - ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; - return frontItem; } - // MyItem can be null - it means PushBack. - void InsertBefore(ItemType* existingItem, ItemType* newItem) + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { - VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); - if(existingItem != VMA_NULL) + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) { - ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); - ItemTypeTraits::AccessPrev(newItem) = prevItem; - ItemTypeTraits::AccessNext(newItem) = existingItem; - ItemTypeTraits::AccessPrev(existingItem) = newItem; - if(prevItem != VMA_NULL) + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) { - ItemTypeTraits::AccessNext(prevItem) = newItem; + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddStatInfoAllocation(outInfo, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; } + // We are at the end. else { - VMA_HEAVY_ASSERT(m_Front == existingItem); - m_Front = newItem; + // There is free space from lastOffset to size. + if (lastOffset < size) + { + const VkDeviceSize unusedRangeSize = size - lastOffset; + VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); + } + + // End of loop. + lastOffset = size; } - ++m_Count; } - else - PushBack(newItem); } - // MyItem can be null - it means PushFront. - void InsertAfter(ItemType* existingItem, ItemType* newItem) + + outInfo.unusedBytes = size - outInfo.usedBytes; +} + +void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VkDeviceSize size = GetSize(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.size += size; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { - VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); - if(existingItem != VMA_NULL) + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace2ndTo1stEnd) { - ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); - ItemTypeTraits::AccessNext(newItem) = nextItem; - ItemTypeTraits::AccessPrev(newItem) = existingItem; - ItemTypeTraits::AccessNext(existingItem) = newItem; - if(nextItem != VMA_NULL) + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) { - ItemTypeTraits::AccessPrev(nextItem) = newItem; + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; } + // We are at the end. else { - VMA_HEAVY_ASSERT(m_Back == existingItem); - m_Back = newItem; + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; } - ++m_Count; } - else - return PushFront(newItem); } - void Remove(ItemType* item) + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) { - VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); - if(ItemTypeTraits::GetPrev(item) != VMA_NULL) - { - ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); - } - else + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { - VMA_HEAVY_ASSERT(m_Front == item); - m_Front = ItemTypeTraits::GetNext(item); + ++nextAlloc1stIndex; } - if(ItemTypeTraits::GetNext(item) != VMA_NULL) + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) { - ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; } + // We are at the end. else { - VMA_HEAVY_ASSERT(m_Back == item); - m_Back = ItemTypeTraits::GetPrev(item); + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; } - ItemTypeTraits::AccessPrev(item) = VMA_NULL; - ItemTypeTraits::AccessNext(item) = VMA_NULL; - --m_Count; } -private: - ItemType* m_Front = VMA_NULL; - ItemType* m_Back = VMA_NULL; - size_t m_Count = 0; -}; - -//////////////////////////////////////////////////////////////////////////////// -// class VmaMap -// Unused in this version. -#if 0 - -#if VMA_USE_STL_UNORDERED_MAP + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } -#define VmaPair std::pair + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; -#define VMA_MAP_TYPE(KeyT, ValueT) \ - std::unordered_map< KeyT, ValueT, std::hash, std::equal_to, VmaStlAllocator< std::pair > > + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } -#else // #if VMA_USE_STL_UNORDERED_MAP + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; -template -struct VmaPair -{ - T1 first; - T2 second; + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + inoutStats.unusedSize += unusedRangeSize; + ++inoutStats.unusedRangeCount; + } - VmaPair() : first(), second() { } - VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { } -}; + // End of loop. + lastOffset = size; + } + } + } +} -/* Class compatible with subset of interface of std::unordered_map. -KeyT, ValueT must be POD because they will be stored in VmaVector. -*/ -template -class VmaMap +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const { -public: - typedef VmaPair PairType; - typedef PairType* iterator; - - VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) { } - - iterator begin() { return m_Vector.begin(); } - iterator end() { return m_Vector.end(); } - - void insert(const PairType& pair); - iterator find(const KeyT& key); - void erase(iterator it); - -private: - VmaVector< PairType, VmaStlAllocator > m_Vector; -}; + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); -#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap + // FIRST PASS -template -struct VmaPairFirstLess -{ - bool operator()(const VmaPair& lhs, const VmaPair& rhs) const - { - return lhs.first < rhs.first; - } - bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const - { - return lhs.first < rhsFirst; - } -}; + size_t unusedRangeCount = 0; + VkDeviceSize usedBytes = 0; -template -void VmaMap::insert(const PairType& pair) -{ - const size_t indexToInsert = VmaBinaryFindFirstNotLess( - m_Vector.data(), - m_Vector.data() + m_Vector.size(), - pair, - VmaPairFirstLess()) - m_Vector.data(); - VmaVectorInsert(m_Vector, indexToInsert, pair); -} + VkDeviceSize lastOffset = 0; -template -VmaPair* VmaMap::find(const KeyT& key) -{ - PairType* it = VmaBinaryFindFirstNotLess( - m_Vector.data(), - m_Vector.data() + m_Vector.size(), - key, - VmaPairFirstLess()); - if((it != m_Vector.end()) && (it->first == key)) - { - return it; - } - else + size_t alloc2ndCount = 0; + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { - return m_Vector.end(); - } -} + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } -template -void VmaMap::erase(iterator it) -{ - VmaVectorRemove(m_Vector, it - m_Vector.begin()); -} + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; -#endif // #if VMA_USE_STL_UNORDERED_MAP + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } -#endif // #if 0 + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; -//////////////////////////////////////////////////////////////////////////////// + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + ++unusedRangeCount; + } -class VmaDeviceMemoryBlock; + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } -enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + size_t alloc1stCount = 0; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } -struct VmaAllocation_T -{ -private: - static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80; + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - enum FLAGS - { - FLAG_USER_DATA_STRING = 0x01, - }; + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } -public: - enum ALLOCATION_TYPE - { - ALLOCATION_TYPE_NONE, - ALLOCATION_TYPE_BLOCK, - ALLOCATION_TYPE_DEDICATED, - }; + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc1stCount; + usedBytes += suballoc.size; - /* - This struct is allocated using VmaPoolAllocator. - */ + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + ++unusedRangeCount; + } - VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) : - m_Alignment{1}, - m_Size{0}, - m_pUserData{VMA_NULL}, - m_LastUseFrameIndex{currentFrameIndex}, - m_MemoryTypeIndex{0}, - m_Type{(uint8_t)ALLOCATION_TYPE_NONE}, - m_SuballocationType{(uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN}, - m_MapCount{0}, - m_Flags{userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0} - { -#if VMA_STATS_STRING_ENABLED - m_CreationFrameIndex = currentFrameIndex; - m_BufferImageUsage = 0; -#endif + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } } - ~VmaAllocation_T() + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { - VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } - // Check if owned string was freed. - VMA_ASSERT(m_pUserData == VMA_NULL); - } + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - void InitBlockAllocation( - VmaDeviceMemoryBlock* block, - VkDeviceSize offset, - VkDeviceSize alignment, - VkDeviceSize size, - uint32_t memoryTypeIndex, - VmaSuballocationType suballocationType, - bool mapped, - bool canBecomeLost) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(block != VMA_NULL); - m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; - m_Alignment = alignment; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; - m_SuballocationType = (uint8_t)suballocationType; - m_BlockAllocation.m_Block = block; - m_BlockAllocation.m_Offset = offset; - m_BlockAllocation.m_CanBecomeLost = canBecomeLost; - } - - void InitLost() - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST); - m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; - m_MemoryTypeIndex = 0; - m_BlockAllocation.m_Block = VMA_NULL; - m_BlockAllocation.m_Offset = 0; - m_BlockAllocation.m_CanBecomeLost = true; - } - - void ChangeBlockAllocation( - VmaAllocator hAllocator, - VmaDeviceMemoryBlock* block, - VkDeviceSize offset); + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } - void ChangeOffset(VkDeviceSize newOffset); + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; - // pMappedData not null means allocation is created with MAPPED flag. - void InitDedicatedAllocation( - uint32_t memoryTypeIndex, - VkDeviceMemory hMemory, - VmaSuballocationType suballocationType, - void* pMappedData, - VkDeviceSize size) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(hMemory != VK_NULL_HANDLE); - m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; - m_Alignment = 0; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - m_SuballocationType = (uint8_t)suballocationType; - m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; - m_DedicatedAllocation.m_hMemory = hMemory; - m_DedicatedAllocation.m_pMappedData = pMappedData; - m_DedicatedAllocation.m_Prev = VMA_NULL; - m_DedicatedAllocation.m_Next = VMA_NULL; + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = size; + } + } } - ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } - VkDeviceSize GetAlignment() const { return m_Alignment; } - VkDeviceSize GetSize() const { return m_Size; } - bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } - void* GetUserData() const { return m_pUserData; } - void SetUserData(VmaAllocator hAllocator, void* pUserData); - VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } + const VkDeviceSize unusedBytes = size - usedBytes; + PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); - VmaDeviceMemoryBlock* GetBlock() const - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - return m_BlockAllocation.m_Block; - } - VkDeviceSize GetOffset() const; - VkDeviceMemory GetMemory() const; - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; } - void* GetMappedData() const; - bool CanBecomeLost() const; + // SECOND PASS + lastOffset = 0; - uint32_t GetLastUseFrameIndex() const - { - return m_LastUseFrameIndex.load(); - } - bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired) + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { - return m_LastUseFrameIndex.compare_exchange_weak(expected, desired); - } - /* - - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex, - makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true. - - Else, returns false. + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } - If hAllocation is already lost, assert - you should not call it then. - If hAllocation was not created with CAN_BECOME_LOST_BIT, assert. - */ - bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) - { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); - outInfo.blockCount = 1; - outInfo.allocationCount = 1; - outInfo.unusedRangeCount = 0; - outInfo.usedBytes = m_Size; - outInfo.unusedBytes = 0; - outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; - } + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } - void BlockAllocMap(); - void BlockAllocUnmap(); - VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); - void DedicatedAllocUnmap(VmaAllocator hAllocator); + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); -#if VMA_STATS_STRING_ENABLED - uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; } - uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } - void InitBufferImageUsage(uint32_t bufferImageUsage) - { - VMA_ASSERT(m_BufferImageUsage == 0); - m_BufferImageUsage = bufferImageUsage; + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } } - void PrintParameters(class VmaJsonWriter& json) const; -#endif + nextAlloc1stIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } -private: - VkDeviceSize m_Alignment; - VkDeviceSize m_Size; - void* m_pUserData; - VMA_ATOMIC_UINT32 m_LastUseFrameIndex; - uint32_t m_MemoryTypeIndex; - uint8_t m_Type; // ALLOCATION_TYPE - uint8_t m_SuballocationType; // VmaSuballocationType - // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT. - // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory(). - uint8_t m_MapCount; - uint8_t m_Flags; // enum FLAGS + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - // Allocation out of VmaDeviceMemoryBlock. - struct BlockAllocation - { - VmaDeviceMemoryBlock* m_Block; - VkDeviceSize m_Offset; - bool m_CanBecomeLost; - }; + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } - // Allocation for an object that has its own private VkDeviceMemory. - struct DedicatedAllocation - { - VkDeviceMemory m_hMemory; - void* m_pMappedData; // Not null means memory is mapped. - VmaAllocation_T* m_Prev; - VmaAllocation_T* m_Next; - }; + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); - union + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { - // Allocation out of VmaDeviceMemoryBlock. - BlockAllocation m_BlockAllocation; - // Allocation for an object that has its own private VkDeviceMemory. - DedicatedAllocation m_DedicatedAllocation; - }; + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } -#if VMA_STATS_STRING_ENABLED - uint32_t m_CreationFrameIndex; - uint32_t m_BufferImageUsage; // 0 if unknown. -#endif + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - void FreeUserDataString(VmaAllocator hAllocator); + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } - friend struct VmaDedicatedAllocationListItemTraits; -}; + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); -struct VmaDedicatedAllocationListItemTraits -{ - typedef VmaAllocation_T ItemType; - static ItemType* GetPrev(const ItemType* item) - { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Prev; + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } } - static ItemType* GetNext(const ItemType* item) + + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Linear::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + pAllocationRequest->size = allocSize; + return upperAddress ? + CreateAllocationRequest_UpperAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest) : + CreateAllocationRequest_LowerAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest); +} + +VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) +{ + VMA_ASSERT(!IsVirtual()); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Next; + const VmaSuballocation& suballoc = suballocations1st[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN; + } + } } - static ItemType*& AccessPrev(ItemType* item) + + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Prev; - } - static ItemType*& AccessNext(ItemType* item){ - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Next; + const VmaSuballocation& suballoc = suballocations2nd[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN; + } + } } -}; -/* -Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as -allocated memory block or free. -*/ -struct VmaSuballocation -{ - VkDeviceSize offset; - VkDeviceSize size; - VmaAllocation hAllocation; - VmaSuballocationType type; -}; + return VK_SUCCESS; +} -// Comparator for offsets. -struct VmaSuballocationOffsetLess +void VmaBlockMetadata_Linear::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) { - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; + const VmaSuballocation newSuballoc = { offset, request.size, userData, type }; + + switch (request.type) { - return lhs.offset < rhs.offset; + case VmaAllocationRequestType::UpperAddress: + { + VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && + "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + suballocations2nd.push_back(newSuballoc); + m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; } -}; -struct VmaSuballocationOffsetGreater -{ - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + break; + case VmaAllocationRequestType::EndOf1st: { - return lhs.offset > rhs.offset; + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + + VMA_ASSERT(suballocations1st.empty() || + offset >= suballocations1st.back().offset + suballocations1st.back().size); + // Check if it fits before the end of the block. + VMA_ASSERT(offset + request.size <= GetSize()); + + suballocations1st.push_back(newSuballoc); } -}; + break; + case VmaAllocationRequestType::EndOf2nd: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. + VMA_ASSERT(!suballocations1st.empty() && + offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + switch (m_2ndVectorMode) + { + case SECOND_VECTOR_EMPTY: + // First allocation from second part ring buffer. + VMA_ASSERT(suballocations2nd.empty()); + m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; + break; + case SECOND_VECTOR_RING_BUFFER: + // 2-part ring buffer is already started. + VMA_ASSERT(!suballocations2nd.empty()); + break; + case SECOND_VECTOR_DOUBLE_STACK: + VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); + break; + default: + VMA_ASSERT(0); + } -typedef VmaList< VmaSuballocation, VmaStlAllocator > VmaSuballocationList; + suballocations2nd.push_back(newSuballoc); + } + break; + default: + VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); + } -// Cost of one additional allocation lost, as equivalent in bytes. -static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576; + m_SumFreeSize -= newSuballoc.size; +} -enum class VmaAllocationRequestType +void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle) { - Normal, - // Used by "Linear" algorithm. - UpperAddress, - EndOf1st, - EndOf2nd, -}; - -/* -Parameters of planned allocation inside a VmaDeviceMemoryBlock. - -If canMakeOtherLost was false: -- item points to a FREE suballocation. -- itemsToMakeLostCount is 0. + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + VkDeviceSize offset = (VkDeviceSize)allocHandle - 1; -If canMakeOtherLost was true: -- item points to first of sequence of suballocations, which are either FREE, - or point to VmaAllocations that can become lost. -- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for - the requested allocation to succeed. -*/ -struct VmaAllocationRequest -{ - VkDeviceSize offset; - VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation. - VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation. - VmaSuballocationList::iterator item; - size_t itemsToMakeLostCount; - void* customData; - VmaAllocationRequestType type; + if (!suballocations1st.empty()) + { + // First allocation: Mark it as next empty at the beginning. + VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + if (firstSuballoc.offset == offset) + { + firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + firstSuballoc.userData = VMA_NULL; + m_SumFreeSize += firstSuballoc.size; + ++m_1stNullItemsBeginCount; + CleanupAfterFree(); + return; + } + } - VkDeviceSize CalcCost() const + // Last allocation in 2-part ring buffer or top of upper stack (same logic). + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { - return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST; + VmaSuballocation& lastSuballoc = suballocations2nd.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations2nd.pop_back(); + CleanupAfterFree(); + return; + } + } + // Last allocation in 1st vector. + else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) + { + VmaSuballocation& lastSuballoc = suballocations1st.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations1st.pop_back(); + CleanupAfterFree(); + return; + } } -}; -/* -Data structure used for bookkeeping of allocations and unused ranges of memory -in a single VkDeviceMemory block. -*/ -class VmaBlockMetadata -{ -public: - VmaBlockMetadata(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata() { } - virtual void Init(VkDeviceSize size) { m_Size = size; } + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. - // Validates all data structures inside this object. If not valid, returns false. - virtual bool Validate() const = 0; - VkDeviceSize GetSize() const { return m_Size; } - virtual size_t GetAllocationCount() const = 0; - virtual VkDeviceSize GetSumFreeSize() const = 0; - virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0; - // Returns true if this block is empty - contains only single free suballocation. - virtual bool IsEmpty() const = 0; + // Item from the middle of 1st vector. + { + const SuballocationVectorType::iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; - // Shouldn't modify blockCount. - virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Item from the middle of 2nd vector. + const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_2ndNullItemsCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; -#endif + VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); +} - // Tries to find a place for suballocation with given parameters inside this block. - // If succeeded, fills pAllocationRequest and returns true. - // If failed, returns false. - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) = 0; +void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + outInfo.offset = (VkDeviceSize)allocHandle - 1; + VmaSuballocation& suballoc = FindSuballocation(outInfo.offset); + outInfo.size = suballoc.size; + outInfo.pUserData = suballoc.userData; +} - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) = 0; +void VmaBlockMetadata_Linear::Clear() +{ + m_SumFreeSize = GetSize(); + m_Suballocations0.clear(); + m_Suballocations1.clear(); + // Leaving m_1stVectorIndex unchanged - it doesn't matter. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; +} - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0; +void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1); + suballoc.userData = userData; +} - virtual VkResult CheckCorruption(const void* pBlockData) = 0; +void VmaBlockMetadata_Linear::DebugLogAllAllocations() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); - // Makes actual allocation based on request. Request must already be checked and valid. - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) = 0; + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); +} - // Frees suballocation assigned to given memory region. - virtual void Free(const VmaAllocation allocation) = 0; - virtual void FreeAtOffset(VkDeviceSize offset) = 0; +VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); -protected: - const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, - size_t allocationCount, - size_t unusedRangeCount) const; - void PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, - VmaAllocation hAllocation) const; - void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, - VkDeviceSize size) const; - void PrintDetailedMap_End(class VmaJsonWriter& json) const; -#endif + // Item from the 1st vector. + { + const SuballocationVectorType::iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + return *it; + } + } -private: - VkDeviceSize m_Size; - const VkAllocationCallbacks* m_pAllocationCallbacks; -}; + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Rest of members stays uninitialized intentionally for better performance. + const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + return *it; + } + } -#define VMA_VALIDATE(cond) do { if(!(cond)) { \ - VMA_ASSERT(0 && "Validation failed: " #cond); \ - return false; \ - } } while(false) + VMA_ASSERT(0 && "Allocation not found in linear allocator!"); + return suballocations1st.back(); // Should never occur. +} -class VmaBlockMetadata_Generic : public VmaBlockMetadata +bool VmaBlockMetadata_Linear::ShouldCompact1st() const { - VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) -public: - VmaBlockMetadata_Generic(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata_Generic(); - virtual void Init(VkDeviceSize size); + const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + const size_t suballocCount = AccessSuballocations1st().size(); + return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; +} - virtual bool Validate() const; - virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; } - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const; +void VmaBlockMetadata_Linear::CleanupAfterFree() +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + if (IsEmpty()) + { + suballocations1st.clear(); + suballocations2nd.clear(); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + else + { + const size_t suballoc1stCount = suballocations1st.size(); + const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + VMA_ASSERT(nullItem1stCount <= suballoc1stCount); -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; -#endif + // Find more null items at the beginning of 1st vector. + while (m_1stNullItemsBeginCount < suballoc1stCount && + suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); + // Find more null items at the end of 1st vector. + while (m_1stNullItemsMiddleCount > 0 && + suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_1stNullItemsMiddleCount; + suballocations1st.pop_back(); + } - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); + // Find more null items at the end of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + suballocations2nd.pop_back(); + } - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + // Find more null items at the beginning of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + VmaVectorRemove(suballocations2nd, 0); + } - virtual VkResult CheckCorruption(const void* pBlockData); + if (ShouldCompact1st()) + { + const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; + size_t srcIndex = m_1stNullItemsBeginCount; + for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) + { + while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++srcIndex; + } + if (dstIndex != srcIndex) + { + suballocations1st[dstIndex] = suballocations1st[srcIndex]; + } + ++srcIndex; + } + suballocations1st.resize(nonNullItemCount); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + } - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); + // 2nd vector became empty. + if (suballocations2nd.empty()) + { + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } - virtual void Free(const VmaAllocation allocation); - virtual void FreeAtOffset(VkDeviceSize offset); + // 1st vector became empty. + if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) + { + suballocations1st.clear(); + m_1stNullItemsBeginCount = 0; - //////////////////////////////////////////////////////////////////////////////// - // For defragmentation - - bool IsBufferImageGranularityConflictPossible( - VkDeviceSize bufferImageGranularity, - VmaSuballocationType& inOutPrevSuballocType) const; + if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + // Swap 1st with 2nd. Now 2nd is empty. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsMiddleCount = m_2ndNullItemsCount; + while (m_1stNullItemsBeginCount < suballocations2nd.size() && + suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + m_2ndNullItemsCount = 0; + m_1stVectorIndex ^= 1; + } + } + } -private: - friend class VmaDefragmentationAlgorithm_Generic; - friend class VmaDefragmentationAlgorithm_Fast; + VMA_HEAVY_ASSERT(Validate()); +} - uint32_t m_FreeCount; - VkDeviceSize m_SumFreeSize; - VmaSuballocationList m_Suballocations; - // Suballocations that are free and have size greater than certain threshold. - // Sorted by size, ascending. - VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize; +bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize debugMargin = GetDebugMargin(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - bool ValidateFreeSuballocationList() const; + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + // Try to allocate at the end of 1st vector. - // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. - // If yes, fills pOffset and returns true. If no, returns false. - bool CheckAllocation( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaSuballocationList::const_iterator suballocItem, - bool canMakeOtherLost, - VkDeviceSize* pOffset, - size_t* itemsToMakeLostCount, - VkDeviceSize* pSumFreeSize, - VkDeviceSize* pSumItemSize) const; - // Given free suballocation, it merges it with following one, which must also be free. - void MergeFreeWithNext(VmaSuballocationList::iterator item); - // Releases given suballocation, making it free. - // Merges it with adjacent free suballocations if applicable. - // Returns iterator to new free suballocation at this place. - VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); - // Given free suballocation, it inserts it into sorted list of - // m_FreeSuballocationsBySize if it's suitable. - void RegisterFreeSuballocation(VmaSuballocationList::iterator item); - // Given free suballocation, it removes it from sorted list of - // m_FreeSuballocationsBySize if it's suitable. - void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); -}; + VkDeviceSize resultBaseOffset = 0; + if (!suballocations1st.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations1st.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } -/* -Allocations and their references in internal data structure look like this: + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; -if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | -GetSize() +-------+ + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } -if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): + const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? + suballocations2nd.back().offset : blockSize; - 0 +-------+ - | Alloc | 2nd[0] - +-------+ - | Alloc | 2nd[1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | -GetSize() +-------+ + // There is enough free space at the end after alignment. + if (resultOffset + allocSize + debugMargin <= freeSpaceEnd) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on previous page. + break; + } + } + } -if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item, customData unused. + pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; + return true; + } + } - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[1] - +-------+ - | Alloc | 2nd[0] -GetSize() +-------+ + // Wrap-around to end of 2nd vector. Try to allocate there, watching for the + // beginning of 1st vector as the end of free space. + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(!suballocations1st.empty()); -*/ -class VmaBlockMetadata_Linear : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) -public: - VmaBlockMetadata_Linear(VmaAllocator hAllocator); - virtual ~VmaBlockMetadata_Linear(); - virtual void Init(VkDeviceSize size); + VkDeviceSize resultBaseOffset = 0; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } - virtual bool Validate() const; - virtual size_t GetAllocationCount() const; - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const { return GetAllocationCount() == 0; } + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; -#endif + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); + size_t index1st = m_1stNullItemsBeginCount; - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); + // There is enough free space at the end after alignment. + if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) || + (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset)) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) + { + for (size_t nextSuballocIndex = index1st; + nextSuballocIndex < suballocations1st.size(); + nextSuballocIndex++) + { + const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; + // pAllocationRequest->item, customData unused. + return true; + } + } - virtual VkResult CheckCorruption(const void* pBlockData); + return false; +} - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); +bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - virtual void Free(const VmaAllocation allocation); - virtual void FreeAtOffset(VkDeviceSize offset); + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); + return false; + } -private: - /* - There are two suballocation vectors, used in ping-pong way. - The one with index m_1stVectorIndex is called 1st. - The one with index (m_1stVectorIndex ^ 1) is called 2nd. - 2nd can be non-empty only when 1st is not empty. - When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. - */ - typedef VmaVector< VmaSuballocation, VmaStlAllocator > SuballocationVectorType; + // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). + if (allocSize > blockSize) + { + return false; + } + VkDeviceSize resultBaseOffset = blockSize - allocSize; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset - allocSize; + if (allocSize > lastSuballoc.offset) + { + return false; + } + } - enum SECOND_VECTOR_MODE + // Start from offset equal to end of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + const VkDeviceSize debugMargin = GetDebugMargin(); + + // Apply debugMargin at the end. + if (debugMargin > 0) { - SECOND_VECTOR_EMPTY, - /* - Suballocations in 2nd vector are created later than the ones in 1st, but they - all have smaller offset. - */ - SECOND_VECTOR_RING_BUFFER, - /* - Suballocations in 2nd vector are upper side of double stack. - They all have offsets higher than those in 1st vector. - Top of this stack means smaller offsets, but higher indices in this vector. - */ - SECOND_VECTOR_DOUBLE_STACK, - }; + if (resultOffset < debugMargin) + { + return false; + } + resultOffset -= debugMargin; + } - VkDeviceSize m_SumFreeSize; - SuballocationVectorType m_Suballocations0, m_Suballocations1; - uint32_t m_1stVectorIndex; - SECOND_VECTOR_MODE m_2ndVectorMode; + // Apply alignment. + resultOffset = VmaAlignDown(resultOffset, allocAlignment); - SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } - const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + // Check next suballocations from 2nd for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); + } + } - // Number of items in 1st vector with hAllocation = null at the beginning. - size_t m_1stNullItemsBeginCount; - // Number of other items in 1st vector with hAllocation = null somewhere in the middle. - size_t m_1stNullItemsMiddleCount; - // Number of items in 2nd vector with hAllocation = null. - size_t m_2ndNullItemsCount; + // There is enough free space. + const VkDeviceSize endOf1st = !suballocations1st.empty() ? + suballocations1st.back().offset + suballocations1st.back().size : + 0; + if (endOf1st + debugMargin <= resultOffset) + { + // Check previous suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) + { + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } - bool ShouldCompact1st() const; - void CleanupAfterFree(); + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item unused. + pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; + return true; + } - bool CreateAllocationRequest_LowerAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - bool CreateAllocationRequest_UpperAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); -}; + return false; +} +#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_LINEAR +#ifndef _VMA_BLOCK_METADATA_BUDDY /* - GetSize() is the original size of allocated memory block. - m_UsableSize is this size aligned down to a power of two. @@ -7134,69 +8906,54 @@ class VmaBlockMetadata_Buddy : public VmaBlockMetadata { VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) public: - VmaBlockMetadata_Buddy(VmaAllocator hAllocator); + VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata_Buddy(); - virtual void Init(VkDeviceSize size); - virtual bool Validate() const; - virtual size_t GetAllocationCount() const { return m_AllocationCount; } - virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); } - virtual VkDeviceSize GetUnusedRangeSizeMax() const; - virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; } + size_t GetAllocationCount() const override { return m_AllocationCount; } + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize + GetUnusableSize(); } + bool IsEmpty() const override { return m_Root->type == Node::TYPE_FREE; } + VkResult CheckCorruption(const void* pBlockData) override { return VK_ERROR_FEATURE_NOT_PRESENT; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; + void DebugLogAllAllocations() const override { DebugLogAllAllocationNode(m_Root, 0); } - virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const; - virtual void AddPoolStats(VmaPoolStats& inoutStats) const; + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; + void AddPoolStats(VmaPoolStats& inoutStats) const override; #if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const; + void PrintDetailedMap(class VmaJsonWriter& json) const override; #endif - virtual bool CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, + bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, - bool canMakeOtherLost, uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - - virtual bool MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest); + VmaAllocationRequest* pAllocationRequest) override; - virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount); - - virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; } - - virtual void Alloc( + void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation); + void* userData) override; - virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); } - virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); } + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; private: - static const VkDeviceSize MIN_NODE_SIZE = 32; - static const size_t MAX_LEVELS = 30; + static const size_t MAX_LEVELS = 48; struct ValidationContext { - size_t calculatedAllocationCount; - size_t calculatedFreeCount; - VkDeviceSize calculatedSumFreeSize; - - ValidationContext() : - calculatedAllocationCount(0), - calculatedFreeCount(0), - calculatedSumFreeSize(0) { } + size_t calculatedAllocationCount = 0; + size_t calculatedFreeCount = 0; + VkDeviceSize calculatedSumFreeSize = 0; }; - struct Node { VkDeviceSize offset; @@ -7219,7 +8976,7 @@ private: } free; struct { - VmaAllocation alloc; + void* userData; } allocation; struct { @@ -7231,27 +8988,38 @@ private: // Size of the memory block aligned down to a power of two. VkDeviceSize m_UsableSize; uint32_t m_LevelCount; - + VmaPoolAllocator m_NodeAllocator; Node* m_Root; - struct { + struct + { Node* front; Node* back; } m_FreeList[MAX_LEVELS]; + // Number of nodes in the tree with type == TYPE_ALLOCATION. size_t m_AllocationCount; // Number of nodes in the tree with type == TYPE_FREE. size_t m_FreeCount; - // This includes space wasted due to internal fragmentation. Doesn't include unusable size. + // Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes. + // Doesn't include unusable size. VkDeviceSize m_SumFreeSize; VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } - void DeleteNode(Node* node); + VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } + + VkDeviceSize AlignAllocationSize(VkDeviceSize size) const + { + if (!IsVirtual()) + { + size = VmaAlignUp(size, (VkDeviceSize)16); + } + return VmaNextPow2(size); + } + Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel); + void DeleteNodeChildren(Node* node); bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; - inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } - // Alloc passed just for validation. Can be null. - void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset); - void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const; + void CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const; // Adds node to the front of FreeList at given level. // node->type must be FREE. // node->free.prev, next can be undefined. @@ -7260,12474 +9028,10842 @@ private: // node->type must be FREE. // node->free.prev, next stay untouched. void RemoveFromFreeList(uint32_t level, Node* node); + void DebugLogAllAllocationNode(Node* node, uint32_t level) const; #if VMA_STATS_STRING_ENABLED void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; #endif }; -struct VmaBlockVector; +#ifndef _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS +VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_NodeAllocator(pAllocationCallbacks, 32), // firstBlockCapacity + m_Root(VMA_NULL), + m_AllocationCount(0), + m_FreeCount(1), + m_SumFreeSize(0) +{ + memset(m_FreeList, 0, sizeof(m_FreeList)); +} -/* -Represents a single block of device memory (`VkDeviceMemory`) with all the -data about its regions (aka suballocations, #VmaAllocation), assigned and free. +VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() +{ + DeleteNodeChildren(m_Root); + m_NodeAllocator.Free(m_Root); +} -Thread-safety: This class must be externally synchronized. -*/ -class VmaDeviceMemoryBlock +void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) { - VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) -public: - VmaBlockMetadata* m_pMetadata; + VmaBlockMetadata::Init(size); - VmaDeviceMemoryBlock(VmaAllocator hAllocator); + m_UsableSize = VmaPrevPow2(size); + m_SumFreeSize = m_UsableSize; - ~VmaDeviceMemoryBlock() + // Calculate m_LevelCount. + const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16; + m_LevelCount = 1; + while (m_LevelCount < MAX_LEVELS && + LevelToNodeSize(m_LevelCount) >= minNodeSize) { - VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); - VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + ++m_LevelCount; } - // Always call after construction. - void Init( - VmaAllocator hAllocator, - VmaBlockVector* parentBlockVector, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm); - // Always call before destruction. - void Destroy(VmaAllocator allocator); - - VmaBlockVector* GetParentBlockVector() const { return m_ParentBlockVector; } - VmaPool GetParentPool() const { return m_hParentPool; } - VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - uint32_t GetId() const { return m_Id; } - void* GetMappedData() const { return m_pMappedData; } + Node* rootNode = m_NodeAllocator.Alloc(); + rootNode->offset = 0; + rootNode->type = Node::TYPE_FREE; + rootNode->parent = VMA_NULL; + rootNode->buddy = VMA_NULL; - // Validates all data structures inside this object. If not valid, returns false. - bool Validate() const; + m_Root = rootNode; + AddToFreeListFront(0, rootNode); +} - VkResult CheckCorruption(VmaAllocator hAllocator); +bool VmaBlockMetadata_Buddy::Validate() const +{ + // Validate tree. + ValidationContext ctx; + if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) + { + VMA_VALIDATE(false && "ValidateNode failed."); + } + VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); + VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); - // ppData can be null. - VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); - void Unmap(VmaAllocator hAllocator, uint32_t count); + // Validate free node lists. + for (uint32_t level = 0; level < m_LevelCount; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || + m_FreeList[level].front->free.prev == VMA_NULL); - VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); - VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + for (Node* node = m_FreeList[level].front; + node != VMA_NULL; + node = node->free.next) + { + VMA_VALIDATE(node->type == Node::TYPE_FREE); - VkResult BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); + if (node->free.next == VMA_NULL) + { + VMA_VALIDATE(m_FreeList[level].back == node); + } + else + { + VMA_VALIDATE(node->free.next->free.prev == node); + } + } + } -private: - VmaBlockVector* m_ParentBlockVector = VMA_NULL; - VmaPool m_hParentPool = VK_NULL_HANDLE; // VK_NULL_HANDLE if not belongs to custom pool. - uint32_t m_MemoryTypeIndex = UINT32_MAX; - uint32_t m_Id = 0; - VkDeviceMemory m_hMemory = VK_NULL_HANDLE; + // Validate that free lists ar higher levels are empty. + for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) + { + VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); + } - /* - Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. - Also protects m_MapCount, m_pMappedData. - Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. - */ - VMA_MUTEX m_Mutex; - uint32_t m_MapCount = 0; - void* m_pMappedData = VMA_NULL; -}; + return true; +} -struct VmaDefragmentationMove +void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const { - size_t srcBlockIndex; - size_t dstBlockIndex; - VkDeviceSize srcOffset; - VkDeviceSize dstOffset; - VkDeviceSize size; - VmaAllocation hAllocation; - VmaDeviceMemoryBlock* pSrcBlock; - VmaDeviceMemoryBlock* pDstBlock; -}; + VmaInitStatInfo(outInfo); + outInfo.blockCount = 1; -class VmaDefragmentationAlgorithm; + CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); -/* -Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific -Vulkan memory type. + const VkDeviceSize unusableSize = GetUnusableSize(); + if (unusableSize > 0) + { + VmaAddStatInfoUnusedRange(outInfo, unusableSize); + } +} -Synchronized internally with a mutex. -*/ -struct VmaBlockVector +void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const { - VMA_CLASS_NO_COPY(VmaBlockVector) -public: - VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - uint32_t frameInUseCount, - bool explicitBlockSize, - uint32_t algorithm, - float priority, - VkDeviceSize minAllocationAlignment, - void* pMemoryAllocateNext); - ~VmaBlockVector(); - - VkResult CreateMinBlocks(); + const VkDeviceSize unusableSize = GetUnusableSize(); - VmaAllocator GetAllocator() const { return m_hAllocator; } - VmaPool GetParentPool() const { return m_hParentPool; } - bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } - VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } - uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; } - uint32_t GetAlgorithm() const { return m_Algorithm; } + inoutStats.size += GetSize(); + inoutStats.unusedSize += m_SumFreeSize + unusableSize; + inoutStats.allocationCount += m_AllocationCount; + inoutStats.unusedRangeCount += m_FreeCount; - void GetPoolStats(VmaPoolStats* pStats); + if (unusableSize > 0) + { + ++inoutStats.unusedRangeCount; + } +} - bool IsEmpty(); - bool IsCorruptionDetectionEnabled() const; +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const +{ + VmaStatInfo stat; + CalcAllocationStatInfo(stat); - VkResult Allocate( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); + PrintDetailedMap_Begin( + json, + stat.unusedBytes, + stat.allocationCount, + stat.unusedRangeCount); - void Free(const VmaAllocation hAllocation); + PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); - // Adds statistics of this BlockVector to pStats. - void AddStats(VmaStats* pStats); + const VkDeviceSize unusableSize = GetUnusableSize(); + if (unusableSize > 0) + { + PrintDetailedMap_UnusedRange(json, + m_UsableSize, // offset + unusableSize); // size + } -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED - void MakePoolAllocationsLost( - uint32_t currentFrameIndex, - size_t* pLostAllocationCount); - VkResult CheckCorruption(); +bool VmaBlockMetadata_Buddy::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); - // Saves results in pCtx->res. - void Defragment( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, - VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, - VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer); - void DefragmentationEnd( - class VmaBlockVectorDefragmentationContext* pCtx, - uint32_t flags, - VmaDefragmentationStats* pStats); + allocSize = AlignAllocationSize(allocSize); - uint32_t ProcessDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); + // Simple way to respect bufferImageGranularity. May be optimized some day. + // Whenever it might be an OPTIMAL image... + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + { + allocAlignment = VMA_MAX(allocAlignment, GetBufferImageGranularity()); + allocSize = VmaAlignUp(allocSize, GetBufferImageGranularity()); + } - void CommitDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationStats* pStats); + if (allocSize > m_UsableSize) + { + return false; + } - //////////////////////////////////////////////////////////////////////////////// - // To be used only while the m_Mutex is locked. Used during defragmentation. + const uint32_t targetLevel = AllocSizeToLevel(allocSize); + for (uint32_t level = targetLevel; level--; ) + { + for (Node* freeNode = m_FreeList[level].front; + freeNode != VMA_NULL; + freeNode = freeNode->free.next) + { + if (freeNode->offset % allocAlignment == 0) + { + pAllocationRequest->type = VmaAllocationRequestType::Normal; + pAllocationRequest->allocHandle = (VmaAllocHandle)(freeNode->offset + 1); + pAllocationRequest->size = allocSize; + pAllocationRequest->customData = (void*)(uintptr_t)level; + return true; + } + } + } - size_t GetBlockCount() const { return m_Blocks.size(); } - VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } - size_t CalcAllocationCount() const; - bool IsBufferImageGranularityConflictPossible() const; + return false; +} -private: - friend class VmaDefragmentationAlgorithm_Generic; +void VmaBlockMetadata_Buddy::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); - const VmaAllocator m_hAllocator; - const VmaPool m_hParentPool; - const uint32_t m_MemoryTypeIndex; - const VkDeviceSize m_PreferredBlockSize; - const size_t m_MinBlockCount; - const size_t m_MaxBlockCount; - const VkDeviceSize m_BufferImageGranularity; - const uint32_t m_FrameInUseCount; - const bool m_ExplicitBlockSize; - const uint32_t m_Algorithm; - const float m_Priority; - const VkDeviceSize m_MinAllocationAlignment; - void* const m_pMemoryAllocateNext; - VMA_RW_MUTEX m_Mutex; + const uint32_t targetLevel = AllocSizeToLevel(request.size); + uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; - /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) - - a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */ - bool m_HasEmptyBlock; - // Incrementally sorted by sumFreeSize, ascending. - VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator > m_Blocks; - uint32_t m_NextBlockId; + Node* currNode = m_FreeList[currLevel].front; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; + while (currNode->offset != offset) + { + currNode = currNode->free.next; + VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + } - VkDeviceSize CalcMaxBlockSize() const; + // Go down, splitting free nodes. + while (currLevel < targetLevel) + { + // currNode is already first free node at currLevel. + // Remove it from list of free nodes at this currLevel. + RemoveFromFreeList(currLevel, currNode); - // Finds and removes given block from vector. - void Remove(VmaDeviceMemoryBlock* pBlock); + const uint32_t childrenLevel = currLevel + 1; - // Performs single step in sorting m_Blocks. They may not be fully sorted - // after this call. - void IncrementallySortBlocks(); + // Create two free sub-nodes. + Node* leftChild = m_NodeAllocator.Alloc(); + Node* rightChild = m_NodeAllocator.Alloc(); - VkResult AllocatePage( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation); + leftChild->offset = currNode->offset; + leftChild->type = Node::TYPE_FREE; + leftChild->parent = currNode; + leftChild->buddy = rightChild; - // To be used only without CAN_MAKE_OTHER_LOST flag. - VkResult AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation); + rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); + rightChild->type = Node::TYPE_FREE; + rightChild->parent = currNode; + rightChild->buddy = leftChild; - VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); + // Convert current currNode to split type. + currNode->type = Node::TYPE_SPLIT; + currNode->split.leftChild = leftChild; - // Saves result to pCtx->res. - void ApplyDefragmentationMovesCpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves); - // Saves result to pCtx->res. - void ApplyDefragmentationMovesGpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkCommandBuffer commandBuffer); + // Add child nodes to free list. Order is important! + AddToFreeListFront(childrenLevel, rightChild); + AddToFreeListFront(childrenLevel, leftChild); - /* - Used during defragmentation. pDefragmentationStats is optional. It's in/out - - updated with new data. - */ - void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); + ++m_FreeCount; + ++currLevel; + currNode = m_FreeList[currLevel].front; - void UpdateHasEmptyBlock(); -}; + /* + We can be sure that currNode, as left child of node previously split, + also fulfills the alignment requirement. + */ + } -struct VmaPool_T -{ - VMA_CLASS_NO_COPY(VmaPool_T) -public: - VmaBlockVector m_BlockVector; - - VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize); - ~VmaPool_T(); - - uint32_t GetId() const { return m_Id; } - void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } - - const char* GetName() const { return m_Name; } - void SetName(const char* pName); + // Remove from free list. + VMA_ASSERT(currLevel == targetLevel && + currNode != VMA_NULL && + currNode->type == Node::TYPE_FREE); + RemoveFromFreeList(currLevel, currNode); -#if VMA_STATS_STRING_ENABLED - //void PrintDetailedMap(class VmaStringBuilder& sb); -#endif + // Convert to allocation node. + currNode->type = Node::TYPE_ALLOCATION; + currNode->allocation.userData = userData; -private: - uint32_t m_Id; - char* m_Name; - VmaPool_T* m_PrevPool = VMA_NULL; - VmaPool_T* m_NextPool = VMA_NULL; - friend struct VmaPoolListItemTraits; -}; + ++m_AllocationCount; + --m_FreeCount; + m_SumFreeSize -= request.size; +} -struct VmaPoolListItemTraits +void VmaBlockMetadata_Buddy::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) { - typedef VmaPool_T ItemType; - static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } - static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } - static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } - static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } -}; - -/* -Performs defragmentation: + uint32_t level = 0; + outInfo.offset = (VkDeviceSize)allocHandle - 1; + const Node* const node = FindAllocationNode(outInfo.offset, level); + outInfo.size = LevelToNodeSize(level); + outInfo.pUserData = node->allocation.userData; +} -- Updates `pBlockVector->m_pMetadata`. -- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). -- Does not move actual data, only returns requested moves as `moves`. -*/ -class VmaDefragmentationAlgorithm +void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node) { - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) -public: - VmaDefragmentationAlgorithm( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex) : - m_hAllocator(hAllocator), - m_pBlockVector(pBlockVector), - m_CurrentFrameIndex(currentFrameIndex) + if (node->type == Node::TYPE_SPLIT) { + DeleteNodeChildren(node->split.leftChild->buddy); + DeleteNodeChildren(node->split.leftChild); + const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks(); + m_NodeAllocator.Free(node->split.leftChild->buddy); + m_NodeAllocator.Free(node->split.leftChild); } - virtual ~VmaDefragmentationAlgorithm() - { - } - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; - virtual void AddAll() = 0; - - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) = 0; +} - virtual VkDeviceSize GetBytesMoved() const = 0; - virtual uint32_t GetAllocationsMoved() const = 0; +void VmaBlockMetadata_Buddy::Clear() +{ + DeleteNodeChildren(m_Root); + m_Root->type = Node::TYPE_FREE; + m_AllocationCount = 0; + m_FreeCount = 1; + m_SumFreeSize = m_UsableSize; +} -protected: - VmaAllocator const m_hAllocator; - VmaBlockVector* const m_pBlockVector; - const uint32_t m_CurrentFrameIndex; +void VmaBlockMetadata_Buddy::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + uint32_t level = 0; + Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); + node->allocation.userData = userData; +} - struct AllocationInfo +VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) +{ + Node* node = m_Root; + VkDeviceSize nodeOffset = 0; + outLevel = 0; + VkDeviceSize levelNodeSize = LevelToNodeSize(0); + while (node->type == Node::TYPE_SPLIT) { - VmaAllocation m_hAllocation; - VkBool32* m_pChanged; - - AllocationInfo() : - m_hAllocation(VK_NULL_HANDLE), - m_pChanged(VMA_NULL) + const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1; + if (offset < nodeOffset + nextLevelNodeSize) { + node = node->split.leftChild; } - AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : - m_hAllocation(hAlloc), - m_pChanged(pChanged) + else { + node = node->split.leftChild->buddy; + nodeOffset += nextLevelNodeSize; } - }; -}; - -class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm -{ - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) -public: - VmaDefragmentationAlgorithm_Generic( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported); - virtual ~VmaDefragmentationAlgorithm_Generic(); - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); - virtual void AddAll() { m_AllAllocations = true; } - - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags); - - virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } - virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } - -private: - uint32_t m_AllocationCount; - bool m_AllAllocations; + ++outLevel; + levelNodeSize = nextLevelNodeSize; + } - VkDeviceSize m_BytesMoved; - uint32_t m_AllocationsMoved; + VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); + return node; +} - struct AllocationInfoSizeGreater +bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const +{ + VMA_VALIDATE(level < m_LevelCount); + VMA_VALIDATE(curr->parent == parent); + VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); + VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); + switch (curr->type) { - bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const + case Node::TYPE_FREE: + // curr->free.prev, next are validated separately. + ctx.calculatedSumFreeSize += levelNodeSize; + ++ctx.calculatedFreeCount; + break; + case Node::TYPE_ALLOCATION: + ++ctx.calculatedAllocationCount; + if (!IsVirtual()) { - return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); + VMA_VALIDATE(curr->allocation.userData != VMA_NULL); } - }; - - struct AllocationInfoOffsetGreater + break; + case Node::TYPE_SPLIT: { - bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const + const uint32_t childrenLevel = level + 1; + const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1; + const Node* const leftChild = curr->split.leftChild; + VMA_VALIDATE(leftChild != VMA_NULL); + VMA_VALIDATE(leftChild->offset == curr->offset); + if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) { - return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); + VMA_VALIDATE(false && "ValidateNode for left child failed."); } - }; - - struct BlockInfo - { - size_t m_OriginalBlockIndex; - VmaDeviceMemoryBlock* m_pBlock; - bool m_HasNonMovableAllocations; - VmaVector< AllocationInfo, VmaStlAllocator > m_Allocations; - - BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : - m_OriginalBlockIndex(SIZE_MAX), - m_pBlock(VMA_NULL), - m_HasNonMovableAllocations(true), - m_Allocations(pAllocationCallbacks) + const Node* const rightChild = leftChild->buddy; + VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); + if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) { + VMA_VALIDATE(false && "ValidateNode for right child failed."); } + } + break; + default: + return false; + } - void CalcHasNonMovableAllocations() - { - const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); - const size_t defragmentAllocCount = m_Allocations.size(); - m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; - } + return true; +} - void SortAllocationsBySizeDescending() - { - VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); - } +uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const +{ + // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. + uint32_t level = 0; + VkDeviceSize currLevelNodeSize = m_UsableSize; + VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; + while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) + { + ++level; + currLevelNodeSize >>= 1; + nextLevelNodeSize >>= 1; + } + return level; +} - void SortAllocationsByOffsetDescending() - { - VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); - } - }; +void VmaBlockMetadata_Buddy::Free(VmaAllocHandle allocHandle) +{ + uint32_t level = 0; + Node* node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); - struct BlockPointerLess - { - bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const - { - return pLhsBlockInfo->m_pBlock < pRhsBlock; - } - bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const - { - return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; - } - }; + ++m_FreeCount; + --m_AllocationCount; + m_SumFreeSize += LevelToNodeSize(level); - // 1. Blocks with some non-movable allocations go first. - // 2. Blocks with smaller sumFreeSize go first. - struct BlockInfoCompareMoveDestination - { - bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const - { - if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) - { - return true; - } - if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) - { - return false; - } - if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) - { - return true; - } - return false; - } - }; + node->type = Node::TYPE_FREE; - typedef VmaVector< BlockInfo*, VmaStlAllocator > BlockInfoVector; - BlockInfoVector m_Blocks; + // Join free nodes if possible. + while (level > 0 && node->buddy->type == Node::TYPE_FREE) + { + RemoveFromFreeList(level, node->buddy); + Node* const parent = node->parent; - VkResult DefragmentRound( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - bool freeOldAllocations); + m_NodeAllocator.Free(node->buddy); + m_NodeAllocator.Free(node); + parent->type = Node::TYPE_FREE; - size_t CalcBlocksWithNonMovableCount() const; + node = parent; + --level; + --m_FreeCount; + } - static bool MoveMakesSense( - size_t dstBlockIndex, VkDeviceSize dstOffset, - size_t srcBlockIndex, VkDeviceSize srcOffset); -}; + AddToFreeListFront(level, node); +} -class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm +void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const { - VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) -public: - VmaDefragmentationAlgorithm_Fast( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported); - virtual ~VmaDefragmentationAlgorithm_Fast(); - - virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } - virtual void AddAll() { m_AllAllocations = true; } + switch (node->type) + { + case Node::TYPE_FREE: + VmaAddStatInfoUnusedRange(inoutInfo, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + VmaAddStatInfoAllocation(inoutInfo, levelNodeSize); + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + CalcAllocationStatInfoNode(inoutInfo, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + CalcAllocationStatInfoNode(inoutInfo, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} - virtual VkResult Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags); +void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) +{ + VMA_ASSERT(node->type == Node::TYPE_FREE); - virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } - virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + // List is empty. + Node* const frontNode = m_FreeList[level].front; + if (frontNode == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == VMA_NULL); + node->free.prev = node->free.next = VMA_NULL; + m_FreeList[level].front = m_FreeList[level].back = node; + } + else + { + VMA_ASSERT(frontNode->free.prev == VMA_NULL); + node->free.prev = VMA_NULL; + node->free.next = frontNode; + frontNode->free.prev = node; + m_FreeList[level].front = node; + } +} + +void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) +{ + VMA_ASSERT(m_FreeList[level].front != VMA_NULL); + + // It is at the front. + if (node->free.prev == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].front == node); + m_FreeList[level].front = node->free.next; + } + else + { + Node* const prevFreeNode = node->free.prev; + VMA_ASSERT(prevFreeNode->free.next == node); + prevFreeNode->free.next = node->free.next; + } + + // It is at the back. + if (node->free.next == VMA_NULL) + { + VMA_ASSERT(m_FreeList[level].back == node); + m_FreeList[level].back = node->free.prev; + } + else + { + Node* const nextFreeNode = node->free.next; + VMA_ASSERT(nextFreeNode->free.prev == node); + nextFreeNode->free.prev = node->free.prev; + } +} + +void VmaBlockMetadata_Buddy::DebugLogAllAllocationNode(Node* node, uint32_t level) const +{ + switch (node->type) + { + case Node::TYPE_ALLOCATION: + DebugLogAllocation(node->offset, LevelToNodeSize(level), node->allocation.userData); + break; + case Node::TYPE_SPLIT: + { + ++level; + DebugLogAllAllocationNode(node->split.leftChild, level); + DebugLogAllAllocationNode(node->split.leftChild->buddy, level); + } + break; + default: + VMA_ASSERT(0); + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const +{ + switch (node->type) + { + case Node::TYPE_FREE: + PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); + break; + case Node::TYPE_ALLOCATION: + PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData); + break; + case Node::TYPE_SPLIT: + { + const VkDeviceSize childrenNodeSize = levelNodeSize / 2; + const Node* const leftChild = node->split.leftChild; + PrintDetailedMapNode(json, leftChild, childrenNodeSize); + const Node* const rightChild = leftChild->buddy; + PrintDetailedMapNode(json, rightChild, childrenNodeSize); + } + break; + default: + VMA_ASSERT(0); + } +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_BUDDY + +#ifndef _VMA_BLOCK_METADATA_TLSF +// To not search current larger region if first allocation won't succeed and skip to smaller range +// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest(). +// When fragmentation and reusal of previous blocks doesn't matter then use with +// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible. +class VmaBlockMetadata_TLSF : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY(VmaBlockMetadata_TLSF) +public: + VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_TLSF(); + + size_t GetAllocationCount() const override { return m_AllocCount; } + VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; } + bool IsEmpty() const override { return m_NullBlock->offset == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }; + + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; + void AddPoolStats(VmaPoolStats& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; private: - struct BlockInfo + // According to original paper it should be preferable 4 or 5: + // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems" + // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf + static const uint8_t SECOND_LEVEL_INDEX = 5; + static const uint16_t SMALL_BUFFER_SIZE = 256; + static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16; + static const uint8_t MEMORY_CLASS_SHIFT = 7; + static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT; + + class Block { - size_t origBlockIndex; + public: + VkDeviceSize offset; + VkDeviceSize size; + Block* prevPhysical; + Block* nextPhysical; + + void MarkFree() { prevFree = VMA_NULL; } + void MarkTaken() { prevFree = this; } + bool IsFree() const { return prevFree != this; } + void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; } + Block*& PrevFree() { return prevFree; } + Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; } + + private: + Block* prevFree; // Address of the same block here indicates that block is taken + union + { + Block* nextFree; + void* userData; + }; }; - class FreeSpaceDatabase + size_t m_AllocCount; + // Total number of free blocks besides null block + size_t m_BlocksFreeCount; + // Total size of free blocks excluding null block + VkDeviceSize m_BlocksFreeSize; + uint32_t m_IsFreeBitmap; + uint8_t m_MemoryClasses; + uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES]; + uint32_t m_ListsCount; + /* + * 0: 0-3 lists for small buffers + * 1+: 0-(2^SLI-1) lists for normal buffers + */ + Block** m_FreeList; + VmaPoolAllocator m_BlockAllocator; + Block* m_NullBlock; + VmaBlockBufferImageGranularity m_GranularityHandler; + + uint8_t SizeToMemoryClass(VkDeviceSize size) const; + uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const; + uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const; + uint32_t GetListIndex(VkDeviceSize size) const; + + void RemoveFreeBlock(Block* block); + void InsertFreeBlock(Block* block); + void MergeBlock(Block* block, Block* prev); + + Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const; + bool CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_AllocCount(0), + m_BlocksFreeCount(0), + m_BlocksFreeSize(0), + m_IsFreeBitmap(0), + m_MemoryClasses(0), + m_ListsCount(0), + m_FreeList(VMA_NULL), + m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT), + m_NullBlock(VMA_NULL), + m_GranularityHandler(bufferImageGranularity) {} + +VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF() +{ + if (m_FreeList) + vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount); + m_GranularityHandler.Destroy(GetAllocationCallbacks()); +} + +void VmaBlockMetadata_TLSF::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + if (!IsVirtual()) + m_GranularityHandler.Init(GetAllocationCallbacks(), size); + + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = size; + m_NullBlock->offset = 0; + m_NullBlock->prevPhysical = VMA_NULL; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + uint8_t memoryClass = SizeToMemoryClass(size); + uint16_t sli = SizeToSecondIndex(size, memoryClass); + m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1; + if (IsVirtual()) + m_ListsCount += 1UL << SECOND_LEVEL_INDEX; + else + m_ListsCount += 4; + + m_MemoryClasses = memoryClass + 2; + memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t)); + + m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount); + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); +} + +bool VmaBlockMetadata_TLSF::Validate() const +{ + VMA_VALIDATE(GetSumFreeSize() <= GetSize()); + + VkDeviceSize calculatedSize = m_NullBlock->size; + VkDeviceSize calculatedFreeSize = m_NullBlock->size; + size_t allocCount = 0; + size_t freeCount = 0; + + // Check integrity of free lists + for (uint32_t list = 0; list < m_ListsCount; ++list) { - public: - FreeSpaceDatabase() + Block* block = m_FreeList[list]; + if (block != VMA_NULL) { - FreeSpace s = {}; - s.blockInfoIndex = SIZE_MAX; - for(size_t i = 0; i < MAX_COUNT; ++i) + VMA_VALIDATE(block->IsFree()); + VMA_VALIDATE(block->PrevFree() == VMA_NULL); + while (block->NextFree()) { - m_FreeSpaces[i] = s; + VMA_VALIDATE(block->NextFree()->IsFree()); + VMA_VALIDATE(block->NextFree()->PrevFree() == block); + block = block->NextFree(); } } + } + + VkDeviceSize nextOffset = m_NullBlock->offset; + auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual()); + + VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL); + if (m_NullBlock->prevPhysical) + { + VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock); + } + // Check all blocks + for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical) + { + VMA_VALIDATE(prev->offset + prev->size == nextOffset); + nextOffset = prev->offset; + calculatedSize += prev->size; - void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) + uint32_t listIndex = GetListIndex(prev->size); + if (prev->IsFree()) { - if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - return; - } + ++freeCount; + // Check if free block belongs to free list + Block* freeBlock = m_FreeList[listIndex]; + VMA_VALIDATE(freeBlock != VMA_NULL); - // Find first invalid or the smallest structure. - size_t bestIndex = SIZE_MAX; - for(size_t i = 0; i < MAX_COUNT; ++i) + bool found = false; + do { - // Empty structure. - if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) - { - bestIndex = i; - break; - } - if(m_FreeSpaces[i].size < size && - (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) - { - bestIndex = i; - } - } + if (freeBlock == prev) + found = true; - if(bestIndex != SIZE_MAX) - { - m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; - m_FreeSpaces[bestIndex].offset = offset; - m_FreeSpaces[bestIndex].size = size; - } - } + freeBlock = freeBlock->NextFree(); + } while (!found && freeBlock != VMA_NULL); - bool Fetch(VkDeviceSize alignment, VkDeviceSize size, - size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) + VMA_VALIDATE(found); + calculatedFreeSize += prev->size; + } + else { - size_t bestIndex = SIZE_MAX; - VkDeviceSize bestFreeSpaceAfter = 0; - for(size_t i = 0; i < MAX_COUNT; ++i) + ++allocCount; + // Check if taken block is not on a free list + Block* freeBlock = m_FreeList[listIndex]; + while (freeBlock) { - // Structure is valid. - if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) - { - const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); - // Allocation fits into this structure. - if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - { - const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - - (dstOffset + size); - if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) - { - bestIndex = i; - bestFreeSpaceAfter = freeSpaceAfter; - } - } - } + VMA_VALIDATE(freeBlock != prev); + freeBlock = freeBlock->NextFree(); } - if(bestIndex != SIZE_MAX) + if (!IsVirtual()) { - outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; - outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); - - if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - // Leave this structure for remaining empty space. - const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; - m_FreeSpaces[bestIndex].offset += alignmentPlusSize; - m_FreeSpaces[bestIndex].size -= alignmentPlusSize; - } - else - { - // This structure becomes invalid. - m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX; - } - - return true; + VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size)); } - - return false; } - private: - static const size_t MAX_COUNT = 4; - - struct FreeSpace + if (prev->prevPhysical) { - size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. - VkDeviceSize offset; - VkDeviceSize size; - } m_FreeSpaces[MAX_COUNT]; - }; + VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev); + } + } - const bool m_OverlappingMoveSupported; + if (!IsVirtual()) + { + VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx)); + } - uint32_t m_AllocationCount; - bool m_AllAllocations; + VMA_VALIDATE(nextOffset == 0); + VMA_VALIDATE(calculatedSize == GetSize()); + VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize()); + VMA_VALIDATE(allocCount == m_AllocCount); + VMA_VALIDATE(freeCount == m_BlocksFreeCount); - VkDeviceSize m_BytesMoved; - uint32_t m_AllocationsMoved; + return true; +} - VmaVector< BlockInfo, VmaStlAllocator > m_BlockInfos; +void VmaBlockMetadata_TLSF::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +{ + VmaInitStatInfo(outInfo); + outInfo.blockCount = 1; + if (m_NullBlock->size > 0) + VmaAddStatInfoUnusedRange(outInfo, m_NullBlock->size); - void PreprocessMetadata(); - void PostprocessMetadata(); - void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); -}; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (block->IsFree()) + VmaAddStatInfoUnusedRange(outInfo, block->size); + else + VmaAddStatInfoAllocation(outInfo, block->size); + } +} -struct VmaBlockDefragmentationContext +void VmaBlockMetadata_TLSF::AddPoolStats(VmaPoolStats& inoutStats) const { - enum BLOCK_FLAG - { - BLOCK_FLAG_USED = 0x00000001, - }; - uint32_t flags; - VkBuffer hBuffer; -}; + inoutStats.size += GetSize(); + inoutStats.unusedSize += GetSumFreeSize(); + inoutStats.allocationCount += m_AllocCount; + inoutStats.unusedRangeCount += m_BlocksFreeCount; + if(m_NullBlock->size > 0) + ++inoutStats.unusedRangeCount; +} -class VmaBlockVectorDefragmentationContext +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const { - VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) -public: - VkResult res; - bool mutexLocked; - VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator > blockContexts; - VmaVector< VmaDefragmentationMove, VmaStlAllocator > defragmentationMoves; - uint32_t defragmentationMovesProcessed; - uint32_t defragmentationMovesCommitted; - bool hasDefragmentationPlan; + size_t blockCount = m_AllocCount + m_BlocksFreeCount; + VmaStlAllocator allocator(GetAllocationCallbacks()); + VmaVector> blockList(blockCount, allocator); - VmaBlockVectorDefragmentationContext( - VmaAllocator hAllocator, - VmaPool hCustomPool, // Optional. - VmaBlockVector* pBlockVector, - uint32_t currFrameIndex); - ~VmaBlockVectorDefragmentationContext(); + size_t i = blockCount; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + blockList[--i] = block; + } + VMA_ASSERT(i == 0); - VmaPool GetCustomPool() const { return m_hCustomPool; } - VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } - VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } + VmaStatInfo stat; + CalcAllocationStatInfo(stat); - void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); - void AddAll() { m_AllAllocations = true; } + PrintDetailedMap_Begin(json, + stat.unusedBytes, + stat.allocationCount, + stat.unusedRangeCount); - void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); + for (; i < blockCount; ++i) + { + Block* block = blockList[i]; + if (block->IsFree()) + PrintDetailedMap_UnusedRange(json, block->offset, block->size); + else + PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData()); + } + if (m_NullBlock->size > 0) + PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size); -private: - const VmaAllocator m_hAllocator; - // Null if not from custom pool. - const VmaPool m_hCustomPool; - // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. - VmaBlockVector* const m_pBlockVector; - const uint32_t m_CurrFrameIndex; - // Owner of this object. - VmaDefragmentationAlgorithm* m_pAlgorithm; + PrintDetailedMap_End(json); +} +#endif - struct AllocInfo - { - VmaAllocation hAlloc; - VkBool32* pChanged; - }; - // Used between constructor and Begin. - VmaVector< AllocInfo, VmaStlAllocator > m_Allocations; - bool m_AllAllocations; -}; - -struct VmaDefragmentationContext_T +bool VmaBlockMetadata_TLSF::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) { -private: - VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) -public: - VmaDefragmentationContext_T( - VmaAllocator hAllocator, - uint32_t currFrameIndex, - uint32_t flags, - VmaDefragmentationStats* pStats); - ~VmaDefragmentationContext_T(); + VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!"); + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); - void AddPools(uint32_t poolCount, const VmaPool* pPools); - void AddAllocations( - uint32_t allocationCount, - const VmaAllocation* pAllocations, - VkBool32* pAllocationsChanged); + // For small granularity round up + if (!IsVirtual()) + m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment); - /* - Returns: - - `VK_SUCCESS` if succeeded and object can be destroyed immediately. - - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). - - Negative value if error occurred and object can be destroyed immediately. - */ - VkResult Defragment( - VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, - VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); + allocSize += GetDebugMargin(); + // Quick check for too small pool + if (allocSize > GetSumFreeSize()) + return false; - VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); - VkResult DefragmentPassEnd(); + // If no free blocks in pool then check only null block + if (m_BlocksFreeCount == 0) + return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest); -private: - const VmaAllocator m_hAllocator; - const uint32_t m_CurrFrameIndex; - const uint32_t m_Flags; - VmaDefragmentationStats* const m_pStats; + // Round up to the next block + VkDeviceSize sizeForNextList = allocSize; + VkDeviceSize smallSizeStep = SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4); + if (allocSize > SMALL_BUFFER_SIZE) + { + sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX)); + } + else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep) + sizeForNextList = SMALL_BUFFER_SIZE + 1; + else + sizeForNextList += smallSizeStep; - VkDeviceSize m_MaxCpuBytesToMove; - uint32_t m_MaxCpuAllocationsToMove; - VkDeviceSize m_MaxGpuBytesToMove; - uint32_t m_MaxGpuAllocationsToMove; + uint32_t nextListIndex = 0; + uint32_t prevListIndex = 0; + Block* nextListBlock = VMA_NULL; + Block* prevListBlock = VMA_NULL; - // Owner of these objects. - VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; - // Owner of these objects. - VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator > m_CustomPoolContexts; -}; + // Check blocks according to strategies + if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) + { + // Quick check for larger block first + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; -#if VMA_RECORDING_ENABLED + // If not fitted then null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; -class VmaRecorder -{ -public: - VmaRecorder(); - VkResult Init(const VmaRecordSettings& settings, bool useMutex); - void WriteConfiguration( - const VkPhysicalDeviceProperties& devProps, - const VkPhysicalDeviceMemoryProperties& memProps, - uint32_t vulkanApiVersion, - bool dedicatedAllocationExtensionEnabled, - bool bindMemory2ExtensionEnabled, - bool memoryBudgetExtensionEnabled, - bool deviceCoherentMemoryExtensionEnabled); - ~VmaRecorder(); - - void RecordCreateAllocator(uint32_t frameIndex); - void RecordDestroyAllocator(uint32_t frameIndex); - void RecordCreatePool(uint32_t frameIndex, - const VmaPoolCreateInfo& createInfo, - VmaPool pool); - void RecordDestroyPool(uint32_t frameIndex, VmaPool pool); - void RecordAllocateMemory(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordAllocateMemoryPages(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - uint64_t allocationCount, - const VmaAllocation* pAllocations); - void RecordAllocateMemoryForBuffer(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordAllocateMemoryForImage(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation); - void RecordFreeMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordFreeMemoryPages(uint32_t frameIndex, - uint64_t allocationCount, - const VmaAllocation* pAllocations); - void RecordSetAllocationUserData(uint32_t frameIndex, - VmaAllocation allocation, - const void* pUserData); - void RecordCreateLostAllocation(uint32_t frameIndex, - VmaAllocation allocation); - void RecordMapMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordUnmapMemory(uint32_t frameIndex, - VmaAllocation allocation); - void RecordFlushAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - void RecordInvalidateAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size); - void RecordCreateBuffer(uint32_t frameIndex, - const VkBufferCreateInfo& bufCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation); - void RecordCreateImage(uint32_t frameIndex, - const VkImageCreateInfo& imageCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation); - void RecordDestroyBuffer(uint32_t frameIndex, - VmaAllocation allocation); - void RecordDestroyImage(uint32_t frameIndex, - VmaAllocation allocation); - void RecordTouchAllocation(uint32_t frameIndex, - VmaAllocation allocation); - void RecordGetAllocationInfo(uint32_t frameIndex, - VmaAllocation allocation); - void RecordMakePoolAllocationsLost(uint32_t frameIndex, - VmaPool pool); - void RecordDefragmentationBegin(uint32_t frameIndex, - const VmaDefragmentationInfo2& info, - VmaDefragmentationContext ctx); - void RecordDefragmentationEnd(uint32_t frameIndex, - VmaDefragmentationContext ctx); - void RecordSetPoolName(uint32_t frameIndex, - VmaPool pool, - const char* name); + // Null block failed, search larger bucket + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } -private: - struct CallParams + // Failed again, check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) { - uint32_t threadId; - double time; - }; + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; - class UserDataString + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } + else { - public: - UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData); - const char* GetString() const { return m_Str; } + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } - private: - char m_PtrStr[17]; - const char* m_Str; - }; + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; - bool m_UseMutex; - VmaRecordFlags m_Flags; - FILE* m_File; - VMA_MUTEX m_FileMutex; - std::chrono::time_point m_RecordingStartTime; + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + + // Worst case, full search has to be done + while (++nextListIndex < m_ListsCount) + { + nextListBlock = m_FreeList[nextListIndex]; + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } - void GetBasicParams(CallParams& outParams); + // No more memory sadly + return false; +} - // T must be a pointer type, e.g. VmaAllocation, VmaPool. - template - void PrintPointerList(uint64_t count, const T* pItems) +VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData) +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) { - if(count) + if (!block->IsFree()) { - fprintf(m_File, "%p", pItems[0]); - for(uint64_t i = 1; i < count; ++i) + if (!VmaValidateMagicValue(pBlockData, block->offset + block->size)) { - fprintf(m_File, " %p", pItems[i]); + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN; } } } - void PrintPointerList(uint64_t count, const VmaAllocation* pItems); - void Flush(); -}; - -#endif // #if VMA_RECORDING_ENABLED + return VK_SUCCESS; +} -/* -Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. -*/ -class VmaAllocationObjectAllocator +void VmaBlockMetadata_TLSF::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) { - VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) -public: - VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks); + VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF); - template VmaAllocation Allocate(Types... args); - void Free(VmaAllocation hAlloc); - -private: - VMA_MUTEX m_Mutex; - VmaPoolAllocator m_Allocator; -}; + // Get block and pop it from the free list + Block* currentBlock = (Block*)request.allocHandle; + VkDeviceSize offset = request.algorithmData; + VMA_ASSERT(currentBlock != VMA_NULL); + VMA_ASSERT(currentBlock->offset <= offset); -struct VmaCurrentBudgetData -{ - VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; - VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; + if (currentBlock != m_NullBlock) + RemoveFreeBlock(currentBlock); -#if VMA_MEMORY_BUDGET - VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; - VMA_RW_MUTEX m_BudgetMutex; - uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; - uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; - uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; -#endif // #if VMA_MEMORY_BUDGET + VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize misssingAlignment = offset - currentBlock->offset; - VmaCurrentBudgetData() + // Append missing alignment to prev block or create new one + if (misssingAlignment) { - for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) + Block* prevBlock = currentBlock->prevPhysical; + VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!"); + + if (prevBlock->IsFree() && prevBlock->size != debugMargin) { - m_BlockBytes[heapIndex] = 0; - m_AllocationBytes[heapIndex] = 0; -#if VMA_MEMORY_BUDGET - m_VulkanUsage[heapIndex] = 0; - m_VulkanBudget[heapIndex] = 0; - m_BlockBytesAtBudgetFetch[heapIndex] = 0; -#endif + uint32_t oldList = GetListIndex(prevBlock->size); + prevBlock->size += misssingAlignment; + // Check if new size crosses list bucket + if (oldList != GetListIndex(prevBlock->size)) + { + prevBlock->size -= misssingAlignment; + RemoveFreeBlock(prevBlock); + prevBlock->size += misssingAlignment; + InsertFreeBlock(prevBlock); + } + else + m_BlocksFreeSize += misssingAlignment; } + else + { + Block* newBlock = m_BlockAllocator.Alloc(); + currentBlock->prevPhysical = newBlock; + prevBlock->nextPhysical = newBlock; + newBlock->prevPhysical = prevBlock; + newBlock->nextPhysical = currentBlock; + newBlock->size = misssingAlignment; + newBlock->offset = currentBlock->offset; + newBlock->MarkTaken(); -#if VMA_MEMORY_BUDGET - m_OperationsSinceBudgetFetch = 0; -#endif - } + InsertFreeBlock(newBlock); + } - void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) - { - m_AllocationBytes[heapIndex] += allocationSize; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif + currentBlock->size -= misssingAlignment; + currentBlock->offset += misssingAlignment; } - void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) + VkDeviceSize size = request.size + debugMargin; + if (currentBlock->size == size) { - VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME - m_AllocationBytes[heapIndex] -= allocationSize; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif + if (currentBlock == m_NullBlock) + { + // Setup new null block + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = 0; + m_NullBlock->offset = currentBlock->offset + size; + m_NullBlock->prevPhysical = currentBlock; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->PrevFree() = VMA_NULL; + m_NullBlock->NextFree() = VMA_NULL; + currentBlock->nextPhysical = m_NullBlock; + currentBlock->MarkTaken(); + } } -}; - -// Main allocator object. -struct VmaAllocator_T -{ - VMA_CLASS_NO_COPY(VmaAllocator_T) -public: - bool m_UseMutex; - uint32_t m_VulkanApiVersion; - bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseExtMemoryBudget; - bool m_UseAmdDeviceCoherentMemory; - bool m_UseKhrBufferDeviceAddress; - bool m_UseExtMemoryPriority; - VkDevice m_hDevice; - VkInstance m_hInstance; - bool m_AllocationCallbacksSpecified; - VkAllocationCallbacks m_AllocationCallbacks; - VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; - VmaAllocationObjectAllocator m_AllocationObjectAllocator; + else + { + VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!"); - // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. - uint32_t m_HeapSizeLimitMask; + // Create new free block + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = currentBlock->size - size; + newBlock->offset = currentBlock->offset + size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + currentBlock->nextPhysical = newBlock; + currentBlock->size = size; - VkPhysicalDeviceProperties m_PhysicalDeviceProperties; - VkPhysicalDeviceMemoryProperties m_MemProps; + if (currentBlock == m_NullBlock) + { + m_NullBlock = newBlock; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + currentBlock->MarkTaken(); + } + else + { + newBlock->nextPhysical->prevPhysical = newBlock; + newBlock->MarkTaken(); + InsertFreeBlock(newBlock); + } + } + currentBlock->UserData() = userData; - // Default pools. - VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; - VmaBlockVector* m_pSmallBufferBlockVectors[VK_MAX_MEMORY_TYPES]; + if (debugMargin > 0) + { + currentBlock->size -= debugMargin; + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = debugMargin; + newBlock->offset = currentBlock->offset + currentBlock->size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + newBlock->MarkTaken(); + currentBlock->nextPhysical->prevPhysical = newBlock; + currentBlock->nextPhysical = newBlock; + InsertFreeBlock(newBlock); + } - typedef VmaIntrusiveLinkedList DedicatedAllocationLinkedList; - DedicatedAllocationLinkedList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; - VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES]; + if (!IsVirtual()) + m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData, + currentBlock->offset, currentBlock->size); + ++m_AllocCount; +} - VmaCurrentBudgetData m_Budget; - VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. +void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle) +{ + Block* block = (Block*)allocHandle; + Block* next = block->nextPhysical; + VMA_ASSERT(!block->IsFree() && "Block is already free!"); - VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); - VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); - ~VmaAllocator_T(); + if (!IsVirtual()) + m_GranularityHandler.FreePages(block->offset, block->size); + --m_AllocCount; - const VkAllocationCallbacks* GetAllocationCallbacks() const + VkDeviceSize debugMargin = GetDebugMargin(); + if (debugMargin > 0) { - return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0; + RemoveFreeBlock(next); + MergeBlock(next, block); + block = next; + next = next->nextPhysical; } - const VmaVulkanFunctions& GetVulkanFunctions() const + + // Try merging + Block* prev = block->prevPhysical; + if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin) { - return m_VulkanFunctions; + RemoveFreeBlock(prev); + MergeBlock(block, prev); } - VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } - - VkDeviceSize GetBufferImageGranularity() const + if (!next->IsFree()) + InsertFreeBlock(block); + else if (next == m_NullBlock) + MergeBlock(m_NullBlock, block); + else { - return VMA_MAX( - static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), - m_PhysicalDeviceProperties.limits.bufferImageGranularity); + RemoveFreeBlock(next); + MergeBlock(next, block); + InsertFreeBlock(next); } +} - uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } - uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } +void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!"); + outInfo.offset = block->offset; + outInfo.size = block->size; + outInfo.pUserData = block->UserData(); +} - uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const - { - VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); - return m_MemProps.memoryTypes[memTypeIndex].heapIndex; - } - // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. - bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const - { - return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - } - // Minimum alignment for all allocations in specific memory type. - VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const +void VmaBlockMetadata_TLSF::Clear() +{ + m_AllocCount = 0; + m_BlocksFreeCount = 0; + m_BlocksFreeSize = 0; + m_IsFreeBitmap = 0; + m_NullBlock->offset = 0; + m_NullBlock->size = GetSize(); + Block* block = m_NullBlock->prevPhysical; + m_NullBlock->prevPhysical = VMA_NULL; + while (block) { - return IsMemoryTypeNonCoherent(memTypeIndex) ? - VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : - (VkDeviceSize)VMA_MIN_ALIGNMENT; + Block* prev = block->prevPhysical; + m_BlockAllocator.Free(block); + block = prev; } + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); + memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t)); + m_GranularityHandler.Clear(); +} - bool IsIntegratedGpu() const - { - return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; - } +void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!"); + block->UserData() = userData; +} - uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } +void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + if (!block->IsFree()) + DebugLogAllocation(block->offset, block->size, block->UserData()); +} -#if VMA_RECORDING_ENABLED - VmaRecorder* GetRecorder() const { return m_pRecorder; } -#endif - - void GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - void GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - - // Main allocation function. - VkResult AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown. - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Main deallocation function. - void FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations); +uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const +{ + if (size > SMALL_BUFFER_SIZE) + return VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT; + return 0; +} - void CalculateStats(VmaStats* pStats); +uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const +{ + if (memoryClass == 0) + { + if (IsVirtual()) + return static_cast((size - 1) / 8); + else + return static_cast((size - 1) / 64); + } + return static_cast((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX)); +} - void GetBudget( - VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount); +uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const +{ + if (memoryClass == 0) + return secondIndex; -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif + const uint32_t index = static_cast(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex; + if (IsVirtual()) + return index + (1 << SECOND_LEVEL_INDEX); + else + return index + 4; +} - VkResult DefragmentationBegin( - const VmaDefragmentationInfo2& info, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext* pContext); - VkResult DefragmentationEnd( - VmaDefragmentationContext context); +uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass)); +} - VkResult DefragmentationPassBegin( - VmaDefragmentationPassInfo* pInfo, - VmaDefragmentationContext context); - VkResult DefragmentationPassEnd( - VmaDefragmentationContext context); +void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(block->IsFree()); - void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); - bool TouchAllocation(VmaAllocation hAllocation); + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block->PrevFree(); + if (block->PrevFree() != VMA_NULL) + block->PrevFree()->NextFree() = block->NextFree(); + else + { + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(m_FreeList[index] == block); + m_FreeList[index] = block->NextFree(); + if (block->NextFree() == VMA_NULL) + { + m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex); + if (m_InnerIsFreeBitmap[memClass] == 0) + m_IsFreeBitmap &= ~(1UL << memClass); + } + } + block->MarkTaken(); + block->UserData() = VMA_NULL; + --m_BlocksFreeCount; + m_BlocksFreeSize -= block->size; +} - VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); - void DestroyPool(VmaPool pool); - void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); +void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!"); - void SetCurrentFrameIndex(uint32_t frameIndex); - uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(index < m_ListsCount); + block->PrevFree() = VMA_NULL; + block->NextFree() = m_FreeList[index]; + m_FreeList[index] = block; + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block; + else + { + m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex; + m_IsFreeBitmap |= 1UL << memClass; + } + ++m_BlocksFreeCount; + m_BlocksFreeSize += block->size; +} - void MakePoolAllocationsLost( - VmaPool hPool, - size_t* pLostAllocationCount); - VkResult CheckPoolCorruption(VmaPool hPool); - VkResult CheckCorruption(uint32_t memoryTypeBits); +void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev) +{ + VMA_ASSERT(block->prevPhysical == prev && "Cannot merge seperate physical regions!"); + VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!"); - void CreateLostAllocation(VmaAllocation* pAllocation); + block->offset = prev->offset; + block->size += prev->size; + block->prevPhysical = prev->prevPhysical; + if (block->prevPhysical) + block->prevPhysical->nextPhysical = block; + m_BlockAllocator.Free(prev); +} - // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. - VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); - // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. - void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); - // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. - VkResult BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext); - // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. - VkResult BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext); +VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass)); + if (!innerFreeMap) + { + // Check higher levels for avaiable blocks + uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1)); + if (!freeMap) + return VMA_NULL; // No more memory avaible - VkResult Map(VmaAllocation hAllocation, void** ppData); - void Unmap(VmaAllocation hAllocation); + // Find lowest free region + memoryClass = VMA_BITSCAN_LSB(freeMap); + innerFreeMap = m_InnerIsFreeBitmap[memoryClass]; + VMA_ASSERT(innerFreeMap != 0); + } + // Find lowest free subregion + listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap)); + VMA_ASSERT(m_FreeList[listIndex]); + return m_FreeList[listIndex]; +} - VkResult BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); +bool VmaBlockMetadata_TLSF::CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(block.IsFree() && "Block is already taken!"); - VkResult FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op); - VkResult FlushOrInvalidateAllocations( - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, const VkDeviceSize* sizes, - VMA_CACHE_OPERATION op); + VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment); + if (block.size < allocSize + alignedOffset - block.offset) + return false; - void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + // Check for granularity conflicts + if (!IsVirtual() && + m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType)) + return false; - /* - Returns bit mask of memory types that can support defragmentation on GPU as - they support creation of required buffer for copy operations. - */ - uint32_t GetGpuDefragmentationMemoryTypeBits(); + // Alloc successful + pAllocationRequest->type = VmaAllocationRequestType::TLSF; + pAllocationRequest->allocHandle = (VmaAllocHandle)█ + pAllocationRequest->size = allocSize - GetDebugMargin(); + pAllocationRequest->customData = (void*)allocType; + pAllocationRequest->algorithmData = alignedOffset; -#if VMA_EXTERNAL_MEMORY - VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const + // Place block at the start of list if it's normal block + if (listIndex != m_ListsCount && block.PrevFree()) { - return m_TypeExternalMemoryHandleTypes[memTypeIndex]; + block.PrevFree()->NextFree() = block.NextFree(); + if (block.NextFree()) + block.NextFree()->PrevFree() = block.PrevFree(); + block.PrevFree() = VMA_NULL; + block.NextFree() = m_FreeList[listIndex]; + m_FreeList[listIndex] = █ + if (block.NextFree()) + block.NextFree()->PrevFree() = █ } -#endif // #if VMA_EXTERNAL_MEMORY - -private: - VkDeviceSize m_PreferredLargeHeapBlockSize; - - VkPhysicalDevice m_PhysicalDevice; - VMA_ATOMIC_UINT32 m_CurrentFrameIndex; - VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. -#if VMA_EXTERNAL_MEMORY - VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; -#endif // #if VMA_EXTERNAL_MEMORY - - VMA_RW_MUTEX m_PoolsMutex; - typedef VmaIntrusiveLinkedList PoolList; - // Protected by m_PoolsMutex. - PoolList m_Pools; - uint32_t m_NextPoolId; - - VmaVulkanFunctions m_VulkanFunctions; - - // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. - uint32_t m_GlobalMemoryTypeBits; - -#if VMA_RECORDING_ENABLED - VmaRecorder* m_pRecorder; -#endif - - void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - void ImportVulkanFunctions_Static(); -#endif + return true; +} +#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_TLSF - void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); +#ifndef _VMA_BLOCK_VECTOR +/* +Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific +Vulkan memory type. -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - void ImportVulkanFunctions_Dynamic(); -#endif +Synchronized internally with a mutex. +*/ +class VmaBlockVector +{ + friend class VmaDefragmentationAlgorithm_Generic; + VMA_CLASS_NO_COPY(VmaBlockVector) +public: + VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext); + ~VmaBlockVector(); - void ValidateVulkanFunctions(); + VmaAllocator GetAllocator() const { return m_hAllocator; } + VmaPool GetParentPool() const { return m_hParentPool; } + bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + uint32_t GetAlgorithm() const { return m_Algorithm; } + bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; } + float GetPriority() const { return m_Priority; } + void* const GetAllocationNextPtr() const { return m_pMemoryAllocateNext; } - VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + VkResult CreateMinBlocks(); + void AddPoolStats(VmaPoolStats* pStats); + bool IsEmpty(); + bool IsCorruptionDetectionEnabled() const; - VkResult AllocateMemoryOfType( + VkResult Allocate( VkDeviceSize size, VkDeviceSize alignment, - bool dedicatedAllocation, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, - VkImage dedicatedImage, const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Helper function only to be used inside AllocateDedicatedMemory. - VkResult AllocateDedicatedMemoryPage( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - void* pUserData, - VmaAllocation* pAllocation); - - // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. - VkResult AllocateDedicatedMemory( - VkDeviceSize size, VmaSuballocationType suballocType, - uint32_t memTypeIndex, - bool withinBudget, - bool map, - bool isUserDataString, - void* pUserData, - float priority, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, - VkImage dedicatedImage, size_t allocationCount, VmaAllocation* pAllocations); - void FreeDedicatedMemory(const VmaAllocation allocation); + void Free(const VmaAllocation hAllocation); + // Adds statistics of this BlockVector to pStats. + void AddStats(VmaStats* pStats); - /* - Calculates and returns bit mask of memory types that can support defragmentation - on GPU as they support creation of required buffer for copy operations. - */ - uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif - uint32_t CalculateGlobalMemoryTypeBits() const; + VkResult CheckCorruption(); - bool GetFlushOrInvalidateRange( - VmaAllocation allocation, - VkDeviceSize offset, VkDeviceSize size, - VkMappedMemoryRange& outRange) const; - -#if VMA_MEMORY_BUDGET - void UpdateVulkanBudget(); -#endif // #if VMA_MEMORY_BUDGET -}; - -//////////////////////////////////////////////////////////////////////////////// -// Memory allocation #2 after VmaAllocator_T definition + // Saves results in pCtx->res. + void Defragment( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, + VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, + VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer); + void DefragmentationEnd( + class VmaBlockVectorDefragmentationContext* pCtx, + uint32_t flags, + VmaDefragmentationStats* pStats); -static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) -{ - return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); -} + uint32_t ProcessDefragmentations( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); -static void VmaFree(VmaAllocator hAllocator, void* ptr) -{ - VmaFree(&hAllocator->m_AllocationCallbacks, ptr); -} + void CommitDefragmentations( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats); -template -static T* VmaAllocate(VmaAllocator hAllocator) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); -} + //////////////////////////////////////////////////////////////////////////////// + // To be used only while the m_Mutex is locked. Used during defragmentation. -template -static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); -} + size_t GetBlockCount() const { return m_Blocks.size(); } + VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } + size_t CalcAllocationCount() const; + bool IsBufferImageGranularityConflictPossible() const; -template -static void vma_delete(VmaAllocator hAllocator, T* ptr) -{ - if(ptr != VMA_NULL) - { - ptr->~T(); - VmaFree(hAllocator, ptr); - } -} +private: + const VmaAllocator m_hAllocator; + const VmaPool m_hParentPool; + const uint32_t m_MemoryTypeIndex; + const VkDeviceSize m_PreferredBlockSize; + const size_t m_MinBlockCount; + const size_t m_MaxBlockCount; + const VkDeviceSize m_BufferImageGranularity; + const bool m_ExplicitBlockSize; + const uint32_t m_Algorithm; + const float m_Priority; + const VkDeviceSize m_MinAllocationAlignment; -template -static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) -{ - if(ptr != VMA_NULL) - { - for(size_t i = count; i--; ) - ptr[i].~T(); - VmaFree(hAllocator, ptr); - } -} + void* const m_pMemoryAllocateNext; + VMA_RW_MUTEX m_Mutex; + /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) - + a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */ + bool m_HasEmptyBlock; + // Incrementally sorted by sumFreeSize, ascending. + VmaVector> m_Blocks; + uint32_t m_NextBlockId; -//////////////////////////////////////////////////////////////////////////////// -// VmaStringBuilder + VkDeviceSize CalcMaxBlockSize() const; + // Finds and removes given block from vector. + void Remove(VmaDeviceMemoryBlock* pBlock); + // Performs single step in sorting m_Blocks. They may not be fully sorted + // after this call. + void IncrementallySortBlocks(); -#if VMA_STATS_STRING_ENABLED + VkResult AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); -class VmaStringBuilder -{ -public: - VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator(alloc->GetAllocationCallbacks())) { } - size_t GetLength() const { return m_Data.size(); } - const char* GetData() const { return m_Data.data(); } + VkResult AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation); - void Add(char ch) { m_Data.push_back(ch); } - void Add(const char* pStr); - void AddNewLine() { Add('\n'); } - void AddNumber(uint32_t num); - void AddNumber(uint64_t num); - void AddPointer(const void* ptr); + VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); + // Saves result to pCtx->res. + void ApplyDefragmentationMovesCpu( + VmaBlockVectorDefragmentationContext* pDefragCtx, + const VmaVector>& moves); + // Saves result to pCtx->res. + void ApplyDefragmentationMovesGpu( + VmaBlockVectorDefragmentationContext* pDefragCtx, + VmaVector>& moves, + VkCommandBuffer commandBuffer); -private: - VmaVector< char, VmaStlAllocator > m_Data; + /* + Used during defragmentation. pDefragmentationStats is optional. It is in/out + - updated with new data. + */ + void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); + void UpdateHasEmptyBlock(); }; +#endif // _VMA_BLOCK_VECTOR -void VmaStringBuilder::Add(const char* pStr) +#ifndef _VMA_DEFRAGMENTATION_ALGORITHM +struct VmaDefragmentationMove { - const size_t strLen = strlen(pStr); - if(strLen > 0) - { - const size_t oldCount = m_Data.size(); - m_Data.resize(oldCount + strLen); - memcpy(m_Data.data() + oldCount, pStr, strLen); - } -} + size_t srcBlockIndex; + size_t dstBlockIndex; + VkDeviceSize srcOffset; + VkDeviceSize dstOffset; + VmaAllocHandle dstHandle; + VkDeviceSize size; + VmaAllocation hAllocation; + VmaDeviceMemoryBlock* pSrcBlock; + VmaDeviceMemoryBlock* pDstBlock; +}; -void VmaStringBuilder::AddNumber(uint32_t num) -{ - char buf[11]; - buf[10] = '\0'; - char *p = &buf[10]; - do - { - *--p = '0' + (num % 10); - num /= 10; - } - while(num); - Add(p); -} +/* +Performs defragmentation: -void VmaStringBuilder::AddNumber(uint64_t num) +- Updates `pBlockVector->m_pMetadata`. +- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). +- Does not move actual data, only returns requested moves as `moves`. +*/ +class VmaDefragmentationAlgorithm { - char buf[21]; - buf[20] = '\0'; - char *p = &buf[20]; - do - { - *--p = '0' + (num % 10); - num /= 10; - } - while(num); - Add(p); -} + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) +public: + VmaDefragmentationAlgorithm( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector) + : m_hAllocator(hAllocator), + m_pBlockVector(pBlockVector) {} + virtual ~VmaDefragmentationAlgorithm() = default; -void VmaStringBuilder::AddPointer(const void* ptr) -{ - char buf[21]; - VmaPtrToStr(buf, sizeof(buf), ptr); - Add(buf); -} + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; + virtual void AddAll() = 0; + + virtual VkResult Defragment( + VmaVector>& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) = 0; -#endif // #if VMA_STATS_STRING_ENABLED + virtual VkDeviceSize GetBytesMoved() const = 0; + virtual uint32_t GetAllocationsMoved() const = 0; -//////////////////////////////////////////////////////////////////////////////// -// VmaJsonWriter +protected: + struct AllocationInfo + { + VmaAllocation m_hAllocation; + VkBool32* m_pChanged; -#if VMA_STATS_STRING_ENABLED + AllocationInfo() : m_hAllocation(VK_NULL_HANDLE), m_pChanged(VMA_NULL) {} + AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : m_hAllocation(hAlloc), m_pChanged(pChanged) {} + }; -class VmaJsonWriter -{ - VMA_CLASS_NO_COPY(VmaJsonWriter) -public: - VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); - ~VmaJsonWriter(); + VmaAllocator const m_hAllocator; + VmaBlockVector* const m_pBlockVector; +}; - void BeginObject(bool singleLine = false); - void EndObject(); +#endif // _VMA_DEFRAGMENTATION_ALGORITHM - void BeginArray(bool singleLine = false); - void EndArray(); +#ifndef _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC +class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm +{ + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) +public: + VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Generic(); - void WriteString(const char* pStr); - void BeginString(const char* pStr = VMA_NULL); - void ContinueString(const char* pStr); - void ContinueString(uint32_t n); - void ContinueString(uint64_t n); - void ContinueString_Pointer(const void* ptr); - void EndString(const char* pStr = VMA_NULL); + virtual void AddAll() { m_AllAllocations = true; } + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } - void WriteNumber(uint32_t n); - void WriteNumber(uint64_t n); - void WriteBool(bool b); - void WriteNull(); + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); + virtual VkResult Defragment( + VmaVector>& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags); private: - static const char* const INDENT; - - enum COLLECTION_TYPE + struct AllocationInfoSizeGreater { - COLLECTION_TYPE_OBJECT, - COLLECTION_TYPE_ARRAY, + bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const; }; - struct StackItem + struct AllocationInfoOffsetGreater { - COLLECTION_TYPE type; - uint32_t valueCount; - bool singleLineMode; + bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const; }; + struct BlockInfo + { + size_t m_OriginalBlockIndex; + VmaDeviceMemoryBlock* m_pBlock; + bool m_HasNonMovableAllocations; + VmaVector> m_Allocations; - VmaStringBuilder& m_SB; - VmaVector< StackItem, VmaStlAllocator > m_Stack; - bool m_InsideString; + BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks); - void BeginValue(bool isString); - void WriteIndent(bool oneLess = false); -}; + void CalcHasNonMovableAllocations(); + void SortAllocationsBySizeDescending(); + void SortAllocationsByOffsetDescending(); + }; + struct BlockPointerLess + { + bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const; + bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const; + }; + // 1. Blocks with some non-movable allocations go first. + // 2. Blocks with smaller sumFreeSize go first. + struct BlockInfoCompareMoveDestination + { + bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const; + }; + typedef VmaVector> BlockInfoVector; -const char* const VmaJsonWriter::INDENT = " "; + BlockInfoVector m_Blocks; + uint32_t m_AllocationCount; + bool m_AllAllocations; + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; -VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : - m_SB(sb), - m_Stack(VmaStlAllocator(pAllocationCallbacks)), - m_InsideString(false) -{ -} + static bool MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset); -VmaJsonWriter::~VmaJsonWriter() -{ - VMA_ASSERT(!m_InsideString); - VMA_ASSERT(m_Stack.empty()); -} + size_t CalcBlocksWithNonMovableCount() const; + VkResult DefragmentRound( + VmaVector>& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + bool freeOldAllocations); +}; +#endif // _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC -void VmaJsonWriter::BeginObject(bool singleLine) +#ifndef _VMA_DEFRAGMENTATION_ALGORITHM_FAST +class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm { - VMA_ASSERT(!m_InsideString); - - BeginValue(false); - m_SB.Add('{'); - - StackItem item; - item.type = COLLECTION_TYPE_OBJECT; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} + VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) +public: + VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + bool overlappingMoveSupported); + virtual ~VmaDefragmentationAlgorithm_Fast() = default; -void VmaJsonWriter::EndObject() -{ - VMA_ASSERT(!m_InsideString); + virtual void AddAll() { m_AllAllocations = true; } + virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } + virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } + virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } - WriteIndent(true); - m_SB.Add('}'); + virtual VkResult Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags); - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); - m_Stack.pop_back(); -} +private: + struct BlockInfo + { + size_t origBlockIndex; + }; + class FreeSpaceDatabase + { + public: + FreeSpaceDatabase(); -void VmaJsonWriter::BeginArray(bool singleLine) -{ - VMA_ASSERT(!m_InsideString); + void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size); + bool Fetch(VkDeviceSize alignment, VkDeviceSize size, + size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset); - BeginValue(false); - m_SB.Add('['); + private: + static const size_t MAX_COUNT = 4; - StackItem item; - item.type = COLLECTION_TYPE_ARRAY; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} + struct FreeSpace + { + size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. + VkDeviceSize offset; + VkDeviceSize size; + } m_FreeSpaces[MAX_COUNT]; + }; -void VmaJsonWriter::EndArray() -{ - VMA_ASSERT(!m_InsideString); + const bool m_OverlappingMoveSupported; - WriteIndent(true); - m_SB.Add(']'); + uint32_t m_AllocationCount; + bool m_AllAllocations; + VkDeviceSize m_BytesMoved; + uint32_t m_AllocationsMoved; - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); - m_Stack.pop_back(); -} + VmaVector> m_BlockInfos; -void VmaJsonWriter::WriteString(const char* pStr) -{ - BeginString(pStr); - EndString(); -} + void PreprocessMetadata(); + void PostprocessMetadata(); + void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); +}; +#endif // _VMA_DEFRAGMENTATION_ALGORITHM_FAST -void VmaJsonWriter::BeginString(const char* pStr) +#ifndef _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT +struct VmaBlockDefragmentationContext { - VMA_ASSERT(!m_InsideString); - - BeginValue(true); - m_SB.Add('"'); - m_InsideString = true; - if(pStr != VMA_NULL && pStr[0] != '\0') + enum BLOCK_FLAG { - ContinueString(pStr); - } -} + BLOCK_FLAG_USED = 0x00000001, + }; + uint32_t flags; + VkBuffer hBuffer; +}; -void VmaJsonWriter::ContinueString(const char* pStr) +class VmaBlockVectorDefragmentationContext { - VMA_ASSERT(m_InsideString); - - const size_t strLen = strlen(pStr); - for(size_t i = 0; i < strLen; ++i) - { - char ch = pStr[i]; - if(ch == '\\') - { - m_SB.Add("\\\\"); - } - else if(ch == '"') - { - m_SB.Add("\\\""); - } - else if(ch >= 32) - { - m_SB.Add(ch); - } - else switch(ch) - { - case '\b': - m_SB.Add("\\b"); - break; - case '\f': - m_SB.Add("\\f"); - break; - case '\n': - m_SB.Add("\\n"); - break; - case '\r': - m_SB.Add("\\r"); - break; - case '\t': - m_SB.Add("\\t"); - break; - default: - VMA_ASSERT(0 && "Character not currently supported."); - break; - } - } -} + VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) +public: + VkResult res; + bool mutexLocked; + VmaVector> blockContexts; + VmaVector> defragmentationMoves; + uint32_t defragmentationMovesProcessed; + uint32_t defragmentationMovesCommitted; + bool hasDefragmentationPlan; -void VmaJsonWriter::ContinueString(uint32_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} + VmaBlockVectorDefragmentationContext( + VmaAllocator hAllocator, + VmaPool hCustomPool, // Optional. + VmaBlockVector* pBlockVector); + ~VmaBlockVectorDefragmentationContext(); -void VmaJsonWriter::ContinueString(uint64_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} + VmaPool GetCustomPool() const { return m_hCustomPool; } + VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } + VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } + void AddAll() { m_AllAllocations = true; } -void VmaJsonWriter::ContinueString_Pointer(const void* ptr) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddPointer(ptr); -} + void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); + void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); -void VmaJsonWriter::EndString(const char* pStr) -{ - VMA_ASSERT(m_InsideString); - if(pStr != VMA_NULL && pStr[0] != '\0') +private: + struct AllocInfo { - ContinueString(pStr); - } - m_SB.Add('"'); - m_InsideString = false; -} - -void VmaJsonWriter::WriteNumber(uint32_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} + VmaAllocation hAlloc; + VkBool32* pChanged; + }; -void VmaJsonWriter::WriteNumber(uint64_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} + const VmaAllocator m_hAllocator; + // Null if not from custom pool. + const VmaPool m_hCustomPool; + // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. + VmaBlockVector* const m_pBlockVector; + // Owner of this object. + VmaDefragmentationAlgorithm* m_pAlgorithm; + // Used between constructor and Begin. + VmaVector> m_Allocations; + bool m_AllAllocations; +}; +#endif // _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT -void VmaJsonWriter::WriteBool(bool b) +#ifndef _VMA_DEFRAGMENTATION_CONTEXT +struct VmaDefragmentationContext_T { - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add(b ? "true" : "false"); -} +private: + VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) +public: + VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t flags, + VmaDefragmentationStats* pStats); + ~VmaDefragmentationContext_T(); -void VmaJsonWriter::WriteNull() + void AddPools(uint32_t poolCount, const VmaPool* pPools); + void AddAllocations( + uint32_t allocationCount, + const VmaAllocation* pAllocations, + VkBool32* pAllocationsChanged); + + /* + Returns: + - `VK_SUCCESS` if succeeded and object can be destroyed immediately. + - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). + - Negative value if error occurred and object can be destroyed immediately. + */ + VkResult Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); + + VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); + VkResult DefragmentPassEnd(); + +private: + const VmaAllocator m_hAllocator; + const uint32_t m_Flags; + VmaDefragmentationStats* const m_pStats; + + VkDeviceSize m_MaxCpuBytesToMove; + uint32_t m_MaxCpuAllocationsToMove; + VkDeviceSize m_MaxGpuBytesToMove; + uint32_t m_MaxGpuAllocationsToMove; + + // Owner of these objects. + VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; + // Owner of these objects. + VmaVector> m_CustomPoolContexts; +}; +#endif // _VMA_DEFRAGMENTATION_CONTEXT + +#ifndef _VMA_POOL_T +struct VmaPool_T { - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add("null"); -} + friend struct VmaPoolListItemTraits; + VMA_CLASS_NO_COPY(VmaPool_T) +public: + VmaBlockVector m_BlockVector; + VmaDedicatedAllocationList m_DedicatedAllocations; -void VmaJsonWriter::BeginValue(bool isString) + VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } + void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } + + const char* GetName() const { return m_Name; } + void SetName(const char* pName); + +#if VMA_STATS_STRING_ENABLED + //void PrintDetailedMap(class VmaStringBuilder& sb); +#endif + +private: + uint32_t m_Id; + char* m_Name; + VmaPool_T* m_PrevPool = VMA_NULL; + VmaPool_T* m_NextPool = VMA_NULL; +}; + +struct VmaPoolListItemTraits { - if(!m_Stack.empty()) - { - StackItem& currItem = m_Stack.back(); - if(currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 == 0) - { - VMA_ASSERT(isString); - } + typedef VmaPool_T ItemType; - if(currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 != 0) - { - m_SB.Add(": "); - } - else if(currItem.valueCount > 0) - { - m_SB.Add(", "); - WriteIndent(); - } - else - { - WriteIndent(); - } - ++currItem.valueCount; - } -} + static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } + static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } + static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } + static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } +}; +#endif // _VMA_POOL_T -void VmaJsonWriter::WriteIndent(bool oneLess) +#ifndef _VMA_CURRENT_BUDGET_DATA +struct VmaCurrentBudgetData { - if(!m_Stack.empty() && !m_Stack.back().singleLineMode) - { - m_SB.AddNewLine(); + VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; - size_t count = m_Stack.size(); - if(count > 0 && oneLess) - { - --count; - } - for(size_t i = 0; i < count; ++i) - { - m_SB.Add(INDENT); - } - } -} +#if VMA_MEMORY_BUDGET + VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; + VMA_RW_MUTEX m_BudgetMutex; + uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; + uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; + uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; +#endif // VMA_MEMORY_BUDGET -#endif // #if VMA_STATS_STRING_ENABLED + VmaCurrentBudgetData(); -//////////////////////////////////////////////////////////////////////////////// + void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); + void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); +}; -void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) +#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +VmaCurrentBudgetData::VmaCurrentBudgetData() { - if(IsUserDataString()) + for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) { - VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); + m_BlockBytes[heapIndex] = 0; + m_AllocationBytes[heapIndex] = 0; +#if VMA_MEMORY_BUDGET + m_VulkanUsage[heapIndex] = 0; + m_VulkanBudget[heapIndex] = 0; + m_BlockBytesAtBudgetFetch[heapIndex] = 0; +#endif + } - FreeUserDataString(hAllocator); +#if VMA_MEMORY_BUDGET + m_OperationsSinceBudgetFetch = 0; +#endif +} - if(pUserData != VMA_NULL) - { - m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); - } - } - else - { - m_pUserData = pUserData; - } +void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) +{ + m_AllocationBytes[heapIndex] += allocationSize; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif } -void VmaAllocation_T::ChangeBlockAllocation( - VmaAllocator hAllocator, - VmaDeviceMemoryBlock* block, - VkDeviceSize offset) +void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) { - VMA_ASSERT(block != VMA_NULL); - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); + m_AllocationBytes[heapIndex] -= allocationSize; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif +} +#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +#endif // _VMA_CURRENT_BUDGET_DATA - // Move mapping reference counter from old block to new block. - if(block != m_BlockAllocation.m_Block) - { - uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; - if(IsPersistentMap()) - ++mapRefCount; - m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); - block->Map(hAllocator, mapRefCount, VMA_NULL); - } +#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR +/* +Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. +*/ +class VmaAllocationObjectAllocator +{ + VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) +public: + VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) + : m_Allocator(pAllocationCallbacks, 1024) {} - m_BlockAllocation.m_Block = block; - m_BlockAllocation.m_Offset = offset; + template VmaAllocation Allocate(Types&&... args); + void Free(VmaAllocation hAlloc); + +private: + VMA_MUTEX m_Mutex; + VmaPoolAllocator m_Allocator; +}; + +template +VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args) +{ + VmaMutexLock mutexLock(m_Mutex); + return m_Allocator.Alloc(std::forward(args)...); } -void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) +void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) { - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - m_BlockAllocation.m_Offset = newOffset; + VmaMutexLock mutexLock(m_Mutex); + m_Allocator.Free(hAlloc); } +#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR -VkDeviceSize VmaAllocation_T::GetOffset() const +#ifndef _VMA_VIRTUAL_BLOCK_T +struct VmaVirtualBlock_T +{ + VMA_CLASS_NO_COPY(VmaVirtualBlock_T) +public: + const bool m_AllocationCallbacksSpecified; + const VkAllocationCallbacks m_AllocationCallbacks; + + VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo); + ~VmaVirtualBlock_T(); + + VkResult Init() { return VK_SUCCESS; } + bool IsEmpty() const { return m_Metadata->IsEmpty(); } + void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); } + void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); } + void Clear() { m_Metadata->Clear(); } + + const VkAllocationCallbacks* GetAllocationCallbacks() const; + void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo); + VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset); + void CalculateStats(VmaStatInfo& outStatInfo) const; +#if VMA_STATS_STRING_ENABLED + void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const; +#endif + +private: + VmaBlockMetadata* m_Metadata; +}; + +#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) + : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks) { - switch(m_Type) + const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK; + switch (algorithm) { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Offset; - case ALLOCATION_TYPE_DEDICATED: - return 0; + case 0: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Generic)(VK_NULL_HANDLE, 1, true); + break; + case VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Buddy)(VK_NULL_HANDLE, 1, true); + break; + case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true); + break; + case VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); + break; default: VMA_ASSERT(0); - return 0; } + + m_Metadata->Init(createInfo.size); } -VkDeviceMemory VmaAllocation_T::GetMemory() const +VmaVirtualBlock_T::~VmaVirtualBlock_T() { - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->GetDeviceMemory(); - case ALLOCATION_TYPE_DEDICATED: - return m_DedicatedAllocation.m_hMemory; - default: - VMA_ASSERT(0); - return VK_NULL_HANDLE; - } + // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations + if (!m_Metadata->IsEmpty()) + m_Metadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased virtual allocations. + VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!"); + + vma_delete(GetAllocationCallbacks(), m_Metadata); } -void* VmaAllocation_T::GetMappedData() const +const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const { - switch(m_Type) - { - case ALLOCATION_TYPE_BLOCK: - if(m_MapCount != 0) - { - void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); - VMA_ASSERT(pBlockData != VMA_NULL); - return (char*)pBlockData + m_BlockAllocation.m_Offset; - } - else - { - return VMA_NULL; - } - break; - case ALLOCATION_TYPE_DEDICATED: - VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); - return m_DedicatedAllocation.m_pMappedData; - default: - VMA_ASSERT(0); - return VMA_NULL; - } + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; +} + +void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo) +{ + m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo); } -bool VmaAllocation_T::CanBecomeLost() const +VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset) { - switch(m_Type) + VmaAllocationRequest request = {}; + if (m_Metadata->CreateAllocationRequest( + createInfo.size, // allocSize + VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment + (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress + VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant + createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy + &request)) { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_CanBecomeLost; - case ALLOCATION_TYPE_DEDICATED: - return false; - default: - VMA_ASSERT(0); - return false; + m_Metadata->Alloc(request, + VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant + createInfo.pUserData); + outAllocation = (VmaVirtualAllocation)request.allocHandle; + if(outOffset) + *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle); + return VK_SUCCESS; } + outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE; + if (outOffset) + *outOffset = UINT64_MAX; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } -bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +void VmaVirtualBlock_T::CalculateStats(VmaStatInfo& outStatInfo) const { - VMA_ASSERT(CanBecomeLost()); - - /* - Warning: This is a carefully designed algorithm. - Do not modify unless you really know what you're doing :) - */ - uint32_t localLastUseFrameIndex = GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - VMA_ASSERT(0); - return false; - } - else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) - { - return false; - } - else // Last use time earlier than current time. - { - if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) - { - // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST. - // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock. - return true; - } - } - } -} + m_Metadata->CalcAllocationStatInfo(outStatInfo); + VmaPostprocessCalcStatInfo(outStatInfo); +} #if VMA_STATS_STRING_ENABLED - -// Correspond to values of enum VmaSuballocationType. -static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { - "FREE", - "UNKNOWN", - "BUFFER", - "IMAGE_UNKNOWN", - "IMAGE_LINEAR", - "IMAGE_OPTIMAL", -}; - -void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const +void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const { - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); + VmaJsonWriter json(GetAllocationCallbacks(), sb); + json.BeginObject(); - json.WriteString("Size"); - json.WriteNumber(m_Size); + VmaStatInfo stat = {}; + CalculateStats(stat); + + json.WriteString("Stats"); + VmaPrintStatInfo(json, stat); - if(m_pUserData != VMA_NULL) + if (detailedMap) { - json.WriteString("UserData"); - if(IsUserDataString()) - { - json.WriteString((const char*)m_pUserData); - } - else - { - json.BeginString(); - json.ContinueString_Pointer(m_pUserData); - json.EndString(); - } + json.WriteString("Details"); + m_Metadata->PrintDetailedMap(json); } - json.WriteString("CreationFrameIndex"); - json.WriteNumber(m_CreationFrameIndex); + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +#endif // _VMA_VIRTUAL_BLOCK_T - json.WriteString("LastUseFrameIndex"); - json.WriteNumber(GetLastUseFrameIndex()); +// Main allocator object. +struct VmaAllocator_T +{ + VMA_CLASS_NO_COPY(VmaAllocator_T) +public: + bool m_UseMutex; + uint32_t m_VulkanApiVersion; + bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseExtMemoryBudget; + bool m_UseAmdDeviceCoherentMemory; + bool m_UseKhrBufferDeviceAddress; + bool m_UseExtMemoryPriority; + VkDevice m_hDevice; + VkInstance m_hInstance; + bool m_AllocationCallbacksSpecified; + VkAllocationCallbacks m_AllocationCallbacks; + VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; + VmaAllocationObjectAllocator m_AllocationObjectAllocator; - if(m_BufferImageUsage != 0) - { - json.WriteString("Usage"); - json.WriteNumber(m_BufferImageUsage); - } -} + // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. + uint32_t m_HeapSizeLimitMask; -#endif + VkPhysicalDeviceProperties m_PhysicalDeviceProperties; + VkPhysicalDeviceMemoryProperties m_MemProps; -void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) -{ - VMA_ASSERT(IsUserDataString()); - VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); - m_pUserData = VMA_NULL; -} + // Default pools. + VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; -void VmaAllocation_T::BlockAllocMap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + VmaCurrentBudgetData m_Budget; + VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. + + VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); + VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); + ~VmaAllocator_T(); - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) + const VkAllocationCallbacks* GetAllocationCallbacks() const { - ++m_MapCount; + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; } - else + const VmaVulkanFunctions& GetVulkanFunctions() const { - VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + return m_VulkanFunctions; } -} -void VmaAllocation_T::BlockAllocUnmap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) - { - --m_MapCount; - } - else + VkDeviceSize GetBufferImageGranularity() const { - VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + return VMA_MAX( + static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), + m_PhysicalDeviceProperties.limits.bufferImageGranularity); } -} -VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } + uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } - if(m_MapCount != 0) + uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const { - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) - { - VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); - *ppData = m_DedicatedAllocation.m_pMappedData; - ++m_MapCount; - return VK_SUCCESS; - } - else - { - VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); - return VK_ERROR_MEMORY_MAP_FAILED; - } + VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); + return m_MemProps.memoryTypes[memTypeIndex].heapIndex; } - else + // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. + bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - ppData); - if(result == VK_SUCCESS) - { - m_DedicatedAllocation.m_pMappedData = *ppData; - m_MapCount = 1; - } - return result; + return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; } -} - -void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - - if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) + // Minimum alignment for all allocations in specific memory type. + VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const { - --m_MapCount; - if(m_MapCount == 0) - { - m_DedicatedAllocation.m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory); - } + return IsMemoryTypeNonCoherent(memTypeIndex) ? + VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : + (VkDeviceSize)VMA_MIN_ALIGNMENT; } - else + + bool IsIntegratedGpu() const { - VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; } -} -#if VMA_STATS_STRING_ENABLED + uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } -static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) -{ - json.BeginObject(); + void GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + void GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; - json.WriteString("Blocks"); - json.WriteNumber(stat.blockCount); + // Main allocation function. + VkResult AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown. + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); - json.WriteString("Allocations"); - json.WriteNumber(stat.allocationCount); + // Main deallocation function. + void FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations); - json.WriteString("UnusedRanges"); - json.WriteNumber(stat.unusedRangeCount); + void CalculateStats(VmaStats* pStats); - json.WriteString("UsedBytes"); - json.WriteNumber(stat.usedBytes); + void GetHeapBudgets( + VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount); - json.WriteString("UnusedBytes"); - json.WriteNumber(stat.unusedBytes); +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif - if(stat.allocationCount > 1) - { - json.WriteString("AllocationSize"); - json.BeginObject(true); - json.WriteString("Min"); - json.WriteNumber(stat.allocationSizeMin); - json.WriteString("Avg"); - json.WriteNumber(stat.allocationSizeAvg); - json.WriteString("Max"); - json.WriteNumber(stat.allocationSizeMax); - json.EndObject(); - } + VkResult DefragmentationBegin( + const VmaDefragmentationInfo2& info, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext* pContext); + VkResult DefragmentationEnd( + VmaDefragmentationContext context); - if(stat.unusedRangeCount > 1) - { - json.WriteString("UnusedRangeSize"); - json.BeginObject(true); - json.WriteString("Min"); - json.WriteNumber(stat.unusedRangeSizeMin); - json.WriteString("Avg"); - json.WriteNumber(stat.unusedRangeSizeAvg); - json.WriteString("Max"); - json.WriteNumber(stat.unusedRangeSizeMax); - json.EndObject(); - } + VkResult DefragmentationPassBegin( + VmaDefragmentationPassInfo* pInfo, + VmaDefragmentationContext context); + VkResult DefragmentationPassEnd( + VmaDefragmentationContext context); - json.EndObject(); -} + void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); -#endif // #if VMA_STATS_STRING_ENABLED + VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); + void DestroyPool(VmaPool pool); + void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); -struct VmaSuballocationItemSizeLess -{ - bool operator()( - const VmaSuballocationList::iterator lhs, - const VmaSuballocationList::iterator rhs) const - { - return lhs->size < rhs->size; - } - bool operator()( - const VmaSuballocationList::iterator lhs, - VkDeviceSize rhsSize) const + void SetCurrentFrameIndex(uint32_t frameIndex); + uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + + VkResult CheckPoolCorruption(VmaPool hPool); + VkResult CheckCorruption(uint32_t memoryTypeBits); + + // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. + VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); + // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. + void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); + // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. + VkResult BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext); + // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. + VkResult BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext); + + VkResult Map(VmaAllocation hAllocation, void** ppData); + void Unmap(VmaAllocation hAllocation); + + VkResult BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + + VkResult FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op); + VkResult FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op); + + void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + + /* + Returns bit mask of memory types that can support defragmentation on GPU as + they support creation of required buffer for copy operations. + */ + uint32_t GetGpuDefragmentationMemoryTypeBits(); + +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const { - return lhs->size < rhsSize; + return m_TypeExternalMemoryHandleTypes[memTypeIndex]; } -}; +#endif // #if VMA_EXTERNAL_MEMORY +private: + VkDeviceSize m_PreferredLargeHeapBlockSize; -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata + VkPhysicalDevice m_PhysicalDevice; + VMA_ATOMIC_UINT32 m_CurrentFrameIndex; + VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; +#endif // #if VMA_EXTERNAL_MEMORY -VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) : - m_Size(0), - m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) -{ -} + VMA_RW_MUTEX m_PoolsMutex; + typedef VmaIntrusiveLinkedList PoolList; + // Protected by m_PoolsMutex. + PoolList m_Pools; + uint32_t m_NextPoolId; -#if VMA_STATS_STRING_ENABLED + VmaVulkanFunctions m_VulkanFunctions; -void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, - size_t allocationCount, - size_t unusedRangeCount) const -{ - json.BeginObject(); + // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. + uint32_t m_GlobalMemoryTypeBits; - json.WriteString("TotalBytes"); - json.WriteNumber(GetSize()); + void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); - json.WriteString("UnusedBytes"); - json.WriteNumber(unusedBytes); +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Static(); +#endif - json.WriteString("Allocations"); - json.WriteNumber((uint64_t)allocationCount); + void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); - json.WriteString("UnusedRanges"); - json.WriteNumber((uint64_t)unusedRangeCount); +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Dynamic(); +#endif - json.WriteString("Suballocations"); - json.BeginArray(); -} + void ValidateVulkanFunctions(); -void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, - VmaAllocation hAllocation) const -{ - json.BeginObject(true); + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); - json.WriteString("Offset"); - json.WriteNumber(offset); + VkResult AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations); - hAllocation->PrintParameters(json); + // Helper function only to be used inside AllocateDedicatedMemory. + VkResult AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + void* pUserData, + VmaAllocation* pAllocation); - json.EndObject(); -} + // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. + VkResult AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain = nullptr); -void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, - VkDeviceSize size) const -{ - json.BeginObject(true); + void FreeDedicatedMemory(const VmaAllocation allocation); - json.WriteString("Offset"); - json.WriteNumber(offset); + VkResult CalcMemTypeParams( + VmaAllocationCreateInfo& outCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount); + VkResult CalcAllocationParams( + VmaAllocationCreateInfo& outCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred); - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); + /* + Calculates and returns bit mask of memory types that can support defragmentation + on GPU as they support creation of required buffer for copy operations. + */ + uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; + uint32_t CalculateGlobalMemoryTypeBits() const; - json.WriteString("Size"); - json.WriteNumber(size); + bool GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const; - json.EndObject(); -} +#if VMA_MEMORY_BUDGET + void UpdateVulkanBudget(); +#endif // #if VMA_MEMORY_BUDGET +}; -void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const + +#ifndef _VMA_MEMORY_FUNCTIONS +static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) { - json.EndArray(); - json.EndObject(); + return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); } -#endif // #if VMA_STATS_STRING_ENABLED - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Generic - -VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_FreeCount(0), - m_SumFreeSize(0), - m_Suballocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_FreeSuballocationsBySize(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +static void VmaFree(VmaAllocator hAllocator, void* ptr) { + VmaFree(&hAllocator->m_AllocationCallbacks, ptr); } -VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() +template +static T* VmaAllocate(VmaAllocator hAllocator) { + return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); } -void VmaBlockMetadata_Generic::Init(VkDeviceSize size) +template +static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) { - VmaBlockMetadata::Init(size); - - m_FreeCount = 1; - m_SumFreeSize = size; - - VmaSuballocation suballoc = {}; - suballoc.offset = 0; - suballoc.size = size; - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - - VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); - m_Suballocations.push_back(suballoc); - VmaSuballocationList::iterator suballocItem = m_Suballocations.end(); - --suballocItem; - m_FreeSuballocationsBySize.push_back(suballocItem); + return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); } -bool VmaBlockMetadata_Generic::Validate() const +template +static void vma_delete(VmaAllocator hAllocator, T* ptr) { - VMA_VALIDATE(!m_Suballocations.empty()); - - // Expected offset of new suballocation as calculated from previous ones. - VkDeviceSize calculatedOffset = 0; - // Expected number of free suballocations as calculated from traversing their list. - uint32_t calculatedFreeCount = 0; - // Expected sum size of free suballocations as calculated from traversing their list. - VkDeviceSize calculatedSumFreeSize = 0; - // Expected number of free suballocations that should be registered in - // m_FreeSuballocationsBySize calculated from traversing their list. - size_t freeSuballocationsToRegister = 0; - // True if previous visited suballocation was free. - bool prevFree = false; + if(ptr != VMA_NULL) + { + ptr->~T(); + VmaFree(hAllocator, ptr); + } +} - for(const auto& subAlloc : m_Suballocations) +template +static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) +{ + if(ptr != VMA_NULL) { - // Actual offset of this suballocation doesn't match expected one. - VMA_VALIDATE(subAlloc.offset == calculatedOffset); + for(size_t i = count; i--; ) + ptr[i].~T(); + VmaFree(hAllocator, ptr); + } +} +#endif // _VMA_MEMORY_FUNCTIONS - const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); - // Two adjacent free suballocations are invalid. They should be merged. - VMA_VALIDATE(!prevFree || !currFree); +#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS +VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) + : m_pMetadata(VMA_NULL), + m_MemoryTypeIndex(UINT32_MAX), + m_Id(0), + m_hMemory(VK_NULL_HANDLE), + m_MapCount(0), + m_pMappedData(VMA_NULL) {} - VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE)); +VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock() +{ + VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); +} - if(currFree) - { - calculatedSumFreeSize += subAlloc.size; - ++calculatedFreeCount; - if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - ++freeSuballocationsToRegister; - } - - // Margin required between allocations - every free space must be at least that large. - VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN); - } - else - { - VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset); - VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size); - - // Margin required between allocations - previous allocation must be free. - VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree); - } - - calculatedOffset += subAlloc.size; - prevFree = currFree; - } - - // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't - // match expected one. - VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); - - VkDeviceSize lastSize = 0; - for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) - { - VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; - - // Only free suballocations can be registered in m_FreeSuballocationsBySize. - VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); - // They must be sorted by size ascending. - VMA_VALIDATE(suballocItem->size >= lastSize); - - lastSize = suballocItem->size; - } - - // Check if totals match calculated values. - VMA_VALIDATE(ValidateFreeSuballocationList()); - VMA_VALIDATE(calculatedOffset == GetSize()); - VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); - VMA_VALIDATE(calculatedFreeCount == m_FreeCount); +void VmaDeviceMemoryBlock::Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity) +{ + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); - return true; -} + m_hParentPool = hParentPool; + m_MemoryTypeIndex = newMemoryTypeIndex; + m_Id = id; + m_hMemory = newMemory; -VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const -{ - if(!m_FreeSuballocationsBySize.empty()) + switch (algorithm) { - return m_FreeSuballocationsBySize.back()->size; - } - else - { - return 0; + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + case VMA_POOL_CREATE_TLSF_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + default: + VMA_ASSERT(0); + // Fall-through. + case 0: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual } + m_pMetadata->Init(newSize); } -bool VmaBlockMetadata_Generic::IsEmpty() const -{ - return (m_Suballocations.size() == 1) && (m_FreeCount == 1); -} - -void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const +void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) { - outInfo.blockCount = 1; - - const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); - outInfo.allocationCount = rangeCount - m_FreeCount; - outInfo.unusedRangeCount = m_FreeCount; - - outInfo.unusedBytes = m_SumFreeSize; - outInfo.usedBytes = GetSize() - outInfo.unusedBytes; + // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations + if (!m_pMetadata->IsEmpty()) + m_pMetadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased VmaAllocation objects. + VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.allocationSizeMax = 0; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; + VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); + allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); + m_hMemory = VK_NULL_HANDLE; - for(const auto& suballoc : m_Suballocations) - { - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size); - } - else - { - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size); - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size); - } - } + vma_delete(allocator, m_pMetadata); + m_pMetadata = VMA_NULL; } -void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const +bool VmaDeviceMemoryBlock::Validate() const { - const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); + VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && + (m_pMetadata->GetSize() != 0)); - inoutStats.size += GetSize(); - inoutStats.unusedSize += m_SumFreeSize; - inoutStats.allocationCount += rangeCount - m_FreeCount; - inoutStats.unusedRangeCount += m_FreeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); + return m_pMetadata->Validate(); } -#if VMA_STATS_STRING_ENABLED - -void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const +VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) { - PrintDetailedMap_Begin(json, - m_SumFreeSize, // unusedBytes - m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount - m_FreeCount); // unusedRangeCount - - size_t i = 0; - for(const auto& suballoc : m_Suballocations) + void* pData = nullptr; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { - if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) - { - PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size); - } - else - { - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); - } + return res; } - PrintDetailedMap_End(json); -} - -#endif // #if VMA_STATS_STRING_ENABLED + res = m_pMetadata->CheckCorruption(pData); -bool VmaBlockMetadata_Generic::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(!upperAddress); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(pAllocationRequest != VMA_NULL); - VMA_HEAVY_ASSERT(Validate()); + Unmap(hAllocator, 1); - pAllocationRequest->type = VmaAllocationRequestType::Normal; + return res; +} - // There is not enough total free space in this block to fullfill the request: Early return. - if(canMakeOtherLost == false && - m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) +VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) +{ + if (count == 0) { - return false; + return VK_SUCCESS; } - // New algorithm, efficiently searching freeSuballocationsBySize. - const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); - if(freeSuballocCount > 0) + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if (m_MapCount != 0) { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN. - VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( - m_FreeSuballocationsBySize.data(), - m_FreeSuballocationsBySize.data() + freeSuballocCount, - allocSize + 2 * VMA_DEBUG_MARGIN, - VmaSuballocationItemSizeLess()); - size_t index = it - m_FreeSuballocationsBySize.data(); - for(; index < freeSuballocCount; ++index) - { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - m_FreeSuballocationsBySize[index], - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = m_FreeSuballocationsBySize[index]; - return true; - } - } - } - else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) + m_MapCount += count; + VMA_ASSERT(m_pMappedData != VMA_NULL); + if (ppData != VMA_NULL) { - for(VmaSuballocationList::iterator it = m_Suballocations.begin(); - it != m_Suballocations.end(); - ++it) - { - if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - it, - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = it; - return true; - } - } + *ppData = m_pMappedData; } - else // WORST_FIT, FIRST_FIT + return VK_SUCCESS; + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + &m_pMappedData); + if (result == VK_SUCCESS) { - // Search staring from biggest suballocations. - for(size_t index = freeSuballocCount; index--; ) + if (ppData != VMA_NULL) { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - m_FreeSuballocationsBySize[index], - false, // canMakeOtherLost - &pAllocationRequest->offset, - &pAllocationRequest->itemsToMakeLostCount, - &pAllocationRequest->sumFreeSize, - &pAllocationRequest->sumItemSize)) - { - pAllocationRequest->item = m_FreeSuballocationsBySize[index]; - return true; - } + *ppData = m_pMappedData; } + m_MapCount = count; } + return result; } +} - if(canMakeOtherLost) +void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) +{ + if (count == 0) { - // Brute-force algorithm. TODO: Come up with something better. + return; + } - bool found = false; - VmaAllocationRequest tmpAllocRequest = {}; - tmpAllocRequest.type = VmaAllocationRequestType::Normal; - for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin(); - suballocIt != m_Suballocations.end(); - ++suballocIt) + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + if (m_MapCount >= count) + { + m_MapCount -= count; + if (m_MapCount == 0) { - if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE || - suballocIt->hAllocation->CanBecomeLost()) - { - if(CheckAllocation( - currentFrameIndex, - frameInUseCount, - bufferImageGranularity, - allocSize, - allocAlignment, - allocType, - suballocIt, - canMakeOtherLost, - &tmpAllocRequest.offset, - &tmpAllocRequest.itemsToMakeLostCount, - &tmpAllocRequest.sumFreeSize, - &tmpAllocRequest.sumItemSize)) - { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - *pAllocationRequest = tmpAllocRequest; - pAllocationRequest->item = suballocIt; - break; - } - if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) - { - *pAllocationRequest = tmpAllocRequest; - pAllocationRequest->item = suballocIt; - found = true; - } - } - } + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); } - - return found; } - - return false; + else + { + VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); + } } -bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) +VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { - VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal); + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - while(pAllocationRequest->itemsToMakeLostCount > 0) + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { - if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) - { - ++pAllocationRequest->item; - } - VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); - VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE); - VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost()); - if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item); - --pAllocationRequest->itemsToMakeLostCount; - } - else - { - return false; - } + return res; } - VMA_HEAVY_ASSERT(Validate()); - VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end()); - VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE); + VmaWriteMagicValue(pData, allocOffset + allocSize); - return true; + Unmap(hAllocator, 1); + return VK_SUCCESS; } -uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { - uint32_t lostAllocationCount = 0; - for(VmaSuballocationList::iterator it = m_Suballocations.begin(); - it != m_Suballocations.end(); - ++it) + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) { - if(it->type != VMA_SUBALLOCATION_TYPE_FREE && - it->hAllocation->CanBecomeLost() && - it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - it = FreeSuballocation(it); - ++lostAllocationCount; - } + return res; } - return lostAllocationCount; -} -VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) -{ - for(auto& suballoc : m_Suballocations) + if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) { - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); } + Unmap(hAllocator, 1); return VK_SUCCESS; } -void VmaBlockMetadata_Generic::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) +VkResult VmaDeviceMemoryBlock::BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) { - VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); - VMA_ASSERT(request.item != m_Suballocations.end()); - VmaSuballocation& suballoc = *request.item; - // Given suballocation is a free block. - VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - // Given offset is inside this suballocation. - VMA_ASSERT(request.offset >= suballoc.offset); - const VkDeviceSize paddingBegin = request.offset - suballoc.offset; - VMA_ASSERT(suballoc.size >= paddingBegin + allocSize); - const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize; + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); +} - // Unregister this free suballocation from m_FreeSuballocationsBySize and update - // it to become used. - UnregisterFreeSuballocation(request.item); +VkResult VmaDeviceMemoryBlock::BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); +} +#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS - suballoc.offset = request.offset; - suballoc.size = allocSize; - suballoc.type = type; - suballoc.hAllocation = hAllocation; +#ifndef _VMA_ALLOCATION_T_FUNCTIONS +VmaAllocation_T::VmaAllocation_T(bool userDataString) + : m_Alignment{ 1 }, + m_Size{ 0 }, + m_pUserData{ VMA_NULL }, + m_MemoryTypeIndex{ 0 }, + m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, + m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, + m_MapCount{ 0 }, + m_Flags{ userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0 } +{ +#if VMA_STATS_STRING_ENABLED + m_BufferImageUsage = 0; +#endif +} - // If there are any free bytes remaining at the end, insert new free suballocation after current one. - if(paddingEnd) +VmaAllocation_T::~VmaAllocation_T() +{ + VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction."); + + // Check if owned string was freed. + VMA_ASSERT(m_pUserData == VMA_NULL); +} + +void VmaAllocation_T::InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(block != VMA_NULL); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_Alignment = alignment; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_SuballocationType = (uint8_t)suballocationType; + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_AllocHandle = allocHandle; +} + +void VmaAllocation_T::InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(hMemory != VK_NULL_HANDLE); + m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; + m_Alignment = 0; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_SuballocationType = (uint8_t)suballocationType; + m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0; + m_DedicatedAllocation.m_hParentPool = hParentPool; + m_DedicatedAllocation.m_hMemory = hMemory; + m_DedicatedAllocation.m_pMappedData = pMappedData; + m_DedicatedAllocation.m_Prev = VMA_NULL; + m_DedicatedAllocation.m_Next = VMA_NULL; +} + +void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) +{ + if (IsUserDataString()) { - VmaSuballocation paddingSuballoc = {}; - paddingSuballoc.offset = request.offset + allocSize; - paddingSuballoc.size = paddingEnd; - paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - VmaSuballocationList::iterator next = request.item; - ++next; - const VmaSuballocationList::iterator paddingEndItem = - m_Suballocations.insert(next, paddingSuballoc); - RegisterFreeSuballocation(paddingEndItem); - } + VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); - // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. - if(paddingBegin) + FreeUserDataString(hAllocator); + + if (pUserData != VMA_NULL) + { + m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); + } + } + else { - VmaSuballocation paddingSuballoc = {}; - paddingSuballoc.offset = request.offset - paddingBegin; - paddingSuballoc.size = paddingBegin; - paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - const VmaSuballocationList::iterator paddingBeginItem = - m_Suballocations.insert(request.item, paddingSuballoc); - RegisterFreeSuballocation(paddingBeginItem); + m_pUserData = pUserData; } +} - // Update totals. - m_FreeCount = m_FreeCount - 1; - if(paddingBegin > 0) +void VmaAllocation_T::ChangeBlockAllocation( + VmaAllocator hAllocator, + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle) +{ + VMA_ASSERT(block != VMA_NULL); + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + + // Move mapping reference counter from old block to new block. + if (block != m_BlockAllocation.m_Block) { - ++m_FreeCount; + uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP; + if (IsPersistentMap()) + ++mapRefCount; + m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); + block->Map(hAllocator, mapRefCount, VMA_NULL); } - if(paddingEnd > 0) + + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_AllocHandle = allocHandle; +} + +void VmaAllocation_T::ChangeAllocHandle(VmaAllocHandle newAllocHandle) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + m_BlockAllocation.m_AllocHandle = newAllocHandle; +} + +VmaAllocHandle VmaAllocation_T::GetAllocHandle() const +{ + switch (m_Type) { - ++m_FreeCount; + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_AllocHandle; + case ALLOCATION_TYPE_DEDICATED: + return VK_NULL_HANDLE; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; } - m_SumFreeSize -= allocSize; } -void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) +VkDeviceSize VmaAllocation_T::GetOffset() const { - for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); - suballocItem != m_Suballocations.end(); - ++suballocItem) + switch (m_Type) { - VmaSuballocation& suballoc = *suballocItem; - if(suballoc.hAllocation == allocation) - { - FreeSuballocation(suballocItem); - VMA_HEAVY_ASSERT(Validate()); - return; - } + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle); + case ALLOCATION_TYPE_DEDICATED: + return 0; + default: + VMA_ASSERT(0); + return 0; } - VMA_ASSERT(0 && "Not found!"); } -void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) +VmaPool VmaAllocation_T::GetParentPool() const { - for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin(); - suballocItem != m_Suballocations.end(); - ++suballocItem) + switch (m_Type) { - VmaSuballocation& suballoc = *suballocItem; - if(suballoc.offset == offset) - { - FreeSuballocation(suballocItem); - return; - } + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetParentPool(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hParentPool; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; } - VMA_ASSERT(0 && "Not found!"); } -bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const +VkDeviceMemory VmaAllocation_T::GetMemory() const { - VkDeviceSize lastSize = 0; - for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) + switch (m_Type) { - const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; - - VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER); - VMA_VALIDATE(it->size >= lastSize); - lastSize = it->size; + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetDeviceMemory(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hMemory; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; } - return true; } -bool VmaBlockMetadata_Generic::CheckAllocation( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaSuballocationList::const_iterator suballocItem, - bool canMakeOtherLost, - VkDeviceSize* pOffset, - size_t* itemsToMakeLostCount, - VkDeviceSize* pSumFreeSize, - VkDeviceSize* pSumItemSize) const +void* VmaAllocation_T::GetMappedData() const { - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(suballocItem != m_Suballocations.cend()); - VMA_ASSERT(pOffset != VMA_NULL); - - *itemsToMakeLostCount = 0; - *pSumFreeSize = 0; - *pSumItemSize = 0; - - if(canMakeOtherLost) + switch (m_Type) { - if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) + case ALLOCATION_TYPE_BLOCK: + if (m_MapCount != 0) { - *pSumFreeSize = suballocItem->size; + void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); + VMA_ASSERT(pBlockData != VMA_NULL); + return (char*)pBlockData + GetOffset(); } else { - if(suballocItem->hAllocation->CanBecomeLost() && - suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - *pSumItemSize = suballocItem->size; - } - else - { - return false; - } + return VMA_NULL; } + break; + case ALLOCATION_TYPE_DEDICATED: + VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0)); + return m_DedicatedAllocation.m_pMappedData; + default: + VMA_ASSERT(0); + return VMA_NULL; + } +} - // Remaining size is too small for this request: Early return. - if(GetSize() - suballocItem->offset < allocSize) - { - return false; - } +void VmaAllocation_T::DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); + outInfo.blockCount = 1; + outInfo.allocationCount = 1; + outInfo.unusedRangeCount = 0; + outInfo.usedBytes = m_Size; + outInfo.unusedBytes = 0; + outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; + outInfo.unusedRangeSizeMin = UINT64_MAX; + outInfo.unusedRangeSizeMax = 0; +} - // Start from offset equal to beginning of this suballocation. - *pOffset = suballocItem->offset; +void VmaAllocation_T::BlockAllocMap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - *pOffset += VMA_DEBUG_MARGIN; - } + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) + { + ++m_MapCount; + } + else + { + VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + } +} - // Apply alignment. - *pOffset = VmaAlignUp(*pOffset, allocAlignment); +void VmaAllocation_T::BlockAllocUnmap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) + { + --m_MapCount; + } + else + { + VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + } +} + +VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if (m_MapCount != 0) + { + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) { - bool bufferImageGranularityConflict = false; - VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; - while(prevSuballocItem != m_Suballocations.cbegin()) - { - --prevSuballocItem; - const VmaSuballocation& prevSuballoc = *prevSuballocItem; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); - } - } - - // Now that we have final *pOffset, check if we are past suballocItem. - // If yes, return false - this function should be called for another suballocItem as starting point. - if(*pOffset >= suballocItem->offset + suballocItem->size) - { - return false; - } - - // Calculate padding at the beginning based on current offset. - const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset; - - // Calculate required margin at the end. - const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; - - const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin; - // Another early return check. - if(suballocItem->offset + totalSize > GetSize()) - { - return false; - } - - // Advance lastSuballocItem until desired size is reached. - // Update itemsToMakeLostCount. - VmaSuballocationList::const_iterator lastSuballocItem = suballocItem; - if(totalSize > suballocItem->size) - { - VkDeviceSize remainingSize = totalSize - suballocItem->size; - while(remainingSize > 0) - { - ++lastSuballocItem; - if(lastSuballocItem == m_Suballocations.cend()) - { - return false; - } - if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) - { - *pSumFreeSize += lastSuballocItem->size; - } - else - { - VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE); - if(lastSuballocItem->hAllocation->CanBecomeLost() && - lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - *pSumItemSize += lastSuballocItem->size; - } - else - { - return false; - } - } - remainingSize = (lastSuballocItem->size < remainingSize) ? - remainingSize - lastSuballocItem->size : 0; - } + VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); + *ppData = m_DedicatedAllocation.m_pMappedData; + ++m_MapCount; + return VK_SUCCESS; } - - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, we must mark more allocations lost or fail. - if(allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity) + else { - VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem; - ++nextSuballocItem; - while(nextSuballocItem != m_Suballocations.cend()) - { - const VmaSuballocation& nextSuballoc = *nextSuballocItem; - if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE); - if(nextSuballoc.hAllocation->CanBecomeLost() && - nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++*itemsToMakeLostCount; - } - else - { - return false; - } - } - } - else - { - // Already on next page. - break; - } - ++nextSuballocItem; - } + VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); + return VK_ERROR_MEMORY_MAP_FAILED; } } else { - const VmaSuballocation& suballoc = *suballocItem; - VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - *pSumFreeSize = suballoc.size; - - // Size of this suballocation is too small for this request: Early return. - if(suballoc.size < allocSize) + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + ppData); + if (result == VK_SUCCESS) { - return false; + m_DedicatedAllocation.m_pMappedData = *ppData; + m_MapCount = 1; } + return result; + } +} - // Start from offset equal to beginning of this suballocation. - *pOffset = suballoc.offset; +void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) + if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) + { + --m_MapCount; + if (m_MapCount == 0) { - *pOffset += VMA_DEBUG_MARGIN; + m_DedicatedAllocation.m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory); } + } + else + { + VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + } +} - // Apply alignment. - *pOffset = VmaAlignUp(*pOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) - { - bool bufferImageGranularityConflict = false; - VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; - while(prevSuballocItem != m_Suballocations.cbegin()) - { - --prevSuballocItem; - const VmaSuballocation& prevSuballoc = *prevSuballocItem; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity); - } - } +#if VMA_STATS_STRING_ENABLED +void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage) +{ + VMA_ASSERT(m_BufferImageUsage == 0); + m_BufferImageUsage = bufferImageUsage; +} - // Calculate padding at the beginning based on current offset. - const VkDeviceSize paddingBegin = *pOffset - suballoc.offset; +void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const +{ + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); - // Calculate required margin at the end. - const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN; + json.WriteString("Size"); + json.WriteNumber(m_Size); - // Fail if requested size plus margin before and after is bigger than size of this suballocation. - if(paddingBegin + allocSize + requiredEndMargin > suballoc.size) + if (m_pUserData != VMA_NULL) + { + json.WriteString("UserData"); + if (IsUserDataString()) { - return false; + json.WriteString((const char*)m_pUserData); } - - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity) + else { - VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; - ++nextSuballocItem; - while(nextSuballocItem != m_Suballocations.cend()) - { - const VmaSuballocation& nextSuballoc = *nextSuballocItem; - if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - ++nextSuballocItem; - } + json.BeginString(); + json.ContinueString_Pointer(m_pUserData); + json.EndString(); } } - // All tests passed: Success. pOffset is already filled. - return true; + if (m_BufferImageUsage != 0) + { + json.WriteString("Usage"); + json.WriteNumber(m_BufferImageUsage); + } } +#endif // VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) +void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) { - VMA_ASSERT(item != m_Suballocations.end()); - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - - VmaSuballocationList::iterator nextItem = item; - ++nextItem; - VMA_ASSERT(nextItem != m_Suballocations.end()); - VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); - - item->size += nextItem->size; - --m_FreeCount; - m_Suballocations.erase(nextItem); + VMA_ASSERT(IsUserDataString()); + VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); + m_pUserData = VMA_NULL; } +#endif // _VMA_ALLOCATION_T_FUNCTIONS -VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) -{ - // Change this suballocation to be marked as free. - VmaSuballocation& suballoc = *suballocItem; - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - - // Update totals. - ++m_FreeCount; - m_SumFreeSize += suballoc.size; - - // Merge with previous and/or next suballocation if it's also free. - bool mergeWithNext = false; - bool mergeWithPrev = false; +#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS +VmaBlockVector::VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext) + : m_hAllocator(hAllocator), + m_hParentPool(hParentPool), + m_MemoryTypeIndex(memoryTypeIndex), + m_PreferredBlockSize(preferredBlockSize), + m_MinBlockCount(minBlockCount), + m_MaxBlockCount(maxBlockCount), + m_BufferImageGranularity(bufferImageGranularity), + m_ExplicitBlockSize(explicitBlockSize), + m_Algorithm(algorithm), + m_Priority(priority), + m_MinAllocationAlignment(minAllocationAlignment), + m_pMemoryAllocateNext(pMemoryAllocateNext), + m_HasEmptyBlock(false), + m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_NextBlockId(0) {} - VmaSuballocationList::iterator nextItem = suballocItem; - ++nextItem; - if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) +VmaBlockVector::~VmaBlockVector() +{ + for (size_t i = m_Blocks.size(); i--; ) { - mergeWithNext = true; + m_Blocks[i]->Destroy(m_hAllocator); + vma_delete(m_hAllocator, m_Blocks[i]); } +} - VmaSuballocationList::iterator prevItem = suballocItem; - if(suballocItem != m_Suballocations.begin()) +VkResult VmaBlockVector::CreateMinBlocks() +{ + for (size_t i = 0; i < m_MinBlockCount; ++i) { - --prevItem; - if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) + VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); + if (res != VK_SUCCESS) { - mergeWithPrev = true; + return res; } } - - if(mergeWithNext) - { - UnregisterFreeSuballocation(nextItem); - MergeFreeWithNext(suballocItem); - } - - if(mergeWithPrev) - { - UnregisterFreeSuballocation(prevItem); - MergeFreeWithNext(prevItem); - RegisterFreeSuballocation(prevItem); - return prevItem; - } - else - { - RegisterFreeSuballocation(suballocItem); - return suballocItem; - } + return VK_SUCCESS; } -void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) +void VmaBlockVector::AddPoolStats(VmaPoolStats* pStats) { - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(item->size > 0); + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - // You may want to enable this validation at the beginning or at the end of - // this function, depending on what do you want to check. - VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + const size_t blockCount = m_Blocks.size(); + pStats->blockCount += blockCount; - if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { - if(m_FreeSuballocationsBySize.empty()) - { - m_FreeSuballocationsBySize.push_back(item); - } - else - { - VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); - } + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddPoolStats(*pStats); } +} - //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); +bool VmaBlockVector::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + return m_Blocks.empty(); } +bool VmaBlockVector::IsCorruptionDetectionEnabled() const +{ + const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + return (VMA_DEBUG_DETECT_CORRUPTION != 0) && + (VMA_DEBUG_MARGIN > 0) && + (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; +} -void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) +VkResult VmaBlockVector::Allocate( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) { - VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(item->size > 0); + size_t allocIndex; + VkResult res = VK_SUCCESS; - // You may want to enable this validation at the beginning or at the end of - // this function, depending on what do you want to check. - VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); + alignment = VMA_MAX(alignment, m_MinAllocationAlignment); + + if (IsCorruptionDetectionEnabled()) + { + size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + } - if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) { - VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( - m_FreeSuballocationsBySize.data(), - m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), - item, - VmaSuballocationItemSizeLess()); - for(size_t index = it - m_FreeSuballocationsBySize.data(); - index < m_FreeSuballocationsBySize.size(); - ++index) + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { - if(m_FreeSuballocationsBySize[index] == item) + res = AllocatePage( + size, + alignment, + createInfo, + suballocType, + pAllocations + allocIndex); + if (res != VK_SUCCESS) { - VmaVectorRemove(m_FreeSuballocationsBySize, index); - return; + break; } - VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); } - VMA_ASSERT(0 && "Not found."); - } - - //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); -} - -bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( - VkDeviceSize bufferImageGranularity, - VmaSuballocationType& inOutPrevSuballocType) const -{ - if(bufferImageGranularity == 1 || IsEmpty()) - { - return false; } - VkDeviceSize minAlignment = VK_WHOLE_SIZE; - bool typeConflictFound = false; - for(const auto& suballoc : m_Suballocations) + if (res != VK_SUCCESS) { - const VmaSuballocationType suballocType = suballoc.type; - if(suballocType != VMA_SUBALLOCATION_TYPE_FREE) + // Free all already created allocations. + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + while (allocIndex--) { - minAlignment = VMA_MIN(minAlignment, suballoc.hAllocation->GetAlignment()); - if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) - { - typeConflictFound = true; - } - inOutPrevSuballocType = suballocType; + VmaAllocation_T* const alloc = pAllocations[allocIndex]; + const VkDeviceSize allocSize = alloc->GetSize(); + Free(alloc); + m_hAllocator->m_Budget.RemoveAllocation(heapIndex, allocSize); } + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); } - return typeConflictFound || minAlignment >= bufferImageGranularity; -} - -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Linear - -VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_SumFreeSize(0), - m_Suballocations0(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_Suballocations1(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_1stVectorIndex(0), - m_2ndVectorMode(SECOND_VECTOR_EMPTY), - m_1stNullItemsBeginCount(0), - m_1stNullItemsMiddleCount(0), - m_2ndNullItemsCount(0) -{ -} - -VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() -{ + return res; } -void VmaBlockMetadata_Linear::Init(VkDeviceSize size) +VkResult VmaBlockVector::AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) { - VmaBlockMetadata::Init(size); - m_SumFreeSize = size; -} + const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; -bool VmaBlockMetadata_Linear::Validate() const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + VkDeviceSize freeMemory; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; + } - VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); - VMA_VALIDATE(!suballocations1st.empty() || - suballocations2nd.empty() || - m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + const bool canFallbackToDedicated = !HasExplicitBlockSize() && + (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0; + const bool canCreateNewBlock = + ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && + (m_Blocks.size() < m_MaxBlockCount) && + (freeMemory >= size || !canFallbackToDedicated); + uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; - if(!suballocations1st.empty()) + // Upper address can only be used with linear allocator and within single memory block. + if (isUpperAddress && + (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) { - // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. - VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE); - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE); + return VK_ERROR_FEATURE_NOT_PRESENT; } - if(!suballocations2nd.empty()) + + // Early reject: requested allocation size is larger that maximum block size for this block vector. + if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize) { - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE); + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } - VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); - VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); - - VkDeviceSize sumUsedSize = 0; - const size_t suballoc1stCount = suballocations1st.size(); - VkDeviceSize offset = VMA_DEBUG_MARGIN; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + // 1. Search existing allocations. Try to allocate. + if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for(size_t i = 0; i < suballoc2ndCount; ++i) + // Use only last block. + if (!m_Blocks.empty()) { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); - - if(!currFree) - { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; - } - else + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + size, + alignment, + createInfo.flags, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { - ++nullItem2ndCount; + VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; } - - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); } - - for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i) + else { - const VmaSuballocation& suballoc = suballocations1st[i]; - VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation == VK_NULL_HANDLE); + if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + size, + alignment, + createInfo.flags, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; + } + } + } + else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, + size, + alignment, + createInfo.flags, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); + return VK_SUCCESS; + } + } + } } - size_t nullItem1stCount = m_1stNullItemsBeginCount; - - for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) + // 2. Try to create new block. + if (canCreateNewBlock) { - const VmaSuballocation& suballoc = suballocations1st[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); - VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); + // Calculate optimal size for new block. + VkDeviceSize newBlockSize = m_PreferredBlockSize; + uint32_t newBlockSizeShift = 0; + const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; - if(!currFree) + if (!m_ExplicitBlockSize) { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; + // Allocate 1/8, 1/4, 1/2 as first blocks. + const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); + for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + } + else + { + break; + } + } } - else + + size_t newBlockIndex = 0; + VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. + if (!m_ExplicitBlockSize) { - ++nullItem1stCount; + while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize >= size) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + break; + } + } } - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; - } - VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); - - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for(size_t i = suballoc2ndCount; i--; ) + if (res == VK_SUCCESS) { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE)); - VMA_VALIDATE(suballoc.offset >= offset); + VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; + VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); - if(!currFree) + res = AllocateFromBlock( + pBlock, + size, + alignment, + createInfo.flags, + createInfo.pUserData, + suballocType, + strategy, + pAllocation); + if (res == VK_SUCCESS) { - VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset); - VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size); - sumUsedSize += suballoc.size; + VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); + return VK_SUCCESS; } else { - ++nullItem2ndCount; + // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } - - offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN; } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); } - VMA_VALIDATE(offset <= GetSize()); - VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); - - return true; -} - -size_t VmaBlockMetadata_Linear::GetAllocationCount() const -{ - return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) + - AccessSuballocations2nd().size() - m_2ndNullItemsCount; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } -VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const +void VmaBlockVector::Free( + const VmaAllocation hAllocation) { - const VkDeviceSize size = GetSize(); + VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; - /* - We don't consider gaps inside allocation vectors with freed allocations because - they are not suitable for reuse in linear allocator. We consider only space that - is available for new allocations. - */ - if(IsEmpty()) + bool budgetExceeded = false; { - return size; - } - - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + budgetExceeded = heapBudget.usage >= heapBudget.budget; + } - switch(m_2ndVectorMode) + // Scope for lock. { - case SECOND_VECTOR_EMPTY: - /* - Available space is after end of 1st, as well as before beginning of 1st (which - would make it a ring buffer). - */ - { - const size_t suballocations1stCount = suballocations1st.size(); - VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount); - const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; - const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1]; - return VMA_MAX( - firstSuballoc.offset, - size - (lastSuballoc.offset + lastSuballoc.size)); - } - break; + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - case SECOND_VECTOR_RING_BUFFER: - /* - Available space is only between end of 2nd and beginning of 1st. - */ + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + + if (IsCorruptionDetectionEnabled()) { - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back(); - const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount]; - return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size); + VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); } - break; - case SECOND_VECTOR_DOUBLE_STACK: - /* - Available space is only between end of 1st and top of 2nd. - */ + if (hAllocation->IsPersistentMap()) { - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VmaSuballocation& topSuballoc2nd = suballocations2nd.back(); - const VmaSuballocation& lastSuballoc1st = suballocations1st.back(); - return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size); + pBlock->Unmap(m_hAllocator, 1); } - break; - - default: - VMA_ASSERT(0); - return 0; - } -} - -void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const -{ - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - outInfo.blockCount = 1; - outInfo.allocationCount = (uint32_t)GetAllocationCount(); - outInfo.unusedRangeCount = 0; - outInfo.usedBytes = 0; - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.allocationSizeMax = 0; - outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMax = 0; + pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle()); + VMA_HEAVY_ASSERT(pBlock->Validate()); - VkDeviceSize lastOffset = 0; + VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) + const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; + // pBlock became empty after this deallocation. + if (pBlock->m_pMetadata->IsEmpty()) { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) + // Already has empty block. We don't want to have two, so delete this one. + if ((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock) { - ++nextAlloc2ndIndex; + pBlockToDelete = pBlock; + Remove(pBlock); } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) + // else: We now have an empty block - leave it. + } + // pBlock didn't become empty, but we have another empty block - find and free that one. + // (This is optional, heuristics.) + else if (m_HasEmptyBlock && canDeleteBlock) + { + VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); + if (pLastBlock->m_pMetadata->IsEmpty()) { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } + pBlockToDelete = pLastBlock; + m_Blocks.pop_back(); + } + } - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); + UpdateHasEmptyBlock(); + IncrementallySortBlocks(); + } - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - if(lastOffset < freeSpace2ndTo1stEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } + // Destruction of a free block. Deferred until this point, outside of mutex + // lock, for performance reason. + if (pBlockToDelete != VMA_NULL) + { + VMA_DEBUG_LOG(" Deleted empty block #%u", pBlockToDelete->GetId()); + pBlockToDelete->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlockToDelete); + } +} - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } +VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const +{ + VkDeviceSize result = 0; + for (size_t i = m_Blocks.size(); i--; ) + { + result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); + if (result >= m_PreferredBlockSize) + { + break; } } + return result; +} - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) +void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) +{ + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + if (m_Blocks[blockIndex] == pBlock) { - ++nextAlloc1stIndex; + VmaVectorRemove(m_Blocks, blockIndex); + return; } + } + VMA_ASSERT(0); +} - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) +void VmaBlockVector::IncrementallySortBlocks() +{ + if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Bubble sort only until first swap. + for (size_t i = 1; i < m_Blocks.size(); ++i) { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) + if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); + VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); + return; } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - if(lastOffset < freeSpace1stTo2ndEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; } } +} + +VkResult VmaBlockVector::AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + VmaAllocationRequest currRequest = {}; + if (pBlock->m_pMetadata->CreateAllocationRequest( + size, + alignment, + isUpperAddress, + suballocType, + strategy, + &currRequest)) { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) + // Allocate from pCurrBlock. + if (mapped) { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) + VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); + if (res != VK_SUCCESS) { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - outInfo.usedBytes += suballoc.size; - outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size); - outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; + return res; } - // We are at the end. - else - { - // There is free space from lastOffset to size. - if(lastOffset < size) - { - const VkDeviceSize unusedRangeSize = size - lastOffset; - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize); - outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize); - } + } - // End of loop. - lastOffset = size; - } + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isUserDataString); + pBlock->m_pMetadata->Alloc(currRequest, suballocType, *pAllocation); + UpdateHasEmptyBlock(); + (*pAllocation)->InitBlockAllocation( + pBlock, + currRequest.allocHandle, + alignment, + currRequest.size, // Not size, as actual allocation size may be larger than requested! + m_MemoryTypeIndex, + suballocType, + mapped); + VMA_HEAVY_ASSERT(pBlock->Validate()); + (*pAllocation)->SetUserData(m_hAllocator, pUserData); + m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), currRequest.size); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if (IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), currRequest.size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); } + return VK_SUCCESS; } - - outInfo.unusedBytes = size - outInfo.usedBytes; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } -void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const +VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) { - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VkDeviceSize size = GetSize(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - inoutStats.size += size; + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.pNext = m_pMemoryAllocateNext; + allocInfo.memoryTypeIndex = m_MemoryTypeIndex; + allocInfo.allocationSize = blockSize; - VkDeviceSize lastOffset = 0; +#if VMA_BUFFER_DEVICE_ADDRESS + // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if (m_hAllocator->m_UseKhrBufferDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); + } +#endif // VMA_BUFFER_DEVICE_ADDRESS - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if (m_hAllocator->m_UseExtMemoryPriority) { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } + priorityInfo.priority = m_Priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // VMA_MEMORY_PRIORITY - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); + if (exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // VMA_EXTERNAL_MEMORY - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } + VkDeviceMemory mem = VK_NULL_HANDLE; + VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); + if (res < 0) + { + return res; + } - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; + // New VkDeviceMemory successfully created. - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } + // Create new Allocation for it. + VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); + pBlock->Init( + m_hAllocator, + m_hParentPool, + m_MemoryTypeIndex, + mem, + allocInfo.allocationSize, + m_NextBlockId++, + m_Algorithm, + m_BufferImageGranularity); - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } + m_Blocks.push_back(pBlock); + if (pNewBlockIndex != VMA_NULL) + { + *pNewBlockIndex = m_Blocks.size() - 1; } - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) + return VK_SUCCESS; +} + +void VmaBlockVector::ApplyDefragmentationMovesCpu( + VmaBlockVectorDefragmentationContext* pDefragCtx, + const VmaVector>& moves) +{ + const size_t blockCount = m_Blocks.size(); + const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); + + enum BLOCK_FLAG { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } + BLOCK_FLAG_USED = 0x00000001, + BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, + }; - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + struct BlockInfo + { + uint32_t flags; + void* pMappedData; + }; + VmaVector< BlockInfo, VmaStlAllocator > + blockInfo(blockCount, BlockInfo(), VmaStlAllocator(m_hAllocator->GetAllocationCallbacks())); + memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; + blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; + blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; + } - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else + // Go over all blocks. Get mapped pointer or map if necessary. + for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) + { + BlockInfo& currBlockInfo = blockInfo[blockIndex]; + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if ((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) { - if(lastOffset < freeSpace1stTo2ndEnd) + currBlockInfo.pMappedData = pBlock->GetMappedData(); + // It is not originally mapped - map it. + if (currBlockInfo.pMappedData == VMA_NULL) { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); + pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); + if (pDefragCtx->res == VK_SUCCESS) + { + currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; + } } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; } } - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + // Go over all moves. Do actual data transfer. + if (pDefragCtx->res == VK_SUCCESS) { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } + const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } + const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; + const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; + VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; + // Invalidate source. + if (isNonCoherent) + { + VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; + memRange.memory = pSrcBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), + pSrcBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); } - // We are at the end. - else + + // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. + memmove( + reinterpret_cast(dstBlockInfo.pMappedData) + move.dstOffset, + reinterpret_cast(srcBlockInfo.pMappedData) + move.srcOffset, + static_cast(move.size)); + + if (IsCorruptionDetectionEnabled()) { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - const VkDeviceSize unusedRangeSize = size - lastOffset; - inoutStats.unusedSize += unusedRangeSize; - ++inoutStats.unusedRangeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize); - } + VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); + } - // End of loop. - lastOffset = size; + // Flush destination. + if (isNonCoherent) + { + VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; + memRange.memory = pDstBlock->GetDeviceMemory(); + memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); + memRange.size = VMA_MIN( + VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), + pDstBlock->m_pMetadata->GetSize() - memRange.offset); + (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); } } } + + // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. + // Regardless of pCtx->res == VK_SUCCESS. + for (size_t blockIndex = blockCount; blockIndex--; ) + { + const BlockInfo& currBlockInfo = blockInfo[blockIndex]; + if ((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) + { + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + pBlock->Unmap(m_hAllocator, 1); + } + } } -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const +void VmaBlockVector::ApplyDefragmentationMovesGpu( + VmaBlockVectorDefragmentationContext* pDefragCtx, + VmaVector>& moves, + VkCommandBuffer commandBuffer) { - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); + const size_t blockCount = m_Blocks.size(); - // FIRST PASS + pDefragCtx->blockContexts.resize(blockCount); + memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); - size_t unusedRangeCount = 0; - VkDeviceSize usedBytes = 0; + // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. + const size_t moveCount = moves.size(); + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) + { + const VmaDefragmentationMove& move = moves[moveIndex]; - VkDeviceSize lastOffset = 0; + //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) + { + // Old school move still require us to map the whole block + pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + } + } - size_t alloc2ndCount = 0; - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); + + // Go over all blocks. Create and bind buffer for whole block if necessary. { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } + VkBufferCreateInfo bufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) + for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) + { + VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if ((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) + bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( + m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); + if (pDefragCtx->res == VK_SUCCESS) { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; + pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( + m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; } } } - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - size_t alloc1stCount = 0; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while(lastOffset < freeSpace1stTo2ndEnd) + // Go over all moves. Post data transfer commands to command buffer. + if (pDefragCtx->res == VK_SUCCESS) { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) + for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + const VmaDefragmentationMove& move = moves[moveIndex]; - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } + const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; + const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc1stCount; - usedBytes += suballoc.size; + VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; + VkBufferCopy region = { + move.srcOffset, + move.dstOffset, + move.size }; + (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( + commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - ++unusedRangeCount; - } + } - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } + // Save buffers to defrag context for later destruction. + if (pDefragCtx->res == VK_SUCCESS && moveCount > 0) + { + pDefragCtx->res = VK_NOT_READY; } +} - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) +void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) +{ + for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) + VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; + if (pBlock->m_pMetadata->IsEmpty()) { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) + if (m_Blocks.size() > m_MinBlockCount) { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) + if (pDefragmentationStats != VMA_NULL) { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; + ++pDefragmentationStats->deviceMemoryBlocksFreed; + pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); } - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; + VmaVectorRemove(m_Blocks, blockIndex); + pBlock->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlock); } - // We are at the end. else { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = size; + break; } } } + UpdateHasEmptyBlock(); +} - const VkDeviceSize unusedBytes = size - usedBytes; - PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); - - // SECOND PASS - lastOffset = 0; - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) +void VmaBlockVector::UpdateHasEmptyBlock() +{ + m_HasEmptyBlock = false; + for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while(lastOffset < freeSpace2ndTo1stEnd) + VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; + if (pBlock->m_pMetadata->IsEmpty()) { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if(nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } + m_HasEmptyBlock = true; + break; } } +} - nextAlloc1stIndex = m_1stNullItemsBeginCount; - while(lastOffset < freeSpace1stTo2ndEnd) +#if VMA_STATS_STRING_ENABLED +void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + if (IsCustomPool()) { - // Find next non-null allocation or move nextAllocIndex to the end. - while(nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) + const char* poolName = m_hParentPool->GetName(); + if (poolName != VMA_NULL && poolName[0] != '\0') { - ++nextAlloc1stIndex; + json.WriteString("Name"); + json.WriteString(poolName); } - // Found non-null allocation. - if(nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } + json.WriteString("MemoryTypeIndex"); + json.WriteNumber(m_MemoryTypeIndex); - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + json.WriteString("BlockSize"); + json.WriteNumber(m_PreferredBlockSize); - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; + json.WriteString("BlockCount"); + json.BeginObject(true); + if (m_MinBlockCount > 0) + { + json.WriteString("Min"); + json.WriteNumber((uint64_t)m_MinBlockCount); } - // We are at the end. - else + if (m_MaxBlockCount < SIZE_MAX) { - if(lastOffset < freeSpace1stTo2ndEnd) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } + json.WriteString("Max"); + json.WriteNumber((uint64_t)m_MaxBlockCount); + } + json.WriteString("Cur"); + json.WriteNumber((uint64_t)m_Blocks.size()); + json.EndObject(); - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; + if (m_Algorithm != 0) + { + json.WriteString("Algorithm"); + json.WriteString(VmaAlgorithmToStr(m_Algorithm)); } } + else + { + json.WriteString("PreferredBlockSize"); + json.WriteNumber(m_PreferredBlockSize); + } - if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + json.WriteString("Blocks"); + json.BeginObject(); + for (size_t i = 0; i < m_Blocks.size(); ++i) { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while(lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while(nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) - { - --nextAlloc2ndIndex; - } + json.BeginString(); + json.ContinueString(m_Blocks[i]->GetId()); + json.EndString(); - // Found non-null allocation. - if(nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + } + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED - // 1. Process free space before this allocation. - if(lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } +void VmaBlockVector::Defragment( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, + VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, + VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer) +{ + pCtx->res = VK_SUCCESS; - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation); + const VkMemoryPropertyFlags memPropFlags = + m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; + const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if(lastOffset < size) - { - // There is free space from lastOffset to size. - const VkDeviceSize unusedRangeSize = size - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } - - PrintDetailedMap_End(json); -} -#endif // #if VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Linear::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(pAllocationRequest != VMA_NULL); - VMA_HEAVY_ASSERT(Validate()); - return upperAddress ? - CreateAllocationRequest_UpperAddress( - currentFrameIndex, frameInUseCount, bufferImageGranularity, - allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) : - CreateAllocationRequest_LowerAddress( - currentFrameIndex, frameInUseCount, bufferImageGranularity, - allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest); -} - -bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize size = GetSize(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); - return false; - } + const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && + isHostVisible; + const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && + !IsCorruptionDetectionEnabled() && + ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; - // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). - if(allocSize > size) - { - return false; - } - VkDeviceSize resultBaseOffset = size - allocSize; - if(!suballocations2nd.empty()) + // There are options to defragment this memory type. + if (canDefragmentOnCpu || canDefragmentOnGpu) { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset - allocSize; - if(allocSize > lastSuballoc.offset) + bool defragmentOnGpu; + // There is only one option to defragment this memory type. + if (canDefragmentOnGpu != canDefragmentOnCpu) { - return false; + defragmentOnGpu = canDefragmentOnGpu; } - } - - // Start from offset equal to end of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply VMA_DEBUG_MARGIN at the end. - if(VMA_DEBUG_MARGIN > 0) - { - if(resultOffset < VMA_DEBUG_MARGIN) + // Both options are available: Heuristics to choose the best one. + else { - return false; + defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || + m_hAllocator->IsIntegratedGpu(); } - resultOffset -= VMA_DEBUG_MARGIN; - } - // Apply alignment. - resultOffset = VmaAlignDown(resultOffset, allocAlignment); + bool overlappingMoveSupported = !defragmentOnGpu; - // Check next suballocations from 2nd for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + if (m_hAllocator->m_UseMutex) { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) { - if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) + if (!m_Mutex.TryLockWrite()) { - bufferImageGranularityConflict = true; - break; + pCtx->res = VK_ERROR_INITIALIZATION_FAILED; + return; } } else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); - } - } - - // There is enough free space. - const VkDeviceSize endOf1st = !suballocations1st.empty() ? - suballocations1st.back().offset + suballocations1st.back().size : - 0; - if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset) - { - // Check previous suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(bufferImageGranularity > 1) - { - for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } + m_Mutex.LockWrite(); + pCtx->mutexLocked = true; } } - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st; - pAllocationRequest->sumItemSize = 0; - // pAllocationRequest->item unused. - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; - return true; - } - - return false; -} + pCtx->Begin(overlappingMoveSupported, flags); -bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize size = GetSize(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + // Defragment. - if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - // Try to allocate at the end of 1st vector. + const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; + const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; + VmaDefragmentationAlgorithm* algo = pCtx->GetAlgorithm(); + pCtx->res = algo->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); - VkDeviceSize resultBaseOffset = 0; - if(!suballocations1st.empty()) + // Accumulate statistics. + if (pStats != VMA_NULL) { - const VmaSuballocation& lastSuballoc = suballocations1st.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; + const VkDeviceSize bytesMoved = algo->GetBytesMoved(); + const uint32_t allocationsMoved = algo->GetAllocationsMoved(); + pStats->bytesMoved += bytesMoved; + pStats->allocationsMoved += allocationsMoved; + VMA_ASSERT(bytesMoved <= maxBytesToMove); + VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); + if (defragmentOnGpu) + { + maxGpuBytesToMove -= bytesMoved; + maxGpuAllocationsToMove -= allocationsMoved; + } + else + { + maxCpuBytesToMove -= bytesMoved; + maxCpuAllocationsToMove -= allocationsMoved; + } } - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) + if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) { - resultOffset += VMA_DEBUG_MARGIN; - } + if (m_hAllocator->m_UseMutex) + m_Mutex.UnlockWrite(); - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); + if (pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) + pCtx->res = VK_NOT_READY; - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) + return; + } + + if (pCtx->res >= VK_SUCCESS) { - bool bufferImageGranularityConflict = false; - for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + if (defragmentOnGpu) { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; + ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); } - if(bufferImageGranularityConflict) + else { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); } } + } +} - const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? - suballocations2nd.back().offset : size; +void VmaBlockVector::DefragmentationEnd( + class VmaBlockVectorDefragmentationContext* pCtx, + uint32_t flags, + VmaDefragmentationStats* pStats) +{ + if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex) + { + VMA_ASSERT(pCtx->mutexLocked == false); - // There is enough free space at the end after alignment. - if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) + // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any + // lock protecting us. Since we mutate state here, we have to take the lock out now + m_Mutex.LockWrite(); + pCtx->mutexLocked = true; + } + + // If the mutex isn't locked we didn't do any work and there is nothing to delete. + if (pCtx->mutexLocked || !m_hAllocator->m_UseMutex) + { + // Destroy buffers. + for (size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; + if (blockCtx.hBuffer) { - for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) - { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on previous page. - break; - } - } + (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); } + } - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset; - pAllocationRequest->sumItemSize = 0; - // pAllocationRequest->item, customData unused. - pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; - pAllocationRequest->itemsToMakeLostCount = 0; - return true; + if (pCtx->res >= VK_SUCCESS) + { + FreeEmptyBlocks(pStats); } } - // Wrap-around to end of 2nd vector. Try to allocate there, watching for the - // beginning of 1st vector as the end of free space. - if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + if (pCtx->mutexLocked) { - VMA_ASSERT(!suballocations1st.empty()); + VMA_ASSERT(m_hAllocator->m_UseMutex); + m_Mutex.UnlockWrite(); + } +} - VkDeviceSize resultBaseOffset = 0; - if(!suballocations2nd.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size; - } +uint32_t VmaBlockVector::ProcessDefragmentations( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) +{ + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; + const uint32_t moveCount = VMA_MIN(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); - // Apply VMA_DEBUG_MARGIN at the beginning. - if(VMA_DEBUG_MARGIN > 0) - { - resultOffset += VMA_DEBUG_MARGIN; - } + for (uint32_t i = 0; i < moveCount; ++i) + { + VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i]; - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; - if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if(bufferImageGranularityConflict) - { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); - } - } + pMove->allocation = move.hAllocation; + pMove->memory = move.pDstBlock->GetDeviceMemory(); + pMove->offset = move.dstOffset; - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->sumItemSize = 0; - size_t index1st = m_1stNullItemsBeginCount; + ++pMove; + } - if(canMakeOtherLost) - { - while(index1st < suballocations1st.size() && - resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) - { - // Next colliding allocation at the beginning of 1st vector found. Try to make it lost. - const VmaSuballocation& suballoc = suballocations1st[index1st]; - if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) - { - // No problem. - } - else - { - VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); - if(suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++pAllocationRequest->itemsToMakeLostCount; - pAllocationRequest->sumItemSize += suballoc.size; - } - else - { - return false; - } - } - ++index1st; - } + pCtx->defragmentationMovesProcessed += moveCount; - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, we must mark more allocations lost or fail. - if(allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) - { - while(index1st < suballocations1st.size()) - { - const VmaSuballocation& suballoc = suballocations1st[index1st]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) - { - if(suballoc.hAllocation != VK_NULL_HANDLE) - { - // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type). - if(suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) - { - ++pAllocationRequest->itemsToMakeLostCount; - pAllocationRequest->sumItemSize += suballoc.size; - } - else - { - return false; - } - } - } - else - { - // Already on next page. - break; - } - ++index1st; - } - } + return moveCount; +} - // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost. - if(index1st == suballocations1st.size() && - resultOffset + allocSize + VMA_DEBUG_MARGIN > size) - { - // TODO: This is a known bug that it's not yet implemented and the allocation is failing. - VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost."); - } - } +void VmaBlockVector::CommitDefragmentations( + class VmaBlockVectorDefragmentationContext* pCtx, + VmaDefragmentationStats* pStats) +{ + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - // There is enough free space at the end after alignment. - if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) || - (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) - { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if(allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) - { - for(size_t nextSuballocIndex = index1st; - nextSuballocIndex < suballocations1st.size(); - nextSuballocIndex++) - { - const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; - if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - } - } + for (uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++i) + { + const VmaDefragmentationMove& move = pCtx->defragmentationMoves[i]; - // All tests passed: Success. - pAllocationRequest->offset = resultOffset; - pAllocationRequest->sumFreeSize = - (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) - - resultBaseOffset - - pAllocationRequest->sumItemSize; - pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; - // pAllocationRequest->item, customData unused. - return true; - } + move.pSrcBlock->m_pMetadata->Free(move.hAllocation->GetAllocHandle()); + move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstHandle); } - return false; + pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; + FreeEmptyBlocks(pStats); } -bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) +size_t VmaBlockVector::CalcAllocationCount() const { - if(pAllocationRequest->itemsToMakeLostCount == 0) + size_t result = 0; + for (size_t i = 0; i < m_Blocks.size(); ++i) { - return true; + result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); } + return result; +} - VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER); - - // We always start from 1st. - SuballocationVectorType* suballocations = &AccessSuballocations1st(); - size_t index = m_1stNullItemsBeginCount; - size_t madeLostCount = 0; - while(madeLostCount < pAllocationRequest->itemsToMakeLostCount) +bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const +{ + if (m_BufferImageGranularity == 1) { - if(index == suballocations->size()) - { - index = 0; - // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st. - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - suballocations = &AccessSuballocations2nd(); - } - // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY: - // suballocations continues pointing at AccessSuballocations1st(). - VMA_ASSERT(!suballocations->empty()); - } - VmaSuballocation& suballoc = (*suballocations)[index]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + return false; + } + VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; + for (size_t i = 0, count = m_Blocks.size(); i < count; ++i) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; + VMA_ASSERT(m_Algorithm == 0); + VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; + if (pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) { - VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE); - VMA_ASSERT(suballoc.hAllocation->CanBecomeLost()); - if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - m_SumFreeSize += suballoc.size; - if(suballocations == &AccessSuballocations1st()) - { - ++m_1stNullItemsMiddleCount; - } - else - { - ++m_2ndNullItemsCount; - } - ++madeLostCount; - } - else - { - return false; - } + return true; } - ++index; } - - CleanupAfterFree(); - //VMA_HEAVY_ASSERT(Validate()); // Already called by CleanupAfterFree(). - - return true; + return false; } -uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +VkResult VmaBlockVector::CheckCorruption() { - uint32_t lostAllocationCount = 0; + if (!IsCorruptionDetectionEnabled()) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { - VmaSuballocation& suballoc = suballocations1st[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) + VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VkResult res = pBlock->CheckCorruption(m_hAllocator); + if (res != VK_SUCCESS) { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - ++m_1stNullItemsMiddleCount; - m_SumFreeSize += suballoc.size; - ++lostAllocationCount; + return res; } } + return VK_SUCCESS; +} - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) +void VmaBlockVector::AddStats(VmaStats* pStats) +{ + const uint32_t memTypeIndex = m_MemoryTypeIndex; + const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { - VmaSuballocation& suballoc = suballocations2nd[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE && - suballoc.hAllocation->CanBecomeLost() && - suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) - { - suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - suballoc.hAllocation = VK_NULL_HANDLE; - ++m_2ndNullItemsCount; - m_SumFreeSize += suballoc.size; - ++lostAllocationCount; - } + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + VmaStatInfo allocationStatInfo; + pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); + VmaAddStatInfo(pStats->total, allocationStatInfo); + VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); + VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); } +} +#endif // _VMA_BLOCK_VECTOR_FUNCTIONS - if(lostAllocationCount) +#ifndef _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC_FUNCTIONS +VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + bool overlappingMoveSupported) + : VmaDefragmentationAlgorithm(hAllocator, pBlockVector), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ + // Create block info for each block. + const size_t blockCount = m_pBlockVector->m_Blocks.size(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { - CleanupAfterFree(); + BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); + pBlockInfo->m_OriginalBlockIndex = blockIndex; + pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; + m_Blocks.push_back(pBlockInfo); } - return lostAllocationCount; + // Sort them by m_pBlock pointer value. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); } -VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) +VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + for (size_t i = m_Blocks.size(); i--; ) { - const VmaSuballocation& suballoc = suballocations1st[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } + vma_delete(m_hAllocator, m_Blocks[i]); } +} - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i) +void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) +{ + VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); + BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); + if (it != m_Blocks.end() && (*it)->m_pBlock == pBlock) { - const VmaSuballocation& suballoc = suballocations2nd[i]; - if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_VALIDATION_FAILED_EXT; - } - } + AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); + (*it)->m_Allocations.push_back(allocInfo); + } + else + { + VMA_ASSERT(0); } - return VK_SUCCESS; + ++m_AllocationCount; } -void VmaBlockMetadata_Linear::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) +VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + bool freeOldAllocations) { - const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type }; + if (m_Blocks.empty()) + { + return VK_SUCCESS; + } + + // This is a choice based on research. + // Option 1: + uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; + // Option 2: + //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; - switch(request.type) + size_t srcBlockMinIndex = 0; + // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. + /* + if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) { - case VmaAllocationRequestType::UpperAddress: + const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); + if(blocksWithNonMovableCount > 0) { - VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && - "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - suballocations2nd.push_back(newSuballoc); - m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; + srcBlockMinIndex = blocksWithNonMovableCount - 1; } - break; - case VmaAllocationRequestType::EndOf1st: - { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - - VMA_ASSERT(suballocations1st.empty() || - request.offset >= suballocations1st.back().offset + suballocations1st.back().size); - // Check if it fits before the end of the block. - VMA_ASSERT(request.offset + allocSize <= GetSize()); + } + */ - suballocations1st.push_back(newSuballoc); - } - break; - case VmaAllocationRequestType::EndOf2nd: + size_t srcBlockIndex = m_Blocks.size() - 1; + size_t srcAllocIndex = SIZE_MAX; + for (;;) + { + // 1. Find next allocation to move. + // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". + // 1.2. Then start from last to first m_Allocations. + while (srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. - VMA_ASSERT(!suballocations1st.empty() && - request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - switch(m_2ndVectorMode) + if (m_Blocks[srcBlockIndex]->m_Allocations.empty()) { - case SECOND_VECTOR_EMPTY: - // First allocation from second part ring buffer. - VMA_ASSERT(suballocations2nd.empty()); - m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; - break; - case SECOND_VECTOR_RING_BUFFER: - // 2-part ring buffer is already started. - VMA_ASSERT(!suballocations2nd.empty()); - break; - case SECOND_VECTOR_DOUBLE_STACK: - VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); - break; - default: - VMA_ASSERT(0); + // Finished: no more allocations to process. + if (srcBlockIndex == srcBlockMinIndex) + { + return VK_SUCCESS; + } + else + { + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; + } + } + else + { + srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; } - - suballocations2nd.push_back(newSuballoc); } - break; - default: - VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); - } - - m_SumFreeSize -= newSuballoc.size; -} - -void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) -{ - FreeAtOffset(allocation->GetOffset()); -} -void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; + AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; - if(!suballocations1st.empty()) - { - // First allocation: Mark it as next empty at the beginning. - VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; - if(firstSuballoc.offset == offset) - { - firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - firstSuballoc.hAllocation = VK_NULL_HANDLE; - m_SumFreeSize += firstSuballoc.size; - ++m_1stNullItemsBeginCount; - CleanupAfterFree(); - return; - } - } + const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); + const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); + const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); + const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); - // Last allocation in 2-part ring buffer or top of upper stack (same logic). - if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - VmaSuballocation& lastSuballoc = suballocations2nd.back(); - if(lastSuballoc.offset == offset) - { - m_SumFreeSize += lastSuballoc.size; - suballocations2nd.pop_back(); - CleanupAfterFree(); - return; - } - } - // Last allocation in 1st vector. - else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY) - { - VmaSuballocation& lastSuballoc = suballocations1st.back(); - if(lastSuballoc.offset == offset) + // 2. Try to find new place for this allocation in preceding or current block. + for (size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) { - m_SumFreeSize += lastSuballoc.size; - suballocations1st.pop_back(); - CleanupAfterFree(); - return; - } - } + BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; + VmaBlockMetadata* pMetadata = pDstBlockInfo->m_pBlock->m_pMetadata; + VmaAllocationRequest dstAllocRequest; + if (pMetadata->CreateAllocationRequest( + size, + alignment, + false, // upperAddress + suballocType, + strategy, + &dstAllocRequest) && + MoveMakesSense( + dstBlockIndex, pMetadata->GetAllocationOffset(dstAllocRequest.allocHandle), srcBlockIndex, srcOffset)) + { + // Reached limit on number of allocations or bytes to move. + if ((m_AllocationsMoved + 1 > maxAllocationsToMove) || + (m_BytesMoved + size > maxBytesToMove)) + { + return VK_SUCCESS; + } - // Item from the middle of 1st vector. - { - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - SuballocationVectorType::iterator it = VmaBinaryFindSorted( - suballocations1st.begin() + m_1stNullItemsBeginCount, - suballocations1st.end(), - refSuballoc, - VmaSuballocationOffsetLess()); - if(it != suballocations1st.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->hAllocation = VK_NULL_HANDLE; - ++m_1stNullItemsMiddleCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } + VmaDefragmentationMove move = {}; + move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; + move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; + move.srcOffset = srcOffset; + move.dstOffset = pMetadata->GetAllocationOffset(dstAllocRequest.allocHandle); + move.size = size; + move.hAllocation = allocInfo.m_hAllocation; + move.pSrcBlock = pSrcBlockInfo->m_pBlock; + move.pDstBlock = pDstBlockInfo->m_pBlock; + move.dstHandle = dstAllocRequest.allocHandle; - if(m_2ndVectorMode != SECOND_VECTOR_EMPTY) - { - // Item from the middle of 2nd vector. - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); - if(it != suballocations2nd.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->hAllocation = VK_NULL_HANDLE; - ++m_2ndNullItemsCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } + moves.push_back(move); - VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); -} + pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(dstAllocRequest, suballocType, allocInfo.m_hAllocation); -bool VmaBlockMetadata_Linear::ShouldCompact1st() const -{ - const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - const size_t suballocCount = AccessSuballocations1st().size(); - return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; -} + if (freeOldAllocations) + { + pSrcBlockInfo->m_pBlock->m_pMetadata->Free(allocInfo.m_hAllocation->GetAllocHandle()); + allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.allocHandle); + } -void VmaBlockMetadata_Linear::CleanupAfterFree() -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + if (allocInfo.m_pChanged != VMA_NULL) + { + *allocInfo.m_pChanged = VK_TRUE; + } - if(IsEmpty()) - { - suballocations1st.clear(); - suballocations2nd.clear(); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - m_2ndNullItemsCount = 0; - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - else - { - const size_t suballoc1stCount = suballocations1st.size(); - const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - VMA_ASSERT(nullItem1stCount <= suballoc1stCount); + ++m_AllocationsMoved; + m_BytesMoved += size; - // Find more null items at the beginning of 1st vector. - while(m_1stNullItemsBeginCount < suballoc1stCount && - suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } + VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); - // Find more null items at the end of 1st vector. - while(m_1stNullItemsMiddleCount > 0 && - suballocations1st.back().hAllocation == VK_NULL_HANDLE) - { - --m_1stNullItemsMiddleCount; - suballocations1st.pop_back(); + break; + } } - // Find more null items at the end of 2nd vector. - while(m_2ndNullItemsCount > 0 && - suballocations2nd.back().hAllocation == VK_NULL_HANDLE) - { - --m_2ndNullItemsCount; - suballocations2nd.pop_back(); - } + // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. - // Find more null items at the beginning of 2nd vector. - while(m_2ndNullItemsCount > 0 && - suballocations2nd[0].hAllocation == VK_NULL_HANDLE) + if (srcAllocIndex > 0) { - --m_2ndNullItemsCount; - VmaVectorRemove(suballocations2nd, 0); + --srcAllocIndex; } - - if(ShouldCompact1st()) + else { - const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; - size_t srcIndex = m_1stNullItemsBeginCount; - for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) + if (srcBlockIndex > 0) { - while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) - { - ++srcIndex; - } - if(dstIndex != srcIndex) - { - suballocations1st[dstIndex] = suballocations1st[srcIndex]; - } - ++srcIndex; + --srcBlockIndex; + srcAllocIndex = SIZE_MAX; } - suballocations1st.resize(nonNullItemCount); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - } - - // 2nd vector became empty. - if(suballocations2nd.empty()) - { - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - - // 1st vector became empty. - if(suballocations1st.size() - m_1stNullItemsBeginCount == 0) - { - suballocations1st.clear(); - m_1stNullItemsBeginCount = 0; - - if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + else { - // Swap 1st with 2nd. Now 2nd is empty. - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - m_1stNullItemsMiddleCount = m_2ndNullItemsCount; - while(m_1stNullItemsBeginCount < suballocations2nd.size() && - suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } - m_2ndNullItemsCount = 0; - m_1stVectorIndex ^= 1; + return VK_SUCCESS; } } } +} - VMA_HEAVY_ASSERT(Validate()); +bool VmaDefragmentationAlgorithm_Generic::AllocationInfoSizeGreater::operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const +{ + return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); } +bool VmaDefragmentationAlgorithm_Generic::AllocationInfoOffsetGreater::operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const +{ + return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); +} -//////////////////////////////////////////////////////////////////////////////// -// class VmaBlockMetadata_Buddy +VmaDefragmentationAlgorithm_Generic::BlockInfo::BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) + : m_OriginalBlockIndex(SIZE_MAX), + m_pBlock(VMA_NULL), + m_HasNonMovableAllocations(true), + m_Allocations(pAllocationCallbacks) {} -VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) : - VmaBlockMetadata(hAllocator), - m_Root(VMA_NULL), - m_AllocationCount(0), - m_FreeCount(1), - m_SumFreeSize(0) +void VmaDefragmentationAlgorithm_Generic::BlockInfo::CalcHasNonMovableAllocations() { - memset(m_FreeList, 0, sizeof(m_FreeList)); + const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); + const size_t defragmentAllocCount = m_Allocations.size(); + m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; } -VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() +void VmaDefragmentationAlgorithm_Generic::BlockInfo::SortAllocationsBySizeDescending() { - DeleteNode(m_Root); + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); } -void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) +void VmaDefragmentationAlgorithm_Generic::BlockInfo::SortAllocationsByOffsetDescending() { - VmaBlockMetadata::Init(size); - - m_UsableSize = VmaPrevPow2(size); - m_SumFreeSize = m_UsableSize; - - // Calculate m_LevelCount. - m_LevelCount = 1; - while(m_LevelCount < MAX_LEVELS && - LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) - { - ++m_LevelCount; - } - - Node* rootNode = vma_new(GetAllocationCallbacks(), Node)(); - rootNode->offset = 0; - rootNode->type = Node::TYPE_FREE; - rootNode->parent = VMA_NULL; - rootNode->buddy = VMA_NULL; + VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); +} - m_Root = rootNode; - AddToFreeListFront(0, rootNode); +bool VmaDefragmentationAlgorithm_Generic::BlockPointerLess::operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const +{ + return pLhsBlockInfo->m_pBlock < pRhsBlock; +} +bool VmaDefragmentationAlgorithm_Generic::BlockPointerLess::operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const +{ + return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; } -bool VmaBlockMetadata_Buddy::Validate() const +bool VmaDefragmentationAlgorithm_Generic::BlockInfoCompareMoveDestination::operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const { - // Validate tree. - ValidationContext ctx; - if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) + if (pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) { - VMA_VALIDATE(false && "ValidateNode failed."); + return true; } - VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); - VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); - - // Validate free node lists. - for(uint32_t level = 0; level < m_LevelCount; ++level) + if (!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) { - VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || - m_FreeList[level].front->free.prev == VMA_NULL); - - for(Node* node = m_FreeList[level].front; - node != VMA_NULL; - node = node->free.next) - { - VMA_VALIDATE(node->type == Node::TYPE_FREE); - - if(node->free.next == VMA_NULL) - { - VMA_VALIDATE(m_FreeList[level].back == node); - } - else - { - VMA_VALIDATE(node->free.next->free.prev == node); - } - } + return false; } - - // Validate that free lists ar higher levels are empty. - for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) + if (pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) { - VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); + return true; } - - return true; + return false; } -VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const +bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( + size_t dstBlockIndex, VkDeviceSize dstOffset, + size_t srcBlockIndex, VkDeviceSize srcOffset) { - for(uint32_t level = 0; level < m_LevelCount; ++level) + if (dstBlockIndex < srcBlockIndex) { - if(m_FreeList[level].front != VMA_NULL) - { - return LevelToNodeSize(level); - } + return true; } - return 0; -} - -void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const -{ - const VkDeviceSize unusableSize = GetUnusableSize(); - - outInfo.blockCount = 1; - - outInfo.allocationCount = outInfo.unusedRangeCount = 0; - outInfo.usedBytes = outInfo.unusedBytes = 0; - - outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0; - outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX; - outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused. - - CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); - - if(unusableSize > 0) + if (dstBlockIndex > srcBlockIndex) { - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusableSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize); - outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize); + return false; } -} - -void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const -{ - const VkDeviceSize unusableSize = GetUnusableSize(); - - inoutStats.size += GetSize(); - inoutStats.unusedSize += m_SumFreeSize + unusableSize; - inoutStats.allocationCount += m_AllocationCount; - inoutStats.unusedRangeCount += m_FreeCount; - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax()); - - if(unusableSize > 0) + if (dstOffset < srcOffset) { - ++inoutStats.unusedRangeCount; - // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations. + return true; } + return false; } -#if VMA_STATS_STRING_ENABLED - -void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const +size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const { - // TODO optimize - VmaStatInfo stat; - CalcAllocationStatInfo(stat); - - PrintDetailedMap_Begin( - json, - stat.unusedBytes, - stat.allocationCount, - stat.unusedRangeCount); - - PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); - - const VkDeviceSize unusableSize = GetUnusableSize(); - if(unusableSize > 0) + size_t result = 0; + for (size_t i = 0; i < m_Blocks.size(); ++i) { - PrintDetailedMap_UnusedRange(json, - m_UsableSize, // offset - unusableSize); // size + if (m_Blocks[i]->m_HasNonMovableAllocations) + { + ++result; + } } - - PrintDetailedMap_End(json); + return result; } -#endif // #if VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Buddy::CreateAllocationRequest( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VkDeviceSize bufferImageGranularity, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - bool canMakeOtherLost, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) +VkResult VmaDefragmentationAlgorithm_Generic::Defragment( + VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) { - VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); - - // Simple way to respect bufferImageGranularity. May be optimized some day. - // Whenever it might be an OPTIMAL image... - if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + if (!m_AllAllocations && m_AllocationCount == 0) { - allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity); - allocSize = VMA_MAX(allocSize, bufferImageGranularity); + return VK_SUCCESS; } - if(allocSize > m_UsableSize) + const size_t blockCount = m_Blocks.size(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { - return false; - } + BlockInfo* pBlockInfo = m_Blocks[blockIndex]; - const uint32_t targetLevel = AllocSizeToLevel(allocSize); - for(uint32_t level = targetLevel + 1; level--; ) - { - for(Node* freeNode = m_FreeList[level].front; - freeNode != VMA_NULL; - freeNode = freeNode->free.next) + if (m_AllAllocations) { - if(freeNode->offset % allocAlignment == 0) + VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; + VMA_ASSERT(!pMetadata->IsVirtual()); + for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) { - pAllocationRequest->type = VmaAllocationRequestType::Normal; - pAllocationRequest->offset = freeNode->offset; - pAllocationRequest->sumFreeSize = LevelToNodeSize(level); - pAllocationRequest->sumItemSize = 0; - pAllocationRequest->itemsToMakeLostCount = 0; - pAllocationRequest->customData = (void*)(uintptr_t)level; - return true; + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + { + AllocationInfo allocInfo = AllocationInfo((VmaAllocation)it->userData, VMA_NULL); + pBlockInfo->m_Allocations.push_back(allocInfo); + } } } + + pBlockInfo->CalcHasNonMovableAllocations(); + + // This is a choice based on research. + // Option 1: + pBlockInfo->SortAllocationsByOffsetDescending(); + // Option 2: + //pBlockInfo->SortAllocationsBySizeDescending(); } - return false; -} + // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); -bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost( - uint32_t currentFrameIndex, - uint32_t frameInUseCount, - VmaAllocationRequest* pAllocationRequest) -{ - /* - Lost allocations are not supported in buddy allocator at the moment. - Support might be added in the future. - */ - return pAllocationRequest->itemsToMakeLostCount == 0; + // This is a choice based on research. + const uint32_t roundCount = 2; + + // Execute defragmentation rounds (the main part). + VkResult result = VK_SUCCESS; + for (uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) + { + result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); + } + + return result; } +#endif // _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC_FUNCTIONS -uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) +#ifndef _VMA_DEFRAGMENTATION_ALGORITHM_FAST_FUNCTIONS +VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( + VmaAllocator hAllocator, + VmaBlockVector* pBlockVector, + bool overlappingMoveSupported) + : VmaDefragmentationAlgorithm(hAllocator, pBlockVector), + m_OverlappingMoveSupported(overlappingMoveSupported), + m_AllocationCount(0), + m_AllAllocations(false), + m_BytesMoved(0), + m_AllocationsMoved(0), + m_BlockInfos(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) { - /* - Lost allocations are not supported in buddy allocator at the moment. - Support might be added in the future. - */ - return 0; + VMA_ASSERT(VMA_DEBUG_MARGIN == 0); } -void VmaBlockMetadata_Buddy::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - VkDeviceSize allocSize, - VmaAllocation hAllocation) +VkResult VmaDefragmentationAlgorithm_Fast::Defragment( + VmaVector>& moves, + VkDeviceSize maxBytesToMove, + uint32_t maxAllocationsToMove, + VmaDefragmentationFlags flags) { - VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); - - const uint32_t targetLevel = AllocSizeToLevel(allocSize); - uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; + VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); - Node* currNode = m_FreeList[currLevel].front; - VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); - while(currNode->offset != request.offset) + const size_t blockCount = m_pBlockVector->GetBlockCount(); + if (blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) { - currNode = currNode->free.next; - VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); + return VK_SUCCESS; } - // Go down, splitting free nodes. - while(currLevel < targetLevel) + PreprocessMetadata(); + + // Sort blocks in order from most destination. + + m_BlockInfos.resize(blockCount); + for (size_t i = 0; i < blockCount; ++i) { - // currNode is already first free node at currLevel. - // Remove it from list of free nodes at this currLevel. - RemoveFromFreeList(currLevel, currNode); + m_BlockInfos[i].origBlockIndex = i; + } - const uint32_t childrenLevel = currLevel + 1; + VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { + return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < + m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); + }); - // Create two free sub-nodes. - Node* leftChild = vma_new(GetAllocationCallbacks(), Node)(); - Node* rightChild = vma_new(GetAllocationCallbacks(), Node)(); + // THE MAIN ALGORITHM - leftChild->offset = currNode->offset; - leftChild->type = Node::TYPE_FREE; - leftChild->parent = currNode; - leftChild->buddy = rightChild; + FreeSpaceDatabase freeSpaceDb; - rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); - rightChild->type = Node::TYPE_FREE; - rightChild->parent = currNode; - rightChild->buddy = leftChild; + size_t dstBlockInfoIndex = 0; + size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; + VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); + VkDeviceSize dstOffset = 0; - // Convert current currNode to split type. - currNode->type = Node::TYPE_SPLIT; - currNode->split.leftChild = leftChild; + bool end = false; + for (size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) + { + const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); + VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; + for (VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); + !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) + { + VmaAllocation const pAlloc = (VmaAllocation)srcSuballocIt->userData; + const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); + const VkDeviceSize srcAllocSize = srcSuballocIt->size; + if (m_AllocationsMoved == maxAllocationsToMove || + m_BytesMoved + srcAllocSize > maxBytesToMove) + { + end = true; + break; + } + const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; - // Add child nodes to free list. Order is important! - AddToFreeListFront(childrenLevel, rightChild); - AddToFreeListFront(childrenLevel, leftChild); + VmaDefragmentationMove move = {}; + // Try to place it in one of free spaces from the database. + size_t freeSpaceInfoIndex; + VkDeviceSize dstAllocOffset; + if (freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, + freeSpaceInfoIndex, dstAllocOffset)) + { + size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; + VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); + VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; - ++m_FreeCount; - //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2. - ++currLevel; - currNode = m_FreeList[currLevel].front; + // Same block + if (freeSpaceInfoIndex == srcBlockInfoIndex) + { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); - /* - We can be sure that currNode, as left child of node previously split, - also fullfills the alignment requirement. - */ - } + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. - // Remove from free list. - VMA_ASSERT(currLevel == targetLevel && - currNode != VMA_NULL && - currNode->type == Node::TYPE_FREE); - RemoveFromFreeList(currLevel, currNode); + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + ((VmaAllocation)(suballoc.userData))->ChangeAllocHandle((VmaAllocHandle)(dstAllocOffset + 1)); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; - // Convert to allocation node. - currNode->type = Node::TYPE_ALLOCATION; - currNode->allocation.alloc = hAllocation; + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; - ++m_AllocationCount; - --m_FreeCount; - m_SumFreeSize -= allocSize; -} + InsertSuballoc(pFreeSpaceMetadata, suballoc); -void VmaBlockMetadata_Buddy::DeleteNode(Node* node) -{ - if(node->type == Node::TYPE_SPLIT) - { - DeleteNode(node->split.leftChild->buddy); - DeleteNode(node->split.leftChild); - } + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = freeSpaceOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); + move.size = srcAllocSize; - vma_delete(GetAllocationCallbacks(), node); -} + moves.push_back(move); + } + // Different block + else + { + // MOVE OPTION 2: Move the allocation to a different block. -bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const -{ - VMA_VALIDATE(level < m_LevelCount); - VMA_VALIDATE(curr->parent == parent); - VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); - VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); - switch(curr->type) - { - case Node::TYPE_FREE: - // curr->free.prev, next are validated separately. - ctx.calculatedSumFreeSize += levelNodeSize; - ++ctx.calculatedFreeCount; - break; - case Node::TYPE_ALLOCATION: - ++ctx.calculatedAllocationCount; - ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize(); - VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE); - break; - case Node::TYPE_SPLIT: - { - const uint32_t childrenLevel = level + 1; - const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2; - const Node* const leftChild = curr->split.leftChild; - VMA_VALIDATE(leftChild != VMA_NULL); - VMA_VALIDATE(leftChild->offset == curr->offset); - if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) - { - VMA_VALIDATE(false && "ValidateNode for left child failed."); + VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + ((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, (VmaAllocHandle)(dstAllocOffset + 1)); + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + InsertSuballoc(pFreeSpaceMetadata, suballoc); + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = freeSpaceOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); + move.size = srcAllocSize; + + moves.push_back(move); + } } - const Node* const rightChild = leftChild->buddy; - VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); - if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) + else { - VMA_VALIDATE(false && "ValidateNode for right child failed."); + dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); + + // If the allocation doesn't fit before the end of dstBlock, forward to next block. + while (dstBlockInfoIndex < srcBlockInfoIndex && + dstAllocOffset + srcAllocSize > dstBlockSize) + { + // But before that, register remaining free space at the end of dst block. + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); + + ++dstBlockInfoIndex; + dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; + pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); + pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; + dstBlockSize = pDstMetadata->GetSize(); + dstOffset = 0; + dstAllocOffset = 0; + } + + // Same block + if (dstBlockInfoIndex == srcBlockInfoIndex) + { + VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + + const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; + + bool skipOver = overlap; + if (overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) + { + // If destination and source place overlap, skip if it would move it + // by only < 1/64 of its size. + skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; + } + + if (skipOver) + { + freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); + + dstOffset = srcAllocOffset + srcAllocSize; + ++srcSuballocIt; + } + // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. + else + { + srcSuballocIt->offset = dstAllocOffset; + ((VmaAllocation)(srcSuballocIt->userData))->ChangeAllocHandle((VmaAllocHandle)(dstAllocOffset + 1)); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + ++srcSuballocIt; + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = dstOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); + move.size = srcAllocSize; + + moves.push_back(move); + } + } + // Different block + else + { + // MOVE OPTION 2: Move the allocation to a different block. + + VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); + VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); + + VmaSuballocation suballoc = *srcSuballocIt; + suballoc.offset = dstAllocOffset; + ((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pDstBlock, (VmaAllocHandle)(dstAllocOffset + 1)); + dstOffset = dstAllocOffset + srcAllocSize; + m_BytesMoved += srcAllocSize; + ++m_AllocationsMoved; + + VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; + ++nextSuballocIt; + pSrcMetadata->m_Suballocations.erase(srcSuballocIt); + srcSuballocIt = nextSuballocIt; + + pDstMetadata->m_Suballocations.push_back(suballoc); + + move.srcBlockIndex = srcOrigBlockIndex; + move.dstBlockIndex = dstOrigBlockIndex; + move.srcOffset = srcAllocOffset; + move.dstOffset = dstAllocOffset; + move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); + move.size = srcAllocSize; + + moves.push_back(move); + } } } - break; - default: - return false; } - return true; + m_BlockInfos.clear(); + + PostprocessMetadata(); + + return VK_SUCCESS; } -uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const +VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::FreeSpaceDatabase() { - // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. - uint32_t level = 0; - VkDeviceSize currLevelNodeSize = m_UsableSize; - VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; - while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) + FreeSpace s = {}; + s.blockInfoIndex = SIZE_MAX; + for (size_t i = 0; i < MAX_COUNT; ++i) { - ++level; - currLevelNodeSize = nextLevelNodeSize; - nextLevelNodeSize = currLevelNodeSize >> 1; + m_FreeSpaces[i] = s; } - return level; } -void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) +void VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) { - // Find node and level. - Node* node = m_Root; - VkDeviceSize nodeOffset = 0; - uint32_t level = 0; - VkDeviceSize levelNodeSize = LevelToNodeSize(0); - while(node->type == Node::TYPE_SPLIT) + // Find first invalid or the smallest structure. + size_t bestIndex = SIZE_MAX; + for (size_t i = 0; i < MAX_COUNT; ++i) { - const VkDeviceSize nextLevelSize = levelNodeSize >> 1; - if(offset < nodeOffset + nextLevelSize) + // Empty structure. + if (m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) { - node = node->split.leftChild; + bestIndex = i; + break; } - else + if (m_FreeSpaces[i].size < size && + (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) { - node = node->split.leftChild->buddy; - nodeOffset += nextLevelSize; + bestIndex = i; } - ++level; - levelNodeSize = nextLevelSize; } - VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); - VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc); - - ++m_FreeCount; - --m_AllocationCount; - m_SumFreeSize += alloc->GetSize(); + if (bestIndex != SIZE_MAX) + { + m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; + m_FreeSpaces[bestIndex].offset = offset; + m_FreeSpaces[bestIndex].size = size; + } +} - node->type = Node::TYPE_FREE; +bool VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::Fetch(VkDeviceSize alignment, VkDeviceSize size, + size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) +{ + size_t bestIndex = SIZE_MAX; + VkDeviceSize bestFreeSpaceAfter = 0; + for (size_t i = 0; i < MAX_COUNT; ++i) + { + // Structure is valid. + if (m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) + { + const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); + // Allocation fits into this structure. + if (dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) + { + const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - + (dstOffset + size); + if (bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) + { + bestIndex = i; + bestFreeSpaceAfter = freeSpaceAfter; + } + } + } + } - // Join free nodes if possible. - while(level > 0 && node->buddy->type == Node::TYPE_FREE) + if (bestIndex != SIZE_MAX) { - RemoveFromFreeList(level, node->buddy); - Node* const parent = node->parent; + outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; + outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); - vma_delete(GetAllocationCallbacks(), node->buddy); - vma_delete(GetAllocationCallbacks(), node); - parent->type = Node::TYPE_FREE; + // Leave this structure for remaining empty space. + const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; + m_FreeSpaces[bestIndex].offset += alignmentPlusSize; + m_FreeSpaces[bestIndex].size -= alignmentPlusSize; - node = parent; - --level; - //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2. - --m_FreeCount; + return true; } - AddToFreeListFront(level, node); + return false; } -void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const +void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() { - switch(node->type) + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { - case Node::TYPE_FREE: - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += levelNodeSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize); - outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize); - break; - case Node::TYPE_ALLOCATION: + VmaBlockMetadata_Generic* const pMetadata = + (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + pMetadata->m_FreeCount = 0; + pMetadata->m_SumFreeSize = pMetadata->GetSize(); + pMetadata->m_FreeSuballocationsBySize.clear(); + for (VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); ) { - const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); - ++outInfo.allocationCount; - outInfo.usedBytes += allocSize; - outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize); - outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize); - - const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize; - if(unusedRangeSize > 0) + if (it->type == VMA_SUBALLOCATION_TYPE_FREE) + { + VmaSuballocationList::iterator nextIt = it; + ++nextIt; + pMetadata->m_Suballocations.erase(it); + it = nextIt; + } + else { - ++outInfo.unusedRangeCount; - outInfo.unusedBytes += unusedRangeSize; - outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize); - outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize); + ++it; } } - break; - case Node::TYPE_SPLIT: - { - const VkDeviceSize childrenNodeSize = levelNodeSize / 2; - const Node* const leftChild = node->split.leftChild; - CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize); - const Node* const rightChild = leftChild->buddy; - CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize); - } - break; - default: - VMA_ASSERT(0); } } -void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) +void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() { - VMA_ASSERT(node->type == Node::TYPE_FREE); - - // List is empty. - Node* const frontNode = m_FreeList[level].front; - if(frontNode == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].back == VMA_NULL); - node->free.prev = node->free.next = VMA_NULL; - m_FreeList[level].front = m_FreeList[level].back = node; - } - else + const size_t blockCount = m_pBlockVector->GetBlockCount(); + for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { - VMA_ASSERT(frontNode->free.prev == VMA_NULL); - node->free.prev = VMA_NULL; - node->free.next = frontNode; - frontNode->free.prev = node; - m_FreeList[level].front = node; - } -} - -void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) -{ - VMA_ASSERT(m_FreeList[level].front != VMA_NULL); + VmaBlockMetadata_Generic* const pMetadata = + (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; + const VkDeviceSize blockSize = pMetadata->GetSize(); - // It is at the front. - if(node->free.prev == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].front == node); - m_FreeList[level].front = node->free.next; - } - else - { - Node* const prevFreeNode = node->free.prev; - VMA_ASSERT(prevFreeNode->free.next == node); - prevFreeNode->free.next = node->free.next; - } + // No allocations in this block - entire area is free. + if (pMetadata->m_Suballocations.empty()) + { + pMetadata->m_FreeCount = 1; + //pMetadata->m_SumFreeSize is already set to blockSize. + VmaSuballocation suballoc = { + 0, // offset + blockSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + pMetadata->m_Suballocations.push_back(suballoc); + pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); + } + // There are some allocations in this block. + else + { + VkDeviceSize offset = 0; + VmaSuballocationList::iterator it; + for (it = pMetadata->m_Suballocations.begin(); + it != pMetadata->m_Suballocations.end(); + ++it) + { + VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(it->offset >= offset); - // It is at the back. - if(node->free.next == VMA_NULL) - { - VMA_ASSERT(m_FreeList[level].back == node); - m_FreeList[level].back = node->free.prev; - } - else - { - Node* const nextFreeNode = node->free.next; - VMA_ASSERT(nextFreeNode->free.prev == node); - nextFreeNode->free.prev = node->free.prev; + // Need to insert preceding free space. + if (it->offset > offset) + { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = it->offset - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); + } + + pMetadata->m_SumFreeSize -= it->size; + offset = it->offset + it->size; + } + + // Need to insert trailing free space. + if (offset < blockSize) + { + ++pMetadata->m_FreeCount; + const VkDeviceSize freeSize = blockSize - offset; + VmaSuballocation suballoc = { + offset, // offset + freeSize, // size + VMA_NULL, // hAllocation + VMA_SUBALLOCATION_TYPE_FREE }; + VMA_ASSERT(it == pMetadata->m_Suballocations.end()); + VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); + pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); + } + + VMA_SORT( + pMetadata->m_FreeSuballocationsBySize.begin(), + pMetadata->m_FreeSuballocationsBySize.end(), + VmaSuballocationItemSizeLess()); + } + + VMA_HEAVY_ASSERT(pMetadata->Validate()); } } -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const +void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) { - switch(node->type) + VmaSuballocationList& suballocs = pMetadata->m_Suballocations; + VmaSuballocationList::iterator elementAfter; + const VkDeviceSize last = suballocs.rbegin()->offset; + const VkDeviceSize first = suballocs.begin()->offset; + + if (last <= suballoc.offset) + elementAfter = suballocs.end(); + else if (first >= suballoc.offset) + elementAfter = suballocs.begin(); + else { - case Node::TYPE_FREE: - PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); - break; - case Node::TYPE_ALLOCATION: + const size_t suballocCount = suballocs.size(); + const VkDeviceSize step = (last - first + suballocs.begin()->size) / suballocCount; + // If offset to be inserted is closer to the end of range, search from the end + if ((suballoc.offset - first) / step > suballocCount / 2) { - PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc); - const VkDeviceSize allocSize = node->allocation.alloc->GetSize(); - if(allocSize < levelNodeSize) + elementAfter = suballocs.begin(); + for (VmaSuballocationList::reverse_iterator suballocItem = ++suballocs.rbegin(); + suballocItem != suballocs.rend(); + ++suballocItem) { - PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize); + if (suballocItem->offset <= suballoc.offset) + { + elementAfter = --suballocItem; + break; + } } } - break; - case Node::TYPE_SPLIT: + else { - const VkDeviceSize childrenNodeSize = levelNodeSize / 2; - const Node* const leftChild = node->split.leftChild; - PrintDetailedMapNode(json, leftChild, childrenNodeSize); - const Node* const rightChild = leftChild->buddy; - PrintDetailedMapNode(json, rightChild, childrenNodeSize); + elementAfter = suballocs.end(); + for (VmaSuballocationList::iterator suballocItem = ++suballocs.begin(); + suballocItem != suballocs.end(); + ++suballocItem) + { + if (suballocItem->offset >= suballoc.offset) + { + elementAfter = suballocItem; + break; + } + } } - break; - default: - VMA_ASSERT(0); } + pMetadata->m_Suballocations.insert(elementAfter, suballoc); } -#endif // #if VMA_STATS_STRING_ENABLED - - -//////////////////////////////////////////////////////////////////////////////// -// class VmaDeviceMemoryBlock - -VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) -{ -} +#endif // _VMA_DEFRAGMENTATION_ALGORITHM_FAST_FUNCTIONS -void VmaDeviceMemoryBlock::Init( +#ifndef _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT_FUNCTIONS +VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( VmaAllocator hAllocator, - VmaBlockVector* parentBlockVector, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm) -{ - VMA_ASSERT(parentBlockVector != VMA_NULL); - VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); - - m_ParentBlockVector = parentBlockVector; - m_hParentPool = hParentPool; - m_MemoryTypeIndex = newMemoryTypeIndex; - m_Id = id; - m_hMemory = newMemory; + VmaPool hCustomPool, + VmaBlockVector* pBlockVector) + : res(VK_SUCCESS), + mutexLocked(false), + blockContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + defragmentationMoves(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + defragmentationMovesProcessed(0), + defragmentationMovesCommitted(0), + hasDefragmentationPlan(0), + m_hAllocator(hAllocator), + m_hCustomPool(hCustomPool), + m_pBlockVector(pBlockVector), + m_pAlgorithm(VMA_NULL), + m_Allocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), + m_AllAllocations(false) {} - switch(algorithm) - { - case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator); - break; - case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator); - break; - default: - VMA_ASSERT(0); - // Fall-through. - case 0: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator); - } - m_pMetadata->Init(newSize); +VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() +{ + vma_delete(m_hAllocator, m_pAlgorithm); } -void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) +void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { - // This is the most important assert in the entire library. - // Hitting it means you have some memory leak - unreleased VmaAllocation objects. - VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); - - VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); - allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); - m_hMemory = VK_NULL_HANDLE; - - vma_delete(allocator, m_pMetadata); - m_pMetadata = VMA_NULL; + AllocInfo info = { hAlloc, pChanged }; + m_Allocations.push_back(info); } -bool VmaDeviceMemoryBlock::Validate() const +void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) { - VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && - (m_pMetadata->GetSize() != 0)); + const bool allAllocations = m_AllAllocations || + m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); - return m_pMetadata->Validate(); -} + /******************************** + HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. + ********************************/ -VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) -{ - void* pData = nullptr; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) + /* + Fast algorithm is supported only when certain criteria are met: + - VMA_DEBUG_MARGIN is 0. + - All allocations in this block vector are movable. + - There is no possibility of image/buffer granularity conflict. + - The defragmentation is not incremental + */ + if (VMA_DEBUG_MARGIN == 0 && + allAllocations && + !m_pBlockVector->IsBufferImageGranularityConflictPossible() && + !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) { - return res; + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( + m_hAllocator, m_pBlockVector, overlappingMoveSupported); } - - res = m_pMetadata->CheckCorruption(pData); - - Unmap(hAllocator, 1); - - return res; -} - -VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) -{ - if(count == 0) + else { - return VK_SUCCESS; + m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( + m_hAllocator, m_pBlockVector, overlappingMoveSupported); } - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - if(m_MapCount != 0) + if (allAllocations) { - m_MapCount += count; - VMA_ASSERT(m_pMappedData != VMA_NULL); - if(ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - return VK_SUCCESS; + m_pAlgorithm->AddAll(); } else { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - &m_pMappedData); - if(result == VK_SUCCESS) + for (size_t i = 0, count = m_Allocations.size(); i < count; ++i) { - if(ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - m_MapCount = count; + m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); } - return result; } } +#endif // _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT_FUNCTIONS -void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) +#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS +VmaDefragmentationContext_T::VmaDefragmentationContext_T( + VmaAllocator hAllocator, + uint32_t flags, + VmaDefragmentationStats* pStats) + : m_hAllocator(hAllocator), + m_Flags(flags), + m_pStats(pStats), + m_CustomPoolContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +{ + memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); +} + +VmaDefragmentationContext_T::~VmaDefragmentationContext_T() { - if(count == 0) + for (size_t i = m_CustomPoolContexts.size(); i--; ) { - return; + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); } - - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - if(m_MapCount >= count) + for (size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) { - m_MapCount -= count; - if(m_MapCount == 0) + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; + if (pBlockVectorCtx) { - m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); + vma_delete(m_hAllocator, pBlockVectorCtx); } } - else - { - VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); - } } -VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools) { - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) + for (uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) { - return res; - } + VmaPool pool = pPools[poolIndex]; + VMA_ASSERT(pool); + // Pools with algorithm other than default are not defragmented. + if (pool->m_BlockVector.GetAlgorithm() == 0) + { + VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN); - VmaWriteMagicValue(pData, allocOffset + allocSize); + for (size_t i = m_CustomPoolContexts.size(); i--; ) + { + if (m_CustomPoolContexts[i]->GetCustomPool() == pool) + { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } - Unmap(hAllocator, 1); + if (!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + pool, + &pool->m_BlockVector); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } - return VK_SUCCESS; + pBlockVectorDefragCtx->AddAll(); + } + } } -VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +void VmaDefragmentationContext_T::AddAllocations( + uint32_t allocationCount, + const VmaAllocation* pAllocations, + VkBool32* pAllocationsChanged) { - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if(res != VK_SUCCESS) - { - return res; - } - - if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!"); - } - else if(!VmaValidateMagicValue(pData, allocOffset + allocSize)) + // Dispatch pAllocations among defragmentators. Create them when necessary. + for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); - } + const VmaAllocation hAlloc = pAllocations[allocIndex]; + VMA_ASSERT(hAlloc); + // DedicatedAlloc cannot be defragmented. + if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) + { + VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - Unmap(hAllocator, 1); + const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); + // This allocation belongs to custom pool. + if (hAllocPool != VK_NULL_HANDLE) + { + // Pools with algorithm other than default are not defragmented. + if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) + { + for (size_t i = m_CustomPoolContexts.size(); i--; ) + { + if (m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) + { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + if (!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + hAllocPool, + &hAllocPool->m_BlockVector); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + } + } + // This allocation belongs to default pool. + else + { + const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); + pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; + if (!pBlockVectorDefragCtx) + { + VMA_ASSERT(m_hAllocator->m_pBlockVectors[memTypeIndex] && "Trying to use unsupported memory type!"); - return VK_SUCCESS; -} + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + VMA_NULL, // hCustomPool + m_hAllocator->m_pBlockVectors[memTypeIndex]); + m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; + } + } -VkResult VmaDeviceMemoryBlock::BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) -{ - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); + if (pBlockVectorDefragCtx) + { + VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? + &pAllocationsChanged[allocIndex] : VMA_NULL; + pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); + } + } + } } -VkResult VmaDeviceMemoryBlock::BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) +VkResult VmaDefragmentationContext_T::Defragment( + VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, + VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, + VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) { - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); -} + if (pStats) + { + memset(pStats, 0, sizeof(VmaDefragmentationStats)); + } -static void InitStatInfo(VmaStatInfo& outInfo) -{ - memset(&outInfo, 0, sizeof(outInfo)); - outInfo.allocationSizeMin = UINT64_MAX; - outInfo.unusedRangeSizeMin = UINT64_MAX; -} + if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) + { + // For incremental defragmetnations, we just earmark how much we can move + // The real meat is in the defragmentation steps + m_MaxCpuBytesToMove = maxCpuBytesToMove; + m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; -// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. -static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) -{ - inoutInfo.blockCount += srcInfo.blockCount; - inoutInfo.allocationCount += srcInfo.allocationCount; - inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; - inoutInfo.usedBytes += srcInfo.usedBytes; - inoutInfo.unusedBytes += srcInfo.unusedBytes; - inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); - inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); - inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); - inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); -} + m_MaxGpuBytesToMove = maxGpuBytesToMove; + m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; -static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) -{ - inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? - VmaRoundDiv(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; - inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? - VmaRoundDiv(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; -} + if (m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && + m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) + return VK_SUCCESS; -VmaPool_T::VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize) : - m_BlockVector( - hAllocator, - this, // hParentPool - createInfo.memoryTypeIndex, - createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, - createInfo.minBlockCount, - createInfo.maxBlockCount, - (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), - createInfo.frameInUseCount, - createInfo.blockSize != 0, // explicitBlockSize - createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm - createInfo.priority, - VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), - createInfo.pMemoryAllocateNext), - m_Id(0), - m_Name(VMA_NULL) -{ -} + return VK_NOT_READY; + } -VmaPool_T::~VmaPool_T() -{ - VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); -} + if (commandBuffer == VK_NULL_HANDLE) + { + maxGpuBytesToMove = 0; + maxGpuAllocationsToMove = 0; + } -void VmaPool_T::SetName(const char* pName) -{ - const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); - VmaFreeString(allocs, m_Name); + VkResult res = VK_SUCCESS; - if(pName != VMA_NULL) + // Process default pools. + for (uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; + ++memTypeIndex) { - m_Name = VmaCreateStringCopy(allocs, pName); + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if (pBlockVectorCtx) + { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, flags, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if (pBlockVectorCtx->res != VK_SUCCESS) + { + res = pBlockVectorCtx->res; + } + } } - else + + // Process custom pools. + for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount && res >= VK_SUCCESS; + ++customCtxIndex) { - m_Name = VMA_NULL; + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + pStats, flags, + maxCpuBytesToMove, maxCpuAllocationsToMove, + maxGpuBytesToMove, maxGpuAllocationsToMove, + commandBuffer); + if (pBlockVectorCtx->res != VK_SUCCESS) + { + res = pBlockVectorCtx->res; + } } + + return res; } -#if VMA_STATS_STRING_ENABLED +VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) +{ + VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; + uint32_t movesLeft = pInfo->moveCount; -#endif // #if VMA_STATS_STRING_ENABLED + // Process default pools. + for (uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount(); + ++memTypeIndex) + { + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if (pBlockVectorCtx) + { + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); -VmaBlockVector::VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - uint32_t frameInUseCount, - bool explicitBlockSize, - uint32_t algorithm, - float priority, - VkDeviceSize minAllocationAlignment, - void* pMemoryAllocateNext) : - m_hAllocator(hAllocator), - m_hParentPool(hParentPool), - m_MemoryTypeIndex(memoryTypeIndex), - m_PreferredBlockSize(preferredBlockSize), - m_MinBlockCount(minBlockCount), - m_MaxBlockCount(maxBlockCount), - m_BufferImageGranularity(bufferImageGranularity), - m_FrameInUseCount(frameInUseCount), - m_ExplicitBlockSize(explicitBlockSize), - m_Algorithm(algorithm), - m_Priority(priority), - m_MinAllocationAlignment(minAllocationAlignment), - m_pMemoryAllocateNext(pMemoryAllocateNext), - m_HasEmptyBlock(false), - m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_NextBlockId(0) -{ -} + if (!pBlockVectorCtx->hasDefragmentationPlan) + { + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + m_pStats, m_Flags, + m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, + m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, + VK_NULL_HANDLE); -VmaBlockVector::~VmaBlockVector() -{ - for(size_t i = m_Blocks.size(); i--; ) - { - m_Blocks[i]->Destroy(m_hAllocator); - vma_delete(m_hAllocator, m_Blocks[i]); + if (pBlockVectorCtx->res < VK_SUCCESS) + continue; + + pBlockVectorCtx->hasDefragmentationPlan = true; + } + + const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( + pBlockVectorCtx, + pCurrentMove, movesLeft); + + movesLeft -= processed; + pCurrentMove += processed; + } } -} -VkResult VmaBlockVector::CreateMinBlocks() -{ - for(size_t i = 0; i < m_MinBlockCount; ++i) + // Process custom pools. + for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount; + ++customCtxIndex) { - VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); - if(res != VK_SUCCESS) + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + + if (!pBlockVectorCtx->hasDefragmentationPlan) { - return res; - } - } - return VK_SUCCESS; -} + pBlockVectorCtx->GetBlockVector()->Defragment( + pBlockVectorCtx, + m_pStats, m_Flags, + m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, + m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, + VK_NULL_HANDLE); -void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + if (pBlockVectorCtx->res < VK_SUCCESS) + continue; - const size_t blockCount = m_Blocks.size(); + pBlockVectorCtx->hasDefragmentationPlan = true; + } - pStats->size = 0; - pStats->unusedSize = 0; - pStats->allocationCount = 0; - pStats->unusedRangeCount = 0; - pStats->unusedRangeSizeMax = 0; - pStats->blockCount = blockCount; + const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( + pBlockVectorCtx, + pCurrentMove, movesLeft); - for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - pBlock->m_pMetadata->AddPoolStats(*pStats); + movesLeft -= processed; + pCurrentMove += processed; } -} -bool VmaBlockVector::IsEmpty() -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - return m_Blocks.empty(); -} + pInfo->moveCount = pInfo->moveCount - movesLeft; -bool VmaBlockVector::IsCorruptionDetectionEnabled() const -{ - const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - return (VMA_DEBUG_DETECT_CORRUPTION != 0) && - (VMA_DEBUG_MARGIN > 0) && - (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && - (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; + return VK_SUCCESS; } -static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; - -VkResult VmaBlockVector::Allocate( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) +VkResult VmaDefragmentationContext_T::DefragmentPassEnd() { - size_t allocIndex; VkResult res = VK_SUCCESS; - alignment = VMA_MAX(alignment, m_MinAllocationAlignment); - - if(IsCorruptionDetectionEnabled()) - { - size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - } - + // Process default pools. + for (uint32_t memTypeIndex = 0; + memTypeIndex < m_hAllocator->GetMemoryTypeCount(); + ++memTypeIndex) { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; + if (pBlockVectorCtx) { - res = AllocatePage( - currentFrameIndex, - size, - alignment, - createInfo, - suballocType, - pAllocations + allocIndex); - if(res != VK_SUCCESS) + VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + + if (!pBlockVectorCtx->hasDefragmentationPlan) { - break; + res = VK_NOT_READY; + continue; } + + pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( + pBlockVectorCtx, m_pStats); + + if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) + res = VK_NOT_READY; } } - if(res != VK_SUCCESS) + // Process custom pools. + for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); + customCtxIndex < customCtxCount; + ++customCtxIndex) { - // Free all already created allocations. - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - while(allocIndex--) + VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; + VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); + + if (!pBlockVectorCtx->hasDefragmentationPlan) { - VmaAllocation_T* const alloc = pAllocations[allocIndex]; - const VkDeviceSize allocSize = alloc->GetSize(); - Free(alloc); - m_hAllocator->m_Budget.RemoveAllocation(heapIndex, allocSize); + res = VK_NOT_READY; + continue; } - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + + pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( + pBlockVectorCtx, m_pStats); + + if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) + res = VK_NOT_READY; } return res; } +#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS -VkResult VmaBlockVector::AllocatePage( - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation) -{ - const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0; - const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; - const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; +#ifndef _VMA_POOL_T_FUNCTIONS +VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize) + : m_BlockVector( + hAllocator, + this, // hParentPool + createInfo.memoryTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + createInfo.blockSize != 0, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm + createInfo.priority, + VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), + createInfo.pMemoryAllocateNext), + m_Id(0), + m_Name(VMA_NULL) {} - VkDeviceSize freeMemory; - { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); - freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; - } +VmaPool_T::~VmaPool_T() +{ + VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); +} - const bool canFallbackToDedicated = !IsCustomPool(); - const bool canCreateNewBlock = - ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && - (m_Blocks.size() < m_MaxBlockCount) && - (freeMemory >= size || !canFallbackToDedicated); - uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; +void VmaPool_T::SetName(const char* pName) +{ + const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); - // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer. - // Which in turn is available only when maxBlockCount = 1. - if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) + if (pName != VMA_NULL) { - canMakeOtherLost = false; + m_Name = VmaCreateStringCopy(allocs, pName); } - - // Upper address can only be used with linear allocator and within single memory block. - if(isUpperAddress && - (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) + else { - return VK_ERROR_FEATURE_NOT_PRESENT; + m_Name = VMA_NULL; } +} +#endif // _VMA_POOL_T_FUNCTIONS - // Validate strategy. - switch(strategy) +#ifndef _VMA_ALLOCATOR_T_FUNCTIONS +VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : + m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), + m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), + m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), + m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), + m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), + m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), + m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), + m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), + m_hDevice(pCreateInfo->device), + m_hInstance(pCreateInfo->instance), + m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? + *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), + m_AllocationObjectAllocator(&m_AllocationCallbacks), + m_HeapSizeLimitMask(0), + m_DeviceMemoryCount(0), + m_PreferredLargeHeapBlockSize(0), + m_PhysicalDevice(pCreateInfo->physicalDevice), + m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), + m_NextPoolId(0), + m_GlobalMemoryTypeBits(UINT32_MAX) +{ + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { - case 0: - strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT; - break; - case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT: - case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT: - case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT: - break; - default: - return VK_ERROR_FEATURE_NOT_PRESENT; + m_UseKhrDedicatedAllocation = false; + m_UseKhrBindMemory2 = false; } - // Early reject: requested allocation size is larger that maximum block size for this block vector. - if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) + if(VMA_DEBUG_DETECT_CORRUPTION) { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; + // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. + VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); } - /* - Under certain condition, this whole section can be skipped for optimization, so - we move on directly to trying to allocate with canMakeOtherLost. That's the case - e.g. for custom pools with linear algorithm. - */ - if(!canMakeOtherLost || canCreateNewBlock) - { - // 1. Search existing allocations. Try to allocate without making other allocations lost. - VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags; - allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT; + VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); - if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) + { +#if !(VMA_DEDICATED_ALLOCATION) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) { - // Use only last block. - if(!m_Blocks.empty()) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } - else - { - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } - else // WORST_FIT, FIRST_FIT - { - // Backward order in m_Blocks - prefer blocks with largest amount of free space. - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); - return VK_SUCCESS; - } - } - } + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); } - - // 2. Try to create new block. - if(canCreateNewBlock) +#endif +#if !(VMA_BIND_MEMORY2) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) { - // Calculate optimal size for new block. - VkDeviceSize newBlockSize = m_PreferredBlockSize; - uint32_t newBlockSizeShift = 0; - const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; - - if(!m_ExplicitBlockSize) - { - // Allocate 1/8, 1/4, 1/2 as first blocks. - const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); - for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - } - else - { - break; - } - } - } - - size_t newBlockIndex = 0; - VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. - if(!m_ExplicitBlockSize) - { - while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if(smallerNewBlockSize >= size) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - break; - } - } - } - - if(res == VK_SUCCESS) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; - VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); - - res = AllocateFromBlock( - pBlock, - currentFrameIndex, - size, - alignment, - allocFlagsCopy, - createInfo.pUserData, - suballocType, - strategy, - pAllocation); - if(res == VK_SUCCESS) - { - VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); - return VK_SUCCESS; - } - else - { - // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); } +#endif } - - // 3. Try to allocate from existing blocks with making other allocations lost. - if(canMakeOtherLost) +#if !(VMA_MEMORY_BUDGET) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) { - uint32_t tryIndex = 0; - for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) - { - VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL; - VmaAllocationRequest bestRequest = {}; - VkDeviceSize bestRequestCost = VK_WHOLE_SIZE; - - // 1. Search existing allocations. - if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VmaAllocationRequest currRequest = {}; - if(pCurrBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, - suballocType, - canMakeOtherLost, - strategy, - &currRequest)) - { - const VkDeviceSize currRequestCost = currRequest.CalcCost(); - if(pBestRequestBlock == VMA_NULL || - currRequestCost < bestRequestCost) - { - pBestRequestBlock = pCurrBlock; - bestRequest = currRequest; - bestRequestCost = currRequestCost; - - if(bestRequestCost == 0) - { - break; - } - } - } - } - } - else // WORST_FIT, FIRST_FIT - { - // Backward order in m_Blocks - prefer blocks with largest amount of free space. - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VmaAllocationRequest currRequest = {}; - if(pCurrBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, - suballocType, - canMakeOtherLost, - strategy, - &currRequest)) - { - const VkDeviceSize currRequestCost = currRequest.CalcCost(); - if(pBestRequestBlock == VMA_NULL || - currRequestCost < bestRequestCost || - strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - pBestRequestBlock = pCurrBlock; - bestRequest = currRequest; - bestRequestCost = currRequestCost; - - if(bestRequestCost == 0 || - strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) - { - break; - } - } - } - } - } - - if(pBestRequestBlock != VMA_NULL) - { - if(mapped) - { - VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL); - if(res != VK_SUCCESS) - { - return res; - } - } - - if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost( - currentFrameIndex, - m_FrameInUseCount, - &bestRequest)) - { - // Allocate from this pBlock. - *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString); - pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation); - UpdateHasEmptyBlock(); - (*pAllocation)->InitBlockAllocation( - pBestRequestBlock, - bestRequest.offset, - alignment, - size, - m_MemoryTypeIndex, - suballocType, - mapped, - (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); - VMA_HEAVY_ASSERT(pBestRequestBlock->Validate()); - VMA_DEBUG_LOG(" Returned from existing block"); - (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData); - m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); - } - return VK_SUCCESS; - } - // else: Some allocations must have been touched while we are here. Next try. - } - else - { - // Could not find place in any of the blocks - break outer loop. - break; - } - } - /* Maximum number of tries exceeded - a very unlike event when many other - threads are simultaneously touching allocations making it impossible to make - lost at the same time as we try to allocate. */ - if(tryIndex == VMA_ALLOCATION_TRY_COUNT) - { - return VK_ERROR_TOO_MANY_OBJECTS; - } + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); + } +#endif +#if !(VMA_BUFFER_DEVICE_ADDRESS) + if(m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); } +#endif +#if VMA_VULKAN_VERSION < 1002000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if !(VMA_MEMORY_PRIORITY) + if(m_UseExtMemoryPriority) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} + memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); + memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); + memset(&m_MemProps, 0, sizeof(m_MemProps)); -void VmaBlockVector::Free( - const VmaAllocation hAllocation) -{ - VMA_ASSERT(hAllocation->GetBlock()->GetParentBlockVector() == this); + memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); + memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); - VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; +#if VMA_EXTERNAL_MEMORY + memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); +#endif // #if VMA_EXTERNAL_MEMORY - bool budgetExceeded = false; + if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetBudget(&heapBudget, heapIndex, 1); - budgetExceeded = heapBudget.usage >= heapBudget.budget; + m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; + m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; + m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; } - // Scope for lock. - { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); + (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); - } + VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); - if(hAllocation->IsPersistentMap()) - { - pBlock->Unmap(m_hAllocator, 1); - } + m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? + pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); - pBlock->m_pMetadata->Free(hAllocation); - VMA_HEAVY_ASSERT(pBlock->Validate()); + m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); - VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); +#if VMA_EXTERNAL_MEMORY + if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) + { + memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, + sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); + } +#endif // #if VMA_EXTERNAL_MEMORY - const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; - // pBlock became empty after this deallocation. - if(pBlock->m_pMetadata->IsEmpty()) - { - // Already has empty block. We don't want to have two, so delete this one. - if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock) - { - pBlockToDelete = pBlock; - Remove(pBlock); - } - // else: We now have an empty block - leave it. - } - // pBlock didn't become empty, but we have another empty block - find and free that one. - // (This is optional, heuristics.) - else if(m_HasEmptyBlock && canDeleteBlock) + if(pCreateInfo->pHeapSizeLimit != VMA_NULL) + { + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) { - VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); - if(pLastBlock->m_pMetadata->IsEmpty()) + const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; + if(limit != VK_WHOLE_SIZE) { - pBlockToDelete = pLastBlock; - m_Blocks.pop_back(); + m_HeapSizeLimitMask |= 1u << heapIndex; + if(limit < m_MemProps.memoryHeaps[heapIndex].size) + { + m_MemProps.memoryHeaps[heapIndex].size = limit; + } } } - - UpdateHasEmptyBlock(); - IncrementallySortBlocks(); } - // Destruction of a free block. Deferred until this point, outside of mutex - // lock, for performance reason. - if(pBlockToDelete != VMA_NULL) + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - VMA_DEBUG_LOG(" Deleted empty block"); - pBlockToDelete->Destroy(m_hAllocator); - vma_delete(m_hAllocator, pBlockToDelete); + // Create only supported types + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); + m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( + this, + VK_NULL_HANDLE, // hParentPool + memTypeIndex, + preferredBlockSize, + 0, + SIZE_MAX, + GetBufferImageGranularity(), + false, // explicitBlockSize + 0, // algorithm + 0.5f, // priority (0.5 is the default per Vulkan spec) + GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment + VMA_NULL); // // pMemoryAllocateNext + // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, + // becase minBlockCount is 0. + } } } -VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const +VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) { - VkDeviceSize result = 0; - for(size_t i = m_Blocks.size(); i--; ) + VkResult res = VK_SUCCESS; + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) { - result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); - if(result >= m_PreferredBlockSize) - { - break; - } + UpdateVulkanBudget(); } - return result; +#endif // #if VMA_MEMORY_BUDGET + + return res; } -void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) +VmaAllocator_T::~VmaAllocator_T() { - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + VMA_ASSERT(m_Pools.IsEmpty()); + + for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) { - if(m_Blocks[blockIndex] == pBlock) - { - VmaVectorRemove(m_Blocks, blockIndex); - return; - } + vma_delete(this, m_pBlockVectors[memTypeIndex]); } - VMA_ASSERT(0); } -void VmaBlockVector::IncrementallySortBlocks() +void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) { - if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Static(); +#endif + + if(pVulkanFunctions != VMA_NULL) { - // Bubble sort only until first swap. - for(size_t i = 1; i < m_Blocks.size(); ++i) - { - if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) - { - VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); - return; - } - } + ImportVulkanFunctions_Custom(pVulkanFunctions); } + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Dynamic(); +#endif + + ValidateVulkanFunctions(); } -VkResult VmaBlockVector::AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - uint32_t currentFrameIndex, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation) +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Static() { - VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0); - const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; - const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + // Vulkan 1.0 + m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr; + m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr; + m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; + m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; + m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; + m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; + m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; + m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; + m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; + m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; + m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; + m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; + m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; + m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; + m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; + m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; + m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; + m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; - VmaAllocationRequest currRequest = {}; - if(pBlock->m_pMetadata->CreateAllocationRequest( - currentFrameIndex, - m_FrameInUseCount, - m_BufferImageGranularity, - size, - alignment, - isUpperAddress, - suballocType, - false, // canMakeOtherLost - strategy, - &currRequest)) + // Vulkan 1.1 +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { - // Allocate from pCurrBlock. - VMA_ASSERT(currRequest.itemsToMakeLostCount == 0); + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; + m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; + m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; + } +#endif +} - if(mapped) - { - VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); - if(res != VK_SUCCESS) - { - return res; - } - } +#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1 - *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString); - pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation); - UpdateHasEmptyBlock(); - (*pAllocation)->InitBlockAllocation( - pBlock, - currRequest.offset, - alignment, - size, - m_MemoryTypeIndex, - suballocType, - mapped, - (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0); - VMA_HEAVY_ASSERT(pBlock->Validate()); - (*pAllocation)->SetUserData(m_hAllocator, pUserData); - m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - if(IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); - } - return VK_SUCCESS; - } - return VK_ERROR_OUT_OF_DEVICE_MEMORY; +void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) +{ + VMA_ASSERT(pVulkanFunctions != VMA_NULL); + +#define VMA_COPY_IF_NOT_NULL(funcName) \ + if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + + VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); + VMA_COPY_IF_NOT_NULL(vkAllocateMemory); + VMA_COPY_IF_NOT_NULL(vkFreeMemory); + VMA_COPY_IF_NOT_NULL(vkMapMemory); + VMA_COPY_IF_NOT_NULL(vkUnmapMemory); + VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory); + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkCreateBuffer); + VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); + VMA_COPY_IF_NOT_NULL(vkCreateImage); + VMA_COPY_IF_NOT_NULL(vkDestroyImage); + VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); +#endif + +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); +#endif + +#if VMA_MEMORY_BUDGET + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); +#endif + +#undef VMA_COPY_IF_NOT_NULL } -VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Dynamic() { - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.pNext = m_pMemoryAllocateNext; - allocInfo.memoryTypeIndex = m_MemoryTypeIndex; - allocInfo.allocationSize = blockSize; + VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr && + "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass " + "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. " + "Other members can be null."); -#if VMA_BUFFER_DEVICE_ADDRESS - // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. - VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; - if(m_hAllocator->m_UseKhrBufferDeviceAddress) - { - allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; - VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); - } -#endif // #if VMA_BUFFER_DEVICE_ADDRESS +#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString); +#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString); -#if VMA_MEMORY_PRIORITY - VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; - if(m_hAllocator->m_UseExtMemoryPriority) + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); + VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); + VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); + VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); + VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); + VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); + VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); + VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); + VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); + VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); + +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { - priorityInfo.priority = m_Priority; - VmaPnextChainPushFront(&allocInfo, &priorityInfo); + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2"); } -#endif // #if VMA_MEMORY_PRIORITY +#endif -#if VMA_EXTERNAL_MEMORY - // Attach VkExportMemoryAllocateInfoKHR if necessary. - VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; - exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); - if(exportMemoryAllocInfo.handleTypes != 0) +#if VMA_DEDICATED_ALLOCATION + if(m_UseKhrDedicatedAllocation) { - VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); } -#endif // #if VMA_EXTERNAL_MEMORY +#endif - VkDeviceMemory mem = VK_NULL_HANDLE; - VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); - if(res < 0) +#if VMA_BIND_MEMORY2 + if(m_UseKhrBindMemory2) { - return res; + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); } +#endif // #if VMA_BIND_MEMORY2 - // New VkDeviceMemory successfully created. - - // Create new Allocation for it. - VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); - pBlock->Init( - m_hAllocator, - this, // parentBlockVector - m_hParentPool, - m_MemoryTypeIndex, - mem, - allocInfo.allocationSize, - m_NextBlockId++, - m_Algorithm); - - m_Blocks.push_back(pBlock); - if(pNewBlockIndex != VMA_NULL) +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) { - *pNewBlockIndex = m_Blocks.size() - 1; + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); } +#endif // #if VMA_MEMORY_BUDGET - return VK_SUCCESS; +#undef VMA_FETCH_DEVICE_FUNC +#undef VMA_FETCH_INSTANCE_FUNC } -void VmaBlockVector::ApplyDefragmentationMovesCpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - const VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves) -{ - const size_t blockCount = m_Blocks.size(); - const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); - - enum BLOCK_FLAG - { - BLOCK_FLAG_USED = 0x00000001, - BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, - }; - - struct BlockInfo - { - uint32_t flags; - void* pMappedData; - }; - VmaVector< BlockInfo, VmaStlAllocator > - blockInfo(blockCount, BlockInfo(), VmaStlAllocator(m_hAllocator->GetAllocationCallbacks())); - memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); +#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. - const size_t moveCount = moves.size(); - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) +void VmaAllocator_T::ValidateVulkanFunctions() +{ + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) { - const VmaDefragmentationMove& move = moves[moveIndex]; - blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; - blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); } +#endif - VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); - - // Go over all blocks. Get mapped pointer or map if necessary. - for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) { - BlockInfo& currBlockInfo = blockInfo[blockIndex]; - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) - { - currBlockInfo.pMappedData = pBlock->GetMappedData(); - // It is not originally mapped - map it. - if(currBlockInfo.pMappedData == VMA_NULL) - { - pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); - if(pDefragCtx->res == VK_SUCCESS) - { - currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; - } - } - } + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); } +#endif - // Go over all moves. Do actual data transfer. - if(pDefragCtx->res == VK_SUCCESS) +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { - const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; - VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); + } +#endif +} - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; +VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) +{ + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; + return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); +} - const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; - const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; +VkResult VmaAllocator_T::AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations != VMA_NULL); + VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); - VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); + VmaAllocationCreateInfo finalCreateInfo = createInfo; + VkResult res = CalcMemTypeParams( + finalCreateInfo, + memTypeIndex, + size, + allocationCount); + if(res != VK_SUCCESS) + return res; - // Invalidate source. - if(isNonCoherent) + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + return AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + } + else + { + const bool canAllocateDedicated = + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && + (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize()); + + if(canAllocateDedicated) + { + // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. + if(size > blockVector.GetPreferredBlockSize() / 2) { - VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; - memRange.memory = pSrcBlock->GetDeviceMemory(); - memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); - memRange.size = VMA_MIN( - VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), - pSrcBlock->m_pMetadata->GetSize() - memRange.offset); - (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + dedicatedPreferred = true; } - - // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. - memmove( - reinterpret_cast(dstBlockInfo.pMappedData) + move.dstOffset, - reinterpret_cast(srcBlockInfo.pMappedData) + move.srcOffset, - static_cast(move.size)); - - if(IsCorruptionDetectionEnabled()) + // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, + // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above + // 3/4 of the maximum allocation count. + if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) { - VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN); - VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); + dedicatedPreferred = false; } - // Flush destination. - if(isNonCoherent) + if(dedicatedPreferred) { - VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; - memRange.memory = pDstBlock->GetDeviceMemory(); - memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); - memRange.size = VMA_MIN( - VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), - pDstBlock->m_pMetadata->GetSize() - memRange.offset); - (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } } } - } - // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. - // Regardless of pCtx->res == VK_SUCCESS. - for(size_t blockIndex = blockCount; blockIndex--; ) - { - const BlockInfo& currBlockInfo = blockInfo[blockIndex]; - if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) + res = blockVector.Allocate( + size, + alignment, + finalCreateInfo, + suballocType, + allocationCount, + pAllocations); + if(res == VK_SUCCESS) + return VK_SUCCESS; + + // Try dedicated memory. + if(canAllocateDedicated && !dedicatedPreferred) { - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - pBlock->Unmap(m_hAllocator, 1); + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } } + // Everything failed: Return error code. + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; } } -void VmaBlockVector::ApplyDefragmentationMovesGpu( - class VmaBlockVectorDefragmentationContext* pDefragCtx, - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkCommandBuffer commandBuffer) +VkResult VmaAllocator_T::AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, + VkImage dedicatedImage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain) { - const size_t blockCount = m_Blocks.size(); + VMA_ASSERT(allocationCount > 0 && pAllocations); - pDefragCtx->blockContexts.resize(blockCount); - memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = memTypeIndex; + allocInfo.allocationSize = size; + allocInfo.pNext = pNextChain; - // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. - const size_t moveCount = moves.size(); - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; + if(!canAliasMemory) { - const VmaDefragmentationMove& move = moves[moveIndex]; - - //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { - // Old school move still require us to map the whole block - pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; - pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; + if(dedicatedBuffer != VK_NULL_HANDLE) + { + VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); + dedicatedAllocInfo.buffer = dedicatedBuffer; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + dedicatedAllocInfo.image = dedicatedImage; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } } } +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); - - // Go over all blocks. Create and bind buffer for whole block if necessary. +#if VMA_BUFFER_DEVICE_ADDRESS + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if(m_UseKhrBufferDeviceAddress) { - VkBufferCreateInfo bufCreateInfo; - VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); - - for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) + bool canContainBufferWithDeviceAddress = true; + if(dedicatedBuffer != VK_NULL_HANDLE) { - VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) - { - bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); - pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( - m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); - if(pDefragCtx->res == VK_SUCCESS) - { - pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( - m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); - } - } + canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown + (dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0; + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + canContainBufferWithDeviceAddress = false; + } + if(canContainBufferWithDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); } } +#endif // #if VMA_BUFFER_DEVICE_ADDRESS - // Go over all moves. Post data transfer commands to command buffer. - if(pDefragCtx->res == VK_SUCCESS) +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if(m_UseExtMemoryPriority) { - for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) - { - const VmaDefragmentationMove& move = moves[moveIndex]; + priorityInfo.priority = priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // #if VMA_MEMORY_PRIORITY - const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; - const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; - - VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); + if(exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // #if VMA_EXTERNAL_MEMORY - VkBufferCopy region = { - move.srcOffset, - move.dstOffset, - move.size }; - (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( - commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); + size_t allocIndex; + VkResult res = VK_SUCCESS; + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocateDedicatedMemoryPage( + pool, + size, + suballocType, + memTypeIndex, + allocInfo, + map, + isUserDataString, + pUserData, + pAllocations + allocIndex); + if(res != VK_SUCCESS) + { + break; } } - // Save buffers to defrag context for later destruction. - if(pDefragCtx->res == VK_SUCCESS && moveCount > 0) + if(res == VK_SUCCESS) { - pDefragCtx->res = VK_NOT_READY; + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + dedicatedAllocations.Register(pAllocations[allocIndex]); + } + VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); } -} - -void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) -{ - for(size_t blockIndex = m_Blocks.size(); blockIndex--; ) + else { - VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; - if(pBlock->m_pMetadata->IsEmpty()) + // Free all already created allocations. + while(allocIndex--) { - if(m_Blocks.size() > m_MinBlockCount) - { - if(pDefragmentationStats != VMA_NULL) - { - ++pDefragmentationStats->deviceMemoryBlocksFreed; - pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); - } + VmaAllocation currAlloc = pAllocations[allocIndex]; + VkDeviceMemory hMemory = currAlloc->GetMemory(); - VmaVectorRemove(m_Blocks, blockIndex); - pBlock->Destroy(m_hAllocator); - vma_delete(m_hAllocator, pBlock); - } - else + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(currAlloc->GetMappedData() != VMA_NULL) { - break; + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); } + */ + + FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); + currAlloc->SetUserData(this, VMA_NULL); + m_AllocationObjectAllocator.Free(currAlloc); } + + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); } - UpdateHasEmptyBlock(); + + return res; } -void VmaBlockVector::UpdateHasEmptyBlock() +VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + void* pUserData, + VmaAllocation* pAllocation) { - m_HasEmptyBlock = false; - for(size_t index = 0, count = m_Blocks.size(); index < count; ++index) + VkDeviceMemory hMemory = VK_NULL_HANDLE; + VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); + if(res < 0) { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; - if(pBlock->m_pMetadata->IsEmpty()) + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + + void* pMappedData = VMA_NULL; + if(map) + { + res = (*m_VulkanFunctions.vkMapMemory)( + m_hDevice, + hMemory, + 0, + VK_WHOLE_SIZE, + 0, + &pMappedData); + if(res < 0) { - m_HasEmptyBlock = true; - break; + VMA_DEBUG_LOG(" vkMapMemory FAILED"); + FreeVulkanMemory(memTypeIndex, size, hMemory); + return res; } } -} -#if VMA_STATS_STRING_ENABLED + *pAllocation = m_AllocationObjectAllocator.Allocate(isUserDataString); + (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size); + (*pAllocation)->SetUserData(this, pUserData); + m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } -void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) + return VK_SUCCESS; +} + +void VmaAllocator_T::GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const { - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.buffer = hBuffer; - json.BeginObject(); + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); + + (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - if(IsCustomPool()) + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 { - const char* poolName = m_hParentPool->GetName(); - if(poolName != VMA_NULL && poolName[0] != '\0') - { - json.WriteString("Name"); - json.WriteString(poolName); - } + (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} - json.WriteString("MemoryTypeIndex"); - json.WriteNumber(m_MemoryTypeIndex); +void VmaAllocator_T::GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.image = hImage; - json.WriteString("BlockSize"); - json.WriteNumber(m_PreferredBlockSize); + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; - json.WriteString("BlockCount"); - json.BeginObject(true); - if(m_MinBlockCount > 0) - { - json.WriteString("Min"); - json.WriteNumber((uint64_t)m_MinBlockCount); - } - if(m_MaxBlockCount < SIZE_MAX) - { - json.WriteString("Max"); - json.WriteNumber((uint64_t)m_MaxBlockCount); - } - json.WriteString("Cur"); - json.WriteNumber((uint64_t)m_Blocks.size()); - json.EndObject(); + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); - if(m_FrameInUseCount > 0) - { - json.WriteString("FrameInUseCount"); - json.WriteNumber(m_FrameInUseCount); - } + (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - if(m_Algorithm != 0) - { - json.WriteString("Algorithm"); - json.WriteString(VmaAlgorithmToStr(m_Algorithm)); - } + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); } else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 { - json.WriteString("PreferredBlockSize"); - json.WriteNumber(m_PreferredBlockSize); + (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; } +} - json.WriteString("Blocks"); - json.BeginObject(); - for(size_t i = 0; i < m_Blocks.size(); ++i) +VkResult VmaAllocator_T::CalcMemTypeParams( + VmaAllocationCreateInfo& inoutCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount) +{ + // If memory type is not HOST_VISIBLE, disable MAPPED. + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { - json.BeginString(); - json.ContinueString(m_Blocks[i]->GetId()); - json.EndString(); - - m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; } - json.EndObject(); - json.EndObject(); + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0) + { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaBudget heapBudget = {}; + GetHeapBudgets(&heapBudget, heapIndex, 1); + if(heapBudget.usage + size * allocationCount > heapBudget.budget) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + return VK_SUCCESS; } -#endif // #if VMA_STATS_STRING_ENABLED - -void VmaBlockVector::Defragment( - class VmaBlockVectorDefragmentationContext* pCtx, - VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, - VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, - VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer) +VkResult VmaAllocator_T::CalcAllocationParams( + VmaAllocationCreateInfo& inoutCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred) { - pCtx->res = VK_SUCCESS; - - const VkMemoryPropertyFlags memPropFlags = - m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; - const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; - - const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && - isHostVisible; - const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && - !IsCorruptionDetectionEnabled() && - ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; + if(dedicatedRequired || + // If memory is lazily allocated, it should be always dedicated. + inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } - // There are options to defragment this memory type. - if(canDefragmentOnCpu || canDefragmentOnGpu) + if(inoutCreateInfo.pool != VK_NULL_HANDLE) { - bool defragmentOnGpu; - // There is only one option to defragment this memory type. - if(canDefragmentOnGpu != canDefragmentOnCpu) + if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) { - defragmentOnGpu = canDefragmentOnGpu; - } - // Both options are available: Heuristics to choose the best one. - else - { - defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || - m_hAllocator->IsIntegratedGpu(); + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); + return VK_ERROR_FEATURE_NOT_PRESENT; } + inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); + } - bool overlappingMoveSupported = !defragmentOnGpu; + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } - if(m_hAllocator->m_UseMutex) - { - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) - { - if(!m_Mutex.TryLockWrite()) - { - pCtx->res = VK_ERROR_INITIALIZATION_FAILED; - return; - } - } - else - { - m_Mutex.LockWrite(); - pCtx->mutexLocked = true; - } - } + if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + return VK_SUCCESS; +} - pCtx->Begin(overlappingMoveSupported, flags); +VkResult VmaAllocator_T::AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkBufferUsageFlags dedicatedBufferUsage, + VkImage dedicatedImage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - // Defragment. + VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); - const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; - const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; - pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); + if(vkMemReq.size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } - // Accumulate statistics. - if(pStats != VMA_NULL) - { - const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved(); - const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved(); - pStats->bytesMoved += bytesMoved; - pStats->allocationsMoved += allocationsMoved; - VMA_ASSERT(bytesMoved <= maxBytesToMove); - VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); - if(defragmentOnGpu) - { - maxGpuBytesToMove -= bytesMoved; - maxGpuAllocationsToMove -= allocationsMoved; - } - else - { - maxCpuBytesToMove -= bytesMoved; - maxCpuAllocationsToMove -= allocationsMoved; - } - } + VmaAllocationCreateInfo createInfoFinal = createInfo; + VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation); + if(res != VK_SUCCESS) + return res; - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) + if(createInfoFinal.pool != VK_NULL_HANDLE) + { + VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; + return AllocateMemoryOfType( + createInfoFinal.pool, + vkMemReq.size, + vkMemReq.alignment, + prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + createInfoFinal, + blockVector.GetMemoryTypeIndex(), + suballocType, + createInfoFinal.pool->m_DedicatedAllocations, + blockVector, + allocationCount, + pAllocations); + } + else + { + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); + // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + if(res != VK_SUCCESS) + return res; + do { - if(m_hAllocator->m_UseMutex) - m_Mutex.UnlockWrite(); + VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); + res = AllocateMemoryOfType( + VK_NULL_HANDLE, + vkMemReq.size, + vkMemReq.alignment, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + createInfoFinal, + memTypeIndex, + suballocType, + m_DedicatedAllocations[memTypeIndex], + *blockVector, + allocationCount, + pAllocations); + // Allocation succeeded + if(res == VK_SUCCESS) + return VK_SUCCESS; - if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) - pCtx->res = VK_NOT_READY; + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); + } while(res == VK_SUCCESS); - return; - } + // No other matching memory type index could be found. + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } +} + +void VmaAllocator_T::FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations); - if(pCtx->res >= VK_SUCCESS) + for(size_t allocIndex = allocationCount; allocIndex--; ) + { + VmaAllocation allocation = pAllocations[allocIndex]; + + if(allocation != VK_NULL_HANDLE) { - if(defragmentOnGpu) + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) { - ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); + FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); } - else + + switch(allocation->GetType()) { - ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaBlockVector* pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetParentPool(); + if(hPool != VK_NULL_HANDLE) + { + pBlockVector = &hPool->m_BlockVector; + } + else + { + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); + } + pBlockVector->Free(allocation); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + FreeDedicatedMemory(allocation); + break; + default: + VMA_ASSERT(0); } + + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); + allocation->SetUserData(this, VMA_NULL); + m_AllocationObjectAllocator.Free(allocation); } } } -void VmaBlockVector::DefragmentationEnd( - class VmaBlockVectorDefragmentationContext* pCtx, - uint32_t flags, - VmaDefragmentationStats* pStats) +void VmaAllocator_T::CalculateStats(VmaStats* pStats) { - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex) - { - VMA_ASSERT(pCtx->mutexLocked == false); + // Initialize. + VmaInitStatInfo(pStats->total); + for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) + VmaInitStatInfo(pStats->memoryType[i]); + for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) + VmaInitStatInfo(pStats->memoryHeap[i]); - // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any - // lock protecting us. Since we mutate state here, we have to take the lock out now - m_Mutex.LockWrite(); - pCtx->mutexLocked = true; + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if (pBlockVector != VMA_NULL) + pBlockVector->AddStats(pStats); } - // If the mutex isn't locked we didn't do any work and there is nothing to delete. - if(pCtx->mutexLocked || !m_hAllocator->m_UseMutex) + // Process custom pools. { - // Destroy buffers. - for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) - { - VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex]; - if(blockCtx.hBuffer) - { - (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); - } - } - - if(pCtx->res >= VK_SUCCESS) + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { - FreeEmptyBlocks(pStats); + VmaBlockVector& blockVector = pool->m_BlockVector; + blockVector.AddStats(pStats); + const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); + const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex); } } - if(pCtx->mutexLocked) + // Process dedicated allocations. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - VMA_ASSERT(m_hAllocator->m_UseMutex); - m_Mutex.UnlockWrite(); + const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex); } + + // Postprocess. + VmaPostprocessCalcStatInfo(pStats->total); + for(size_t i = 0; i < GetMemoryTypeCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryType[i]); + for(size_t i = 0; i < GetMemoryHeapCount(); ++i) + VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); } -uint32_t VmaBlockVector::ProcessDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) +void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount) { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - const uint32_t moveCount = VMA_MIN(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); - - for(uint32_t i = 0; i < moveCount; ++ i) +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) { - VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i]; + if(m_Budget.m_OperationsSinceBudgetFetch < 30) + { + VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; - pMove->allocation = move.hAllocation; - pMove->memory = move.pDstBlock->GetDeviceMemory(); - pMove->offset = move.dstOffset; + outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) + { + outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] + + outBudgets->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + else + { + outBudgets->usage = 0; + } - ++ pMove; + // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. + outBudgets->budget = VMA_MIN( + m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); + } + } + else + { + UpdateVulkanBudget(); // Outside of mutex lock + GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion + } } + else +#endif + { + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; - pCtx->defragmentationMovesProcessed += moveCount; + outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; - return moveCount; + outBudgets->usage = outBudgets->blockBytes; + outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + } } -void VmaBlockVector::CommitDefragmentations( - class VmaBlockVectorDefragmentationContext *pCtx, - VmaDefragmentationStats* pStats) +VkResult VmaAllocator_T::DefragmentationBegin( + const VmaDefragmentationInfo2& info, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext* pContext) { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i) + if(info.pAllocationsChanged != VMA_NULL) { - const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i]; - - move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset); - move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset); + memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); } - pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; - FreeEmptyBlocks(pStats); -} + *pContext = vma_new(this, VmaDefragmentationContext_T)( + this, info.flags, pStats); -size_t VmaBlockVector::CalcAllocationCount() const -{ - size_t result = 0; - for(size_t i = 0; i < m_Blocks.size(); ++i) + (*pContext)->AddPools(info.poolCount, info.pPools); + (*pContext)->AddAllocations( + info.allocationCount, info.pAllocations, info.pAllocationsChanged); + + VkResult res = (*pContext)->Defragment( + info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, + info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, + info.commandBuffer, pStats, info.flags); + + if(res != VK_NOT_READY) { - result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); + vma_delete(this, *pContext); + *pContext = VMA_NULL; } - return result; + + return res; } -bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const +VkResult VmaAllocator_T::DefragmentationEnd( + VmaDefragmentationContext context) { - if(m_BufferImageGranularity == 1) - { - return false; - } - VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; - for(size_t i = 0, count = m_Blocks.size(); i < count; ++i) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; - VMA_ASSERT(m_Algorithm == 0); - VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; - if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) - { - return true; - } - } - return false; + vma_delete(this, context); + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::DefragmentationPassBegin( + VmaDefragmentationPassInfo* pInfo, + VmaDefragmentationContext context) +{ + return context->DefragmentPassBegin(pInfo); } -void VmaBlockVector::MakePoolAllocationsLost( - uint32_t currentFrameIndex, - size_t* pLostAllocationCount) +VkResult VmaAllocator_T::DefragmentationPassEnd( + VmaDefragmentationContext context) { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - size_t lostAllocationCount = 0; - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + return context->DefragmentPassEnd(); +} + +void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) +{ + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = hAllocation->GetMappedData(); + pAllocationInfo->pUserData = hAllocation->GetUserData(); +} + +VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) +{ + VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); + + VmaPoolCreateInfo newCreateInfo = *pCreateInfo; + + // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. + if(pCreateInfo->pMemoryAllocateNext) { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount); + VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); } - if(pLostAllocationCount != VMA_NULL) + + if(newCreateInfo.maxBlockCount == 0) { - *pLostAllocationCount = lostAllocationCount; + newCreateInfo.maxBlockCount = SIZE_MAX; } -} - -VkResult VmaBlockVector::CheckCorruption() -{ - if(!IsCorruptionDetectionEnabled()) + if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + // Memory type index out of range or forbidden. + if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || + ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) { return VK_ERROR_FEATURE_NOT_PRESENT; } - - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + if(newCreateInfo.minAllocationAlignment > 0) { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VkResult res = pBlock->CheckCorruption(m_hAllocator); - if(res != VK_SUCCESS) - { - return res; - } + VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); } - return VK_SUCCESS; -} -void VmaBlockVector::AddStats(VmaStats* pStats) -{ - const uint32_t memTypeIndex = m_MemoryTypeIndex; - const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); - for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); + if(res != VK_SUCCESS) { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - VmaStatInfo allocationStatInfo; - pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); - VmaAddStatInfo(pStats->total, allocationStatInfo); - VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); - VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; } -} - -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationAlgorithm_Generic members definition -VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported) : - VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), - m_AllocationCount(0), - m_AllAllocations(false), - m_BytesMoved(0), - m_AllocationsMoved(0), - m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) -{ - // Create block info for each block. - const size_t blockCount = m_pBlockVector->m_Blocks.size(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + // Add to m_Pools. { - BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); - pBlockInfo->m_OriginalBlockIndex = blockIndex; - pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; - m_Blocks.push_back(pBlockInfo); + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + (*pPool)->SetId(m_NextPoolId++); + m_Pools.PushBack(*pPool); } - // Sort them by m_pBlock pointer value. - VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); + return VK_SUCCESS; } -VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() +void VmaAllocator_T::DestroyPool(VmaPool pool) { - for(size_t i = m_Blocks.size(); i--; ) + // Remove from m_Pools. { - vma_delete(m_hAllocator, m_Blocks[i]); + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + m_Pools.Remove(pool); } + + vma_delete(this, pool); } -void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) +void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) { - // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost. - if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) - { - VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); - BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); - if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock) - { - AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); - (*it)->m_Allocations.push_back(allocInfo); - } - else - { - VMA_ASSERT(0); - } + pPoolStats->size = 0; + pPoolStats->unusedSize = 0; + pPoolStats->allocationCount = 0; + pPoolStats->unusedRangeCount = 0; + pPoolStats->blockCount = 0; - ++m_AllocationCount; - } + pool->m_BlockVector.AddPoolStats(pPoolStats); + pool->m_DedicatedAllocations.AddPoolStats(pPoolStats); } -VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - bool freeOldAllocations) +void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) { - if(m_Blocks.empty()) + m_CurrentFrameIndex.store(frameIndex); + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) { - return VK_SUCCESS; + UpdateVulkanBudget(); } +#endif // #if VMA_MEMORY_BUDGET +} - // This is a choice based on research. - // Option 1: - uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; - // Option 2: - //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; - // Option 3: - //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT; +VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) +{ + return hPool->m_BlockVector.CheckCorruption(); +} - size_t srcBlockMinIndex = 0; - // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. - /* - if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) +VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) +{ + VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); - if(blocksWithNonMovableCount > 0) + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if(pBlockVector != VMA_NULL) { - srcBlockMinIndex = blocksWithNonMovableCount - 1; + VkResult localRes = pBlockVector->CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } } } - */ - size_t srcBlockIndex = m_Blocks.size() - 1; - size_t srcAllocIndex = SIZE_MAX; - for(;;) + // Process custom pools. { - // 1. Find next allocation to move. - // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". - // 1.2. Then start from last to first m_Allocations. - while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { - if(m_Blocks[srcBlockIndex]->m_Allocations.empty()) + if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) { - // Finished: no more allocations to process. - if(srcBlockIndex == srcBlockMinIndex) - { - return VK_SUCCESS; - } - else + VkResult localRes = pool->m_BlockVector.CheckCorruption(); + switch(localRes) { - --srcBlockIndex; - srcAllocIndex = SIZE_MAX; + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; } } - else - { - srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; - } } + } - BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; - AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; + return finalRes; +} - const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); - const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); - const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); - const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); +VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) +{ + AtomicTransactionalIncrement deviceMemoryCountIncrement; + const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); +#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) + { + return VK_ERROR_TOO_MANY_OBJECTS; + } +#endif - // 2. Try to find new place for this allocation in preceding or current block. - for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); + + // HeapSizeLimit is in effect for this heap. + if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) + { + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; + for(;;) { - BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; - VmaAllocationRequest dstAllocRequest; - if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest( - m_CurrentFrameIndex, - m_pBlockVector->GetFrameInUseCount(), - m_pBlockVector->GetBufferImageGranularity(), - size, - alignment, - false, // upperAddress - suballocType, - false, // canMakeOtherLost - strategy, - &dstAllocRequest) && - MoveMakesSense( - dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) + const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; + if(blockBytesAfterAllocation > heapSize) { - VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0); - - // Reached limit on number of allocations or bytes to move. - if((m_AllocationsMoved + 1 > maxAllocationsToMove) || - (m_BytesMoved + size > maxBytesToMove)) - { - return VK_SUCCESS; - } - - VmaDefragmentationMove move = {}; - move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; - move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; - move.srcOffset = srcOffset; - move.dstOffset = dstAllocRequest.offset; - move.size = size; - move.hAllocation = allocInfo.m_hAllocation; - move.pSrcBlock = pSrcBlockInfo->m_pBlock; - move.pDstBlock = pDstBlockInfo->m_pBlock; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) + { + break; + } + } + } + else + { + m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; + } - moves.push_back(move); + // VULKAN CALL vkAllocateMemory. + VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); - pDstBlockInfo->m_pBlock->m_pMetadata->Alloc( - dstAllocRequest, - suballocType, - size, - allocInfo.m_hAllocation); + if(res == VK_SUCCESS) + { +#if VMA_MEMORY_BUDGET + ++m_Budget.m_OperationsSinceBudgetFetch; +#endif - if(freeOldAllocations) - { - pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset); - allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset); - } + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); + } - if(allocInfo.m_pChanged != VMA_NULL) - { - *allocInfo.m_pChanged = VK_TRUE; - } + deviceMemoryCountIncrement.Commit(); + } + else + { + m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; + } - ++m_AllocationsMoved; - m_BytesMoved += size; + return res; +} - VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); +void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) +{ + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); + } - break; - } - } + // VULKAN CALL vkFreeMemory. + (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); - // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. + m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; - if(srcAllocIndex > 0) + --m_DeviceMemoryCount; +} + +VkResult VmaAllocator_T::BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) { - --srcAllocIndex; + VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.buffer = buffer; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); } else +#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 { - if(srcBlockIndex > 0) - { - --srcBlockIndex; - srcAllocIndex = SIZE_MAX; - } - else - { - return VK_SUCCESS; - } + return VK_ERROR_EXTENSION_NOT_PRESENT; } } + else + { + return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); + } } -size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const +VkResult VmaAllocator_T::BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext) { - size_t result = 0; - for(size_t i = 0; i < m_Blocks.size(); ++i) + if(pNext != VMA_NULL) { - if(m_Blocks[i]->m_HasNonMovableAllocations) +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) { - ++result; + VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.image = image; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; } } - return result; -} - -VkResult VmaDefragmentationAlgorithm_Generic::Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) -{ - if(!m_AllAllocations && m_AllocationCount == 0) + else { - return VK_SUCCESS; + return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); } +} - const size_t blockCount = m_Blocks.size(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) +VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) +{ + switch(hAllocation->GetType()) { - BlockInfo* pBlockInfo = m_Blocks[blockIndex]; - - if(m_AllAllocations) + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { - VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; - for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); - ++it) + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + char *pBytes = VMA_NULL; + VkResult res = pBlock->Map(this, 1, (void**)&pBytes); + if(res == VK_SUCCESS) { - if(it->type != VMA_SUBALLOCATION_TYPE_FREE) - { - AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL); - pBlockInfo->m_Allocations.push_back(allocInfo); - } + *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); + hAllocation->BlockAllocMap(); } + return res; } - - pBlockInfo->CalcHasNonMovableAllocations(); - - // This is a choice based on research. - // Option 1: - pBlockInfo->SortAllocationsByOffsetDescending(); - // Option 2: - //pBlockInfo->SortAllocationsBySizeDescending(); + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return hAllocation->DedicatedAllocMap(this, ppData); + default: + VMA_ASSERT(0); + return VK_ERROR_MEMORY_MAP_FAILED; } +} - // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. - VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); - - // This is a choice based on research. - const uint32_t roundCount = 2; - - // Execute defragmentation rounds (the main part). - VkResult result = VK_SUCCESS; - for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) +void VmaAllocator_T::Unmap(VmaAllocation hAllocation) +{ + switch(hAllocation->GetType()) { - result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + hAllocation->BlockAllocUnmap(); + pBlock->Unmap(this, 1); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + hAllocation->DedicatedAllocUnmap(this); + break; + default: + VMA_ASSERT(0); } - - return result; } -bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( - size_t dstBlockIndex, VkDeviceSize dstOffset, - size_t srcBlockIndex, VkDeviceSize srcOffset) +VkResult VmaAllocator_T::BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) { - if(dstBlockIndex < srcBlockIndex) + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) { - return true; - } - if(dstBlockIndex > srcBlockIndex) + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { - return false; + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block."); + res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); + break; } - if(dstOffset < srcOffset) - { - return true; + default: + VMA_ASSERT(0); } - return false; + return res; } -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationAlgorithm_Fast - -VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( - VmaAllocator hAllocator, - VmaBlockVector* pBlockVector, - uint32_t currentFrameIndex, - bool overlappingMoveSupported) : - VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex), - m_OverlappingMoveSupported(overlappingMoveSupported), - m_AllocationCount(0), - m_AllAllocations(false), - m_BytesMoved(0), - m_AllocationsMoved(0), - m_BlockInfos(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) +VkResult VmaAllocator_T::BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) { - VMA_ASSERT(VMA_DEBUG_MARGIN == 0); - + VkResult res = VK_SUCCESS; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block."); + res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; } -VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() -{ -} - -VkResult VmaDefragmentationAlgorithm_Fast::Defragment( - VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, - VkDeviceSize maxBytesToMove, - uint32_t maxAllocationsToMove, - VmaDefragmentationFlags flags) +VkResult VmaAllocator_T::FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op) { - VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); + VkResult res = VK_SUCCESS; - const size_t blockCount = m_pBlockVector->GetBlockCount(); - if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) + VkMappedMemoryRange memRange = {}; + if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) { - return VK_SUCCESS; + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + default: + VMA_ASSERT(0); + } } + // else: Just ignore this call. + return res; +} - PreprocessMetadata(); +VkResult VmaAllocator_T::FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op) +{ + typedef VmaStlAllocator RangeAllocator; + typedef VmaSmallVector RangeVector; + RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); - // Sort blocks in order from most destination. + for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + const VmaAllocation alloc = allocations[allocIndex]; + const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; + const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; + VkMappedMemoryRange newRange; + if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) + { + ranges.push_back(newRange); + } + } - m_BlockInfos.resize(blockCount); - for(size_t i = 0; i < blockCount; ++i) + VkResult res = VK_SUCCESS; + if(!ranges.empty()) { - m_BlockInfos[i].origBlockIndex = i; + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + default: + VMA_ASSERT(0); + } } + // else: Just ignore this call. + return res; +} - VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { - return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < - m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); - }); +void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) +{ + VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - // THE MAIN ALGORITHM + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + VmaPool parentPool = allocation->GetParentPool(); + if(parentPool == VK_NULL_HANDLE) + { + // Default pool + m_DedicatedAllocations[memTypeIndex].Unregister(allocation); + } + else + { + // Custom pool + parentPool->m_DedicatedAllocations.Unregister(allocation); + } - FreeSpaceDatabase freeSpaceDb; + VkDeviceMemory hMemory = allocation->GetMemory(); - size_t dstBlockInfoIndex = 0; - size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); - VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; - VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); - VkDeviceSize dstOffset = 0; + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. - bool end = false; - for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) + if(allocation->GetMappedData() != VMA_NULL) { - const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); - VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; - for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); - !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) - { - VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation; - const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); - const VkDeviceSize srcAllocSize = srcSuballocIt->size; - if(m_AllocationsMoved == maxAllocationsToMove || - m_BytesMoved + srcAllocSize > maxBytesToMove) - { - end = true; - break; - } - const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ - VmaDefragmentationMove move = {}; - // Try to place it in one of free spaces from the database. - size_t freeSpaceInfoIndex; - VkDeviceSize dstAllocOffset; - if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, - freeSpaceInfoIndex, dstAllocOffset)) - { - size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; - VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); - VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; + FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); - // Same block - if(freeSpaceInfoIndex == srcBlockInfoIndex) - { - VMA_ASSERT(dstAllocOffset <= srcAllocOffset); + VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); +} - // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. +uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const +{ + VkBufferCreateInfo dummyBufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeOffset(dstAllocOffset); - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; + uint32_t memoryTypeBits = 0; - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; + // Create buffer. + VkBuffer buf = VK_NULL_HANDLE; + VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( + m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); + if(res == VK_SUCCESS) + { + // Query for supported memory types. + VkMemoryRequirements memReq; + (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); + memoryTypeBits = memReq.memoryTypeBits; - InsertSuballoc(pFreeSpaceMetadata, suballoc); + // Destroy buffer. + (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); + } - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = freeSpaceOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; + return memoryTypeBits; +} - moves.push_back(move); - } - // Different block - else - { - // MOVE OPTION 2: Move the allocation to a different block. +uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const +{ + // Make sure memory information is already fetched. + VMA_ASSERT(GetMemoryTypeCount() > 0); - VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); + uint32_t memoryTypeBits = UINT32_MAX; - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset); - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; + if(!m_UseAmdDeviceCoherentMemory) + { + // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) + { + memoryTypeBits &= ~(1u << memTypeIndex); + } + } + } - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; + return memoryTypeBits; +} - InsertSuballoc(pFreeSpaceMetadata, suballoc); +bool VmaAllocator_T::GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const +{ + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) + { + const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + const VkDeviceSize allocationSize = allocation->GetSize(); + VMA_ASSERT(offset <= allocationSize); - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = freeSpaceOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; + outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; + outRange.pNext = VMA_NULL; + outRange.memory = allocation->GetMemory(); - moves.push_back(move); - } + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + outRange.size = allocationSize - outRange.offset; } else { - dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); + VMA_ASSERT(offset + size <= allocationSize); + outRange.size = VMA_MIN( + VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), + allocationSize - outRange.offset); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + // 1. Still within this allocation. + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + size = allocationSize - offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + } + outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); - // If the allocation doesn't fit before the end of dstBlock, forward to next block. - while(dstBlockInfoIndex < srcBlockInfoIndex && - dstAllocOffset + srcAllocSize > dstBlockSize) - { - // But before that, register remaining free space at the end of dst block. - freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); + // 2. Adjust to whole block. + const VkDeviceSize allocationOffset = allocation->GetOffset(); + VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); + const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); + outRange.offset += allocationOffset; + outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); - ++dstBlockInfoIndex; - dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; - pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); - pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; - dstBlockSize = pDstMetadata->GetSize(); - dstOffset = 0; - dstAllocOffset = 0; - } - - // Same block - if(dstBlockInfoIndex == srcBlockInfoIndex) - { - VMA_ASSERT(dstAllocOffset <= srcAllocOffset); - - const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; - - bool skipOver = overlap; - if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) - { - // If destination and source place overlap, skip if it would move it - // by only < 1/64 of its size. - skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; - } - - if(skipOver) - { - freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); - - dstOffset = srcAllocOffset + srcAllocSize; - ++srcSuballocIt; - } - // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. - else - { - srcSuballocIt->offset = dstAllocOffset; - srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset); - dstOffset = dstAllocOffset + srcAllocSize; - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; - ++srcSuballocIt; - - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = dstOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; + break; + } + default: + VMA_ASSERT(0); + } + return true; + } + return false; +} - moves.push_back(move); - } - } - // Different block - else - { - // MOVE OPTION 2: Move the allocation to a different block. +#if VMA_MEMORY_BUDGET +void VmaAllocator_T::UpdateVulkanBudget() +{ + VMA_ASSERT(m_UseExtMemoryBudget); - VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); - VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); + VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; - VmaSuballocation suballoc = *srcSuballocIt; - suballoc.offset = dstAllocOffset; - suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset); - dstOffset = dstAllocOffset + srcAllocSize; - m_BytesMoved += srcAllocSize; - ++m_AllocationsMoved; + VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; + VmaPnextChainPushFront(&memProps, &budgetProps); - VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; - ++nextSuballocIt; - pSrcMetadata->m_Suballocations.erase(srcSuballocIt); - srcSuballocIt = nextSuballocIt; + GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); - pDstMetadata->m_Suballocations.push_back(suballoc); + { + VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); - move.srcBlockIndex = srcOrigBlockIndex; - move.dstBlockIndex = dstOrigBlockIndex; - move.srcOffset = srcAllocOffset; - move.dstOffset = dstAllocOffset; - move.size = srcAllocSize; + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; + m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; + m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); - moves.push_back(move); - } + // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. + if(m_Budget.m_VulkanBudget[heapIndex] == 0) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; + } + if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) + { + m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; } } + m_Budget.m_OperationsSinceBudgetFetch = 0; } - - m_BlockInfos.clear(); - - PostprocessMetadata(); - - return VK_SUCCESS; } +#endif // VMA_MEMORY_BUDGET -void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() +void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) { - const size_t blockCount = m_pBlockVector->GetBlockCount(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && + (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { - VmaBlockMetadata_Generic* const pMetadata = - (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; - pMetadata->m_FreeCount = 0; - pMetadata->m_SumFreeSize = pMetadata->GetSize(); - pMetadata->m_FreeSuballocationsBySize.clear(); - for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); ) + void* pData = VMA_NULL; + VkResult res = Map(hAllocation, &pData); + if(res == VK_SUCCESS) { - if(it->type == VMA_SUBALLOCATION_TYPE_FREE) - { - VmaSuballocationList::iterator nextIt = it; - ++nextIt; - pMetadata->m_Suballocations.erase(it); - it = nextIt; - } - else - { - ++it; - } + memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); + FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); + Unmap(hAllocation); + } + else + { + VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); } } } -void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() +uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() { - const size_t blockCount = m_pBlockVector->GetBlockCount(); - for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); + if(memoryTypeBits == UINT32_MAX) { - VmaBlockMetadata_Generic* const pMetadata = - (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; - const VkDeviceSize blockSize = pMetadata->GetSize(); + memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); + m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); + } + return memoryTypeBits; +} - // No allocations in this block - entire area is free. - if(pMetadata->m_Suballocations.empty()) +#if VMA_STATS_STRING_ENABLED +void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) +{ + bool dedicatedAllocationsStarted = false; + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; + if(!dedicatedAllocList.IsEmpty()) { - pMetadata->m_FreeCount = 1; - //pMetadata->m_SumFreeSize is already set to blockSize. - VmaSuballocation suballoc = { - 0, // offset - blockSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - pMetadata->m_Suballocations.push_back(suballoc); - pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); + if(dedicatedAllocationsStarted == false) + { + dedicatedAllocationsStarted = true; + json.WriteString("DedicatedAllocations"); + json.BeginObject(); + } + + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + + dedicatedAllocList.BuildStatsString(json); } - // There are some allocations in this block. - else + } + if(dedicatedAllocationsStarted) + { + json.EndObject(); + } + + { + bool allocationsStarted = false; + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - VkDeviceSize offset = 0; - VmaSuballocationList::iterator it; - for(it = pMetadata->m_Suballocations.begin(); - it != pMetadata->m_Suballocations.end(); - ++it) + VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex]; + if(pBlockVector != VMA_NULL) { - VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(it->offset >= offset); - - // Need to insert preceding free space. - if(it->offset > offset) + if (pBlockVector->IsEmpty() == false) { - ++pMetadata->m_FreeCount; - const VkDeviceSize freeSize = it->offset - offset; - VmaSuballocation suballoc = { - offset, // offset - freeSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); - if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) + if (allocationsStarted == false) { - pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); + allocationsStarted = true; + json.WriteString("DefaultPools"); + json.BeginObject(); } - } - pMetadata->m_SumFreeSize -= it->size; - offset = it->offset + it->size; - } + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); - // Need to insert trailing free space. - if(offset < blockSize) - { - ++pMetadata->m_FreeCount; - const VkDeviceSize freeSize = blockSize - offset; - VmaSuballocation suballoc = { - offset, // offset - freeSize, // size - VMA_NULL, // hAllocation - VMA_SUBALLOCATION_TYPE_FREE }; - VMA_ASSERT(it == pMetadata->m_Suballocations.end()); - VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); - if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) - { - pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); + json.BeginObject(); + pBlockVector->PrintDetailedMap(json); + json.EndObject(); } } - - VMA_SORT( - pMetadata->m_FreeSuballocationsBySize.begin(), - pMetadata->m_FreeSuballocationsBySize.end(), - VmaSuballocationItemSizeLess()); } - - VMA_HEAVY_ASSERT(pMetadata->Validate()); + if(allocationsStarted) + { + json.EndObject(); + } } -} -void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) -{ - // TODO: Optimize somehow. Remember iterator instead of searching for it linearly. - VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); - while(it != pMetadata->m_Suballocations.end()) + // Custom pools { - if(it->offset < suballoc.offset) + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + if(!m_Pools.IsEmpty()) { - ++it; - } - } - pMetadata->m_Suballocations.insert(it, suballoc); -} + json.WriteString("Pools"); + json.BeginObject(); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + json.BeginString(); + json.ContinueString(pool->GetId()); + json.EndString(); -//////////////////////////////////////////////////////////////////////////////// -// VmaBlockVectorDefragmentationContext + json.BeginObject(); + pool->m_BlockVector.PrintDetailedMap(json); -VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( - VmaAllocator hAllocator, - VmaPool hCustomPool, - VmaBlockVector* pBlockVector, - uint32_t currFrameIndex) : - res(VK_SUCCESS), - mutexLocked(false), - blockContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - defragmentationMoves(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - defragmentationMovesProcessed(0), - defragmentationMovesCommitted(0), - hasDefragmentationPlan(0), - m_hAllocator(hAllocator), - m_hCustomPool(hCustomPool), - m_pBlockVector(pBlockVector), - m_CurrFrameIndex(currFrameIndex), - m_pAlgorithm(VMA_NULL), - m_Allocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_AllAllocations(false) -{ + if (!pool->m_DedicatedAllocations.IsEmpty()) + { + json.WriteString("DedicatedAllocations"); + pool->m_DedicatedAllocations.BuildStatsString(json); + } + json.EndObject(); + } + json.EndObject(); + } + } } +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_ALLOCATOR_T_FUNCTIONS -VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() + +#ifndef _VMA_PUBLIC_INTERFACE +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* pCreateInfo, + VmaAllocator* pAllocator) { - vma_delete(m_hAllocator, m_pAlgorithm); + VMA_ASSERT(pCreateInfo && pAllocator); + VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || + (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3)); + VMA_DEBUG_LOG("vmaCreateAllocator"); + *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); + VkResult result = (*pAllocator)->Init(pCreateInfo); + if(result < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator); + *pAllocator = VK_NULL_HANDLE; + } + return result; } -void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator allocator) { - AllocInfo info = { hAlloc, pChanged }; - m_Allocations.push_back(info); + if(allocator != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyAllocator"); + VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, allocator); + } } -void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) { - const bool allAllocations = m_AllAllocations || - m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); + VMA_ASSERT(allocator && pAllocatorInfo); + pAllocatorInfo->instance = allocator->m_hInstance; + pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); + pAllocatorInfo->device = allocator->m_hDevice; +} - /******************************** - HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. - ********************************/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceProperties); + *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; +} - /* - Fast algorithm is supported only when certain criteria are met: - - VMA_DEBUG_MARGIN is 0. - - All allocations in this block vector are moveable. - - There is no possibility of image/buffer granularity conflict. - - The defragmentation is not incremental - */ - if(VMA_DEBUG_MARGIN == 0 && - allAllocations && - !m_pBlockVector->IsBufferImageGranularityConflictPossible() && - !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) - { - m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( - m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); - } - else - { - m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( - m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported); - } +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); + *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; +} - if(allAllocations) - { - m_pAlgorithm->AddAll(); - } - else - { - for(size_t i = 0, count = m_Allocations.size(); i < count; ++i) - { - m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); - } - } +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* pFlags) +{ + VMA_ASSERT(allocator && pFlags); + VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); + *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; } -//////////////////////////////////////////////////////////////////////////////// -// VmaDefragmentationContext +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex) +{ + VMA_ASSERT(allocator); -VmaDefragmentationContext_T::VmaDefragmentationContext_T( - VmaAllocator hAllocator, - uint32_t currFrameIndex, - uint32_t flags, - VmaDefragmentationStats* pStats) : - m_hAllocator(hAllocator), - m_CurrFrameIndex(currFrameIndex), - m_Flags(flags), - m_pStats(pStats), - m_CustomPoolContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->SetCurrentFrameIndex(frameIndex); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( + VmaAllocator allocator, + VmaStats* pStats) { - memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); + VMA_ASSERT(allocator && pStats); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->CalculateStats(pStats); } -VmaDefragmentationContext_T::~VmaDefragmentationContext_T() +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator allocator, + VmaBudget* pBudgets) { - for(size_t i = m_CustomPoolContexts.size(); i--; ) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; - pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); - vma_delete(m_hAllocator, pBlockVectorCtx); - } - for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) - { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; - if(pBlockVectorCtx) - { - pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); - vma_delete(m_hAllocator, pBlockVectorCtx); - } - } + VMA_ASSERT(allocator && pBudgets); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount()); } -void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools) +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator allocator, + char** ppStatsString, + VkBool32 detailedMap) { - for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) + VMA_ASSERT(allocator && ppStatsString); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VmaStringBuilder sb(allocator->GetAllocationCallbacks()); { - VmaPool pool = pPools[poolIndex]; - VMA_ASSERT(pool); - // Pools with algorithm other than default are not defragmented. - if(pool->m_BlockVector.GetAlgorithm() == 0) + VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); + json.BeginObject(); + + VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; + allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount()); + + VmaStats stats; + allocator->CalculateStats(&stats); + + json.WriteString("Total"); + VmaPrintStatInfo(json, stats.total); + + for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) { - VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; + json.BeginString("Heap "); + json.ContinueString(heapIndex); + json.EndString(); + json.BeginObject(); + + json.WriteString("Size"); + json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); - for(size_t i = m_CustomPoolContexts.size(); i--; ) + json.WriteString("Flags"); + json.BeginArray(true); + if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) { - if(m_CustomPoolContexts[i]->GetCustomPool() == pool) - { - pBlockVectorDefragCtx = m_CustomPoolContexts[i]; - break; - } + json.WriteString("DEVICE_LOCAL"); } + json.EndArray(); - if(!pBlockVectorDefragCtx) + json.WriteString("Budget"); + json.BeginObject(); { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - pool, - &pool->m_BlockVector, - m_CurrFrameIndex); - m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + json.WriteString("BlockBytes"); + json.WriteNumber(budgets[heapIndex].blockBytes); + json.WriteString("AllocationBytes"); + json.WriteNumber(budgets[heapIndex].allocationBytes); + json.WriteString("Usage"); + json.WriteNumber(budgets[heapIndex].usage); + json.WriteString("Budget"); + json.WriteNumber(budgets[heapIndex].budget); } + json.EndObject(); - pBlockVectorDefragCtx->AddAll(); - } - } -} - -void VmaDefragmentationContext_T::AddAllocations( - uint32_t allocationCount, - const VmaAllocation* pAllocations, - VkBool32* pAllocationsChanged) -{ - // Dispatch pAllocations among defragmentators. Create them when necessary. - for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - const VmaAllocation hAlloc = pAllocations[allocIndex]; - VMA_ASSERT(hAlloc); - // DedicatedAlloc cannot be defragmented. - if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) && - // Lost allocation cannot be defragmented. - (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) - { - VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; + if(stats.memoryHeap[heapIndex].blockCount > 0) + { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); + } - const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); - // This allocation belongs to custom pool. - if(hAllocPool != VK_NULL_HANDLE) + for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) { - // Pools with algorithm other than default are not defragmented. - if(hAllocPool->m_BlockVector.GetAlgorithm() == 0) + if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) { - for(size_t i = m_CustomPoolContexts.size(); i--; ) + json.BeginString("Type "); + json.ContinueString(typeIndex); + json.EndString(); + + json.BeginObject(); + + json.WriteString("Flags"); + json.BeginArray(true); + VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; + if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) { - if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) - { - pBlockVectorDefragCtx = m_CustomPoolContexts[i]; - break; - } + json.WriteString("DEVICE_LOCAL"); } - if(!pBlockVectorDefragCtx) + if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - hAllocPool, - &hAllocPool->m_BlockVector, - m_CurrFrameIndex); - m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + json.WriteString("HOST_VISIBLE"); } - } - } - // This allocation belongs to default pool. - else - { - const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); - pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; - if(!pBlockVectorDefragCtx) - { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - VMA_NULL, // hCustomPool - m_hAllocator->m_pBlockVectors[memTypeIndex], - m_CurrFrameIndex); - m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; + if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) + { + json.WriteString("HOST_COHERENT"); + } + if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) + { + json.WriteString("HOST_CACHED"); + } + if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) + { + json.WriteString("LAZILY_ALLOCATED"); + } +#if VMA_VULKAN_VERSION >= 1001000 + if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0) + { + json.WriteString("PROTECTED"); + } +#endif // #if VMA_VULKAN_VERSION >= 1001000 +#if VK_AMD_device_coherent_memory + if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) + { + json.WriteString("DEVICE_COHERENT"); + } + if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0) + { + json.WriteString("DEVICE_UNCACHED"); + } +#endif // #if VK_AMD_device_coherent_memory + json.EndArray(); + + if(stats.memoryType[typeIndex].blockCount > 0) + { + json.WriteString("Stats"); + VmaPrintStatInfo(json, stats.memoryType[typeIndex]); + } + + json.EndObject(); } } - if(pBlockVectorDefragCtx) - { - VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? - &pAllocationsChanged[allocIndex] : VMA_NULL; - pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); - } + json.EndObject(); } + if(detailedMap == VK_TRUE) + { + allocator->PrintDetailedMap(json); + } + + json.EndObject(); } + + *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength()); } -VkResult VmaDefragmentationContext_T::Defragment( - VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, - VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, - VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator allocator, + char* pStatsString) { - if(pStats) + if(pStatsString != VMA_NULL) { - memset(pStats, 0, sizeof(VmaDefragmentationStats)); + VMA_ASSERT(allocator); + VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString); } +} - if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) - { - // For incremental defragmetnations, we just earmark how much we can move - // The real meat is in the defragmentation steps - m_MaxCpuBytesToMove = maxCpuBytesToMove; - m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; +#endif // VMA_STATS_STRING_ENABLED - m_MaxGpuBytesToMove = maxGpuBytesToMove; - m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; +/* +This function is not protected by any mutex because it just reads immutable data. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && - m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) - return VK_SUCCESS; + memoryTypeBits &= allocator->GetGlobalMemoryTypeBits(); - return VK_NOT_READY; + if(pAllocationCreateInfo->memoryTypeBits != 0) + { + memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; } - if(commandBuffer == VK_NULL_HANDLE) + uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; + uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; + uint32_t notPreferredFlags = 0; + + // Convert usage to requiredFlags and preferredFlags. + switch(pAllocationCreateInfo->usage) { - maxGpuBytesToMove = 0; - maxGpuAllocationsToMove = 0; + case VMA_MEMORY_USAGE_UNKNOWN: + break; + case VMA_MEMORY_USAGE_GPU_ONLY: + if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_CPU_ONLY: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + break; + case VMA_MEMORY_USAGE_CPU_TO_GPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_GPU_TO_CPU: + requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + break; + case VMA_MEMORY_USAGE_CPU_COPY: + notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + break; + case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: + requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; + break; + default: + VMA_ASSERT(0); + break; } - VkResult res = VK_SUCCESS; + // Avoid DEVICE_COHERENT unless explicitly requested. + if(((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) & + (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) + { + notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY; + } - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; - ++memTypeIndex) + *pMemoryTypeIndex = UINT32_MAX; + uint32_t minCost = UINT32_MAX; + for(uint32_t memTypeIndex = 0, memTypeBit = 1; + memTypeIndex < allocator->GetMemoryTypeCount(); + ++memTypeIndex, memTypeBit <<= 1) { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) + // This memory type is acceptable according to memoryTypeBits bitmask. + if((memTypeBit & memoryTypeBits) != 0) { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - pStats, flags, - maxCpuBytesToMove, maxCpuAllocationsToMove, - maxGpuBytesToMove, maxGpuAllocationsToMove, - commandBuffer); - if(pBlockVectorCtx->res != VK_SUCCESS) + const VkMemoryPropertyFlags currFlags = + allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; + // This memory type contains requiredFlags. + if((requiredFlags & ~currFlags) == 0) { - res = pBlockVectorCtx->res; + // Calculate cost as number of bits from preferredFlags not present in this memory type. + uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + + VmaCountBitsSet(currFlags & notPreferredFlags); + // Remember memory type with lowest cost. + if(currCost < minCost) + { + *pMemoryTypeIndex = memTypeIndex; + if(currCost == 0) + { + return VK_SUCCESS; + } + minCost = currCost; + } } } } + return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; +} - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount && res >= VK_SUCCESS; - ++customCtxIndex) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pBufferCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + VkBuffer hBuffer = VK_NULL_HANDLE; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res = funcs->vkCreateBuffer( + hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); + if(res == VK_SUCCESS) { - VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - pStats, flags, - maxCpuBytesToMove, maxCpuAllocationsToMove, - maxGpuBytesToMove, maxGpuAllocationsToMove, - commandBuffer); - if(pBlockVectorCtx->res != VK_SUCCESS) - { - res = pBlockVectorCtx->res; - } - } + VkMemoryRequirements memReq = {}; + funcs->vkGetBufferMemoryRequirements( + hDev, hBuffer, &memReq); + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); + + funcs->vkDestroyBuffer( + hDev, hBuffer, allocator->GetAllocationCallbacks()); + } return res; } -VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) { - VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; - uint32_t movesLeft = pInfo->moveCount; + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pImageCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount(); - ++memTypeIndex) + const VkDevice hDev = allocator->m_hDevice; + VkImage hImage = VK_NULL_HANDLE; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res = funcs->vkCreateImage( + hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); + if(res == VK_SUCCESS) { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) - { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); + VkMemoryRequirements memReq = {}; + funcs->vkGetImageMemoryRequirements( + hDev, hImage, &memReq); - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - m_pStats, m_Flags, - m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, - m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, - VK_NULL_HANDLE); + res = vmaFindMemoryTypeIndex( + allocator, + memReq.memoryTypeBits, + pAllocationCreateInfo, + pMemoryTypeIndex); - if(pBlockVectorCtx->res < VK_SUCCESS) - continue; + funcs->vkDestroyImage( + hDev, hImage, allocator->GetAllocationCallbacks()); + } + return res; +} - pBlockVectorCtx->hasDefragmentationPlan = true; - } - - const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( - pBlockVectorCtx, - pCurrentMove, movesLeft); - - movesLeft -= processed; - pCurrentMove += processed; - } - } - - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount; - ++customCtxIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - pBlockVectorCtx->GetBlockVector()->Defragment( - pBlockVectorCtx, - m_pStats, m_Flags, - m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, - m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, - VK_NULL_HANDLE); - - if(pBlockVectorCtx->res < VK_SUCCESS) - continue; - - pBlockVectorCtx->hasDefragmentationPlan = true; - } - - const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( - pBlockVectorCtx, - pCurrentMove, movesLeft); - - movesLeft -= processed; - pCurrentMove += processed; - } - - pInfo->moveCount = pInfo->moveCount - movesLeft; - - return VK_SUCCESS; -} -VkResult VmaDefragmentationContext_T::DefragmentPassEnd() +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo* pCreateInfo, + VmaPool* pPool) { - VkResult res = VK_SUCCESS; - - // Process default pools. - for(uint32_t memTypeIndex = 0; - memTypeIndex < m_hAllocator->GetMemoryTypeCount(); - ++memTypeIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; - if(pBlockVectorCtx) - { - VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - res = VK_NOT_READY; - continue; - } - - pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( - pBlockVectorCtx, m_pStats); - - if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) - res = VK_NOT_READY; - } - } - - // Process custom pools. - for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); - customCtxIndex < customCtxCount; - ++customCtxIndex) - { - VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; - VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); - - if(!pBlockVectorCtx->hasDefragmentationPlan) - { - res = VK_NOT_READY; - continue; - } - - pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( - pBlockVectorCtx, m_pStats); - - if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) - res = VK_NOT_READY; - } - - return res; -} + VMA_ASSERT(allocator && pCreateInfo && pPool); -//////////////////////////////////////////////////////////////////////////////// -// VmaRecorder + VMA_DEBUG_LOG("vmaCreatePool"); -#if VMA_RECORDING_ENABLED + VMA_DEBUG_GLOBAL_MUTEX_LOCK -VmaRecorder::VmaRecorder() : - m_UseMutex(true), - m_Flags(0), - m_File(VMA_NULL), - m_RecordingStartTime(std::chrono::high_resolution_clock::now()) -{ + return allocator->CreatePool(pCreateInfo, pPool); } -VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex) +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool) { - m_UseMutex = useMutex; - m_Flags = settings.flags; - -#if defined(_WIN32) - // Open file for writing. - errno_t err = fopen_s(&m_File, settings.pFilePath, "wb"); + VMA_ASSERT(allocator); - if(err != 0) + if(pool == VK_NULL_HANDLE) { - return VK_ERROR_INITIALIZATION_FAILED; + return; } -#else - // Open file for writing. - m_File = fopen(settings.pFilePath, "wb"); - if(m_File == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } -#endif + VMA_DEBUG_LOG("vmaDestroyPool"); - // Write header. - fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording"); - fprintf(m_File, "%s\n", "1,8"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - return VK_SUCCESS; + allocator->DestroyPool(pool); } -VmaRecorder::~VmaRecorder() +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( + VmaAllocator allocator, + VmaPool pool, + VmaPoolStats* pPoolStats) { - if(m_File != VMA_NULL) - { - fclose(m_File); - } -} + VMA_ASSERT(allocator && pool && pPoolStats); -void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex); - Flush(); + allocator->GetPoolStats(pool, pPoolStats); } -void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && pool); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex); - Flush(); -} + VMA_DEBUG_GLOBAL_MUTEX_LOCK -void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_LOG("vmaCheckPoolCorruption"); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex, - createInfo.memoryTypeIndex, - createInfo.flags, - createInfo.blockSize, - (uint64_t)createInfo.minBlockCount, - (uint64_t)createInfo.maxBlockCount, - createInfo.frameInUseCount, - pool); - Flush(); + return allocator->CheckPoolCorruption(pool); } -void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char** ppName) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && pool && ppName); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex, - pool); - Flush(); -} + VMA_DEBUG_LOG("vmaGetPoolName"); -void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - const VmaAllocationCreateInfo& createInfo, - uint64_t allocationCount, - const VmaAllocation* pAllocations) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool); - PrintPointerList(allocationCount, pAllocations); - fprintf(m_File, ",%s\n", userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - requiresDedicatedAllocation ? 1 : 0, - prefersDedicatedAllocation ? 1 : 0, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex, - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - const VmaAllocationCreateInfo& createInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(createInfo.flags, createInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - vkMemReq.size, - vkMemReq.alignment, - vkMemReq.memoryTypeBits, - requiresDedicatedAllocation ? 1 : 0, - prefersDedicatedAllocation ? 1 : 0, - createInfo.flags, - createInfo.usage, - createInfo.requiredFlags, - createInfo.preferredFlags, - createInfo.memoryTypeBits, - createInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordFreeMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); + *ppName = pool->GetName(); } -void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex, - uint64_t allocationCount, - const VmaAllocation* pAllocations) +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char* pName) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && pool); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex); - PrintPointerList(allocationCount, pAllocations); - fprintf(m_File, "\n"); - Flush(); -} + VMA_DEBUG_LOG("vmaSetPoolName"); -void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex, - VmaAllocation allocation, - const void* pUserData) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr( - allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0, - pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - allocation, - userDataStr.GetString()); - Flush(); + pool->SetName(pName); } -void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex, - VmaAllocation allocation) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} + VMA_DEBUG_LOG("vmaAllocateMemory"); -void VmaRecorder::RecordMapMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + UINT32_MAX, // dedicatedBufferUsage + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + 1, // allocationCount + pAllocation); -void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); + return result; } -void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + size_t allocationCount, + VmaAllocation* pAllocations, + VmaAllocationInfo* pAllocationInfo) { - CallParams callParams; - GetBasicParams(callParams); + if(allocationCount == 0) + { + return VK_SUCCESS; + } - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, - allocation, - offset, - size); - Flush(); -} + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); -void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex, - VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - CallParams callParams; - GetBasicParams(callParams); + VMA_DEBUG_LOG("vmaAllocateMemoryPages"); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex, - allocation, - offset, - size); - Flush(); -} + VMA_DEBUG_GLOBAL_MUTEX_LOCK -void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex, - const VkBufferCreateInfo& bufCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - bufCreateInfo.flags, - bufCreateInfo.size, - bufCreateInfo.usage, - bufCreateInfo.sharingMode, - allocCreateInfo.flags, - allocCreateInfo.usage, - allocCreateInfo.requiredFlags, - allocCreateInfo.preferredFlags, - allocCreateInfo.memoryTypeBits, - allocCreateInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordCreateImage(uint32_t frameIndex, - const VkImageCreateInfo& imageCreateInfo, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData); - fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - imageCreateInfo.flags, - imageCreateInfo.imageType, - imageCreateInfo.format, - imageCreateInfo.extent.width, - imageCreateInfo.extent.height, - imageCreateInfo.extent.depth, - imageCreateInfo.mipLevels, - imageCreateInfo.arrayLayers, - imageCreateInfo.samples, - imageCreateInfo.tiling, - imageCreateInfo.usage, - imageCreateInfo.sharingMode, - imageCreateInfo.initialLayout, - allocCreateInfo.flags, - allocCreateInfo.usage, - allocCreateInfo.requiredFlags, - allocCreateInfo.preferredFlags, - allocCreateInfo.memoryTypeBits, - allocCreateInfo.pool, - allocation, - userDataStr.GetString()); - Flush(); -} - -void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex, - VmaAllocation allocation) -{ - CallParams callParams; - GetBasicParams(callParams); + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + UINT32_MAX, // dedicatedBufferUsage + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + allocationCount, + pAllocations); + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + for(size_t i = 0; i < allocationCount; ++i) + { + allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); + } + } - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); + return result; } -void VmaRecorder::RecordDestroyImage(uint32_t frameIndex, - VmaAllocation allocation) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); -} + VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); -void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex, - VmaAllocation allocation) + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(buffer, vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + buffer, // dedicatedBuffer + UINT32_MAX, // dedicatedBufferUsage + VK_NULL_HANDLE, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(image, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + UINT32_MAX, // dedicatedBufferUsage + image, // dedicatedImage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); + return result; } -void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex, +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator allocator, VmaAllocation allocation) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator); + + if(allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaFreeMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex, - allocation); - Flush(); + allocator->FreeMemory( + 1, // allocationCount + &allocation); } -void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex, - VmaPool pool) +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + const VmaAllocation* pAllocations) { - CallParams callParams; - GetBasicParams(callParams); + if(allocationCount == 0) + { + return; + } + + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaFreeMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex, - pool); - Flush(); + allocator->FreeMemory(allocationCount, pAllocations); } -void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex, - const VmaDefragmentationInfo2& info, - VmaDefragmentationContext ctx) +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo* pAllocationInfo) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex, - info.flags); - PrintPointerList(info.allocationCount, info.pAllocations); - fprintf(m_File, ","); - PrintPointerList(info.poolCount, info.pPools); - fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n", - info.maxCpuBytesToMove, - info.maxCpuAllocationsToMove, - info.maxGpuBytesToMove, - info.maxGpuAllocationsToMove, - info.commandBuffer, - ctx); - Flush(); + allocator->GetAllocationInfo(allocation, pAllocationInfo); } -void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex, - VmaDefragmentationContext ctx) +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void* pUserData) { - CallParams callParams; - GetBasicParams(callParams); + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex, - ctx); - Flush(); + allocation->SetUserData(allocator, pUserData); } -void VmaRecorder::RecordSetPoolName(uint32_t frameIndex, - VmaPool pool, - const char* name) +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags) { - CallParams callParams; - GetBasicParams(callParams); - - VmaMutexLock lock(m_FileMutex, m_UseMutex); - fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex, - pool, name != VMA_NULL ? name : ""); - Flush(); + VMA_ASSERT(allocator && allocation && pFlags); + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; } -VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void** ppData) { - if(pUserData != VMA_NULL) - { - if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) - { - m_Str = (const char*)pUserData; - } - else - { - // If VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is not specified, convert the string's memory address to a string and store it. - snprintf(m_PtrStr, 17, "%p", pUserData); - m_Str = m_PtrStr; - } - } - else - { - m_Str = ""; - } + VMA_ASSERT(allocator && allocation && ppData); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->Map(allocation, ppData); } -void VmaRecorder::WriteConfiguration( - const VkPhysicalDeviceProperties& devProps, - const VkPhysicalDeviceMemoryProperties& memProps, - uint32_t vulkanApiVersion, - bool dedicatedAllocationExtensionEnabled, - bool bindMemory2ExtensionEnabled, - bool memoryBudgetExtensionEnabled, - bool deviceCoherentMemoryExtensionEnabled) +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation) { - fprintf(m_File, "Config,Begin\n"); + VMA_ASSERT(allocator && allocation); - fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion)); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion); - fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion); - fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID); - fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID); - fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType); - fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName); + allocator->Unmap(allocation); +} - fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount); - fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity); - fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize); +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); - fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount); - for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i) - { - fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size); - fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags); - } - fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount); - for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i) - { - fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex); - fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags); - } + VMA_DEBUG_LOG("vmaFlushAllocation"); - fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0); - fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0); - fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0); - fprintf(m_File, "Extension,VK_AMD_device_coherent_memory,%u\n", deviceCoherentMemoryExtensionEnabled ? 1 : 0); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0); - fprintf(m_File, "Macro,VMA_MIN_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_MIN_ALIGNMENT); - fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN); - fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0); - fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY); - fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE); - fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); - fprintf(m_File, "Config,End\n"); + return res; } -void VmaRecorder::GetBasicParams(CallParams& outParams) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) { - #if defined(_WIN32) - outParams.threadId = GetCurrentThreadId(); - #else - // Use C++11 features to get thread id and convert it to uint32_t. - // There is room for optimization since sstream is quite slow. - // Is there a better way to convert std::this_thread::get_id() to uint32_t? - std::thread::id thread_id = std::this_thread::get_id(); - std::stringstream thread_id_to_string_converter; - thread_id_to_string_converter << thread_id; - std::string thread_id_as_string = thread_id_to_string_converter.str(); - outParams.threadId = static_cast(std::stoi(thread_id_as_string.c_str())); - #endif + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaInvalidateAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK - auto current_time = std::chrono::high_resolution_clock::now(); + const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); - outParams.time = std::chrono::duration(current_time - m_RecordingStartTime).count(); + return res; } -void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) { - if(count) + VMA_ASSERT(allocator); + + if(allocationCount == 0) { - fprintf(m_File, "%p", pItems[0]); - for(uint64_t i = 1; i < count; ++i) - { - fprintf(m_File, " %p", pItems[i]); - } + return VK_SUCCESS; } + + VMA_ASSERT(allocations); + + VMA_DEBUG_LOG("vmaFlushAllocations"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); + + return res; } -void VmaRecorder::Flush() +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) { - if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) + VMA_ASSERT(allocator); + + if(allocationCount == 0) { - fflush(m_File); + return VK_SUCCESS; } -} -#endif // #if VMA_RECORDING_ENABLED + VMA_ASSERT(allocations); -//////////////////////////////////////////////////////////////////////////////// -// VmaAllocationObjectAllocator + VMA_DEBUG_LOG("vmaInvalidateAllocations"); -VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) : - m_Allocator(pAllocationCallbacks, 1024) -{ + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); + + return res; } -template VmaAllocation VmaAllocationObjectAllocator::Allocate(Types... args) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator allocator, + uint32_t memoryTypeBits) { - VmaMutexLock mutexLock(m_Mutex); - return m_Allocator.Alloc(std::forward(args)...); + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaCheckCorruption"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CheckCorruption(memoryTypeBits); } -void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( + VmaAllocator allocator, + const VmaAllocation* pAllocations, + size_t allocationCount, + VkBool32* pAllocationsChanged, + const VmaDefragmentationInfo *pDefragmentationInfo, + VmaDefragmentationStats* pDefragmentationStats) { - VmaMutexLock mutexLock(m_Mutex); - m_Allocator.Free(hAlloc); -} + // Deprecated interface, reimplemented using new one. -//////////////////////////////////////////////////////////////////////////////// -// VmaAllocator_T + VmaDefragmentationInfo2 info2 = {}; + info2.allocationCount = (uint32_t)allocationCount; + info2.pAllocations = pAllocations; + info2.pAllocationsChanged = pAllocationsChanged; + if(pDefragmentationInfo != VMA_NULL) + { + info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; + info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; + } + else + { + info2.maxCpuAllocationsToMove = UINT32_MAX; + info2.maxCpuBytesToMove = VK_WHOLE_SIZE; + } + // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. -VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : - m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), - m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), - m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), - m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), - m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), - m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), - m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), - m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), - m_hDevice(pCreateInfo->device), - m_hInstance(pCreateInfo->instance), - m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), - m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? - *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), - m_AllocationObjectAllocator(&m_AllocationCallbacks), - m_HeapSizeLimitMask(0), - m_DeviceMemoryCount(0), - m_PreferredLargeHeapBlockSize(0), - m_PhysicalDevice(pCreateInfo->physicalDevice), - m_CurrentFrameIndex(0), - m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), - m_NextPoolId(0), - m_GlobalMemoryTypeBits(UINT32_MAX) -#if VMA_RECORDING_ENABLED - ,m_pRecorder(VMA_NULL) -#endif -{ - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_UseKhrDedicatedAllocation = false; - m_UseKhrBindMemory2 = false; - } - - if(VMA_DEBUG_DETECT_CORRUPTION) + VmaDefragmentationContext ctx; + VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); + if(res == VK_NOT_READY) { - // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. - VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); + res = vmaDefragmentationEnd( allocator, ctx); } + return res; +} - VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( + VmaAllocator allocator, + const VmaDefragmentationInfo2* pInfo, + VmaDefragmentationStats* pStats, + VmaDefragmentationContext *pContext) +{ + VMA_ASSERT(allocator && pInfo && pContext); - if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) - { -#if !(VMA_DEDICATED_ALLOCATION) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); - } -#endif -#if !(VMA_BIND_MEMORY2) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); - } -#endif - } -#if !(VMA_MEMORY_BUDGET) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); - } -#endif -#if !(VMA_BUFFER_DEVICE_ADDRESS) - if(m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif -#if VMA_VULKAN_VERSION < 1002000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) - { - VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); - } -#endif -#if VMA_VULKAN_VERSION < 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); - } -#endif -#if !(VMA_MEMORY_PRIORITY) - if(m_UseExtMemoryPriority) + // Degenerate case: Nothing to defragment. + if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + return VK_SUCCESS; } -#endif - - memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); - memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); - memset(&m_MemProps, 0, sizeof(m_MemProps)); - - memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); - memset(&m_pSmallBufferBlockVectors, 0, sizeof(m_pSmallBufferBlockVectors)); - memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); - -#if VMA_EXTERNAL_MEMORY - memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); -#endif // #if VMA_EXTERNAL_MEMORY - if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) - { - m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; - m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; - m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; - } + VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); + VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); + VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); - ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); + VMA_DEBUG_LOG("vmaDefragmentationBegin"); - (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); - (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); - VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); + VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); - m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? - pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + return res; +} - m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); +VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( + VmaAllocator allocator, + VmaDefragmentationContext context) +{ + VMA_ASSERT(allocator); -#if VMA_EXTERNAL_MEMORY - if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) - { - memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, - sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); - } -#endif // #if VMA_EXTERNAL_MEMORY + VMA_DEBUG_LOG("vmaDefragmentationEnd"); - if(pCreateInfo->pHeapSizeLimit != VMA_NULL) + if(context != VK_NULL_HANDLE) { - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; - if(limit != VK_WHOLE_SIZE) - { - m_HeapSizeLimitMask |= 1u << heapIndex; - if(limit < m_MemProps.memoryHeaps[heapIndex].size) - { - m_MemProps.memoryHeaps[heapIndex].size = limit; - } - } - } + VMA_DEBUG_GLOBAL_MUTEX_LOCK + return allocator->DefragmentationEnd(context); } - - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + else { - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); - - m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( - this, - VK_NULL_HANDLE, // hParentPool - memTypeIndex, - preferredBlockSize, - 0, - SIZE_MAX, - GetBufferImageGranularity(), - pCreateInfo->frameInUseCount, - false, // explicitBlockSize - false, // linearAlgorithm - 0.5f, // priority (0.5 is the default per Vulkan spec) - GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment - VMA_NULL); // // pMemoryAllocateNext - m_pSmallBufferBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( - this, - VK_NULL_HANDLE, // hParentPool - memTypeIndex, - preferredBlockSize, - 0, - SIZE_MAX, - 1, // bufferImageGranularity forced to 1 !!! - pCreateInfo->frameInUseCount, - false, // explicitBlockSize - false, // linearAlgorithm - 0.5f, // priority (0.5 is the default per Vulkan spec) - GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment - VMA_NULL); // // pMemoryAllocateNext - // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, - // becase minBlockCount is 0. + return VK_SUCCESS; } } -VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context, + VmaDefragmentationPassInfo* pInfo + ) { - VkResult res = VK_SUCCESS; + VMA_ASSERT(allocator); + VMA_ASSERT(pInfo); - if(pCreateInfo->pRecordSettings != VMA_NULL && - !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) - { -#if VMA_RECORDING_ENABLED - m_pRecorder = vma_new(this, VmaRecorder)(); - res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex); - if(res != VK_SUCCESS) - { - return res; - } - m_pRecorder->WriteConfiguration( - m_PhysicalDeviceProperties, - m_MemProps, - m_VulkanApiVersion, - m_UseKhrDedicatedAllocation, - m_UseKhrBindMemory2, - m_UseExtMemoryBudget, - m_UseAmdDeviceCoherentMemory); - m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex()); -#else - VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1."); - return VK_ERROR_FEATURE_NOT_PRESENT; -#endif - } + VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(context == VK_NULL_HANDLE) { - UpdateVulkanBudget(); + pInfo->moveCount = 0; + return VK_SUCCESS; } -#endif // #if VMA_MEMORY_BUDGET - return res; + return allocator->DefragmentationPassBegin(pInfo, context); } -VmaAllocator_T::~VmaAllocator_T() +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator allocator, + VmaDefragmentationContext context) { -#if VMA_RECORDING_ENABLED - if(m_pRecorder != VMA_NULL) - { - m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex()); - vma_delete(this, m_pRecorder); - } -#endif + VMA_ASSERT(allocator); - VMA_ASSERT(m_Pools.IsEmpty()); + VMA_DEBUG_LOG("vmaEndDefragmentationPass"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) - { - if(!m_DedicatedAllocations[memTypeIndex].IsEmpty()) - { - VMA_ASSERT(0 && "Unfreed dedicated allocations found."); - } + if(context == VK_NULL_HANDLE) + return VK_SUCCESS; - vma_delete(this, m_pSmallBufferBlockVectors[memTypeIndex]); - vma_delete(this, m_pBlockVectors[memTypeIndex]); - } + return allocator->DefragmentationPassEnd(context); } -void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer) { -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - ImportVulkanFunctions_Static(); -#endif + VMA_ASSERT(allocator && allocation && buffer); - if(pVulkanFunctions != VMA_NULL) - { - ImportVulkanFunctions_Custom(pVulkanFunctions); - } + VMA_DEBUG_LOG("vmaBindBufferMemory"); -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - ImportVulkanFunctions_Dynamic(); -#endif + VMA_DEBUG_GLOBAL_MUTEX_LOCK - ValidateVulkanFunctions(); + return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); } -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer buffer, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && buffer); -void VmaAllocator_T::ImportVulkanFunctions_Static() + VMA_DEBUG_LOG("vmaBindBufferMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image) { - // Vulkan 1.0 - m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; - m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; - m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; - m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; - m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; - m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; - m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; - m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; - m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; - m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; - m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; - m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; - m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; - m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; - m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; - m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; - - // Vulkan 1.1 -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; - m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; - m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; - m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; - } -#endif -} - -#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1 + VMA_ASSERT(allocator && allocation && image); -void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) -{ - VMA_ASSERT(pVulkanFunctions != VMA_NULL); + VMA_DEBUG_LOG("vmaBindImageMemory"); -#define VMA_COPY_IF_NOT_NULL(funcName) \ - if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); - VMA_COPY_IF_NOT_NULL(vkAllocateMemory); - VMA_COPY_IF_NOT_NULL(vkFreeMemory); - VMA_COPY_IF_NOT_NULL(vkMapMemory); - VMA_COPY_IF_NOT_NULL(vkUnmapMemory); - VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory); - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkCreateBuffer); - VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); - VMA_COPY_IF_NOT_NULL(vkCreateImage); - VMA_COPY_IF_NOT_NULL(vkDestroyImage); - VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); + return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); +} -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); -#endif +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkImage image, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && image); -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); -#endif + VMA_DEBUG_LOG("vmaBindImageMemory2"); -#if VMA_MEMORY_BUDGET - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); -#endif + VMA_DEBUG_GLOBAL_MUTEX_LOCK -#undef VMA_COPY_IF_NOT_NULL + return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); } -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - -void VmaAllocator_T::ImportVulkanFunctions_Dynamic() +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) { -#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ - if(m_VulkanFunctions.memberName == VMA_NULL) \ - m_VulkanFunctions.memberName = \ - (functionPointerType)vkGetInstanceProcAddr(m_hInstance, functionNameString); -#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ - if(m_VulkanFunctions.memberName == VMA_NULL) \ - m_VulkanFunctions.memberName = \ - (functionPointerType)vkGetDeviceProcAddr(m_hDevice, functionNameString); - - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); - VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); - VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); - VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); - VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); - VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); - VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); - VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); - VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); - VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); - VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); - VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + if(pBufferCreateInfo->size == 0) { - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2"); + return VK_ERROR_INITIALIZATION_FAILED; } -#endif - -#if VMA_DEDICATED_ALLOCATION - if(m_UseKhrDedicatedAllocation) + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) { - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; } -#endif -#if VMA_BIND_MEMORY2 - if(m_UseKhrBindMemory2) - { - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); - } -#endif // #if VMA_BIND_MEMORY2 + VMA_DEBUG_LOG("vmaCreateBuffer"); -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) { - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); - } -#endif // #if VMA_MEMORY_BUDGET + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); -#undef VMA_FETCH_DEVICE_FUNC -#undef VMA_FETCH_INSTANCE_FUNC -} + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + pBufferCreateInfo->usage, // dedicatedBufferUsage + VK_NULL_HANDLE, // dedicatedImage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } -#endif // #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} -void VmaAllocator_T::ValidateVulkanFunctions() +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) { - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation); -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) + if(pBufferCreateInfo->size == 0) { - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); + return VK_ERROR_INITIALIZATION_FAILED; } -#endif - -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) { - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; } -#endif -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); - } -#endif -} - -VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) -{ - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; - return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); -} - -VkResult VmaAllocator_T::AllocateMemoryOfType( - VkDeviceSize size, - VkDeviceSize alignment, - bool dedicatedAllocation, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations != VMA_NULL); - VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); - - VmaAllocationCreateInfo finalCreateInfo = createInfo; - - // If memory type is not HOST_VISIBLE, disable MAPPED. - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; - } - // If memory is lazily allocated, it should be always dedicated. - if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) - { - finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } + VMA_DEBUG_LOG("vmaCreateBufferWithAlignment"); - bool isSmallBuffer = dedicatedBuffer != VK_NULL_HANDLE && size <= 4096; // TODO - VmaBlockVector* const blockVector = isSmallBuffer ? m_pSmallBufferBlockVectors[memTypeIndex] : m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(blockVector); + VMA_DEBUG_GLOBAL_MUTEX_LOCK - const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize(); - bool preferDedicatedMemory = - VMA_DEBUG_ALWAYS_DEDICATED_MEMORY || - dedicatedAllocation || - // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. - size > preferredBlockSize / 2; + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; - if(preferDedicatedMemory && - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && - finalCreateInfo.pool == VK_NULL_HANDLE) + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) { - finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) - { - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - return AllocateDedicatedMemory( - size, - suballocType, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - finalCreateInfo.pUserData, - finalCreateInfo.priority, - dedicatedBuffer, - dedicatedBufferUsage, - dedicatedImage, - allocationCount, - pAllocations); - } - } - else - { - VkResult res = blockVector->Allocate( - m_CurrentFrameIndex.load(), - size, - alignment, - finalCreateInfo, - suballocType, - allocationCount, - pAllocations); - if(res == VK_SUCCESS) - { - return res; - } + // 2a. Include minAlignment + vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment); - // 5. Try dedicated memory. - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + pBufferCreateInfo->usage, // dedicatedBufferUsage + VK_NULL_HANDLE, // dedicatedImage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); - // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, - // which can quickly deplete maxMemoryAllocationCount: Don't try dedicated allocations when above - // 3/4 of the maximum allocation count. - if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) + if(res >= 0) { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } - res = AllocateDedicatedMemory( - size, - suballocType, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - finalCreateInfo.pUserData, - finalCreateInfo.priority, - dedicatedBuffer, - dedicatedBufferUsage, - dedicatedImage, - allocationCount, - pAllocations); - if(res == VK_SUCCESS) - { - // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. - VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); - return VK_SUCCESS; - } - else - { - // Everything failed: Return error code. - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; return res; } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; } + return res; } -VkResult VmaAllocator_T::AllocateDedicatedMemory( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - bool withinBudget, - bool map, - bool isUserDataString, - void* pUserData, - float priority, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, - VkImage dedicatedImage, - size_t allocationCount, - VmaAllocation* pAllocations) +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation) { - VMA_ASSERT(allocationCount > 0 && pAllocations); + VMA_ASSERT(allocator); - if(withinBudget) + if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - VmaBudget heapBudget = {}; - GetBudget(&heapBudget, heapIndex, 1); - if(heapBudget.usage + size * allocationCount > heapBudget.budget) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } + return; } - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.memoryTypeIndex = memTypeIndex; - allocInfo.allocationSize = size; + VMA_DEBUG_LOG("vmaDestroyBuffer"); -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - if(dedicatedBuffer != VK_NULL_HANDLE) - { - VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); - dedicatedAllocInfo.buffer = dedicatedBuffer; - VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); - } - else if(dedicatedImage != VK_NULL_HANDLE) - { - dedicatedAllocInfo.image = dedicatedImage; - VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); - } - } -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VMA_DEBUG_GLOBAL_MUTEX_LOCK -#if VMA_BUFFER_DEVICE_ADDRESS - VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; - if(m_UseKhrBufferDeviceAddress) + if(buffer != VK_NULL_HANDLE) { - bool canContainBufferWithDeviceAddress = true; - if(dedicatedBuffer != VK_NULL_HANDLE) - { - canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown - (dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0; - } - else if(dedicatedImage != VK_NULL_HANDLE) - { - canContainBufferWithDeviceAddress = false; - } - if(canContainBufferWithDeviceAddress) - { - allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; - VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); - } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); } -#endif // #if VMA_BUFFER_DEVICE_ADDRESS -#if VMA_MEMORY_PRIORITY - VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; - if(m_UseExtMemoryPriority) + if(allocation != VK_NULL_HANDLE) { - priorityInfo.priority = priority; - VmaPnextChainPushFront(&allocInfo, &priorityInfo); + allocator->FreeMemory( + 1, // allocationCount + &allocation); } -#endif // #if VMA_MEMORY_PRIORITY +} -#if VMA_EXTERNAL_MEMORY - // Attach VkExportMemoryAllocateInfoKHR if necessary. - VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; - exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); - if(exportMemoryAllocInfo.handleTypes != 0) +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkImage* pImage, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); + + if(pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) { - VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + return VK_ERROR_INITIALIZATION_FAILED; } -#endif // #if VMA_EXTERNAL_MEMORY - size_t allocIndex; - VkResult res = VK_SUCCESS; - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - res = AllocateDedicatedMemoryPage( - size, - suballocType, - memTypeIndex, - allocInfo, - map, - isUserDataString, - pUserData, - pAllocations + allocIndex); - if(res != VK_SUCCESS) - { - break; - } - } + VMA_DEBUG_LOG("vmaCreateImage"); - if(res == VK_SUCCESS) - { - // Register them in m_DedicatedAllocations. - { - VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - DedicatedAllocationLinkedList& dedicatedAllocations = m_DedicatedAllocations[memTypeIndex]; - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - dedicatedAllocations.PushBack(pAllocations[allocIndex]); - } - } + VMA_DEBUG_GLOBAL_MUTEX_LOCK - VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); - } - else + *pImage = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if(res >= 0) { - // Free all already created allocations. - while(allocIndex--) - { - VmaAllocation currAlloc = pAllocations[allocIndex]; - VkDeviceMemory hMemory = currAlloc->GetMemory(); + VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. + // 2. Allocate memory using allocator. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(*pImage, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); - if(currAlloc->GetMappedData() != VMA_NULL) + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + UINT32_MAX, // dedicatedBufferUsage + *pImage, // dedicatedImage + *pAllocationCreateInfo, + suballocType, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind image with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); } - */ + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } - FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); - currAlloc->SetUserData(this, VMA_NULL); - m_AllocationObjectAllocator.Free(currAlloc); + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; } - - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; } - return res; } -VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - void* pUserData, - VmaAllocation* pAllocation) +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator allocator, + VkImage image, + VmaAllocation allocation) { - VkDeviceMemory hMemory = VK_NULL_HANDLE; - VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); - if(res < 0) + VMA_ASSERT(allocator); + + if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); - return res; + return; } - void* pMappedData = VMA_NULL; - if(map) + VMA_DEBUG_LOG("vmaDestroyImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(image != VK_NULL_HANDLE) { - res = (*m_VulkanFunctions.vkMapMemory)( - m_hDevice, - hMemory, - 0, - VK_WHOLE_SIZE, - 0, - &pMappedData); - if(res < 0) - { - VMA_DEBUG_LOG(" vkMapMemory FAILED"); - FreeVulkanMemory(memTypeIndex, size, hMemory); - return res; - } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); } - - *pAllocation = m_AllocationObjectAllocator.Allocate(m_CurrentFrameIndex.load(), isUserDataString); - (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size); - (*pAllocation)->SetUserData(this, pUserData); - m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + if(allocation != VK_NULL_HANDLE) { - FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + allocator->FreeMemory( + 1, // allocationCount + &allocation); } +} - return VK_SUCCESS; +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock) +{ + VMA_ASSERT(pCreateInfo && pVirtualBlock); + VMA_ASSERT(pCreateInfo->size > 0); + VMA_DEBUG_LOG("vmaCreateVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo); + VkResult res = (*pVirtualBlock)->Init(); + if(res < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock); + *pVirtualBlock = VK_NULL_HANDLE; + } + return res; } -void VmaAllocator_T::GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock) { -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + if(virtualBlock != VK_NULL_HANDLE) { - VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.buffer = hBuffer; + VMA_DEBUG_LOG("vmaDestroyVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, virtualBlock); + } +} - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE; +} - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - VmaPnextChainPushFront(&memReq2, &memDedicatedReq); +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo); +} - (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); + VMA_DEBUG_LOG("vmaVirtualAllocate"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); +} - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) +{ + if(allocation != VK_NULL_HANDLE) { - (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaVirtualFree"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Free(allocation); } } -void VmaAllocator_T::GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock) { -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.image = hImage; + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaClearVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Clear(); +} - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->SetAllocationUserData(allocation, pUserData); +} - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - VmaPnextChainPushFront(&memReq2, &memDedicatedReq); +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatInfo* VMA_NOT_NULL pStatInfo) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStatInfo != VMA_NULL); + VMA_DEBUG_LOG("vmaCalculateVirtualBlockStats"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->CalculateStats(*pStatInfo); +} - (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); +#if VMA_STATS_STRING_ENABLED - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks(); + VmaStringBuilder sb(allocationCallbacks); + virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb); + *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength()); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString) +{ + if(pStatsString != VMA_NULL) { - (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString); } } +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_PUBLIC_INTERFACE +#endif // VMA_IMPLEMENTATION -VkResult VmaAllocator_T::AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkBufferUsageFlags dedicatedBufferUsage, - VkImage dedicatedImage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); +/** +\page quick_start Quick start - VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); +\section quick_start_project_setup Project setup - if(vkMemReq.size == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && - (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(requiresDedicatedAllocation) - { - if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(createInfo.pool != VK_NULL_HANDLE) - { - VMA_ASSERT(0 && "Pool specified while dedicated allocation is required."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - if((createInfo.pool != VK_NULL_HANDLE) && - ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid."); - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - - if(createInfo.pool != VK_NULL_HANDLE) - { - VmaAllocationCreateInfo createInfoForPool = createInfo; - // If memory type is not HOST_VISIBLE, disable MAPPED. - if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; - } - - return createInfo.pool->m_BlockVector.Allocate( - m_CurrentFrameIndex.load(), - vkMemReq.size, - vkMemReq.alignment, - createInfoForPool, - suballocType, - allocationCount, - pAllocations); - } - else - { - // Bit mask of memory Vulkan types acceptable for this allocation. - uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; - uint32_t memTypeIndex = UINT32_MAX; - VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); - if(res == VK_SUCCESS) - { - res = AllocateMemoryOfType( - vkMemReq.size, - vkMemReq.alignment, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedBufferUsage, - dedicatedImage, - createInfo, - memTypeIndex, - suballocType, - allocationCount, - pAllocations); - // Succeeded on first try. - if(res == VK_SUCCESS) - { - return res; - } - // Allocation from this memory type failed. Try other compatible memory types. - else - { - for(;;) - { - // Remove old memTypeIndex from list of possibilities. - memoryTypeBits &= ~(1u << memTypeIndex); - // Find alternative memTypeIndex. - res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex); - if(res == VK_SUCCESS) - { - res = AllocateMemoryOfType( - vkMemReq.size, - vkMemReq.alignment, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedBufferUsage, - dedicatedImage, - createInfo, - memTypeIndex, - suballocType, - allocationCount, - pAllocations); - // Allocation from this alternative memory type succeeded. - if(res == VK_SUCCESS) - { - return res; - } - // else: Allocation from this memory type failed. Try next one - next loop iteration. - } - // No other matching memory type index could be found. - else - { - // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - } - } - // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. - else - return res; - } -} +Vulkan Memory Allocator comes in form of a "stb-style" single header file. +You don't need to build it as a separate library project. +You can add this file directly to your project and submit it to code repository next to your other source files. -void VmaAllocator_T::FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations); +"Single header" doesn't mean that everything is contained in C/C++ declarations, +like it tends to be in case of inline functions or C++ templates. +It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. +If you don't do it properly, you will get linker errors. - for(size_t allocIndex = allocationCount; allocIndex--; ) - { - VmaAllocation allocation = pAllocations[allocIndex]; +To do it properly: - if(allocation != VK_NULL_HANDLE) - { - if(TouchAllocation(allocation)) - { - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); - } +-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. + This includes declarations of all members of the library. +-# In exactly one CPP file define following macro before this include. + It enables also internal definitions. - switch(allocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaBlockVector* pBlockVector = VMA_NULL; - VmaPool hPool = allocation->GetBlock()->GetParentPool(); - if(hPool != VK_NULL_HANDLE) - { - pBlockVector = &hPool->m_BlockVector; - } - else - { - pBlockVector = allocation->GetBlock()->GetParentBlockVector(); - } - pBlockVector->Free(allocation); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - FreeDedicatedMemory(allocation); - break; - default: - VMA_ASSERT(0); - } - } +\code +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" +\endcode - // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes. - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); - allocation->SetUserData(this, VMA_NULL); - m_AllocationObjectAllocator.Free(allocation); - } - } -} +It may be a good idea to create dedicated CPP file just for this purpose. -void VmaAllocator_T::CalculateStats(VmaStats* pStats) -{ - // Initialize. - InitStatInfo(pStats->total); - for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) - InitStatInfo(pStats->memoryType[i]); - for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) - InitStatInfo(pStats->memoryHeap[i]); +This library includes header ``, which in turn +includes `` on Windows. If you need some specific macros defined +before including these headers (like `WIN32_LEAN_AND_MEAN` or +`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define +them before every `#include` of this library. - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector); - pBlockVector->AddStats(pStats); +\note This library is written in C++, but has C-compatible interface. +Thus you can include and use vk_mem_alloc.h in C or C++ code, but full +implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. - VmaBlockVector* const pSmallBufferBlockVector = m_pSmallBufferBlockVectors[memTypeIndex]; - VMA_ASSERT(pSmallBufferBlockVector); - pSmallBufferBlockVector->AddStats(pStats); - } - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - pool->m_BlockVector.AddStats(pStats); - } - } +\section quick_start_initialization Initialization - // Process dedicated allocations. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - DedicatedAllocationLinkedList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; - for(VmaAllocation alloc = dedicatedAllocList.Front(); - alloc != VMA_NULL; alloc = dedicatedAllocList.GetNext(alloc)) - { - VmaStatInfo allocationStatInfo; - alloc->DedicatedAllocCalcStatsInfo(allocationStatInfo); - VmaAddStatInfo(pStats->total, allocationStatInfo); - VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); - VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); - } - } +At program startup: - // Postprocess. - VmaPostprocessCalcStatInfo(pStats->total); - for(size_t i = 0; i < GetMemoryTypeCount(); ++i) - VmaPostprocessCalcStatInfo(pStats->memoryType[i]); - for(size_t i = 0; i < GetMemoryHeapCount(); ++i) - VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); -} +-# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object. +-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by + calling vmaCreateAllocator(). -void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount) -{ -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - if(m_Budget.m_OperationsSinceBudgetFetch < 30) - { - VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); - for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) - { - const uint32_t heapIndex = firstHeap + i; +Only members `physicalDevice`, `device`, `instance` are required. +However, you should inform the library which Vulkan version do you use by setting +VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable +by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address). +Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. - outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; +You may need to configure importing Vulkan functions. There are 3 ways to do this: + +-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows): + - You don't need to do anything. + - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default. +-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`, + `vkGetDeviceProcAddr` (this is the option presented in the example below): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1. + - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr, + VmaVulkanFunctions::vkGetDeviceProcAddr. + - The library will fetch pointers to all other functions it needs internally. +-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like + [Volk](https://github.com/zeux/volk): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0. + - Pass these pointers via structure #VmaVulkanFunctions. - if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) - { - outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] + - outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; - } - else - { - outBudget->usage = 0; - } +\code +VmaVulkanFunctions vulkanFunctions = {}; +vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; +vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; - // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. - outBudget->budget = VMA_MIN( - m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); - } - } - else - { - UpdateVulkanBudget(); // Outside of mutex lock - GetBudget(outBudget, firstHeap, heapCount); // Recursion - } - } - else -#endif - { - for(uint32_t i = 0; i < heapCount; ++i, ++outBudget) - { - const uint32_t heapIndex = firstHeap + i; +VmaAllocatorCreateInfo allocatorCreateInfo = {}; +allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; +allocatorCreateInfo.physicalDevice = physicalDevice; +allocatorCreateInfo.device = device; +allocatorCreateInfo.instance = instance; +allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; - outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; +VmaAllocator allocator; +vmaCreateAllocator(&allocatorCreateInfo, &allocator); +\endcode - outBudget->usage = outBudget->blockBytes; - outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. - } - } -} -static const uint32_t VMA_VENDOR_ID_AMD = 4098; +\section quick_start_resource_allocation Resource allocation -VkResult VmaAllocator_T::DefragmentationBegin( - const VmaDefragmentationInfo2& info, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext* pContext) -{ - if(info.pAllocationsChanged != VMA_NULL) - { - memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); - } +When you want to create a buffer or image: - *pContext = vma_new(this, VmaDefragmentationContext_T)( - this, m_CurrentFrameIndex.load(), info.flags, pStats); +-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. +-# Fill VmaAllocationCreateInfo structure. +-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory + already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory. - (*pContext)->AddPools(info.poolCount, info.pPools); - (*pContext)->AddAllocations( - info.allocationCount, info.pAllocations, info.pAllocationsChanged); +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - VkResult res = (*pContext)->Defragment( - info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, - info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, - info.commandBuffer, pStats, info.flags); +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - if(res != VK_NOT_READY) - { - vma_delete(this, *pContext); - *pContext = VMA_NULL; - } +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode - return res; -} +Don't forget to destroy your objects when no longer needed: -VkResult VmaAllocator_T::DefragmentationEnd( - VmaDefragmentationContext context) -{ - vma_delete(this, context); - return VK_SUCCESS; -} +\code +vmaDestroyBuffer(allocator, buffer, allocation); +vmaDestroyAllocator(allocator); +\endcode -VkResult VmaAllocator_T::DefragmentationPassBegin( - VmaDefragmentationPassInfo* pInfo, - VmaDefragmentationContext context) -{ - return context->DefragmentPassBegin(pInfo); -} -VkResult VmaAllocator_T::DefragmentationPassEnd( - VmaDefragmentationContext context) -{ - return context->DefragmentPassEnd(); -} +\page choosing_memory_type Choosing memory type -void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) -{ - if(hAllocation->CanBecomeLost()) - { - /* - Warning: This is a carefully designed algorithm. - Do not modify unless you really know what you're doing :) - */ - const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - pAllocationInfo->memoryType = UINT32_MAX; - pAllocationInfo->deviceMemory = VK_NULL_HANDLE; - pAllocationInfo->offset = 0; - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = VMA_NULL; - pAllocationInfo->pUserData = hAllocation->GetUserData(); - return; - } - else if(localLastUseFrameIndex == localCurrFrameIndex) - { - pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); - pAllocationInfo->deviceMemory = hAllocation->GetMemory(); - pAllocationInfo->offset = hAllocation->GetOffset(); - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = VMA_NULL; - pAllocationInfo->pUserData = hAllocation->GetUserData(); - return; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } - } - else - { -#if VMA_STATS_STRING_ENABLED - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); - if(localLastUseFrameIndex == localCurrFrameIndex) - { - break; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } -#endif +Physical devices in Vulkan support various combinations of memory heaps and +types. Help with choosing correct and optimal memory type for your specific +resource is one of the key features of this library. You can use it by filling +appropriate members of VmaAllocationCreateInfo structure, as described below. +You can also combine multiple methods. - pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); - pAllocationInfo->deviceMemory = hAllocation->GetMemory(); - pAllocationInfo->offset = hAllocation->GetOffset(); - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = hAllocation->GetMappedData(); - pAllocationInfo->pUserData = hAllocation->GetUserData(); - } -} +-# If you just want to find memory type index that meets your requirements, you + can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(), + vmaFindMemoryTypeIndexForImageInfo(). +-# If you want to allocate a region of device memory without association with any + specific image or buffer, you can use function vmaAllocateMemory(). Usage of + this function is not recommended and usually not needed. + vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, + which may be useful for sparse binding. +-# If you already have a buffer or an image created, you want to allocate memory + for it and then you will bind it yourself, you can use function + vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). + For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() + or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). +-# If you want to create a buffer or an image, allocate memory for it and bind + them together, all in one call, you can use function vmaCreateBuffer(), + vmaCreateImage(). This is the easiest and recommended way to use this library. -bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) -{ - // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo. - if(hAllocation->CanBecomeLost()) - { - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) - { - return false; - } - else if(localLastUseFrameIndex == localCurrFrameIndex) - { - return true; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } - } - else - { -#if VMA_STATS_STRING_ENABLED - uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load(); - uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex(); - for(;;) - { - VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST); - if(localLastUseFrameIndex == localCurrFrameIndex) - { - break; - } - else // Last use time earlier than current time. - { - if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) - { - localLastUseFrameIndex = localCurrFrameIndex; - } - } - } -#endif +When using 3. or 4., the library internally queries Vulkan for memory types +supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) +and uses only one of these types. - return true; - } -} +If no memory type can be found that meets all the requirements, these functions +return `VK_ERROR_FEATURE_NOT_PRESENT`. -VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) -{ - VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); +You can leave VmaAllocationCreateInfo structure completely filled with zeros. +It means no requirements are specified for memory type. +It is valid, although not very useful. - VmaPoolCreateInfo newCreateInfo = *pCreateInfo; +\section choosing_memory_type_usage Usage - // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. - if(pCreateInfo->pMemoryAllocateNext) - { - VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); - } +The easiest way to specify memory requirements is to fill member +VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. +It defines high level, common usage types. +For more details, see description of this enum. - if(newCreateInfo.maxBlockCount == 0) - { - newCreateInfo.maxBlockCount = SIZE_MAX; - } - if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - // Memory type index out of range or forbidden. - if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || - ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - if(newCreateInfo.minAllocationAlignment > 0) - { - VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); - } +For example, if you want to create a uniform buffer that will be filled using +transfer only once or infrequently and used for rendering every frame, you can +do it using following code: - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; - VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); - if(res != VK_SUCCESS) - { - vma_delete(this, *pPool); - *pPool = VMA_NULL; - return res; - } +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode - // Add to m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - (*pPool)->SetId(m_NextPoolId++); - m_Pools.PushBack(*pPool); - } +\section choosing_memory_type_required_preferred_flags Required and preferred flags - return VK_SUCCESS; -} +You can specify more detailed requirements by filling members +VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags +with a combination of bits from enum `VkMemoryPropertyFlags`. For example, +if you want to create a buffer that will be persistently mapped on host (so it +must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, +use following code: -void VmaAllocator_T::DestroyPool(VmaPool pool) -{ - // Remove from m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - m_Pools.Remove(pool); - } +\code +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; +allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; - vma_delete(this, pool); -} +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode -void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) -{ - pool->m_BlockVector.GetPoolStats(pPoolStats); -} +A memory type is chosen that has all the required flags and as many preferred +flags set as possible. -void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) -{ - m_CurrentFrameIndex.store(frameIndex); +If you use VmaAllocationCreateInfo::usage, it is just internally converted to +a set of required and preferred flags. -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - UpdateVulkanBudget(); - } -#endif // #if VMA_MEMORY_BUDGET -} +\section choosing_memory_type_explicit_memory_types Explicit memory types -void VmaAllocator_T::MakePoolAllocationsLost( - VmaPool hPool, - size_t* pLostAllocationCount) -{ - hPool->m_BlockVector.MakePoolAllocationsLost( - m_CurrentFrameIndex.load(), - pLostAllocationCount); -} +If you inspected memory types available on the physical device and you have +a preference for memory types that you want to use, you can fill member +VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set +means that a memory type with that index is allowed to be used for the +allocation. Special value 0, just like `UINT32_MAX`, means there are no +restrictions to memory type index. -VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) -{ - return hPool->m_BlockVector.CheckCorruption(); -} +Please note that this member is NOT just a memory type index. +Still you can use it to choose just one, specific memory type. +For example, if you already determined that your buffer should be created in +memory type 2, use following code: -VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) -{ - VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; +\code +uint32_t memoryTypeIndex = 2; - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if(((1u << memTypeIndex) & memoryTypeBits) != 0) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector); - VkResult localRes = pBlockVector->CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.memoryTypeBits = 1u << memoryTypeIndex; - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) - { - VkResult localRes = pool->m_BlockVector.CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } - } +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode - return finalRes; -} -void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation) -{ - *pAllocation = m_AllocationObjectAllocator.Allocate(VMA_FRAME_INDEX_LOST, false); - (*pAllocation)->InitLost(); -} +\section choosing_memory_type_custom_memory_pools Custom memory pools -// An object that increments given atomic but decrements it back in the destructor unless Commit() is called. -template -struct AtomicTransactionalIncrement -{ -public: - typedef std::atomic AtomicT; - ~AtomicTransactionalIncrement() - { - if(m_Atomic) - --(*m_Atomic); - } - T Increment(AtomicT* atomic) - { - m_Atomic = atomic; - return m_Atomic->fetch_add(1); - } - void Commit() - { - m_Atomic = nullptr; - } +If you allocate from custom memory pool, all the ways of specifying memory +requirements described above are not applicable and the aforementioned members +of VmaAllocationCreateInfo structure are ignored. Memory type is selected +explicitly when creating the pool and then used to make all the allocations from +that pool. For further details, see \ref custom_memory_pools. -private: - AtomicT* m_Atomic = nullptr; -}; +\section choosing_memory_type_dedicated_allocations Dedicated allocations -VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) -{ - AtomicTransactionalIncrement deviceMemoryCountIncrement; - const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); -#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT - if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) - { - return VK_ERROR_TOO_MANY_OBJECTS; - } -#endif +Memory for allocations is reserved out of larger block of `VkDeviceMemory` +allocated from Vulkan internally. That is the main feature of this whole library. +You can still request a separate memory block to be created for an allocation, +just like you would do in a trivial solution without using any allocator. +In that case, a buffer or image is always bound to that memory at offset 0. +This is called a "dedicated allocation". +You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +The library can also internally decide to use dedicated allocation in some cases, e.g.: - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); +- When the size of the allocation is large. +- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled + and it reports that dedicated allocation is required or recommended for the resource. +- When allocation of next big memory block fails due to not enough device memory, + but allocation with the exact requested size succeeds. - // HeapSizeLimit is in effect for this heap. - if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) - { - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; - for(;;) - { - const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; - if(blockBytesAfterAllocation > heapSize) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) - { - break; - } - } - } - else - { - m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; - } - // VULKAN CALL vkAllocateMemory. - VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); +\page memory_mapping Memory mapping - if(res == VK_SUCCESS) - { -#if VMA_MEMORY_BUDGET - ++m_Budget.m_OperationsSinceBudgetFetch; -#endif +To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, +to be able to read from it or write to it in CPU code. +Mapping is possible only of memory allocated from a memory type that has +`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. +You can use them directly with memory allocated by this library, +but it is not recommended because of following issue: +Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. +This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. +Because of this, Vulkan Memory Allocator provides following facilities: - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); - } +\section memory_mapping_mapping_functions Mapping functions - deviceMemoryCountIncrement.Commit(); - } - else - { - m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; - } +The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). +They are safer and more convenient to use than standard Vulkan functions. +You can map an allocation multiple times simultaneously - mapping is reference-counted internally. +You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. +The way it is implemented is that the library always maps entire memory block, not just region of the allocation. +For further details, see description of vmaMapMemory() function. +Example: - return res; -} +\code +// Having these objects initialized: -void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) +struct ConstantBuffer { - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); - } + ... +}; +ConstantBuffer constantBufferData; - // VULKAN CALL vkFreeMemory. - (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); +VmaAllocator allocator; +VkBuffer constantBuffer; +VmaAllocation constantBufferAllocation; - m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; +// You can map and fill your buffer using following code: - --m_DeviceMemoryCount; -} +void* mappedData; +vmaMapMemory(allocator, constantBufferAllocation, &mappedData); +memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); +vmaUnmapMemory(allocator, constantBufferAllocation); +\endcode -VkResult VmaAllocator_T::BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) - { - VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.buffer = buffer; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); - } -} +When mapping, you may see a warning from Vulkan validation layer similar to this one: -VkResult VmaAllocator_T::BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) - { - VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.image = image; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); - } -} +Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. -VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) -{ - if(hAllocation->CanBecomeLost()) - { - return VK_ERROR_MEMORY_MAP_FAILED; - } +It happens because the library maps entire `VkDeviceMemory` block, where different +types of images and buffers may end up together, especially on GPUs with unified memory like Intel. +You can safely ignore it if you are sure you access only memory of the intended +object that you wanted to map. - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - char *pBytes = VMA_NULL; - VkResult res = pBlock->Map(this, 1, (void**)&pBytes); - if(res == VK_SUCCESS) - { - *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); - hAllocation->BlockAllocMap(); - } - return res; - } - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - return hAllocation->DedicatedAllocMap(this, ppData); - default: - VMA_ASSERT(0); - return VK_ERROR_MEMORY_MAP_FAILED; - } -} -void VmaAllocator_T::Unmap(VmaAllocation hAllocation) -{ - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - hAllocation->BlockAllocUnmap(); - pBlock->Unmap(this, 1); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - hAllocation->DedicatedAllocUnmap(this); - break; - default: - VMA_ASSERT(0); - } -} +\section memory_mapping_persistently_mapped_memory Persistently mapped memory -VkResult VmaAllocator_T::BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) +Kepping your memory persistently mapped is generally OK in Vulkan. +You don't need to unmap it before using its data on the GPU. +The library provides a special feature designed for that: +Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in +VmaAllocationCreateInfo::flags stay mapped all the time, +so you can just access CPU pointer to it any time +without a need to call any "map" or "unmap" function. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +// Buffer is already mapped. You can access its memory. +memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +\endcode + +There are some exceptions though, when you should consider mapping memory only for a short period of time: + +- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2), + device is discrete AMD GPU, + and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory + (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU), + then whenever a memory block allocated from this memory type stays mapped + for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this + block is migrated by WDDM to system RAM, which degrades performance. It doesn't + matter if that particular memory block is actually used by the command buffer + being submitted. +- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools. + +\section memory_mapping_cache_control Cache flush and invalidate + +Memory in Vulkan doesn't need to be unmapped before using it on GPU, +but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, +you need to manually **invalidate** cache before reading of mapped pointer +and **flush** cache after writing to mapped pointer. +Map/unmap operations don't do that automatically. +Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, +`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient +functions that refer to given allocation object: vmaFlushAllocation(), +vmaInvalidateAllocation(), +or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). + +Regions of memory specified for flush/invalidate must be aligned to +`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. +In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations +within blocks are aligned to this value, so their offsets are always multiply of +`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + +Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`. + +Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA) +currently provide `HOST_COHERENT` flag on all memory types that are +`HOST_VISIBLE`, so on this platform you may not need to bother. + +\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable + +It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping) +despite it wasn't explicitly requested. +For example, application may work on integrated graphics with unified memory (like Intel) or +allocation from video memory might have failed, so the library chose system memory as fallback. + +You can detect this case and map such allocation to access its memory on CPU directly, +instead of launching a transfer operation. +In order to do that: call vmaGetAllocationMemoryProperties() +and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + +VkBuffer buf; +VmaAllocation alloc; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); + +VkMemoryPropertyFlags memFlags; +vmaGetAllocationMemoryProperties(allocator, alloc, &memFlags); +if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { - VkResult res = VK_SUCCESS; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?"); - res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; + // Allocation ended up in mappable memory. You can map it and access it directly. + void* mappedData; + vmaMapMemory(allocator, alloc, &mappedData); + memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); + vmaUnmapMemory(allocator, alloc); } - -VkResult VmaAllocator_T::BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) +else { - VkResult res = VK_SUCCESS; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?"); - res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. } +\endcode -VkResult VmaAllocator_T::FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op) -{ - VkResult res = VK_SUCCESS; +You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations +that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY). +If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly. +If not, the flag is just ignored. +Example: - VkMappedMemoryRange memRange = {}; - if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) - { - switch(op) - { - case VMA_CACHE_FLUSH: - res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - case VMA_CACHE_INVALIDATE: - res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - default: - VMA_ASSERT(0); - } - } - // else: Just ignore this call. - return res; -} +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; -VkResult VmaAllocator_T::FlushOrInvalidateAllocations( - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, const VkDeviceSize* sizes, - VMA_CACHE_OPERATION op) -{ - typedef VmaStlAllocator RangeAllocator; - typedef VmaSmallVector RangeVector; - RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; - for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - const VmaAllocation alloc = allocations[allocIndex]; - const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; - const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; - VkMappedMemoryRange newRange; - if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) - { - ranges.push_back(newRange); - } - } +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - VkResult res = VK_SUCCESS; - if(!ranges.empty()) - { - switch(op) - { - case VMA_CACHE_FLUSH: - res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); - break; - case VMA_CACHE_INVALIDATE: - res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); - break; - default: - VMA_ASSERT(0); - } - } - // else: Just ignore this call. - return res; +if(allocInfo.pMappedData != nullptr) +{ + // Allocation ended up in mappable memory. + // It is persistently mapped. You can access it directly. + memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); } - -void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) +else { - VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + // Allocation ended up in non-mappable memory. + // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer. +} +\endcode - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - { - VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - DedicatedAllocationLinkedList& dedicatedAllocations = m_DedicatedAllocations[memTypeIndex]; - dedicatedAllocations.Remove(allocation); - } - VkDeviceMemory hMemory = allocation->GetMemory(); +\page staying_within_budget Staying within budget - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. +When developing a graphics-intensive game or program, it is important to avoid allocating +more GPU memory than it is physically available. When the memory is over-committed, +various bad things can happen, depending on the specific GPU, graphics driver, and +operating system: - if(allocation->GetMappedData() != VMA_NULL) - { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); - } - */ +- It may just work without any problems. +- The application may slow down because some memory blocks are moved to system RAM + and the GPU has to access them through PCI Express bus. +- A new allocation may take very long time to complete, even few seconds, and possibly + freeze entire system. +- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` + returned somewhere later. + +\section staying_within_budget_querying_for_budget Querying for budget + +To query for current memory usage and available budget, use function vmaGetHeapBudgets(). +Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. + +Please note that this function returns different information and works faster than +vmaCalculateStats(). vmaGetHeapBudgets() can be called every frame or even before every +allocation, while vmaCalculateStats() is intended to be used rarely, +only to obtain statistical information, e.g. for debugging purposes. + +It is recommended to use VK_EXT_memory_budget device extension to obtain information +about the budget from Vulkan device. VMA is able to use this extension automatically. +When not enabled, the allocator behaves same way, but then it estimates current usage +and available budget based on its internal information and Vulkan memory heap sizes, +which may be less precise. In order to use this extension: + +1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 + required by it are available and enable them. Please note that the first is a device + extension and the second is instance extension! +2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. +3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from + Vulkan inside of it to avoid overhead of querying it with every allocation. + +\section staying_within_budget_controlling_memory_usage Controlling memory usage + +There are many ways in which you can try to stay within the budget. + +First, when making new allocation requires allocating a new memory block, the library +tries not to exceed the budget automatically. If a block with default recommended size +(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even +dedicated memory for just this resource. + +If the size of the requested resource plus current memory usage is more than the +budget, by default the library still tries to create it, leaving it to the Vulkan +implementation whether the allocation succeeds or fails. You can change this behavior +by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is +not made if it would exceed the budget or if the budget is already exceeded. +The allocation then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag +when creating resources that are not essential for the application (e.g. the texture +of a specific object) and not to pass it when creating critically important resources +(e.g. render targets). + +Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure +a new allocation is created only when it fits inside one of the existing memory blocks. +If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +This also ensures that the function call is very fast because it never goes to Vulkan +to obtain a new block. + +Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount +set to more than 0 will try to allocate memory blocks without checking whether they +fit within budget. + + +\page resource_aliasing Resource aliasing (overlap) + +New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory +management, give an opportunity to alias (overlap) multiple resources in the +same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). +It can be useful to save video memory, but it must be used with caution. + +For example, if you know the flow of your whole render frame in advance, you +are going to use some intermediate textures or buffers only during a small range of render passes, +and you know these ranges don't overlap in time, you can bind these resources to +the same place in memory, even if they have completely different parameters (width, height, format etc.). + +![Resource aliasing (overlap)](../gfx/Aliasing.png) + +Such scenario is possible using VMA, but you need to create your images manually. +Then you need to calculate parameters of an allocation to be made using formula: + +- allocation size = max(size of each image) +- allocation alignment = max(alignment of each image) +- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) + +Following example shows two different images bound to the same place in memory, +allocated to fit largest of them. + +\code +// A 512x512 texture to be sampled. +VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img1CreateInfo.extent.width = 512; +img1CreateInfo.extent.height = 512; +img1CreateInfo.extent.depth = 1; +img1CreateInfo.mipLevels = 10; +img1CreateInfo.arrayLayers = 1; +img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; +img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; +img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +// A full screen texture to be used as color attachment. +VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img2CreateInfo.extent.width = 1920; +img2CreateInfo.extent.height = 1080; +img2CreateInfo.extent.depth = 1; +img2CreateInfo.mipLevels = 1; +img2CreateInfo.arrayLayers = 1; +img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VkImage img1; +res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); +VkImage img2; +res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); + +VkMemoryRequirements img1MemReq; +vkGetImageMemoryRequirements(device, img1, &img1MemReq); +VkMemoryRequirements img2MemReq; +vkGetImageMemoryRequirements(device, img2, &img2MemReq); + +VkMemoryRequirements finalMemReq = {}; +finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); +finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); +finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; +// Validate if(finalMemReq.memoryTypeBits != 0) + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; + +VmaAllocation alloc; +res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); + +res = vmaBindImageMemory(allocator, alloc, img1); +res = vmaBindImageMemory(allocator, alloc, img2); + +// You can use img1, img2 here, but not at the same time! + +vmaFreeMemory(allocator, alloc); +vkDestroyImage(allocator, img2, nullptr); +vkDestroyImage(allocator, img1, nullptr); +\endcode + +Remember that using resources that alias in memory requires proper synchronization. +You need to issue a memory barrier to make sure commands that use `img1` and `img2` +don't overlap on GPU timeline. +You also need to treat a resource after aliasing as uninitialized - containing garbage data. +For example, if you use `img1` and then want to use `img2`, you need to issue +an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. + +Additional considerations: + +- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. +See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. +- You can create more complex layout where different images and buffers are bound +at different offsets inside one large allocation. For example, one can imagine +a big texture used in some render passes, aliasing with a set of many small buffers +used between in some further passes. To bind a resource at non-zero offset of an allocation, +use vmaBindBufferMemory2() / vmaBindImageMemory2(). +- Before allocating memory for the resources you want to alias, check `memoryTypeBits` +returned in memory requirements of each resource to make sure the bits overlap. +Some GPUs may expose multiple memory types suitable e.g. only for buffers or +images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your +resources may be disjoint. Aliasing them is not possible in that case. + + +\page custom_memory_pools Custom memory pools + +A memory pool contains a number of `VkDeviceMemory` blocks. +The library automatically creates and manages default pool for each memory type available on the device. +Default memory pool automatically grows in size. +Size of allocated blocks is also variable and managed automatically. + +You can create custom pool and allocate memory out of it. +It can be useful if you want to: + +- Keep certain kind of allocations separate from others. +- Enforce particular, fixed size of Vulkan memory blocks. +- Limit maximum amount of Vulkan memory allocated for that pool. +- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. +- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in + #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain. + +To use custom memory pools: + +-# Fill VmaPoolCreateInfo structure. +-# Call vmaCreatePool() to obtain #VmaPool handle. +-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. + You don't need to specify any other parameters of this structure, like `usage`. + +Example: + +\code +// Create a pool that can have at most 2 blocks, 128 MiB each. +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = ... +poolCreateInfo.blockSize = 128ull * 1024 * 1024; +poolCreateInfo.maxBlockCount = 2; + +VmaPool pool; +vmaCreatePool(allocator, &poolCreateInfo, &pool); + +// Allocate a buffer out of it. +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 1024; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.pool = pool; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); +\endcode + +You have to free all allocations made from this pool before destroying it. + +\code +vmaDestroyBuffer(allocator, buf, alloc); +vmaDestroyPool(allocator, pool); +\endcode + +New versions of this library support creating dedicated allocations in custom pools. +It is supported only when VmaPoolCreateInfo::blockSize = 0. +To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and +VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + +\section custom_memory_pools_MemTypeIndex Choosing memory type index + +When creating a pool, you must explicitly specify memory type index. +To find the one suitable for your buffers or images, you can use helper functions +vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). +You need to provide structures with example parameters of buffers or images +that you are going to create in that pool. + +\code +VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +exampleBufCreateInfo.size = 1024; // Whatever. +exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed. + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed. + +uint32_t memTypeIndex; +vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +// ... +\endcode + +When creating buffers/images allocated in that pool, provide following parameters: + +- `VkBufferCreateInfo`: Prefer to pass same parameters as above. + Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. + Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers + or the other way around. +- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. + Other members are ignored anyway. + +\section linear_algorithm Linear allocation algorithm + +Each Vulkan memory block managed by this library has accompanying metadata that +keeps track of used and unused regions. By default, the metadata structure and +algorithm tries to find best place for new allocations among free regions to +optimize memory usage. This way you can allocate and free objects in any order. + +![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + +Sometimes there is a need to use simpler, linear allocation algorithm. You can +create custom pool that uses such algorithm by adding flag +#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. Then an alternative metadata management is used. It always +creates new allocations after last one and doesn't reuse free regions after +allocations freed in the middle. It results in better allocation performance and +less memory consumed by metadata. + +![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) + +With this one flag, you can create a custom pool that can be used in many ways: +free-at-once, stack, double stack, and ring buffer. See below for details. +You don't need to specify explicitly which of these options you are going to use - it is detected automatically. + +\subsection linear_algorithm_free_at_once Free-at-once + +In a pool that uses linear algorithm, you still need to free all the allocations +individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free +them in any order. New allocations are always made after last one - free space +in the middle is not reused. However, when you release all the allocation and +the pool becomes empty, allocation starts from the beginning again. This way you +can use linear algorithm to speed up creation of allocations that you are going +to release all at once. + +![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) - FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. - VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); -} +\subsection linear_algorithm_stack Stack -uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const -{ - VkBufferCreateInfo dummyBufCreateInfo; - VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); +When you free an allocation that was created last, its space can be reused. +Thanks to this, if you always release allocations in the order opposite to their +creation (LIFO - Last In First Out), you can achieve behavior of a stack. - uint32_t memoryTypeBits = 0; +![Stack](../gfx/Linear_allocator_4_stack.png) - // Create buffer. - VkBuffer buf = VK_NULL_HANDLE; - VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( - m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); - if(res == VK_SUCCESS) - { - // Query for supported memory types. - VkMemoryRequirements memReq; - (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); - memoryTypeBits = memReq.memoryTypeBits; +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. - // Destroy buffer. - (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); - } +\subsection linear_algorithm_double_stack Double stack - return memoryTypeBits; -} +The space reserved by a custom pool with linear algorithm may be used by two +stacks: -uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const -{ - // Make sure memory information is already fetched. - VMA_ASSERT(GetMemoryTypeCount() > 0); +- First, default one, growing up from offset 0. +- Second, "upper" one, growing down from the end towards lower offsets. - uint32_t memoryTypeBits = UINT32_MAX; +To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT +to VmaAllocationCreateInfo::flags. - if(!m_UseAmdDeviceCoherentMemory) - { - // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) - { - memoryTypeBits &= ~(1u << memTypeIndex); - } - } - } +![Double stack](../gfx/Linear_allocator_7_double_stack.png) - return memoryTypeBits; -} +Double stack is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. -bool VmaAllocator_T::GetFlushOrInvalidateRange( - VmaAllocation allocation, - VkDeviceSize offset, VkDeviceSize size, - VkMappedMemoryRange& outRange) const -{ - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) - { - const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; - const VkDeviceSize allocationSize = allocation->GetSize(); - VMA_ASSERT(offset <= allocationSize); +When the two stacks' ends meet so there is not enough space between them for a +new allocation, such allocation fails with usual +`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. - outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; - outRange.pNext = VMA_NULL; - outRange.memory = allocation->GetMemory(); +\subsection linear_algorithm_ring_buffer Ring buffer - switch(allocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - outRange.size = allocationSize - outRange.offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - outRange.size = VMA_MIN( - VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), - allocationSize - outRange.offset); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - // 1. Still within this allocation. - outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - size = allocationSize - offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - } - outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); +When you free some allocations from the beginning and there is not enough free space +for a new one at the end of a pool, allocator's "cursor" wraps around to the +beginning and starts allocation there. Thanks to this, if you always release +allocations in the same order as you created them (FIFO - First In First Out), +you can achieve behavior of a ring buffer / queue. - // 2. Adjust to whole block. - const VkDeviceSize allocationOffset = allocation->GetOffset(); - VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); - const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); - outRange.offset += allocationOffset; - outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); +![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) - break; - } - default: - VMA_ASSERT(0); - } - return true; - } - return false; -} +Ring buffer is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. -#if VMA_MEMORY_BUDGET +\section buddy_algorithm Buddy allocation algorithm -void VmaAllocator_T::UpdateVulkanBudget() -{ - VMA_ASSERT(m_UseExtMemoryBudget); +There is another allocation algorithm that can be used with custom pools, called +"buddy". Its internal data structure is based on a binary tree of blocks, each having +size that is a power of two and a half of its parent's size. When you want to +allocate memory of certain size, a free node in the tree is located. If it is too +large, it is recursively split into two halves (called "buddies"). However, if +requested allocation size is not a power of two, the size of the allocation is +aligned up to the nearest power of two and the remaining space is wasted. When +two buddy nodes become free, they are merged back into one larger node. - VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; +![Buddy allocator](../gfx/Buddy_allocator.png) - VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; - VmaPnextChainPushFront(&memProps, &budgetProps); +The advantage of buddy allocation algorithm over default algorithm is faster +allocation and deallocation, as well as smaller external fragmentation. The +disadvantage is more wasted space (internal fragmentation). +For more information, please search the Internet for "Buddy memory allocation" - +sources that describe this concept in general. - GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); +To use buddy allocation algorithm with a custom pool, add flag +#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. - { - VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); +Several limitations apply to pools that use buddy algorithm: - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; - m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); +- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. + Otherwise, only largest power of two smaller than the size is used for + allocations. The remaining space always stays unused. +- [Margins](@ref debugging_memory_usage_margins) and + [corruption detection](@ref debugging_memory_usage_corruption_detection) + don't work in such pools. +- [Defragmentation](@ref defragmentation) doesn't work with allocations made from + such pool. - // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. - if(m_Budget.m_VulkanBudget[heapIndex] == 0) - { - m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. - } - else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) - { - m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; - } - if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) - { - m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; - } - } - m_Budget.m_OperationsSinceBudgetFetch = 0; - } -} +\page defragmentation Defragmentation -#endif // #if VMA_MEMORY_BUDGET +Interleaved allocations and deallocations of many objects of varying size can +cause fragmentation over time, which can lead to a situation where the library is unable +to find a continuous range of free memory for a new allocation despite there is +enough free space, just scattered across many small free ranges between existing +allocations. -void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) -{ - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && - !hAllocation->CanBecomeLost() && - (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) - { - void* pData = VMA_NULL; - VkResult res = Map(hAllocation, &pData); - if(res == VK_SUCCESS) - { - memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); - FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); - Unmap(hAllocation); - } - else - { - VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); - } - } -} +To mitigate this problem, you can use defragmentation feature: +structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). +Given set of allocations, +this function can move them to compact used memory, ensure more continuous free +space and possibly also free some `VkDeviceMemory` blocks. -uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() -{ - uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); - if(memoryTypeBits == UINT32_MAX) - { - memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); - m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); - } - return memoryTypeBits; -} +What the defragmentation does is: -#if VMA_STATS_STRING_ENABLED +- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. + After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or + VmaAllocationInfo::offset changes. You must query them again using + vmaGetAllocationInfo() if you need them. +- Moves actual data in memory. -void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) -{ - bool dedicatedAllocationsStarted = false; - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex); - DedicatedAllocationLinkedList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; - if(!dedicatedAllocList.IsEmpty()) - { - if(dedicatedAllocationsStarted == false) - { - dedicatedAllocationsStarted = true; - json.WriteString("DedicatedAllocations"); - json.BeginObject(); - } +What it doesn't do, so you need to do it yourself: - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); +- Recreate buffers and images that were bound to allocations that were defragmented and + bind them with their new places in memory. + You must use `vkDestroyBuffer()`, `vkDestroyImage()`, + `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() + for that purpose and NOT vmaDestroyBuffer(), + vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to + destroy or create allocation objects! +- Recreate views and update descriptors that point to these buffers and images. - json.BeginArray(); +\section defragmentation_cpu Defragmenting CPU memory - for(VmaAllocation alloc = dedicatedAllocList.Front(); - alloc != VMA_NULL; alloc = dedicatedAllocList.GetNext(alloc)) - { - json.BeginObject(true); - alloc->PrintParameters(json); - json.EndObject(); - } +Following example demonstrates how you can run defragmentation on CPU. +Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. +Others are ignored. - json.EndArray(); - } - } - if(dedicatedAllocationsStarted) - { - json.EndObject(); - } +The way it works is: - // Default pools - { - bool allocationsStarted = false; - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false) - { - if(allocationsStarted == false) - { - allocationsStarted = true; - json.WriteString("DefaultPools"); - json.BeginObject(); - } +- It temporarily maps entire memory blocks when necessary. +- It moves data using `memmove()` function. - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +std::vector buffers; +std::vector allocations; - m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); - } - } - if(allocationsStarted) - { - json.EndObject(); - } - } - // Small buffer pools - { - bool allocationsStarted = false; - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if(m_pSmallBufferBlockVectors[memTypeIndex]->IsEmpty() == false) - { - if(allocationsStarted == false) - { - allocationsStarted = true; - json.WriteString("SmallBufferPools"); - json.BeginObject(); - } +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector allocationsChanged(allocCount); - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. +defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. - m_pSmallBufferBlockVectors[memTypeIndex]->PrintDetailedMap(json); - } - } - if(allocationsStarted) - { - json.EndObject(); - } - } +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); +vmaDefragmentationEnd(allocator, defragCtx); - // Custom pools +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - if(!m_Pools.IsEmpty()) - { - json.WriteString("Pools"); - json.BeginObject(); - for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - json.BeginString(); - json.ContinueString(pool->GetId()); - json.EndString(); + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); - pool->m_BlockVector.PrintDetailedMap(json); - } - json.EndObject(); - } + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); + + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. + + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vmaBindBufferMemory(allocator, allocations[i], buffers[i]); } } +\endcode -#endif // #if VMA_STATS_STRING_ENABLED +Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. +This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index +has been modified during defragmentation. +You can pass null, but you then need to query every allocation passed to defragmentation +for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. -//////////////////////////////////////////////////////////////////////////////// -// Public interface +If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), +you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools +instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations +to defragment all allocations in given pools. +You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. +You can also combine both methods. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* pCreateInfo, - VmaAllocator* pAllocator) -{ - VMA_ASSERT(pCreateInfo && pAllocator); - VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || - (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 2)); - VMA_DEBUG_LOG("vmaCreateAllocator"); - *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); - return (*pAllocator)->Init(pCreateInfo); -} +\section defragmentation_gpu Defragmenting GPU memory -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator allocator) -{ - if(allocator != VK_NULL_HANDLE) - { - VMA_DEBUG_LOG("vmaDestroyAllocator"); - VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; - vma_delete(&allocationCallbacks, allocator); - } -} +It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. +To do that, you need to pass a command buffer that meets requirements as described in +VmaDefragmentationInfo2::commandBuffer. The way it works is: -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) -{ - VMA_ASSERT(allocator && pAllocatorInfo); - pAllocatorInfo->instance = allocator->m_hInstance; - pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); - pAllocatorInfo->device = allocator->m_hDevice; -} +- It creates temporary buffers and binds them to entire memory blocks when necessary. +- It issues `vkCmdCopyBuffer()` to passed command buffer. -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator allocator, - const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceProperties); - *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; -} +Example: -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator allocator, - const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); - *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; -} +\code +// Given following variables already initialized: +VkDevice device; +VmaAllocator allocator; +VkCommandBuffer commandBuffer; +std::vector buffers; +std::vector allocations; -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* pFlags) -{ - VMA_ASSERT(allocator && pFlags); - VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); - *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; -} -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator allocator, - uint32_t frameIndex) -{ - VMA_ASSERT(allocator); - VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST); +const uint32_t allocCount = (uint32_t)allocations.size(); +std::vector allocationsChanged(allocCount); - VMA_DEBUG_GLOBAL_MUTEX_LOCK +VkCommandBufferBeginInfo cmdBufBeginInfo = ...; +vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); - allocator->SetCurrentFrameIndex(frameIndex); -} +VmaDefragmentationInfo2 defragInfo = {}; +defragInfo.allocationCount = allocCount; +defragInfo.pAllocations = allocations.data(); +defragInfo.pAllocationsChanged = allocationsChanged.data(); +defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it is "GPU" this time. +defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it is "GPU" this time. +defragInfo.commandBuffer = commandBuffer; -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( - VmaAllocator allocator, - VmaStats* pStats) -{ - VMA_ASSERT(allocator && pStats); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->CalculateStats(pStats); -} +VmaDefragmentationContext defragCtx; +vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); -VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget( - VmaAllocator allocator, - VmaBudget* pBudget) -{ - VMA_ASSERT(allocator && pBudget); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount()); -} +vkEndCommandBuffer(commandBuffer); -#if VMA_STATS_STRING_ENABLED +// Submit commandBuffer. +// Wait for a fence that ensures commandBuffer execution finished. -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator allocator, - char** ppStatsString, - VkBool32 detailedMap) -{ - VMA_ASSERT(allocator && ppStatsString); - VMA_DEBUG_GLOBAL_MUTEX_LOCK +vmaDefragmentationEnd(allocator, defragCtx); - VmaStringBuilder sb(allocator); +for(uint32_t i = 0; i < allocCount; ++i) +{ + if(allocationsChanged[i]) { - VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); - json.BeginObject(); + // Destroy buffer that is immutably bound to memory region which is no longer valid. + vkDestroyBuffer(device, buffers[i], nullptr); + + // Create new buffer with same parameters. + VkBufferCreateInfo bufferInfo = ...; + vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); - VmaBudget budget[VK_MAX_MEMORY_HEAPS]; - allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount()); + // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. - VmaStats stats; - allocator->CalculateStats(&stats); + // Bind new buffer to new memory region. Data contained in it is already moved. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); + vmaBindBufferMemory(allocator, allocations[i], buffers[i]); + } +} +\endcode - json.WriteString("Total"); - VmaPrintStatInfo(json, stats.total); +You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. +The library automatically chooses best method to defragment each memory pool. - for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) - { - json.BeginString("Heap "); - json.ContinueString(heapIndex); - json.EndString(); - json.BeginObject(); +You may try not to block your entire program to wait until defragmentation finishes, +but do it in the background, as long as you carefully fullfill requirements described +in function vmaDefragmentationBegin(). + +\section defragmentation_additional_notes Additional notes + +It is only legal to defragment allocations bound to: + +- buffers +- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and + being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. - json.WriteString("Size"); - json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); +Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other +layout may give undefined results. - json.WriteString("Flags"); - json.BeginArray(true); - if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) - { - json.WriteString("DEVICE_LOCAL"); - } - json.EndArray(); +If you defragment allocations bound to images, new images to be bound to new +memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` +and then transitioned to their original layout from before defragmentation if +needed using an image memory barrier. - json.WriteString("Budget"); - json.BeginObject(); - { - json.WriteString("BlockBytes"); - json.WriteNumber(budget[heapIndex].blockBytes); - json.WriteString("AllocationBytes"); - json.WriteNumber(budget[heapIndex].allocationBytes); - json.WriteString("Usage"); - json.WriteNumber(budget[heapIndex].usage); - json.WriteString("Budget"); - json.WriteNumber(budget[heapIndex].budget); - } - json.EndObject(); +While using defragmentation, you may experience validation layer warnings, which you just need to ignore. +See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). - if(stats.memoryHeap[heapIndex].blockCount > 0) - { - json.WriteString("Stats"); - VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); - } +Please don't expect memory to be fully compacted after defragmentation. +Algorithms inside are based on some heuristics that try to maximize number of Vulkan +memory blocks to make totally empty to release them, as well as to maximize continuous +empty space inside remaining blocks, while minimizing the number and size of allocations that +need to be moved. Some fragmentation may still remain - this is normal. - for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) - { - if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) - { - json.BeginString("Type "); - json.ContinueString(typeIndex); - json.EndString(); +\section defragmentation_custom_algorithm Writing custom defragmentation algorithm - json.BeginObject(); +If you want to implement your own, custom defragmentation algorithm, +there is infrastructure prepared for that, +but it is not exposed through the library API - you need to hack its source code. +Here are steps needed to do this: - json.WriteString("Flags"); - json.BeginArray(true); - VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; - if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) - { - json.WriteString("DEVICE_LOCAL"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) - { - json.WriteString("HOST_VISIBLE"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) - { - json.WriteString("HOST_COHERENT"); - } - if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) - { - json.WriteString("HOST_CACHED"); - } - if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) - { - json.WriteString("LAZILY_ALLOCATED"); - } -#if VMA_VULKAN_VERSION >= 1001000 - if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0) - { - json.WriteString("PROTECTED"); - } -#endif // #if VMA_VULKAN_VERSION >= 1001000 -#if VK_AMD_device_coherent_memory - if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) - { - json.WriteString("DEVICE_COHERENT"); - } - if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0) - { - json.WriteString("DEVICE_UNCACHED"); - } -#endif // #if VK_AMD_device_coherent_memory - json.EndArray(); +-# Main thing you need to do is to define your own class derived from base abstract + class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. + See definition and comments of this class for details. +-# Your code needs to interact with device memory block metadata. + If you need more access to its data than it is provided by its public interface, + declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. +-# If you want to create a flag that would enable your algorithm or pass some additional + flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in + VmaDefragmentationInfo2::flags. +-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object + of your new class whenever needed. - if(stats.memoryType[typeIndex].blockCount > 0) - { - json.WriteString("Stats"); - VmaPrintStatInfo(json, stats.memoryType[typeIndex]); - } - json.EndObject(); - } - } +\page statistics Statistics - json.EndObject(); - } - if(detailedMap == VK_TRUE) - { - allocator->PrintDetailedMap(json); - } +This library contains functions that return information about its internal state, +especially the amount of memory allocated from Vulkan. +Please keep in mind that these functions need to traverse all internal data structures +to gather these information, so they may be quite time-consuming. +Don't call them too often. - json.EndObject(); - } +\section statistics_numeric_statistics Numeric statistics - const size_t len = sb.GetLength(); - char* const pChars = vma_new_array(allocator, char, len + 1); - if(len > 0) - { - memcpy(pChars, sb.GetData(), len); - } - pChars[len] = '\0'; - *ppStatsString = pChars; -} +You can query for overall statistics of the allocator using function vmaCalculateStats(). +Information are returned using structure #VmaStats. +It contains #VmaStatInfo - number of allocated blocks, number of allocations +(occupied ranges in these blocks), number of unused (free) ranges in these blocks, +number of bytes used and unused (but still allocated from Vulkan) and other information. +They are summed across memory heaps, memory types and total for whole allocator. -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator allocator, - char* pStatsString) -{ - if(pStatsString != VMA_NULL) - { - VMA_ASSERT(allocator); - size_t len = strlen(pStatsString); - vma_delete_array(allocator, pStatsString, len + 1); - } -} +You can query for statistics of a custom pool using function vmaGetPoolStats(). +Information are returned using structure #VmaPoolStats. -#endif // #if VMA_STATS_STRING_ENABLED +You can query for information about specific allocation using function vmaGetAllocationInfo(). +It fill structure #VmaAllocationInfo. -/* -This function is not protected by any mutex because it just reads immutable data. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); +\section statistics_json_dump JSON dump - memoryTypeBits &= allocator->GetGlobalMemoryTypeBits(); +You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). +The result is guaranteed to be correct JSON. +It uses ANSI encoding. +Any strings provided by user (see [Allocation names](@ref allocation_names)) +are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, +this JSON string can be treated as using this encoding. +It must be freed using function vmaFreeStatsString(). - if(pAllocationCreateInfo->memoryTypeBits != 0) - { - memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; - } +The format of this JSON string is not part of official documentation of the library, +but it will not change in backward-incompatible way without increasing library major version number +and appropriate mention in changelog. - uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags; - uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags; - uint32_t notPreferredFlags = 0; +The JSON string contains all the data that can be obtained using vmaCalculateStats(). +It can also contain detailed map of allocated memory blocks and their regions - +free and occupied by allocations. +This allows e.g. to visualize the memory or assess fragmentation. - // Convert usage to requiredFlags and preferredFlags. - switch(pAllocationCreateInfo->usage) - { - case VMA_MEMORY_USAGE_UNKNOWN: - break; - case VMA_MEMORY_USAGE_GPU_ONLY: - if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_CPU_ONLY: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - break; - case VMA_MEMORY_USAGE_CPU_TO_GPU: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_GPU_TO_CPU: - requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; - break; - case VMA_MEMORY_USAGE_CPU_COPY: - notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - break; - case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: - requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; - break; - default: - VMA_ASSERT(0); - break; - } - // Avoid DEVICE_COHERENT unless explicitly requested. - if(((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) & - (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) - { - notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY; - } +\page allocation_annotation Allocation names and user data - *pMemoryTypeIndex = UINT32_MAX; - uint32_t minCost = UINT32_MAX; - for(uint32_t memTypeIndex = 0, memTypeBit = 1; - memTypeIndex < allocator->GetMemoryTypeCount(); - ++memTypeIndex, memTypeBit <<= 1) - { - // This memory type is acceptable according to memoryTypeBits bitmask. - if((memTypeBit & memoryTypeBits) != 0) - { - const VkMemoryPropertyFlags currFlags = - allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; - // This memory type contains requiredFlags. - if((requiredFlags & ~currFlags) == 0) - { - // Calculate cost as number of bits from preferredFlags not present in this memory type. - uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + - VmaCountBitsSet(currFlags & notPreferredFlags); - // Remember memory type with lowest cost. - if(currCost < minCost) - { - *pMemoryTypeIndex = memTypeIndex; - if(currCost == 0) - { - return VK_SUCCESS; - } - minCost = currCost; - } - } - } - } - return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; -} +\section allocation_user_data Allocation user data + +You can annotate allocations with your own information, e.g. for debugging purposes. +To do that, fill VmaAllocationCreateInfo::pUserData field when creating +an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer, +some handle, index, key, ordinal number or any other value that would associate +the allocation with your custom metadata. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pBufferCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +// Fill bufferInfo... - const VkDevice hDev = allocator->m_hDevice; - VkBuffer hBuffer = VK_NULL_HANDLE; - VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer( - hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements( - hDev, hBuffer, &memReq); +MyBufferMetadata* pMetadata = CreateBufferMetadata(); - res = vmaFindMemoryTypeIndex( - allocator, - memReq.memoryTypeBits, - pAllocationCreateInfo, - pMemoryTypeIndex); +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.pUserData = pMetadata; - allocator->GetVulkanFunctions().vkDestroyBuffer( - hDev, hBuffer, allocator->GetAllocationCallbacks()); - } - return res; -} +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr); +\endcode -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pImageCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); +The pointer may be later retrieved as VmaAllocationInfo::pUserData: - const VkDevice hDev = allocator->m_hDevice; - VkImage hImage = VK_NULL_HANDLE; - VkResult res = allocator->GetVulkanFunctions().vkCreateImage( - hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - allocator->GetVulkanFunctions().vkGetImageMemoryRequirements( - hDev, hImage, &memReq); +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; +\endcode - res = vmaFindMemoryTypeIndex( - allocator, - memReq.memoryTypeBits, - pAllocationCreateInfo, - pMemoryTypeIndex); +It can also be changed using function vmaSetAllocationUserData(). - allocator->GetVulkanFunctions().vkDestroyImage( - hDev, hImage, allocator->GetAllocationCallbacks()); - } - return res; -} +Values of (non-zero) allocations' `pUserData` are printed in JSON report created by +vmaBuildStatsString(), in hexadecimal form. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator allocator, - const VmaPoolCreateInfo* pCreateInfo, - VmaPool* pPool) -{ - VMA_ASSERT(allocator && pCreateInfo && pPool); +\section allocation_names Allocation names - VMA_DEBUG_LOG("vmaCreatePool"); +There is alternative mode available where `pUserData` pointer is used to point to +a null-terminated string, giving a name to the allocation. To use this mode, +set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. +Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to +vmaSetAllocationUserData() must be either null or pointer to a null-terminated string. +The library creates internal copy of the string, so the pointer you pass doesn't need +to be valid for whole lifetime of the allocation. You can free it after the call. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\code +VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +// Fill imageInfo... - VkResult res = allocator->CreatePool(pCreateInfo, pPool); +std::string imageName = "Texture: "; +imageName += fileName; -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool); - } -#endif +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; +allocCreateInfo.pUserData = imageName.c_str(); - return res; -} +VkImage image; +VmaAllocation allocation; +vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); +\endcode -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator allocator, - VmaPool pool) -{ - VMA_ASSERT(allocator); +The value of `pUserData` pointer of the allocation will be different than the one +you passed when setting allocation's name - pointing to a buffer managed +internally that holds copy of the string. - if(pool == VK_NULL_HANDLE) - { - return; - } +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +const char* imageName = (const char*)allocInfo.pUserData; +printf("Image name: %s\n", imageName); +\endcode - VMA_DEBUG_LOG("vmaDestroyPool"); +That string is also printed in JSON report created by vmaBuildStatsString(). - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. +You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool); - } -#endif - allocator->DestroyPool(pool); -} +\page virtual_allocator Virtual allocator -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( - VmaAllocator allocator, - VmaPool pool, - VmaPoolStats* pPoolStats) -{ - VMA_ASSERT(allocator && pool && pPoolStats); +As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator". +It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block". +You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan. +A common use case is sub-allocation of pieces of one large GPU buffer. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\section virtual_allocator_creating_virtual_block Creating virtual block - allocator->GetPoolStats(pool, pPoolStats); -} +To use this functionality, there is no main "allocator" object. +You don't need to have #VmaAllocator object created. +All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator: -VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost( - VmaAllocator allocator, - VmaPool pool, - size_t* pLostAllocationCount) -{ - VMA_ASSERT(allocator && pool); +-# Fill in #VmaVirtualBlockCreateInfo structure. +-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Example: -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool); - } -#endif +\code +VmaVirtualBlockCreateInfo blockCreateInfo = {}; +blockCreateInfo.size = 1048576; // 1 MB - allocator->MakePoolAllocationsLost(pool, pLostAllocationCount); -} +VmaVirtualBlock block; +VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block); +\endcode -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) -{ - VMA_ASSERT(allocator && pool); +\section virtual_allocator_making_virtual_allocations Making virtual allocations - VMA_DEBUG_GLOBAL_MUTEX_LOCK +#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions +using the same code as the main Vulkan memory allocator. +Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type +that represents an opaque handle to an allocation withing the virtual block. - VMA_DEBUG_LOG("vmaCheckPoolCorruption"); +In order to make such allocation: - return allocator->CheckPoolCorruption(pool); -} +-# Fill in #VmaVirtualAllocationCreateInfo structure. +-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation. + You can also receive `VkDeviceSize offset` that was assigned to the allocation. -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char** ppName) +Example: + +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB + +VmaVirtualAllocation alloc; +VkDeviceSize offset; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset); +if(res == VK_SUCCESS) { - VMA_ASSERT(allocator && pool && ppName); + // Use the 4 KB of your memory starting at offset. +} +else +{ + // Allocation failed - no space for it could be found. Handle this error! +} +\endcode - VMA_DEBUG_LOG("vmaGetPoolName"); +\section virtual_allocator_deallocation Deallocation - VMA_DEBUG_GLOBAL_MUTEX_LOCK +When no longer needed, an allocation can be freed by calling vmaVirtualFree(). +You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate() +called for the same #VmaVirtualBlock. - *ppName = pool->GetName(); -} +When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock(). +All allocations must be freed before the block is destroyed, which is checked internally by an assert. +However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once - +a feature not available in normal Vulkan memory allocator. Example: -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char* pName) +\code +vmaVirtualFree(block, alloc); +vmaDestroyVirtualBlock(block); +\endcode + +\section virtual_allocator_allocation_parameters Allocation parameters + +You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData(). +Its default value is null. +It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some +larger data structure containing more information. Example: + +\code +struct CustomAllocData { - VMA_ASSERT(allocator && pool); + std::string m_AllocName; +}; +CustomAllocData* allocData = new CustomAllocData(); +allocData->m_AllocName = "My allocation 1"; +vmaSetVirtualAllocationUserData(block, alloc, allocData); +\endcode - VMA_DEBUG_LOG("vmaSetPoolName"); +The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function +vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo. +If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation! +Example: - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\code +VmaVirtualAllocationInfo allocInfo; +vmaGetVirtualAllocationInfo(block, alloc, &allocInfo); +delete (CustomAllocData*)allocInfo.pUserData; - pool->SetName(pName); +vmaVirtualFree(block, alloc); +\endcode -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName); - } -#endif -} +\section virtual_allocator_alignment_and_units Alignment and units -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); +It feels natural to express sizes and offsets in bytes. +If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member +VmaVirtualAllocationCreateInfo::alignment to request it. Example: - VMA_DEBUG_LOG("vmaAllocateMemory"); +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB +allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B - VMA_DEBUG_GLOBAL_MUTEX_LOCK +VmaVirtualAllocation alloc; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr); +\endcode - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - UINT32_MAX, // dedicatedBufferUsage - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - 1, // allocationCount - pAllocation); +Alignments of different allocations made from one block may vary. +However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`, +you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes. +It might be more convenient, but you need to make sure to use this new unit consistently in all the places: -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemory( - allocator->GetCurrentFrameIndex(), - *pVkMemoryRequirements, - *pCreateInfo, - *pAllocation); - } -#endif +- VmaVirtualBlockCreateInfo::size +- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment +- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } +\section virtual_allocator_statistics Statistics - return result; -} +You can obtain statistics of a virtual block using vmaCalculateVirtualBlockStats(). +The function fills structure #VmaStatInfo - same as used by the normal Vulkan memory allocator. +Example: -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - size_t allocationCount, - VmaAllocation* pAllocations, - VmaAllocationInfo* pAllocationInfo) -{ - if(allocationCount == 0) - { - return VK_SUCCESS; - } +\code +VmaStatInfo statInfo; +vmaCalculateVirtualBlockStats(block, &statInfo); +printf("My virtual block has %llu bytes used by %u virtual allocations\n", + statInfo.usedBytes, statInfo.allocationCount); +\endcode - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); +You can also request a full list of allocations and free regions as a string in JSON format by calling +vmaBuildVirtualBlockStatsString(). +Returned string must be later freed using vmaFreeVirtualBlockStatsString(). +The format of this string differs from the one returned by the main Vulkan allocator, but it is similar. + +\section virtual_allocator_additional_considerations Additional considerations + +The "virtual allocator" functionality is implemented on a level of individual memory blocks. +Keeping track of a whole collection of blocks, allocating new ones when out of free space, +deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user. - VMA_DEBUG_LOG("vmaAllocateMemoryPages"); +Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory. +See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT). +You can find their description in chapter \ref custom_memory_pools. +Allocation strategies are also supported. +See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT). - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Following features are supported only by the allocator of the real GPU memory and not by virtual allocations: +buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`. - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - UINT32_MAX, // dedicatedBufferUsage - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - allocationCount, - pAllocations); -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryPages( - allocator->GetCurrentFrameIndex(), - *pVkMemoryRequirements, - *pCreateInfo, - (uint64_t)allocationCount, - pAllocations); - } -#endif +\page debugging_memory_usage Debugging incorrect memory usage - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - for(size_t i = 0; i < allocationCount; ++i) - { - allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); - } - } +If you suspect a bug with memory usage, like usage of uninitialized memory or +memory being overwritten out of bounds of an allocation, +you can use debug features of this library to verify this. - return result; -} +\section debugging_memory_usage_initialization Memory initialization -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator allocator, - VkBuffer buffer, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); +If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, +you can enable automatic memory initialization to verify this. +To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. - VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); +\code +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 +#include "vk_mem_alloc.h" +\endcode - VMA_DEBUG_GLOBAL_MUTEX_LOCK +It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. +Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. +Memory is automatically mapped and unmapped if necessary. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(buffer, vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation); +If you find these values while debugging your program, good chances are that you incorrectly +read Vulkan memory that is allocated but not initialized, or already freed, respectively. - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - buffer, // dedicatedBuffer - UINT32_MAX, // dedicatedBufferUsage - VK_NULL_HANDLE, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); +Memory initialization works only with memory types that are `HOST_VISIBLE`. +It works also with dedicated allocations. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryForBuffer( - allocator->GetCurrentFrameIndex(), - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pCreateInfo, - *pAllocation); - } -#endif +\section debugging_memory_usage_margins Margins - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } +By default, allocations are laid out in memory blocks next to each other if possible +(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). - return result; -} +![Allocations without margin](../gfx/Margins_1.png) -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator allocator, - VkImage image, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); +Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified +number of bytes as a margin after every allocation. - VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); +\code +#define VMA_DEBUG_MARGIN 16 +#include "vk_mem_alloc.h" +\endcode - VMA_DEBUG_GLOBAL_MUTEX_LOCK +![Allocations with margin](../gfx/Margins_2.png) - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(image, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); +If your bug goes away after enabling margins, it means it may be caused by memory +being overwritten outside of allocation boundaries. It is not 100% certain though. +Change in application behavior may also be caused by different order and distribution +of allocations across memory blocks after margins are applied. - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - UINT32_MAX, // dedicatedBufferUsage - image, // dedicatedImage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, - 1, // allocationCount - pAllocation); +Margins work with all types of memory. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordAllocateMemoryForImage( - allocator->GetCurrentFrameIndex(), - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pCreateInfo, - *pAllocation); - } -#endif +Margin is applied only to allocations made out of memory blocks and not to dedicated +allocations, which have their own memory block of specific size. +It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag +or those automatically decided to put into dedicated allocations, e.g. due to its +large size or recommended by VK_KHR_dedicated_allocation extension. +Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } +Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. - return result; -} +Note that enabling margins increases memory usage and fragmentation. -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); +Margins do not apply to \ref virtual_allocator. - if(allocation == VK_NULL_HANDLE) - { - return; - } +\section debugging_memory_usage_corruption_detection Corruption detection - VMA_DEBUG_LOG("vmaFreeMemory"); +You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation +of contents of the margins. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\code +#define VMA_DEBUG_MARGIN 16 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#include "vk_mem_alloc.h" +\endcode -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFreeMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` +(it must be multiply of 4) after every allocation is filled with a magic number. +This idea is also know as "canary". +Memory is automatically mapped and unmapped if necessary. - allocator->FreeMemory( - 1, // allocationCount - &allocation); -} +This number is validated automatically when the allocation is destroyed. +If it is not equal to the expected value, `VMA_ASSERT()` is executed. +It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, +which indicates a serious bug. -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator allocator, - size_t allocationCount, - const VmaAllocation* pAllocations) -{ - if(allocationCount == 0) - { - return; - } +You can also explicitly request checking margins of all allocations in all memory blocks +that belong to specified memory types by using function vmaCheckCorruption(), +or in memory blocks that belong to specified custom pool, by using function +vmaCheckPoolCorruption(). - VMA_ASSERT(allocator); +Margin validation (corruption detection) works only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. - VMA_DEBUG_LOG("vmaFreeMemoryPages"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\page opengl_interop OpenGL Interop -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFreeMemoryPages( - allocator->GetCurrentFrameIndex(), - (uint64_t)allocationCount, - pAllocations); - } -#endif +VMA provides some features that help with interoperability with OpenGL. - allocator->FreeMemory(allocationCount, pAllocations); -} +\section opengl_interop_exporting_memory Exporting memory -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator allocator, - VmaAllocation allocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && allocation && pAllocationInfo); +If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library: - VMA_DEBUG_GLOBAL_MUTEX_LOCK +It is recommended to create \ref custom_memory_pools for such allocations. +Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext +while creating the custom pool. +Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool, +not only while creating it, as no copy of the structure is made, +but its original pointer is used for each allocation instead. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordGetAllocationInfo( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +If you want to export all memory allocated by the library from certain memory types, +also dedicated allocations or other allocations made from default pools, +an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes. +It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library +through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type. +Please note that new versions of the library also support dedicated allocations created in custom pools. - allocator->GetAllocationInfo(allocation, pAllocationInfo); -} +You should not mix these two methods in a way that allows to apply both to the same memory type. +Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`. -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator && allocation); - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\section opengl_interop_custom_alignment Custom alignment -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordTouchAllocation( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +Buffers or images exported to a different API like OpenGL may require a different alignment, +higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`. +To impose such alignment: - return allocator->TouchAllocation(allocation); -} +It is recommended to create \ref custom_memory_pools for such allocations. +Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation +to be made out of this pool. +The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image +from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically. -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator allocator, - VmaAllocation allocation, - void* pUserData) -{ - VMA_ASSERT(allocator && allocation); +If you want to create a buffer with a specific minimum alignment out of default pools, +use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated +allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block. +Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation. - allocation->SetUserData(allocator, pUserData); -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordSetAllocationUserData( - allocator->GetCurrentFrameIndex(), - allocation, - pUserData); - } -#endif -} +\page usage_patterns Recommended usage patterns -VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation( - VmaAllocator allocator, - VmaAllocation* pAllocation) -{ - VMA_ASSERT(allocator && pAllocation); +See also slides from talk: +[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - allocator->CreateLostAllocation(pAllocation); +\section usage_patterns_common_mistakes Common mistakes -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateLostAllocation( - allocator->GetCurrentFrameIndex(), - *pAllocation); - } -#endif -} +Use of CPU_TO_GPU instead of CPU_ONLY memory -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator allocator, - VmaAllocation allocation, - void** ppData) -{ - VMA_ASSERT(allocator && allocation && ppData); +#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be +mapped and written by the CPU, as well as read directly by the GPU - like some +buffers or textures updated every frame (dynamic). If you create a staging copy +of a resource to be written by CPU and then used as a source of transfer to +another resource placed in the GPU memory, that staging resource should be +created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these +enums carefully for details. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Unnecessary use of custom pools - VkResult res = allocator->Map(allocation, ppData); +\ref custom_memory_pools may be useful for special purposes - when you want to +keep certain type of resources separate e.g. to reserve minimum amount of memory +for them or limit maximum amount of memory they can occupy. For most +resources this is not needed and so it is not recommended to create #VmaPool +objects and allocations out of them. Allocating from the default pool is sufficient. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordMapMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +\section usage_patterns_simple Simple patterns - return res; -} +\subsection usage_patterns_simple_render_targets Render targets -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator && allocation); +When: +Any resources that you frequently write and read on GPU, +e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, +images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). - VMA_DEBUG_GLOBAL_MUTEX_LOCK +What to do: +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordUnmapMemory( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension +and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, +especially if they are large or if you plan to destroy and recreate them e.g. when +display resolution changes. +Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. - allocator->Unmap(allocation); -} +\subsection usage_patterns_simple_immutable_resources Immutable resources -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); +When: +Any resources that you fill on CPU only once (aka "immutable") or infrequently +and then read frequently on GPU, +e.g. textures, vertex and index buffers, constant buffers that don't change often. - VMA_DEBUG_LOG("vmaFlushAllocation"); +What to do: +Create them in video memory that is fastest to access from GPU using +#VMA_MEMORY_USAGE_GPU_ONLY. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +To initialize content of such resource, create a CPU-side (aka "staging") copy of it +in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it, +and submit a transfer from it to the GPU resource. +You can keep the staging copy if you need it for another upload transfer in the future. +If you don't, you can destroy it or reuse this buffer for uploading different resource +after the transfer finishes. - const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); +Prefer to create just buffers in system memory rather than images, even for uploading textures. +Use `vkCmdCopyBufferToImage()`. +Dont use images with `VK_IMAGE_TILING_LINEAR`. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordFlushAllocation( - allocator->GetCurrentFrameIndex(), - allocation, offset, size); - } -#endif +\subsection usage_patterns_dynamic_resources Dynamic resources - return res; -} +When: +Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call, +written on CPU, read on GPU. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); +What to do: +Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU. +You can map it and write to it directly on CPU, as well as read from it on GPU. - VMA_DEBUG_LOG("vmaInvalidateAllocation"); +This is a more complex situation. Different solutions are possible, +and the best one depends on specific GPU type, but you can use this simple approach for the start. +Prefer to write to such resource sequentially (e.g. using `memcpy`). +Don't perform random access or any reads from it on CPU, as it may be very slow. +Also note that textures written directly from the host through a mapped pointer need to be in LINEAR not OPTIMAL layout. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\subsection usage_patterns_readback Readback - const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); +When: +Resources that contain data written by GPU that you want to read back on CPU, +e.g. results of some computations. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordInvalidateAllocation( - allocator->GetCurrentFrameIndex(), - allocation, offset, size); - } -#endif +What to do: +Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU. +You can write to them directly on GPU, as well as map and read them on CPU. - return res; -} +\section usage_patterns_advanced Advanced patterns -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( - VmaAllocator allocator, - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, - const VkDeviceSize* sizes) -{ - VMA_ASSERT(allocator); +\subsection usage_patterns_integrated_graphics Detecting integrated graphics - if(allocationCount == 0) - { - return VK_SUCCESS; - } +You can support integrated graphics (like Intel HD Graphics, AMD APU) better +by detecting it in Vulkan. +To do it, call `vkGetPhysicalDeviceProperties()`, inspect +`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`. +When you find it, you can assume that memory is unified and all memory types are comparably fast +to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - VMA_ASSERT(allocations); +You can then sum up sizes of all available memory heaps and treat them as useful for +your GPU resources, instead of only `DEVICE_LOCAL` ones. +You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them +directly instead of submitting explicit transfer (see below). - VMA_DEBUG_LOG("vmaFlushAllocations"); +\subsection usage_patterns_direct_vs_transfer Direct access versus transfer - VMA_DEBUG_GLOBAL_MUTEX_LOCK +For resources that you frequently write on CPU and read on GPU, many solutions are possible: - const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit transfer each time. +-# Create just a single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU, + read it directly on GPU. +-# Create just a single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU, + read it directly on GPU. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - //TODO - } -#endif +Which solution is the most efficient depends on your resource and especially on the GPU. +It is best to measure it and then make the decision. +Some general recommendations: - return res; -} +- On integrated graphics use (2) or (3) to avoid unnecessary time and memory overhead + related to using a second copy and making transfer. +- For small resources (e.g. constant buffers) use (2). + Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable. + Even if the resource ends up in system memory, its data may be cached on GPU after first + fetch over PCIe bus. +- For larger resources (e.g. textures), decide between (1) and (2). + You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is + both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( - VmaAllocator allocator, - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, - const VkDeviceSize* sizes) -{ - VMA_ASSERT(allocator); +Similarly, for resources that you frequently write on GPU and read on CPU, multiple +solutions are possible: - if(allocationCount == 0) - { - return VK_SUCCESS; - } +-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY, + second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time. +-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU, + map it and read it on CPU. - VMA_ASSERT(allocations); +You should take some measurements to decide which option is faster in case of your specific +resource. - VMA_DEBUG_LOG("vmaInvalidateAllocations"); +Note that textures accessed directly from the host through a mapped pointer need to be in LINEAR layout, +which may slow down their usage on the device. +Textures accessed only by the device and transfer operations can use OPTIMAL layout. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +If you don't want to specialize your code for specific types of GPUs, you can still make +an simple optimization for cases when your resource ends up in mappable memory to use it +directly in this case instead of creating CPU-side staging copy. +For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable). - const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - //TODO - } -#endif +\page configuration Configuration - return res; -} +Please check "CONFIGURATION SECTION" in the code to find macros that you can define +before each include of this file or change directly in this file to provide +your own implementation of basic facilities like assert, `min()` and `max()` functions, +mutex, atomic etc. +The library uses its own implementation of containers by default, but you can switch to using +STL containers instead. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) -{ - VMA_ASSERT(allocator); +For example, define `VMA_ASSERT(expr)` before including the library to provide +custom implementation of the assertion, compatible with your project. +By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration +and empty otherwise. - VMA_DEBUG_LOG("vmaCheckCorruption"); +\section config_Vulkan_functions Pointers to Vulkan functions - VMA_DEBUG_GLOBAL_MUTEX_LOCK +There are multiple ways to import pointers to Vulkan functions in the library. +In the simplest case you don't need to do anything. +If the compilation or linking of your program or the initialization of the #VmaAllocator +doesn't work for you, you can try to reconfigure it. - return allocator->CheckCorruption(memoryTypeBits); -} +First, the allocator tries to fetch pointers to Vulkan functions linked statically, +like this: -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( - VmaAllocator allocator, - const VmaAllocation* pAllocations, - size_t allocationCount, - VkBool32* pAllocationsChanged, - const VmaDefragmentationInfo *pDefragmentationInfo, - VmaDefragmentationStats* pDefragmentationStats) -{ - // Deprecated interface, reimplemented using new one. +\code +m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; +\endcode - VmaDefragmentationInfo2 info2 = {}; - info2.allocationCount = (uint32_t)allocationCount; - info2.pAllocations = pAllocations; - info2.pAllocationsChanged = pAllocationsChanged; - if(pDefragmentationInfo != VMA_NULL) - { - info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; - info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; - } - else - { - info2.maxCpuAllocationsToMove = UINT32_MAX; - info2.maxCpuBytesToMove = VK_WHOLE_SIZE; - } - // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. +If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. - VmaDefragmentationContext ctx; - VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); - if(res == VK_NOT_READY) - { - res = vmaDefragmentationEnd( allocator, ctx); - } - return res; -} +Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. +You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or +by using a helper library like [volk](https://github.com/zeux/volk). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( - VmaAllocator allocator, - const VmaDefragmentationInfo2* pInfo, - VmaDefragmentationStats* pStats, - VmaDefragmentationContext *pContext) -{ - VMA_ASSERT(allocator && pInfo && pContext); +Third, VMA tries to fetch remaining pointers that are still null by calling +`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. +If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. - // Degenerate case: Nothing to defragment. - if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) - { - return VK_SUCCESS; - } +Finally, all the function pointers required by the library (considering selected +Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. - VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); - VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); - VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); - VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); - VMA_DEBUG_LOG("vmaDefragmentationBegin"); +\section custom_memory_allocator Custom host memory allocator - VMA_DEBUG_GLOBAL_MUTEX_LOCK +If you use custom allocator for CPU memory rather than default operator `new` +and `delete` from C++, you can make this library using your allocator as well +by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These +functions will be passed to Vulkan, as well as used by the library itself to +make any CPU-side allocations. - VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); +\section allocation_callbacks Device memory allocation callbacks -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDefragmentationBegin( - allocator->GetCurrentFrameIndex(), *pInfo, *pContext); - } -#endif +The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. +You can setup callbacks to be informed about these calls, e.g. for the purpose +of gathering some statistics. To do it, fill optional member +VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. - return res; -} +\section heap_memory_limit Device heap memory limit -VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( - VmaAllocator allocator, - VmaDefragmentationContext context) -{ - VMA_ASSERT(allocator); +When device memory of certain heap runs out of free space, new allocations may +fail (returning error code) or they may succeed, silently pushing some existing +memory blocks from GPU VRAM to system RAM (which degrades performance). This +behavior is implementation-dependent - it depends on GPU vendor and graphics +driver. - VMA_DEBUG_LOG("vmaDefragmentationEnd"); +On AMD cards it can be controlled while creating Vulkan device object by using +VK_AMD_memory_overallocation_behavior extension, if available. - if(context != VK_NULL_HANDLE) - { - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Alternatively, if you want to test how your program behaves with limited amount of Vulkan device +memory available without switching your graphics card to one that really has +smaller VRAM, you can use a feature of this library intended for this purpose. +To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDefragmentationEnd( - allocator->GetCurrentFrameIndex(), context); - } -#endif - return allocator->DefragmentationEnd(context); - } - else - { - return VK_SUCCESS; - } -} -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context, - VmaDefragmentationPassInfo* pInfo - ) -{ - VMA_ASSERT(allocator); - VMA_ASSERT(pInfo); +\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation - VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); +VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve +performance on some GPUs. It augments Vulkan API with possibility to query +driver whether it prefers particular buffer or image to have its own, dedicated +allocation (separate `VkDeviceMemory` block) for better efficiency - to be able +to do some internal optimizations. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +The extension is supported by this library. It will be used automatically when +enabled. To enable it: - if(context == VK_NULL_HANDLE) - { - pInfo->moveCount = 0; - return VK_SUCCESS; - } +1 . When creating Vulkan device, check if following 2 device extensions are +supported (call `vkEnumerateDeviceExtensionProperties()`). +If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). - return allocator->DefragmentationPassBegin(pInfo, context); -} -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator allocator, - VmaDefragmentationContext context) -{ - VMA_ASSERT(allocator); +- VK_KHR_get_memory_requirements2 +- VK_KHR_dedicated_allocation - VMA_DEBUG_LOG("vmaEndDefragmentationPass"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK +If you enabled these extensions: - if(context == VK_NULL_HANDLE) - return VK_SUCCESS; +2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating +your #VmaAllocator`to inform the library that you enabled required extensions +and you want the library to use them. - return allocator->DefragmentationPassEnd(context); -} +\code +allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkBuffer buffer) -{ - VMA_ASSERT(allocator && allocation && buffer); +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode - VMA_DEBUG_LOG("vmaBindBufferMemory"); +That is all. The extension will be automatically used whenever you create a +buffer using vmaCreateBuffer() or image using vmaCreateImage(). - VMA_DEBUG_GLOBAL_MUTEX_LOCK +When using the extension together with Vulkan Validation Layer, you will receive +warnings like this: - return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); -} + vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer buffer, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && buffer); +It is OK, you should just ignore it. It happens because you use function +`vkGetBufferMemoryRequirements2KHR()` instead of standard +`vkGetBufferMemoryRequirements()`, while the validation layer seems to be +unaware of it. - VMA_DEBUG_LOG("vmaBindBufferMemory2"); +To learn more about this extension, see: - VMA_DEBUG_GLOBAL_MUTEX_LOCK +- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) +- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) - return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); -} -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkImage image) -{ - VMA_ASSERT(allocator && allocation && image); - VMA_DEBUG_LOG("vmaBindImageMemory"); +\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory - VMA_DEBUG_GLOBAL_MUTEX_LOCK +VK_AMD_device_coherent_memory is a device extension that enables access to +additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and +`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for +allocation of buffers intended for writing "breadcrumb markers" in between passes +or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. - return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); -} +When the extension is available but has not been enabled, Vulkan physical device +still exposes those memory types, but their usage is forbidden. VMA automatically +takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt +to allocate memory of such type is made. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkImage image, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && image); +If you want to use this extension in connection with VMA, follow these steps: - VMA_DEBUG_LOG("vmaBindImageMemory2"); +\section vk_amd_device_coherent_memory_initialization Initialization - VMA_DEBUG_GLOBAL_MUTEX_LOCK +1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". - return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); -} +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkBuffer* pBuffer, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); +3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" +to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. - if(pBufferCreateInfo->size == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && - !allocator->m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); - return VK_ERROR_VALIDATION_FAILED_EXT; - } +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. - VMA_DEBUG_LOG("vmaCreateBuffer"); +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT +to VmaAllocatorCreateInfo::flags. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +\section vk_amd_device_coherent_memory_usage Usage - *pBuffer = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; +After following steps described above, you can create VMA allocations and custom pools +out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible +devices. There are multiple ways to do it, for example: - // 1. Create VkBuffer. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( - allocator->m_hDevice, - pBufferCreateInfo, - allocator->GetAllocationCallbacks(), - pBuffer); - if(res >= 0) - { - // 2. vkGetBufferMemoryRequirements. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); +- You can request or prefer to allocate out of such memory types by adding + `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags + or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with + other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. +- If you manually found memory type index to use for this purpose, force allocation + from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. - // 3. Allocate memory using allocator. - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pBuffer, // dedicatedBuffer - pBufferCreateInfo->usage, // dedicatedBufferUsage - VK_NULL_HANDLE, // dedicatedImage - *pAllocationCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); +\section vk_amd_device_coherent_memory_more_information More information -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateBuffer( - allocator->GetCurrentFrameIndex(), - *pBufferCreateInfo, - *pAllocationCreateInfo, - *pAllocation); - } -#endif +To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html) + +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. - if(res >= 0) - { - // 3. Bind buffer with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - return res; -} +\page enabling_buffer_device_address Enabling buffer device address -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator allocator, - VkBuffer buffer, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); +Device extension VK_KHR_buffer_device_address +allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. +It is promoted to core Vulkan 1.2. - if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } +If you want to use this feature in connection with VMA, follow these steps: - VMA_DEBUG_LOG("vmaDestroyBuffer"); +\section enabling_buffer_device_address_initialization Initialization - VMA_DEBUG_GLOBAL_MUTEX_LOCK +1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains +"VK_KHR_buffer_device_address". -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyBuffer( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true. - if(buffer != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); - } +3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add +"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkImage* pImage, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT +to VmaAllocatorCreateInfo::flags. - if(pImageCreateInfo->extent.width == 0 || - pImageCreateInfo->extent.height == 0 || - pImageCreateInfo->extent.depth == 0 || - pImageCreateInfo->mipLevels == 0 || - pImageCreateInfo->arrayLayers == 0) - { - return VK_ERROR_VALIDATION_FAILED_EXT; - } +\section enabling_buffer_device_address_usage Usage - VMA_DEBUG_LOG("vmaCreateImage"); +After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. +The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to +allocated memory blocks wherever it might be needed. - VMA_DEBUG_GLOBAL_MUTEX_LOCK +Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. +The second part of this functionality related to "capture and replay" is not supported, +as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. - *pImage = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; +\section enabling_buffer_device_address_more_information More information - // 1. Create VkImage. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( - allocator->m_hDevice, - pImageCreateInfo, - allocator->GetAllocationCallbacks(), - pImage); - if(res >= 0) - { - VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; +To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) - // 2. Allocate memory using allocator. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(*pImage, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - UINT32_MAX, // dedicatedBufferUsage - *pImage, // dedicatedImage - *pAllocationCreateInfo, - suballocType, - 1, // allocationCount - pAllocation); +\page general_considerations General considerations -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordCreateImage( - allocator->GetCurrentFrameIndex(), - *pImageCreateInfo, - *pAllocationCreateInfo, - *pAllocation); - } -#endif +\section general_considerations_thread_safety Thread safety - if(res >= 0) - { - // 3. Bind image with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } +- The library has no global state, so separate #VmaAllocator objects can be used + independently. + There should be no need to create multiple such objects though - one per `VkDevice` is enough. +- By default, all calls to functions that take #VmaAllocator as first parameter + are safe to call from multiple threads simultaneously because they are + synchronized internally when needed. + This includes allocation and deallocation from default memory pool, as well as custom #VmaPool. +- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT + flag, calls to functions that take such #VmaAllocator object must be + synchronized externally. +- Access to a #VmaAllocation object must be externally synchronized. For example, + you must not call vmaGetAllocationInfo() and vmaMapMemory() from different + threads at the same time if you pass the same #VmaAllocation object to these + functions. +- #VmaVirtualBlock is also not safe to be used from multiple threads simultaneously. - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - return res; -} +\section general_considerations_validation_layer_warnings Validation layer warnings -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator allocator, - VkImage image, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); +When using this library, you can meet following types of warnings issued by +Vulkan validation layer. They don't necessarily indicate a bug, so you may need +to just ignore them. - if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } +- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* + - It happens when VK_KHR_dedicated_allocation extension is enabled. + `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. +- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* + - It happens when you map a buffer or image, because the library maps entire + `VkDeviceMemory` block, where different types of images and buffers may end + up together, especially on GPUs with unified memory like Intel. +- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* + - It may happen when you use [defragmentation](@ref defragmentation). - VMA_DEBUG_LOG("vmaDestroyImage"); +\section general_considerations_allocation_algorithm Allocation algorithm - VMA_DEBUG_GLOBAL_MUTEX_LOCK +The library uses following algorithm for allocation, in order: -#if VMA_RECORDING_ENABLED - if(allocator->GetRecorder() != VMA_NULL) - { - allocator->GetRecorder()->RecordDestroyImage( - allocator->GetCurrentFrameIndex(), - allocation); - } -#endif +-# Try to find free range of memory in existing blocks. +-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. +-# If failed, try to create such block with size/2, size/4, size/8. +-# If failed, try to allocate separate `VkDeviceMemory` for this allocation, + just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +-# If failed, choose other memory type that meets the requirements specified in + VmaAllocationCreateInfo and go to point 1. +-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - if(image != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); - } - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} +\section general_considerations_features_not_supported Features not supported + +Features deliberately excluded from the scope of this library: -#endif // #ifdef VMA_IMPLEMENTATION +- **Data transfer.** Uploading (streaming) and downloading data of buffers and images + between CPU and GPU memory and related synchronization is responsibility of the user. + Defining some "texture" object that would automatically stream its data from a + staging copy in CPU memory to GPU memory would rather be a feature of another, + higher-level library implemented on top of VMA. +- **Recreation of buffers and images.** Although the library has functions for + buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to + recreate these objects yourself after defragmentation. That is because the big + structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in + #VmaAllocation object. +- **Handling CPU memory allocation failures.** When dynamically creating small C++ + objects in CPU memory (not Vulkan memory), allocation failures are not checked + and handled gracefully, because that would complicate code significantly and + is usually not needed in desktop PC applications anyway. + Success of an allocation is just checked with an assert. +- **Code free of any compiler warnings.** Maintaining the library to compile and + work correctly on so many different platforms is hard enough. Being free of + any warnings, on any version of any compiler, is simply not feasible. + There are many preprocessor macros that make some variables unused, function parameters unreferenced, + or conditional expressions constant in some configurations. + The code of this library should not be bigger or more complicated just to silence these warnings. + It is recommended to disable such warnings instead. +- This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but + are not going to be included into this repository. +*/ -- cgit v1.2.3 From 4e6c9d3ae979f2eb0151cf581fe61d2f3194ea72 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Pedro=20J=2E=20Est=C3=A9banez?= Date: Sat, 12 Feb 2022 12:47:08 +0100 Subject: Add a separate pool for small allocations in Vulkan RD --- .../vulkan/patches/03-VMA-universal-pools.patch | 567 +++++++++++++++++++++ thirdparty/vulkan/vk_mem_alloc.h | 346 +++++++------ 2 files changed, 756 insertions(+), 157 deletions(-) create mode 100644 thirdparty/vulkan/patches/03-VMA-universal-pools.patch (limited to 'thirdparty') diff --git a/thirdparty/vulkan/patches/03-VMA-universal-pools.patch b/thirdparty/vulkan/patches/03-VMA-universal-pools.patch new file mode 100644 index 0000000000..a5de3aaace --- /dev/null +++ b/thirdparty/vulkan/patches/03-VMA-universal-pools.patch @@ -0,0 +1,567 @@ +diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h +index 74c66b9789..89e00e6326 100644 +--- a/thirdparty/vulkan/vk_mem_alloc.h ++++ b/thirdparty/vulkan/vk_mem_alloc.h +@@ -1127,31 +1127,26 @@ typedef struct VmaAllocationCreateInfo + /** \brief Intended usage of memory. + + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n +- If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. + +- Leave 0 if you specify memory requirements in other way. \n +- If `pool` is not null, this member is ignored.*/ ++ Leave 0 if you specify memory requirements in other way.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. + +- Set to 0 if no additional flags are preferred. \n +- If `pool` is not null, this member is ignored. */ ++ Set to 0 if no additional flags are preferred.*/ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. + + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n +- If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. + +- Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: +- `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. ++ Leave `VK_NULL_HANDLE` to allocate from default pool. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). +@@ -1173,9 +1168,6 @@ typedef struct VmaAllocationCreateInfo + /// Describes parameter of created #VmaPool. + typedef struct VmaPoolCreateInfo + { +- /** \brief Vulkan memory type index to allocate this pool from. +- */ +- uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; +@@ -10904,13 +10896,12 @@ struct VmaPool_T + friend struct VmaPoolListItemTraits; + VMA_CLASS_NO_COPY(VmaPool_T) + public: +- VmaBlockVector m_BlockVector; +- VmaDedicatedAllocationList m_DedicatedAllocations; ++ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; ++ VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; + + VmaPool_T( + VmaAllocator hAllocator, +- const VmaPoolCreateInfo& createInfo, +- VkDeviceSize preferredBlockSize); ++ const VmaPoolCreateInfo& createInfo); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } +@@ -10924,6 +10915,7 @@ public: + #endif + + private: ++ const VmaAllocator m_hAllocator; + uint32_t m_Id; + char* m_Name; + VmaPool_T* m_PrevPool = VMA_NULL; +@@ -11405,8 +11397,10 @@ private: + + void ValidateVulkanFunctions(); + ++public: // I'm sorry + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + ++private: + VkResult AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, +@@ -14176,30 +14170,36 @@ void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pP + { + VmaPool pool = pPools[poolIndex]; + VMA_ASSERT(pool); +- // Pools with algorithm other than default are not defragmented. +- if (pool->m_BlockVector.GetAlgorithm() == 0) ++ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) + { +- VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; +- +- for (size_t i = m_CustomPoolContexts.size(); i--; ) ++ if(pool->m_pBlockVectors[memTypeIndex]) + { +- if (m_CustomPoolContexts[i]->GetCustomPool() == pool) ++ // Pools with algorithm other than default are not defragmented. ++ if (pool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0) + { +- pBlockVectorDefragCtx = m_CustomPoolContexts[i]; +- break; +- } +- } ++ VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; + +- if (!pBlockVectorDefragCtx) +- { +- pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( +- m_hAllocator, +- pool, +- &pool->m_BlockVector); +- m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); +- } ++ for (size_t i = m_CustomPoolContexts.size(); i--; ) ++ { ++ if (m_CustomPoolContexts[i]->GetCustomPool() == pool) ++ { ++ pBlockVectorDefragCtx = m_CustomPoolContexts[i]; ++ break; ++ } ++ } ++ ++ if (!pBlockVectorDefragCtx) ++ { ++ pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( ++ m_hAllocator, ++ pool, ++ pool->m_pBlockVectors[memTypeIndex]); ++ m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); ++ } + +- pBlockVectorDefragCtx->AddAll(); ++ pBlockVectorDefragCtx->AddAll(); ++ } ++ } + } + } + } +@@ -14214,6 +14214,7 @@ void VmaDefragmentationContext_T::AddAllocations( + { + const VmaAllocation hAlloc = pAllocations[allocIndex]; + VMA_ASSERT(hAlloc); ++ const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); + // DedicatedAlloc cannot be defragmented. + if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) + { +@@ -14224,7 +14225,7 @@ void VmaDefragmentationContext_T::AddAllocations( + if (hAllocPool != VK_NULL_HANDLE) + { + // Pools with algorithm other than default are not defragmented. +- if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) ++ if (hAllocPool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0) + { + for (size_t i = m_CustomPoolContexts.size(); i--; ) + { +@@ -14239,7 +14240,7 @@ void VmaDefragmentationContext_T::AddAllocations( + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + hAllocPool, +- &hAllocPool->m_BlockVector); ++ hAllocPool->m_pBlockVectors[memTypeIndex]); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } + } +@@ -14247,7 +14248,6 @@ void VmaDefragmentationContext_T::AddAllocations( + // This allocation belongs to default pool. + else + { +- const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); + pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; + if (!pBlockVectorDefragCtx) + { +@@ -14481,41 +14481,61 @@ VkResult VmaDefragmentationContext_T::DefragmentPassEnd() + #ifndef _VMA_POOL_T_FUNCTIONS + VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, +- const VmaPoolCreateInfo& createInfo, +- VkDeviceSize preferredBlockSize) +- : m_BlockVector( +- hAllocator, +- this, // hParentPool +- createInfo.memoryTypeIndex, +- createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, +- createInfo.minBlockCount, +- createInfo.maxBlockCount, +- (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), +- createInfo.blockSize != 0, // explicitBlockSize +- createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm +- createInfo.priority, +- VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), +- createInfo.pMemoryAllocateNext), ++ const VmaPoolCreateInfo& createInfo) : ++ m_hAllocator(hAllocator), ++ m_pBlockVectors{}, + m_Id(0), +- m_Name(VMA_NULL) {} ++ m_Name(VMA_NULL) ++{ ++ for(uint32_t memTypeIndex = 0; memTypeIndex < hAllocator->GetMemoryTypeCount(); ++memTypeIndex) ++ { ++ // Create only supported types ++ if((hAllocator->GetGlobalMemoryTypeBits() & (1u << memTypeIndex)) != 0) ++ { ++ m_pBlockVectors[memTypeIndex] = vma_new(hAllocator, VmaBlockVector)( ++ hAllocator, ++ this, // hParentPool ++ memTypeIndex, ++ createInfo.blockSize != 0 ? createInfo.blockSize : hAllocator->CalcPreferredBlockSize(memTypeIndex), ++ createInfo.minBlockCount, ++ createInfo.maxBlockCount, ++ (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), ++ false, // explicitBlockSize ++ createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm ++ createInfo.priority, ++ VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(memTypeIndex), createInfo.minAllocationAlignment), ++ createInfo.pMemoryAllocateNext); ++ } ++ } ++} + + VmaPool_T::~VmaPool_T() + { + VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); ++ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) ++ { ++ vma_delete(m_hAllocator, m_pBlockVectors[memTypeIndex]); ++ } + } + + void VmaPool_T::SetName(const char* pName) + { +- const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); +- VmaFreeString(allocs, m_Name); +- +- if (pName != VMA_NULL) +- { +- m_Name = VmaCreateStringCopy(allocs, pName); +- } +- else ++ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) + { +- m_Name = VMA_NULL; ++ if(m_pBlockVectors[memTypeIndex]) ++ { ++ const VkAllocationCallbacks* allocs = m_pBlockVectors[memTypeIndex]->GetAllocator()->GetAllocationCallbacks(); ++ VmaFreeString(allocs, m_Name); ++ ++ if (pName != VMA_NULL) ++ { ++ m_Name = VmaCreateStringCopy(allocs, pName); ++ } ++ else ++ { ++ m_Name = VMA_NULL; ++ } ++ } + } + } + #endif // _VMA_POOL_T_FUNCTIONS +@@ -15377,15 +15397,22 @@ VkResult VmaAllocator_T::CalcAllocationParams( + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + +- if(inoutCreateInfo.pool != VK_NULL_HANDLE) ++ if(inoutCreateInfo.pool != VK_NULL_HANDLE && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { +- if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && +- (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) ++ // Assuming here every block has the same block size and priority. ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { +- VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); +- return VK_ERROR_FEATURE_NOT_PRESENT; ++ if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]) ++ { ++ if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->HasExplicitBlockSize()) ++ { ++ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); ++ return VK_ERROR_FEATURE_NOT_PRESENT; ++ } ++ inoutCreateInfo.priority = inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->GetPriority(); ++ break; ++ } + } +- inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); + } + + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && +@@ -15429,67 +15456,46 @@ VkResult VmaAllocator_T::AllocateMemory( + if(res != VK_SUCCESS) + return res; + +- if(createInfoFinal.pool != VK_NULL_HANDLE) ++ // Bit mask of memory Vulkan types acceptable for this allocation. ++ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; ++ uint32_t memTypeIndex = UINT32_MAX; ++ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); ++ // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. ++ if(res != VK_SUCCESS) ++ return res; ++ do + { +- VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; +- return AllocateMemoryOfType( ++ VmaBlockVector* blockVector = createInfoFinal.pool == VK_NULL_HANDLE ? m_pBlockVectors[memTypeIndex] : createInfoFinal.pool->m_pBlockVectors[memTypeIndex]; ++ VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); ++ VmaDedicatedAllocationList& dedicatedAllocations = createInfoFinal.pool == VK_NULL_HANDLE ? m_DedicatedAllocations[memTypeIndex] : createInfoFinal.pool->m_DedicatedAllocations[memTypeIndex]; ++ res = AllocateMemoryOfType( + createInfoFinal.pool, + vkMemReq.size, + vkMemReq.alignment, +- prefersDedicatedAllocation, ++ requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedBufferUsage, + dedicatedImage, + createInfoFinal, +- blockVector.GetMemoryTypeIndex(), ++ memTypeIndex, + suballocType, +- createInfoFinal.pool->m_DedicatedAllocations, +- blockVector, ++ dedicatedAllocations, ++ *blockVector, + allocationCount, + pAllocations); +- } +- else +- { +- // Bit mask of memory Vulkan types acceptable for this allocation. +- uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; +- uint32_t memTypeIndex = UINT32_MAX; +- res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); +- // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. +- if(res != VK_SUCCESS) +- return res; +- do +- { +- VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; +- VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); +- res = AllocateMemoryOfType( +- VK_NULL_HANDLE, +- vkMemReq.size, +- vkMemReq.alignment, +- requiresDedicatedAllocation || prefersDedicatedAllocation, +- dedicatedBuffer, +- dedicatedBufferUsage, +- dedicatedImage, +- createInfoFinal, +- memTypeIndex, +- suballocType, +- m_DedicatedAllocations[memTypeIndex], +- *blockVector, +- allocationCount, +- pAllocations); +- // Allocation succeeded +- if(res == VK_SUCCESS) +- return VK_SUCCESS; ++ // Allocation succeeded ++ if(res == VK_SUCCESS) ++ return VK_SUCCESS; + +- // Remove old memTypeIndex from list of possibilities. +- memoryTypeBits &= ~(1u << memTypeIndex); +- // Find alternative memTypeIndex. +- res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); +- } while(res == VK_SUCCESS); ++ // Remove old memTypeIndex from list of possibilities. ++ memoryTypeBits &= ~(1u << memTypeIndex); ++ // Find alternative memTypeIndex. ++ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); ++ } while(res == VK_SUCCESS); + +- // No other matching memory type index could be found. +- // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. +- return VK_ERROR_OUT_OF_DEVICE_MEMORY; +- } ++ // No other matching memory type index could be found. ++ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. ++ return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + void VmaAllocator_T::FreeMemory( +@@ -15515,16 +15521,16 @@ void VmaAllocator_T::FreeMemory( + { + VmaBlockVector* pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetParentPool(); ++ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + if(hPool != VK_NULL_HANDLE) + { +- pBlockVector = &hPool->m_BlockVector; ++ pBlockVector = hPool->m_pBlockVectors[memTypeIndex]; + } + else + { +- const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; +- VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); + } ++ VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); + pBlockVector->Free(allocation); + } + break; +@@ -15564,11 +15570,17 @@ void VmaAllocator_T::CalculateStats(VmaStats* pStats) + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { +- VmaBlockVector& blockVector = pool->m_BlockVector; +- blockVector.AddStats(pStats); +- const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); +- const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); +- pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex); ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) ++ { ++ if (pool->m_pBlockVectors[memTypeIndex]) ++ { ++ VmaBlockVector& blockVector = *pool->m_pBlockVectors[memTypeIndex]; ++ blockVector.AddStats(pStats); ++ const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); ++ const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); ++ pool->m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex); ++ } ++ } + } + } + +@@ -15720,27 +15732,26 @@ VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPoo + { + return VK_ERROR_INITIALIZATION_FAILED; + } +- // Memory type index out of range or forbidden. +- if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || +- ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) +- { +- return VK_ERROR_FEATURE_NOT_PRESENT; +- } + if(newCreateInfo.minAllocationAlignment > 0) + { + VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); + } + +- const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); +- +- *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); ++ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo); + +- VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); +- if(res != VK_SUCCESS) ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { +- vma_delete(this, *pPool); +- *pPool = VMA_NULL; +- return res; ++ // Create only supported types ++ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) ++ { ++ VkResult res = (*pPool)->m_pBlockVectors[memTypeIndex]->CreateMinBlocks(); ++ if(res != VK_SUCCESS) ++ { ++ vma_delete(this, *pPool); ++ *pPool = VMA_NULL; ++ return res; ++ } ++ } + } + + // Add to m_Pools. +@@ -15772,8 +15783,14 @@ void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) + pPoolStats->unusedRangeCount = 0; + pPoolStats->blockCount = 0; + +- pool->m_BlockVector.AddPoolStats(pPoolStats); +- pool->m_DedicatedAllocations.AddPoolStats(pPoolStats); ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) ++ { ++ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) ++ { ++ pool->m_pBlockVectors[memTypeIndex]->AddPoolStats(pPoolStats); ++ pool->m_DedicatedAllocations[memTypeIndex].AddPoolStats(pPoolStats); ++ } ++ } + } + + void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) +@@ -15790,7 +15807,13 @@ void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) + + VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) + { +- return hPool->m_BlockVector.CheckCorruption(); ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) ++ { ++ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) ++ { ++ return hPool->m_pBlockVectors[memTypeIndex]->CheckCorruption(); ++ } ++ } + } + + VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) +@@ -15822,18 +15845,21 @@ VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { +- if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { +- VkResult localRes = pool->m_BlockVector.CheckCorruption(); +- switch(localRes) ++ if(pool->m_pBlockVectors[memTypeIndex] && ((1u << memTypeIndex) & memoryTypeBits) != 0) + { +- case VK_ERROR_FEATURE_NOT_PRESENT: +- break; +- case VK_SUCCESS: +- finalRes = VK_SUCCESS; +- break; +- default: +- return localRes; ++ VkResult localRes = pool->m_pBlockVectors[memTypeIndex]->CheckCorruption(); ++ switch(localRes) ++ { ++ case VK_ERROR_FEATURE_NOT_PRESENT: ++ break; ++ case VK_SUCCESS: ++ finalRes = VK_SUCCESS; ++ break; ++ default: ++ return localRes; ++ } + } + } + } +@@ -16155,7 +16181,7 @@ void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) + else + { + // Custom pool +- parentPool->m_DedicatedAllocations.Unregister(allocation); ++ parentPool->m_DedicatedAllocations[memTypeIndex].Unregister(allocation); + } + + VkDeviceMemory hMemory = allocation->GetMemory(); +@@ -16430,12 +16456,18 @@ void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) + json.EndString(); + + json.BeginObject(); +- pool->m_BlockVector.PrintDetailedMap(json); +- +- if (!pool->m_DedicatedAllocations.IsEmpty()) ++ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { +- json.WriteString("DedicatedAllocations"); +- pool->m_DedicatedAllocations.BuildStatsString(json); ++ if (pool->m_pBlockVectors[memTypeIndex]) ++ { ++ pool->m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); ++ } ++ ++ if (!pool->m_DedicatedAllocations[memTypeIndex].IsEmpty()) ++ { ++ json.WriteString("DedicatedAllocations"); ++ pool->m_DedicatedAllocations->BuildStatsString(json); ++ } + } + json.EndObject(); + } diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h index 74c66b9789..89e00e6326 100644 --- a/thirdparty/vulkan/vk_mem_alloc.h +++ b/thirdparty/vulkan/vk_mem_alloc.h @@ -1127,31 +1127,26 @@ typedef struct VmaAllocationCreateInfo /** \brief Intended usage of memory. You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored. */ VmaMemoryUsage usage; /** \brief Flags that must be set in a Memory Type chosen for an allocation. - Leave 0 if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored.*/ + Leave 0 if you specify memory requirements in other way.*/ VkMemoryPropertyFlags requiredFlags; /** \brief Flags that preferably should be set in a memory type chosen for an allocation. - Set to 0 if no additional flags are preferred. \n - If `pool` is not null, this member is ignored. */ + Set to 0 if no additional flags are preferred.*/ VkMemoryPropertyFlags preferredFlags; /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if it meets other requirements specified by this structure, with no further restrictions on memory type index. \n - If `pool` is not null, this member is ignored. */ uint32_t memoryTypeBits; /** \brief Pool that this allocation should be created in. - Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: - `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + Leave `VK_NULL_HANDLE` to allocate from default pool. */ VmaPool VMA_NULLABLE pool; /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). @@ -1173,9 +1168,6 @@ typedef struct VmaAllocationCreateInfo /// Describes parameter of created #VmaPool. typedef struct VmaPoolCreateInfo { - /** \brief Vulkan memory type index to allocate this pool from. - */ - uint32_t memoryTypeIndex; /** \brief Use combination of #VmaPoolCreateFlagBits. */ VmaPoolCreateFlags flags; @@ -10904,13 +10896,12 @@ struct VmaPool_T friend struct VmaPoolListItemTraits; VMA_CLASS_NO_COPY(VmaPool_T) public: - VmaBlockVector m_BlockVector; - VmaDedicatedAllocationList m_DedicatedAllocations; + VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; VmaPool_T( VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize); + const VmaPoolCreateInfo& createInfo); ~VmaPool_T(); uint32_t GetId() const { return m_Id; } @@ -10924,6 +10915,7 @@ public: #endif private: + const VmaAllocator m_hAllocator; uint32_t m_Id; char* m_Name; VmaPool_T* m_PrevPool = VMA_NULL; @@ -11405,8 +11397,10 @@ private: void ValidateVulkanFunctions(); +public: // I'm sorry VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); +private: VkResult AllocateMemoryOfType( VmaPool pool, VkDeviceSize size, @@ -14176,30 +14170,36 @@ void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pP { VmaPool pool = pPools[poolIndex]; VMA_ASSERT(pool); - // Pools with algorithm other than default are not defragmented. - if (pool->m_BlockVector.GetAlgorithm() == 0) + for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) { - VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - - for (size_t i = m_CustomPoolContexts.size(); i--; ) + if(pool->m_pBlockVectors[memTypeIndex]) { - if (m_CustomPoolContexts[i]->GetCustomPool() == pool) + // Pools with algorithm other than default are not defragmented. + if (pool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0) { - pBlockVectorDefragCtx = m_CustomPoolContexts[i]; - break; - } - } + VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; - if (!pBlockVectorDefragCtx) - { - pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( - m_hAllocator, - pool, - &pool->m_BlockVector); - m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); - } + for (size_t i = m_CustomPoolContexts.size(); i--; ) + { + if (m_CustomPoolContexts[i]->GetCustomPool() == pool) + { + pBlockVectorDefragCtx = m_CustomPoolContexts[i]; + break; + } + } + + if (!pBlockVectorDefragCtx) + { + pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( + m_hAllocator, + pool, + pool->m_pBlockVectors[memTypeIndex]); + m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); + } - pBlockVectorDefragCtx->AddAll(); + pBlockVectorDefragCtx->AddAll(); + } + } } } } @@ -14214,6 +14214,7 @@ void VmaDefragmentationContext_T::AddAllocations( { const VmaAllocation hAlloc = pAllocations[allocIndex]; VMA_ASSERT(hAlloc); + const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); // DedicatedAlloc cannot be defragmented. if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) { @@ -14224,7 +14225,7 @@ void VmaDefragmentationContext_T::AddAllocations( if (hAllocPool != VK_NULL_HANDLE) { // Pools with algorithm other than default are not defragmented. - if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) + if (hAllocPool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0) { for (size_t i = m_CustomPoolContexts.size(); i--; ) { @@ -14239,7 +14240,7 @@ void VmaDefragmentationContext_T::AddAllocations( pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( m_hAllocator, hAllocPool, - &hAllocPool->m_BlockVector); + hAllocPool->m_pBlockVectors[memTypeIndex]); m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); } } @@ -14247,7 +14248,6 @@ void VmaDefragmentationContext_T::AddAllocations( // This allocation belongs to default pool. else { - const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; if (!pBlockVectorDefragCtx) { @@ -14481,41 +14481,61 @@ VkResult VmaDefragmentationContext_T::DefragmentPassEnd() #ifndef _VMA_POOL_T_FUNCTIONS VmaPool_T::VmaPool_T( VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize) - : m_BlockVector( - hAllocator, - this, // hParentPool - createInfo.memoryTypeIndex, - createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, - createInfo.minBlockCount, - createInfo.maxBlockCount, - (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), - createInfo.blockSize != 0, // explicitBlockSize - createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm - createInfo.priority, - VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), - createInfo.pMemoryAllocateNext), + const VmaPoolCreateInfo& createInfo) : + m_hAllocator(hAllocator), + m_pBlockVectors{}, m_Id(0), - m_Name(VMA_NULL) {} + m_Name(VMA_NULL) +{ + for(uint32_t memTypeIndex = 0; memTypeIndex < hAllocator->GetMemoryTypeCount(); ++memTypeIndex) + { + // Create only supported types + if((hAllocator->GetGlobalMemoryTypeBits() & (1u << memTypeIndex)) != 0) + { + m_pBlockVectors[memTypeIndex] = vma_new(hAllocator, VmaBlockVector)( + hAllocator, + this, // hParentPool + memTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : hAllocator->CalcPreferredBlockSize(memTypeIndex), + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + false, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm + createInfo.priority, + VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(memTypeIndex), createInfo.minAllocationAlignment), + createInfo.pMemoryAllocateNext); + } + } +} VmaPool_T::~VmaPool_T() { VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); + for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) + { + vma_delete(m_hAllocator, m_pBlockVectors[memTypeIndex]); + } } void VmaPool_T::SetName(const char* pName) { - const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); - VmaFreeString(allocs, m_Name); - - if (pName != VMA_NULL) - { - m_Name = VmaCreateStringCopy(allocs, pName); - } - else + for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) { - m_Name = VMA_NULL; + if(m_pBlockVectors[memTypeIndex]) + { + const VkAllocationCallbacks* allocs = m_pBlockVectors[memTypeIndex]->GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); + + if (pName != VMA_NULL) + { + m_Name = VmaCreateStringCopy(allocs, pName); + } + else + { + m_Name = VMA_NULL; + } + } } } #endif // _VMA_POOL_T_FUNCTIONS @@ -15377,15 +15397,22 @@ VkResult VmaAllocator_T::CalcAllocationParams( inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; } - if(inoutCreateInfo.pool != VK_NULL_HANDLE) + if(inoutCreateInfo.pool != VK_NULL_HANDLE && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) { - if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && - (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + // Assuming here every block has the same block size and priority. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); - return VK_ERROR_FEATURE_NOT_PRESENT; + if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]) + { + if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->HasExplicitBlockSize()) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } + inoutCreateInfo.priority = inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->GetPriority(); + break; + } } - inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); } if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && @@ -15429,67 +15456,46 @@ VkResult VmaAllocator_T::AllocateMemory( if(res != VK_SUCCESS) return res; - if(createInfoFinal.pool != VK_NULL_HANDLE) + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); + // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + if(res != VK_SUCCESS) + return res; + do { - VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; - return AllocateMemoryOfType( + VmaBlockVector* blockVector = createInfoFinal.pool == VK_NULL_HANDLE ? m_pBlockVectors[memTypeIndex] : createInfoFinal.pool->m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); + VmaDedicatedAllocationList& dedicatedAllocations = createInfoFinal.pool == VK_NULL_HANDLE ? m_DedicatedAllocations[memTypeIndex] : createInfoFinal.pool->m_DedicatedAllocations[memTypeIndex]; + res = AllocateMemoryOfType( createInfoFinal.pool, vkMemReq.size, vkMemReq.alignment, - prefersDedicatedAllocation, + requiresDedicatedAllocation || prefersDedicatedAllocation, dedicatedBuffer, dedicatedBufferUsage, dedicatedImage, createInfoFinal, - blockVector.GetMemoryTypeIndex(), + memTypeIndex, suballocType, - createInfoFinal.pool->m_DedicatedAllocations, - blockVector, + dedicatedAllocations, + *blockVector, allocationCount, pAllocations); - } - else - { - // Bit mask of memory Vulkan types acceptable for this allocation. - uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; - uint32_t memTypeIndex = UINT32_MAX; - res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); - // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. - if(res != VK_SUCCESS) - return res; - do - { - VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); - res = AllocateMemoryOfType( - VK_NULL_HANDLE, - vkMemReq.size, - vkMemReq.alignment, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedBufferUsage, - dedicatedImage, - createInfoFinal, - memTypeIndex, - suballocType, - m_DedicatedAllocations[memTypeIndex], - *blockVector, - allocationCount, - pAllocations); - // Allocation succeeded - if(res == VK_SUCCESS) - return VK_SUCCESS; + // Allocation succeeded + if(res == VK_SUCCESS) + return VK_SUCCESS; - // Remove old memTypeIndex from list of possibilities. - memoryTypeBits &= ~(1u << memTypeIndex); - // Find alternative memTypeIndex. - res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); - } while(res == VK_SUCCESS); + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex); + } while(res == VK_SUCCESS); - // No other matching memory type index could be found. - // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } + // No other matching memory type index could be found. + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; } void VmaAllocator_T::FreeMemory( @@ -15515,16 +15521,16 @@ void VmaAllocator_T::FreeMemory( { VmaBlockVector* pBlockVector = VMA_NULL; VmaPool hPool = allocation->GetParentPool(); + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); if(hPool != VK_NULL_HANDLE) { - pBlockVector = &hPool->m_BlockVector; + pBlockVector = hPool->m_pBlockVectors[memTypeIndex]; } else { - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); } + VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); pBlockVector->Free(allocation); } break; @@ -15564,11 +15570,17 @@ void VmaAllocator_T::CalculateStats(VmaStats* pStats) VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { - VmaBlockVector& blockVector = pool->m_BlockVector; - blockVector.AddStats(pStats); - const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); - const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex); + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if (pool->m_pBlockVectors[memTypeIndex]) + { + VmaBlockVector& blockVector = *pool->m_pBlockVectors[memTypeIndex]; + blockVector.AddStats(pStats); + const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); + const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + pool->m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex); + } + } } } @@ -15720,27 +15732,26 @@ VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPoo { return VK_ERROR_INITIALIZATION_FAILED; } - // Memory type index out of range or forbidden. - if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || - ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } if(newCreateInfo.minAllocationAlignment > 0) { VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); } - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); - - *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo); - VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); - if(res != VK_SUCCESS) + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - vma_delete(this, *pPool); - *pPool = VMA_NULL; - return res; + // Create only supported types + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + VkResult res = (*pPool)->m_pBlockVectors[memTypeIndex]->CreateMinBlocks(); + if(res != VK_SUCCESS) + { + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; + } + } } // Add to m_Pools. @@ -15772,8 +15783,14 @@ void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) pPoolStats->unusedRangeCount = 0; pPoolStats->blockCount = 0; - pool->m_BlockVector.AddPoolStats(pPoolStats); - pool->m_DedicatedAllocations.AddPoolStats(pPoolStats); + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + pool->m_pBlockVectors[memTypeIndex]->AddPoolStats(pPoolStats); + pool->m_DedicatedAllocations[memTypeIndex].AddPoolStats(pPoolStats); + } + } } void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) @@ -15790,7 +15807,13 @@ void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) { - return hPool->m_BlockVector.CheckCorruption(); + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + return hPool->m_pBlockVectors[memTypeIndex]->CheckCorruption(); + } + } } VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) @@ -15822,18 +15845,21 @@ VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { - if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - VkResult localRes = pool->m_BlockVector.CheckCorruption(); - switch(localRes) + if(pool->m_pBlockVectors[memTypeIndex] && ((1u << memTypeIndex) & memoryTypeBits) != 0) { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; + VkResult localRes = pool->m_pBlockVectors[memTypeIndex]->CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } } } } @@ -16155,7 +16181,7 @@ void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) else { // Custom pool - parentPool->m_DedicatedAllocations.Unregister(allocation); + parentPool->m_DedicatedAllocations[memTypeIndex].Unregister(allocation); } VkDeviceMemory hMemory = allocation->GetMemory(); @@ -16430,12 +16456,18 @@ void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) json.EndString(); json.BeginObject(); - pool->m_BlockVector.PrintDetailedMap(json); - - if (!pool->m_DedicatedAllocations.IsEmpty()) + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { - json.WriteString("DedicatedAllocations"); - pool->m_DedicatedAllocations.BuildStatsString(json); + if (pool->m_pBlockVectors[memTypeIndex]) + { + pool->m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json); + } + + if (!pool->m_DedicatedAllocations[memTypeIndex].IsEmpty()) + { + json.WriteString("DedicatedAllocations"); + pool->m_DedicatedAllocations->BuildStatsString(json); + } } json.EndObject(); } -- cgit v1.2.3