diff options
Diffstat (limited to 'thirdparty')
37 files changed, 28877 insertions, 0 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md index 33f835cbcd..38001b8782 100644 --- a/thirdparty/README.md +++ b/thirdparty/README.md @@ -17,6 +17,18 @@ Files extracted from upstream source: - `license.txt` +## astcenc + +- Upstream: https://github.com/ARM-software/astc-encoder +- Version: 4.3.0 (ec83dda79fcefe07f69cdae7ed980d169bf2c4d4, 2023) +- License: Apache 2.0 + +Files extracted from upstream source: + +- `astcenc_*` and `astcenc.h` files from `Source` +- `LICENSE.txt` + + ## basis_universal - Upstream: https://github.com/BinomialLLC/basis_universal diff --git a/thirdparty/astcenc/LICENSE.txt b/thirdparty/astcenc/LICENSE.txt new file mode 100644 index 0000000000..b82735a310 --- /dev/null +++ b/thirdparty/astcenc/LICENSE.txt @@ -0,0 +1,175 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + +TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. diff --git a/thirdparty/astcenc/astcenc.h b/thirdparty/astcenc/astcenc.h new file mode 100644 index 0000000000..70ae783373 --- /dev/null +++ b/thirdparty/astcenc/astcenc.h @@ -0,0 +1,815 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2020-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief The core astcenc codec library interface. + * + * This interface is the entry point to the core astcenc codec. It aims to be easy to use for + * non-experts, but also to allow experts to have fine control over the compressor heuristics if + * needed. The core codec only handles compression and decompression, transferring all inputs and + * outputs via memory buffers. To catch obvious input/output buffer sizing issues, which can cause + * security and stability problems, all transfer buffers are explicitly sized. + * + * While the aim is that we keep this interface mostly stable, it should be viewed as a mutable + * interface tied to a specific source version. We are not trying to maintain backwards + * compatibility across codec versions. + * + * The API state management is based around an explicit context object, which is the context for all + * allocated memory resources needed to compress and decompress a single image. A context can be + * used to sequentially compress multiple images using the same configuration, allowing setup + * overheads to be amortized over multiple images, which is particularly important when images are + * small. + * + * Multi-threading can be used two ways. + * + * * An application wishing to process multiple images in parallel can allocate multiple + * contexts and assign each context to a thread. + * * An application wishing to process a single image in using multiple threads can configure + * contexts for multi-threaded use, and invoke astcenc_compress/decompress() once per thread + * for faster processing. The caller is responsible for creating the worker threads, and + * synchronizing between images. + * + * Threading + * ========= + * + * In pseudo-code, the usage for manual user threading looks like this: + * + * // Configure the compressor run + * astcenc_config my_config; + * astcenc_config_init(..., &my_config); + * + * // Power users can tweak <my_config> settings here ... + * + * // Allocate working state given config and thread_count + * astcenc_context* my_context; + * astcenc_context_alloc(&my_config, thread_count, &my_context); + * + * // Compress each image using these config settings + * foreach image: + * // For each thread in the thread pool + * for i in range(0, thread_count): + * astcenc_compress_image(my_context, &my_input, my_output, i); + * + * astcenc_compress_reset(my_context); + * + * // Clean up + * astcenc_context_free(my_context); + * + * Images + * ====== + * + * The codec supports compressing single images, which can be either 2D images or volumetric 3D + * images. Calling code is responsible for any handling of aggregate types, such as mipmap chains, + * texture arrays, or sliced 3D textures. + * + * Images are passed in as an astcenc_image structure. Inputs can be either 8-bit unorm, 16-bit + * half-float, or 32-bit float, as indicated by the data_type field. + * + * Images can be any dimension; there is no requirement to be a multiple of the ASTC block size. + * + * Data is always passed in as 4 color components, and accessed as an array of 2D image slices. Data + * within an image slice is always tightly packed without padding. Addressing looks like this: + * + * data[z_coord][y_coord * x_dim * 4 + x_coord * 4 ] // Red + * data[z_coord][y_coord * x_dim * 4 + x_coord * 4 + 1] // Green + * data[z_coord][y_coord * x_dim * 4 + x_coord * 4 + 2] // Blue + * data[z_coord][y_coord * x_dim * 4 + x_coord * 4 + 3] // Alpha + * + * Common compressor usage + * ======================= + * + * One of the most important things for coding image quality is to align the input data component + * count with the ASTC color endpoint mode. This avoids wasting bits encoding components you don't + * actually need in the endpoint colors. + * + * | Input data | Encoding swizzle | Sampling swizzle | + * | ------------ | ---------------- | ---------------- | + * | 1 component | RRR1 | .[rgb] | + * | 2 components | RRRG | .[rgb]a | + * | 3 components | RGB1 | .rgb | + * | 4 components | RGBA | .rgba | + * + * The 1 and 2 component modes recommend sampling from "g" to recover the luminance value as this + * provide best compatibility with other texture formats where the green component may be stored at + * higher precision than the others, such as RGB565. For ASTC any of the RGB components can be used; + * the luminance endpoint component will be returned for all three. + * + * When using the normal map compression mode ASTC will store normals as a two component X+Y map. + * Input images must contain unit-length normalized and should be passed in using a two component + * swizzle. The astcenc command line tool defaults to an RRRG swizzle, but some developers prefer + * to use GGGR for compatability with BC5n which will work just as well. The Z component can be + * recovered programmatically in shader code, using knowledge that the vector is unit length and + * that Z must be positive for a tangent-space normal map. + * + * Decompress-only usage + * ===================== + * + * For some use cases it is useful to have a cut-down context and/or library which supports + * decompression but not compression. + * + * A context can be made decompress-only using the ASTCENC_FLG_DECOMPRESS_ONLY flag when the context + * is allocated. These contexts have lower dynamic memory footprint than a full context. + * + * The entire library can be made decompress-only by building the files with the define + * ASTCENC_DECOMPRESS_ONLY set. In this build the context will be smaller, and the library will + * exclude the functionality which is only needed for compression. This reduces the binary size by + * ~180KB. For these builds contexts must be created with the ASTCENC_FLG_DECOMPRESS_ONLY flag. + * + * Note that context structures returned by a library built as decompress-only are incompatible with + * a library built with compression included, and visa versa, as they have different sizes and + * memory layout. + * + * Self-decompress-only usage + * ========================== + * + * ASTC is a complex format with a large search space. The parts of this search space that are + * searched is determined by heuristics that are, in part, tied to the quality level used when + * creating the context. + * + * A normal context is capable of decompressing any ASTC texture, including those generated by other + * compressors with unknown heuristics. This is the most flexible implementation, but forces the + * data tables used by the codec to include entries that are not needed during compression. This + * can slow down context creation by a significant amount, especially for the faster compression + * modes where few data table entries are actually used. To optimize this use case the context can + * be created with the ASTCENC_FLG_SELF_DECOMPRESS_ONLY flag. This tells the compressor that it will + * only be asked to decompress images that it compressed itself, allowing the data tables to + * exclude entries that are not needed by the current compression configuration. This reduces the + * size of the context data tables in memory and improves context creation performance. Note that, + * as of the 3.6 release, this flag no longer affects compression performance. + * + * Using this flag while attempting to decompress an valid image which was created by another + * compressor, or even another astcenc compressor version or configuration, may result in blocks + * returning as solid magenta or NaN value error blocks. + */ + +#ifndef ASTCENC_INCLUDED +#define ASTCENC_INCLUDED + +#include <cstddef> +#include <cstdint> + +#if defined(ASTCENC_DYNAMIC_LIBRARY) + #if defined(_MSC_VER) + #define ASTCENC_PUBLIC extern "C" __declspec(dllexport) + #else + #define ASTCENC_PUBLIC extern "C" __attribute__ ((visibility ("default"))) + #endif +#else + #define ASTCENC_PUBLIC +#endif + +/* ============================================================================ + Data declarations +============================================================================ */ + +/** + * @brief An opaque structure; see astcenc_internal.h for definition. + */ +struct astcenc_context; + +/** + * @brief A codec API error code. + */ +enum astcenc_error { + /** @brief The call was successful. */ + ASTCENC_SUCCESS = 0, + /** @brief The call failed due to low memory, or undersized I/O buffers. */ + ASTCENC_ERR_OUT_OF_MEM, + /** @brief The call failed due to the build using fast math. */ + ASTCENC_ERR_BAD_CPU_FLOAT, + /** @brief The call failed due to the build using an unsupported ISA. */ + ASTCENC_ERR_BAD_CPU_ISA, + /** @brief The call failed due to an out-of-spec parameter. */ + ASTCENC_ERR_BAD_PARAM, + /** @brief The call failed due to an out-of-spec block size. */ + ASTCENC_ERR_BAD_BLOCK_SIZE, + /** @brief The call failed due to an out-of-spec color profile. */ + ASTCENC_ERR_BAD_PROFILE, + /** @brief The call failed due to an out-of-spec quality value. */ + ASTCENC_ERR_BAD_QUALITY, + /** @brief The call failed due to an out-of-spec component swizzle. */ + ASTCENC_ERR_BAD_SWIZZLE, + /** @brief The call failed due to an out-of-spec flag set. */ + ASTCENC_ERR_BAD_FLAGS, + /** @brief The call failed due to the context not supporting the operation. */ + ASTCENC_ERR_BAD_CONTEXT, + /** @brief The call failed due to unimplemented functionality. */ + ASTCENC_ERR_NOT_IMPLEMENTED, +#if defined(ASTCENC_DIAGNOSTICS) + /** @brief The call failed due to an issue with diagnostic tracing. */ + ASTCENC_ERR_DTRACE_FAILURE, +#endif +}; + +/** + * @brief A codec color profile. + */ +enum astcenc_profile { + /** @brief The LDR sRGB color profile. */ + ASTCENC_PRF_LDR_SRGB = 0, + /** @brief The LDR linear color profile. */ + ASTCENC_PRF_LDR, + /** @brief The HDR RGB with LDR alpha color profile. */ + ASTCENC_PRF_HDR_RGB_LDR_A, + /** @brief The HDR RGBA color profile. */ + ASTCENC_PRF_HDR +}; + +/** @brief The fastest, lowest quality, search preset. */ +static const float ASTCENC_PRE_FASTEST = 0.0f; + +/** @brief The fast search preset. */ +static const float ASTCENC_PRE_FAST = 10.0f; + +/** @brief The medium quality search preset. */ +static const float ASTCENC_PRE_MEDIUM = 60.0f; + +/** @brief The thorough quality search preset. */ +static const float ASTCENC_PRE_THOROUGH = 98.0f; + +/** @brief The thorough quality search preset. */ +static const float ASTCENC_PRE_VERYTHOROUGH = 99.0f; + +/** @brief The exhaustive, highest quality, search preset. */ +static const float ASTCENC_PRE_EXHAUSTIVE = 100.0f; + +/** + * @brief A codec component swizzle selector. + */ +enum astcenc_swz +{ + /** @brief Select the red component. */ + ASTCENC_SWZ_R = 0, + /** @brief Select the green component. */ + ASTCENC_SWZ_G = 1, + /** @brief Select the blue component. */ + ASTCENC_SWZ_B = 2, + /** @brief Select the alpha component. */ + ASTCENC_SWZ_A = 3, + /** @brief Use a constant zero component. */ + ASTCENC_SWZ_0 = 4, + /** @brief Use a constant one component. */ + ASTCENC_SWZ_1 = 5, + /** @brief Use a reconstructed normal vector Z component. */ + ASTCENC_SWZ_Z = 6 +}; + +/** + * @brief A texel component swizzle. + */ +struct astcenc_swizzle +{ + /** @brief The red component selector. */ + astcenc_swz r; + /** @brief The green component selector. */ + astcenc_swz g; + /** @brief The blue component selector. */ + astcenc_swz b; + /** @brief The alpha component selector. */ + astcenc_swz a; +}; + +/** + * @brief A texel component data format. + */ +enum astcenc_type +{ + /** @brief Unorm 8-bit data per component. */ + ASTCENC_TYPE_U8 = 0, + /** @brief 16-bit float per component. */ + ASTCENC_TYPE_F16 = 1, + /** @brief 32-bit float per component. */ + ASTCENC_TYPE_F32 = 2 +}; + +/** + * @brief Enable normal map compression. + * + * Input data will be treated a two component normal map, storing X and Y, and the codec will + * optimize for angular error rather than simple linear PSNR. In this mode the input swizzle should + * be e.g. rrrg (the default ordering for ASTC normals on the command line) or gggr (the ordering + * used by BC5n). + */ +static const unsigned int ASTCENC_FLG_MAP_NORMAL = 1 << 0; + +/** + * @brief Enable alpha weighting. + * + * The input alpha value is used for transparency, so errors in the RGB components are weighted by + * the transparency level. This allows the codec to more accurately encode the alpha value in areas + * where the color value is less significant. + */ +static const unsigned int ASTCENC_FLG_USE_ALPHA_WEIGHT = 1 << 2; + +/** + * @brief Enable perceptual error metrics. + * + * This mode enables perceptual compression mode, which will optimize for perceptual error rather + * than best PSNR. Only some input modes support perceptual error metrics. + */ +static const unsigned int ASTCENC_FLG_USE_PERCEPTUAL = 1 << 3; + +/** + * @brief Create a decompression-only context. + * + * This mode disables support for compression. This enables context allocation to skip some + * transient buffer allocation, resulting in lower memory usage. + */ +static const unsigned int ASTCENC_FLG_DECOMPRESS_ONLY = 1 << 4; + +/** + * @brief Create a self-decompression context. + * + * This mode configures the compressor so that it is only guaranteed to be able to decompress images + * that were actually created using the current context. This is the common case for compression use + * cases, and setting this flag enables additional optimizations, but does mean that the context + * cannot reliably decompress arbitrary ASTC images. + */ +static const unsigned int ASTCENC_FLG_SELF_DECOMPRESS_ONLY = 1 << 5; + +/** + * @brief Enable RGBM map compression. + * + * Input data will be treated as HDR data that has been stored in an LDR RGBM-encoded wrapper + * format. Data must be preprocessed by the user to be in LDR RGBM format before calling the + * compression function, this flag is only used to control the use of RGBM-specific heuristics and + * error metrics. + * + * IMPORTANT: The ASTC format is prone to bad failure modes with unconstrained RGBM data; very small + * M values can round to zero due to quantization and result in black or white pixels. It is highly + * recommended that the minimum value of M used in the encoding is kept above a lower threshold (try + * 16 or 32). Applying this threshold reduces the number of very dark colors that can be + * represented, but is still higher precision than 8-bit LDR. + * + * When this flag is set the value of @c rgbm_m_scale in the context must be set to the RGBM scale + * factor used during reconstruction. This defaults to 5 when in RGBM mode. + * + * It is recommended that the value of @c cw_a_weight is set to twice the value of the multiplier + * scale, ensuring that the M value is accurately encoded. This defaults to 10 when in RGBM mode, + * matching the default scale factor. + */ +static const unsigned int ASTCENC_FLG_MAP_RGBM = 1 << 6; + +/** + * @brief The bit mask of all valid flags. + */ +static const unsigned int ASTCENC_ALL_FLAGS = + ASTCENC_FLG_MAP_NORMAL | + ASTCENC_FLG_MAP_RGBM | + ASTCENC_FLG_USE_ALPHA_WEIGHT | + ASTCENC_FLG_USE_PERCEPTUAL | + ASTCENC_FLG_DECOMPRESS_ONLY | + ASTCENC_FLG_SELF_DECOMPRESS_ONLY; + +/** + * @brief The config structure. + * + * This structure will initially be populated by a call to astcenc_config_init, but power users may + * modify it before calling astcenc_context_alloc. See astcenccli_toplevel_help.cpp for full user + * documentation of the power-user settings. + * + * Note for any settings which are associated with a specific color component, the value in the + * config applies to the component that exists after any compression data swizzle is applied. + */ +struct astcenc_config +{ + /** @brief The color profile. */ + astcenc_profile profile; + + /** @brief The set of set flags. */ + unsigned int flags; + + /** @brief The ASTC block size X dimension. */ + unsigned int block_x; + + /** @brief The ASTC block size Y dimension. */ + unsigned int block_y; + + /** @brief The ASTC block size Z dimension. */ + unsigned int block_z; + + /** @brief The red component weight scale for error weighting (-cw). */ + float cw_r_weight; + + /** @brief The green component weight scale for error weighting (-cw). */ + float cw_g_weight; + + /** @brief The blue component weight scale for error weighting (-cw). */ + float cw_b_weight; + + /** @brief The alpha component weight scale for error weighting (-cw). */ + float cw_a_weight; + + /** + * @brief The radius for any alpha-weight scaling (-a). + * + * It is recommended that this is set to 1 when using FLG_USE_ALPHA_WEIGHT on a texture that + * will be sampled using linear texture filtering to minimize color bleed out of transparent + * texels that are adjacent to non-transparent texels. + */ + unsigned int a_scale_radius; + + /** @brief The RGBM scale factor for the shared multiplier (-rgbm). */ + float rgbm_m_scale; + + /** + * @brief The maximum number of partitions searched (-partitioncountlimit). + * + * Valid values are between 1 and 4. + */ + unsigned int tune_partition_count_limit; + + /** + * @brief The maximum number of partitions searched (-2partitionindexlimit). + * + * Valid values are between 1 and 1024. + */ + unsigned int tune_2partition_index_limit; + + /** + * @brief The maximum number of partitions searched (-3partitionindexlimit). + * + * Valid values are between 1 and 1024. + */ + unsigned int tune_3partition_index_limit; + + /** + * @brief The maximum number of partitions searched (-4partitionindexlimit). + * + * Valid values are between 1 and 1024. + */ + unsigned int tune_4partition_index_limit; + + /** + * @brief The maximum centile for block modes searched (-blockmodelimit). + * + * Valid values are between 1 and 100. + */ + unsigned int tune_block_mode_limit; + + /** + * @brief The maximum iterative refinements applied (-refinementlimit). + * + * Valid values are between 1 and N; there is no technical upper limit + * but little benefit is expected after N=4. + */ + unsigned int tune_refinement_limit; + + /** + * @brief The number of trial candidates per mode search (-candidatelimit). + * + * Valid values are between 1 and TUNE_MAX_TRIAL_CANDIDATES (default 4). + */ + unsigned int tune_candidate_limit; + + /** + * @brief The number of trial partitionings per search (-2partitioncandidatelimit). + * + * Valid values are between 1 and TUNE_MAX_PARTITIONING_CANDIDATES. + */ + unsigned int tune_2partitioning_candidate_limit; + + /** + * @brief The number of trial partitionings per search (-3partitioncandidatelimit). + * + * Valid values are between 1 and TUNE_MAX_PARTITIONING_CANDIDATES. + */ + unsigned int tune_3partitioning_candidate_limit; + + /** + * @brief The number of trial partitionings per search (-4partitioncandidatelimit). + * + * Valid values are between 1 and TUNE_MAX_PARTITIONING_CANDIDATES. + */ + unsigned int tune_4partitioning_candidate_limit; + + /** + * @brief The dB threshold for stopping block search (-dblimit). + * + * This option is ineffective for HDR textures. + */ + float tune_db_limit; + + /** + * @brief The amount of MSE overshoot needed to early-out trials. + * + * The first early-out is for 1 partition, 1 plane trials, where we try a minimal encode using + * the high probability block modes. This can short-cut compression for simple blocks. + * + * The second early-out is for refinement trials, where we can exit refinement once quality is + * reached. + */ + float tune_mse_overshoot; + + /** + * @brief The threshold for skipping 3.1/4.1 trials (-2partitionlimitfactor). + * + * This option is further scaled for normal maps, so it skips less often. + */ + float tune_2_partition_early_out_limit_factor; + + /** + * @brief The threshold for skipping 4.1 trials (-3partitionlimitfactor). + * + * This option is further scaled for normal maps, so it skips less often. + */ + float tune_3_partition_early_out_limit_factor; + + /** + * @brief The threshold for skipping two weight planes (-2planelimitcorrelation). + * + * This option is ineffective for normal maps. + */ + float tune_2_plane_early_out_limit_correlation; + +#if defined(ASTCENC_DIAGNOSTICS) + /** + * @brief The path to save the diagnostic trace data to. + * + * This option is not part of the public API, and requires special builds + * of the library. + */ + const char* trace_file_path; +#endif +}; + +/** + * @brief An uncompressed 2D or 3D image. + * + * 3D image are passed in as an array of 2D slices. Each slice has identical + * size and color format. + */ +struct astcenc_image +{ + /** @brief The X dimension of the image, in texels. */ + unsigned int dim_x; + + /** @brief The Y dimension of the image, in texels. */ + unsigned int dim_y; + + /** @brief The Z dimension of the image, in texels. */ + unsigned int dim_z; + + /** @brief The data type per component. */ + astcenc_type data_type; + + /** @brief The array of 2D slices, of length @c dim_z. */ + void** data; +}; + +/** + * @brief A block encoding metadata query result. + * + * If the block is an error block or a constant color block or an error block all fields other than + * the profile, block dimensions, and error/constant indicator will be zero. + */ +struct astcenc_block_info +{ + /** @brief The block encoding color profile. */ + astcenc_profile profile; + + /** @brief The number of texels in the X dimension. */ + unsigned int block_x; + + /** @brief The number of texels in the Y dimension. */ + unsigned int block_y; + + /** @brief The number of texel in the Z dimension. */ + unsigned int block_z; + + /** @brief The number of texels in the block. */ + unsigned int texel_count; + + /** @brief True if this block is an error block. */ + bool is_error_block; + + /** @brief True if this block is a constant color block. */ + bool is_constant_block; + + /** @brief True if this block is an HDR block. */ + bool is_hdr_block; + + /** @brief True if this block uses two weight planes. */ + bool is_dual_plane_block; + + /** @brief The number of partitions if not constant color. */ + unsigned int partition_count; + + /** @brief The partition index if 2 - 4 partitions used. */ + unsigned int partition_index; + + /** @brief The component index of the second plane if dual plane. */ + unsigned int dual_plane_component; + + /** @brief The color endpoint encoding mode for each partition. */ + unsigned int color_endpoint_modes[4]; + + /** @brief The number of color endpoint quantization levels. */ + unsigned int color_level_count; + + /** @brief The number of weight quantization levels. */ + unsigned int weight_level_count; + + /** @brief The number of weights in the X dimension. */ + unsigned int weight_x; + + /** @brief The number of weights in the Y dimension. */ + unsigned int weight_y; + + /** @brief The number of weights in the Z dimension. */ + unsigned int weight_z; + + /** @brief The unpacked color endpoints for each partition. */ + float color_endpoints[4][2][4]; + + /** @brief The per-texel interpolation weights for the block. */ + float weight_values_plane1[216]; + + /** @brief The per-texel interpolation weights for the block. */ + float weight_values_plane2[216]; + + /** @brief The per-texel partition assignments for the block. */ + uint8_t partition_assignment[216]; +}; + +/** + * Populate a codec config based on default settings. + * + * Power users can edit the returned config struct to fine tune before allocating the context. + * + * @param profile Color profile. + * @param block_x ASTC block size X dimension. + * @param block_y ASTC block size Y dimension. + * @param block_z ASTC block size Z dimension. + * @param quality Search quality preset / effort level. Either an + * @c ASTCENC_PRE_* value, or a effort level between 0 + * and 100. Performance is not linear between 0 and 100. + + * @param flags A valid set of @c ASTCENC_FLG_* flag bits. + * @param[out] config Output config struct to populate. + * + * @return @c ASTCENC_SUCCESS on success, or an error if the inputs are invalid + * either individually, or in combination. + */ +ASTCENC_PUBLIC astcenc_error astcenc_config_init( + astcenc_profile profile, + unsigned int block_x, + unsigned int block_y, + unsigned int block_z, + float quality, + unsigned int flags, + astcenc_config* config); + +/** + * @brief Allocate a new codec context based on a config. + * + * This function allocates all of the memory resources and threads needed by the codec. This can be + * slow, so it is recommended that contexts are reused to serially compress or decompress multiple + * images to amortize setup cost. + * + * Contexts can be allocated to support only decompression using the @c ASTCENC_FLG_DECOMPRESS_ONLY + * flag when creating the configuration. The compression functions will fail if invoked. For a + * decompress-only library build the @c ASTCENC_FLG_DECOMPRESS_ONLY flag must be set when creating + * any context. + * + * @param[in] config Codec config. + * @param thread_count Thread count to configure for. + * @param[out] context Location to store an opaque context pointer. + * + * @return @c ASTCENC_SUCCESS on success, or an error if context creation failed. + */ +ASTCENC_PUBLIC astcenc_error astcenc_context_alloc( + const astcenc_config* config, + unsigned int thread_count, + astcenc_context** context); + +/** + * @brief Compress an image. + * + * A single context can only compress or decompress a single image at a time. + * + * For a context configured for multi-threading, any set of the N threads can call this function. + * Work will be dynamically scheduled across the threads available. Each thread must have a unique + * @c thread_index. + * + * @param context Codec context. + * @param[in,out] image An input image, in 2D slices. + * @param swizzle Compression data swizzle, applied before compression. + * @param[out] data_out Pointer to output data array. + * @param data_len Length of the output data array. + * @param thread_index Thread index [0..N-1] of calling thread. + * + * @return @c ASTCENC_SUCCESS on success, or an error if compression failed. + */ +ASTCENC_PUBLIC astcenc_error astcenc_compress_image( + astcenc_context* context, + astcenc_image* image, + const astcenc_swizzle* swizzle, + uint8_t* data_out, + size_t data_len, + unsigned int thread_index); + +/** + * @brief Reset the codec state for a new compression. + * + * The caller is responsible for synchronizing threads in the worker thread pool. This function must + * only be called when all threads have exited the @c astcenc_compress_image() function for image N, + * but before any thread enters it for image N + 1. + * + * Calling this is not required (but won't hurt), if the context is created for single threaded use. + * + * @param context Codec context. + * + * @return @c ASTCENC_SUCCESS on success, or an error if reset failed. + */ +ASTCENC_PUBLIC astcenc_error astcenc_compress_reset( + astcenc_context* context); + +/** + * @brief Decompress an image. + * + * @param context Codec context. + * @param[in] data Pointer to compressed data. + * @param data_len Length of the compressed data, in bytes. + * @param[in,out] image_out Output image. + * @param swizzle Decompression data swizzle, applied after decompression. + * @param thread_index Thread index [0..N-1] of calling thread. + * + * @return @c ASTCENC_SUCCESS on success, or an error if decompression failed. + */ +ASTCENC_PUBLIC astcenc_error astcenc_decompress_image( + astcenc_context* context, + const uint8_t* data, + size_t data_len, + astcenc_image* image_out, + const astcenc_swizzle* swizzle, + unsigned int thread_index); + +/** + * @brief Reset the codec state for a new decompression. + * + * The caller is responsible for synchronizing threads in the worker thread pool. This function must + * only be called when all threads have exited the @c astcenc_decompress_image() function for image + * N, but before any thread enters it for image N + 1. + * + * Calling this is not required (but won't hurt), if the context is created for single threaded use. + * + * @param context Codec context. + * + * @return @c ASTCENC_SUCCESS on success, or an error if reset failed. + */ +ASTCENC_PUBLIC astcenc_error astcenc_decompress_reset( + astcenc_context* context); + +/** + * Free the compressor context. + * + * @param context The codec context. + */ +ASTCENC_PUBLIC void astcenc_context_free( + astcenc_context* context); + +/** + * @brief Provide a high level summary of a block's encoding. + * + * This feature is primarily useful for codec developers but may be useful for developers building + * advanced content packaging pipelines. + * + * @param context Codec context. + * @param data One block of compressed ASTC data. + * @param info The output info structure to populate. + * + * @return @c ASTCENC_SUCCESS if the block was decoded, or an error otherwise. Note that this + * function will return success even if the block itself was an error block encoding, as the + * decode was correctly handled. + */ +ASTCENC_PUBLIC astcenc_error astcenc_get_block_info( + astcenc_context* context, + const uint8_t data[16], + astcenc_block_info* info); + +/** + * @brief Get a printable string for specific status code. + * + * @param status The status value. + * + * @return A human readable nul-terminated string. + */ +ASTCENC_PUBLIC const char* astcenc_get_error_string( + astcenc_error status); + +#endif diff --git a/thirdparty/astcenc/astcenc_averages_and_directions.cpp b/thirdparty/astcenc/astcenc_averages_and_directions.cpp new file mode 100644 index 0000000000..d1f003844a --- /dev/null +++ b/thirdparty/astcenc/astcenc_averages_and_directions.cpp @@ -0,0 +1,995 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for finding dominant direction of a set of colors. + */ +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +#include "astcenc_internal.h" + +#include <cassert> + +/** + * @brief Compute the average RGB color of each partition. + * + * The algorithm here uses a vectorized sequential scan and per-partition + * color accumulators, using select() to mask texel lanes in other partitions. + * + * We only accumulate sums for N-1 partitions during the scan; the value for + * the last partition can be computed given that we know the block-wide average + * already. + * + * Because of this we could reduce the loop iteration count so it "just" spans + * the max texel index needed for the N-1 partitions, which could need fewer + * iterations than the full block texel count. However, this makes the loop + * count erratic and causes more branch mispredictions so is a net loss. + * + * @param pi The partitioning to use. + * @param blk The block data to process. + * @param[out] averages The output averages. Unused partition indices will + * not be initialized, and lane<3> will be zero. + */ +static void compute_partition_averages_rgb( + const partition_info& pi, + const image_block& blk, + vfloat4 averages[BLOCK_MAX_PARTITIONS] +) { + unsigned int partition_count = pi.partition_count; + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + + // For 1 partition just use the precomputed mean + if (partition_count == 1) + { + averages[0] = blk.data_mean.swz<0, 1, 2>(); + } + // For 2 partitions scan results for partition 0, compute partition 1 + else if (partition_count == 2) + { + vfloatacc pp_avg_rgb[3] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgb[0], data_r, p0_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgb[1], data_g, p0_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgb[2], data_b, p0_mask); + } + + vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0]), + hadd_s(pp_avg_rgb[1]), + hadd_s(pp_avg_rgb[2])); + + vfloat4 p1_total = block_total - p0_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + } + // For 3 partitions scan results for partition 0/1, compute partition 2 + else if (partition_count == 3) + { + vfloatacc pp_avg_rgb[2][3] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + vmask p1_mask = lane_mask & (texel_partition == vint(1)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); + haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); + haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); + haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); + } + + vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), + hadd_s(pp_avg_rgb[0][1]), + hadd_s(pp_avg_rgb[0][2])); + + vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), + hadd_s(pp_avg_rgb[1][1]), + hadd_s(pp_avg_rgb[1][2])); + + vfloat4 p2_total = block_total - p0_total - p1_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); + } + else + { + // For 4 partitions scan results for partition 0/1/2, compute partition 3 + vfloatacc pp_avg_rgb[3][3] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + vmask p1_mask = lane_mask & (texel_partition == vint(1)); + vmask p2_mask = lane_mask & (texel_partition == vint(2)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); + haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); + haccumulate(pp_avg_rgb[2][0], data_r, p2_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); + haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); + haccumulate(pp_avg_rgb[2][1], data_g, p2_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); + haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); + haccumulate(pp_avg_rgb[2][2], data_b, p2_mask); + } + + vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), + hadd_s(pp_avg_rgb[0][1]), + hadd_s(pp_avg_rgb[0][2])); + + vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), + hadd_s(pp_avg_rgb[1][1]), + hadd_s(pp_avg_rgb[1][2])); + + vfloat4 p2_total = vfloat3(hadd_s(pp_avg_rgb[2][0]), + hadd_s(pp_avg_rgb[2][1]), + hadd_s(pp_avg_rgb[2][2])); + + vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); + averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); + } +} + +/** + * @brief Compute the average RGBA color of each partition. + * + * The algorithm here uses a vectorized sequential scan and per-partition + * color accumulators, using select() to mask texel lanes in other partitions. + * + * We only accumulate sums for N-1 partitions during the scan; the value for + * the last partition can be computed given that we know the block-wide average + * already. + * + * Because of this we could reduce the loop iteration count so it "just" spans + * the max texel index needed for the N-1 partitions, which could need fewer + * iterations than the full block texel count. However, this makes the loop + * count erratic and causes more branch mispredictions so is a net loss. + * + * @param pi The partitioning to use. + * @param blk The block data to process. + * @param[out] averages The output averages. Unused partition indices will + * not be initialized. + */ +static void compute_partition_averages_rgba( + const partition_info& pi, + const image_block& blk, + vfloat4 averages[BLOCK_MAX_PARTITIONS] +) { + unsigned int partition_count = pi.partition_count; + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + + // For 1 partition just use the precomputed mean + if (partition_count == 1) + { + averages[0] = blk.data_mean; + } + // For 2 partitions scan results for partition 0, compute partition 1 + else if (partition_count == 2) + { + vfloat4 pp_avg_rgba[4] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgba[0], data_r, p0_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgba[1], data_g, p0_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgba[2], data_b, p0_mask); + + vfloat data_a = loada(blk.data_a + i); + haccumulate(pp_avg_rgba[3], data_a, p0_mask); + } + + vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0]), + hadd_s(pp_avg_rgba[1]), + hadd_s(pp_avg_rgba[2]), + hadd_s(pp_avg_rgba[3])); + + vfloat4 p1_total = block_total - p0_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + } + // For 3 partitions scan results for partition 0/1, compute partition 2 + else if (partition_count == 3) + { + vfloat4 pp_avg_rgba[2][4] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + vmask p1_mask = lane_mask & (texel_partition == vint(1)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); + haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); + haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); + haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); + + vfloat data_a = loada(blk.data_a + i); + haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); + haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); + } + + vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), + hadd_s(pp_avg_rgba[0][1]), + hadd_s(pp_avg_rgba[0][2]), + hadd_s(pp_avg_rgba[0][3])); + + vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), + hadd_s(pp_avg_rgba[1][1]), + hadd_s(pp_avg_rgba[1][2]), + hadd_s(pp_avg_rgba[1][3])); + + vfloat4 p2_total = block_total - p0_total - p1_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); + } + else + { + // For 4 partitions scan results for partition 0/1/2, compute partition 3 + vfloat4 pp_avg_rgba[3][4] {}; + + vint lane_id = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint texel_partition(pi.partition_of_texel + i); + + vmask lane_mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + + vmask p0_mask = lane_mask & (texel_partition == vint(0)); + vmask p1_mask = lane_mask & (texel_partition == vint(1)); + vmask p2_mask = lane_mask & (texel_partition == vint(2)); + + vfloat data_r = loada(blk.data_r + i); + haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); + haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); + haccumulate(pp_avg_rgba[2][0], data_r, p2_mask); + + vfloat data_g = loada(blk.data_g + i); + haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); + haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); + haccumulate(pp_avg_rgba[2][1], data_g, p2_mask); + + vfloat data_b = loada(blk.data_b + i); + haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); + haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); + haccumulate(pp_avg_rgba[2][2], data_b, p2_mask); + + vfloat data_a = loada(blk.data_a + i); + haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); + haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); + haccumulate(pp_avg_rgba[2][3], data_a, p2_mask); + } + + vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); + + vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), + hadd_s(pp_avg_rgba[0][1]), + hadd_s(pp_avg_rgba[0][2]), + hadd_s(pp_avg_rgba[0][3])); + + vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), + hadd_s(pp_avg_rgba[1][1]), + hadd_s(pp_avg_rgba[1][2]), + hadd_s(pp_avg_rgba[1][3])); + + vfloat4 p2_total = vfloat4(hadd_s(pp_avg_rgba[2][0]), + hadd_s(pp_avg_rgba[2][1]), + hadd_s(pp_avg_rgba[2][2]), + hadd_s(pp_avg_rgba[2][3])); + + vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; + + averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); + averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); + averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); + averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); + } +} + +/* See header for documentation. */ +void compute_avgs_and_dirs_4_comp( + const partition_info& pi, + const image_block& blk, + partition_metrics pm[BLOCK_MAX_PARTITIONS] +) { + int partition_count = pi.partition_count; + promise(partition_count > 0); + + // Pre-compute partition_averages + vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; + compute_partition_averages_rgba(pi, blk, partition_averages); + + for (int partition = 0; partition < partition_count; partition++) + { + const uint8_t *texel_indexes = pi.texels_of_partition[partition]; + unsigned int texel_count = pi.partition_texel_count[partition]; + promise(texel_count > 0); + + vfloat4 average = partition_averages[partition]; + pm[partition].avg = average; + + vfloat4 sum_xp = vfloat4::zero(); + vfloat4 sum_yp = vfloat4::zero(); + vfloat4 sum_zp = vfloat4::zero(); + vfloat4 sum_wp = vfloat4::zero(); + + for (unsigned int i = 0; i < texel_count; i++) + { + unsigned int iwt = texel_indexes[i]; + vfloat4 texel_datum = blk.texel(iwt); + texel_datum = texel_datum - average; + + vfloat4 zero = vfloat4::zero(); + + vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; + sum_xp += select(zero, texel_datum, tdm0); + + vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; + sum_yp += select(zero, texel_datum, tdm1); + + vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; + sum_zp += select(zero, texel_datum, tdm2); + + vmask4 tdm3 = texel_datum.swz<3,3,3,3>() > zero; + sum_wp += select(zero, texel_datum, tdm3); + } + + vfloat4 prod_xp = dot(sum_xp, sum_xp); + vfloat4 prod_yp = dot(sum_yp, sum_yp); + vfloat4 prod_zp = dot(sum_zp, sum_zp); + vfloat4 prod_wp = dot(sum_wp, sum_wp); + + vfloat4 best_vector = sum_xp; + vfloat4 best_sum = prod_xp; + + vmask4 mask = prod_yp > best_sum; + best_vector = select(best_vector, sum_yp, mask); + best_sum = select(best_sum, prod_yp, mask); + + mask = prod_zp > best_sum; + best_vector = select(best_vector, sum_zp, mask); + best_sum = select(best_sum, prod_zp, mask); + + mask = prod_wp > best_sum; + best_vector = select(best_vector, sum_wp, mask); + + pm[partition].dir = best_vector; + } +} + +/* See header for documentation. */ +void compute_avgs_and_dirs_3_comp( + const partition_info& pi, + const image_block& blk, + unsigned int omitted_component, + partition_metrics pm[BLOCK_MAX_PARTITIONS] +) { + // Pre-compute partition_averages + vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; + compute_partition_averages_rgba(pi, blk, partition_averages); + + const float* data_vr = blk.data_r; + const float* data_vg = blk.data_g; + const float* data_vb = blk.data_b; + + // TODO: Data-driven permute would be useful to avoid this ... + if (omitted_component == 0) + { + partition_averages[0] = partition_averages[0].swz<1, 2, 3>(); + partition_averages[1] = partition_averages[1].swz<1, 2, 3>(); + partition_averages[2] = partition_averages[2].swz<1, 2, 3>(); + partition_averages[3] = partition_averages[3].swz<1, 2, 3>(); + + data_vr = blk.data_g; + data_vg = blk.data_b; + data_vb = blk.data_a; + } + else if (omitted_component == 1) + { + partition_averages[0] = partition_averages[0].swz<0, 2, 3>(); + partition_averages[1] = partition_averages[1].swz<0, 2, 3>(); + partition_averages[2] = partition_averages[2].swz<0, 2, 3>(); + partition_averages[3] = partition_averages[3].swz<0, 2, 3>(); + + data_vg = blk.data_b; + data_vb = blk.data_a; + } + else if (omitted_component == 2) + { + partition_averages[0] = partition_averages[0].swz<0, 1, 3>(); + partition_averages[1] = partition_averages[1].swz<0, 1, 3>(); + partition_averages[2] = partition_averages[2].swz<0, 1, 3>(); + partition_averages[3] = partition_averages[3].swz<0, 1, 3>(); + + data_vb = blk.data_a; + } + else + { + partition_averages[0] = partition_averages[0].swz<0, 1, 2>(); + partition_averages[1] = partition_averages[1].swz<0, 1, 2>(); + partition_averages[2] = partition_averages[2].swz<0, 1, 2>(); + partition_averages[3] = partition_averages[3].swz<0, 1, 2>(); + } + + unsigned int partition_count = pi.partition_count; + promise(partition_count > 0); + + for (unsigned int partition = 0; partition < partition_count; partition++) + { + const uint8_t *texel_indexes = pi.texels_of_partition[partition]; + unsigned int texel_count = pi.partition_texel_count[partition]; + promise(texel_count > 0); + + vfloat4 average = partition_averages[partition]; + pm[partition].avg = average; + + vfloat4 sum_xp = vfloat4::zero(); + vfloat4 sum_yp = vfloat4::zero(); + vfloat4 sum_zp = vfloat4::zero(); + + for (unsigned int i = 0; i < texel_count; i++) + { + unsigned int iwt = texel_indexes[i]; + + vfloat4 texel_datum = vfloat3(data_vr[iwt], + data_vg[iwt], + data_vb[iwt]); + texel_datum = texel_datum - average; + + vfloat4 zero = vfloat4::zero(); + + vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; + sum_xp += select(zero, texel_datum, tdm0); + + vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; + sum_yp += select(zero, texel_datum, tdm1); + + vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; + sum_zp += select(zero, texel_datum, tdm2); + } + + vfloat4 prod_xp = dot(sum_xp, sum_xp); + vfloat4 prod_yp = dot(sum_yp, sum_yp); + vfloat4 prod_zp = dot(sum_zp, sum_zp); + + vfloat4 best_vector = sum_xp; + vfloat4 best_sum = prod_xp; + + vmask4 mask = prod_yp > best_sum; + best_vector = select(best_vector, sum_yp, mask); + best_sum = select(best_sum, prod_yp, mask); + + mask = prod_zp > best_sum; + best_vector = select(best_vector, sum_zp, mask); + + pm[partition].dir = best_vector; + } +} + +/* See header for documentation. */ +void compute_avgs_and_dirs_3_comp_rgb( + const partition_info& pi, + const image_block& blk, + partition_metrics pm[BLOCK_MAX_PARTITIONS] +) { + unsigned int partition_count = pi.partition_count; + promise(partition_count > 0); + + // Pre-compute partition_averages + vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; + compute_partition_averages_rgb(pi, blk, partition_averages); + + for (unsigned int partition = 0; partition < partition_count; partition++) + { + const uint8_t *texel_indexes = pi.texels_of_partition[partition]; + unsigned int texel_count = pi.partition_texel_count[partition]; + promise(texel_count > 0); + + vfloat4 average = partition_averages[partition]; + pm[partition].avg = average; + + vfloat4 sum_xp = vfloat4::zero(); + vfloat4 sum_yp = vfloat4::zero(); + vfloat4 sum_zp = vfloat4::zero(); + + for (unsigned int i = 0; i < texel_count; i++) + { + unsigned int iwt = texel_indexes[i]; + + vfloat4 texel_datum = blk.texel3(iwt); + texel_datum = texel_datum - average; + + vfloat4 zero = vfloat4::zero(); + + vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; + sum_xp += select(zero, texel_datum, tdm0); + + vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; + sum_yp += select(zero, texel_datum, tdm1); + + vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; + sum_zp += select(zero, texel_datum, tdm2); + } + + vfloat4 prod_xp = dot(sum_xp, sum_xp); + vfloat4 prod_yp = dot(sum_yp, sum_yp); + vfloat4 prod_zp = dot(sum_zp, sum_zp); + + vfloat4 best_vector = sum_xp; + vfloat4 best_sum = prod_xp; + + vmask4 mask = prod_yp > best_sum; + best_vector = select(best_vector, sum_yp, mask); + best_sum = select(best_sum, prod_yp, mask); + + mask = prod_zp > best_sum; + best_vector = select(best_vector, sum_zp, mask); + + pm[partition].dir = best_vector; + } +} + +/* See header for documentation. */ +void compute_avgs_and_dirs_2_comp( + const partition_info& pt, + const image_block& blk, + unsigned int component1, + unsigned int component2, + partition_metrics pm[BLOCK_MAX_PARTITIONS] +) { + vfloat4 average; + + const float* data_vr = nullptr; + const float* data_vg = nullptr; + + if (component1 == 0 && component2 == 1) + { + average = blk.data_mean.swz<0, 1>(); + + data_vr = blk.data_r; + data_vg = blk.data_g; + } + else if (component1 == 0 && component2 == 2) + { + average = blk.data_mean.swz<0, 2>(); + + data_vr = blk.data_r; + data_vg = blk.data_b; + } + else // (component1 == 1 && component2 == 2) + { + assert(component1 == 1 && component2 == 2); + + average = blk.data_mean.swz<1, 2>(); + + data_vr = blk.data_g; + data_vg = blk.data_b; + } + + unsigned int partition_count = pt.partition_count; + promise(partition_count > 0); + + for (unsigned int partition = 0; partition < partition_count; partition++) + { + const uint8_t *texel_indexes = pt.texels_of_partition[partition]; + unsigned int texel_count = pt.partition_texel_count[partition]; + promise(texel_count > 0); + + // Only compute a partition mean if more than one partition + if (partition_count > 1) + { + average = vfloat4::zero(); + for (unsigned int i = 0; i < texel_count; i++) + { + unsigned int iwt = texel_indexes[i]; + average += vfloat2(data_vr[iwt], data_vg[iwt]); + } + + average = average / static_cast<float>(texel_count); + } + + pm[partition].avg = average; + + vfloat4 sum_xp = vfloat4::zero(); + vfloat4 sum_yp = vfloat4::zero(); + + for (unsigned int i = 0; i < texel_count; i++) + { + unsigned int iwt = texel_indexes[i]; + vfloat4 texel_datum = vfloat2(data_vr[iwt], data_vg[iwt]); + texel_datum = texel_datum - average; + + vfloat4 zero = vfloat4::zero(); + + vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; + sum_xp += select(zero, texel_datum, tdm0); + + vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; + sum_yp += select(zero, texel_datum, tdm1); + } + + vfloat4 prod_xp = dot(sum_xp, sum_xp); + vfloat4 prod_yp = dot(sum_yp, sum_yp); + + vfloat4 best_vector = sum_xp; + vfloat4 best_sum = prod_xp; + + vmask4 mask = prod_yp > best_sum; + best_vector = select(best_vector, sum_yp, mask); + + pm[partition].dir = best_vector; + } +} + +/* See header for documentation. */ +void compute_error_squared_rgba( + const partition_info& pi, + const image_block& blk, + const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS], + const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS], + float uncor_lengths[BLOCK_MAX_PARTITIONS], + float samec_lengths[BLOCK_MAX_PARTITIONS], + float& uncor_error, + float& samec_error +) { + unsigned int partition_count = pi.partition_count; + promise(partition_count > 0); + + vfloatacc uncor_errorsumv = vfloatacc::zero(); + vfloatacc samec_errorsumv = vfloatacc::zero(); + + for (unsigned int partition = 0; partition < partition_count; partition++) + { + const uint8_t *texel_indexes = pi.texels_of_partition[partition]; + + float uncor_loparam = 1e10f; + float uncor_hiparam = -1e10f; + + float samec_loparam = 1e10f; + float samec_hiparam = -1e10f; + + processed_line4 l_uncor = uncor_plines[partition]; + processed_line4 l_samec = samec_plines[partition]; + + unsigned int texel_count = pi.partition_texel_count[partition]; + promise(texel_count > 0); + + // Vectorize some useful scalar inputs + vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); + vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); + vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); + vfloat l_uncor_bs3(l_uncor.bs.lane<3>()); + + vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); + vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); + vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); + vfloat l_uncor_amod3(l_uncor.amod.lane<3>()); + + vfloat l_samec_bs0(l_samec.bs.lane<0>()); + vfloat l_samec_bs1(l_samec.bs.lane<1>()); + vfloat l_samec_bs2(l_samec.bs.lane<2>()); + vfloat l_samec_bs3(l_samec.bs.lane<3>()); + + assert(all(l_samec.amod == vfloat4(0.0f))); + + vfloat uncor_loparamv(1e10f); + vfloat uncor_hiparamv(-1e10f); + + vfloat samec_loparamv(1e10f); + vfloat samec_hiparamv(-1e10f); + + vfloat ew_r(blk.channel_weight.lane<0>()); + vfloat ew_g(blk.channel_weight.lane<1>()); + vfloat ew_b(blk.channel_weight.lane<2>()); + vfloat ew_a(blk.channel_weight.lane<3>()); + + // This implementation over-shoots, but this is safe as we initialize the texel_indexes + // array to extend the last value. This means min/max are not impacted, but we need to mask + // out the dummy values when we compute the line weighting. + vint lane_ids = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vmask mask = lane_ids < vint(texel_count); + vint texel_idxs(texel_indexes + i); + + vfloat data_r = gatherf(blk.data_r, texel_idxs); + vfloat data_g = gatherf(blk.data_g, texel_idxs); + vfloat data_b = gatherf(blk.data_b, texel_idxs); + vfloat data_a = gatherf(blk.data_a, texel_idxs); + + vfloat uncor_param = (data_r * l_uncor_bs0) + + (data_g * l_uncor_bs1) + + (data_b * l_uncor_bs2) + + (data_a * l_uncor_bs3); + + uncor_loparamv = min(uncor_param, uncor_loparamv); + uncor_hiparamv = max(uncor_param, uncor_hiparamv); + + vfloat uncor_dist0 = (l_uncor_amod0 - data_r) + + (uncor_param * l_uncor_bs0); + vfloat uncor_dist1 = (l_uncor_amod1 - data_g) + + (uncor_param * l_uncor_bs1); + vfloat uncor_dist2 = (l_uncor_amod2 - data_b) + + (uncor_param * l_uncor_bs2); + vfloat uncor_dist3 = (l_uncor_amod3 - data_a) + + (uncor_param * l_uncor_bs3); + + vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) + + (ew_g * uncor_dist1 * uncor_dist1) + + (ew_b * uncor_dist2 * uncor_dist2) + + (ew_a * uncor_dist3 * uncor_dist3); + + haccumulate(uncor_errorsumv, uncor_err, mask); + + // Process samechroma data + vfloat samec_param = (data_r * l_samec_bs0) + + (data_g * l_samec_bs1) + + (data_b * l_samec_bs2) + + (data_a * l_samec_bs3); + + samec_loparamv = min(samec_param, samec_loparamv); + samec_hiparamv = max(samec_param, samec_hiparamv); + + vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; + vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; + vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; + vfloat samec_dist3 = samec_param * l_samec_bs3 - data_a; + + vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) + + (ew_g * samec_dist1 * samec_dist1) + + (ew_b * samec_dist2 * samec_dist2) + + (ew_a * samec_dist3 * samec_dist3); + + haccumulate(samec_errorsumv, samec_err, mask); + + lane_ids += vint(ASTCENC_SIMD_WIDTH); + } + + uncor_loparam = hmin_s(uncor_loparamv); + uncor_hiparam = hmax_s(uncor_hiparamv); + + samec_loparam = hmin_s(samec_loparamv); + samec_hiparam = hmax_s(samec_hiparamv); + + float uncor_linelen = uncor_hiparam - uncor_loparam; + float samec_linelen = samec_hiparam - samec_loparam; + + // Turn very small numbers and NaNs into a small number + uncor_lengths[partition] = astc::max(uncor_linelen, 1e-7f); + samec_lengths[partition] = astc::max(samec_linelen, 1e-7f); + } + + uncor_error = hadd_s(uncor_errorsumv); + samec_error = hadd_s(samec_errorsumv); +} + +/* See header for documentation. */ +void compute_error_squared_rgb( + const partition_info& pi, + const image_block& blk, + partition_lines3 plines[BLOCK_MAX_PARTITIONS], + float& uncor_error, + float& samec_error +) { + unsigned int partition_count = pi.partition_count; + promise(partition_count > 0); + + vfloatacc uncor_errorsumv = vfloatacc::zero(); + vfloatacc samec_errorsumv = vfloatacc::zero(); + + for (unsigned int partition = 0; partition < partition_count; partition++) + { + partition_lines3& pl = plines[partition]; + const uint8_t *texel_indexes = pi.texels_of_partition[partition]; + unsigned int texel_count = pi.partition_texel_count[partition]; + promise(texel_count > 0); + + float uncor_loparam = 1e10f; + float uncor_hiparam = -1e10f; + + float samec_loparam = 1e10f; + float samec_hiparam = -1e10f; + + processed_line3 l_uncor = pl.uncor_pline; + processed_line3 l_samec = pl.samec_pline; + + // This implementation is an example vectorization of this function. + // It works for - the codec is a 2-4% faster than not vectorizing - but + // the benefit is limited by the use of gathers and register pressure + + // Vectorize some useful scalar inputs + vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); + vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); + vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); + + vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); + vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); + vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); + + vfloat l_samec_bs0(l_samec.bs.lane<0>()); + vfloat l_samec_bs1(l_samec.bs.lane<1>()); + vfloat l_samec_bs2(l_samec.bs.lane<2>()); + + assert(all(l_samec.amod == vfloat4(0.0f))); + + vfloat uncor_loparamv(1e10f); + vfloat uncor_hiparamv(-1e10f); + + vfloat samec_loparamv(1e10f); + vfloat samec_hiparamv(-1e10f); + + vfloat ew_r(blk.channel_weight.lane<0>()); + vfloat ew_g(blk.channel_weight.lane<1>()); + vfloat ew_b(blk.channel_weight.lane<2>()); + + // This implementation over-shoots, but this is safe as we initialize the weights array + // to extend the last value. This means min/max are not impacted, but we need to mask + // out the dummy values when we compute the line weighting. + vint lane_ids = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vmask mask = lane_ids < vint(texel_count); + vint texel_idxs(texel_indexes + i); + + vfloat data_r = gatherf(blk.data_r, texel_idxs); + vfloat data_g = gatherf(blk.data_g, texel_idxs); + vfloat data_b = gatherf(blk.data_b, texel_idxs); + + vfloat uncor_param = (data_r * l_uncor_bs0) + + (data_g * l_uncor_bs1) + + (data_b * l_uncor_bs2); + + uncor_loparamv = min(uncor_param, uncor_loparamv); + uncor_hiparamv = max(uncor_param, uncor_hiparamv); + + vfloat uncor_dist0 = (l_uncor_amod0 - data_r) + + (uncor_param * l_uncor_bs0); + vfloat uncor_dist1 = (l_uncor_amod1 - data_g) + + (uncor_param * l_uncor_bs1); + vfloat uncor_dist2 = (l_uncor_amod2 - data_b) + + (uncor_param * l_uncor_bs2); + + vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) + + (ew_g * uncor_dist1 * uncor_dist1) + + (ew_b * uncor_dist2 * uncor_dist2); + + haccumulate(uncor_errorsumv, uncor_err, mask); + + // Process samechroma data + vfloat samec_param = (data_r * l_samec_bs0) + + (data_g * l_samec_bs1) + + (data_b * l_samec_bs2); + + samec_loparamv = min(samec_param, samec_loparamv); + samec_hiparamv = max(samec_param, samec_hiparamv); + + vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; + vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; + vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; + + vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) + + (ew_g * samec_dist1 * samec_dist1) + + (ew_b * samec_dist2 * samec_dist2); + + haccumulate(samec_errorsumv, samec_err, mask); + + lane_ids += vint(ASTCENC_SIMD_WIDTH); + } + + uncor_loparam = hmin_s(uncor_loparamv); + uncor_hiparam = hmax_s(uncor_hiparamv); + + samec_loparam = hmin_s(samec_loparamv); + samec_hiparam = hmax_s(samec_hiparamv); + + float uncor_linelen = uncor_hiparam - uncor_loparam; + float samec_linelen = samec_hiparam - samec_loparam; + + // Turn very small numbers and NaNs into a small number + pl.uncor_line_len = astc::max(uncor_linelen, 1e-7f); + pl.samec_line_len = astc::max(samec_linelen, 1e-7f); + } + + uncor_error = hadd_s(uncor_errorsumv); + samec_error = hadd_s(samec_errorsumv); +} + +#endif diff --git a/thirdparty/astcenc/astcenc_block_sizes.cpp b/thirdparty/astcenc/astcenc_block_sizes.cpp new file mode 100644 index 0000000000..1c22d06a5c --- /dev/null +++ b/thirdparty/astcenc/astcenc_block_sizes.cpp @@ -0,0 +1,1184 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions to generate block size descriptor and decimation tables. + */ + +#include "astcenc_internal.h" + +/** + * @brief Decode the properties of an encoded 2D block mode. + * + * @param block_mode The encoded block mode. + * @param[out] x_weights The number of weights in the X dimension. + * @param[out] y_weights The number of weights in the Y dimension. + * @param[out] is_dual_plane True if this block mode has two weight planes. + * @param[out] quant_mode The quantization level for the weights. + * @param[out] weight_bits The storage bit count for the weights. + * + * @return Returns true if a valid mode, false otherwise. + */ +static bool decode_block_mode_2d( + unsigned int block_mode, + unsigned int& x_weights, + unsigned int& y_weights, + bool& is_dual_plane, + unsigned int& quant_mode, + unsigned int& weight_bits +) { + unsigned int base_quant_mode = (block_mode >> 4) & 1; + unsigned int H = (block_mode >> 9) & 1; + unsigned int D = (block_mode >> 10) & 1; + unsigned int A = (block_mode >> 5) & 0x3; + + x_weights = 0; + y_weights = 0; + + if ((block_mode & 3) != 0) + { + base_quant_mode |= (block_mode & 3) << 1; + unsigned int B = (block_mode >> 7) & 3; + switch ((block_mode >> 2) & 3) + { + case 0: + x_weights = B + 4; + y_weights = A + 2; + break; + case 1: + x_weights = B + 8; + y_weights = A + 2; + break; + case 2: + x_weights = A + 2; + y_weights = B + 8; + break; + case 3: + B &= 1; + if (block_mode & 0x100) + { + x_weights = B + 2; + y_weights = A + 2; + } + else + { + x_weights = A + 2; + y_weights = B + 6; + } + break; + } + } + else + { + base_quant_mode |= ((block_mode >> 2) & 3) << 1; + if (((block_mode >> 2) & 3) == 0) + { + return false; + } + + unsigned int B = (block_mode >> 9) & 3; + switch ((block_mode >> 7) & 3) + { + case 0: + x_weights = 12; + y_weights = A + 2; + break; + case 1: + x_weights = A + 2; + y_weights = 12; + break; + case 2: + x_weights = A + 6; + y_weights = B + 6; + D = 0; + H = 0; + break; + case 3: + switch ((block_mode >> 5) & 3) + { + case 0: + x_weights = 6; + y_weights = 10; + break; + case 1: + x_weights = 10; + y_weights = 6; + break; + case 2: + case 3: + return false; + } + break; + } + } + + unsigned int weight_count = x_weights * y_weights * (D + 1); + quant_mode = (base_quant_mode - 2) + 6 * H; + is_dual_plane = D != 0; + + weight_bits = get_ise_sequence_bitcount(weight_count, static_cast<quant_method>(quant_mode)); + return (weight_count <= BLOCK_MAX_WEIGHTS && + weight_bits >= BLOCK_MIN_WEIGHT_BITS && + weight_bits <= BLOCK_MAX_WEIGHT_BITS); +} + +/** + * @brief Decode the properties of an encoded 3D block mode. + * + * @param block_mode The encoded block mode. + * @param[out] x_weights The number of weights in the X dimension. + * @param[out] y_weights The number of weights in the Y dimension. + * @param[out] z_weights The number of weights in the Z dimension. + * @param[out] is_dual_plane True if this block mode has two weight planes. + * @param[out] quant_mode The quantization level for the weights. + * @param[out] weight_bits The storage bit count for the weights. + * + * @return Returns true if a valid mode, false otherwise. + */ +static bool decode_block_mode_3d( + unsigned int block_mode, + unsigned int& x_weights, + unsigned int& y_weights, + unsigned int& z_weights, + bool& is_dual_plane, + unsigned int& quant_mode, + unsigned int& weight_bits +) { + unsigned int base_quant_mode = (block_mode >> 4) & 1; + unsigned int H = (block_mode >> 9) & 1; + unsigned int D = (block_mode >> 10) & 1; + unsigned int A = (block_mode >> 5) & 0x3; + + x_weights = 0; + y_weights = 0; + z_weights = 0; + + if ((block_mode & 3) != 0) + { + base_quant_mode |= (block_mode & 3) << 1; + unsigned int B = (block_mode >> 7) & 3; + unsigned int C = (block_mode >> 2) & 0x3; + x_weights = A + 2; + y_weights = B + 2; + z_weights = C + 2; + } + else + { + base_quant_mode |= ((block_mode >> 2) & 3) << 1; + if (((block_mode >> 2) & 3) == 0) + { + return false; + } + + int B = (block_mode >> 9) & 3; + if (((block_mode >> 7) & 3) != 3) + { + D = 0; + H = 0; + } + switch ((block_mode >> 7) & 3) + { + case 0: + x_weights = 6; + y_weights = B + 2; + z_weights = A + 2; + break; + case 1: + x_weights = A + 2; + y_weights = 6; + z_weights = B + 2; + break; + case 2: + x_weights = A + 2; + y_weights = B + 2; + z_weights = 6; + break; + case 3: + x_weights = 2; + y_weights = 2; + z_weights = 2; + switch ((block_mode >> 5) & 3) + { + case 0: + x_weights = 6; + break; + case 1: + y_weights = 6; + break; + case 2: + z_weights = 6; + break; + case 3: + return false; + } + break; + } + } + + unsigned int weight_count = x_weights * y_weights * z_weights * (D + 1); + quant_mode = (base_quant_mode - 2) + 6 * H; + is_dual_plane = D != 0; + + weight_bits = get_ise_sequence_bitcount(weight_count, static_cast<quant_method>(quant_mode)); + return (weight_count <= BLOCK_MAX_WEIGHTS && + weight_bits >= BLOCK_MIN_WEIGHT_BITS && + weight_bits <= BLOCK_MAX_WEIGHT_BITS); +} + +/** + * @brief Create a 2D decimation entry for a block-size and weight-decimation pair. + * + * @param x_texels The number of texels in the X dimension. + * @param y_texels The number of texels in the Y dimension. + * @param x_weights The number of weights in the X dimension. + * @param y_weights The number of weights in the Y dimension. + * @param[out] di The decimation info structure to populate. + * @param[out] wb The decimation table init scratch working buffers. + */ +static void init_decimation_info_2d( + unsigned int x_texels, + unsigned int y_texels, + unsigned int x_weights, + unsigned int y_weights, + decimation_info& di, + dt_init_working_buffers& wb +) { + unsigned int texels_per_block = x_texels * y_texels; + unsigned int weights_per_block = x_weights * y_weights; + + uint8_t max_texel_count_of_weight = 0; + + promise(weights_per_block > 0); + promise(texels_per_block > 0); + promise(x_texels > 0); + promise(y_texels > 0); + + for (unsigned int i = 0; i < weights_per_block; i++) + { + wb.texel_count_of_weight[i] = 0; + } + + for (unsigned int i = 0; i < texels_per_block; i++) + { + wb.weight_count_of_texel[i] = 0; + } + + for (unsigned int y = 0; y < y_texels; y++) + { + for (unsigned int x = 0; x < x_texels; x++) + { + unsigned int texel = y * x_texels + x; + + unsigned int x_weight = (((1024 + x_texels / 2) / (x_texels - 1)) * x * (x_weights - 1) + 32) >> 6; + unsigned int y_weight = (((1024 + y_texels / 2) / (y_texels - 1)) * y * (y_weights - 1) + 32) >> 6; + + unsigned int x_weight_frac = x_weight & 0xF; + unsigned int y_weight_frac = y_weight & 0xF; + unsigned int x_weight_int = x_weight >> 4; + unsigned int y_weight_int = y_weight >> 4; + + unsigned int qweight[4]; + qweight[0] = x_weight_int + y_weight_int * x_weights; + qweight[1] = qweight[0] + 1; + qweight[2] = qweight[0] + x_weights; + qweight[3] = qweight[2] + 1; + + // Truncated-precision bilinear interpolation + unsigned int prod = x_weight_frac * y_weight_frac; + + unsigned int weight[4]; + weight[3] = (prod + 8) >> 4; + weight[1] = x_weight_frac - weight[3]; + weight[2] = y_weight_frac - weight[3]; + weight[0] = 16 - x_weight_frac - y_weight_frac + weight[3]; + + for (unsigned int i = 0; i < 4; i++) + { + if (weight[i] != 0) + { + wb.grid_weights_of_texel[texel][wb.weight_count_of_texel[texel]] = static_cast<uint8_t>(qweight[i]); + wb.weights_of_texel[texel][wb.weight_count_of_texel[texel]] = static_cast<uint8_t>(weight[i]); + wb.weight_count_of_texel[texel]++; + wb.texels_of_weight[qweight[i]][wb.texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(texel); + wb.texel_weights_of_weight[qweight[i]][wb.texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(weight[i]); + wb.texel_count_of_weight[qweight[i]]++; + max_texel_count_of_weight = astc::max(max_texel_count_of_weight, wb.texel_count_of_weight[qweight[i]]); + } + } + } + } + + uint8_t max_texel_weight_count = 0; + for (unsigned int i = 0; i < texels_per_block; i++) + { + di.texel_weight_count[i] = wb.weight_count_of_texel[i]; + max_texel_weight_count = astc::max(max_texel_weight_count, di.texel_weight_count[i]); + + for (unsigned int j = 0; j < wb.weight_count_of_texel[i]; j++) + { + di.texel_weight_contribs_int_tr[j][i] = wb.weights_of_texel[i][j]; + di.texel_weight_contribs_float_tr[j][i] = static_cast<float>(wb.weights_of_texel[i][j]) * (1.0f / WEIGHTS_TEXEL_SUM); + di.texel_weights_tr[j][i] = wb.grid_weights_of_texel[i][j]; + } + + // Init all 4 entries so we can rely on zeros for vectorization + for (unsigned int j = wb.weight_count_of_texel[i]; j < 4; j++) + { + di.texel_weight_contribs_int_tr[j][i] = 0; + di.texel_weight_contribs_float_tr[j][i] = 0.0f; + di.texel_weights_tr[j][i] = 0; + } + } + + di.max_texel_weight_count = max_texel_weight_count; + + for (unsigned int i = 0; i < weights_per_block; i++) + { + unsigned int texel_count_wt = wb.texel_count_of_weight[i]; + di.weight_texel_count[i] = static_cast<uint8_t>(texel_count_wt); + + for (unsigned int j = 0; j < texel_count_wt; j++) + { + uint8_t texel = wb.texels_of_weight[i][j]; + + // Create transposed versions of these for better vectorization + di.weight_texels_tr[j][i] = texel; + di.weights_texel_contribs_tr[j][i] = static_cast<float>(wb.texel_weights_of_weight[i][j]); + + // Store the per-texel contribution of this weight for each texel it contributes to + di.texel_contrib_for_weight[j][i] = 0.0f; + for (unsigned int k = 0; k < 4; k++) + { + uint8_t dttw = di.texel_weights_tr[k][texel]; + float dttwf = di.texel_weight_contribs_float_tr[k][texel]; + if (dttw == i && dttwf != 0.0f) + { + di.texel_contrib_for_weight[j][i] = di.texel_weight_contribs_float_tr[k][texel]; + break; + } + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + // Match last texel in active lane in SIMD group, for better gathers + uint8_t last_texel = di.weight_texels_tr[texel_count_wt - 1][i]; + for (unsigned int j = texel_count_wt; j < max_texel_count_of_weight; j++) + { + di.weight_texels_tr[j][i] = last_texel; + di.weights_texel_contribs_tr[j][i] = 0.0f; + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + unsigned int texels_per_block_simd = round_up_to_simd_multiple_vla(texels_per_block); + for (unsigned int i = texels_per_block; i < texels_per_block_simd; i++) + { + di.texel_weight_count[i] = 0; + + for (unsigned int j = 0; j < 4; j++) + { + di.texel_weight_contribs_float_tr[j][i] = 0; + di.texel_weights_tr[j][i] = 0; + di.texel_weight_contribs_int_tr[j][i] = 0; + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + // Match last texel in active lane in SIMD group, for better gathers + unsigned int last_texel_count_wt = wb.texel_count_of_weight[weights_per_block - 1]; + uint8_t last_texel = di.weight_texels_tr[last_texel_count_wt - 1][weights_per_block - 1]; + + unsigned int weights_per_block_simd = round_up_to_simd_multiple_vla(weights_per_block); + for (unsigned int i = weights_per_block; i < weights_per_block_simd; i++) + { + di.weight_texel_count[i] = 0; + + for (unsigned int j = 0; j < max_texel_count_of_weight; j++) + { + di.weight_texels_tr[j][i] = last_texel; + di.weights_texel_contribs_tr[j][i] = 0.0f; + } + } + + di.texel_count = static_cast<uint8_t>(texels_per_block); + di.weight_count = static_cast<uint8_t>(weights_per_block); + di.weight_x = static_cast<uint8_t>(x_weights); + di.weight_y = static_cast<uint8_t>(y_weights); + di.weight_z = 1; +} + +/** + * @brief Create a 3D decimation entry for a block-size and weight-decimation pair. + * + * @param x_texels The number of texels in the X dimension. + * @param y_texels The number of texels in the Y dimension. + * @param z_texels The number of texels in the Z dimension. + * @param x_weights The number of weights in the X dimension. + * @param y_weights The number of weights in the Y dimension. + * @param z_weights The number of weights in the Z dimension. + * @param[out] di The decimation info structure to populate. + @param[out] wb The decimation table init scratch working buffers. + */ +static void init_decimation_info_3d( + unsigned int x_texels, + unsigned int y_texels, + unsigned int z_texels, + unsigned int x_weights, + unsigned int y_weights, + unsigned int z_weights, + decimation_info& di, + dt_init_working_buffers& wb +) { + unsigned int texels_per_block = x_texels * y_texels * z_texels; + unsigned int weights_per_block = x_weights * y_weights * z_weights; + + uint8_t max_texel_count_of_weight = 0; + + promise(weights_per_block > 0); + promise(texels_per_block > 0); + + for (unsigned int i = 0; i < weights_per_block; i++) + { + wb.texel_count_of_weight[i] = 0; + } + + for (unsigned int i = 0; i < texels_per_block; i++) + { + wb.weight_count_of_texel[i] = 0; + } + + for (unsigned int z = 0; z < z_texels; z++) + { + for (unsigned int y = 0; y < y_texels; y++) + { + for (unsigned int x = 0; x < x_texels; x++) + { + int texel = (z * y_texels + y) * x_texels + x; + + int x_weight = (((1024 + x_texels / 2) / (x_texels - 1)) * x * (x_weights - 1) + 32) >> 6; + int y_weight = (((1024 + y_texels / 2) / (y_texels - 1)) * y * (y_weights - 1) + 32) >> 6; + int z_weight = (((1024 + z_texels / 2) / (z_texels - 1)) * z * (z_weights - 1) + 32) >> 6; + + int x_weight_frac = x_weight & 0xF; + int y_weight_frac = y_weight & 0xF; + int z_weight_frac = z_weight & 0xF; + int x_weight_int = x_weight >> 4; + int y_weight_int = y_weight >> 4; + int z_weight_int = z_weight >> 4; + int qweight[4]; + int weight[4]; + qweight[0] = (z_weight_int * y_weights + y_weight_int) * x_weights + x_weight_int; + qweight[3] = ((z_weight_int + 1) * y_weights + (y_weight_int + 1)) * x_weights + (x_weight_int + 1); + + // simplex interpolation + int fs = x_weight_frac; + int ft = y_weight_frac; + int fp = z_weight_frac; + + int cas = ((fs > ft) << 2) + ((ft > fp) << 1) + ((fs > fp)); + int N = x_weights; + int NM = x_weights * y_weights; + + int s1, s2, w0, w1, w2, w3; + switch (cas) + { + case 7: + s1 = 1; + s2 = N; + w0 = 16 - fs; + w1 = fs - ft; + w2 = ft - fp; + w3 = fp; + break; + case 3: + s1 = N; + s2 = 1; + w0 = 16 - ft; + w1 = ft - fs; + w2 = fs - fp; + w3 = fp; + break; + case 5: + s1 = 1; + s2 = NM; + w0 = 16 - fs; + w1 = fs - fp; + w2 = fp - ft; + w3 = ft; + break; + case 4: + s1 = NM; + s2 = 1; + w0 = 16 - fp; + w1 = fp - fs; + w2 = fs - ft; + w3 = ft; + break; + case 2: + s1 = N; + s2 = NM; + w0 = 16 - ft; + w1 = ft - fp; + w2 = fp - fs; + w3 = fs; + break; + case 0: + s1 = NM; + s2 = N; + w0 = 16 - fp; + w1 = fp - ft; + w2 = ft - fs; + w3 = fs; + break; + default: + s1 = NM; + s2 = N; + w0 = 16 - fp; + w1 = fp - ft; + w2 = ft - fs; + w3 = fs; + break; + } + + qweight[1] = qweight[0] + s1; + qweight[2] = qweight[1] + s2; + weight[0] = w0; + weight[1] = w1; + weight[2] = w2; + weight[3] = w3; + + for (unsigned int i = 0; i < 4; i++) + { + if (weight[i] != 0) + { + wb.grid_weights_of_texel[texel][wb.weight_count_of_texel[texel]] = static_cast<uint8_t>(qweight[i]); + wb.weights_of_texel[texel][wb.weight_count_of_texel[texel]] = static_cast<uint8_t>(weight[i]); + wb.weight_count_of_texel[texel]++; + wb.texels_of_weight[qweight[i]][wb.texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(texel); + wb.texel_weights_of_weight[qweight[i]][wb.texel_count_of_weight[qweight[i]]] = static_cast<uint8_t>(weight[i]); + wb.texel_count_of_weight[qweight[i]]++; + max_texel_count_of_weight = astc::max(max_texel_count_of_weight, wb.texel_count_of_weight[qweight[i]]); + } + } + } + } + } + + uint8_t max_texel_weight_count = 0; + for (unsigned int i = 0; i < texels_per_block; i++) + { + di.texel_weight_count[i] = wb.weight_count_of_texel[i]; + max_texel_weight_count = astc::max(max_texel_weight_count, di.texel_weight_count[i]); + + // Init all 4 entries so we can rely on zeros for vectorization + for (unsigned int j = 0; j < 4; j++) + { + di.texel_weight_contribs_int_tr[j][i] = 0; + di.texel_weight_contribs_float_tr[j][i] = 0.0f; + di.texel_weights_tr[j][i] = 0; + } + + for (unsigned int j = 0; j < wb.weight_count_of_texel[i]; j++) + { + di.texel_weight_contribs_int_tr[j][i] = wb.weights_of_texel[i][j]; + di.texel_weight_contribs_float_tr[j][i] = static_cast<float>(wb.weights_of_texel[i][j]) * (1.0f / WEIGHTS_TEXEL_SUM); + di.texel_weights_tr[j][i] = wb.grid_weights_of_texel[i][j]; + } + } + + di.max_texel_weight_count = max_texel_weight_count; + + for (unsigned int i = 0; i < weights_per_block; i++) + { + unsigned int texel_count_wt = wb.texel_count_of_weight[i]; + di.weight_texel_count[i] = static_cast<uint8_t>(texel_count_wt); + + for (unsigned int j = 0; j < texel_count_wt; j++) + { + unsigned int texel = wb.texels_of_weight[i][j]; + + // Create transposed versions of these for better vectorization + di.weight_texels_tr[j][i] = static_cast<uint8_t>(texel); + di.weights_texel_contribs_tr[j][i] = static_cast<float>(wb.texel_weights_of_weight[i][j]); + + // Store the per-texel contribution of this weight for each texel it contributes to + di.texel_contrib_for_weight[j][i] = 0.0f; + for (unsigned int k = 0; k < 4; k++) + { + uint8_t dttw = di.texel_weights_tr[k][texel]; + float dttwf = di.texel_weight_contribs_float_tr[k][texel]; + if (dttw == i && dttwf != 0.0f) + { + di.texel_contrib_for_weight[j][i] = di.texel_weight_contribs_float_tr[k][texel]; + break; + } + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + // Match last texel in active lane in SIMD group, for better gathers + uint8_t last_texel = di.weight_texels_tr[texel_count_wt - 1][i]; + for (unsigned int j = texel_count_wt; j < max_texel_count_of_weight; j++) + { + di.weight_texels_tr[j][i] = last_texel; + di.weights_texel_contribs_tr[j][i] = 0.0f; + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + unsigned int texels_per_block_simd = round_up_to_simd_multiple_vla(texels_per_block); + for (unsigned int i = texels_per_block; i < texels_per_block_simd; i++) + { + di.texel_weight_count[i] = 0; + + for (unsigned int j = 0; j < 4; j++) + { + di.texel_weight_contribs_float_tr[j][i] = 0; + di.texel_weights_tr[j][i] = 0; + di.texel_weight_contribs_int_tr[j][i] = 0; + } + } + + // Initialize array tail so we can over-fetch with SIMD later to avoid loop tails + // Match last texel in active lane in SIMD group, for better gathers + int last_texel_count_wt = wb.texel_count_of_weight[weights_per_block - 1]; + uint8_t last_texel = di.weight_texels_tr[last_texel_count_wt - 1][weights_per_block - 1]; + + unsigned int weights_per_block_simd = round_up_to_simd_multiple_vla(weights_per_block); + for (unsigned int i = weights_per_block; i < weights_per_block_simd; i++) + { + di.weight_texel_count[i] = 0; + + for (int j = 0; j < max_texel_count_of_weight; j++) + { + di.weight_texels_tr[j][i] = last_texel; + di.weights_texel_contribs_tr[j][i] = 0.0f; + } + } + + di.texel_count = static_cast<uint8_t>(texels_per_block); + di.weight_count = static_cast<uint8_t>(weights_per_block); + di.weight_x = static_cast<uint8_t>(x_weights); + di.weight_y = static_cast<uint8_t>(y_weights); + di.weight_z = static_cast<uint8_t>(z_weights); +} + +/** + * @brief Assign the texels to use for kmeans clustering. + * + * The max limit is @c BLOCK_MAX_KMEANS_TEXELS; above this a random selection is used. + * The @c bsd.texel_count is an input and must be populated beforehand. + * + * @param[in,out] bsd The block size descriptor to populate. + */ +static void assign_kmeans_texels( + block_size_descriptor& bsd +) { + // Use all texels for kmeans on a small block + if (bsd.texel_count <= BLOCK_MAX_KMEANS_TEXELS) + { + for (uint8_t i = 0; i < bsd.texel_count; i++) + { + bsd.kmeans_texels[i] = i; + } + + return; + } + + // Select a random subset of BLOCK_MAX_KMEANS_TEXELS for kmeans on a large block + uint64_t rng_state[2]; + astc::rand_init(rng_state); + + // Initialize array used for tracking used indices + bool seen[BLOCK_MAX_TEXELS]; + for (uint8_t i = 0; i < bsd.texel_count; i++) + { + seen[i] = false; + } + + // Assign 64 random indices, retrying if we see repeats + unsigned int arr_elements_set = 0; + while (arr_elements_set < BLOCK_MAX_KMEANS_TEXELS) + { + uint8_t texel = static_cast<uint8_t>(astc::rand(rng_state)); + texel = texel % bsd.texel_count; + if (!seen[texel]) + { + bsd.kmeans_texels[arr_elements_set++] = texel; + seen[texel] = true; + } + } +} + +/** + * @brief Allocate a single 2D decimation table entry. + * + * @param x_texels The number of texels in the X dimension. + * @param y_texels The number of texels in the Y dimension. + * @param x_weights The number of weights in the X dimension. + * @param y_weights The number of weights in the Y dimension. + * @param bsd The block size descriptor we are populating. + * @param wb The decimation table init scratch working buffers. + * @param index The packed array index to populate. + */ +static void construct_dt_entry_2d( + unsigned int x_texels, + unsigned int y_texels, + unsigned int x_weights, + unsigned int y_weights, + block_size_descriptor& bsd, + dt_init_working_buffers& wb, + unsigned int index +) { + unsigned int weight_count = x_weights * y_weights; + assert(weight_count <= BLOCK_MAX_WEIGHTS); + + bool try_2planes = (2 * weight_count) <= BLOCK_MAX_WEIGHTS; + + decimation_info& di = bsd.decimation_tables[index]; + init_decimation_info_2d(x_texels, y_texels, x_weights, y_weights, di, wb); + + int maxprec_1plane = -1; + int maxprec_2planes = -1; + for (int i = 0; i < 12; i++) + { + unsigned int bits_1plane = get_ise_sequence_bitcount(weight_count, static_cast<quant_method>(i)); + if (bits_1plane >= BLOCK_MIN_WEIGHT_BITS && bits_1plane <= BLOCK_MAX_WEIGHT_BITS) + { + maxprec_1plane = i; + } + + if (try_2planes) + { + unsigned int bits_2planes = get_ise_sequence_bitcount(2 * weight_count, static_cast<quant_method>(i)); + if (bits_2planes >= BLOCK_MIN_WEIGHT_BITS && bits_2planes <= BLOCK_MAX_WEIGHT_BITS) + { + maxprec_2planes = i; + } + } + } + + // At least one of the two should be valid ... + assert(maxprec_1plane >= 0 || maxprec_2planes >= 0); + bsd.decimation_modes[index].maxprec_1plane = static_cast<int8_t>(maxprec_1plane); + bsd.decimation_modes[index].maxprec_2planes = static_cast<int8_t>(maxprec_2planes); + bsd.decimation_modes[index].refprec_1_plane = 0; + bsd.decimation_modes[index].refprec_2_planes = 0; +} + +/** + * @brief Allocate block modes and decimation tables for a single 2D block size. + * + * @param x_texels The number of texels in the X dimension. + * @param y_texels The number of texels in the Y dimension. + * @param can_omit_modes Can we discard modes that astcenc won't use, even if legal? + * @param mode_cutoff Percentile cutoff in range [0,1]. Low values more likely to be used. + * @param[out] bsd The block size descriptor to populate. + */ +static void construct_block_size_descriptor_2d( + unsigned int x_texels, + unsigned int y_texels, + bool can_omit_modes, + float mode_cutoff, + block_size_descriptor& bsd +) { + // Store a remap table for storing packed decimation modes. + // Indexing uses [Y * 16 + X] and max size for each axis is 12. + static const unsigned int MAX_DMI = 12 * 16 + 12; + int decimation_mode_index[MAX_DMI]; + + dt_init_working_buffers* wb = new dt_init_working_buffers; + + bsd.xdim = static_cast<uint8_t>(x_texels); + bsd.ydim = static_cast<uint8_t>(y_texels); + bsd.zdim = 1; + bsd.texel_count = static_cast<uint8_t>(x_texels * y_texels); + + for (unsigned int i = 0; i < MAX_DMI; i++) + { + decimation_mode_index[i] = -1; + } + + // Gather all the decimation grids that can be used with the current block +#if !defined(ASTCENC_DECOMPRESS_ONLY) + const float *percentiles = get_2d_percentile_table(x_texels, y_texels); + float always_cutoff = 0.0f; +#else + // Unused in decompress-only builds + (void)can_omit_modes; + (void)mode_cutoff; +#endif + + // Construct the list of block formats referencing the decimation tables + unsigned int packed_bm_idx = 0; + unsigned int packed_dm_idx = 0; + + // Trackers + unsigned int bm_counts[4] { 0 }; + unsigned int dm_counts[4] { 0 }; + + // Clear the list to a known-bad value + for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++) + { + bsd.block_mode_packed_index[i] = BLOCK_BAD_BLOCK_MODE; + } + + // Iterate four times to build a usefully ordered list: + // - Pass 0 - keep selected single plane "always" block modes + // - Pass 1 - keep selected single plane "non-always" block modes + // - Pass 2 - keep select dual plane block modes + // - Pass 3 - keep everything else that's legal + unsigned int limit = can_omit_modes ? 3 : 4; + for (unsigned int j = 0; j < limit; j ++) + { + for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++) + { + // Skip modes we've already included in a previous pass + if (bsd.block_mode_packed_index[i] != BLOCK_BAD_BLOCK_MODE) + { + continue; + } + + // Decode parameters + unsigned int x_weights; + unsigned int y_weights; + bool is_dual_plane; + unsigned int quant_mode; + unsigned int weight_bits; + bool valid = decode_block_mode_2d(i, x_weights, y_weights, is_dual_plane, quant_mode, weight_bits); + + // Always skip invalid encodings for the current block size + if (!valid || (x_weights > x_texels) || (y_weights > y_texels)) + { + continue; + } + + // Selectively skip dual plane encodings + if (((j <= 1) && is_dual_plane) || (j == 2 && !is_dual_plane)) + { + continue; + } + + // Always skip encodings we can't physically encode based on + // generic encoding bit availability + if (is_dual_plane) + { + // This is the only check we need as only support 1 partition + if ((109 - weight_bits) <= 0) + { + continue; + } + } + else + { + // This is conservative - fewer bits may be available for > 1 partition + if ((111 - weight_bits) <= 0) + { + continue; + } + } + + // Selectively skip encodings based on percentile + bool percentile_hit = false; + #if !defined(ASTCENC_DECOMPRESS_ONLY) + if (j == 0) + { + percentile_hit = percentiles[i] <= always_cutoff; + } + else + { + percentile_hit = percentiles[i] <= mode_cutoff; + } + #endif + + if (j != 3 && !percentile_hit) + { + continue; + } + + // Allocate and initialize the decimation table entry if we've not used it yet + int decimation_mode = decimation_mode_index[y_weights * 16 + x_weights]; + if (decimation_mode < 0) + { + construct_dt_entry_2d(x_texels, y_texels, x_weights, y_weights, bsd, *wb, packed_dm_idx); + decimation_mode_index[y_weights * 16 + x_weights] = packed_dm_idx; + decimation_mode = packed_dm_idx; + + dm_counts[j]++; + packed_dm_idx++; + } + + auto& bm = bsd.block_modes[packed_bm_idx]; + + bm.decimation_mode = static_cast<uint8_t>(decimation_mode); + bm.quant_mode = static_cast<uint8_t>(quant_mode); + bm.is_dual_plane = static_cast<uint8_t>(is_dual_plane); + bm.weight_bits = static_cast<uint8_t>(weight_bits); + bm.mode_index = static_cast<uint16_t>(i); + + auto& dm = bsd.decimation_modes[decimation_mode]; + + if (is_dual_plane) + { + dm.set_ref_2_plane(bm.get_weight_quant_mode()); + } + else + { + dm.set_ref_1_plane(bm.get_weight_quant_mode()); + } + + bsd.block_mode_packed_index[i] = static_cast<uint16_t>(packed_bm_idx); + + packed_bm_idx++; + bm_counts[j]++; + } + } + + bsd.block_mode_count_1plane_always = bm_counts[0]; + bsd.block_mode_count_1plane_selected = bm_counts[0] + bm_counts[1]; + bsd.block_mode_count_1plane_2plane_selected = bm_counts[0] + bm_counts[1] + bm_counts[2]; + bsd.block_mode_count_all = bm_counts[0] + bm_counts[1] + bm_counts[2] + bm_counts[3]; + + bsd.decimation_mode_count_always = dm_counts[0]; + bsd.decimation_mode_count_selected = dm_counts[0] + dm_counts[1] + dm_counts[2]; + bsd.decimation_mode_count_all = dm_counts[0] + dm_counts[1] + dm_counts[2] + dm_counts[3]; + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + assert(bsd.block_mode_count_1plane_always > 0); + assert(bsd.decimation_mode_count_always > 0); + + delete[] percentiles; +#endif + + // Ensure the end of the array contains valid data (should never get read) + for (unsigned int i = bsd.decimation_mode_count_all; i < WEIGHTS_MAX_DECIMATION_MODES; i++) + { + bsd.decimation_modes[i].maxprec_1plane = -1; + bsd.decimation_modes[i].maxprec_2planes = -1; + bsd.decimation_modes[i].refprec_1_plane = 0; + bsd.decimation_modes[i].refprec_2_planes = 0; + } + + // Determine the texels to use for kmeans clustering. + assign_kmeans_texels(bsd); + + delete wb; +} + +/** + * @brief Allocate block modes and decimation tables for a single 3D block size. + * + * TODO: This function doesn't include all of the heuristics that we use for 2D block sizes such as + * the percentile mode cutoffs. If 3D becomes more widely used we should look at this. + * + * @param x_texels The number of texels in the X dimension. + * @param y_texels The number of texels in the Y dimension. + * @param z_texels The number of texels in the Z dimension. + * @param[out] bsd The block size descriptor to populate. + */ +static void construct_block_size_descriptor_3d( + unsigned int x_texels, + unsigned int y_texels, + unsigned int z_texels, + block_size_descriptor& bsd +) { + // Store a remap table for storing packed decimation modes. + // Indexing uses [Z * 64 + Y * 8 + X] and max size for each axis is 6. + static constexpr unsigned int MAX_DMI = 6 * 64 + 6 * 8 + 6; + int decimation_mode_index[MAX_DMI]; + unsigned int decimation_mode_count = 0; + + dt_init_working_buffers* wb = new dt_init_working_buffers; + + bsd.xdim = static_cast<uint8_t>(x_texels); + bsd.ydim = static_cast<uint8_t>(y_texels); + bsd.zdim = static_cast<uint8_t>(z_texels); + bsd.texel_count = static_cast<uint8_t>(x_texels * y_texels * z_texels); + + for (unsigned int i = 0; i < MAX_DMI; i++) + { + decimation_mode_index[i] = -1; + } + + // gather all the infill-modes that can be used with the current block size + for (unsigned int x_weights = 2; x_weights <= x_texels; x_weights++) + { + for (unsigned int y_weights = 2; y_weights <= y_texels; y_weights++) + { + for (unsigned int z_weights = 2; z_weights <= z_texels; z_weights++) + { + unsigned int weight_count = x_weights * y_weights * z_weights; + if (weight_count > BLOCK_MAX_WEIGHTS) + { + continue; + } + + decimation_info& di = bsd.decimation_tables[decimation_mode_count]; + decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights] = decimation_mode_count; + init_decimation_info_3d(x_texels, y_texels, z_texels, x_weights, y_weights, z_weights, di, *wb); + + int maxprec_1plane = -1; + int maxprec_2planes = -1; + for (unsigned int i = 0; i < 12; i++) + { + unsigned int bits_1plane = get_ise_sequence_bitcount(weight_count, static_cast<quant_method>(i)); + if (bits_1plane >= BLOCK_MIN_WEIGHT_BITS && bits_1plane <= BLOCK_MAX_WEIGHT_BITS) + { + maxprec_1plane = i; + } + + unsigned int bits_2planes = get_ise_sequence_bitcount(2 * weight_count, static_cast<quant_method>(i)); + if (bits_2planes >= BLOCK_MIN_WEIGHT_BITS && bits_2planes <= BLOCK_MAX_WEIGHT_BITS) + { + maxprec_2planes = i; + } + } + + if ((2 * weight_count) > BLOCK_MAX_WEIGHTS) + { + maxprec_2planes = -1; + } + + bsd.decimation_modes[decimation_mode_count].maxprec_1plane = static_cast<int8_t>(maxprec_1plane); + bsd.decimation_modes[decimation_mode_count].maxprec_2planes = static_cast<int8_t>(maxprec_2planes); + bsd.decimation_modes[decimation_mode_count].refprec_1_plane = maxprec_1plane == -1 ? 0 : 0xFFFF; + bsd.decimation_modes[decimation_mode_count].refprec_2_planes = maxprec_2planes == -1 ? 0 : 0xFFFF; + decimation_mode_count++; + } + } + } + + // Ensure the end of the array contains valid data (should never get read) + for (unsigned int i = decimation_mode_count; i < WEIGHTS_MAX_DECIMATION_MODES; i++) + { + bsd.decimation_modes[i].maxprec_1plane = -1; + bsd.decimation_modes[i].maxprec_2planes = -1; + bsd.decimation_modes[i].refprec_1_plane = 0; + bsd.decimation_modes[i].refprec_2_planes = 0; + } + + bsd.decimation_mode_count_always = 0; // Skipped for 3D modes + bsd.decimation_mode_count_selected = decimation_mode_count; + bsd.decimation_mode_count_all = decimation_mode_count; + + // Construct the list of block formats referencing the decimation tables + + // Clear the list to a known-bad value + for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++) + { + bsd.block_mode_packed_index[i] = BLOCK_BAD_BLOCK_MODE; + } + + unsigned int packed_idx = 0; + unsigned int bm_counts[2] { 0 }; + + // Iterate two times to build a usefully ordered list: + // - Pass 0 - keep valid single plane block modes + // - Pass 1 - keep valid dual plane block modes + for (unsigned int j = 0; j < 2; j++) + { + for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++) + { + // Skip modes we've already included in a previous pass + if (bsd.block_mode_packed_index[i] != BLOCK_BAD_BLOCK_MODE) + { + continue; + } + + unsigned int x_weights; + unsigned int y_weights; + unsigned int z_weights; + bool is_dual_plane; + unsigned int quant_mode; + unsigned int weight_bits; + + bool valid = decode_block_mode_3d(i, x_weights, y_weights, z_weights, is_dual_plane, quant_mode, weight_bits); + // Skip invalid encodings + if (!valid || x_weights > x_texels || y_weights > y_texels || z_weights > z_texels) + { + continue; + } + + // Skip encodings in the wrong iteration + if ((j == 0 && is_dual_plane) || (j == 1 && !is_dual_plane)) + { + continue; + } + + // Always skip encodings we can't physically encode based on bit availability + if (is_dual_plane) + { + // This is the only check we need as only support 1 partition + if ((109 - weight_bits) <= 0) + { + continue; + } + } + else + { + // This is conservative - fewer bits may be available for > 1 partition + if ((111 - weight_bits) <= 0) + { + continue; + } + } + + int decimation_mode = decimation_mode_index[z_weights * 64 + y_weights * 8 + x_weights]; + bsd.block_modes[packed_idx].decimation_mode = static_cast<uint8_t>(decimation_mode); + bsd.block_modes[packed_idx].quant_mode = static_cast<uint8_t>(quant_mode); + bsd.block_modes[packed_idx].weight_bits = static_cast<uint8_t>(weight_bits); + bsd.block_modes[packed_idx].is_dual_plane = static_cast<uint8_t>(is_dual_plane); + bsd.block_modes[packed_idx].mode_index = static_cast<uint16_t>(i); + + bsd.block_mode_packed_index[i] = static_cast<uint16_t>(packed_idx); + bm_counts[j]++; + packed_idx++; + } + } + + bsd.block_mode_count_1plane_always = 0; // Skipped for 3D modes + bsd.block_mode_count_1plane_selected = bm_counts[0]; + bsd.block_mode_count_1plane_2plane_selected = bm_counts[0] + bm_counts[1]; + bsd.block_mode_count_all = bm_counts[0] + bm_counts[1]; + + // Determine the texels to use for kmeans clustering. + assign_kmeans_texels(bsd); + + delete wb; +} + +/* See header for documentation. */ +void init_block_size_descriptor( + unsigned int x_texels, + unsigned int y_texels, + unsigned int z_texels, + bool can_omit_modes, + unsigned int partition_count_cutoff, + float mode_cutoff, + block_size_descriptor& bsd +) { + if (z_texels > 1) + { + construct_block_size_descriptor_3d(x_texels, y_texels, z_texels, bsd); + } + else + { + construct_block_size_descriptor_2d(x_texels, y_texels, can_omit_modes, mode_cutoff, bsd); + } + + init_partition_tables(bsd, can_omit_modes, partition_count_cutoff); +} diff --git a/thirdparty/astcenc/astcenc_color_quantize.cpp b/thirdparty/astcenc/astcenc_color_quantize.cpp new file mode 100644 index 0000000000..edcfe4f853 --- /dev/null +++ b/thirdparty/astcenc/astcenc_color_quantize.cpp @@ -0,0 +1,2071 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for color quantization. + * + * The design of the color quantization functionality requires the caller to use higher level error + * analysis to determine the base encoding that should be used. This earlier analysis will select + * the basic type of the endpoint that should be used: + * + * * Mode: LDR or HDR + * * Quantization level + * * Channel count: L, LA, RGB, or RGBA + * * Endpoint 2 type: Direct color endcode, or scaled from endpoint 1. + * + * However, this leaves a number of decisions about exactly how to pack the endpoints open. In + * particular we need to determine if blue contraction can be used, or/and if delta encoding can be + * used. If they can be applied these will allow us to maintain higher precision in the endpoints + * without needing additional storage. + */ + +#include <stdio.h> +#include <assert.h> + +#include "astcenc_internal.h" + +/** + * @brief Determine the quantized value given a quantization level. + * + * @param quant_level The quantization level to use. + * @param value The value to convert. This may be outside of the 0-255 range and will be + * clamped before the value is looked up. + * + * @return The encoded quantized value. These are not necessarily in order; the compressor + * scrambles the values slightly to make hardware implementation easier. + */ +static inline uint8_t quant_color( + quant_method quant_level, + int value +) { + return color_unquant_to_uquant_tables[quant_level - QUANT_6][value]; +} + +/** + * @brief Quantize an LDR RGB color. + * + * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. + * For this encoding @c color0 cannot be larger than @c color1. If @c color0 is actually larger + * than @c color1, @c color0 is reduced and @c color1 is increased until the constraint is met. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgb( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = astc::clamp255f(color0.lane<0>() * scale); + float g0 = astc::clamp255f(color0.lane<1>() * scale); + float b0 = astc::clamp255f(color0.lane<2>() * scale); + + float r1 = astc::clamp255f(color1.lane<0>() * scale); + float g1 = astc::clamp255f(color1.lane<1>() * scale); + float b1 = astc::clamp255f(color1.lane<2>() * scale); + + int ri0, gi0, bi0, ri1, gi1, bi1; + float rgb0_addon = 0.5f; + float rgb1_addon = 0.5f; + do + { + ri0 = quant_color(quant_level, astc::max(astc::flt2int_rd(r0 + rgb0_addon), 0)); + gi0 = quant_color(quant_level, astc::max(astc::flt2int_rd(g0 + rgb0_addon), 0)); + bi0 = quant_color(quant_level, astc::max(astc::flt2int_rd(b0 + rgb0_addon), 0)); + ri1 = quant_color(quant_level, astc::min(astc::flt2int_rd(r1 + rgb1_addon), 255)); + gi1 = quant_color(quant_level, astc::min(astc::flt2int_rd(g1 + rgb1_addon), 255)); + bi1 = quant_color(quant_level, astc::min(astc::flt2int_rd(b1 + rgb1_addon), 255)); + + rgb0_addon -= 0.2f; + rgb1_addon += 0.2f; + } while (ri0 + gi0 + bi0 > ri1 + gi1 + bi1); + + output[0] = static_cast<uint8_t>(ri0); + output[1] = static_cast<uint8_t>(ri1); + output[2] = static_cast<uint8_t>(gi0); + output[3] = static_cast<uint8_t>(gi1); + output[4] = static_cast<uint8_t>(bi0); + output[5] = static_cast<uint8_t>(bi1); +} + +/** + * @brief Quantize an LDR RGBA color. + * + * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. + * For this encoding @c color0.rgb cannot be larger than @c color1.rgb (this indicates blue + * contraction). If @c color0.rgb is actually larger than @c color1.rgb, @c color0.rgb is reduced + * and @c color1.rgb is increased until the constraint is met. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgba( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_rgb(color0, color1, output, quant_level); +} + +/** + * @brief Try to quantize an LDR RGB color using blue-contraction. + * + * Blue-contraction is only usable if encoded color 1 is larger than color 0. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgb_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = color0.lane<0>() * scale; + float g0 = color0.lane<1>() * scale; + float b0 = color0.lane<2>() * scale; + + float r1 = color1.lane<0>() * scale; + float g1 = color1.lane<1>() * scale; + float b1 = color1.lane<2>() * scale; + + // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. + r0 += (r0 - b0); + g0 += (g0 - b0); + r1 += (r1 - b1); + g1 += (g1 - b1); + + if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || + r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) + { + return false; + } + + // Quantize the inverse-blue-contracted color + int ri0 = quant_color(quant_level, astc::flt2int_rtn(r0)); + int gi0 = quant_color(quant_level, astc::flt2int_rtn(g0)); + int bi0 = quant_color(quant_level, astc::flt2int_rtn(b0)); + + int ri1 = quant_color(quant_level, astc::flt2int_rtn(r1)); + int gi1 = quant_color(quant_level, astc::flt2int_rtn(g1)); + int bi1 = quant_color(quant_level, astc::flt2int_rtn(b1)); + + // If color #1 is not larger than color #0 then blue-contraction cannot be used. Note that + // blue-contraction and quantization change this order, which is why we must test afterwards. + if (ri1 + gi1 + bi1 <= ri0 + gi0 + bi0) + { + return false; + } + + output[0] = static_cast<uint8_t>(ri1); + output[1] = static_cast<uint8_t>(ri0); + output[2] = static_cast<uint8_t>(gi1); + output[3] = static_cast<uint8_t>(gi0); + output[4] = static_cast<uint8_t>(bi1); + output[5] = static_cast<uint8_t>(bi0); + + return true; +} + +/** + * @brief Try to quantize an LDR RGBA color using blue-contraction. + * + * Blue-contraction is only usable if encoded color 1 RGB is larger than color 0 RGB. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0, a1, a0). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static int try_quantize_rgba_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a1)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a0)); + + return try_quantize_rgb_blue_contract(color0, color1, output, quant_level); +} + +/** + * @brief Try to quantize an LDR RGB color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgb_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r0 = astc::clamp255f(color0.lane<0>() * scale); + float g0 = astc::clamp255f(color0.lane<1>() * scale); + float b0 = astc::clamp255f(color0.lane<2>() * scale); + + float r1 = astc::clamp255f(color1.lane<0>() * scale); + float g1 = astc::clamp255f(color1.lane<1>() * scale); + float b1 = astc::clamp255f(color1.lane<2>() * scale); + + // Transform r0 to unorm9 + int r0a = astc::flt2int_rtn(r0); + int g0a = astc::flt2int_rtn(g0); + int b0a = astc::flt2int_rtn(b0); + + r0a <<= 1; + g0a <<= 1; + b0a <<= 1; + + // Mask off the top bit + int r0b = r0a & 0xFF; + int g0b = g0a & 0xFF; + int b0b = b0a & 0xFF; + + // Quantize then unquantize in order to get a value that we take differences against + int r0be = quant_color(quant_level, r0b); + int g0be = quant_color(quant_level, g0b); + int b0be = quant_color(quant_level, b0b); + + r0b = r0be | (r0a & 0x100); + g0b = g0be | (g0a & 0x100); + b0b = b0be | (b0a & 0x100); + + // Get hold of the second value + int r1d = astc::flt2int_rtn(r1); + int g1d = astc::flt2int_rtn(g1); + int b1d = astc::flt2int_rtn(b1); + + r1d <<= 1; + g1d <<= 1; + b1d <<= 1; + + // ... and take differences + r1d -= r0b; + g1d -= g0b; + b1d -= b0b; + + // Check if the difference is too large to be encodable + if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) + { + return false; + } + + // Insert top bit of the base into the offset + r1d &= 0x7F; + g1d &= 0x7F; + b1d &= 0x7F; + + r1d |= (r0b & 0x100) >> 1; + g1d |= (g0b & 0x100) >> 1; + b1d |= (b0b & 0x100) >> 1; + + // Then quantize and unquantize; if this causes either top two bits to flip, then encoding fails + // since we have then corrupted either the top bit of the base or the sign bit of the offset + int r1de = quant_color(quant_level, r1d); + int g1de = quant_color(quant_level, g1d); + int b1de = quant_color(quant_level, b1d); + + if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) + { + return false; + } + + // If the sum of offsets triggers blue-contraction then encoding fails + vint4 ep0(r0be, g0be, b0be, 0); + vint4 ep1(r1de, g1de, b1de, 0); + bit_transfer_signed(ep1, ep0); + if (hadd_rgb_s(ep1) < 0) + { + return false; + } + + // Check that the offsets produce legitimate sums as well + ep0 = ep0 + ep1; + if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) + { + return false; + } + + output[0] = static_cast<uint8_t>(r0be); + output[1] = static_cast<uint8_t>(r1de); + output[2] = static_cast<uint8_t>(g0be); + output[3] = static_cast<uint8_t>(g1de); + output[4] = static_cast<uint8_t>(b0be); + output[5] = static_cast<uint8_t>(b1de); + + return true; +} + +static bool try_quantize_rgb_delta_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + // Note: Switch around endpoint colors already at start + float scale = 1.0f / 257.0f; + + float r1 = color0.lane<0>() * scale; + float g1 = color0.lane<1>() * scale; + float b1 = color0.lane<2>() * scale; + + float r0 = color1.lane<0>() * scale; + float g0 = color1.lane<1>() * scale; + float b0 = color1.lane<2>() * scale; + + // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. + r0 += (r0 - b0); + g0 += (g0 - b0); + r1 += (r1 - b1); + g1 += (g1 - b1); + + if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || + r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) + { + return false; + } + + // Transform r0 to unorm9 + int r0a = astc::flt2int_rtn(r0); + int g0a = astc::flt2int_rtn(g0); + int b0a = astc::flt2int_rtn(b0); + r0a <<= 1; + g0a <<= 1; + b0a <<= 1; + + // Mask off the top bit + int r0b = r0a & 0xFF; + int g0b = g0a & 0xFF; + int b0b = b0a & 0xFF; + + // Quantize, then unquantize in order to get a value that we take differences against. + int r0be = quant_color(quant_level, r0b); + int g0be = quant_color(quant_level, g0b); + int b0be = quant_color(quant_level, b0b); + + r0b = r0be | (r0a & 0x100); + g0b = g0be | (g0a & 0x100); + b0b = b0be | (b0a & 0x100); + + // Get hold of the second value + int r1d = astc::flt2int_rtn(r1); + int g1d = astc::flt2int_rtn(g1); + int b1d = astc::flt2int_rtn(b1); + + r1d <<= 1; + g1d <<= 1; + b1d <<= 1; + + // .. and take differences! + r1d -= r0b; + g1d -= g0b; + b1d -= b0b; + + // Check if the difference is too large to be encodable + if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) + { + return false; + } + + // Insert top bit of the base into the offset + r1d &= 0x7F; + g1d &= 0x7F; + b1d &= 0x7F; + + r1d |= (r0b & 0x100) >> 1; + g1d |= (g0b & 0x100) >> 1; + b1d |= (b0b & 0x100) >> 1; + + // Then quantize and unquantize; if this causes any of the top two bits to flip, + // then encoding fails, since we have then corrupted either the top bit of the base + // or the sign bit of the offset. + int r1de = quant_color(quant_level, r1d); + int g1de = quant_color(quant_level, g1d); + int b1de = quant_color(quant_level, b1d); + + if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) + { + return false; + } + + // If the sum of offsets does not trigger blue-contraction then encoding fails + vint4 ep0(r0be, g0be, b0be, 0); + vint4 ep1(r1de, g1de, b1de, 0); + bit_transfer_signed(ep1, ep0); + if (hadd_rgb_s(ep1) >= 0) + { + return false; + } + + // Check that the offsets produce legitimate sums as well + ep0 = ep0 + ep1; + if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) + { + return false; + } + + output[0] = static_cast<uint8_t>(r0be); + output[1] = static_cast<uint8_t>(r1de); + output[2] = static_cast<uint8_t>(g0be); + output[3] = static_cast<uint8_t>(g1de); + output[4] = static_cast<uint8_t>(b0be); + output[5] = static_cast<uint8_t>(b1de); + + return true; +} + +/** + * @brief Try to quantize an LDR A color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (x, x, x, x, x, x, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_alpha_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + int a0a = astc::flt2int_rtn(a0); + a0a <<= 1; + int a0b = a0a & 0xFF; + int a0be = quant_color(quant_level, a0b); + a0b = a0be; + a0b |= a0a & 0x100; + int a1d = astc::flt2int_rtn(a1); + a1d <<= 1; + a1d -= a0b; + + if (a1d > 63 || a1d < -64) + { + return false; + } + + a1d &= 0x7F; + a1d |= (a0b & 0x100) >> 1; + + int a1de = quant_color(quant_level, a1d); + int a1du = a1de; + if ((a1d ^ a1du) & 0xC0) + { + return false; + } + + a1du &= 0x7F; + if (a1du & 0x40) + { + a1du -= 0x80; + } + + a1du += a0b; + if (a1du < 0 || a1du > 0x1FF) + { + return false; + } + + output[6] = static_cast<uint8_t>(a0be); + output[7] = static_cast<uint8_t>(a1de); + + return true; +} + +/** + * @brief Try to quantize an LDR LA color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_luminance_alpha_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float l0 = astc::clamp255f(hadd_rgb_s(color0) * ((1.0f / 3.0f) * scale)); + float l1 = astc::clamp255f(hadd_rgb_s(color1) * ((1.0f / 3.0f) * scale)); + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + int l0a = astc::flt2int_rtn(l0); + int a0a = astc::flt2int_rtn(a0); + l0a <<= 1; + a0a <<= 1; + + int l0b = l0a & 0xFF; + int a0b = a0a & 0xFF; + int l0be = quant_color(quant_level, l0b); + int a0be = quant_color(quant_level, a0b); + l0b = l0be; + a0b = a0be; + l0b |= l0a & 0x100; + a0b |= a0a & 0x100; + + int l1d = astc::flt2int_rtn(l1); + int a1d = astc::flt2int_rtn(a1); + l1d <<= 1; + a1d <<= 1; + l1d -= l0b; + a1d -= a0b; + + if (l1d > 63 || l1d < -64) + { + return false; + } + + if (a1d > 63 || a1d < -64) + { + return false; + } + + l1d &= 0x7F; + a1d &= 0x7F; + l1d |= (l0b & 0x100) >> 1; + a1d |= (a0b & 0x100) >> 1; + + int l1de = quant_color(quant_level, l1d); + int a1de = quant_color(quant_level, a1d); + int l1du = l1de; + int a1du = a1de; + + if ((l1d ^ l1du) & 0xC0) + { + return false; + } + + if ((a1d ^ a1du) & 0xC0) + { + return false; + } + + l1du &= 0x7F; + a1du &= 0x7F; + + if (l1du & 0x40) + { + l1du -= 0x80; + } + + if (a1du & 0x40) + { + a1du -= 0x80; + } + + l1du += l0b; + a1du += a0b; + + if (l1du < 0 || l1du > 0x1FF) + { + return false; + } + + if (a1du < 0 || a1du > 0x1FF) + { + return false; + } + + output[0] = static_cast<uint8_t>(l0be); + output[1] = static_cast<uint8_t>(l1de); + output[2] = static_cast<uint8_t>(a0be); + output[3] = static_cast<uint8_t>(a1de); + + return true; +} + +/** + * @brief Try to quantize an LDR RGBA color using delta encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgba_delta( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + return try_quantize_rgb_delta(color0, color1, output, quant_level) && + try_quantize_alpha_delta(color0, color1, output, quant_level); +} + + +/** + * @brief Try to quantize an LDR RGBA color using delta and blue contract encoding. + * + * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; + * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is + * non-negative, then we encode a regular delta. + * + * This function only compressed the alpha - the other elements in the output array are not touched. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_rgba_delta_blue_contract( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + // Note that we swap the color0 and color1 ordering for alpha to match RGB blue-contract + return try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level) && + try_quantize_alpha_delta(color1, color0, output, quant_level); +} + +/** + * @brief Quantize an LDR RGB color using scale encoding. + * + * @param color The input unquantized color endpoint and scale factor. + * @param[out] output The output endpoints, returned as (r0, g0, b0, s). + * @param quant_level The quantization level to use. + */ +static void quantize_rgbs( + vfloat4 color, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float r = astc::clamp255f(color.lane<0>() * scale); + float g = astc::clamp255f(color.lane<1>() * scale); + float b = astc::clamp255f(color.lane<2>() * scale); + + int ri = quant_color(quant_level, astc::flt2int_rtn(r)); + int gi = quant_color(quant_level, astc::flt2int_rtn(g)); + int bi = quant_color(quant_level, astc::flt2int_rtn(b)); + + float oldcolorsum = hadd_rgb_s(color) * scale; + float newcolorsum = static_cast<float>(ri + gi + bi); + + float scalea = astc::clamp1f(color.lane<3>() * (oldcolorsum + 1e-10f) / (newcolorsum + 1e-10f)); + int scale_idx = astc::flt2int_rtn(scalea * 256.0f); + scale_idx = astc::clamp(scale_idx, 0, 255); + + output[0] = static_cast<uint8_t>(ri); + output[1] = static_cast<uint8_t>(gi); + output[2] = static_cast<uint8_t>(bi); + output[3] = quant_color(quant_level, scale_idx); +} + +/** + * @brief Quantize an LDR RGBA color using scale encoding. + * + * @param color The input unquantized color endpoint and scale factor. + * @param[out] output The output endpoints, returned as (r0, g0, b0, s, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_rgbs_alpha( + vfloat4 color0, + vfloat4 color1, + vfloat4 color, + uint8_t output[6], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[4] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[5] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_rgbs(color, output, quant_level); +} + +/** + * @brief Quantize a LDR L color. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1). + * @param quant_level The quantization level to use. + */ +static void quantize_luminance( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + color0 = color0 * scale; + color1 = color1 * scale; + + float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); + float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); + + if (lum0 > lum1) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0)); + output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1)); +} + +/** + * @brief Quantize a LDR LA color. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). + * @param quant_level The quantization level to use. + */ +static void quantize_luminance_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[4], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + color0 = color0 * scale; + color1 = color1 * scale; + + float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); + float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); + + float a0 = astc::clamp255f(color0.lane<3>()); + float a1 = astc::clamp255f(color1.lane<3>()); + + // If endpoints are close then pull apart slightly; this gives > 8 bit normal map precision. + if (quant_level > 18) + { + if (fabsf(lum0 - lum1) < 3.0f) + { + if (lum0 < lum1) + { + lum0 -= 0.5f; + lum1 += 0.5f; + } + else + { + lum0 += 0.5f; + lum1 -= 0.5f; + } + + lum0 = astc::clamp255f(lum0); + lum1 = astc::clamp255f(lum1); + } + + if (fabsf(a0 - a1) < 3.0f) + { + if (a0 < a1) + { + a0 -= 0.5f; + a1 += 0.5f; + } + else + { + a0 += 0.5f; + a1 -= 0.5f; + } + + a0 = astc::clamp255f(a0); + a1 = astc::clamp255f(a1); + } + } + + output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0)); + output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1)); + output[2] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[3] = quant_color(quant_level, astc::flt2int_rtn(a1)); +} + +/** + * @brief Quantize and unquantize a value ensuring top two bits are the same. + * + * @param quant_level The quantization level to use. + * @param value The input unquantized value. + * @param[out] quant_value The quantized value. + */ +static inline void quantize_and_unquantize_retain_top_two_bits( + quant_method quant_level, + uint8_t value, + uint8_t& quant_value +) { + int perform_loop; + uint8_t quantval; + + do + { + quantval = quant_color(quant_level, value); + + // Perform looping if the top two bits were modified by quant/unquant + perform_loop = (value & 0xC0) != (quantval & 0xC0); + + if ((quantval & 0xC0) > (value & 0xC0)) + { + // Quant/unquant rounded UP so that the top two bits changed; + // decrement the input in hopes that this will avoid rounding up. + value--; + } + else if ((quantval & 0xC0) < (value & 0xC0)) + { + // Quant/unquant rounded DOWN so that the top two bits changed; + // decrement the input in hopes that this will avoid rounding down. + value--; + } + } while (perform_loop); + + quant_value = quantval; +} + +/** + * @brief Quantize and unquantize a value ensuring top four bits are the same. + * + * @param quant_level The quantization level to use. + * @param value The input unquantized value. + * @param[out] quant_value The quantized value in 0-255 range. + */ +static inline void quantize_and_unquantize_retain_top_four_bits( + quant_method quant_level, + uint8_t value, + uint8_t& quant_value +) { + uint8_t perform_loop; + uint8_t quantval; + + do + { + quantval = quant_color(quant_level, value); + // Perform looping if the top four bits were modified by quant/unquant + perform_loop = (value & 0xF0) != (quantval & 0xF0); + + if ((quantval & 0xF0) > (value & 0xF0)) + { + // Quant/unquant rounded UP so that the top four bits changed; + // decrement the input value in hopes that this will avoid rounding up. + value--; + } + else if ((quantval & 0xF0) < (value & 0xF0)) + { + // Quant/unquant rounded DOWN so that the top four bits changed; + // decrement the input value in hopes that this will avoid rounding down. + value--; + } + } while (perform_loop); + + quant_value = quantval; +} + +/** + * @brief Quantize a HDR RGB color using RGB + offset. + * + * @param color The input unquantized color endpoint and offset. + * @param[out] output The output endpoints, returned as packed RGBS with some mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgbo( + vfloat4 color, + uint8_t output[4], + quant_method quant_level +) { + color.set_lane<0>(color.lane<0>() + color.lane<3>()); + color.set_lane<1>(color.lane<1>() + color.lane<3>()); + color.set_lane<2>(color.lane<2>() + color.lane<3>()); + + color = clamp(0.0f, 65535.0f, color); + + vfloat4 color_bak = color; + + int majcomp; + if (color.lane<0>() > color.lane<1>() && color.lane<0>() > color.lane<2>()) + { + majcomp = 0; // red is largest component + } + else if (color.lane<1>() > color.lane<2>()) + { + majcomp = 1; // green is largest component + } + else + { + majcomp = 2; // blue is largest component + } + + // swap around the red component and the largest component. + switch (majcomp) + { + case 1: + color = color.swz<1, 0, 2, 3>(); + break; + case 2: + color = color.swz<2, 1, 0, 3>(); + break; + default: + break; + } + + static const int mode_bits[5][3] { + {11, 5, 7}, + {11, 6, 5}, + {10, 5, 8}, + {9, 6, 7}, + {8, 7, 6} + }; + + static const float mode_cutoffs[5][2] { + {1024, 4096}, + {2048, 1024}, + {2048, 16384}, + {8192, 16384}, + {32768, 16384} + }; + + static const float mode_rscales[5] { + 32.0f, + 32.0f, + 64.0f, + 128.0f, + 256.0f, + }; + + static const float mode_scales[5] { + 1.0f / 32.0f, + 1.0f / 32.0f, + 1.0f / 64.0f, + 1.0f / 128.0f, + 1.0f / 256.0f, + }; + + float r_base = color.lane<0>(); + float g_base = color.lane<0>() - color.lane<1>() ; + float b_base = color.lane<0>() - color.lane<2>() ; + float s_base = color.lane<3>() ; + + for (int mode = 0; mode < 5; mode++) + { + if (g_base > mode_cutoffs[mode][0] || b_base > mode_cutoffs[mode][0] || s_base > mode_cutoffs[mode][1]) + { + continue; + } + + // Encode the mode into a 4-bit vector + int mode_enc = mode < 4 ? (mode | (majcomp << 2)) : (majcomp | 0xC); + + float mode_scale = mode_scales[mode]; + float mode_rscale = mode_rscales[mode]; + + int gb_intcutoff = 1 << mode_bits[mode][1]; + int s_intcutoff = 1 << mode_bits[mode][2]; + + // Quantize and unquantize R + int r_intval = astc::flt2int_rtn(r_base * mode_scale); + + int r_lowbits = r_intval & 0x3f; + + r_lowbits |= (mode_enc & 3) << 6; + + uint8_t r_quantval; + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(r_lowbits), r_quantval); + + r_intval = (r_intval & ~0x3f) | (r_quantval & 0x3f); + float r_fval = static_cast<float>(r_intval) * mode_rscale; + + // Recompute G and B, then quantize and unquantize them + float g_fval = r_fval - color.lane<1>() ; + float b_fval = r_fval - color.lane<2>() ; + + g_fval = astc::clamp(g_fval, 0.0f, 65535.0f); + b_fval = astc::clamp(b_fval, 0.0f, 65535.0f); + + int g_intval = astc::flt2int_rtn(g_fval * mode_scale); + int b_intval = astc::flt2int_rtn(b_fval * mode_scale); + + if (g_intval >= gb_intcutoff || b_intval >= gb_intcutoff) + { + continue; + } + + int g_lowbits = g_intval & 0x1f; + int b_lowbits = b_intval & 0x1f; + + int bit0 = 0; + int bit1 = 0; + int bit2 = 0; + int bit3 = 0; + + switch (mode) + { + case 0: + case 2: + bit0 = (r_intval >> 9) & 1; + break; + case 1: + case 3: + bit0 = (r_intval >> 8) & 1; + break; + case 4: + case 5: + bit0 = (g_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 0: + case 1: + case 2: + case 3: + bit2 = (r_intval >> 7) & 1; + break; + case 4: + case 5: + bit2 = (b_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 0: + case 2: + bit1 = (r_intval >> 8) & 1; + break; + case 1: + case 3: + case 4: + case 5: + bit1 = (g_intval >> 5) & 1; + break; + } + + switch (mode) + { + case 0: + bit3 = (r_intval >> 10) & 1; + break; + case 2: + bit3 = (r_intval >> 6) & 1; + break; + case 1: + case 3: + case 4: + case 5: + bit3 = (b_intval >> 5) & 1; + break; + } + + g_lowbits |= (mode_enc & 0x4) << 5; + b_lowbits |= (mode_enc & 0x8) << 4; + + g_lowbits |= bit0 << 6; + g_lowbits |= bit1 << 5; + b_lowbits |= bit2 << 6; + b_lowbits |= bit3 << 5; + + uint8_t g_quantval; + uint8_t b_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(g_lowbits), g_quantval); + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(b_lowbits), b_quantval); + + g_intval = (g_intval & ~0x1f) | (g_quantval & 0x1f); + b_intval = (b_intval & ~0x1f) | (b_quantval & 0x1f); + + g_fval = static_cast<float>(g_intval) * mode_rscale; + b_fval = static_cast<float>(b_intval) * mode_rscale; + + // Recompute the scale value, based on the errors introduced to red, green and blue + + // If the error is positive, then the R,G,B errors combined have raised the color + // value overall; as such, the scale value needs to be increased. + float rgb_errorsum = (r_fval - color.lane<0>() ) + (r_fval - g_fval - color.lane<1>() ) + (r_fval - b_fval - color.lane<2>() ); + + float s_fval = s_base + rgb_errorsum * (1.0f / 3.0f); + s_fval = astc::clamp(s_fval, 0.0f, 1e9f); + + int s_intval = astc::flt2int_rtn(s_fval * mode_scale); + + if (s_intval >= s_intcutoff) + { + continue; + } + + int s_lowbits = s_intval & 0x1f; + + int bit4; + int bit5; + int bit6; + switch (mode) + { + case 1: + bit6 = (r_intval >> 9) & 1; + break; + default: + bit6 = (s_intval >> 5) & 1; + break; + } + + switch (mode) + { + case 4: + bit5 = (r_intval >> 7) & 1; + break; + case 1: + bit5 = (r_intval >> 10) & 1; + break; + default: + bit5 = (s_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 2: + bit4 = (s_intval >> 7) & 1; + break; + default: + bit4 = (r_intval >> 6) & 1; + break; + } + + s_lowbits |= bit6 << 5; + s_lowbits |= bit5 << 6; + s_lowbits |= bit4 << 7; + + uint8_t s_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(s_lowbits), s_quantval); + + output[0] = r_quantval; + output[1] = g_quantval; + output[2] = b_quantval; + output[3] = s_quantval; + return; + } + + // Failed to encode any of the modes above? In that case encode using mode #5 + float vals[4]; + vals[0] = color_bak.lane<0>(); + vals[1] = color_bak.lane<1>(); + vals[2] = color_bak.lane<2>(); + vals[3] = color_bak.lane<3>(); + + int ivals[4]; + float cvals[3]; + + for (int i = 0; i < 3; i++) + { + vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); + ivals[i] = astc::flt2int_rtn(vals[i] * (1.0f / 512.0f)); + cvals[i] = static_cast<float>(ivals[i]) * 512.0f; + } + + float rgb_errorsum = (cvals[0] - vals[0]) + (cvals[1] - vals[1]) + (cvals[2] - vals[2]); + vals[3] += rgb_errorsum * (1.0f / 3.0f); + + vals[3] = astc::clamp(vals[3], 0.0f, 65020.0f); + ivals[3] = astc::flt2int_rtn(vals[3] * (1.0f / 512.0f)); + + int encvals[4]; + encvals[0] = (ivals[0] & 0x3f) | 0xC0; + encvals[1] = (ivals[1] & 0x7f) | 0x80; + encvals[2] = (ivals[2] & 0x7f) | 0x80; + encvals[3] = (ivals[3] & 0x7f) | ((ivals[0] & 0x40) << 1); + + for (uint8_t i = 0; i < 4; i++) + { + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(encvals[i]), output[i]); + } + + return; +} + +/** + * @brief Quantize a HDR RGB color using direct RGB encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGB+RGB pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb( + vfloat4 color0, + vfloat4 color1, + uint8_t output[6], + quant_method quant_level +) { + // Note: color*.lane<3> is not used so we can ignore it + color0 = clamp(0.0f, 65535.0f, color0); + color1 = clamp(0.0f, 65535.0f, color1); + + vfloat4 color0_bak = color0; + vfloat4 color1_bak = color1; + + int majcomp; + if (color1.lane<0>() > color1.lane<1>() && color1.lane<0>() > color1.lane<2>()) + { + majcomp = 0; + } + else if (color1.lane<1>() > color1.lane<2>()) + { + majcomp = 1; + } + else + { + majcomp = 2; + } + + // Swizzle the components + switch (majcomp) + { + case 1: // red-green swap + color0 = color0.swz<1, 0, 2, 3>(); + color1 = color1.swz<1, 0, 2, 3>(); + break; + case 2: // red-blue swap + color0 = color0.swz<2, 1, 0, 3>(); + color1 = color1.swz<2, 1, 0, 3>(); + break; + default: + break; + } + + float a_base = color1.lane<0>(); + a_base = astc::clamp(a_base, 0.0f, 65535.0f); + + float b0_base = a_base - color1.lane<1>(); + float b1_base = a_base - color1.lane<2>(); + float c_base = a_base - color0.lane<0>(); + float d0_base = a_base - b0_base - c_base - color0.lane<1>(); + float d1_base = a_base - b1_base - c_base - color0.lane<2>(); + + // Number of bits in the various fields in the various modes + static const int mode_bits[8][4] { + {9, 7, 6, 7}, + {9, 8, 6, 6}, + {10, 6, 7, 7}, + {10, 7, 7, 6}, + {11, 8, 6, 5}, + {11, 6, 8, 6}, + {12, 7, 7, 5}, + {12, 6, 7, 6} + }; + + // Cutoffs to use for the computed values of a,b,c,d, assuming the + // range 0..65535 are LNS values corresponding to fp16. + static const float mode_cutoffs[8][4] { + {16384, 8192, 8192, 8}, // mode 0: 9,7,6,7 + {32768, 8192, 4096, 8}, // mode 1: 9,8,6,6 + {4096, 8192, 4096, 4}, // mode 2: 10,6,7,7 + {8192, 8192, 2048, 4}, // mode 3: 10,7,7,6 + {8192, 2048, 512, 2}, // mode 4: 11,8,6,5 + {2048, 8192, 1024, 2}, // mode 5: 11,6,8,6 + {2048, 2048, 256, 1}, // mode 6: 12,7,7,5 + {1024, 2048, 512, 1}, // mode 7: 12,6,7,6 + }; + + static const float mode_scales[8] { + 1.0f / 128.0f, + 1.0f / 128.0f, + 1.0f / 64.0f, + 1.0f / 64.0f, + 1.0f / 32.0f, + 1.0f / 32.0f, + 1.0f / 16.0f, + 1.0f / 16.0f, + }; + + // Scaling factors when going from what was encoded in the mode to 16 bits. + static const float mode_rscales[8] { + 128.0f, + 128.0f, + 64.0f, + 64.0f, + 32.0f, + 32.0f, + 16.0f, + 16.0f + }; + + // Try modes one by one, with the highest-precision mode first. + for (int mode = 7; mode >= 0; mode--) + { + // For each mode, test if we can in fact accommodate the computed b, c, and d values. + // If we clearly can't, then we skip to the next mode. + + float b_cutoff = mode_cutoffs[mode][0]; + float c_cutoff = mode_cutoffs[mode][1]; + float d_cutoff = mode_cutoffs[mode][2]; + + if (b0_base > b_cutoff || b1_base > b_cutoff || c_base > c_cutoff || fabsf(d0_base) > d_cutoff || fabsf(d1_base) > d_cutoff) + { + continue; + } + + float mode_scale = mode_scales[mode]; + float mode_rscale = mode_rscales[mode]; + + int b_intcutoff = 1 << mode_bits[mode][1]; + int c_intcutoff = 1 << mode_bits[mode][2]; + int d_intcutoff = 1 << (mode_bits[mode][3] - 1); + + // Quantize and unquantize A, with the assumption that its high bits can be handled safely. + int a_intval = astc::flt2int_rtn(a_base * mode_scale); + int a_lowbits = a_intval & 0xFF; + + int a_quantval = quant_color(quant_level, a_lowbits); + int a_uquantval = a_quantval; + a_intval = (a_intval & ~0xFF) | a_uquantval; + float a_fval = static_cast<float>(a_intval) * mode_rscale; + + // Recompute C, then quantize and unquantize it + float c_fval = a_fval - color0.lane<0>(); + c_fval = astc::clamp(c_fval, 0.0f, 65535.0f); + + int c_intval = astc::flt2int_rtn(c_fval * mode_scale); + + if (c_intval >= c_intcutoff) + { + continue; + } + + int c_lowbits = c_intval & 0x3f; + + c_lowbits |= (mode & 1) << 7; + c_lowbits |= (a_intval & 0x100) >> 2; + + uint8_t c_quantval; + + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(c_lowbits), c_quantval); + + c_intval = (c_intval & ~0x3F) | (c_quantval & 0x3F); + c_fval = static_cast<float>(c_intval) * mode_rscale; + + // Recompute B0 and B1, then quantize and unquantize them + float b0_fval = a_fval - color1.lane<1>(); + float b1_fval = a_fval - color1.lane<2>(); + + b0_fval = astc::clamp(b0_fval, 0.0f, 65535.0f); + b1_fval = astc::clamp(b1_fval, 0.0f, 65535.0f); + int b0_intval = astc::flt2int_rtn(b0_fval * mode_scale); + int b1_intval = astc::flt2int_rtn(b1_fval * mode_scale); + + if (b0_intval >= b_intcutoff || b1_intval >= b_intcutoff) + { + continue; + } + + int b0_lowbits = b0_intval & 0x3f; + int b1_lowbits = b1_intval & 0x3f; + + int bit0 = 0; + int bit1 = 0; + switch (mode) + { + case 0: + case 1: + case 3: + case 4: + case 6: + bit0 = (b0_intval >> 6) & 1; + break; + case 2: + case 5: + case 7: + bit0 = (a_intval >> 9) & 1; + break; + } + + switch (mode) + { + case 0: + case 1: + case 3: + case 4: + case 6: + bit1 = (b1_intval >> 6) & 1; + break; + case 2: + bit1 = (c_intval >> 6) & 1; + break; + case 5: + case 7: + bit1 = (a_intval >> 10) & 1; + break; + } + + b0_lowbits |= bit0 << 6; + b1_lowbits |= bit1 << 6; + + b0_lowbits |= ((mode >> 1) & 1) << 7; + b1_lowbits |= ((mode >> 2) & 1) << 7; + + uint8_t b0_quantval; + uint8_t b1_quantval; + + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(b0_lowbits), b0_quantval); + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(b1_lowbits), b1_quantval); + + b0_intval = (b0_intval & ~0x3f) | (b0_quantval & 0x3f); + b1_intval = (b1_intval & ~0x3f) | (b1_quantval & 0x3f); + b0_fval = static_cast<float>(b0_intval) * mode_rscale; + b1_fval = static_cast<float>(b1_intval) * mode_rscale; + + // Recompute D0 and D1, then quantize and unquantize them + float d0_fval = a_fval - b0_fval - c_fval - color0.lane<1>(); + float d1_fval = a_fval - b1_fval - c_fval - color0.lane<2>(); + + d0_fval = astc::clamp(d0_fval, -65535.0f, 65535.0f); + d1_fval = astc::clamp(d1_fval, -65535.0f, 65535.0f); + + int d0_intval = astc::flt2int_rtn(d0_fval * mode_scale); + int d1_intval = astc::flt2int_rtn(d1_fval * mode_scale); + + if (abs(d0_intval) >= d_intcutoff || abs(d1_intval) >= d_intcutoff) + { + continue; + } + + int d0_lowbits = d0_intval & 0x1f; + int d1_lowbits = d1_intval & 0x1f; + + int bit2 = 0; + int bit3 = 0; + int bit4; + int bit5; + switch (mode) + { + case 0: + case 2: + bit2 = (d0_intval >> 6) & 1; + break; + case 1: + case 4: + bit2 = (b0_intval >> 7) & 1; + break; + case 3: + bit2 = (a_intval >> 9) & 1; + break; + case 5: + bit2 = (c_intval >> 7) & 1; + break; + case 6: + case 7: + bit2 = (a_intval >> 11) & 1; + break; + } + switch (mode) + { + case 0: + case 2: + bit3 = (d1_intval >> 6) & 1; + break; + case 1: + case 4: + bit3 = (b1_intval >> 7) & 1; + break; + case 3: + case 5: + case 6: + case 7: + bit3 = (c_intval >> 6) & 1; + break; + } + + switch (mode) + { + case 4: + case 6: + bit4 = (a_intval >> 9) & 1; + bit5 = (a_intval >> 10) & 1; + break; + default: + bit4 = (d0_intval >> 5) & 1; + bit5 = (d1_intval >> 5) & 1; + break; + } + + d0_lowbits |= bit2 << 6; + d1_lowbits |= bit3 << 6; + d0_lowbits |= bit4 << 5; + d1_lowbits |= bit5 << 5; + + d0_lowbits |= (majcomp & 1) << 7; + d1_lowbits |= ((majcomp >> 1) & 1) << 7; + + uint8_t d0_quantval; + uint8_t d1_quantval; + + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(d0_lowbits), d0_quantval); + quantize_and_unquantize_retain_top_four_bits( + quant_level, static_cast<uint8_t>(d1_lowbits), d1_quantval); + + output[0] = static_cast<uint8_t>(a_quantval); + output[1] = c_quantval; + output[2] = b0_quantval; + output[3] = b1_quantval; + output[4] = d0_quantval; + output[5] = d1_quantval; + return; + } + + // If neither of the modes fit we will use a flat representation for storing data, using 8 bits + // for red and green, and 7 bits for blue. This gives color accuracy roughly similar to LDR + // 4:4:3 which is not at all great but usable. This representation is used if the light color is + // more than 4x the color value of the dark color. + float vals[6]; + vals[0] = color0_bak.lane<0>(); + vals[1] = color1_bak.lane<0>(); + vals[2] = color0_bak.lane<1>(); + vals[3] = color1_bak.lane<1>(); + vals[4] = color0_bak.lane<2>(); + vals[5] = color1_bak.lane<2>(); + + for (int i = 0; i < 6; i++) + { + vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); + } + + for (int i = 0; i < 4; i++) + { + int idx = astc::flt2int_rtn(vals[i] * 1.0f / 256.0f); + output[i] = quant_color(quant_level, idx); + } + + for (int i = 4; i < 6; i++) + { + int idx = astc::flt2int_rtn(vals[i] * 1.0f / 512.0f) + 128; + quantize_and_unquantize_retain_top_two_bits( + quant_level, static_cast<uint8_t>(idx), output[i]); + } + + return; +} + +/** + * @brief Quantize a HDR RGB + LDR A color using direct RGBA encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb_ldr_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + float scale = 1.0f / 257.0f; + + float a0 = astc::clamp255f(color0.lane<3>() * scale); + float a1 = astc::clamp255f(color1.lane<3>() * scale); + + output[6] = quant_color(quant_level, astc::flt2int_rtn(a0)); + output[7] = quant_color(quant_level, astc::flt2int_rtn(a1)); + + quantize_hdr_rgb(color0, color1, output, quant_level); +} + +/** + * @brief Quantize a HDR L color using the large range encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed (l0, l1). + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_luminance_large_range( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); + float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); + + if (lum1 < lum0) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + int ilum1 = astc::flt2int_rtn(lum1); + int ilum0 = astc::flt2int_rtn(lum0); + + // Find the closest encodable point in the upper half of the code-point space + int upper_v0 = (ilum0 + 128) >> 8; + int upper_v1 = (ilum1 + 128) >> 8; + + upper_v0 = astc::clamp(upper_v0, 0, 255); + upper_v1 = astc::clamp(upper_v1, 0, 255); + + // Find the closest encodable point in the lower half of the code-point space + int lower_v0 = (ilum1 + 256) >> 8; + int lower_v1 = ilum0 >> 8; + + lower_v0 = astc::clamp(lower_v0, 0, 255); + lower_v1 = astc::clamp(lower_v1, 0, 255); + + // Determine the distance between the point in code-point space and the input value + int upper0_dec = upper_v0 << 8; + int upper1_dec = upper_v1 << 8; + int lower0_dec = (lower_v1 << 8) + 128; + int lower1_dec = (lower_v0 << 8) - 128; + + int upper0_diff = upper0_dec - ilum0; + int upper1_diff = upper1_dec - ilum1; + int lower0_diff = lower0_dec - ilum0; + int lower1_diff = lower1_dec - ilum1; + + int upper_error = (upper0_diff * upper0_diff) + (upper1_diff * upper1_diff); + int lower_error = (lower0_diff * lower0_diff) + (lower1_diff * lower1_diff); + + int v0, v1; + if (upper_error < lower_error) + { + v0 = upper_v0; + v1 = upper_v1; + } + else + { + v0 = lower_v0; + v1 = lower_v1; + } + + // OK; encode + output[0] = quant_color(quant_level, v0); + output[1] = quant_color(quant_level, v1); +} + +/** + * @brief Quantize a HDR L color using the small range encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed (l0, l1) with mode bits. + * @param quant_level The quantization level to use. + * + * @return Returns @c false on failure, @c true on success. + */ +static bool try_quantize_hdr_luminance_small_range( + vfloat4 color0, + vfloat4 color1, + uint8_t output[2], + quant_method quant_level +) { + float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); + float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); + + if (lum1 < lum0) + { + float avg = (lum0 + lum1) * 0.5f; + lum0 = avg; + lum1 = avg; + } + + int ilum1 = astc::flt2int_rtn(lum1); + int ilum0 = astc::flt2int_rtn(lum0); + + // Difference of more than a factor-of-2 results in immediate failure + if (ilum1 - ilum0 > 2048) + { + return false; + } + + int lowval, highval, diffval; + int v0, v1; + int v0e, v1e; + int v0d, v1d; + + // Try to encode the high-precision submode + lowval = (ilum0 + 16) >> 5; + highval = (ilum1 + 16) >> 5; + + lowval = astc::clamp(lowval, 0, 2047); + highval = astc::clamp(highval, 0, 2047); + + v0 = lowval & 0x7F; + v0e = quant_color(quant_level, v0); + v0d = v0e; + + if (v0d < 0x80) + { + lowval = (lowval & ~0x7F) | v0d; + diffval = highval - lowval; + if (diffval >= 0 && diffval <= 15) + { + v1 = ((lowval >> 3) & 0xF0) | diffval; + v1e = quant_color(quant_level, v1); + v1d = v1e; + if ((v1d & 0xF0) == (v1 & 0xF0)) + { + output[0] = static_cast<uint8_t>(v0e); + output[1] = static_cast<uint8_t>(v1e); + return true; + } + } + } + + // Try to encode the low-precision submode + lowval = (ilum0 + 32) >> 6; + highval = (ilum1 + 32) >> 6; + + lowval = astc::clamp(lowval, 0, 1023); + highval = astc::clamp(highval, 0, 1023); + + v0 = (lowval & 0x7F) | 0x80; + v0e = quant_color(quant_level, v0); + v0d = v0e; + if ((v0d & 0x80) == 0) + { + return false; + } + + lowval = (lowval & ~0x7F) | (v0d & 0x7F); + diffval = highval - lowval; + if (diffval < 0 || diffval > 31) + { + return false; + } + + v1 = ((lowval >> 2) & 0xE0) | diffval; + v1e = quant_color(quant_level, v1); + v1d = v1e; + if ((v1d & 0xE0) != (v1 & 0xE0)) + { + return false; + } + + output[0] = static_cast<uint8_t>(v0e); + output[1] = static_cast<uint8_t>(v1e); + return true; +} + +/** + * @brief Quantize a HDR A color using either delta or direct RGBA encoding. + * + * @param alpha0 The input unquantized color0 endpoint. + * @param alpha1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_alpha( + float alpha0, + float alpha1, + uint8_t output[2], + quant_method quant_level +) { + alpha0 = astc::clamp(alpha0, 0.0f, 65280.0f); + alpha1 = astc::clamp(alpha1, 0.0f, 65280.0f); + + int ialpha0 = astc::flt2int_rtn(alpha0); + int ialpha1 = astc::flt2int_rtn(alpha1); + + int val0, val1, diffval; + int v6, v7; + int v6e, v7e; + int v6d, v7d; + + // Try to encode one of the delta submodes, in decreasing-precision order + for (int i = 2; i >= 0; i--) + { + val0 = (ialpha0 + (128 >> i)) >> (8 - i); + val1 = (ialpha1 + (128 >> i)) >> (8 - i); + + v6 = (val0 & 0x7F) | ((i & 1) << 7); + v6e = quant_color(quant_level, v6); + v6d = v6e; + + if ((v6 ^ v6d) & 0x80) + { + continue; + } + + val0 = (val0 & ~0x7f) | (v6d & 0x7f); + diffval = val1 - val0; + int cutoff = 32 >> i; + int mask = 2 * cutoff - 1; + + if (diffval < -cutoff || diffval >= cutoff) + { + continue; + } + + v7 = ((i & 2) << 6) | ((val0 >> 7) << (6 - i)) | (diffval & mask); + v7e = quant_color(quant_level, v7); + v7d = v7e; + + static const int testbits[3] { 0xE0, 0xF0, 0xF8 }; + + if ((v7 ^ v7d) & testbits[i]) + { + continue; + } + + output[0] = static_cast<uint8_t>(v6e); + output[1] = static_cast<uint8_t>(v7e); + return; + } + + // Could not encode any of the delta modes; instead encode a flat value + val0 = (ialpha0 + 256) >> 9; + val1 = (ialpha1 + 256) >> 9; + v6 = val0 | 0x80; + v7 = val1 | 0x80; + + output[0] = quant_color(quant_level, v6); + output[1] = quant_color(quant_level, v7); + + return; +} + +/** + * @brief Quantize a HDR RGBA color using either delta or direct RGBA encoding. + * + * @param color0 The input unquantized color0 endpoint. + * @param color1 The input unquantized color1 endpoint. + * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. + * @param quant_level The quantization level to use. + */ +static void quantize_hdr_rgb_alpha( + vfloat4 color0, + vfloat4 color1, + uint8_t output[8], + quant_method quant_level +) { + quantize_hdr_rgb(color0, color1, output, quant_level); + quantize_hdr_alpha(color0.lane<3>(), color1.lane<3>(), output + 6, quant_level); +} + +/* See header for documentation. */ +uint8_t pack_color_endpoints( + vfloat4 color0, + vfloat4 color1, + vfloat4 rgbs_color, + vfloat4 rgbo_color, + int format, + uint8_t* output, + quant_method quant_level +) { + assert(QUANT_6 <= quant_level && quant_level <= QUANT_256); + + // We do not support negative colors + color0 = max(color0, 0.0f); + color1 = max(color1, 0.0f); + + uint8_t retval = 0; + + switch (format) + { + case FMT_RGB: + if (quant_level <= QUANT_160) + { + if (try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGB_DELTA; + break; + } + if (try_quantize_rgb_delta(color0, color1, output, quant_level)) + { + retval = FMT_RGB_DELTA; + break; + } + } + if (quant_level < QUANT_256 && try_quantize_rgb_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGB; + break; + } + quantize_rgb(color0, color1, output, quant_level); + retval = FMT_RGB; + break; + + case FMT_RGBA: + if (quant_level <= QUANT_160) + { + if (try_quantize_rgba_delta_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGBA_DELTA; + break; + } + if (try_quantize_rgba_delta(color0, color1, output, quant_level)) + { + retval = FMT_RGBA_DELTA; + break; + } + } + if (quant_level < QUANT_256 && try_quantize_rgba_blue_contract(color0, color1, output, quant_level)) + { + retval = FMT_RGBA; + break; + } + quantize_rgba(color0, color1, output, quant_level); + retval = FMT_RGBA; + break; + + case FMT_RGB_SCALE: + quantize_rgbs(rgbs_color, output, quant_level); + retval = FMT_RGB_SCALE; + break; + + case FMT_HDR_RGB_SCALE: + quantize_hdr_rgbo(rgbo_color, output, quant_level); + retval = FMT_HDR_RGB_SCALE; + break; + + case FMT_HDR_RGB: + quantize_hdr_rgb(color0, color1, output, quant_level); + retval = FMT_HDR_RGB; + break; + + case FMT_RGB_SCALE_ALPHA: + quantize_rgbs_alpha(color0, color1, rgbs_color, output, quant_level); + retval = FMT_RGB_SCALE_ALPHA; + break; + + case FMT_HDR_LUMINANCE_SMALL_RANGE: + case FMT_HDR_LUMINANCE_LARGE_RANGE: + if (try_quantize_hdr_luminance_small_range(color0, color1, output, quant_level)) + { + retval = FMT_HDR_LUMINANCE_SMALL_RANGE; + break; + } + quantize_hdr_luminance_large_range(color0, color1, output, quant_level); + retval = FMT_HDR_LUMINANCE_LARGE_RANGE; + break; + + case FMT_LUMINANCE: + quantize_luminance(color0, color1, output, quant_level); + retval = FMT_LUMINANCE; + break; + + case FMT_LUMINANCE_ALPHA: + if (quant_level <= 18) + { + if (try_quantize_luminance_alpha_delta(color0, color1, output, quant_level)) + { + retval = FMT_LUMINANCE_ALPHA_DELTA; + break; + } + } + quantize_luminance_alpha(color0, color1, output, quant_level); + retval = FMT_LUMINANCE_ALPHA; + break; + + case FMT_HDR_RGB_LDR_ALPHA: + quantize_hdr_rgb_ldr_alpha(color0, color1, output, quant_level); + retval = FMT_HDR_RGB_LDR_ALPHA; + break; + + case FMT_HDR_RGBA: + quantize_hdr_rgb_alpha(color0, color1, output, quant_level); + retval = FMT_HDR_RGBA; + break; + } + + return retval; +} + +#endif diff --git a/thirdparty/astcenc/astcenc_color_unquantize.cpp b/thirdparty/astcenc/astcenc_color_unquantize.cpp new file mode 100644 index 0000000000..d31895a627 --- /dev/null +++ b/thirdparty/astcenc/astcenc_color_unquantize.cpp @@ -0,0 +1,941 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#include <utility> + +/** + * @brief Functions for color unquantization. + */ + +#include "astcenc_internal.h" + +/** + * @brief Un-blue-contract a color. + * + * This function reverses any applied blue contraction. + * + * @param input The input color that has been blue-contracted. + * + * @return The uncontracted color. + */ +static ASTCENC_SIMD_INLINE vint4 uncontract_color( + vint4 input +) { + vmask4 mask(true, true, false, false); + vint4 bc0 = asr<1>(input + input.lane<2>()); + return select(input, bc0, mask); +} + +/** + * @brief Unpack an LDR RGBA color that uses delta encoding. + * + * @param input0 The packed endpoint 0 color. + * @param input1 The packed endpoint 1 color deltas. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgba_delta_unpack( + vint4 input0, + vint4 input1, + vint4& output0, + vint4& output1 +) { + // Apply bit transfer + bit_transfer_signed(input1, input0); + + // Apply blue-uncontraction if needed + int rgb_sum = hadd_rgb_s(input1); + input1 = input1 + input0; + if (rgb_sum < 0) + { + input0 = uncontract_color(input0); + input1 = uncontract_color(input1); + std::swap(input0, input1); + } + + output0 = clamp(0, 255, input0); + output1 = clamp(0, 255, input1); +} + +/** + * @brief Unpack an LDR RGB color that uses delta encoding. + * + * Output alpha set to 255. + * + * @param input0 The packed endpoint 0 color. + * @param input1 The packed endpoint 1 color deltas. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgb_delta_unpack( + vint4 input0, + vint4 input1, + vint4& output0, + vint4& output1 +) { + rgba_delta_unpack(input0, input1, output0, output1); + output0.set_lane<3>(255); + output1.set_lane<3>(255); +} + +/** + * @brief Unpack an LDR RGBA color that uses direct encoding. + * + * @param input0 The packed endpoint 0 color. + * @param input1 The packed endpoint 1 color. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgba_unpack( + vint4 input0, + vint4 input1, + vint4& output0, + vint4& output1 +) { + // Apply blue-uncontraction if needed + if (hadd_rgb_s(input0) > hadd_rgb_s(input1)) + { + input0 = uncontract_color(input0); + input1 = uncontract_color(input1); + std::swap(input0, input1); + } + + output0 = input0; + output1 = input1; +} + +/** + * @brief Unpack an LDR RGB color that uses direct encoding. + * + * Output alpha set to 255. + * + * @param input0 The packed endpoint 0 color. + * @param input1 The packed endpoint 1 color. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgb_unpack( + vint4 input0, + vint4 input1, + vint4& output0, + vint4& output1 +) { + rgba_unpack(input0, input1, output0, output1); + output0.set_lane<3>(255); + output1.set_lane<3>(255); +} + +/** + * @brief Unpack an LDR RGBA color that uses scaled encoding. + * + * Note only the RGB channels use the scaled encoding, alpha uses direct. + * + * @param input0 The packed endpoint 0 color. + * @param alpha1 The packed endpoint 1 alpha value. + * @param scale The packed quantized scale. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgb_scale_alpha_unpack( + vint4 input0, + uint8_t alpha1, + uint8_t scale, + vint4& output0, + vint4& output1 +) { + output1 = input0; + output1.set_lane<3>(alpha1); + + output0 = asr<8>(input0 * scale); + output0.set_lane<3>(input0.lane<3>()); +} + +/** + * @brief Unpack an LDR RGB color that uses scaled encoding. + * + * Output alpha is 255. + * + * @param input0 The packed endpoint 0 color. + * @param scale The packed scale. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void rgb_scale_unpack( + vint4 input0, + int scale, + vint4& output0, + vint4& output1 +) { + output1 = input0; + output1.set_lane<3>(255); + + output0 = asr<8>(input0 * scale); + output0.set_lane<3>(255); +} + +/** + * @brief Unpack an LDR L color that uses direct encoding. + * + * Output alpha is 255. + * + * @param input The packed endpoints. + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void luminance_unpack( + const uint8_t input[2], + vint4& output0, + vint4& output1 +) { + int lum0 = input[0]; + int lum1 = input[1]; + output0 = vint4(lum0, lum0, lum0, 255); + output1 = vint4(lum1, lum1, lum1, 255); +} + +/** + * @brief Unpack an LDR L color that uses delta encoding. + * + * Output alpha is 255. + * + * @param input The packed endpoints (L0, L1). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void luminance_delta_unpack( + const uint8_t input[2], + vint4& output0, + vint4& output1 +) { + int v0 = input[0]; + int v1 = input[1]; + int l0 = (v0 >> 2) | (v1 & 0xC0); + int l1 = l0 + (v1 & 0x3F); + + l1 = astc::min(l1, 255); + + output0 = vint4(l0, l0, l0, 255); + output1 = vint4(l1, l1, l1, 255); +} + +/** + * @brief Unpack an LDR LA color that uses direct encoding. + * + * @param input The packed endpoints (L0, L1, A0, A1). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void luminance_alpha_unpack( + const uint8_t input[4], + vint4& output0, + vint4& output1 +) { + int lum0 = input[0]; + int lum1 = input[1]; + int alpha0 = input[2]; + int alpha1 = input[3]; + output0 = vint4(lum0, lum0, lum0, alpha0); + output1 = vint4(lum1, lum1, lum1, alpha1); +} + +/** + * @brief Unpack an LDR LA color that uses delta encoding. + * + * @param input The packed endpoints (L0, L1, A0, A1). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void luminance_alpha_delta_unpack( + const uint8_t input[4], + vint4& output0, + vint4& output1 +) { + int lum0 = input[0]; + int lum1 = input[1]; + int alpha0 = input[2]; + int alpha1 = input[3]; + + lum0 |= (lum1 & 0x80) << 1; + alpha0 |= (alpha1 & 0x80) << 1; + lum1 &= 0x7F; + alpha1 &= 0x7F; + + if (lum1 & 0x40) + { + lum1 -= 0x80; + } + + if (alpha1 & 0x40) + { + alpha1 -= 0x80; + } + + lum0 >>= 1; + lum1 >>= 1; + alpha0 >>= 1; + alpha1 >>= 1; + lum1 += lum0; + alpha1 += alpha0; + + lum1 = astc::clamp(lum1, 0, 255); + alpha1 = astc::clamp(alpha1, 0, 255); + + output0 = vint4(lum0, lum0, lum0, alpha0); + output1 = vint4(lum1, lum1, lum1, alpha1); +} + +/** + * @brief Unpack an HDR RGB + offset encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_rgbo_unpack( + const uint8_t input[4], + vint4& output0, + vint4& output1 +) { + int v0 = input[0]; + int v1 = input[1]; + int v2 = input[2]; + int v3 = input[3]; + + int modeval = ((v0 & 0xC0) >> 6) | (((v1 & 0x80) >> 7) << 2) | (((v2 & 0x80) >> 7) << 3); + + int majcomp; + int mode; + if ((modeval & 0xC) != 0xC) + { + majcomp = modeval >> 2; + mode = modeval & 3; + } + else if (modeval != 0xF) + { + majcomp = modeval & 3; + mode = 4; + } + else + { + majcomp = 0; + mode = 5; + } + + int red = v0 & 0x3F; + int green = v1 & 0x1F; + int blue = v2 & 0x1F; + int scale = v3 & 0x1F; + + int bit0 = (v1 >> 6) & 1; + int bit1 = (v1 >> 5) & 1; + int bit2 = (v2 >> 6) & 1; + int bit3 = (v2 >> 5) & 1; + int bit4 = (v3 >> 7) & 1; + int bit5 = (v3 >> 6) & 1; + int bit6 = (v3 >> 5) & 1; + + int ohcomp = 1 << mode; + + if (ohcomp & 0x30) + green |= bit0 << 6; + if (ohcomp & 0x3A) + green |= bit1 << 5; + if (ohcomp & 0x30) + blue |= bit2 << 6; + if (ohcomp & 0x3A) + blue |= bit3 << 5; + + if (ohcomp & 0x3D) + scale |= bit6 << 5; + if (ohcomp & 0x2D) + scale |= bit5 << 6; + if (ohcomp & 0x04) + scale |= bit4 << 7; + + if (ohcomp & 0x3B) + red |= bit4 << 6; + if (ohcomp & 0x04) + red |= bit3 << 6; + + if (ohcomp & 0x10) + red |= bit5 << 7; + if (ohcomp & 0x0F) + red |= bit2 << 7; + + if (ohcomp & 0x05) + red |= bit1 << 8; + if (ohcomp & 0x0A) + red |= bit0 << 8; + + if (ohcomp & 0x05) + red |= bit0 << 9; + if (ohcomp & 0x02) + red |= bit6 << 9; + + if (ohcomp & 0x01) + red |= bit3 << 10; + if (ohcomp & 0x02) + red |= bit5 << 10; + + // expand to 12 bits. + static const int shamts[6] { 1, 1, 2, 3, 4, 5 }; + int shamt = shamts[mode]; + red <<= shamt; + green <<= shamt; + blue <<= shamt; + scale <<= shamt; + + // on modes 0 to 4, the values stored for "green" and "blue" are differentials, + // not absolute values. + if (mode != 5) + { + green = red - green; + blue = red - blue; + } + + // switch around components. + int temp; + switch (majcomp) + { + case 1: + temp = red; + red = green; + green = temp; + break; + case 2: + temp = red; + red = blue; + blue = temp; + break; + default: + break; + } + + int red0 = red - scale; + int green0 = green - scale; + int blue0 = blue - scale; + + // clamp to [0,0xFFF]. + if (red < 0) + red = 0; + if (green < 0) + green = 0; + if (blue < 0) + blue = 0; + + if (red0 < 0) + red0 = 0; + if (green0 < 0) + green0 = 0; + if (blue0 < 0) + blue0 = 0; + + output0 = vint4(red0 << 4, green0 << 4, blue0 << 4, 0x7800); + output1 = vint4(red << 4, green << 4, blue << 4, 0x7800); +} + +/** + * @brief Unpack an HDR RGB direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_rgb_unpack( + const uint8_t input[6], + vint4& output0, + vint4& output1 +) { + + int v0 = input[0]; + int v1 = input[1]; + int v2 = input[2]; + int v3 = input[3]; + int v4 = input[4]; + int v5 = input[5]; + + // extract all the fixed-placement bitfields + int modeval = ((v1 & 0x80) >> 7) | (((v2 & 0x80) >> 7) << 1) | (((v3 & 0x80) >> 7) << 2); + + int majcomp = ((v4 & 0x80) >> 7) | (((v5 & 0x80) >> 7) << 1); + + if (majcomp == 3) + { + output0 = vint4(v0 << 8, v2 << 8, (v4 & 0x7F) << 9, 0x7800); + output1 = vint4(v1 << 8, v3 << 8, (v5 & 0x7F) << 9, 0x7800); + return; + } + + int a = v0 | ((v1 & 0x40) << 2); + int b0 = v2 & 0x3f; + int b1 = v3 & 0x3f; + int c = v1 & 0x3f; + int d0 = v4 & 0x7f; + int d1 = v5 & 0x7f; + + // get hold of the number of bits in 'd0' and 'd1' + static const int dbits_tab[8] { 7, 6, 7, 6, 5, 6, 5, 6 }; + int dbits = dbits_tab[modeval]; + + // extract six variable-placement bits + int bit0 = (v2 >> 6) & 1; + int bit1 = (v3 >> 6) & 1; + int bit2 = (v4 >> 6) & 1; + int bit3 = (v5 >> 6) & 1; + int bit4 = (v4 >> 5) & 1; + int bit5 = (v5 >> 5) & 1; + + // and prepend the variable-placement bits depending on mode. + int ohmod = 1 << modeval; // one-hot-mode + if (ohmod & 0xA4) + a |= bit0 << 9; + if (ohmod & 0x8) + a |= bit2 << 9; + if (ohmod & 0x50) + a |= bit4 << 9; + + if (ohmod & 0x50) + a |= bit5 << 10; + if (ohmod & 0xA0) + a |= bit1 << 10; + + if (ohmod & 0xC0) + a |= bit2 << 11; + + if (ohmod & 0x4) + c |= bit1 << 6; + if (ohmod & 0xE8) + c |= bit3 << 6; + + if (ohmod & 0x20) + c |= bit2 << 7; + + if (ohmod & 0x5B) + { + b0 |= bit0 << 6; + b1 |= bit1 << 6; + } + + if (ohmod & 0x12) + { + b0 |= bit2 << 7; + b1 |= bit3 << 7; + } + + if (ohmod & 0xAF) + { + d0 |= bit4 << 5; + d1 |= bit5 << 5; + } + + if (ohmod & 0x5) + { + d0 |= bit2 << 6; + d1 |= bit3 << 6; + } + + // sign-extend 'd0' and 'd1' + // note: this code assumes that signed right-shift actually sign-fills, not zero-fills. + int32_t d0x = d0; + int32_t d1x = d1; + int sx_shamt = 32 - dbits; + d0x <<= sx_shamt; + d0x >>= sx_shamt; + d1x <<= sx_shamt; + d1x >>= sx_shamt; + d0 = d0x; + d1 = d1x; + + // expand all values to 12 bits, with left-shift as needed. + int val_shamt = (modeval >> 1) ^ 3; + a <<= val_shamt; + b0 <<= val_shamt; + b1 <<= val_shamt; + c <<= val_shamt; + d0 <<= val_shamt; + d1 <<= val_shamt; + + // then compute the actual color values. + int red1 = a; + int green1 = a - b0; + int blue1 = a - b1; + int red0 = a - c; + int green0 = a - b0 - c - d0; + int blue0 = a - b1 - c - d1; + + // clamp the color components to [0,2^12 - 1] + red0 = astc::clamp(red0, 0, 4095); + green0 = astc::clamp(green0, 0, 4095); + blue0 = astc::clamp(blue0, 0, 4095); + + red1 = astc::clamp(red1, 0, 4095); + green1 = astc::clamp(green1, 0, 4095); + blue1 = astc::clamp(blue1, 0, 4095); + + // switch around the color components + int temp0, temp1; + switch (majcomp) + { + case 1: // switch around red and green + temp0 = red0; + temp1 = red1; + red0 = green0; + red1 = green1; + green0 = temp0; + green1 = temp1; + break; + case 2: // switch around red and blue + temp0 = red0; + temp1 = red1; + red0 = blue0; + red1 = blue1; + blue0 = temp0; + blue1 = temp1; + break; + case 0: // no switch + break; + } + + output0 = vint4(red0 << 4, green0 << 4, blue0 << 4, 0x7800); + output1 = vint4(red1 << 4, green1 << 4, blue1 << 4, 0x7800); +} + +/** + * @brief Unpack an HDR RGB + LDR A direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_rgb_ldr_alpha_unpack( + const uint8_t input[8], + vint4& output0, + vint4& output1 +) { + hdr_rgb_unpack(input, output0, output1); + + int v6 = input[6]; + int v7 = input[7]; + output0.set_lane<3>(v6); + output1.set_lane<3>(v7); +} + +/** + * @brief Unpack an HDR L (small range) direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_luminance_small_range_unpack( + const uint8_t input[2], + vint4& output0, + vint4& output1 +) { + int v0 = input[0]; + int v1 = input[1]; + + int y0, y1; + if (v0 & 0x80) + { + y0 = ((v1 & 0xE0) << 4) | ((v0 & 0x7F) << 2); + y1 = (v1 & 0x1F) << 2; + } + else + { + y0 = ((v1 & 0xF0) << 4) | ((v0 & 0x7F) << 1); + y1 = (v1 & 0xF) << 1; + } + + y1 += y0; + if (y1 > 0xFFF) + { + y1 = 0xFFF; + } + + output0 = vint4(y0 << 4, y0 << 4, y0 << 4, 0x7800); + output1 = vint4(y1 << 4, y1 << 4, y1 << 4, 0x7800); +} + +/** + * @brief Unpack an HDR L (large range) direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_luminance_large_range_unpack( + const uint8_t input[2], + vint4& output0, + vint4& output1 +) { + int v0 = input[0]; + int v1 = input[1]; + + int y0, y1; + if (v1 >= v0) + { + y0 = v0 << 4; + y1 = v1 << 4; + } + else + { + y0 = (v1 << 4) + 8; + y1 = (v0 << 4) - 8; + } + + output0 = vint4(y0 << 4, y0 << 4, y0 << 4, 0x7800); + output1 = vint4(y1 << 4, y1 << 4, y1 << 4, 0x7800); +} + +/** + * @brief Unpack an HDR A direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_alpha_unpack( + const uint8_t input[2], + int& output0, + int& output1 +) { + + int v6 = input[0]; + int v7 = input[1]; + + int selector = ((v6 >> 7) & 1) | ((v7 >> 6) & 2); + v6 &= 0x7F; + v7 &= 0x7F; + if (selector == 3) + { + output0 = v6 << 5; + output1 = v7 << 5; + } + else + { + v6 |= (v7 << (selector + 1)) & 0x780; + v7 &= (0x3f >> selector); + v7 ^= 32 >> selector; + v7 -= 32 >> selector; + v6 <<= (4 - selector); + v7 <<= (4 - selector); + v7 += v6; + + if (v7 < 0) + { + v7 = 0; + } + else if (v7 > 0xFFF) + { + v7 = 0xFFF; + } + + output0 = v6; + output1 = v7; + } + + output0 <<= 4; + output1 <<= 4; +} + +/** + * @brief Unpack an HDR RGBA direct encoding. + * + * @param input The packed endpoints (packed and modal). + * @param[out] output0 The unpacked endpoint 0 color. + * @param[out] output1 The unpacked endpoint 1 color. + */ +static void hdr_rgb_hdr_alpha_unpack( + const uint8_t input[8], + vint4& output0, + vint4& output1 +) { + hdr_rgb_unpack(input, output0, output1); + + int alpha0, alpha1; + hdr_alpha_unpack(input + 6, alpha0, alpha1); + + output0.set_lane<3>(alpha0); + output1.set_lane<3>(alpha1); +} + +/* See header for documentation. */ +void unpack_color_endpoints( + astcenc_profile decode_mode, + int format, + const uint8_t* input, + bool& rgb_hdr, + bool& alpha_hdr, + vint4& output0, + vint4& output1 +) { + // Assume no NaNs and LDR endpoints unless set later + rgb_hdr = false; + alpha_hdr = false; + + bool alpha_hdr_default = false; + + switch (format) + { + case FMT_LUMINANCE: + luminance_unpack(input, output0, output1); + break; + + case FMT_LUMINANCE_DELTA: + luminance_delta_unpack(input, output0, output1); + break; + + case FMT_HDR_LUMINANCE_SMALL_RANGE: + rgb_hdr = true; + alpha_hdr_default = true; + hdr_luminance_small_range_unpack(input, output0, output1); + break; + + case FMT_HDR_LUMINANCE_LARGE_RANGE: + rgb_hdr = true; + alpha_hdr_default = true; + hdr_luminance_large_range_unpack(input, output0, output1); + break; + + case FMT_LUMINANCE_ALPHA: + luminance_alpha_unpack(input, output0, output1); + break; + + case FMT_LUMINANCE_ALPHA_DELTA: + luminance_alpha_delta_unpack(input, output0, output1); + break; + + case FMT_RGB_SCALE: + { + vint4 input0q(input[0], input[1], input[2], 0); + uint8_t scale = input[3]; + rgb_scale_unpack(input0q, scale, output0, output1); + } + break; + + case FMT_RGB_SCALE_ALPHA: + { + vint4 input0q(input[0], input[1], input[2], input[4]); + uint8_t alpha1q = input[5]; + uint8_t scaleq = input[3]; + rgb_scale_alpha_unpack(input0q, alpha1q, scaleq, output0, output1); + } + break; + + case FMT_HDR_RGB_SCALE: + rgb_hdr = true; + alpha_hdr_default = true; + hdr_rgbo_unpack(input, output0, output1); + break; + + case FMT_RGB: + { + vint4 input0q(input[0], input[2], input[4], 0); + vint4 input1q(input[1], input[3], input[5], 0); + rgb_unpack(input0q, input1q, output0, output1); + } + break; + + case FMT_RGB_DELTA: + { + vint4 input0q(input[0], input[2], input[4], 0); + vint4 input1q(input[1], input[3], input[5], 0); + rgb_delta_unpack(input0q, input1q, output0, output1); + } + break; + + case FMT_HDR_RGB: + rgb_hdr = true; + alpha_hdr_default = true; + hdr_rgb_unpack(input, output0, output1); + break; + + case FMT_RGBA: + { + vint4 input0q(input[0], input[2], input[4], input[6]); + vint4 input1q(input[1], input[3], input[5], input[7]); + rgba_unpack(input0q, input1q, output0, output1); + } + break; + + case FMT_RGBA_DELTA: + { + vint4 input0q(input[0], input[2], input[4], input[6]); + vint4 input1q(input[1], input[3], input[5], input[7]); + rgba_delta_unpack(input0q, input1q, output0, output1); + } + break; + + case FMT_HDR_RGB_LDR_ALPHA: + rgb_hdr = true; + hdr_rgb_ldr_alpha_unpack(input, output0, output1); + break; + + case FMT_HDR_RGBA: + rgb_hdr = true; + alpha_hdr = true; + hdr_rgb_hdr_alpha_unpack(input, output0, output1); + break; + } + + // Assign a correct default alpha + if (alpha_hdr_default) + { + if (decode_mode == ASTCENC_PRF_HDR) + { + output0.set_lane<3>(0x7800); + output1.set_lane<3>(0x7800); + alpha_hdr = true; + } + else + { + output0.set_lane<3>(0x00FF); + output1.set_lane<3>(0x00FF); + alpha_hdr = false; + } + } + + vint4 ldr_scale(257); + vint4 hdr_scale(1); + vint4 output_scale = ldr_scale; + + // An LDR profile image + if ((decode_mode == ASTCENC_PRF_LDR) || + (decode_mode == ASTCENC_PRF_LDR_SRGB)) + { + // Also matches HDR alpha, as cannot have HDR alpha without HDR RGB + if (rgb_hdr == true) + { + output0 = vint4(0xFF00, 0x0000, 0xFF00, 0xFF00); + output1 = vint4(0xFF00, 0x0000, 0xFF00, 0xFF00); + output_scale = hdr_scale; + + rgb_hdr = false; + alpha_hdr = false; + } + } + // An HDR profile image + else + { + vmask4 hdr_lanes(rgb_hdr, rgb_hdr, rgb_hdr, alpha_hdr); + output_scale = select(ldr_scale, hdr_scale, hdr_lanes); + } + + output0 = output0 * output_scale; + output1 = output1 * output_scale; +} diff --git a/thirdparty/astcenc/astcenc_compress_symbolic.cpp b/thirdparty/astcenc/astcenc_compress_symbolic.cpp new file mode 100644 index 0000000000..afb76246e7 --- /dev/null +++ b/thirdparty/astcenc/astcenc_compress_symbolic.cpp @@ -0,0 +1,1455 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions to compress a symbolic block. + */ + +#include "astcenc_internal.h" +#include "astcenc_diagnostic_trace.h" + +#include <cassert> + +/** + * @brief Merge two planes of endpoints into a single vector. + * + * @param ep_plane1 The endpoints for plane 1. + * @param ep_plane2 The endpoints for plane 2. + * @param component_plane2 The color component for plane 2. + * @param[out] result The merged output. + */ +static void merge_endpoints( + const endpoints& ep_plane1, + const endpoints& ep_plane2, + unsigned int component_plane2, + endpoints& result +) { + unsigned int partition_count = ep_plane1.partition_count; + assert(partition_count == 1); + + vmask4 sep_mask = vint4::lane_id() == vint4(component_plane2); + + result.partition_count = partition_count; + result.endpt0[0] = select(ep_plane1.endpt0[0], ep_plane2.endpt0[0], sep_mask); + result.endpt1[0] = select(ep_plane1.endpt1[0], ep_plane2.endpt1[0], sep_mask); +} + +/** + * @brief Attempt to improve weights given a chosen configuration. + * + * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per + * partition and per plane) and attempt to improve image quality by moving each weight up by one or + * down by one quantization step. + * + * This is a specialized function which only supports operating on undecimated weight grids, + * therefore primarily improving the performance of 4x4 and 5x5 blocks where grid decimation + * is needed less often. + * + * @param decode_mode The decode mode (LDR, HDR). + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param[out] scb The symbolic compressed block output. + */ +static bool realign_weights_undecimated( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + const image_block& blk, + symbolic_compressed_block& scb +) { + // Get the partition descriptor + unsigned int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the quantization table + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + unsigned int weight_quant_level = bm.quant_mode; + const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; + + unsigned int max_plane = bm.is_dual_plane; + int plane2_component = scb.plane2_component; + vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); + + // Decode the color endpoints + bool rgb_hdr; + bool alpha_hdr; + vint4 endpnt0[BLOCK_MAX_PARTITIONS]; + vint4 endpnt1[BLOCK_MAX_PARTITIONS]; + vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; + vfloat4 offset[BLOCK_MAX_PARTITIONS]; + + promise(partition_count > 0); + + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + unpack_color_endpoints(decode_mode, + scb.color_formats[pa_idx], + scb.color_values[pa_idx], + rgb_hdr, alpha_hdr, + endpnt0[pa_idx], + endpnt1[pa_idx]); + } + + uint8_t* dec_weights_uquant = scb.weights; + bool adjustments = false; + + // For each plane and partition ... + for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) + { + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + // Compute the endpoint delta for all components in current plane + vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; + epd = select(epd, vint4::zero(), plane_mask); + + endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); + offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); + } + + // For each weight compute previous, current, and next errors + promise(bsd.texel_count > 0); + for (unsigned int texel = 0; texel < bsd.texel_count; texel++) + { + int uqw = dec_weights_uquant[texel]; + + uint32_t prev_and_next = qat.prev_next_values[uqw]; + int uqw_down = prev_and_next & 0xFF; + int uqw_up = (prev_and_next >> 8) & 0xFF; + + // Interpolate the colors to create the diffs + float weight_base = static_cast<float>(uqw); + float weight_down = static_cast<float>(uqw_down - uqw); + float weight_up = static_cast<float>(uqw_up - uqw); + + unsigned int partition = pi.partition_of_texel[texel]; + vfloat4 color_offset = offset[partition]; + vfloat4 color_base = endpnt0f[partition]; + + vfloat4 color = color_base + color_offset * weight_base; + vfloat4 orig_color = blk.texel(texel); + vfloat4 error_weight = blk.channel_weight; + + vfloat4 color_diff = color - orig_color; + vfloat4 color_diff_down = color_diff + color_offset * weight_down; + vfloat4 color_diff_up = color_diff + color_offset * weight_up; + + float error_base = dot_s(color_diff * color_diff, error_weight); + float error_down = dot_s(color_diff_down * color_diff_down, error_weight); + float error_up = dot_s(color_diff_up * color_diff_up, error_weight); + + // Check if the prev or next error is better, and if so use it + if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) + { + dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_up); + adjustments = true; + } + else if ((error_down < error_base) && (uqw > 0)) + { + dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_down); + adjustments = true; + } + } + + // Prepare iteration for plane 2 + dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; + plane_mask = ~plane_mask; + } + + return adjustments; +} + +/** + * @brief Attempt to improve weights given a chosen configuration. + * + * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per + * partition and per plane) and attempt to improve image quality by moving each weight up by one or + * down by one quantization step. + * + * @param decode_mode The decode mode (LDR, HDR). + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param[out] scb The symbolic compressed block output. + */ +static bool realign_weights_decimated( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + const image_block& blk, + symbolic_compressed_block& scb +) { + // Get the partition descriptor + unsigned int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the quantization table + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + unsigned int weight_quant_level = bm.quant_mode; + const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; + + // Get the decimation table + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + unsigned int weight_count = di.weight_count; + assert(weight_count != bsd.texel_count); + + unsigned int max_plane = bm.is_dual_plane; + int plane2_component = scb.plane2_component; + vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); + + // Decode the color endpoints + bool rgb_hdr; + bool alpha_hdr; + vint4 endpnt0[BLOCK_MAX_PARTITIONS]; + vint4 endpnt1[BLOCK_MAX_PARTITIONS]; + vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; + vfloat4 offset[BLOCK_MAX_PARTITIONS]; + + promise(partition_count > 0); + promise(weight_count > 0); + + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + unpack_color_endpoints(decode_mode, + scb.color_formats[pa_idx], + scb.color_values[pa_idx], + rgb_hdr, alpha_hdr, + endpnt0[pa_idx], + endpnt1[pa_idx]); + } + + uint8_t* dec_weights_uquant = scb.weights; + bool adjustments = false; + + // For each plane and partition ... + for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) + { + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + // Compute the endpoint delta for all components in current plane + vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; + epd = select(epd, vint4::zero(), plane_mask); + + endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); + offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); + } + + // Create an unquantized weight grid for this decimation level + alignas(ASTCENC_VECALIGN) float uq_weightsf[BLOCK_MAX_WEIGHTS]; + for (unsigned int we_idx = 0; we_idx < weight_count; we_idx += ASTCENC_SIMD_WIDTH) + { + vint unquant_value(dec_weights_uquant + we_idx); + vfloat unquant_valuef = int_to_float(unquant_value); + storea(unquant_valuef, uq_weightsf + we_idx); + } + + // For each weight compute previous, current, and next errors + for (unsigned int we_idx = 0; we_idx < weight_count; we_idx++) + { + int uqw = dec_weights_uquant[we_idx]; + uint32_t prev_and_next = qat.prev_next_values[uqw]; + + float uqw_base = uq_weightsf[we_idx]; + float uqw_down = static_cast<float>(prev_and_next & 0xFF); + float uqw_up = static_cast<float>((prev_and_next >> 8) & 0xFF); + + float uqw_diff_down = uqw_down - uqw_base; + float uqw_diff_up = uqw_up - uqw_base; + + vfloat4 error_basev = vfloat4::zero(); + vfloat4 error_downv = vfloat4::zero(); + vfloat4 error_upv = vfloat4::zero(); + + // Interpolate the colors to create the diffs + unsigned int texels_to_evaluate = di.weight_texel_count[we_idx]; + promise(texels_to_evaluate > 0); + for (unsigned int te_idx = 0; te_idx < texels_to_evaluate; te_idx++) + { + unsigned int texel = di.weight_texels_tr[te_idx][we_idx]; + + float tw_base = di.texel_contrib_for_weight[te_idx][we_idx]; + + float weight_base = (uq_weightsf[di.texel_weights_tr[0][texel]] * di.texel_weight_contribs_float_tr[0][texel] + + uq_weightsf[di.texel_weights_tr[1][texel]] * di.texel_weight_contribs_float_tr[1][texel]) + + (uq_weightsf[di.texel_weights_tr[2][texel]] * di.texel_weight_contribs_float_tr[2][texel] + + uq_weightsf[di.texel_weights_tr[3][texel]] * di.texel_weight_contribs_float_tr[3][texel]); + + // Ideally this is integer rounded, but IQ gain it isn't worth the overhead + // float weight = astc::flt_rd(weight_base + 0.5f); + // float weight_down = astc::flt_rd(weight_base + 0.5f + uqw_diff_down * tw_base) - weight; + // float weight_up = astc::flt_rd(weight_base + 0.5f + uqw_diff_up * tw_base) - weight; + float weight_down = weight_base + uqw_diff_down * tw_base - weight_base; + float weight_up = weight_base + uqw_diff_up * tw_base - weight_base; + + unsigned int partition = pi.partition_of_texel[texel]; + vfloat4 color_offset = offset[partition]; + vfloat4 color_base = endpnt0f[partition]; + + vfloat4 color = color_base + color_offset * weight_base; + vfloat4 orig_color = blk.texel(texel); + + vfloat4 color_diff = color - orig_color; + vfloat4 color_down_diff = color_diff + color_offset * weight_down; + vfloat4 color_up_diff = color_diff + color_offset * weight_up; + + error_basev += color_diff * color_diff; + error_downv += color_down_diff * color_down_diff; + error_upv += color_up_diff * color_up_diff; + } + + vfloat4 error_weight = blk.channel_weight; + float error_base = hadd_s(error_basev * error_weight); + float error_down = hadd_s(error_downv * error_weight); + float error_up = hadd_s(error_upv * error_weight); + + // Check if the prev or next error is better, and if so use it + if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) + { + uq_weightsf[we_idx] = uqw_up; + dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_up); + adjustments = true; + } + else if ((error_down < error_base) && (uqw > 0)) + { + uq_weightsf[we_idx] = uqw_down; + dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_down); + adjustments = true; + } + } + + // Prepare iteration for plane 2 + dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; + plane_mask = ~plane_mask; + } + + return adjustments; +} + +/** + * @brief Compress a block using a chosen partitioning and 1 plane of weights. + * + * @param config The compressor configuration. + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param only_always True if we only use "always" percentile block modes. + * @param tune_errorval_threshold The error value threshold. + * @param partition_count The partition count. + * @param partition_index The partition index if @c partition_count is 2-4. + * @param[out] scb The symbolic compressed block output. + * @param[out] tmpbuf The quantized weights for plane 1. + */ +static float compress_symbolic_block_for_partition_1plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const image_block& blk, + bool only_always, + float tune_errorval_threshold, + unsigned int partition_count, + unsigned int partition_index, + symbolic_compressed_block& scb, + compression_working_buffers& tmpbuf, + int quant_limit +) { + promise(partition_count > 0); + promise(config.tune_candidate_limit > 0); + promise(config.tune_refinement_limit > 0); + + int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); + + auto compute_difference = &compute_symbolic_block_difference_1plane; + if ((partition_count == 1) && !(config.flags & ASTCENC_FLG_MAP_RGBM)) + { + compute_difference = &compute_symbolic_block_difference_1plane_1partition; + } + + const auto& pi = bsd.get_partition_info(partition_count, partition_index); + + // Compute ideal weights and endpoint colors, with no quantization or decimation + endpoints_and_weights& ei = tmpbuf.ei1; + compute_ideal_colors_and_weights_1plane(blk, pi, ei); + + // Compute ideal weights and endpoint colors for every decimation + float* dec_weights_ideal = tmpbuf.dec_weights_ideal; + uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; + + // For each decimation mode, compute an ideal set of weights with no quantization + unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always + : bsd.decimation_mode_count_selected; + promise(max_decimation_modes > 0); + for (unsigned int i = 0; i < max_decimation_modes; i++) + { + const auto& dm = bsd.get_decimation_mode(i); + if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + const auto& di = bsd.get_decimation_info(i); + + compute_ideal_weights_for_decimation( + ei, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); + } + + // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal + // weight pair, compute the smallest weight that will result in a color value greater than 1 + vfloat4 min_ep(10.0f); + for (unsigned int i = 0; i < partition_count; i++) + { + vfloat4 ep = (vfloat4(1.0f) - ei.ep.endpt0[i]) / (ei.ep.endpt1[i] - ei.ep.endpt0[i]); + + vmask4 use_ep = (ep > vfloat4(0.5f)) & (ep < min_ep); + min_ep = select(min_ep, ep, use_ep); + } + + float min_wt_cutoff = hmin_s(min_ep); + + // For each mode, use the angular method to compute a shift + compute_angular_endpoints_1plane( + only_always, bsd, dec_weights_ideal, max_weight_quant, tmpbuf); + + float* weight_low_value = tmpbuf.weight_low_value1; + float* weight_high_value = tmpbuf.weight_high_value1; + int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; + float* qwt_errors = tmpbuf.qwt_errors; + + // For each mode (which specifies a decimation and a quantization): + // * Compute number of bits needed for the quantized weights + // * Generate an optimized set of quantized weights + // * Compute quantization errors for the mode + + + static const int8_t free_bits_for_partition_count[4] { + 115 - 4, 111 - 4 - PARTITION_INDEX_BITS, 108 - 4 - PARTITION_INDEX_BITS, 105 - 4 - PARTITION_INDEX_BITS + }; + + unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always + : bsd.block_mode_count_1plane_selected; + promise(max_block_modes > 0); + for (unsigned int i = 0; i < max_block_modes; i++) + { + const block_mode& bm = bsd.block_modes[i]; + + if (bm.quant_mode > max_weight_quant) + { + qwt_errors[i] = 1e38f; + continue; + } + + assert(!bm.is_dual_plane); + int bitcount = free_bits_for_partition_count[partition_count - 1] - bm.weight_bits; + if (bitcount <= 0) + { + qwt_errors[i] = 1e38f; + continue; + } + + if (weight_high_value[i] > 1.02f * min_wt_cutoff) + { + weight_high_value[i] = 1.0f; + } + + int decimation_mode = bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + + qwt_bitcounts[i] = static_cast<int8_t>(bitcount); + + alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; + + // Generate the optimized set of weights for the weight mode + compute_quantized_weights_for_decimation( + di, + weight_low_value[i], weight_high_value[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, + dec_weights_uquantf, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, + bm.get_weight_quant_mode()); + + // Compute weight quantization errors for the block mode + qwt_errors[i] = compute_error_of_weight_set_1plane( + ei, + di, + dec_weights_uquantf); + } + + // Decide the optimal combination of color endpoint encodings and weight encodings + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; + int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; + + quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; + quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; + + unsigned int candidate_count = compute_ideal_endpoint_formats( + pi, blk, ei.ep, qwt_bitcounts, qwt_errors, + config.tune_candidate_limit, 0, max_block_modes, + partition_format_specifiers, block_mode_index, + color_quant_level, color_quant_level_mod, tmpbuf); + + // Iterate over the N believed-to-be-best modes to find out which one is actually best + float best_errorval_in_mode = ERROR_CALC_DEFAULT; + float best_errorval_in_scb = scb.errorval; + + for (unsigned int i = 0; i < candidate_count; i++) + { + TRACE_NODE(node0, "candidate"); + + const int bm_packed_index = block_mode_index[i]; + assert(bm_packed_index >= 0 && bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_selected)); + const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; + + int decimation_mode = qw_bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + promise(di.weight_count > 0); + + trace_add_data("weight_x", di.weight_x); + trace_add_data("weight_y", di.weight_y); + trace_add_data("weight_z", di.weight_z); + trace_add_data("weight_quant", qw_bm.quant_mode); + + // Recompute the ideal color endpoints before storing them + vfloat4 rgbs_colors[BLOCK_MAX_PARTITIONS]; + vfloat4 rgbo_colors[BLOCK_MAX_PARTITIONS]; + + symbolic_compressed_block workscb; + endpoints workep = ei.ep; + + uint8_t* u8_weight_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; + + for (unsigned int j = 0; j < di.weight_count; j++) + { + workscb.weights[j] = u8_weight_src[j]; + } + + for (unsigned int l = 0; l < config.tune_refinement_limit; l++) + { + recompute_ideal_colors_1plane( + blk, pi, di, workscb.weights, + workep, rgbs_colors, rgbo_colors); + + // Quantize the chosen color, tracking if worth trying the mod value + bool all_same = color_quant_level[i] != color_quant_level_mod[i]; + for (unsigned int j = 0; j < partition_count; j++) + { + workscb.color_formats[j] = pack_color_endpoints( + workep.endpt0[j], + workep.endpt1[j], + rgbs_colors[j], + rgbo_colors[j], + partition_format_specifiers[i][j], + workscb.color_values[j], + color_quant_level[i]); + + all_same = all_same && workscb.color_formats[j] == workscb.color_formats[0]; + } + + // If all the color endpoint modes are the same, we get a few more bits to store colors; + // let's see if we can take advantage of this: requantize all the colors and see if the + // endpoint modes remain the same. + workscb.color_formats_matched = 0; + if (partition_count >= 2 && all_same) + { + uint8_t colorvals[BLOCK_MAX_PARTITIONS][12]; + uint8_t color_formats_mod[BLOCK_MAX_PARTITIONS] { 0 }; + bool all_same_mod = true; + for (unsigned int j = 0; j < partition_count; j++) + { + color_formats_mod[j] = pack_color_endpoints( + workep.endpt0[j], + workep.endpt1[j], + rgbs_colors[j], + rgbo_colors[j], + partition_format_specifiers[i][j], + colorvals[j], + color_quant_level_mod[i]); + + // Early out as soon as it's no longer possible to use mod + if (color_formats_mod[j] != color_formats_mod[0]) + { + all_same_mod = false; + break; + } + } + + if (all_same_mod) + { + workscb.color_formats_matched = 1; + for (unsigned int j = 0; j < BLOCK_MAX_PARTITIONS; j++) + { + for (unsigned int k = 0; k < 8; k++) + { + workscb.color_values[j][k] = colorvals[j][k]; + } + + workscb.color_formats[j] = color_formats_mod[j]; + } + } + } + + // Store header fields + workscb.partition_count = static_cast<uint8_t>(partition_count); + workscb.partition_index = static_cast<uint16_t>(partition_index); + workscb.plane2_component = -1; + workscb.quant_mode = workscb.color_formats_matched ? color_quant_level_mod[i] : color_quant_level[i]; + workscb.block_mode = qw_bm.mode_index; + workscb.block_type = SYM_BTYPE_NONCONST; + + // Pre-realign test + if (l == 0) + { + float errorval = compute_difference(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_prerealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first + // iteration can help more so we give it a extra 8% leeway. Use this knowledge to + // drive a heuristic to skip blocks that are unlikely to catch up with the best + // block we have already. + unsigned int iters_remaining = config.tune_refinement_limit - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + } + + bool adjustments; + if (di.weight_count != bsd.texel_count) + { + adjustments = realign_weights_decimated( + config.profile, bsd, blk, workscb); + } + else + { + adjustments = realign_weights_undecimated( + config.profile, bsd, blk, workscb); + } + + // Post-realign test + float errorval = compute_difference(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_postrealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration, so skip blocks that are + // unlikely to catch up with the best block we have already. Assume a 4.5% per step to + // give benefit of the doubt ... + unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + + if (!adjustments) + { + break; + } + } + } + + return best_errorval_in_mode; +} + +/** + * @brief Compress a block using a chosen partitioning and 2 planes of weights. + * + * @param config The compressor configuration. + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param tune_errorval_threshold The error value threshold. + * @param plane2_component The component index for the second plane of weights. + * @param[out] scb The symbolic compressed block output. + * @param[out] tmpbuf The quantized weights for plane 1. + */ +static float compress_symbolic_block_for_partition_2planes( + const astcenc_config& config, + const block_size_descriptor& bsd, + const image_block& blk, + float tune_errorval_threshold, + unsigned int plane2_component, + symbolic_compressed_block& scb, + compression_working_buffers& tmpbuf, + int quant_limit +) { + promise(config.tune_candidate_limit > 0); + promise(config.tune_refinement_limit > 0); + promise(bsd.decimation_mode_count_selected > 0); + + int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); + + // Compute ideal weights and endpoint colors, with no quantization or decimation + endpoints_and_weights& ei1 = tmpbuf.ei1; + endpoints_and_weights& ei2 = tmpbuf.ei2; + + compute_ideal_colors_and_weights_2planes(bsd, blk, plane2_component, ei1, ei2); + + // Compute ideal weights and endpoint colors for every decimation + float* dec_weights_ideal = tmpbuf.dec_weights_ideal; + uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; + + // For each decimation mode, compute an ideal set of weights with no quantization + for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) + { + const auto& dm = bsd.get_decimation_mode(i); + if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + const auto& di = bsd.get_decimation_info(i); + + compute_ideal_weights_for_decimation( + ei1, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); + + compute_ideal_weights_for_decimation( + ei2, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET); + } + + // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal + // weight pair, compute the smallest weight that will result in a color value greater than 1 + vfloat4 min_ep1(10.0f); + vfloat4 min_ep2(10.0f); + + vfloat4 ep1 = (vfloat4(1.0f) - ei1.ep.endpt0[0]) / (ei1.ep.endpt1[0] - ei1.ep.endpt0[0]); + vmask4 use_ep1 = (ep1 > vfloat4(0.5f)) & (ep1 < min_ep1); + min_ep1 = select(min_ep1, ep1, use_ep1); + + vfloat4 ep2 = (vfloat4(1.0f) - ei2.ep.endpt0[0]) / (ei2.ep.endpt1[0] - ei2.ep.endpt0[0]); + vmask4 use_ep2 = (ep2 > vfloat4(0.5f)) & (ep2 < min_ep2); + min_ep2 = select(min_ep2, ep2, use_ep2); + + vfloat4 err_max(ERROR_CALC_DEFAULT); + vmask4 err_mask = vint4::lane_id() == vint4(plane2_component); + + // Set the plane2 component to max error in ep1 + min_ep1 = select(min_ep1, err_max, err_mask); + + float min_wt_cutoff1 = hmin_s(min_ep1); + + // Set the minwt2 to the plane2 component min in ep2 + float min_wt_cutoff2 = hmin_s(select(err_max, min_ep2, err_mask)); + + compute_angular_endpoints_2planes( + bsd, dec_weights_ideal, max_weight_quant, tmpbuf); + + // For each mode (which specifies a decimation and a quantization): + // * Compute number of bits needed for the quantized weights + // * Generate an optimized set of quantized weights + // * Compute quantization errors for the mode + + float* weight_low_value1 = tmpbuf.weight_low_value1; + float* weight_high_value1 = tmpbuf.weight_high_value1; + float* weight_low_value2 = tmpbuf.weight_low_value2; + float* weight_high_value2 = tmpbuf.weight_high_value2; + + int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; + float* qwt_errors = tmpbuf.qwt_errors; + + unsigned int start_2plane = bsd.block_mode_count_1plane_selected; + unsigned int end_2plane = bsd.block_mode_count_1plane_2plane_selected; + + for (unsigned int i = start_2plane; i < end_2plane; i++) + { + const block_mode& bm = bsd.block_modes[i]; + assert(bm.is_dual_plane); + + if (bm.quant_mode > max_weight_quant) + { + qwt_errors[i] = 1e38f; + continue; + } + + qwt_bitcounts[i] = static_cast<int8_t>(109 - bm.weight_bits); + + if (weight_high_value1[i] > 1.02f * min_wt_cutoff1) + { + weight_high_value1[i] = 1.0f; + } + + if (weight_high_value2[i] > 1.02f * min_wt_cutoff2) + { + weight_high_value2[i] = 1.0f; + } + + unsigned int decimation_mode = bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + + alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; + + // Generate the optimized set of weights for the mode + compute_quantized_weights_for_decimation( + di, + weight_low_value1[i], + weight_high_value1[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, + dec_weights_uquantf, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, + bm.get_weight_quant_mode()); + + compute_quantized_weights_for_decimation( + di, + weight_low_value2[i], + weight_high_value2[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode + WEIGHTS_PLANE2_OFFSET, + dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET, + bm.get_weight_quant_mode()); + + // Compute weight quantization errors for the block mode + qwt_errors[i] = compute_error_of_weight_set_2planes( + ei1, + ei2, + di, + dec_weights_uquantf, + dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET); + } + + // Decide the optimal combination of color endpoint encodings and weight encodings + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; + int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; + + quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; + quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; + + endpoints epm; + merge_endpoints(ei1.ep, ei2.ep, plane2_component, epm); + + const auto& pi = bsd.get_partition_info(1, 0); + unsigned int candidate_count = compute_ideal_endpoint_formats( + pi, blk, epm, qwt_bitcounts, qwt_errors, + config.tune_candidate_limit, + bsd.block_mode_count_1plane_selected, bsd.block_mode_count_1plane_2plane_selected, + partition_format_specifiers, block_mode_index, + color_quant_level, color_quant_level_mod, tmpbuf); + + // Iterate over the N believed-to-be-best modes to find out which one is actually best + float best_errorval_in_mode = ERROR_CALC_DEFAULT; + float best_errorval_in_scb = scb.errorval; + + for (unsigned int i = 0; i < candidate_count; i++) + { + TRACE_NODE(node0, "candidate"); + + const int bm_packed_index = block_mode_index[i]; + assert(bm_packed_index >= static_cast<int>(bsd.block_mode_count_1plane_selected) && + bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_2plane_selected)); + const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; + + int decimation_mode = qw_bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + promise(di.weight_count > 0); + + trace_add_data("weight_x", di.weight_x); + trace_add_data("weight_y", di.weight_y); + trace_add_data("weight_z", di.weight_z); + trace_add_data("weight_quant", qw_bm.quant_mode); + + vfloat4 rgbs_color; + vfloat4 rgbo_color; + + symbolic_compressed_block workscb; + endpoints workep = epm; + + uint8_t* u8_weight1_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; + uint8_t* u8_weight2_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index + WEIGHTS_PLANE2_OFFSET; + + for (int j = 0; j < di.weight_count; j++) + { + workscb.weights[j] = u8_weight1_src[j]; + workscb.weights[j + WEIGHTS_PLANE2_OFFSET] = u8_weight2_src[j]; + } + + for (unsigned int l = 0; l < config.tune_refinement_limit; l++) + { + recompute_ideal_colors_2planes( + blk, bsd, di, + workscb.weights, workscb.weights + WEIGHTS_PLANE2_OFFSET, + workep, rgbs_color, rgbo_color, plane2_component); + + // Quantize the chosen color + workscb.color_formats[0] = pack_color_endpoints( + workep.endpt0[0], + workep.endpt1[0], + rgbs_color, rgbo_color, + partition_format_specifiers[i][0], + workscb.color_values[0], + color_quant_level[i]); + + // Store header fields + workscb.partition_count = 1; + workscb.partition_index = 0; + workscb.quant_mode = color_quant_level[i]; + workscb.color_formats_matched = 0; + workscb.block_mode = qw_bm.mode_index; + workscb.plane2_component = static_cast<int8_t>(plane2_component); + workscb.block_type = SYM_BTYPE_NONCONST; + + // Pre-realign test + if (l == 0) + { + float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_prerealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first + // iteration can help more so we give it a extra 8% leeway. Use this knowledge to + // drive a heuristic to skip blocks that are unlikely to catch up with the best + // block we have already. + unsigned int iters_remaining = config.tune_refinement_limit - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + } + + // Perform a final pass over the weights to try to improve them. + bool adjustments; + if (di.weight_count != bsd.texel_count) + { + adjustments = realign_weights_decimated( + config.profile, bsd, blk, workscb); + } + else + { + adjustments = realign_weights_undecimated( + config.profile, bsd, blk, workscb); + } + + // Post-realign test + float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_postrealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration, so skip blocks that are + // unlikely to catch up with the best block we have already. Assume a 4.5% per step to + // give benefit of the doubt ... + unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + + if (!adjustments) + { + break; + } + } + } + + return best_errorval_in_mode; +} + +/** + * @brief Determine the lowest cross-channel correlation factor. + * + * @param texels_per_block The number of texels in a block. + * @param blk The image block color data to compress. + * + * @return Return the lowest correlation factor. + */ +static float prepare_block_statistics( + int texels_per_block, + const image_block& blk +) { + // Compute covariance matrix, as a collection of 10 scalars that form the upper-triangular row + // of the matrix. The matrix is symmetric, so this is all we need for this use case. + float rs = 0.0f; + float gs = 0.0f; + float bs = 0.0f; + float as = 0.0f; + float rr_var = 0.0f; + float gg_var = 0.0f; + float bb_var = 0.0f; + float aa_var = 0.0f; + float rg_cov = 0.0f; + float rb_cov = 0.0f; + float ra_cov = 0.0f; + float gb_cov = 0.0f; + float ga_cov = 0.0f; + float ba_cov = 0.0f; + + float weight_sum = 0.0f; + + promise(texels_per_block > 0); + for (int i = 0; i < texels_per_block; i++) + { + float weight = hadd_s(blk.channel_weight) / 4.0f; + assert(weight >= 0.0f); + weight_sum += weight; + + float r = blk.data_r[i]; + float g = blk.data_g[i]; + float b = blk.data_b[i]; + float a = blk.data_a[i]; + + float rw = r * weight; + rs += rw; + rr_var += r * rw; + rg_cov += g * rw; + rb_cov += b * rw; + ra_cov += a * rw; + + float gw = g * weight; + gs += gw; + gg_var += g * gw; + gb_cov += b * gw; + ga_cov += a * gw; + + float bw = b * weight; + bs += bw; + bb_var += b * bw; + ba_cov += a * bw; + + float aw = a * weight; + as += aw; + aa_var += a * aw; + } + + float rpt = 1.0f / astc::max(weight_sum, 1e-7f); + + rr_var -= rs * (rs * rpt); + rg_cov -= gs * (rs * rpt); + rb_cov -= bs * (rs * rpt); + ra_cov -= as * (rs * rpt); + + gg_var -= gs * (gs * rpt); + gb_cov -= bs * (gs * rpt); + ga_cov -= as * (gs * rpt); + + bb_var -= bs * (bs * rpt); + ba_cov -= as * (bs * rpt); + + aa_var -= as * (as * rpt); + + // These will give a NaN if a channel is constant - these are fixed up in the next step + rg_cov *= astc::rsqrt(rr_var * gg_var); + rb_cov *= astc::rsqrt(rr_var * bb_var); + ra_cov *= astc::rsqrt(rr_var * aa_var); + gb_cov *= astc::rsqrt(gg_var * bb_var); + ga_cov *= astc::rsqrt(gg_var * aa_var); + ba_cov *= astc::rsqrt(bb_var * aa_var); + + if (astc::isnan(rg_cov)) rg_cov = 1.0f; + if (astc::isnan(rb_cov)) rb_cov = 1.0f; + if (astc::isnan(ra_cov)) ra_cov = 1.0f; + if (astc::isnan(gb_cov)) gb_cov = 1.0f; + if (astc::isnan(ga_cov)) ga_cov = 1.0f; + if (astc::isnan(ba_cov)) ba_cov = 1.0f; + + float lowest_correlation = astc::min(fabsf(rg_cov), fabsf(rb_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ra_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(gb_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ga_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ba_cov)); + + // Diagnostic trace points + trace_add_data("min_r", blk.data_min.lane<0>()); + trace_add_data("max_r", blk.data_max.lane<0>()); + trace_add_data("min_g", blk.data_min.lane<1>()); + trace_add_data("max_g", blk.data_max.lane<1>()); + trace_add_data("min_b", blk.data_min.lane<2>()); + trace_add_data("max_b", blk.data_max.lane<2>()); + trace_add_data("min_a", blk.data_min.lane<3>()); + trace_add_data("max_a", blk.data_max.lane<3>()); + trace_add_data("cov_rg", fabsf(rg_cov)); + trace_add_data("cov_rb", fabsf(rb_cov)); + trace_add_data("cov_ra", fabsf(ra_cov)); + trace_add_data("cov_gb", fabsf(gb_cov)); + trace_add_data("cov_ga", fabsf(ga_cov)); + trace_add_data("cov_ba", fabsf(ba_cov)); + + return lowest_correlation; +} + +/* See header for documentation. */ +void compress_block( + const astcenc_contexti& ctx, + const image_block& blk, + physical_compressed_block& pcb, + compression_working_buffers& tmpbuf) +{ + astcenc_profile decode_mode = ctx.config.profile; + symbolic_compressed_block scb; + const block_size_descriptor& bsd = *ctx.bsd; + float lowest_correl; + + TRACE_NODE(node0, "block"); + trace_add_data("pos_x", blk.xpos); + trace_add_data("pos_y", blk.ypos); + trace_add_data("pos_z", blk.zpos); + + // Set stricter block targets for luminance data as we have more bits to play with + bool block_is_l = blk.is_luminance(); + float block_is_l_scale = block_is_l ? 1.0f / 1.5f : 1.0f; + + // Set slightly stricter block targets for lumalpha data as we have more bits to play with + bool block_is_la = blk.is_luminancealpha(); + float block_is_la_scale = block_is_la ? 1.0f / 1.05f : 1.0f; + + bool block_skip_two_plane = false; + int max_partitions = ctx.config.tune_partition_count_limit; + + unsigned int requested_partition_indices[3] { + ctx.config.tune_2partition_index_limit, + ctx.config.tune_3partition_index_limit, + ctx.config.tune_4partition_index_limit + }; + + unsigned int requested_partition_trials[3] { + ctx.config.tune_2partitioning_candidate_limit, + ctx.config.tune_3partitioning_candidate_limit, + ctx.config.tune_4partitioning_candidate_limit + }; + +#if defined(ASTCENC_DIAGNOSTICS) + // Do this early in diagnostic builds so we can dump uniform metrics + // for every block. Do it later in release builds to avoid redundant work! + float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; + float error_threshold = ctx.config.tune_db_limit + * error_weight_sum + * block_is_l_scale + * block_is_la_scale; + + lowest_correl = prepare_block_statistics(bsd.texel_count, blk); + trace_add_data("lowest_correl", lowest_correl); + trace_add_data("tune_error_threshold", error_threshold); +#endif + + // Detected a constant-color block + if (all(blk.data_min == blk.data_max)) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 0); + trace_add_data("plane_count", 1); + + scb.partition_count = 0; + + // Encode as FP16 if using HDR + if ((decode_mode == ASTCENC_PRF_HDR) || + (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A)) + { + scb.block_type = SYM_BTYPE_CONST_F16; + vint4 color_f16 = float_to_float16(blk.origin_texel); + store(color_f16, scb.constant_color); + } + // Encode as UNORM16 if NOT using HDR + else + { + scb.block_type = SYM_BTYPE_CONST_U16; + vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; + vint4 color_u16 = float_to_int_rtn(color_f32); + store(color_u16, scb.constant_color); + } + + trace_add_data("exit", "quality hit"); + + symbolic_to_physical(bsd, scb, pcb); + return; + } + +#if !defined(ASTCENC_DIAGNOSTICS) + float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; + float error_threshold = ctx.config.tune_db_limit + * error_weight_sum + * block_is_l_scale + * block_is_la_scale; +#endif + + // Set SCB and mode errors to a very high error value + scb.errorval = ERROR_CALC_DEFAULT; + scb.block_type = SYM_BTYPE_ERROR; + + float best_errorvals_for_pcount[BLOCK_MAX_PARTITIONS] { + ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT + }; + + float exit_thresholds_for_pcount[BLOCK_MAX_PARTITIONS] { + 0.0f, + ctx.config.tune_2_partition_early_out_limit_factor, + ctx.config.tune_3_partition_early_out_limit_factor, + 0.0f + }; + + // Trial using 1 plane of weights and 1 partition. + + // Most of the time we test it twice, first with a mode cutoff of 0 and then with the specified + // mode cutoff. This causes an early-out that speeds up encoding of easy blocks. However, this + // optimization is disabled for 4x4 and 5x4 blocks where it nearly always slows down the + // compression and slightly reduces image quality. + + float errorval_mult[2] { + 1.0f / ctx.config.tune_mse_overshoot, + 1.0f + }; + + static const float errorval_overshoot = 1.0f / ctx.config.tune_mse_overshoot; + + // Only enable MODE0 fast path (trial 0) if 2D, and more than 25 texels + int start_trial = 1; + if ((bsd.texel_count >= TUNE_MIN_TEXELS_MODE0_FASTPATH) && (bsd.zdim == 1)) + { + start_trial = 0; + } + + int quant_limit = QUANT_32; + for (int i = start_trial; i < 2; i++) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 1); + trace_add_data("plane_count", 1); + trace_add_data("search_mode", i); + + float errorval = compress_symbolic_block_for_partition_1plane( + ctx.config, bsd, blk, i == 0, + error_threshold * errorval_mult[i] * errorval_overshoot, + 1, 0, scb, tmpbuf, QUANT_32); + + // Record the quant level so we can use the filter later searches + const auto& bm = bsd.get_block_mode(scb.block_mode); + quant_limit = bm.get_weight_quant_mode(); + + best_errorvals_for_pcount[0] = astc::min(best_errorvals_for_pcount[0], errorval); + if (errorval < (error_threshold * errorval_mult[i])) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + +#if !defined(ASTCENC_DIAGNOSTICS) + lowest_correl = prepare_block_statistics(bsd.texel_count, blk); +#endif + + block_skip_two_plane = lowest_correl > ctx.config.tune_2_plane_early_out_limit_correlation; + + // Test the four possible 1-partition, 2-planes modes. Do this in reverse, as + // alpha is the most likely to be non-correlated if it is present in the data. + for (int i = BLOCK_MAX_COMPONENTS - 1; i >= 0; i--) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 1); + trace_add_data("plane_count", 2); + trace_add_data("plane_component", i); + + if (block_skip_two_plane) + { + trace_add_data("skip", "tune_2_plane_early_out_limit_correlation"); + continue; + } + + if (blk.grayscale && i != 3) + { + trace_add_data("skip", "grayscale block"); + continue; + } + + if (blk.is_constant_channel(i)) + { + trace_add_data("skip", "constant component"); + continue; + } + + float errorval = compress_symbolic_block_for_partition_2planes( + ctx.config, bsd, blk, error_threshold * errorval_overshoot, + i, scb, tmpbuf, quant_limit); + + // If attempting two planes is much worse than the best one plane result + // then further two plane searches are unlikely to help so move on ... + if (errorval > (best_errorvals_for_pcount[0] * 1.85f)) + { + break; + } + + if (errorval < error_threshold) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + + // Find best blocks for 2, 3 and 4 partitions + for (int partition_count = 2; partition_count <= max_partitions; partition_count++) + { + unsigned int partition_indices[TUNE_MAX_PARTITIONING_CANDIDATES]; + + unsigned int requested_indices = requested_partition_indices[partition_count - 2]; + + unsigned int requested_trials = requested_partition_trials[partition_count - 2]; + requested_trials = astc::min(requested_trials, requested_indices); + + unsigned int actual_trials = find_best_partition_candidates( + bsd, blk, partition_count, requested_indices, partition_indices, requested_trials); + + float best_error_in_prev = best_errorvals_for_pcount[partition_count - 2]; + + for (unsigned int i = 0; i < actual_trials; i++) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", partition_count); + trace_add_data("partition_index", partition_indices[i]); + trace_add_data("plane_count", 1); + trace_add_data("search_mode", i); + + float errorval = compress_symbolic_block_for_partition_1plane( + ctx.config, bsd, blk, false, + error_threshold * errorval_overshoot, + partition_count, partition_indices[i], + scb, tmpbuf, quant_limit); + + best_errorvals_for_pcount[partition_count - 1] = astc::min(best_errorvals_for_pcount[partition_count - 1], errorval); + + // If using N partitions doesn't improve much over using N-1 partitions then skip trying + // N+1. Error can dramatically improve if the data is correlated or non-correlated and + // aligns with a partitioning that suits that encoding, so for this inner loop check add + // a large error scale because the "other" trial could be a lot better. + float best_error = best_errorvals_for_pcount[partition_count - 1]; + float best_error_scale = exit_thresholds_for_pcount[partition_count - 1] * 1.85f; + if (best_error > (best_error_in_prev * best_error_scale)) + { + trace_add_data("skip", "tune_partition_early_out_limit_factor"); + goto END_OF_TESTS; + } + + if (errorval < error_threshold) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + + // If using N partitions doesn't improve much over using N-1 partitions then skip trying N+1 + float best_error = best_errorvals_for_pcount[partition_count - 1]; + float best_error_scale = exit_thresholds_for_pcount[partition_count - 1]; + if (best_error > (best_error_in_prev * best_error_scale)) + { + trace_add_data("skip", "tune_partition_early_out_limit_factor"); + goto END_OF_TESTS; + } + } + + trace_add_data("exit", "quality not hit"); + +END_OF_TESTS: + // If we still have an error block then convert to something we can encode + // TODO: Do something more sensible here, such as average color block + if (scb.block_type == SYM_BTYPE_ERROR) + { +#if defined(ASTCENC_DIAGNOSTICS) + static bool printed_once = false; + if (!printed_once) + { + printed_once = true; + printf("WARN: At least one block failed to find a valid encoding.\n" + " Try increasing compression quality settings.\n\n"); + } +#endif + + scb.block_type = SYM_BTYPE_CONST_U16; + vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; + vint4 color_u16 = float_to_int_rtn(color_f32); + store(color_u16, scb.constant_color); + } + + // Compress to a physical block + symbolic_to_physical(bsd, scb, pcb); +} + +#endif diff --git a/thirdparty/astcenc/astcenc_compute_variance.cpp b/thirdparty/astcenc/astcenc_compute_variance.cpp new file mode 100644 index 0000000000..48a4af8cef --- /dev/null +++ b/thirdparty/astcenc/astcenc_compute_variance.cpp @@ -0,0 +1,472 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions to calculate variance per component in a NxN footprint. + * + * We need N to be parametric, so the routine below uses summed area tables in order to execute in + * O(1) time independent of how big N is. + * + * The addition uses a Brent-Kung-based parallel prefix adder. This uses the prefix tree to first + * perform a binary reduction, and then distributes the results. This method means that there is no + * serial dependency between a given element and the next one, and also significantly improves + * numerical stability allowing us to use floats rather than doubles. + */ + +#include "astcenc_internal.h" + +#include <cassert> + +/** + * @brief Generate a prefix-sum array using the Brent-Kung algorithm. + * + * This will take an input array of the form: + * v0, v1, v2, ... + * ... and modify in-place to turn it into a prefix-sum array of the form: + * v0, v0+v1, v0+v1+v2, ... + * + * @param d The array to prefix-sum. + * @param items The number of items in the array. + * @param stride The item spacing in the array; i.e. dense arrays should use 1. + */ +static void brent_kung_prefix_sum( + vfloat4* d, + size_t items, + int stride +) { + if (items < 2) + return; + + size_t lc_stride = 2; + size_t log2_stride = 1; + + // The reduction-tree loop + do { + size_t step = lc_stride >> 1; + size_t start = lc_stride - 1; + size_t iters = items >> log2_stride; + + vfloat4 *da = d + (start * stride); + ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride); + size_t ofs_stride = stride << log2_stride; + + while (iters) + { + *da = *da + da[ofs]; + da += ofs_stride; + iters--; + } + + log2_stride += 1; + lc_stride <<= 1; + } while (lc_stride <= items); + + // The expansion-tree loop + do { + log2_stride -= 1; + lc_stride >>= 1; + + size_t step = lc_stride >> 1; + size_t start = step + lc_stride - 1; + size_t iters = (items - step) >> log2_stride; + + vfloat4 *da = d + (start * stride); + ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride); + size_t ofs_stride = stride << log2_stride; + + while (iters) + { + *da = *da + da[ofs]; + da += ofs_stride; + iters--; + } + } while (lc_stride > 2); +} + +/* See header for documentation. */ +void compute_pixel_region_variance( + astcenc_contexti& ctx, + const pixel_region_args& arg +) { + // Unpack the memory structure into local variables + const astcenc_image* img = arg.img; + astcenc_swizzle swz = arg.swz; + bool have_z = arg.have_z; + + int size_x = arg.size_x; + int size_y = arg.size_y; + int size_z = arg.size_z; + + int offset_x = arg.offset_x; + int offset_y = arg.offset_y; + int offset_z = arg.offset_z; + + int alpha_kernel_radius = arg.alpha_kernel_radius; + + float* input_alpha_averages = ctx.input_alpha_averages; + vfloat4* work_memory = arg.work_memory; + + // Compute memory sizes and dimensions that we need + int kernel_radius = alpha_kernel_radius; + int kerneldim = 2 * kernel_radius + 1; + int kernel_radius_xy = kernel_radius; + int kernel_radius_z = have_z ? kernel_radius : 0; + + int padsize_x = size_x + kerneldim; + int padsize_y = size_y + kerneldim; + int padsize_z = size_z + (have_z ? kerneldim : 0); + int sizeprod = padsize_x * padsize_y * padsize_z; + + int zd_start = have_z ? 1 : 0; + + vfloat4 *varbuf1 = work_memory; + vfloat4 *varbuf2 = work_memory + sizeprod; + + // Scaling factors to apply to Y and Z for accesses into the work buffers + int yst = padsize_x; + int zst = padsize_x * padsize_y; + + // Scaling factors to apply to Y and Z for accesses into result buffers + int ydt = img->dim_x; + int zdt = img->dim_x * img->dim_y; + + // Macros to act as accessor functions for the work-memory + #define VARBUF1(z, y, x) varbuf1[z * zst + y * yst + x] + #define VARBUF2(z, y, x) varbuf2[z * zst + y * yst + x] + + // Load N and N^2 values into the work buffers + if (img->data_type == ASTCENC_TYPE_U8) + { + // Swizzle data structure 4 = ZERO, 5 = ONE + uint8_t data[6]; + data[ASTCENC_SWZ_0] = 0; + data[ASTCENC_SWZ_1] = 255; + + for (int z = zd_start; z < padsize_z; z++) + { + int z_src = (z - zd_start) + offset_z - kernel_radius_z; + z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1)); + uint8_t* data8 = static_cast<uint8_t*>(img->data[z_src]); + + for (int y = 1; y < padsize_y; y++) + { + int y_src = (y - 1) + offset_y - kernel_radius_xy; + y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1)); + + for (int x = 1; x < padsize_x; x++) + { + int x_src = (x - 1) + offset_x - kernel_radius_xy; + x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1)); + + data[0] = data8[(4 * img->dim_x * y_src) + (4 * x_src )]; + data[1] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 1)]; + data[2] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 2)]; + data[3] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 3)]; + + uint8_t r = data[swz.r]; + uint8_t g = data[swz.g]; + uint8_t b = data[swz.b]; + uint8_t a = data[swz.a]; + + vfloat4 d = vfloat4 (r * (1.0f / 255.0f), + g * (1.0f / 255.0f), + b * (1.0f / 255.0f), + a * (1.0f / 255.0f)); + + VARBUF1(z, y, x) = d; + VARBUF2(z, y, x) = d * d; + } + } + } + } + else if (img->data_type == ASTCENC_TYPE_F16) + { + // Swizzle data structure 4 = ZERO, 5 = ONE (in FP16) + uint16_t data[6]; + data[ASTCENC_SWZ_0] = 0; + data[ASTCENC_SWZ_1] = 0x3C00; + + for (int z = zd_start; z < padsize_z; z++) + { + int z_src = (z - zd_start) + offset_z - kernel_radius_z; + z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1)); + uint16_t* data16 = static_cast<uint16_t*>(img->data[z_src]); + + for (int y = 1; y < padsize_y; y++) + { + int y_src = (y - 1) + offset_y - kernel_radius_xy; + y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1)); + + for (int x = 1; x < padsize_x; x++) + { + int x_src = (x - 1) + offset_x - kernel_radius_xy; + x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1)); + + data[0] = data16[(4 * img->dim_x * y_src) + (4 * x_src )]; + data[1] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 1)]; + data[2] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 2)]; + data[3] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 3)]; + + vint4 di(data[swz.r], data[swz.g], data[swz.b], data[swz.a]); + vfloat4 d = float16_to_float(di); + + VARBUF1(z, y, x) = d; + VARBUF2(z, y, x) = d * d; + } + } + } + } + else // if (img->data_type == ASTCENC_TYPE_F32) + { + assert(img->data_type == ASTCENC_TYPE_F32); + + // Swizzle data structure 4 = ZERO, 5 = ONE (in FP16) + float data[6]; + data[ASTCENC_SWZ_0] = 0.0f; + data[ASTCENC_SWZ_1] = 1.0f; + + for (int z = zd_start; z < padsize_z; z++) + { + int z_src = (z - zd_start) + offset_z - kernel_radius_z; + z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1)); + float* data32 = static_cast<float*>(img->data[z_src]); + + for (int y = 1; y < padsize_y; y++) + { + int y_src = (y - 1) + offset_y - kernel_radius_xy; + y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1)); + + for (int x = 1; x < padsize_x; x++) + { + int x_src = (x - 1) + offset_x - kernel_radius_xy; + x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1)); + + data[0] = data32[(4 * img->dim_x * y_src) + (4 * x_src )]; + data[1] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 1)]; + data[2] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 2)]; + data[3] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 3)]; + + float r = data[swz.r]; + float g = data[swz.g]; + float b = data[swz.b]; + float a = data[swz.a]; + + vfloat4 d(r, g, b, a); + + VARBUF1(z, y, x) = d; + VARBUF2(z, y, x) = d * d; + } + } + } + } + + // Pad with an extra layer of 0s; this forms the edge of the SAT tables + vfloat4 vbz = vfloat4::zero(); + for (int z = 0; z < padsize_z; z++) + { + for (int y = 0; y < padsize_y; y++) + { + VARBUF1(z, y, 0) = vbz; + VARBUF2(z, y, 0) = vbz; + } + + for (int x = 0; x < padsize_x; x++) + { + VARBUF1(z, 0, x) = vbz; + VARBUF2(z, 0, x) = vbz; + } + } + + if (have_z) + { + for (int y = 0; y < padsize_y; y++) + { + for (int x = 0; x < padsize_x; x++) + { + VARBUF1(0, y, x) = vbz; + VARBUF2(0, y, x) = vbz; + } + } + } + + // Generate summed-area tables for N and N^2; this is done in-place, using + // a Brent-Kung parallel-prefix based algorithm to minimize precision loss + for (int z = zd_start; z < padsize_z; z++) + { + for (int y = 1; y < padsize_y; y++) + { + brent_kung_prefix_sum(&(VARBUF1(z, y, 1)), padsize_x - 1, 1); + brent_kung_prefix_sum(&(VARBUF2(z, y, 1)), padsize_x - 1, 1); + } + } + + for (int z = zd_start; z < padsize_z; z++) + { + for (int x = 1; x < padsize_x; x++) + { + brent_kung_prefix_sum(&(VARBUF1(z, 1, x)), padsize_y - 1, yst); + brent_kung_prefix_sum(&(VARBUF2(z, 1, x)), padsize_y - 1, yst); + } + } + + if (have_z) + { + for (int y = 1; y < padsize_y; y++) + { + for (int x = 1; x < padsize_x; x++) + { + brent_kung_prefix_sum(&(VARBUF1(1, y, x)), padsize_z - 1, zst); + brent_kung_prefix_sum(&(VARBUF2(1, y, x)), padsize_z - 1, zst); + } + } + } + + // Compute a few constants used in the variance-calculation. + float alpha_kdim = static_cast<float>(2 * alpha_kernel_radius + 1); + float alpha_rsamples; + + if (have_z) + { + alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim * alpha_kdim); + } + else + { + alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim); + } + + // Use the summed-area tables to compute variance for each neighborhood + if (have_z) + { + for (int z = 0; z < size_z; z++) + { + int z_src = z + kernel_radius_z; + int z_dst = z + offset_z; + int z_low = z_src - alpha_kernel_radius; + int z_high = z_src + alpha_kernel_radius + 1; + + for (int y = 0; y < size_y; y++) + { + int y_src = y + kernel_radius_xy; + int y_dst = y + offset_y; + int y_low = y_src - alpha_kernel_radius; + int y_high = y_src + alpha_kernel_radius + 1; + + for (int x = 0; x < size_x; x++) + { + int x_src = x + kernel_radius_xy; + int x_dst = x + offset_x; + int x_low = x_src - alpha_kernel_radius; + int x_high = x_src + alpha_kernel_radius + 1; + + // Summed-area table lookups for alpha average + float vasum = ( VARBUF1(z_high, y_low, x_low).lane<3>() + - VARBUF1(z_high, y_low, x_high).lane<3>() + - VARBUF1(z_high, y_high, x_low).lane<3>() + + VARBUF1(z_high, y_high, x_high).lane<3>()) - + ( VARBUF1(z_low, y_low, x_low).lane<3>() + - VARBUF1(z_low, y_low, x_high).lane<3>() + - VARBUF1(z_low, y_high, x_low).lane<3>() + + VARBUF1(z_low, y_high, x_high).lane<3>()); + + int out_index = z_dst * zdt + y_dst * ydt + x_dst; + input_alpha_averages[out_index] = (vasum * alpha_rsamples); + } + } + } + } + else + { + for (int y = 0; y < size_y; y++) + { + int y_src = y + kernel_radius_xy; + int y_dst = y + offset_y; + int y_low = y_src - alpha_kernel_radius; + int y_high = y_src + alpha_kernel_radius + 1; + + for (int x = 0; x < size_x; x++) + { + int x_src = x + kernel_radius_xy; + int x_dst = x + offset_x; + int x_low = x_src - alpha_kernel_radius; + int x_high = x_src + alpha_kernel_radius + 1; + + // Summed-area table lookups for alpha average + float vasum = VARBUF1(0, y_low, x_low).lane<3>() + - VARBUF1(0, y_low, x_high).lane<3>() + - VARBUF1(0, y_high, x_low).lane<3>() + + VARBUF1(0, y_high, x_high).lane<3>(); + + int out_index = y_dst * ydt + x_dst; + input_alpha_averages[out_index] = (vasum * alpha_rsamples); + } + } + } +} + +/* See header for documentation. */ +unsigned int init_compute_averages( + const astcenc_image& img, + unsigned int alpha_kernel_radius, + const astcenc_swizzle& swz, + avg_args& ag +) { + unsigned int size_x = img.dim_x; + unsigned int size_y = img.dim_y; + unsigned int size_z = img.dim_z; + + // Compute maximum block size and from that the working memory buffer size + unsigned int kernel_radius = alpha_kernel_radius; + unsigned int kerneldim = 2 * kernel_radius + 1; + + bool have_z = (size_z > 1); + unsigned int max_blk_size_xy = have_z ? 16 : 32; + unsigned int max_blk_size_z = astc::min(size_z, have_z ? 16u : 1u); + + unsigned int max_padsize_xy = max_blk_size_xy + kerneldim; + unsigned int max_padsize_z = max_blk_size_z + (have_z ? kerneldim : 0); + + // Perform block-wise averages calculations across the image + // Initialize fields which are not populated until later + ag.arg.size_x = 0; + ag.arg.size_y = 0; + ag.arg.size_z = 0; + ag.arg.offset_x = 0; + ag.arg.offset_y = 0; + ag.arg.offset_z = 0; + ag.arg.work_memory = nullptr; + + ag.arg.img = &img; + ag.arg.swz = swz; + ag.arg.have_z = have_z; + ag.arg.alpha_kernel_radius = alpha_kernel_radius; + + ag.img_size_x = size_x; + ag.img_size_y = size_y; + ag.img_size_z = size_z; + ag.blk_size_xy = max_blk_size_xy; + ag.blk_size_z = max_blk_size_z; + ag.work_memory_size = 2 * max_padsize_xy * max_padsize_xy * max_padsize_z; + + // The parallel task count + unsigned int z_tasks = (size_z + max_blk_size_z - 1) / max_blk_size_z; + unsigned int y_tasks = (size_y + max_blk_size_xy - 1) / max_blk_size_xy; + return z_tasks * y_tasks; +} + +#endif diff --git a/thirdparty/astcenc/astcenc_decompress_symbolic.cpp b/thirdparty/astcenc/astcenc_decompress_symbolic.cpp new file mode 100644 index 0000000000..39e5525c3b --- /dev/null +++ b/thirdparty/astcenc/astcenc_decompress_symbolic.cpp @@ -0,0 +1,623 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions to decompress a symbolic block. + */ + +#include "astcenc_internal.h" + +#include <stdio.h> +#include <assert.h> + +/** + * @brief Compute the integer linear interpolation of two color endpoints. + * + * @param decode_mode The ASTC profile (linear or sRGB) + * @param color0 The endpoint0 color. + * @param color1 The endpoint1 color. + * @param weights The interpolation weight (between 0 and 64). + * + * @return The interpolated color. + */ +static vint4 lerp_color_int( + astcenc_profile decode_mode, + vint4 color0, + vint4 color1, + vint4 weights +) { + vint4 weight1 = weights; + vint4 weight0 = vint4(64) - weight1; + + if (decode_mode == ASTCENC_PRF_LDR_SRGB) + { + color0 = asr<8>(color0); + color1 = asr<8>(color1); + } + + vint4 color = (color0 * weight0) + (color1 * weight1) + vint4(32); + color = asr<6>(color); + + if (decode_mode == ASTCENC_PRF_LDR_SRGB) + { + color = color * vint4(257); + } + + return color; +} + + +/** + * @brief Convert integer color value into a float value for the decoder. + * + * @param data The integer color value post-interpolation. + * @param lns_mask If set treat lane as HDR (LNS) else LDR (unorm16). + * + * @return The float color value. + */ +static inline vfloat4 decode_texel( + vint4 data, + vmask4 lns_mask +) { + vint4 color_lns = vint4::zero(); + vint4 color_unorm = vint4::zero(); + + if (any(lns_mask)) + { + color_lns = lns_to_sf16(data); + } + + if (!all(lns_mask)) + { + color_unorm = unorm16_to_sf16(data); + } + + // Pick components and then convert to FP16 + vint4 datai = select(color_unorm, color_lns, lns_mask); + return float16_to_float(datai); +} + +/* See header for documentation. */ +void unpack_weights( + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const decimation_info& di, + bool is_dual_plane, + int weights_plane1[BLOCK_MAX_TEXELS], + int weights_plane2[BLOCK_MAX_TEXELS] +) { + // Safe to overshoot as all arrays are allocated to full size + if (!is_dual_plane) + { + // Build full 64-entry weight lookup table + vint4 tab0(reinterpret_cast<const int*>(scb.weights + 0)); + vint4 tab1(reinterpret_cast<const int*>(scb.weights + 16)); + vint4 tab2(reinterpret_cast<const int*>(scb.weights + 32)); + vint4 tab3(reinterpret_cast<const int*>(scb.weights + 48)); + + vint tab0p, tab1p, tab2p, tab3p; + vtable_prepare(tab0, tab1, tab2, tab3, tab0p, tab1p, tab2p, tab3p); + + for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint summed_value(8); + vint weight_count(di.texel_weight_count + i); + int max_weight_count = hmax(weight_count).lane<0>(); + + promise(max_weight_count > 0); + for (int j = 0; j < max_weight_count; j++) + { + vint texel_weights(di.texel_weights_tr[j] + i); + vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i); + + summed_value += vtable_8bt_32bi(tab0p, tab1p, tab2p, tab3p, texel_weights) * texel_weights_int; + } + + store(lsr<4>(summed_value), weights_plane1 + i); + } + } + else + { + // Build a 32-entry weight lookup table per plane + // Plane 1 + vint4 tab0_plane1(reinterpret_cast<const int*>(scb.weights + 0)); + vint4 tab1_plane1(reinterpret_cast<const int*>(scb.weights + 16)); + vint tab0_plane1p, tab1_plane1p; + vtable_prepare(tab0_plane1, tab1_plane1, tab0_plane1p, tab1_plane1p); + + // Plane 2 + vint4 tab0_plane2(reinterpret_cast<const int*>(scb.weights + 32)); + vint4 tab1_plane2(reinterpret_cast<const int*>(scb.weights + 48)); + vint tab0_plane2p, tab1_plane2p; + vtable_prepare(tab0_plane2, tab1_plane2, tab0_plane2p, tab1_plane2p); + + for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint sum_plane1(8); + vint sum_plane2(8); + + vint weight_count(di.texel_weight_count + i); + int max_weight_count = hmax(weight_count).lane<0>(); + + promise(max_weight_count > 0); + for (int j = 0; j < max_weight_count; j++) + { + vint texel_weights(di.texel_weights_tr[j] + i); + vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i); + + sum_plane1 += vtable_8bt_32bi(tab0_plane1p, tab1_plane1p, texel_weights) * texel_weights_int; + sum_plane2 += vtable_8bt_32bi(tab0_plane2p, tab1_plane2p, texel_weights) * texel_weights_int; + } + + store(lsr<4>(sum_plane1), weights_plane1 + i); + store(lsr<4>(sum_plane2), weights_plane2 + i); + } + } +} + +/** + * @brief Return an FP32 NaN value for use in error colors. + * + * This NaN encoding will turn into 0xFFFF when converted to an FP16 NaN. + * + * @return The float color value. + */ +static float error_color_nan() +{ + if32 v; + v.u = 0xFFFFE000U; + return v.f; +} + +/* See header for documentation. */ +void decompress_symbolic_block( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + int xpos, + int ypos, + int zpos, + const symbolic_compressed_block& scb, + image_block& blk +) { + blk.xpos = xpos; + blk.ypos = ypos; + blk.zpos = zpos; + + blk.data_min = vfloat4::zero(); + blk.data_mean = vfloat4::zero(); + blk.data_max = vfloat4::zero(); + blk.grayscale = false; + + // If we detected an error-block, blow up immediately. + if (scb.block_type == SYM_BTYPE_ERROR) + { + for (unsigned int i = 0; i < bsd.texel_count; i++) + { + blk.data_r[i] = error_color_nan(); + blk.data_g[i] = error_color_nan(); + blk.data_b[i] = error_color_nan(); + blk.data_a[i] = error_color_nan(); + blk.rgb_lns[i] = 0; + blk.alpha_lns[i] = 0; + } + + return; + } + + if ((scb.block_type == SYM_BTYPE_CONST_F16) || + (scb.block_type == SYM_BTYPE_CONST_U16)) + { + vfloat4 color; + uint8_t use_lns = 0; + + // UNORM16 constant color block + if (scb.block_type == SYM_BTYPE_CONST_U16) + { + vint4 colori(scb.constant_color); + + // For sRGB decoding a real decoder would just use the top 8 bits for color conversion. + // We don't color convert, so rescale the top 8 bits into the full 16 bit dynamic range. + if (decode_mode == ASTCENC_PRF_LDR_SRGB) + { + colori = asr<8>(colori) * 257; + } + + vint4 colorf16 = unorm16_to_sf16(colori); + color = float16_to_float(colorf16); + } + // FLOAT16 constant color block + else + { + switch (decode_mode) + { + case ASTCENC_PRF_LDR_SRGB: + case ASTCENC_PRF_LDR: + color = vfloat4(error_color_nan()); + break; + case ASTCENC_PRF_HDR_RGB_LDR_A: + case ASTCENC_PRF_HDR: + // Constant-color block; unpack from FP16 to FP32. + color = float16_to_float(vint4(scb.constant_color)); + use_lns = 1; + break; + } + } + + for (unsigned int i = 0; i < bsd.texel_count; i++) + { + blk.data_r[i] = color.lane<0>(); + blk.data_g[i] = color.lane<1>(); + blk.data_b[i] = color.lane<2>(); + blk.data_a[i] = color.lane<3>(); + blk.rgb_lns[i] = use_lns; + blk.alpha_lns[i] = use_lns; + } + + return; + } + + // Get the appropriate partition-table entry + int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the appropriate block descriptors + const auto& bm = bsd.get_block_mode(scb.block_mode); + const auto& di = bsd.get_decimation_info(bm.decimation_mode); + + bool is_dual_plane = static_cast<bool>(bm.is_dual_plane); + + // Unquantize and undecimate the weights + int plane1_weights[BLOCK_MAX_TEXELS]; + int plane2_weights[BLOCK_MAX_TEXELS]; + unpack_weights(bsd, scb, di, is_dual_plane, plane1_weights, plane2_weights); + + // Now that we have endpoint colors and weights, we can unpack texel colors + int plane2_component = scb.plane2_component; + vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component); + + for (int i = 0; i < partition_count; i++) + { + // Decode the color endpoints for this partition + vint4 ep0; + vint4 ep1; + bool rgb_lns; + bool a_lns; + + unpack_color_endpoints(decode_mode, + scb.color_formats[i], + scb.color_values[i], + rgb_lns, a_lns, + ep0, ep1); + + vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns); + + int texel_count = pi.partition_texel_count[i]; + for (int j = 0; j < texel_count; j++) + { + int tix = pi.texels_of_partition[i][j]; + vint4 weight = select(vint4(plane1_weights[tix]), vint4(plane2_weights[tix]), plane2_mask); + vint4 color = lerp_color_int(decode_mode, ep0, ep1, weight); + vfloat4 colorf = decode_texel(color, lns_mask); + + blk.data_r[tix] = colorf.lane<0>(); + blk.data_g[tix] = colorf.lane<1>(); + blk.data_b[tix] = colorf.lane<2>(); + blk.data_a[tix] = colorf.lane<3>(); + } + } +} + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/* See header for documentation. */ +float compute_symbolic_block_difference_2plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk +) { + // If we detected an error-block, blow up immediately. + if (scb.block_type == SYM_BTYPE_ERROR) + { + return ERROR_CALC_DEFAULT; + } + + assert(scb.block_mode >= 0); + assert(scb.partition_count == 1); + assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 1); + + // Get the appropriate block descriptor + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + + // Unquantize and undecimate the weights + int plane1_weights[BLOCK_MAX_TEXELS]; + int plane2_weights[BLOCK_MAX_TEXELS]; + unpack_weights(bsd, scb, di, true, plane1_weights, plane2_weights); + + vmask4 plane2_mask = vint4::lane_id() == vint4(scb.plane2_component); + + vfloat4 summa = vfloat4::zero(); + + // Decode the color endpoints for this partition + vint4 ep0; + vint4 ep1; + bool rgb_lns; + bool a_lns; + + unpack_color_endpoints(config.profile, + scb.color_formats[0], + scb.color_values[0], + rgb_lns, a_lns, + ep0, ep1); + + // Unpack and compute error for each texel in the partition + unsigned int texel_count = bsd.texel_count; + for (unsigned int i = 0; i < texel_count; i++) + { + vint4 weight = select(vint4(plane1_weights[i]), vint4(plane2_weights[i]), plane2_mask); + vint4 colori = lerp_color_int(config.profile, ep0, ep1, weight); + + vfloat4 color = int_to_float(colori); + vfloat4 oldColor = blk.texel(i); + + // Compare error using a perceptual decode metric for RGBM textures + if (config.flags & ASTCENC_FLG_MAP_RGBM) + { + // Fail encodings that result in zero weight M pixels. Note that this can cause + // "interesting" artifacts if we reject all useful encodings - we typically get max + // brightness encodings instead which look just as bad. We recommend users apply a + // bias to their stored M value, limiting the lower value to 16 or 32 to avoid + // getting small M values post-quantization, but we can't prove it would never + // happen, especially at low bit rates ... + if (color.lane<3>() == 0.0f) + { + return -ERROR_CALC_DEFAULT; + } + + // Compute error based on decoded RGBM color + color = vfloat4( + color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, + color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, + color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, + 1.0f + ); + + oldColor = vfloat4( + oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, + oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, + oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, + 1.0f + ); + } + + vfloat4 error = oldColor - color; + error = min(abs(error), 1e15f); + error = error * error; + + summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); + } + + return summa.lane<0>(); +} + +/* See header for documentation. */ +float compute_symbolic_block_difference_1plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk +) { + assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 0); + + // If we detected an error-block, blow up immediately. + if (scb.block_type == SYM_BTYPE_ERROR) + { + return ERROR_CALC_DEFAULT; + } + + assert(scb.block_mode >= 0); + + // Get the appropriate partition-table entry + unsigned int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the appropriate block descriptor + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + + // Unquantize and undecimate the weights + int plane1_weights[BLOCK_MAX_TEXELS]; + unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); + + vfloat4 summa = vfloat4::zero(); + for (unsigned int i = 0; i < partition_count; i++) + { + // Decode the color endpoints for this partition + vint4 ep0; + vint4 ep1; + bool rgb_lns; + bool a_lns; + + unpack_color_endpoints(config.profile, + scb.color_formats[i], + scb.color_values[i], + rgb_lns, a_lns, + ep0, ep1); + + // Unpack and compute error for each texel in the partition + unsigned int texel_count = pi.partition_texel_count[i]; + for (unsigned int j = 0; j < texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + vint4 colori = lerp_color_int(config.profile, ep0, ep1, + vint4(plane1_weights[tix])); + + vfloat4 color = int_to_float(colori); + vfloat4 oldColor = blk.texel(tix); + + // Compare error using a perceptual decode metric for RGBM textures + if (config.flags & ASTCENC_FLG_MAP_RGBM) + { + // Fail encodings that result in zero weight M pixels. Note that this can cause + // "interesting" artifacts if we reject all useful encodings - we typically get max + // brightness encodings instead which look just as bad. We recommend users apply a + // bias to their stored M value, limiting the lower value to 16 or 32 to avoid + // getting small M values post-quantization, but we can't prove it would never + // happen, especially at low bit rates ... + if (color.lane<3>() == 0.0f) + { + return -ERROR_CALC_DEFAULT; + } + + // Compute error based on decoded RGBM color + color = vfloat4( + color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, + color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, + color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, + 1.0f + ); + + oldColor = vfloat4( + oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, + oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, + oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, + 1.0f + ); + } + + vfloat4 error = oldColor - color; + error = min(abs(error), 1e15f); + error = error * error; + + summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); + } + } + + return summa.lane<0>(); +} + +/* See header for documentation. */ +float compute_symbolic_block_difference_1plane_1partition( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk +) { + // If we detected an error-block, blow up immediately. + if (scb.block_type == SYM_BTYPE_ERROR) + { + return ERROR_CALC_DEFAULT; + } + + assert(scb.block_mode >= 0); + assert(bsd.get_partition_info(scb.partition_count, scb.partition_index).partition_count == 1); + + // Get the appropriate block descriptor + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + + // Unquantize and undecimate the weights + alignas(ASTCENC_VECALIGN) int plane1_weights[BLOCK_MAX_TEXELS]; + unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); + + // Decode the color endpoints for this partition + vint4 ep0; + vint4 ep1; + bool rgb_lns; + bool a_lns; + + unpack_color_endpoints(config.profile, + scb.color_formats[0], + scb.color_values[0], + rgb_lns, a_lns, + ep0, ep1); + + + // Pre-shift sRGB so things round correctly + if (config.profile == ASTCENC_PRF_LDR_SRGB) + { + ep0 = asr<8>(ep0); + ep1 = asr<8>(ep1); + } + + // Unpack and compute error for each texel in the partition + vfloatacc summav = vfloatacc::zero(); + + vint lane_id = vint::lane_id(); + vint srgb_scale(config.profile == ASTCENC_PRF_LDR_SRGB ? 257 : 1); + + unsigned int texel_count = bsd.texel_count; + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Compute EP1 contribution + vint weight1 = vint::loada(plane1_weights + i); + vint ep1_r = vint(ep1.lane<0>()) * weight1; + vint ep1_g = vint(ep1.lane<1>()) * weight1; + vint ep1_b = vint(ep1.lane<2>()) * weight1; + vint ep1_a = vint(ep1.lane<3>()) * weight1; + + // Compute EP0 contribution + vint weight0 = vint(64) - weight1; + vint ep0_r = vint(ep0.lane<0>()) * weight0; + vint ep0_g = vint(ep0.lane<1>()) * weight0; + vint ep0_b = vint(ep0.lane<2>()) * weight0; + vint ep0_a = vint(ep0.lane<3>()) * weight0; + + // Shift so things round correctly + vint colori_r = asr<6>(ep0_r + ep1_r + vint(32)) * srgb_scale; + vint colori_g = asr<6>(ep0_g + ep1_g + vint(32)) * srgb_scale; + vint colori_b = asr<6>(ep0_b + ep1_b + vint(32)) * srgb_scale; + vint colori_a = asr<6>(ep0_a + ep1_a + vint(32)) * srgb_scale; + + // Compute color diff + vfloat color_r = int_to_float(colori_r); + vfloat color_g = int_to_float(colori_g); + vfloat color_b = int_to_float(colori_b); + vfloat color_a = int_to_float(colori_a); + + vfloat color_orig_r = loada(blk.data_r + i); + vfloat color_orig_g = loada(blk.data_g + i); + vfloat color_orig_b = loada(blk.data_b + i); + vfloat color_orig_a = loada(blk.data_a + i); + + vfloat color_error_r = min(abs(color_orig_r - color_r), vfloat(1e15f)); + vfloat color_error_g = min(abs(color_orig_g - color_g), vfloat(1e15f)); + vfloat color_error_b = min(abs(color_orig_b - color_b), vfloat(1e15f)); + vfloat color_error_a = min(abs(color_orig_a - color_a), vfloat(1e15f)); + + // Compute squared error metric + color_error_r = color_error_r * color_error_r; + color_error_g = color_error_g * color_error_g; + color_error_b = color_error_b * color_error_b; + color_error_a = color_error_a * color_error_a; + + vfloat metric = color_error_r * blk.channel_weight.lane<0>() + + color_error_g * blk.channel_weight.lane<1>() + + color_error_b * blk.channel_weight.lane<2>() + + color_error_a * blk.channel_weight.lane<3>(); + + // Mask off bad lanes + vmask mask = lane_id < vint(texel_count); + lane_id += vint(ASTCENC_SIMD_WIDTH); + haccumulate(summav, metric, mask); + } + + return hadd_s(summav); +} + +#endif diff --git a/thirdparty/astcenc/astcenc_diagnostic_trace.cpp b/thirdparty/astcenc/astcenc_diagnostic_trace.cpp new file mode 100644 index 0000000000..7fa7ab1a8b --- /dev/null +++ b/thirdparty/astcenc/astcenc_diagnostic_trace.cpp @@ -0,0 +1,230 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2021-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for the library entrypoint. + */ + +#if defined(ASTCENC_DIAGNOSTICS) + +#include <cassert> +#include <cstdarg> +#include <cstdio> +#include <string> + +#include "astcenc_diagnostic_trace.h" + +/** @brief The global trace logger. */ +static TraceLog* g_TraceLog = nullptr; + +/** @brief The JSON indentation level. */ +static const size_t g_trace_indent = 2; + +TraceLog::TraceLog( + const char* file_name): + m_file(file_name, std::ofstream::out | std::ofstream::binary) +{ + assert(!g_TraceLog); + g_TraceLog = this; + m_root = new TraceNode("root"); +} + +/* See header for documentation. */ +TraceNode* TraceLog::get_current_leaf() +{ + if (m_stack.size()) + { + return m_stack.back(); + } + + return nullptr; +} + +/* See header for documentation. */ +size_t TraceLog::get_depth() +{ + return m_stack.size(); +} + +/* See header for documentation. */ +TraceLog::~TraceLog() +{ + assert(g_TraceLog == this); + delete m_root; + g_TraceLog = nullptr; +} + +/* See header for documentation. */ +TraceNode::TraceNode( + const char* format, + ... +) { + // Format the name string + constexpr size_t bufsz = 256; + char buffer[bufsz]; + + va_list args; + va_start (args, format); + vsnprintf (buffer, bufsz, format, args); + va_end (args); + + // Guarantee there is a nul terminator + buffer[bufsz - 1] = 0; + + // Generate the node + TraceNode* parent = g_TraceLog->get_current_leaf(); + size_t depth = g_TraceLog->get_depth(); + g_TraceLog->m_stack.push_back(this); + + bool comma = parent && parent->m_attrib_count; + auto& out = g_TraceLog->m_file; + + if (parent) + { + parent->m_attrib_count++; + } + + if (comma) + { + out << ','; + } + + if (depth) + { + out << '\n'; + } + + size_t out_indent = (depth * 2) * g_trace_indent; + size_t in_indent = (depth * 2 + 1) * g_trace_indent; + + std::string out_indents(""); + if (out_indent) + { + out_indents = std::string(out_indent, ' '); + } + + std::string in_indents(in_indent, ' '); + + out << out_indents << "[ \"node\", \"" << buffer << "\",\n"; + out << in_indents << "["; +} + +/* See header for documentation. */ +void TraceNode::add_attrib( + std::string type, + std::string key, + std::string value +) { + (void)type; + + size_t depth = g_TraceLog->get_depth(); + size_t indent = (depth * 2) * g_trace_indent; + auto& out = g_TraceLog->m_file; + bool comma = m_attrib_count; + m_attrib_count++; + + if (comma) + { + out << ','; + } + + out << '\n'; + out << std::string(indent, ' ') << "[ " + << "\"" << key << "\", " + << value << " ]"; +} + +/* See header for documentation. */ +TraceNode::~TraceNode() +{ + g_TraceLog->m_stack.pop_back(); + + auto& out = g_TraceLog->m_file; + size_t depth = g_TraceLog->get_depth(); + size_t out_indent = (depth * 2) * g_trace_indent; + size_t in_indent = (depth * 2 + 1) * g_trace_indent; + + std::string out_indents(""); + if (out_indent) + { + out_indents = std::string(out_indent, ' '); + } + + std::string in_indents(in_indent, ' '); + + if (m_attrib_count) + { + out << "\n" << in_indents; + } + out << "]\n"; + + out << out_indents << "]"; +} + +/* See header for documentation. */ +void trace_add_data( + const char* key, + const char* format, + ... +) { + constexpr size_t bufsz = 256; + char buffer[bufsz]; + + va_list args; + va_start (args, format); + vsnprintf (buffer, bufsz, format, args); + va_end (args); + + // Guarantee there is a nul terminator + buffer[bufsz - 1] = 0; + + std::string value = "\"" + std::string(buffer) + "\""; + + TraceNode* node = g_TraceLog->get_current_leaf(); + node->add_attrib("str", key, value); +} + +/* See header for documentation. */ +void trace_add_data( + const char* key, + float value +) { + char buffer[256]; + sprintf(buffer, "%.20g", (double)value); + TraceNode* node = g_TraceLog->get_current_leaf(); + node->add_attrib("float", key, buffer); +} + +/* See header for documentation. */ +void trace_add_data( + const char* key, + int value +) { + TraceNode* node = g_TraceLog->get_current_leaf(); + node->add_attrib("int", key, std::to_string(value)); +} + +/* See header for documentation. */ +void trace_add_data( + const char* key, + unsigned int value +) { + TraceNode* node = g_TraceLog->get_current_leaf(); + node->add_attrib("int", key, std::to_string(value)); +} + +#endif diff --git a/thirdparty/astcenc/astcenc_diagnostic_trace.h b/thirdparty/astcenc/astcenc_diagnostic_trace.h new file mode 100644 index 0000000000..f5586b0ad5 --- /dev/null +++ b/thirdparty/astcenc/astcenc_diagnostic_trace.h @@ -0,0 +1,219 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2021-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief This module provides a set of diagnostic tracing utilities. + * + * Overview + * ======== + * + * The built-in diagnostic trace tool generates a hierarchical JSON tree structure. The tree + * hierarchy contains three levels: + * + * - block + * - pass + * - candidate + * + * One block node exists for each compressed block in the image. One pass node exists for each major + * pass (N partition, M planes, O components) applied to a block. One candidate node exists for each + * encoding candidate trialed for a pass. + * + * Each node contains both the hierarchy but also a number of attributes which explain the behavior. + * For example, the block node contains the block coordinates in the image, the pass explains the + * pass configuration, and the candidate will explain the candidate encoding such as weight + * decimation, refinement error, etc. + * + * Trace Nodes are designed as scope-managed C++ objects with stack-like push/pop behavior. + * Constructing a trace node on the stack will automatically add it to the current node as a child, + * and then make it the current node. Destroying the current node will pop the stack and set the + * parent to the current node. This provides a robust mechanism for ensuring reliable nesting in the + * tree structure. + * + * A set of utility macros are provided to add attribute annotations to the current trace node. + * + * Usage + * ===== + * + * Create Trace Nodes on the stack using the @c TRACE_NODE() macro. This will compile-out completely + * in builds with diagnostics disabled. + * + * Add annotations to the current trace node using the @c trace_add_data() macro. This will + * similarly compile out completely in builds with diagnostics disabled. + * + * If you need to add additional code to support diagnostics-only behavior wrap + * it in preprocessor guards: + * + * #if defined(ASTCENC_DIAGNOSTICS) + * #endif + */ + +#ifndef ASTCENC_DIAGNOSTIC_TRACE_INCLUDED +#define ASTCENC_DIAGNOSTIC_TRACE_INCLUDED + +#if defined(ASTCENC_DIAGNOSTICS) + +#include <iostream> +#include <fstream> +#include <vector> + +/** + * @brief Class representing a single node in the trace hierarchy. + */ +class TraceNode +{ +public: + /** + * @brief Construct a new node. + * + * Constructing a node will push to the the top of the stack, automatically making it a child of + * the current node, and then setting it to become the current node. + * + * @param format The format template for the node name. + * @param ... The format parameters. + */ + TraceNode(const char* format, ...); + + /** + * @brief Add an attribute to this node. + * + * Note that no quoting is applied to the @c value, so if quoting is needed it must be done by + * the caller. + * + * @param type The type of the attribute. + * @param key The key of the attribute. + * @param value The value of the attribute. + */ + void add_attrib(std::string type, std::string key, std::string value); + + /** + * @brief Destroy this node. + * + * Destroying a node will pop it from the top of the stack, making its parent the current node. + * It is invalid behavior to destroy a node that is not the current node; usage must conform to + * stack push-pop semantics. + */ + ~TraceNode(); + + /** + * @brief The number of attributes and child nodes in this node. + */ + unsigned int m_attrib_count { 0 }; +}; + +/** + * @brief Class representing the trace log file being written. + */ +class TraceLog +{ +public: + /** + * @brief Create a new trace log. + * + * The trace log is global; there can be only one at a time. + * + * @param file_name The name of the file to write. + */ + TraceLog(const char* file_name); + + /** + * @brief Detroy the trace log. + * + * Trace logs MUST be cleanly destroyed to ensure the file gets written. + */ + ~TraceLog(); + + /** + * @brief Get the current child node. + * + * @return The current leaf node. + */ + TraceNode* get_current_leaf(); + + /** + * @brief Get the stack depth of the current child node. + * + * @return The current leaf node stack depth. + */ + size_t get_depth(); + + /** + * @brief The file stream to write to. + */ + std::ofstream m_file; + + /** + * @brief The stack of nodes (newest at the back). + */ + std::vector<TraceNode*> m_stack; + +private: + /** + * @brief The root node in the JSON file. + */ + TraceNode* m_root; +}; + +/** + * @brief Utility macro to create a trace node on the stack. + * + * @param name The variable name to use. + * @param ... The name template and format parameters. + */ +#define TRACE_NODE(name, ...) TraceNode name(__VA_ARGS__); + +/** + * @brief Add a string annotation to the current node. + * + * @param key The name of the attribute. + * @param format The format template for the attribute value. + * @param ... The format parameters. + */ +void trace_add_data(const char* key, const char* format, ...); + +/** + * @brief Add a float annotation to the current node. + * + * @param key The name of the attribute. + * @param value The value of the attribute. + */ +void trace_add_data(const char* key, float value); + +/** + * @brief Add an integer annotation to the current node. + * + * @param key The name of the attribute. + * @param value The value of the attribute. + */ +void trace_add_data(const char* key, int value); + +/** + * @brief Add an unsigned integer annotation to the current node. + * + * @param key The name of the attribute. + * @param value The value of the attribute. + */ +void trace_add_data(const char* key, unsigned int value); + +#else + +#define TRACE_NODE(name, ...) + +#define trace_add_data(...) + +#endif + +#endif diff --git a/thirdparty/astcenc/astcenc_entry.cpp b/thirdparty/astcenc/astcenc_entry.cpp new file mode 100644 index 0000000000..e59f1fe61a --- /dev/null +++ b/thirdparty/astcenc/astcenc_entry.cpp @@ -0,0 +1,1427 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for the library entrypoint. + */ + +#include <array> +#include <cstring> +#include <new> + +#include "astcenc.h" +#include "astcenc_internal_entry.h" +#include "astcenc_diagnostic_trace.h" + +/** + * @brief Record of the quality tuning parameter values. + * + * See the @c astcenc_config structure for detailed parameter documentation. + * + * Note that the mse_overshoot entries are scaling factors relative to the base MSE to hit db_limit. + * A 20% overshoot is harder to hit for a higher base db_limit, so we may actually use lower ratios + * for the more through search presets because the underlying db_limit is so much higher. + */ +struct astcenc_preset_config +{ + float quality; + unsigned int tune_partition_count_limit; + unsigned int tune_2partition_index_limit; + unsigned int tune_3partition_index_limit; + unsigned int tune_4partition_index_limit; + unsigned int tune_block_mode_limit; + unsigned int tune_refinement_limit; + unsigned int tune_candidate_limit; + unsigned int tune_2partitioning_candidate_limit; + unsigned int tune_3partitioning_candidate_limit; + unsigned int tune_4partitioning_candidate_limit; + float tune_db_limit_a_base; + float tune_db_limit_b_base; + float tune_mse_overshoot; + float tune_2_partition_early_out_limit_factor; + float tune_3_partition_early_out_limit_factor; + float tune_2_plane_early_out_limit_correlation; +}; + +/** + * @brief The static presets for high bandwidth encodings (x < 25 texels per block). + */ +static const std::array<astcenc_preset_config, 6> preset_configs_high {{ + { + ASTCENC_PRE_FASTEST, + 2, 10, 6, 4, 43, 2, 2, 2, 2, 2, 85.2f, 63.2f, 3.5f, 1.0f, 1.0f, 0.85f + }, { + ASTCENC_PRE_FAST, + 3, 18, 10, 8, 55, 3, 3, 2, 2, 2, 85.2f, 63.2f, 3.5f, 1.0f, 1.0f, 0.90f + }, { + ASTCENC_PRE_MEDIUM, + 4, 34, 28, 16, 77, 3, 3, 2, 2, 2, 95.0f, 70.0f, 2.5f, 1.1f, 1.05f, 0.95f + }, { + ASTCENC_PRE_THOROUGH, + 4, 82, 60, 30, 94, 4, 4, 3, 2, 2, 105.0f, 77.0f, 10.0f, 1.35f, 1.15f, 0.97f + }, { + ASTCENC_PRE_VERYTHOROUGH, + 4, 256, 128, 64, 98, 4, 6, 20, 14, 8, 200.0f, 200.0f, 10.0f, 1.6f, 1.4f, 0.98f + }, { + ASTCENC_PRE_EXHAUSTIVE, + 4, 512, 512, 512, 100, 4, 8, 32, 32, 32, 200.0f, 200.0f, 10.0f, 2.0f, 2.0f, 0.99f + } +}}; + +/** + * @brief The static presets for medium bandwidth encodings (25 <= x < 64 texels per block). + */ +static const std::array<astcenc_preset_config, 6> preset_configs_mid {{ + { + ASTCENC_PRE_FASTEST, + 2, 10, 6, 4, 43, 2, 2, 2, 2, 2, 85.2f, 63.2f, 3.5f, 1.0f, 1.0f, 0.80f + }, { + ASTCENC_PRE_FAST, + 3, 18, 12, 10, 55, 3, 3, 2, 2, 2, 85.2f, 63.2f, 3.5f, 1.0f, 1.0f, 0.85f + }, { + ASTCENC_PRE_MEDIUM, + 4, 34, 28, 16, 77, 3, 3, 2, 2, 2, 95.0f, 70.0f, 3.0f, 1.1f, 1.05f, 0.90f + }, { + ASTCENC_PRE_THOROUGH, + 4, 82, 60, 30, 94, 4, 4, 3, 2, 2, 105.0f, 77.0f, 10.0f, 1.4f, 1.2f, 0.95f + }, { + ASTCENC_PRE_VERYTHOROUGH, + 4, 256, 128, 64, 98, 4, 6, 12, 8, 3, 200.0f, 200.0f, 10.0f, 1.6f, 1.4f, 0.98f + }, { + ASTCENC_PRE_EXHAUSTIVE, + 4, 256, 256, 256, 100, 4, 8, 32, 32, 32, 200.0f, 200.0f, 10.0f, 2.0f, 2.0f, 0.99f + } +}}; + +/** + * @brief The static presets for low bandwidth encodings (64 <= x texels per block). + */ +static const std::array<astcenc_preset_config, 6> preset_configs_low {{ + { + ASTCENC_PRE_FASTEST, + 2, 10, 6, 4, 40, 2, 2, 2, 2, 2, 85.0f, 63.0f, 3.5f, 1.0f, 1.0f, 0.80f + }, { + ASTCENC_PRE_FAST, + 2, 18, 12, 10, 55, 3, 3, 2, 2, 2, 85.0f, 63.0f, 3.5f, 1.0f, 1.0f, 0.85f + }, { + ASTCENC_PRE_MEDIUM, + 3, 34, 28, 16, 77, 3, 3, 2, 2, 2, 95.0f, 70.0f, 3.5f, 1.1f, 1.05f, 0.90f + }, { + ASTCENC_PRE_THOROUGH, + 4, 82, 60, 30, 93, 4, 4, 3, 2, 2, 105.0f, 77.0f, 10.0f, 1.3f, 1.2f, 0.97f + }, { + ASTCENC_PRE_VERYTHOROUGH, + 4, 256, 128, 64, 98, 4, 6, 9, 5, 2, 200.0f, 200.0f, 10.0f, 1.6f, 1.4f, 0.98f + }, { + ASTCENC_PRE_EXHAUSTIVE, + 4, 256, 256, 256, 100, 4, 8, 32, 32, 32, 200.0f, 200.0f, 10.0f, 2.0f, 2.0f, 0.99f + } +}}; + +/** + * @brief Validate CPU floating point meets assumptions made in the codec. + * + * The codec is written with the assumption that a float threaded through the @c if32 union will be + * stored and reloaded as a 32-bit IEEE-754 float with round-to-nearest rounding. This is always the + * case in an IEEE-754 compliant system, however not every system or compilation mode is actually + * IEEE-754 compliant. This normally fails if the code is compiled with fast math enabled. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_cpu_float() +{ + if32 p; + volatile float xprec_testval = 2.51f; + p.f = xprec_testval + 12582912.0f; + float q = p.f - 12582912.0f; + + if (q != 3.0f) + { + return ASTCENC_ERR_BAD_CPU_FLOAT; + } + + return ASTCENC_SUCCESS; +} + +/** + * @brief Validate CPU ISA support meets the requirements of this build of the library. + * + * Each library build is statically compiled for a particular set of CPU ISA features, such as the + * SIMD support or other ISA extensions such as POPCNT. This function checks that the host CPU + * actually supports everything this build needs. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_cpu_isa() +{ + #if ASTCENC_SSE >= 41 + if (!cpu_supports_sse41()) + { + return ASTCENC_ERR_BAD_CPU_ISA; + } + #endif + + #if ASTCENC_POPCNT >= 1 + if (!cpu_supports_popcnt()) + { + return ASTCENC_ERR_BAD_CPU_ISA; + } + #endif + + #if ASTCENC_F16C >= 1 + if (!cpu_supports_f16c()) + { + return ASTCENC_ERR_BAD_CPU_ISA; + } + #endif + + #if ASTCENC_AVX >= 2 + if (!cpu_supports_avx2()) + { + return ASTCENC_ERR_BAD_CPU_ISA; + } + #endif + + return ASTCENC_SUCCESS; +} + +/** + * @brief Validate config profile. + * + * @param profile The profile to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_profile( + astcenc_profile profile +) { + // Values in this enum are from an external user, so not guaranteed to be + // bounded to the enum values + switch (static_cast<int>(profile)) + { + case ASTCENC_PRF_LDR_SRGB: + case ASTCENC_PRF_LDR: + case ASTCENC_PRF_HDR_RGB_LDR_A: + case ASTCENC_PRF_HDR: + return ASTCENC_SUCCESS; + default: + return ASTCENC_ERR_BAD_PROFILE; + } +} + +/** + * @brief Validate block size. + * + * @param block_x The block x dimensions. + * @param block_y The block y dimensions. + * @param block_z The block z dimensions. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_block_size( + unsigned int block_x, + unsigned int block_y, + unsigned int block_z +) { + // Test if this is a legal block size at all + bool is_legal = (((block_z <= 1) && is_legal_2d_block_size(block_x, block_y)) || + ((block_z >= 2) && is_legal_3d_block_size(block_x, block_y, block_z))); + if (!is_legal) + { + return ASTCENC_ERR_BAD_BLOCK_SIZE; + } + + // Test if this build has sufficient capacity for this block size + bool have_capacity = (block_x * block_y * block_z) <= BLOCK_MAX_TEXELS; + if (!have_capacity) + { + return ASTCENC_ERR_NOT_IMPLEMENTED; + } + + return ASTCENC_SUCCESS; +} + +/** + * @brief Validate flags. + * + * @param flags The flags to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_flags( + unsigned int flags +) { + // Flags field must not contain any unknown flag bits + unsigned int exMask = ~ASTCENC_ALL_FLAGS; + if (popcount(flags & exMask) != 0) + { + return ASTCENC_ERR_BAD_FLAGS; + } + + // Flags field must only contain at most a single map type + exMask = ASTCENC_FLG_MAP_NORMAL + | ASTCENC_FLG_MAP_RGBM; + if (popcount(flags & exMask) > 1) + { + return ASTCENC_ERR_BAD_FLAGS; + } + + return ASTCENC_SUCCESS; +} + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Validate single channel compression swizzle. + * + * @param swizzle The swizzle to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_compression_swz( + astcenc_swz swizzle +) { + // Not all enum values are handled; SWZ_Z is invalid for compression + switch (static_cast<int>(swizzle)) + { + case ASTCENC_SWZ_R: + case ASTCENC_SWZ_G: + case ASTCENC_SWZ_B: + case ASTCENC_SWZ_A: + case ASTCENC_SWZ_0: + case ASTCENC_SWZ_1: + return ASTCENC_SUCCESS; + default: + return ASTCENC_ERR_BAD_SWIZZLE; + } +} + +/** + * @brief Validate overall compression swizzle. + * + * @param swizzle The swizzle to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_compression_swizzle( + const astcenc_swizzle& swizzle +) { + if (validate_compression_swz(swizzle.r) || + validate_compression_swz(swizzle.g) || + validate_compression_swz(swizzle.b) || + validate_compression_swz(swizzle.a)) + { + return ASTCENC_ERR_BAD_SWIZZLE; + } + + return ASTCENC_SUCCESS; +} +#endif + +/** + * @brief Validate single channel decompression swizzle. + * + * @param swizzle The swizzle to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_decompression_swz( + astcenc_swz swizzle +) { + // Values in this enum are from an external user, so not guaranteed to be + // bounded to the enum values + switch (static_cast<int>(swizzle)) + { + case ASTCENC_SWZ_R: + case ASTCENC_SWZ_G: + case ASTCENC_SWZ_B: + case ASTCENC_SWZ_A: + case ASTCENC_SWZ_0: + case ASTCENC_SWZ_1: + case ASTCENC_SWZ_Z: + return ASTCENC_SUCCESS; + default: + return ASTCENC_ERR_BAD_SWIZZLE; + } +} + +/** + * @brief Validate overall decompression swizzle. + * + * @param swizzle The swizzle to check. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_decompression_swizzle( + const astcenc_swizzle& swizzle +) { + if (validate_decompression_swz(swizzle.r) || + validate_decompression_swz(swizzle.g) || + validate_decompression_swz(swizzle.b) || + validate_decompression_swz(swizzle.a)) + { + return ASTCENC_ERR_BAD_SWIZZLE; + } + + return ASTCENC_SUCCESS; +} + +/** + * Validate that an incoming configuration is in-spec. + * + * This function can respond in two ways: + * + * * Numerical inputs that have valid ranges are clamped to those valid ranges. No error is thrown + * for out-of-range inputs in this case. + * * Numerical inputs and logic inputs are are logically invalid and which make no sense + * algorithmically will return an error. + * + * @param[in,out] config The input compressor configuration. + * + * @return Return @c ASTCENC_SUCCESS if validated, otherwise an error on failure. + */ +static astcenc_error validate_config( + astcenc_config &config +) { + astcenc_error status; + + status = validate_profile(config.profile); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + status = validate_flags(config.flags); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + status = validate_block_size(config.block_x, config.block_y, config.block_z); + if (status != ASTCENC_SUCCESS) + { + return status; + } + +#if defined(ASTCENC_DECOMPRESS_ONLY) + // Decompress-only builds only support decompress-only contexts + if (!(config.flags & ASTCENC_FLG_DECOMPRESS_ONLY)) + { + return ASTCENC_ERR_BAD_PARAM; + } +#endif + + config.rgbm_m_scale = astc::max(config.rgbm_m_scale, 1.0f); + + config.tune_partition_count_limit = astc::clamp(config.tune_partition_count_limit, 1u, 4u); + config.tune_2partition_index_limit = astc::clamp(config.tune_2partition_index_limit, 1u, BLOCK_MAX_PARTITIONINGS); + config.tune_3partition_index_limit = astc::clamp(config.tune_3partition_index_limit, 1u, BLOCK_MAX_PARTITIONINGS); + config.tune_4partition_index_limit = astc::clamp(config.tune_4partition_index_limit, 1u, BLOCK_MAX_PARTITIONINGS); + config.tune_block_mode_limit = astc::clamp(config.tune_block_mode_limit, 1u, 100u); + config.tune_refinement_limit = astc::max(config.tune_refinement_limit, 1u); + config.tune_candidate_limit = astc::clamp(config.tune_candidate_limit, 1u, TUNE_MAX_TRIAL_CANDIDATES); + config.tune_2partitioning_candidate_limit = astc::clamp(config.tune_2partitioning_candidate_limit, 1u, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_3partitioning_candidate_limit = astc::clamp(config.tune_3partitioning_candidate_limit, 1u, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_4partitioning_candidate_limit = astc::clamp(config.tune_4partitioning_candidate_limit, 1u, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_db_limit = astc::max(config.tune_db_limit, 0.0f); + config.tune_mse_overshoot = astc::max(config.tune_mse_overshoot, 1.0f); + config.tune_2_partition_early_out_limit_factor = astc::max(config.tune_2_partition_early_out_limit_factor, 0.0f); + config.tune_3_partition_early_out_limit_factor = astc::max(config.tune_3_partition_early_out_limit_factor, 0.0f); + config.tune_2_plane_early_out_limit_correlation = astc::max(config.tune_2_plane_early_out_limit_correlation, 0.0f); + + // Specifying a zero weight color component is not allowed; force to small value + float max_weight = astc::max(astc::max(config.cw_r_weight, config.cw_g_weight), + astc::max(config.cw_b_weight, config.cw_a_weight)); + if (max_weight > 0.0f) + { + max_weight /= 1000.0f; + config.cw_r_weight = astc::max(config.cw_r_weight, max_weight); + config.cw_g_weight = astc::max(config.cw_g_weight, max_weight); + config.cw_b_weight = astc::max(config.cw_b_weight, max_weight); + config.cw_a_weight = astc::max(config.cw_a_weight, max_weight); + } + // If all color components error weights are zero then return an error + else + { + return ASTCENC_ERR_BAD_PARAM; + } + + return ASTCENC_SUCCESS; +} + +/* See header for documentation. */ +astcenc_error astcenc_config_init( + astcenc_profile profile, + unsigned int block_x, + unsigned int block_y, + unsigned int block_z, + float quality, + unsigned int flags, + astcenc_config* configp +) { + astcenc_error status; + + // Check basic library compatibility options here so they are checked early. Note, these checks + // are repeated in context_alloc for cases where callers use a manually defined config struct + status = validate_cpu_isa(); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + status = validate_cpu_float(); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + // Zero init all config fields; although most of will be over written + astcenc_config& config = *configp; + std::memset(&config, 0, sizeof(config)); + + // Process the block size + block_z = astc::max(block_z, 1u); // For 2D blocks Z==0 is accepted, but convert to 1 + status = validate_block_size(block_x, block_y, block_z); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + config.block_x = block_x; + config.block_y = block_y; + config.block_z = block_z; + + float texels = static_cast<float>(block_x * block_y * block_z); + float ltexels = logf(texels) / logf(10.0f); + + // Process the performance quality level or preset; note that this must be done before we + // process any additional settings, such as color profile and flags, which may replace some of + // these settings with more use case tuned values + if (quality < ASTCENC_PRE_FASTEST || + quality > ASTCENC_PRE_EXHAUSTIVE) + { + return ASTCENC_ERR_BAD_QUALITY; + } + + static const std::array<astcenc_preset_config, 6>* preset_configs; + int texels_int = block_x * block_y * block_z; + if (texels_int < 25) + { + preset_configs = &preset_configs_high; + } + else if (texels_int < 64) + { + preset_configs = &preset_configs_mid; + } + else + { + preset_configs = &preset_configs_low; + } + + // Determine which preset to use, or which pair to interpolate + size_t start; + size_t end; + for (end = 0; end < preset_configs->size(); end++) + { + if ((*preset_configs)[end].quality >= quality) + { + break; + } + } + + start = end == 0 ? 0 : end - 1; + + // Start and end node are the same - so just transfer the values. + if (start == end) + { + config.tune_partition_count_limit = (*preset_configs)[start].tune_partition_count_limit; + config.tune_2partition_index_limit = (*preset_configs)[start].tune_2partition_index_limit; + config.tune_3partition_index_limit = (*preset_configs)[start].tune_3partition_index_limit; + config.tune_4partition_index_limit = (*preset_configs)[start].tune_4partition_index_limit; + config.tune_block_mode_limit = (*preset_configs)[start].tune_block_mode_limit; + config.tune_refinement_limit = (*preset_configs)[start].tune_refinement_limit; + config.tune_candidate_limit = astc::min((*preset_configs)[start].tune_candidate_limit, TUNE_MAX_TRIAL_CANDIDATES); + config.tune_2partitioning_candidate_limit = astc::min((*preset_configs)[start].tune_2partitioning_candidate_limit, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_3partitioning_candidate_limit = astc::min((*preset_configs)[start].tune_3partitioning_candidate_limit, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_4partitioning_candidate_limit = astc::min((*preset_configs)[start].tune_4partitioning_candidate_limit, TUNE_MAX_PARTITIONING_CANDIDATES); + config.tune_db_limit = astc::max((*preset_configs)[start].tune_db_limit_a_base - 35 * ltexels, + (*preset_configs)[start].tune_db_limit_b_base - 19 * ltexels); + + config.tune_mse_overshoot = (*preset_configs)[start].tune_mse_overshoot; + + config.tune_2_partition_early_out_limit_factor = (*preset_configs)[start].tune_2_partition_early_out_limit_factor; + config.tune_3_partition_early_out_limit_factor =(*preset_configs)[start].tune_3_partition_early_out_limit_factor; + config.tune_2_plane_early_out_limit_correlation = (*preset_configs)[start].tune_2_plane_early_out_limit_correlation; + } + // Start and end node are not the same - so interpolate between them + else + { + auto& node_a = (*preset_configs)[start]; + auto& node_b = (*preset_configs)[end]; + + float wt_range = node_b.quality - node_a.quality; + assert(wt_range > 0); + + // Compute interpolation factors + float wt_node_a = (node_b.quality - quality) / wt_range; + float wt_node_b = (quality - node_a.quality) / wt_range; + + #define LERP(param) ((node_a.param * wt_node_a) + (node_b.param * wt_node_b)) + #define LERPI(param) astc::flt2int_rtn(\ + (static_cast<float>(node_a.param) * wt_node_a) + \ + (static_cast<float>(node_b.param) * wt_node_b)) + #define LERPUI(param) static_cast<unsigned int>(LERPI(param)) + + config.tune_partition_count_limit = LERPI(tune_partition_count_limit); + config.tune_2partition_index_limit = LERPI(tune_2partition_index_limit); + config.tune_3partition_index_limit = LERPI(tune_3partition_index_limit); + config.tune_4partition_index_limit = LERPI(tune_4partition_index_limit); + config.tune_block_mode_limit = LERPI(tune_block_mode_limit); + config.tune_refinement_limit = LERPI(tune_refinement_limit); + config.tune_candidate_limit = astc::min(LERPUI(tune_candidate_limit), + TUNE_MAX_TRIAL_CANDIDATES); + config.tune_2partitioning_candidate_limit = astc::min(LERPUI(tune_2partitioning_candidate_limit), + BLOCK_MAX_PARTITIONINGS); + config.tune_3partitioning_candidate_limit = astc::min(LERPUI(tune_3partitioning_candidate_limit), + BLOCK_MAX_PARTITIONINGS); + config.tune_4partitioning_candidate_limit = astc::min(LERPUI(tune_4partitioning_candidate_limit), + BLOCK_MAX_PARTITIONINGS); + config.tune_db_limit = astc::max(LERP(tune_db_limit_a_base) - 35 * ltexels, + LERP(tune_db_limit_b_base) - 19 * ltexels); + + config.tune_mse_overshoot = LERP(tune_mse_overshoot); + + config.tune_2_partition_early_out_limit_factor = LERP(tune_2_partition_early_out_limit_factor); + config.tune_3_partition_early_out_limit_factor = LERP(tune_3_partition_early_out_limit_factor); + config.tune_2_plane_early_out_limit_correlation = LERP(tune_2_plane_early_out_limit_correlation); + #undef LERP + #undef LERPI + #undef LERPUI + } + + // Set heuristics to the defaults for each color profile + config.cw_r_weight = 1.0f; + config.cw_g_weight = 1.0f; + config.cw_b_weight = 1.0f; + config.cw_a_weight = 1.0f; + + config.a_scale_radius = 0; + + config.rgbm_m_scale = 0.0f; + + config.profile = profile; + + // Values in this enum are from an external user, so not guaranteed to be + // bounded to the enum values + switch (static_cast<int>(profile)) + { + case ASTCENC_PRF_LDR: + case ASTCENC_PRF_LDR_SRGB: + break; + case ASTCENC_PRF_HDR_RGB_LDR_A: + case ASTCENC_PRF_HDR: + config.tune_db_limit = 999.0f; + break; + default: + return ASTCENC_ERR_BAD_PROFILE; + } + + // Flags field must not contain any unknown flag bits + status = validate_flags(flags); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + if (flags & ASTCENC_FLG_MAP_NORMAL) + { + // Normal map encoding uses L+A blocks, so allow one more partitioning + // than normal. We need need fewer bits for endpoints, so more likely + // to be able to use more partitions than an RGB/RGBA block + config.tune_partition_count_limit = astc::min(config.tune_partition_count_limit + 1u, 4u); + + config.cw_g_weight = 0.0f; + config.cw_b_weight = 0.0f; + config.tune_2_partition_early_out_limit_factor *= 1.5f; + config.tune_3_partition_early_out_limit_factor *= 1.5f; + config.tune_2_plane_early_out_limit_correlation = 0.99f; + + // Normals are prone to blocking artifacts on smooth curves + // so force compressor to try harder here ... + config.tune_db_limit *= 1.03f; + } + else if (flags & ASTCENC_FLG_MAP_RGBM) + { + config.rgbm_m_scale = 5.0f; + config.cw_a_weight = 2.0f * config.rgbm_m_scale; + } + else // (This is color data) + { + // This is a very basic perceptual metric for RGB color data, which weights error + // significance by the perceptual luminance contribution of each color channel. For + // luminance the usual weights to compute luminance from a linear RGB value are as + // follows: + // + // l = r * 0.3 + g * 0.59 + b * 0.11 + // + // ... but we scale these up to keep a better balance between color and alpha. Note + // that if the content is using alpha we'd recommend using the -a option to weight + // the color contribution by the alpha transparency. + if (flags & ASTCENC_FLG_USE_PERCEPTUAL) + { + config.cw_r_weight = 0.30f * 2.25f; + config.cw_g_weight = 0.59f * 2.25f; + config.cw_b_weight = 0.11f * 2.25f; + } + } + config.flags = flags; + + return ASTCENC_SUCCESS; +} + +/* See header for documentation. */ +astcenc_error astcenc_context_alloc( + const astcenc_config* configp, + unsigned int thread_count, + astcenc_context** context +) { + astcenc_error status; + const astcenc_config& config = *configp; + + status = validate_cpu_isa(); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + status = validate_cpu_float(); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + if (thread_count == 0) + { + return ASTCENC_ERR_BAD_PARAM; + } + +#if defined(ASTCENC_DIAGNOSTICS) + // Force single threaded compressor use in diagnostic mode. + if (thread_count != 1) + { + return ASTCENC_ERR_BAD_PARAM; + } +#endif + + astcenc_context* ctxo = new astcenc_context; + astcenc_contexti* ctx = &ctxo->context; + ctx->thread_count = thread_count; + ctx->config = config; + ctx->working_buffers = nullptr; + + // These are allocated per-compress, as they depend on image size + ctx->input_alpha_averages = nullptr; + + // Copy the config first and validate the copy (we may modify it) + status = validate_config(ctx->config); + if (status != ASTCENC_SUCCESS) + { + delete ctxo; + return status; + } + + ctx->bsd = aligned_malloc<block_size_descriptor>(sizeof(block_size_descriptor), ASTCENC_VECALIGN); + bool can_omit_modes = static_cast<bool>(config.flags & ASTCENC_FLG_SELF_DECOMPRESS_ONLY); + init_block_size_descriptor(config.block_x, config.block_y, config.block_z, + can_omit_modes, + config.tune_partition_count_limit, + static_cast<float>(config.tune_block_mode_limit) / 100.0f, + *ctx->bsd); + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + // Do setup only needed by compression + if (!(status & ASTCENC_FLG_DECOMPRESS_ONLY)) + { + // Turn a dB limit into a per-texel error for faster use later + if ((ctx->config.profile == ASTCENC_PRF_LDR) || (ctx->config.profile == ASTCENC_PRF_LDR_SRGB)) + { + ctx->config.tune_db_limit = astc::pow(0.1f, ctx->config.tune_db_limit * 0.1f) * 65535.0f * 65535.0f; + } + else + { + ctx->config.tune_db_limit = 0.0f; + } + + size_t worksize = sizeof(compression_working_buffers) * thread_count; + ctx->working_buffers = aligned_malloc<compression_working_buffers>(worksize, ASTCENC_VECALIGN); + static_assert((sizeof(compression_working_buffers) % ASTCENC_VECALIGN) == 0, + "compression_working_buffers size must be multiple of vector alignment"); + if (!ctx->working_buffers) + { + aligned_free<block_size_descriptor>(ctx->bsd); + delete ctxo; + *context = nullptr; + return ASTCENC_ERR_OUT_OF_MEM; + } + } +#endif + +#if defined(ASTCENC_DIAGNOSTICS) + ctx->trace_log = new TraceLog(ctx->config.trace_file_path); + if (!ctx->trace_log->m_file) + { + return ASTCENC_ERR_DTRACE_FAILURE; + } + + trace_add_data("block_x", config.block_x); + trace_add_data("block_y", config.block_y); + trace_add_data("block_z", config.block_z); +#endif + + *context = ctxo; + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + prepare_angular_tables(); +#endif + + return ASTCENC_SUCCESS; +} + +/* See header dor documentation. */ +void astcenc_context_free( + astcenc_context* ctxo +) { + if (ctxo) + { + astcenc_contexti* ctx = &ctxo->context; + aligned_free<compression_working_buffers>(ctx->working_buffers); + aligned_free<block_size_descriptor>(ctx->bsd); +#if defined(ASTCENC_DIAGNOSTICS) + delete ctx->trace_log; +#endif + delete ctxo; + } +} + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Compress an image, after any preflight has completed. + * + * @param[out] ctxo The compressor context. + * @param thread_index The thread index. + * @param image The intput image. + * @param swizzle The input swizzle. + * @param[out] buffer The output array for the compressed data. + */ +static void compress_image( + astcenc_context& ctxo, + unsigned int thread_index, + const astcenc_image& image, + const astcenc_swizzle& swizzle, + uint8_t* buffer +) { + astcenc_contexti& ctx = ctxo.context; + const block_size_descriptor& bsd = *ctx.bsd; + astcenc_profile decode_mode = ctx.config.profile; + + image_block blk; + + int block_x = bsd.xdim; + int block_y = bsd.ydim; + int block_z = bsd.zdim; + blk.texel_count = static_cast<uint8_t>(block_x * block_y * block_z); + + int dim_x = image.dim_x; + int dim_y = image.dim_y; + int dim_z = image.dim_z; + + int xblocks = (dim_x + block_x - 1) / block_x; + int yblocks = (dim_y + block_y - 1) / block_y; + int zblocks = (dim_z + block_z - 1) / block_z; + int block_count = zblocks * yblocks * xblocks; + + int row_blocks = xblocks; + int plane_blocks = xblocks * yblocks; + + // Populate the block channel weights + blk.channel_weight = vfloat4(ctx.config.cw_r_weight, + ctx.config.cw_g_weight, + ctx.config.cw_b_weight, + ctx.config.cw_a_weight); + + // Use preallocated scratch buffer + auto& temp_buffers = ctx.working_buffers[thread_index]; + + // Only the first thread actually runs the initializer + ctxo.manage_compress.init(block_count); + + // Determine if we can use an optimized load function + bool needs_swz = (swizzle.r != ASTCENC_SWZ_R) || (swizzle.g != ASTCENC_SWZ_G) || + (swizzle.b != ASTCENC_SWZ_B) || (swizzle.a != ASTCENC_SWZ_A); + + bool needs_hdr = (decode_mode == ASTCENC_PRF_HDR) || + (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A); + + bool use_fast_load = !needs_swz && !needs_hdr && + block_z == 1 && image.data_type == ASTCENC_TYPE_U8; + + auto load_func = load_image_block; + if (use_fast_load) + { + load_func = load_image_block_fast_ldr; + } + + // All threads run this processing loop until there is no work remaining + while (true) + { + unsigned int count; + unsigned int base = ctxo.manage_compress.get_task_assignment(16, count); + if (!count) + { + break; + } + + for (unsigned int i = base; i < base + count; i++) + { + // Decode i into x, y, z block indices + int z = i / plane_blocks; + unsigned int rem = i - (z * plane_blocks); + int y = rem / row_blocks; + int x = rem - (y * row_blocks); + + // Test if we can apply some basic alpha-scale RDO + bool use_full_block = true; + if (ctx.config.a_scale_radius != 0 && block_z == 1) + { + int start_x = x * block_x; + int end_x = astc::min(dim_x, start_x + block_x); + + int start_y = y * block_y; + int end_y = astc::min(dim_y, start_y + block_y); + + // SATs accumulate error, so don't test exactly zero. Test for + // less than 1 alpha in the expanded block footprint that + // includes the alpha radius. + int x_footprint = block_x + 2 * (ctx.config.a_scale_radius - 1); + + int y_footprint = block_y + 2 * (ctx.config.a_scale_radius - 1); + + float footprint = static_cast<float>(x_footprint * y_footprint); + float threshold = 0.9f / (255.0f * footprint); + + // Do we have any alpha values? + use_full_block = false; + for (int ay = start_y; ay < end_y; ay++) + { + for (int ax = start_x; ax < end_x; ax++) + { + float a_avg = ctx.input_alpha_averages[ay * dim_x + ax]; + if (a_avg > threshold) + { + use_full_block = true; + ax = end_x; + ay = end_y; + } + } + } + } + + // Fetch the full block for compression + if (use_full_block) + { + load_func(decode_mode, image, blk, bsd, x * block_x, y * block_y, z * block_z, swizzle); + + // Scale RGB error contribution by the maximum alpha in the block + // This encourages preserving alpha accuracy in regions with high + // transparency, and can buy up to 0.5 dB PSNR. + if (ctx.config.flags & ASTCENC_FLG_USE_ALPHA_WEIGHT) + { + float alpha_scale = blk.data_max.lane<3>() * (1.0f / 65535.0f); + blk.channel_weight = vfloat4(ctx.config.cw_r_weight * alpha_scale, + ctx.config.cw_g_weight * alpha_scale, + ctx.config.cw_b_weight * alpha_scale, + ctx.config.cw_a_weight); + } + } + // Apply alpha scale RDO - substitute constant color block + else + { + blk.origin_texel = vfloat4::zero(); + blk.data_min = vfloat4::zero(); + blk.data_mean = vfloat4::zero(); + blk.data_max = vfloat4::zero(); + blk.grayscale = true; + } + + int offset = ((z * yblocks + y) * xblocks + x) * 16; + uint8_t *bp = buffer + offset; + physical_compressed_block* pcb = reinterpret_cast<physical_compressed_block*>(bp); + compress_block(ctx, blk, *pcb, temp_buffers); + } + + ctxo.manage_compress.complete_task_assignment(count); + } +} + +/** + * @brief Compute regional averages in an image. + * + * This function can be called by multiple threads, but only after a single + * thread calls the setup function @c init_compute_averages(). + * + * Results are written back into @c img->input_alpha_averages. + * + * @param[out] ctx The context. + * @param ag The average and variance arguments created during setup. + */ +static void compute_averages( + astcenc_context& ctx, + const avg_args &ag +) { + pixel_region_args arg = ag.arg; + arg.work_memory = new vfloat4[ag.work_memory_size]; + + int size_x = ag.img_size_x; + int size_y = ag.img_size_y; + int size_z = ag.img_size_z; + + int step_xy = ag.blk_size_xy; + int step_z = ag.blk_size_z; + + int y_tasks = (size_y + step_xy - 1) / step_xy; + + // All threads run this processing loop until there is no work remaining + while (true) + { + unsigned int count; + unsigned int base = ctx.manage_avg.get_task_assignment(16, count); + if (!count) + { + break; + } + + for (unsigned int i = base; i < base + count; i++) + { + int z = (i / (y_tasks)) * step_z; + int y = (i - (z * y_tasks)) * step_xy; + + arg.size_z = astc::min(step_z, size_z - z); + arg.offset_z = z; + + arg.size_y = astc::min(step_xy, size_y - y); + arg.offset_y = y; + + for (int x = 0; x < size_x; x += step_xy) + { + arg.size_x = astc::min(step_xy, size_x - x); + arg.offset_x = x; + compute_pixel_region_variance(ctx.context, arg); + } + } + + ctx.manage_avg.complete_task_assignment(count); + } + + delete[] arg.work_memory; +} + +#endif + +/* See header for documentation. */ +astcenc_error astcenc_compress_image( + astcenc_context* ctxo, + astcenc_image* imagep, + const astcenc_swizzle* swizzle, + uint8_t* data_out, + size_t data_len, + unsigned int thread_index +) { +#if defined(ASTCENC_DECOMPRESS_ONLY) + (void)ctxo; + (void)imagep; + (void)swizzle; + (void)data_out; + (void)data_len; + (void)thread_index; + return ASTCENC_ERR_BAD_CONTEXT; +#else + astcenc_contexti* ctx = &ctxo->context; + astcenc_error status; + astcenc_image& image = *imagep; + + if (ctx->config.flags & ASTCENC_FLG_DECOMPRESS_ONLY) + { + return ASTCENC_ERR_BAD_CONTEXT; + } + + status = validate_compression_swizzle(*swizzle); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + if (thread_index >= ctx->thread_count) + { + return ASTCENC_ERR_BAD_PARAM; + } + + unsigned int block_x = ctx->config.block_x; + unsigned int block_y = ctx->config.block_y; + unsigned int block_z = ctx->config.block_z; + + unsigned int xblocks = (image.dim_x + block_x - 1) / block_x; + unsigned int yblocks = (image.dim_y + block_y - 1) / block_y; + unsigned int zblocks = (image.dim_z + block_z - 1) / block_z; + + // Check we have enough output space (16 bytes per block) + size_t size_needed = xblocks * yblocks * zblocks * 16; + if (data_len < size_needed) + { + return ASTCENC_ERR_OUT_OF_MEM; + } + + // If context thread count is one then implicitly reset + if (ctx->thread_count == 1) + { + astcenc_compress_reset(ctxo); + } + + if (ctx->config.a_scale_radius != 0) + { + // First thread to enter will do setup, other threads will subsequently + // enter the critical section but simply skip over the initialization + auto init_avg = [ctx, &image, swizzle]() { + // Perform memory allocations for the destination buffers + size_t texel_count = image.dim_x * image.dim_y * image.dim_z; + ctx->input_alpha_averages = new float[texel_count]; + + return init_compute_averages( + image, ctx->config.a_scale_radius, *swizzle, + ctx->avg_preprocess_args); + }; + + // Only the first thread actually runs the initializer + ctxo->manage_avg.init(init_avg); + + // All threads will enter this function and dynamically grab work + compute_averages(*ctxo, ctx->avg_preprocess_args); + } + + // Wait for compute_averages to complete before compressing + ctxo->manage_avg.wait(); + + compress_image(*ctxo, thread_index, image, *swizzle, data_out); + + // Wait for compress to complete before freeing memory + ctxo->manage_compress.wait(); + + auto term_compress = [ctx]() { + delete[] ctx->input_alpha_averages; + ctx->input_alpha_averages = nullptr; + }; + + // Only the first thread to arrive actually runs the term + ctxo->manage_compress.term(term_compress); + + return ASTCENC_SUCCESS; +#endif +} + +/* See header for documentation. */ +astcenc_error astcenc_compress_reset( + astcenc_context* ctxo +) { +#if defined(ASTCENC_DECOMPRESS_ONLY) + (void)ctxo; + return ASTCENC_ERR_BAD_CONTEXT; +#else + astcenc_contexti* ctx = &ctxo->context; + if (ctx->config.flags & ASTCENC_FLG_DECOMPRESS_ONLY) + { + return ASTCENC_ERR_BAD_CONTEXT; + } + + ctxo->manage_avg.reset(); + ctxo->manage_compress.reset(); + return ASTCENC_SUCCESS; +#endif +} + +/* See header for documentation. */ +astcenc_error astcenc_decompress_image( + astcenc_context* ctxo, + const uint8_t* data, + size_t data_len, + astcenc_image* image_outp, + const astcenc_swizzle* swizzle, + unsigned int thread_index +) { + astcenc_error status; + astcenc_image& image_out = *image_outp; + astcenc_contexti* ctx = &ctxo->context; + + // Today this doesn't matter (working set on stack) but might in future ... + if (thread_index >= ctx->thread_count) + { + return ASTCENC_ERR_BAD_PARAM; + } + + status = validate_decompression_swizzle(*swizzle); + if (status != ASTCENC_SUCCESS) + { + return status; + } + + unsigned int block_x = ctx->config.block_x; + unsigned int block_y = ctx->config.block_y; + unsigned int block_z = ctx->config.block_z; + + unsigned int xblocks = (image_out.dim_x + block_x - 1) / block_x; + unsigned int yblocks = (image_out.dim_y + block_y - 1) / block_y; + unsigned int zblocks = (image_out.dim_z + block_z - 1) / block_z; + + int row_blocks = xblocks; + int plane_blocks = xblocks * yblocks; + + // Check we have enough output space (16 bytes per block) + size_t size_needed = xblocks * yblocks * zblocks * 16; + if (data_len < size_needed) + { + return ASTCENC_ERR_OUT_OF_MEM; + } + + image_block blk; + blk.texel_count = static_cast<uint8_t>(block_x * block_y * block_z); + + // If context thread count is one then implicitly reset + if (ctx->thread_count == 1) + { + astcenc_decompress_reset(ctxo); + } + + // Only the first thread actually runs the initializer + ctxo->manage_decompress.init(zblocks * yblocks * xblocks); + + // All threads run this processing loop until there is no work remaining + while (true) + { + unsigned int count; + unsigned int base = ctxo->manage_decompress.get_task_assignment(128, count); + if (!count) + { + break; + } + + for (unsigned int i = base; i < base + count; i++) + { + // Decode i into x, y, z block indices + int z = i / plane_blocks; + unsigned int rem = i - (z * plane_blocks); + int y = rem / row_blocks; + int x = rem - (y * row_blocks); + + unsigned int offset = (((z * yblocks + y) * xblocks) + x) * 16; + const uint8_t* bp = data + offset; + + const physical_compressed_block& pcb = *reinterpret_cast<const physical_compressed_block*>(bp); + symbolic_compressed_block scb; + + physical_to_symbolic(*ctx->bsd, pcb, scb); + + decompress_symbolic_block(ctx->config.profile, *ctx->bsd, + x * block_x, y * block_y, z * block_z, + scb, blk); + + store_image_block(image_out, blk, *ctx->bsd, + x * block_x, y * block_y, z * block_z, *swizzle); + } + + ctxo->manage_decompress.complete_task_assignment(count); + } + + return ASTCENC_SUCCESS; +} + +/* See header for documentation. */ +astcenc_error astcenc_decompress_reset( + astcenc_context* ctxo +) { + ctxo->manage_decompress.reset(); + return ASTCENC_SUCCESS; +} + +/* See header for documentation. */ +astcenc_error astcenc_get_block_info( + astcenc_context* ctxo, + const uint8_t data[16], + astcenc_block_info* info +) { +#if defined(ASTCENC_DECOMPRESS_ONLY) + (void)ctxo; + (void)data; + (void)info; + return ASTCENC_ERR_BAD_CONTEXT; +#else + astcenc_contexti* ctx = &ctxo->context; + + // Decode the compressed data into a symbolic form + const physical_compressed_block&pcb = *reinterpret_cast<const physical_compressed_block*>(data); + symbolic_compressed_block scb; + physical_to_symbolic(*ctx->bsd, pcb, scb); + + // Fetch the appropriate partition and decimation tables + block_size_descriptor& bsd = *ctx->bsd; + + // Start from a clean slate + memset(info, 0, sizeof(*info)); + + // Basic info we can always populate + info->profile = ctx->config.profile; + + info->block_x = ctx->config.block_x; + info->block_y = ctx->config.block_y; + info->block_z = ctx->config.block_z; + info->texel_count = bsd.texel_count; + + // Check for error blocks first + info->is_error_block = scb.block_type == SYM_BTYPE_ERROR; + if (info->is_error_block) + { + return ASTCENC_SUCCESS; + } + + // Check for constant color blocks second + info->is_constant_block = scb.block_type == SYM_BTYPE_CONST_F16 || + scb.block_type == SYM_BTYPE_CONST_U16; + if (info->is_constant_block) + { + return ASTCENC_SUCCESS; + } + + // Otherwise handle a full block ; known to be valid after conditions above have been checked + int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + + info->weight_x = di.weight_x; + info->weight_y = di.weight_y; + info->weight_z = di.weight_z; + + info->is_dual_plane_block = bm.is_dual_plane != 0; + + info->partition_count = scb.partition_count; + info->partition_index = scb.partition_index; + info->dual_plane_component = scb.plane2_component; + + info->color_level_count = get_quant_level(scb.get_color_quant_mode()); + info->weight_level_count = get_quant_level(bm.get_weight_quant_mode()); + + // Unpack color endpoints for each active partition + for (unsigned int i = 0; i < scb.partition_count; i++) + { + bool rgb_hdr; + bool a_hdr; + vint4 endpnt[2]; + + unpack_color_endpoints(ctx->config.profile, + scb.color_formats[i], + scb.color_values[i], + rgb_hdr, a_hdr, + endpnt[0], endpnt[1]); + + // Store the color endpoint mode info + info->color_endpoint_modes[i] = scb.color_formats[i]; + info->is_hdr_block = info->is_hdr_block || rgb_hdr || a_hdr; + + // Store the unpacked and decoded color endpoint + vmask4 hdr_mask(rgb_hdr, rgb_hdr, rgb_hdr, a_hdr); + for (int j = 0; j < 2; j++) + { + vint4 color_lns = lns_to_sf16(endpnt[j]); + vint4 color_unorm = unorm16_to_sf16(endpnt[j]); + vint4 datai = select(color_unorm, color_lns, hdr_mask); + store(float16_to_float(datai), info->color_endpoints[i][j]); + } + } + + // Unpack weights for each texel + int weight_plane1[BLOCK_MAX_TEXELS]; + int weight_plane2[BLOCK_MAX_TEXELS]; + + unpack_weights(bsd, scb, di, bm.is_dual_plane, weight_plane1, weight_plane2); + for (unsigned int i = 0; i < bsd.texel_count; i++) + { + info->weight_values_plane1[i] = static_cast<float>(weight_plane1[i]) * (1.0f / WEIGHTS_TEXEL_SUM); + if (info->is_dual_plane_block) + { + info->weight_values_plane2[i] = static_cast<float>(weight_plane2[i]) * (1.0f / WEIGHTS_TEXEL_SUM); + } + } + + // Unpack partition assignments for each texel + for (unsigned int i = 0; i < bsd.texel_count; i++) + { + info->partition_assignment[i] = pi.partition_of_texel[i]; + } + + return ASTCENC_SUCCESS; +#endif +} + +/* See header for documentation. */ +const char* astcenc_get_error_string( + astcenc_error status +) { + // Values in this enum are from an external user, so not guaranteed to be + // bounded to the enum values + switch (static_cast<int>(status)) + { + case ASTCENC_SUCCESS: + return "ASTCENC_SUCCESS"; + case ASTCENC_ERR_OUT_OF_MEM: + return "ASTCENC_ERR_OUT_OF_MEM"; + case ASTCENC_ERR_BAD_CPU_FLOAT: + return "ASTCENC_ERR_BAD_CPU_FLOAT"; + case ASTCENC_ERR_BAD_CPU_ISA: + return "ASTCENC_ERR_BAD_CPU_ISA"; + case ASTCENC_ERR_BAD_PARAM: + return "ASTCENC_ERR_BAD_PARAM"; + case ASTCENC_ERR_BAD_BLOCK_SIZE: + return "ASTCENC_ERR_BAD_BLOCK_SIZE"; + case ASTCENC_ERR_BAD_PROFILE: + return "ASTCENC_ERR_BAD_PROFILE"; + case ASTCENC_ERR_BAD_QUALITY: + return "ASTCENC_ERR_BAD_QUALITY"; + case ASTCENC_ERR_BAD_FLAGS: + return "ASTCENC_ERR_BAD_FLAGS"; + case ASTCENC_ERR_BAD_SWIZZLE: + return "ASTCENC_ERR_BAD_SWIZZLE"; + case ASTCENC_ERR_BAD_CONTEXT: + return "ASTCENC_ERR_BAD_CONTEXT"; + case ASTCENC_ERR_NOT_IMPLEMENTED: + return "ASTCENC_ERR_NOT_IMPLEMENTED"; +#if defined(ASTCENC_DIAGNOSTICS) + case ASTCENC_ERR_DTRACE_FAILURE: + return "ASTCENC_ERR_DTRACE_FAILURE"; +#endif + default: + return nullptr; + } +} diff --git a/thirdparty/astcenc/astcenc_find_best_partitioning.cpp b/thirdparty/astcenc/astcenc_find_best_partitioning.cpp new file mode 100644 index 0000000000..ffde3c7060 --- /dev/null +++ b/thirdparty/astcenc/astcenc_find_best_partitioning.cpp @@ -0,0 +1,780 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for finding best partition for a block. + * + * The partition search operates in two stages. The first pass uses kmeans clustering to group + * texels into an ideal partitioning for the requested partition count, and then compares that + * against the 1024 partitionings generated by the ASTC partition hash function. The generated + * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal + * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and + * partitionings that actually generate fewer than the requested partition count, but only the top + * N candidates are actually put through a more detailed search. N is determined by the compressor + * quality preset. + * + * For the detailed search, each candidate is checked against two possible encoding methods: + * + * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints). + * - The best partitioning assuming same chroma colors (RGB + scale endpoints). + * + * This is implemented by computing the compute mean color and dominant direction for each + * partition. This defines two lines, both of which go through the mean color value. + * + * - One line has a direction defined by the dominant direction; this is used to assess the error + * from using an uncorrelated color representation. + * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma + * (RGB + scale) color representation. + * + * The best candidate is selected by computing the squared-errors that result from using these + * lines for endpoint selection. + */ + +#include <limits> +#include "astcenc_internal.h" + +/** + * @brief Pick some initial kmeans cluster centers. + * + * @param blk The image block color data to compress. + * @param texel_count The number of texels in the block. + * @param partition_count The number of partitions in the block. + * @param[out] cluster_centers The initial partition cluster center colors. + */ +static void kmeans_init( + const image_block& blk, + unsigned int texel_count, + unsigned int partition_count, + vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS] +) { + promise(texel_count > 0); + promise(partition_count > 0); + + unsigned int clusters_selected = 0; + float distances[BLOCK_MAX_TEXELS]; + + // Pick a random sample as first cluster center; 145897 from random.org + unsigned int sample = 145897 % texel_count; + vfloat4 center_color = blk.texel(sample); + cluster_centers[clusters_selected] = center_color; + clusters_selected++; + + // Compute the distance to the first cluster center + float distance_sum = 0.0f; + for (unsigned int i = 0; i < texel_count; i++) + { + vfloat4 color = blk.texel(i); + vfloat4 diff = color - center_color; + float distance = dot_s(diff * diff, blk.channel_weight); + distance_sum += distance; + distances[i] = distance; + } + + // More numbers from random.org for weighted-random center selection + const float cluster_cutoffs[9] { + 0.626220f, 0.932770f, 0.275454f, + 0.318558f, 0.240113f, 0.009190f, + 0.347661f, 0.731960f, 0.156391f + }; + + unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2); + + // Pick the remaining samples as needed + while (true) + { + // Pick the next center in a weighted-random fashion. + float summa = 0.0f; + float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++]; + for (sample = 0; sample < texel_count; sample++) + { + summa += distances[sample]; + if (summa >= distance_cutoff) + { + break; + } + } + + // Clamp to a valid range and store the selected cluster center + sample = astc::min(sample, texel_count - 1); + + center_color = blk.texel(sample); + cluster_centers[clusters_selected++] = center_color; + if (clusters_selected >= partition_count) + { + break; + } + + // Compute the distance to the new cluster center, keep the min dist + distance_sum = 0.0f; + for (unsigned int i = 0; i < texel_count; i++) + { + vfloat4 color = blk.texel(i); + vfloat4 diff = color - center_color; + float distance = dot_s(diff * diff, blk.channel_weight); + distance = astc::min(distance, distances[i]); + distance_sum += distance; + distances[i] = distance; + } + } +} + +/** + * @brief Assign texels to clusters, based on a set of chosen center points. + * + * @param blk The image block color data to compress. + * @param texel_count The number of texels in the block. + * @param partition_count The number of partitions in the block. + * @param cluster_centers The partition cluster center colors. + * @param[out] partition_of_texel The partition assigned for each texel. + */ +static void kmeans_assign( + const image_block& blk, + unsigned int texel_count, + unsigned int partition_count, + const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS], + uint8_t partition_of_texel[BLOCK_MAX_TEXELS] +) { + promise(texel_count > 0); + promise(partition_count > 0); + + uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 }; + + // Find the best partition for every texel + for (unsigned int i = 0; i < texel_count; i++) + { + float best_distance = std::numeric_limits<float>::max(); + unsigned int best_partition = 0; + + vfloat4 color = blk.texel(i); + for (unsigned int j = 0; j < partition_count; j++) + { + vfloat4 diff = color - cluster_centers[j]; + float distance = dot_s(diff * diff, blk.channel_weight); + if (distance < best_distance) + { + best_distance = distance; + best_partition = j; + } + } + + partition_of_texel[i] = static_cast<uint8_t>(best_partition); + partition_texel_count[best_partition]++; + } + + // It is possible to get a situation where a partition ends up without any texels. In this case, + // assign texel N to partition N. This is silly, but ensures that every partition retains at + // least one texel. Reassigning a texel in this manner may cause another partition to go empty, + // so if we actually did a reassignment, run the whole loop over again. + bool problem_case; + do + { + problem_case = false; + for (unsigned int i = 0; i < partition_count; i++) + { + if (partition_texel_count[i] == 0) + { + partition_texel_count[partition_of_texel[i]]--; + partition_texel_count[i]++; + partition_of_texel[i] = static_cast<uint8_t>(i); + problem_case = true; + } + } + } while (problem_case); +} + +/** + * @brief Compute new cluster centers based on their center of gravity. + * + * @param blk The image block color data to compress. + * @param texel_count The number of texels in the block. + * @param partition_count The number of partitions in the block. + * @param[out] cluster_centers The new cluster center colors. + * @param partition_of_texel The partition assigned for each texel. + */ +static void kmeans_update( + const image_block& blk, + unsigned int texel_count, + unsigned int partition_count, + vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS], + const uint8_t partition_of_texel[BLOCK_MAX_TEXELS] +) { + promise(texel_count > 0); + promise(partition_count > 0); + + vfloat4 color_sum[BLOCK_MAX_PARTITIONS] { + vfloat4::zero(), + vfloat4::zero(), + vfloat4::zero(), + vfloat4::zero() + }; + + uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 }; + + // Find the center-of-gravity in each cluster + for (unsigned int i = 0; i < texel_count; i++) + { + uint8_t partition = partition_of_texel[i]; + color_sum[partition] += blk.texel(i); + partition_texel_count[partition]++; + } + + // Set the center of gravity to be the new cluster center + for (unsigned int i = 0; i < partition_count; i++) + { + float scale = 1.0f / static_cast<float>(partition_texel_count[i]); + cluster_centers[i] = color_sum[i] * scale; + } +} + +/** + * @brief Compute bit-mismatch for partitioning in 2-partition mode. + * + * @param a The texel assignment bitvector for the block. + * @param b The texel assignment bitvector for the partition table. + * + * @return The number of bit mismatches. + */ +static inline unsigned int partition_mismatch2( + const uint64_t a[2], + const uint64_t b[2] +) { + int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]); + int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]); + return astc::min(v1, v2); +} + +/** + * @brief Compute bit-mismatch for partitioning in 3-partition mode. + * + * @param a The texel assignment bitvector for the block. + * @param b The texel assignment bitvector for the partition table. + * + * @return The number of bit mismatches. + */ +static inline unsigned int partition_mismatch3( + const uint64_t a[3], + const uint64_t b[3] +) { + int p00 = popcount(a[0] ^ b[0]); + int p01 = popcount(a[0] ^ b[1]); + int p02 = popcount(a[0] ^ b[2]); + + int p10 = popcount(a[1] ^ b[0]); + int p11 = popcount(a[1] ^ b[1]); + int p12 = popcount(a[1] ^ b[2]); + + int p20 = popcount(a[2] ^ b[0]); + int p21 = popcount(a[2] ^ b[1]); + int p22 = popcount(a[2] ^ b[2]); + + int s0 = p11 + p22; + int s1 = p12 + p21; + int v0 = astc::min(s0, s1) + p00; + + int s2 = p10 + p22; + int s3 = p12 + p20; + int v1 = astc::min(s2, s3) + p01; + + int s4 = p10 + p21; + int s5 = p11 + p20; + int v2 = astc::min(s4, s5) + p02; + + return astc::min(v0, v1, v2); +} + +/** + * @brief Compute bit-mismatch for partitioning in 4-partition mode. + * + * @param a The texel assignment bitvector for the block. + * @param b The texel assignment bitvector for the partition table. + * + * @return The number of bit mismatches. + */ +static inline unsigned int partition_mismatch4( + const uint64_t a[4], + const uint64_t b[4] +) { + int p00 = popcount(a[0] ^ b[0]); + int p01 = popcount(a[0] ^ b[1]); + int p02 = popcount(a[0] ^ b[2]); + int p03 = popcount(a[0] ^ b[3]); + + int p10 = popcount(a[1] ^ b[0]); + int p11 = popcount(a[1] ^ b[1]); + int p12 = popcount(a[1] ^ b[2]); + int p13 = popcount(a[1] ^ b[3]); + + int p20 = popcount(a[2] ^ b[0]); + int p21 = popcount(a[2] ^ b[1]); + int p22 = popcount(a[2] ^ b[2]); + int p23 = popcount(a[2] ^ b[3]); + + int p30 = popcount(a[3] ^ b[0]); + int p31 = popcount(a[3] ^ b[1]); + int p32 = popcount(a[3] ^ b[2]); + int p33 = popcount(a[3] ^ b[3]); + + int mx23 = astc::min(p22 + p33, p23 + p32); + int mx13 = astc::min(p21 + p33, p23 + p31); + int mx12 = astc::min(p21 + p32, p22 + p31); + int mx03 = astc::min(p20 + p33, p23 + p30); + int mx02 = astc::min(p20 + p32, p22 + p30); + int mx01 = astc::min(p21 + p30, p20 + p31); + + int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12); + int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02); + int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01); + int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12); + + return astc::min(v0, v1, v2, v3); +} + +using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*); + +/** + * @brief Count the partition table mismatches vs the data clustering. + * + * @param bsd The block size information. + * @param partition_count The number of partitions in the block. + * @param bitmaps The block texel partition assignment patterns. + * @param[out] mismatch_counts The array storing per partitioning mismatch counts. + */ +static void count_partition_mismatch_bits( + const block_size_descriptor& bsd, + unsigned int partition_count, + const uint64_t bitmaps[BLOCK_MAX_PARTITIONS], + unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS] +) { + unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1]; + promise(active_count > 0); + + if (partition_count == 2) + { + for (unsigned int i = 0; i < active_count; i++) + { + mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]); + } + } + else if (partition_count == 3) + { + for (unsigned int i = 0; i < active_count; i++) + { + mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]); + } + } + else + { + for (unsigned int i = 0; i < active_count; i++) + { + mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]); + } + } +} + +/** + * @brief Use counting sort on the mismatch array to sort partition candidates. + * + * @param partitioning_count The number of packed partitionings. + * @param mismatch_count Partitioning mismatch counts, in index order. + * @param[out] partition_ordering Partition index values, in mismatch order. + * + * @return The number of active partitions in this selection. + */ +static unsigned int get_partition_ordering_by_mismatch_bits( + unsigned int partitioning_count, + const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS], + unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS] +) { + promise(partitioning_count > 0); + unsigned int mscount[256] { 0 }; + + // Create the histogram of mismatch counts + for (unsigned int i = 0; i < partitioning_count; i++) + { + mscount[mismatch_count[i]]++; + } + + unsigned int active_count = partitioning_count - mscount[255]; + + // Create a running sum from the histogram array + // Cells store previous values only; i.e. exclude self after sum + unsigned int summa = 0; + for (unsigned int i = 0; i < 256; i++) + { + unsigned int cnt = mscount[i]; + mscount[i] = summa; + summa += cnt; + } + + // Use the running sum as the index, incrementing after read to allow + // sequential entries with the same count + for (unsigned int i = 0; i < partitioning_count; i++) + { + unsigned int idx = mscount[mismatch_count[i]]++; + partition_ordering[idx] = i; + } + + return active_count; +} + +/** + * @brief Use k-means clustering to compute a partition ordering for a block.. + * + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param partition_count The desired number of partitions in the block. + * @param[out] partition_ordering The list of recommended partition indices, in priority order. + * + * @return The number of active partitionings in this selection. + */ +static unsigned int compute_kmeans_partition_ordering( + const block_size_descriptor& bsd, + const image_block& blk, + unsigned int partition_count, + unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS] +) { + vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]; + uint8_t texel_partitions[BLOCK_MAX_TEXELS]; + + // Use three passes of k-means clustering to partition the block data + for (unsigned int i = 0; i < 3; i++) + { + if (i == 0) + { + kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers); + } + else + { + kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions); + } + + kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions); + } + + // Construct the block bitmaps of texel assignments to each partition + uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 }; + unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS); + promise(texels_to_process > 0); + for (unsigned int i = 0; i < texels_to_process; i++) + { + unsigned int idx = bsd.kmeans_texels[i]; + bitmaps[texel_partitions[idx]] |= 1ULL << i; + } + + // Count the mismatch between the block and the format's partition tables + unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS]; + count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts); + + // Sort the partitions based on the number of mismatched bits + return get_partition_ordering_by_mismatch_bits( + bsd.partitioning_count_selected[partition_count - 1], + mismatch_counts, partition_ordering); +} + +/** + * @brief Insert a partitioning into an order list of results, sorted by error. + * + * @param max_values The max number of entries in the best result arrays. + * @param this_error The error of the new entry. + * @param this_partition The partition ID of the new entry. + * @param[out] best_errors The array of best error values. + * @param[out] best_partitions The array of best partition values. + */ +static void insert_result( + unsigned int max_values, + float this_error, + unsigned int this_partition, + float* best_errors, + unsigned int* best_partitions) +{ + promise(max_values > 0); + + // Don't bother searching if the current worst error beats the new error + if (this_error >= best_errors[max_values - 1]) + { + return; + } + + // Else insert into the list in error-order + for (unsigned int i = 0; i < max_values; i++) + { + // Existing result is better - move on ... + if (this_error > best_errors[i]) + { + continue; + } + + // Move existing results down one + for (unsigned int j = max_values - 1; j > i; j--) + { + best_errors[j] = best_errors[j - 1]; + best_partitions[j] = best_partitions[j - 1]; + } + + // Insert new result + best_errors[i] = this_error; + best_partitions[i] = this_partition; + break; + } +} + +/* See header for documentation. */ +unsigned int find_best_partition_candidates( + const block_size_descriptor& bsd, + const image_block& blk, + unsigned int partition_count, + unsigned int partition_search_limit, + unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES], + unsigned int requested_candidates +) { + // Constant used to estimate quantization error for a given partitioning; the optimal value for + // this depends on bitrate. These values have been determined empirically. + unsigned int texels_per_block = bsd.texel_count; + float weight_imprecision_estim = 0.055f; + if (texels_per_block <= 20) + { + weight_imprecision_estim = 0.03f; + } + else if (texels_per_block <= 31) + { + weight_imprecision_estim = 0.04f; + } + else if (texels_per_block <= 41) + { + weight_imprecision_estim = 0.05f; + } + + promise(partition_count > 0); + promise(partition_search_limit > 0); + + weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim; + + unsigned int partition_sequence[BLOCK_MAX_PARTITIONINGS]; + unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence); + partition_search_limit = astc::min(partition_search_limit, sequence_len); + requested_candidates = astc::min(partition_search_limit, requested_candidates); + + bool uses_alpha = !blk.is_constant_channel(3); + + // Partitioning errors assuming uncorrelated-chrominance endpoints + float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES]; + unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES]; + + // Partitioning errors assuming same-chrominance endpoints + float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES]; + unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES]; + + for (unsigned int i = 0; i < requested_candidates; i++) + { + uncor_best_errors[i] = ERROR_CALC_DEFAULT; + samec_best_errors[i] = ERROR_CALC_DEFAULT; + } + + if (uses_alpha) + { + for (unsigned int i = 0; i < partition_search_limit; i++) + { + unsigned int partition = partition_sequence[i]; + const auto& pi = bsd.get_raw_partition_info(partition_count, partition); + + // Compute weighting to give to each component in each partition + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + + compute_avgs_and_dirs_4_comp(pi, blk, pms); + + line4 uncor_lines[BLOCK_MAX_PARTITIONS]; + line4 samec_lines[BLOCK_MAX_PARTITIONS]; + + processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS]; + processed_line4 samec_plines[BLOCK_MAX_PARTITIONS]; + + float uncor_line_lens[BLOCK_MAX_PARTITIONS]; + float samec_line_lens[BLOCK_MAX_PARTITIONS]; + + for (unsigned int j = 0; j < partition_count; j++) + { + partition_metrics& pm = pms[j]; + + uncor_lines[j].a = pm.avg; + uncor_lines[j].b = normalize_safe(pm.dir, unit4()); + + uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b); + uncor_plines[j].bs = uncor_lines[j].b; + + samec_lines[j].a = vfloat4::zero(); + samec_lines[j].b = normalize_safe(pm.avg, unit4()); + + samec_plines[j].amod = vfloat4::zero(); + samec_plines[j].bs = samec_lines[j].b; + } + + float uncor_error = 0.0f; + float samec_error = 0.0f; + + compute_error_squared_rgba(pi, + blk, + uncor_plines, + samec_plines, + uncor_line_lens, + samec_line_lens, + uncor_error, + samec_error); + + // Compute an estimate of error introduced by weight quantization imprecision. + // This error is computed as follows, for each partition + // 1: compute the principal-axis vector (full length) in error-space + // 2: convert the principal-axis vector to regular RGB-space + // 3: scale the vector by a constant that estimates average quantization error + // 4: for each texel, square the vector, then do a dot-product with the texel's + // error weight; sum up the results across all texels. + // 4(optimized): square the vector once, then do a dot-product with the average + // texel error, then multiply by the number of texels. + + for (unsigned int j = 0; j < partition_count; j++) + { + float tpp = static_cast<float>(pi.partition_texel_count[j]); + vfloat4 error_weights(tpp * weight_imprecision_estim); + + vfloat4 uncor_vector = uncor_lines[j].b * uncor_line_lens[j]; + vfloat4 samec_vector = samec_lines[j].b * samec_line_lens[j]; + + uncor_error += dot_s(uncor_vector * uncor_vector, error_weights); + samec_error += dot_s(samec_vector * samec_vector, error_weights); + } + + insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions); + insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions); + } + } + else + { + for (unsigned int i = 0; i < partition_search_limit; i++) + { + unsigned int partition = partition_sequence[i]; + const auto& pi = bsd.get_raw_partition_info(partition_count, partition); + + // Compute weighting to give to each component in each partition + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms); + + partition_lines3 plines[BLOCK_MAX_PARTITIONS]; + + for (unsigned int j = 0; j < partition_count; j++) + { + partition_metrics& pm = pms[j]; + partition_lines3& pl = plines[j]; + + pl.uncor_line.a = pm.avg; + pl.uncor_line.b = normalize_safe(pm.dir, unit3()); + + pl.samec_line.a = vfloat4::zero(); + pl.samec_line.b = normalize_safe(pm.avg, unit3()); + + pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b); + pl.uncor_pline.bs = pl.uncor_line.b; + + pl.samec_pline.amod = vfloat4::zero(); + pl.samec_pline.bs = pl.samec_line.b; + } + + float uncor_error = 0.0f; + float samec_error = 0.0f; + + compute_error_squared_rgb(pi, + blk, + plines, + uncor_error, + samec_error); + + // Compute an estimate of error introduced by weight quantization imprecision. + // This error is computed as follows, for each partition + // 1: compute the principal-axis vector (full length) in error-space + // 2: convert the principal-axis vector to regular RGB-space + // 3: scale the vector by a constant that estimates average quantization error + // 4: for each texel, square the vector, then do a dot-product with the texel's + // error weight; sum up the results across all texels. + // 4(optimized): square the vector once, then do a dot-product with the average + // texel error, then multiply by the number of texels. + + for (unsigned int j = 0; j < partition_count; j++) + { + partition_lines3& pl = plines[j]; + + float tpp = static_cast<float>(pi.partition_texel_count[j]); + vfloat4 error_weights(tpp * weight_imprecision_estim); + + vfloat4 uncor_vector = pl.uncor_line.b * pl.uncor_line_len; + vfloat4 samec_vector = pl.samec_line.b * pl.samec_line_len; + + uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights); + samec_error += dot3_s(samec_vector * samec_vector, error_weights); + } + + insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions); + insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions); + } + } + + bool best_is_uncor = uncor_best_partitions[0] > samec_best_partitions[0]; + + unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES]; + for (unsigned int i = 0; i < requested_candidates; i++) + { + if (best_is_uncor) + { + interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index; + interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index; + } + else + { + interleave[2 * i] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index; + interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index; + } + } + + uint64_t bitmasks[1024/64] { 0 }; + unsigned int emitted = 0; + + // Deduplicate the first "requested" entries + for (unsigned int i = 0; i < requested_candidates * 2; i++) + { + unsigned int partition = interleave[i]; + + unsigned int word = partition / 64; + unsigned int bit = partition % 64; + + bool written = bitmasks[word] & (1ull << bit); + + if (!written) + { + best_partitions[emitted] = partition; + bitmasks[word] |= 1ull << bit; + emitted++; + + if (emitted == requested_candidates) + { + break; + } + } + } + + return emitted; +} + +#endif diff --git a/thirdparty/astcenc/astcenc_ideal_endpoints_and_weights.cpp b/thirdparty/astcenc/astcenc_ideal_endpoints_and_weights.cpp new file mode 100644 index 0000000000..5145e08693 --- /dev/null +++ b/thirdparty/astcenc/astcenc_ideal_endpoints_and_weights.cpp @@ -0,0 +1,1663 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for computing color endpoints and texel weights. + */ + +#include <cassert> + +#include "astcenc_internal.h" +#include "astcenc_vecmathlib.h" + +/** + * @brief Compute the infilled weight for N texel indices in a decimated grid. + * + * @param di The weight grid decimation to use. + * @param weights The decimated weight values to use. + * @param index The first texel index to interpolate. + * + * @return The interpolated weight for the given set of SIMD_WIDTH texels. + */ +static vfloat bilinear_infill_vla( + const decimation_info& di, + const float* weights, + unsigned int index +) { + // Load the bilinear filter texel weight indexes in the decimated grid + vint weight_idx0 = vint(di.texel_weights_tr[0] + index); + vint weight_idx1 = vint(di.texel_weights_tr[1] + index); + vint weight_idx2 = vint(di.texel_weights_tr[2] + index); + vint weight_idx3 = vint(di.texel_weights_tr[3] + index); + + // Load the bilinear filter weights from the decimated grid + vfloat weight_val0 = gatherf(weights, weight_idx0); + vfloat weight_val1 = gatherf(weights, weight_idx1); + vfloat weight_val2 = gatherf(weights, weight_idx2); + vfloat weight_val3 = gatherf(weights, weight_idx3); + + // Load the weight contribution factors for each decimated weight + vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index); + vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index); + vfloat tex_weight_float2 = loada(di.texel_weight_contribs_float_tr[2] + index); + vfloat tex_weight_float3 = loada(di.texel_weight_contribs_float_tr[3] + index); + + // Compute the bilinear interpolation to generate the per-texel weight + return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1) + + (weight_val2 * tex_weight_float2 + weight_val3 * tex_weight_float3); +} + +/** + * @brief Compute the infilled weight for N texel indices in a decimated grid. + * + * This is specialized version which computes only two weights per texel for + * encodings that are only decimated in a single axis. + * + * @param di The weight grid decimation to use. + * @param weights The decimated weight values to use. + * @param index The first texel index to interpolate. + * + * @return The interpolated weight for the given set of SIMD_WIDTH texels. + */ +static vfloat bilinear_infill_vla_2( + const decimation_info& di, + const float* weights, + unsigned int index +) { + // Load the bilinear filter texel weight indexes in the decimated grid + vint weight_idx0 = vint(di.texel_weights_tr[0] + index); + vint weight_idx1 = vint(di.texel_weights_tr[1] + index); + + // Load the bilinear filter weights from the decimated grid + vfloat weight_val0 = gatherf(weights, weight_idx0); + vfloat weight_val1 = gatherf(weights, weight_idx1); + + // Load the weight contribution factors for each decimated weight + vfloat tex_weight_float0 = loada(di.texel_weight_contribs_float_tr[0] + index); + vfloat tex_weight_float1 = loada(di.texel_weight_contribs_float_tr[1] + index); + + // Compute the bilinear interpolation to generate the per-texel weight + return (weight_val0 * tex_weight_float0 + weight_val1 * tex_weight_float1); +} + +/** + * @brief Compute the ideal endpoints and weights for 1 color component. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param[out] ei The computed ideal endpoints and weights. + * @param component The color component to compute. + */ +static void compute_ideal_colors_and_weights_1_comp( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei, + unsigned int component +) { + unsigned int partition_count = pi.partition_count; + ei.ep.partition_count = partition_count; + promise(partition_count > 0); + + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + + float error_weight; + const float* data_vr = nullptr; + + assert(component < BLOCK_MAX_COMPONENTS); + switch (component) + { + case 0: + error_weight = blk.channel_weight.lane<0>(); + data_vr = blk.data_r; + break; + case 1: + error_weight = blk.channel_weight.lane<1>(); + data_vr = blk.data_g; + break; + case 2: + error_weight = blk.channel_weight.lane<2>(); + data_vr = blk.data_b; + break; + default: + assert(component == 3); + error_weight = blk.channel_weight.lane<3>(); + data_vr = blk.data_a; + break; + } + + vmask4 sep_mask = vint4::lane_id() == vint4(component); + bool is_constant_wes { true }; + float partition0_len_sq { 0.0f }; + + for (unsigned int i = 0; i < partition_count; i++) + { + float lowvalue { 1e10f }; + float highvalue { -1e10f }; + + unsigned int partition_texel_count = pi.partition_texel_count[i]; + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + float value = data_vr[tix]; + lowvalue = astc::min(value, lowvalue); + highvalue = astc::max(value, highvalue); + } + + if (highvalue <= lowvalue) + { + lowvalue = 0.0f; + highvalue = 1e-7f; + } + + float length = highvalue - lowvalue; + float length_squared = length * length; + float scale = 1.0f / length; + + if (i == 0) + { + partition0_len_sq = length_squared; + } + else + { + is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; + } + + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + float value = (data_vr[tix] - lowvalue) * scale; + value = astc::clamp1f(value); + + ei.weights[tix] = value; + ei.weight_error_scale[tix] = length_squared * error_weight; + assert(!astc::isnan(ei.weight_error_scale[tix])); + } + + ei.ep.endpt0[i] = select(blk.data_min, vfloat4(lowvalue), sep_mask); + ei.ep.endpt1[i] = select(blk.data_max, vfloat4(highvalue), sep_mask); + } + + // Zero initialize any SIMD over-fetch + unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); + for (unsigned int i = texel_count; i < texel_count_simd; i++) + { + ei.weights[i] = 0.0f; + ei.weight_error_scale[i] = 0.0f; + } + + ei.is_constant_weight_error_scale = is_constant_wes; +} + +/** + * @brief Compute the ideal endpoints and weights for 2 color components. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param[out] ei The computed ideal endpoints and weights. + * @param component1 The first color component to compute. + * @param component2 The second color component to compute. + */ +static void compute_ideal_colors_and_weights_2_comp( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei, + int component1, + int component2 +) { + unsigned int partition_count = pi.partition_count; + ei.ep.partition_count = partition_count; + promise(partition_count > 0); + + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + + float error_weight; + const float* data_vr = nullptr; + const float* data_vg = nullptr; + + if (component1 == 0 && component2 == 1) + { + error_weight = hadd_s(blk.channel_weight.swz<0, 1>()) / 2.0f; + + data_vr = blk.data_r; + data_vg = blk.data_g; + } + else if (component1 == 0 && component2 == 2) + { + error_weight = hadd_s(blk.channel_weight.swz<0, 2>()) / 2.0f; + + data_vr = blk.data_r; + data_vg = blk.data_b; + } + else // (component1 == 1 && component2 == 2) + { + assert(component1 == 1 && component2 == 2); + + error_weight = hadd_s(blk.channel_weight.swz<1, 2>()) / 2.0f; + + data_vr = blk.data_g; + data_vg = blk.data_b; + } + + compute_avgs_and_dirs_2_comp(pi, blk, component1, component2, pms); + + bool is_constant_wes { true }; + float partition0_len_sq { 0.0f }; + + vmask4 comp1_mask = vint4::lane_id() == vint4(component1); + vmask4 comp2_mask = vint4::lane_id() == vint4(component2); + + for (unsigned int i = 0; i < partition_count; i++) + { + vfloat4 dir = pms[i].dir; + if (hadd_s(dir) < 0.0f) + { + dir = vfloat4::zero() - dir; + } + + line2 line { pms[i].avg, normalize_safe(dir, unit2()) }; + float lowparam { 1e10f }; + float highparam { -1e10f }; + + unsigned int partition_texel_count = pi.partition_texel_count[i]; + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + vfloat4 point = vfloat2(data_vr[tix], data_vg[tix]); + float param = dot_s(point - line.a, line.b); + ei.weights[tix] = param; + + lowparam = astc::min(param, lowparam); + highparam = astc::max(param, highparam); + } + + // It is possible for a uniform-color partition to produce length=0; + // this causes NaN issues so set to small value to avoid this problem + if (highparam <= lowparam) + { + lowparam = 0.0f; + highparam = 1e-7f; + } + + float length = highparam - lowparam; + float length_squared = length * length; + float scale = 1.0f / length; + + if (i == 0) + { + partition0_len_sq = length_squared; + } + else + { + is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; + } + + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + float idx = (ei.weights[tix] - lowparam) * scale; + idx = astc::clamp1f(idx); + + ei.weights[tix] = idx; + ei.weight_error_scale[tix] = length_squared * error_weight; + assert(!astc::isnan(ei.weight_error_scale[tix])); + } + + vfloat4 lowvalue = line.a + line.b * lowparam; + vfloat4 highvalue = line.a + line.b * highparam; + + vfloat4 ep0 = select(blk.data_min, vfloat4(lowvalue.lane<0>()), comp1_mask); + vfloat4 ep1 = select(blk.data_max, vfloat4(highvalue.lane<0>()), comp1_mask); + + ei.ep.endpt0[i] = select(ep0, vfloat4(lowvalue.lane<1>()), comp2_mask); + ei.ep.endpt1[i] = select(ep1, vfloat4(highvalue.lane<1>()), comp2_mask); + } + + // Zero initialize any SIMD over-fetch + unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); + for (unsigned int i = texel_count; i < texel_count_simd; i++) + { + ei.weights[i] = 0.0f; + ei.weight_error_scale[i] = 0.0f; + } + + ei.is_constant_weight_error_scale = is_constant_wes; +} + +/** + * @brief Compute the ideal endpoints and weights for 3 color components. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param[out] ei The computed ideal endpoints and weights. + * @param omitted_component The color component excluded from the calculation. + */ +static void compute_ideal_colors_and_weights_3_comp( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei, + unsigned int omitted_component +) { + unsigned int partition_count = pi.partition_count; + ei.ep.partition_count = partition_count; + promise(partition_count > 0); + + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + + float error_weight; + const float* data_vr = nullptr; + const float* data_vg = nullptr; + const float* data_vb = nullptr; + if (omitted_component == 0) + { + error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>()); + data_vr = blk.data_g; + data_vg = blk.data_b; + data_vb = blk.data_a; + } + else if (omitted_component == 1) + { + error_weight = hadd_s(blk.channel_weight.swz<0, 2, 3>()); + data_vr = blk.data_r; + data_vg = blk.data_b; + data_vb = blk.data_a; + } + else if (omitted_component == 2) + { + error_weight = hadd_s(blk.channel_weight.swz<0, 1, 3>()); + data_vr = blk.data_r; + data_vg = blk.data_g; + data_vb = blk.data_a; + } + else + { + assert(omitted_component == 3); + + error_weight = hadd_s(blk.channel_weight.swz<0, 1, 2>()); + data_vr = blk.data_r; + data_vg = blk.data_g; + data_vb = blk.data_b; + } + + error_weight = error_weight * (1.0f / 3.0f); + + if (omitted_component == 3) + { + compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms); + } + else + { + compute_avgs_and_dirs_3_comp(pi, blk, omitted_component, pms); + } + + bool is_constant_wes { true }; + float partition0_len_sq { 0.0f }; + + for (unsigned int i = 0; i < partition_count; i++) + { + vfloat4 dir = pms[i].dir; + if (hadd_rgb_s(dir) < 0.0f) + { + dir = vfloat4::zero() - dir; + } + + line3 line { pms[i].avg, normalize_safe(dir, unit3()) }; + float lowparam { 1e10f }; + float highparam { -1e10f }; + + unsigned int partition_texel_count = pi.partition_texel_count[i]; + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + vfloat4 point = vfloat3(data_vr[tix], data_vg[tix], data_vb[tix]); + float param = dot3_s(point - line.a, line.b); + ei.weights[tix] = param; + + lowparam = astc::min(param, lowparam); + highparam = astc::max(param, highparam); + } + + // It is possible for a uniform-color partition to produce length=0; + // this causes NaN issues so set to small value to avoid this problem + if (highparam <= lowparam) + { + lowparam = 0.0f; + highparam = 1e-7f; + } + + float length = highparam - lowparam; + float length_squared = length * length; + float scale = 1.0f / length; + + if (i == 0) + { + partition0_len_sq = length_squared; + } + else + { + is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; + } + + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + float idx = (ei.weights[tix] - lowparam) * scale; + idx = astc::clamp1f(idx); + + ei.weights[tix] = idx; + ei.weight_error_scale[tix] = length_squared * error_weight; + assert(!astc::isnan(ei.weight_error_scale[tix])); + } + + vfloat4 ep0 = line.a + line.b * lowparam; + vfloat4 ep1 = line.a + line.b * highparam; + + vfloat4 bmin = blk.data_min; + vfloat4 bmax = blk.data_max; + + assert(omitted_component < BLOCK_MAX_COMPONENTS); + switch (omitted_component) + { + case 0: + ei.ep.endpt0[i] = vfloat4(bmin.lane<0>(), ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>()); + ei.ep.endpt1[i] = vfloat4(bmax.lane<0>(), ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>()); + break; + case 1: + ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), bmin.lane<1>(), ep0.lane<1>(), ep0.lane<2>()); + ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), bmax.lane<1>(), ep1.lane<1>(), ep1.lane<2>()); + break; + case 2: + ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), bmin.lane<2>(), ep0.lane<2>()); + ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), bmax.lane<2>(), ep1.lane<2>()); + break; + default: + ei.ep.endpt0[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), bmin.lane<3>()); + ei.ep.endpt1[i] = vfloat4(ep1.lane<0>(), ep1.lane<1>(), ep1.lane<2>(), bmax.lane<3>()); + break; + } + } + + // Zero initialize any SIMD over-fetch + unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); + for (unsigned int i = texel_count; i < texel_count_simd; i++) + { + ei.weights[i] = 0.0f; + ei.weight_error_scale[i] = 0.0f; + } + + ei.is_constant_weight_error_scale = is_constant_wes; +} + +/** + * @brief Compute the ideal endpoints and weights for 4 color components. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param[out] ei The computed ideal endpoints and weights. + */ +static void compute_ideal_colors_and_weights_4_comp( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei +) { + const float error_weight = hadd_s(blk.channel_weight) / 4.0f; + + unsigned int partition_count = pi.partition_count; + + unsigned int texel_count = blk.texel_count; + promise(texel_count > 0); + promise(partition_count > 0); + + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + + compute_avgs_and_dirs_4_comp(pi, blk, pms); + + bool is_constant_wes { true }; + float partition0_len_sq { 0.0f }; + + for (unsigned int i = 0; i < partition_count; i++) + { + vfloat4 dir = pms[i].dir; + if (hadd_rgb_s(dir) < 0.0f) + { + dir = vfloat4::zero() - dir; + } + + line4 line { pms[i].avg, normalize_safe(dir, unit4()) }; + float lowparam { 1e10f }; + float highparam { -1e10f }; + + unsigned int partition_texel_count = pi.partition_texel_count[i]; + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + vfloat4 point = blk.texel(tix); + float param = dot_s(point - line.a, line.b); + ei.weights[tix] = param; + + lowparam = astc::min(param, lowparam); + highparam = astc::max(param, highparam); + } + + // It is possible for a uniform-color partition to produce length=0; + // this causes NaN issues so set to small value to avoid this problem + if (highparam <= lowparam) + { + lowparam = 0.0f; + highparam = 1e-7f; + } + + float length = highparam - lowparam; + float length_squared = length * length; + float scale = 1.0f / length; + + if (i == 0) + { + partition0_len_sq = length_squared; + } + else + { + is_constant_wes = is_constant_wes && length_squared == partition0_len_sq; + } + + ei.ep.endpt0[i] = line.a + line.b * lowparam; + ei.ep.endpt1[i] = line.a + line.b * highparam; + + for (unsigned int j = 0; j < partition_texel_count; j++) + { + unsigned int tix = pi.texels_of_partition[i][j]; + float idx = (ei.weights[tix] - lowparam) * scale; + idx = astc::clamp1f(idx); + + ei.weights[tix] = idx; + ei.weight_error_scale[tix] = length_squared * error_weight; + assert(!astc::isnan(ei.weight_error_scale[tix])); + } + } + + // Zero initialize any SIMD over-fetch + unsigned int texel_count_simd = round_up_to_simd_multiple_vla(texel_count); + for (unsigned int i = texel_count; i < texel_count_simd; i++) + { + ei.weights[i] = 0.0f; + ei.weight_error_scale[i] = 0.0f; + } + + ei.is_constant_weight_error_scale = is_constant_wes; +} + +/* See header for documentation. */ +void compute_ideal_colors_and_weights_1plane( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei +) { + bool uses_alpha = !blk.is_constant_channel(3); + + if (uses_alpha) + { + compute_ideal_colors_and_weights_4_comp(blk, pi, ei); + } + else + { + compute_ideal_colors_and_weights_3_comp(blk, pi, ei, 3); + } +} + +/* See header for documentation. */ +void compute_ideal_colors_and_weights_2planes( + const block_size_descriptor& bsd, + const image_block& blk, + unsigned int plane2_component, + endpoints_and_weights& ei1, + endpoints_and_weights& ei2 +) { + const auto& pi = bsd.get_partition_info(1, 0); + bool uses_alpha = !blk.is_constant_channel(3); + + assert(plane2_component < BLOCK_MAX_COMPONENTS); + switch (plane2_component) + { + case 0: // Separate weights for red + if (uses_alpha) + { + compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 0); + } + else + { + compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 1, 2); + } + compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 0); + break; + + case 1: // Separate weights for green + if (uses_alpha) + { + compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 1); + } + else + { + compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 2); + } + compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 1); + break; + + case 2: // Separate weights for blue + if (uses_alpha) + { + compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 2); + } + else + { + compute_ideal_colors_and_weights_2_comp(blk, pi, ei1, 0, 1); + } + compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 2); + break; + + default: // Separate weights for alpha + assert(uses_alpha); + compute_ideal_colors_and_weights_3_comp(blk, pi, ei1, 3); + compute_ideal_colors_and_weights_1_comp(blk, pi, ei2, 3); + break; + } +} + +/* See header for documentation. */ +float compute_error_of_weight_set_1plane( + const endpoints_and_weights& eai, + const decimation_info& di, + const float* dec_weight_quant_uvalue +) { + vfloatacc error_summav = vfloatacc::zero(); + unsigned int texel_count = di.texel_count; + promise(texel_count > 0); + + // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized + if (di.max_texel_weight_count > 2) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values = bilinear_infill_vla(di, dec_weight_quant_uvalue, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values = loada(eai.weights + i); + vfloat diff = current_values - actual_values; + vfloat significance = loada(eai.weight_error_scale + i); + vfloat error = diff * diff * significance; + + haccumulate(error_summav, error); + } + } + else if (di.max_texel_weight_count > 1) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values = bilinear_infill_vla_2(di, dec_weight_quant_uvalue, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values = loada(eai.weights + i); + vfloat diff = current_values - actual_values; + vfloat significance = loada(eai.weight_error_scale + i); + vfloat error = diff * diff * significance; + + haccumulate(error_summav, error); + } + } + else + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Load the weight set directly, without interpolation + vfloat current_values = loada(dec_weight_quant_uvalue + i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values = loada(eai.weights + i); + vfloat diff = current_values - actual_values; + vfloat significance = loada(eai.weight_error_scale + i); + vfloat error = diff * diff * significance; + + haccumulate(error_summav, error); + } + } + + // Resolve the final scalar accumulator sum + return hadd_s(error_summav); +} + +/* See header for documentation. */ +float compute_error_of_weight_set_2planes( + const endpoints_and_weights& eai1, + const endpoints_and_weights& eai2, + const decimation_info& di, + const float* dec_weight_quant_uvalue_plane1, + const float* dec_weight_quant_uvalue_plane2 +) { + vfloatacc error_summav = vfloatacc::zero(); + unsigned int texel_count = di.texel_count; + promise(texel_count > 0); + + // Process SIMD-width chunks, safe to over-fetch - the extra space is zero initialized + if (di.max_texel_weight_count > 2) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Plane 1 + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values1 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane1, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values1 = loada(eai1.weights + i); + vfloat diff = current_values1 - actual_values1; + vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); + + // Plane 2 + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values2 = bilinear_infill_vla(di, dec_weight_quant_uvalue_plane2, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values2 = loada(eai2.weights + i); + diff = current_values2 - actual_values2; + vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); + + haccumulate(error_summav, error1 + error2); + } + } + else if (di.max_texel_weight_count > 1) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Plane 1 + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values1 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane1, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values1 = loada(eai1.weights + i); + vfloat diff = current_values1 - actual_values1; + vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); + + // Plane 2 + // Compute the bilinear interpolation of the decimated weight grid + vfloat current_values2 = bilinear_infill_vla_2(di, dec_weight_quant_uvalue_plane2, i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values2 = loada(eai2.weights + i); + diff = current_values2 - actual_values2; + vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); + + haccumulate(error_summav, error1 + error2); + } + } + else + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + // Plane 1 + // Load the weight set directly, without interpolation + vfloat current_values1 = loada(dec_weight_quant_uvalue_plane1 + i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values1 = loada(eai1.weights + i); + vfloat diff = current_values1 - actual_values1; + vfloat error1 = diff * diff * loada(eai1.weight_error_scale + i); + + // Plane 2 + // Load the weight set directly, without interpolation + vfloat current_values2 = loada(dec_weight_quant_uvalue_plane2 + i); + + // Compute the error between the computed value and the ideal weight + vfloat actual_values2 = loada(eai2.weights + i); + diff = current_values2 - actual_values2; + vfloat error2 = diff * diff * loada(eai2.weight_error_scale + i); + + haccumulate(error_summav, error1 + error2); + } + } + + // Resolve the final scalar accumulator sum + return hadd_s(error_summav); +} + +/* See header for documentation. */ +void compute_ideal_weights_for_decimation( + const endpoints_and_weights& ei, + const decimation_info& di, + float* dec_weight_ideal_value +) { + unsigned int texel_count = di.texel_count; + unsigned int weight_count = di.weight_count; + bool is_direct = texel_count == weight_count; + promise(texel_count > 0); + promise(weight_count > 0); + + // Ensure that the end of the output arrays that are used for SIMD paths later are filled so we + // can safely run SIMD elsewhere without a loop tail. Note that this is always safe as weight + // arrays always contain space for 64 elements + unsigned int prev_weight_count_simd = round_down_to_simd_multiple_vla(weight_count - 1); + storea(vfloat::zero(), dec_weight_ideal_value + prev_weight_count_simd); + + // If we have a 1:1 mapping just shortcut the computation. Transfer enough to also copy the + // zero-initialized SIMD over-fetch region + if (is_direct) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight(ei.weights + i); + storea(weight, dec_weight_ideal_value + i); + } + + return; + } + + // Otherwise compute an estimate and perform single refinement iteration + alignas(ASTCENC_VECALIGN) float infilled_weights[BLOCK_MAX_TEXELS]; + + // Compute an initial average for each decimated weight + bool constant_wes = ei.is_constant_weight_error_scale; + vfloat weight_error_scale(ei.weight_error_scale[0]); + + // This overshoots - this is OK as we initialize the array tails in the + // decimation table structures to safe values ... + for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + // Start with a small value to avoid div-by-zero later + vfloat weight_weight(1e-10f); + vfloat initial_weight = vfloat::zero(); + + // Accumulate error weighting of all the texels using this weight + vint weight_texel_count(di.weight_texel_count + i); + unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); + promise(max_texel_count > 0); + + for (unsigned int j = 0; j < max_texel_count; j++) + { + vint texel(di.weight_texels_tr[j] + i); + vfloat weight = loada(di.weights_texel_contribs_tr[j] + i); + + if (!constant_wes) + { + weight_error_scale = gatherf(ei.weight_error_scale, texel); + } + + vfloat contrib_weight = weight * weight_error_scale; + + weight_weight += contrib_weight; + initial_weight += gatherf(ei.weights, texel) * contrib_weight; + } + + storea(initial_weight / weight_weight, dec_weight_ideal_value + i); + } + + // Populate the interpolated weight grid based on the initial average + // Process SIMD-width texel coordinates at at time while we can. Safe to + // over-process full SIMD vectors - the tail is zeroed. + if (di.max_texel_weight_count <= 2) + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla_2(di, dec_weight_ideal_value, i); + storea(weight, infilled_weights + i); + } + } + else + { + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla(di, dec_weight_ideal_value, i); + storea(weight, infilled_weights + i); + } + } + + // Perform a single iteration of refinement + // Empirically determined step size; larger values don't help but smaller drops image quality + constexpr float stepsize = 0.25f; + constexpr float chd_scale = -WEIGHTS_TEXEL_SUM; + + for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight_val = loada(dec_weight_ideal_value + i); + + // Accumulate error weighting of all the texels using this weight + // Start with a small value to avoid div-by-zero later + vfloat error_change0(1e-10f); + vfloat error_change1(0.0f); + + // Accumulate error weighting of all the texels using this weight + vint weight_texel_count(di.weight_texel_count + i); + unsigned int max_texel_count = hmax(weight_texel_count).lane<0>(); + promise(max_texel_count > 0); + + for (unsigned int j = 0; j < max_texel_count; j++) + { + vint texel(di.weight_texels_tr[j] + i); + vfloat contrib_weight = loada(di.weights_texel_contribs_tr[j] + i); + + if (!constant_wes) + { + weight_error_scale = gatherf(ei.weight_error_scale, texel); + } + + vfloat scale = weight_error_scale * contrib_weight; + vfloat old_weight = gatherf(infilled_weights, texel); + vfloat ideal_weight = gatherf(ei.weights, texel); + + error_change0 += contrib_weight * scale; + error_change1 += (old_weight - ideal_weight) * scale; + } + + vfloat step = (error_change1 * chd_scale) / error_change0; + step = clamp(-stepsize, stepsize, step); + + // Update the weight; note this can store negative values + storea(weight_val + step, dec_weight_ideal_value + i); + } +} + +/* See header for documentation. */ +void compute_quantized_weights_for_decimation( + const decimation_info& di, + float low_bound, + float high_bound, + const float* dec_weight_ideal_value, + float* weight_set_out, + uint8_t* quantized_weight_set, + quant_method quant_level +) { + int weight_count = di.weight_count; + promise(weight_count > 0); + const quant_and_transfer_table& qat = quant_and_xfer_tables[quant_level]; + + // The available quant levels, stored with a minus 1 bias + static const float quant_levels_m1[12] { + 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 7.0f, 9.0f, 11.0f, 15.0f, 19.0f, 23.0f, 31.0f + }; + + vint steps_m1(get_quant_level(quant_level) - 1); + float quant_level_m1 = quant_levels_m1[quant_level]; + + // Quantize the weight set using both the specified low/high bounds and standard 0..1 bounds + + // TODO: Oddity to investigate; triggered by test in issue #265. + if (high_bound <= low_bound) + { + low_bound = 0.0f; + high_bound = 1.0f; + } + + float rscale = high_bound - low_bound; + float scale = 1.0f / rscale; + + float scaled_low_bound = low_bound * scale; + rscale *= 1.0f / 64.0f; + + vfloat scalev(scale); + vfloat scaled_low_boundv(scaled_low_bound); + vfloat quant_level_m1v(quant_level_m1); + vfloat rscalev(rscale); + vfloat low_boundv(low_bound); + + // This runs to the rounded-up SIMD size, which is safe as the loop tail is filled with known + // safe data in compute_ideal_weights_for_decimation and arrays are always 64 elements + if (get_quant_level(quant_level) <= 16) + { + vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant)); + vint tab0p; + vtable_prepare(tab0, tab0p); + + for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv; + ix = clampzo(ix); + + // Look up the two closest indexes and return the one that was closest + vfloat ix1 = ix * quant_level_m1v; + + vint weightl = float_to_int(ix1); + vint weighth = min(weightl + vint(1), steps_m1); + + vint ixli = vtable_8bt_32bi(tab0p, weightl); + vint ixhi = vtable_8bt_32bi(tab0p, weighth); + + vfloat ixl = int_to_float(ixli); + vfloat ixh = int_to_float(ixhi); + + vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix); + vint weight = select(ixli, ixhi, mask); + ixl = select(ixl, ixh, mask); + + // Invert the weight-scaling that was done initially + storea(ixl * rscalev + low_boundv, weight_set_out + i); + vint scn = pack_low_bytes(weight); + store_nbytes(scn, quantized_weight_set + i); + } + } + else + { + vint4 tab0(reinterpret_cast<const int*>(qat.quant_to_unquant)); + vint4 tab1(reinterpret_cast<const int*>(qat.quant_to_unquant + 16)); + vint tab0p, tab1p; + vtable_prepare(tab0, tab1, tab0p, tab1p); + + for (int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat ix = loada(dec_weight_ideal_value + i) * scalev - scaled_low_boundv; + ix = clampzo(ix); + + // Look up the two closest indexes and return the one that was closest + vfloat ix1 = ix * quant_level_m1v; + + vint weightl = float_to_int(ix1); + vint weighth = min(weightl + vint(1), steps_m1); + + vint ixli = vtable_8bt_32bi(tab0p, tab1p, weightl); + vint ixhi = vtable_8bt_32bi(tab0p, tab1p, weighth); + + vfloat ixl = int_to_float(ixli); + vfloat ixh = int_to_float(ixhi); + + vmask mask = (ixl + ixh) < (vfloat(128.0f) * ix); + vint weight = select(ixli, ixhi, mask); + ixl = select(ixl, ixh, mask); + + // Invert the weight-scaling that was done initially + storea(ixl * rscalev + low_boundv, weight_set_out + i); + vint scn = pack_low_bytes(weight); + store_nbytes(scn, quantized_weight_set + i); + } + } +} + +/** + * @brief Compute the RGB + offset for a HDR endpoint mode #7. + * + * Since the matrix needed has a regular structure we can simplify the inverse calculation. This + * gives us ~24 multiplications vs. 96 for a generic inverse. + * + * mat[0] = vfloat4(rgba_ws.x, 0.0f, 0.0f, wght_ws.x); + * mat[1] = vfloat4( 0.0f, rgba_ws.y, 0.0f, wght_ws.y); + * mat[2] = vfloat4( 0.0f, 0.0f, rgba_ws.z, wght_ws.z); + * mat[3] = vfloat4(wght_ws.x, wght_ws.y, wght_ws.z, psum); + * mat = invert(mat); + * + * @param rgba_weight_sum Sum of partition component error weights. + * @param weight_weight_sum Sum of partition component error weights * texel weight. + * @param rgbq_sum Sum of partition component error weights * texel weight * color data. + * @param psum Sum of RGB color weights * texel weight^2. + */ +static inline vfloat4 compute_rgbo_vector( + vfloat4 rgba_weight_sum, + vfloat4 weight_weight_sum, + vfloat4 rgbq_sum, + float psum +) { + float X = rgba_weight_sum.lane<0>(); + float Y = rgba_weight_sum.lane<1>(); + float Z = rgba_weight_sum.lane<2>(); + float P = weight_weight_sum.lane<0>(); + float Q = weight_weight_sum.lane<1>(); + float R = weight_weight_sum.lane<2>(); + float S = psum; + + float PP = P * P; + float QQ = Q * Q; + float RR = R * R; + + float SZmRR = S * Z - RR; + float DT = SZmRR * Y - Z * QQ; + float YP = Y * P; + float QX = Q * X; + float YX = Y * X; + float mZYP = -Z * YP; + float mZQX = -Z * QX; + float mRYX = -R * YX; + float ZQP = Z * Q * P; + float RYP = R * YP; + float RQX = R * QX; + + // Compute the reciprocal of matrix determinant + float rdet = 1.0f / (DT * X + mZYP * P); + + // Actually compute the adjugate, and then apply 1/det separately + vfloat4 mat0(DT, ZQP, RYP, mZYP); + vfloat4 mat1(ZQP, SZmRR * X - Z * PP, RQX, mZQX); + vfloat4 mat2(RYP, RQX, (S * Y - QQ) * X - Y * PP, mRYX); + vfloat4 mat3(mZYP, mZQX, mRYX, Z * YX); + vfloat4 vect = rgbq_sum * rdet; + + return vfloat4(dot_s(mat0, vect), + dot_s(mat1, vect), + dot_s(mat2, vect), + dot_s(mat3, vect)); +} + +/* See header for documentation. */ +void recompute_ideal_colors_1plane( + const image_block& blk, + const partition_info& pi, + const decimation_info& di, + const uint8_t* dec_weights_uquant, + endpoints& ep, + vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS], + vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS] +) { + unsigned int weight_count = di.weight_count; + unsigned int total_texel_count = blk.texel_count; + unsigned int partition_count = pi.partition_count; + + promise(weight_count > 0); + promise(total_texel_count > 0); + promise(partition_count > 0); + + alignas(ASTCENC_VECALIGN) float dec_weight[BLOCK_MAX_WEIGHTS]; + for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + vint unquant_value(dec_weights_uquant + i); + vfloat unquant_valuef = int_to_float(unquant_value) * vfloat(1.0f / 64.0f); + storea(unquant_valuef, dec_weight + i); + } + + alignas(ASTCENC_VECALIGN) float undec_weight[BLOCK_MAX_TEXELS]; + float* undec_weight_ref; + if (di.max_texel_weight_count == 1) + { + undec_weight_ref = dec_weight; + } + else if (di.max_texel_weight_count <= 2) + { + for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla_2(di, dec_weight, i); + storea(weight, undec_weight + i); + } + + undec_weight_ref = undec_weight; + } + else + { + for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla(di, dec_weight, i); + storea(weight, undec_weight + i); + } + + undec_weight_ref = undec_weight; + } + + vfloat4 rgba_sum(blk.data_mean * static_cast<float>(blk.texel_count)); + + for (unsigned int i = 0; i < partition_count; i++) + { + unsigned int texel_count = pi.partition_texel_count[i]; + const uint8_t *texel_indexes = pi.texels_of_partition[i]; + + // Only compute a partition mean if more than one partition + if (partition_count > 1) + { + rgba_sum = vfloat4::zero(); + promise(texel_count > 0); + for (unsigned int j = 0; j < texel_count; j++) + { + unsigned int tix = texel_indexes[j]; + rgba_sum += blk.texel(tix); + } + } + + rgba_sum = rgba_sum * blk.channel_weight; + vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f); + vfloat4 scale_dir = normalize((rgba_sum / rgba_weight_sum).swz<0, 1, 2>()); + + float scale_max = 0.0f; + float scale_min = 1e10f; + + float wmin1 = 1.0f; + float wmax1 = 0.0f; + + float left_sum_s = 0.0f; + float middle_sum_s = 0.0f; + float right_sum_s = 0.0f; + + vfloat4 color_vec_x = vfloat4::zero(); + vfloat4 color_vec_y = vfloat4::zero(); + + vfloat4 scale_vec = vfloat4::zero(); + + float weight_weight_sum_s = 1e-17f; + + vfloat4 color_weight = blk.channel_weight; + float ls_weight = hadd_rgb_s(color_weight); + + for (unsigned int j = 0; j < texel_count; j++) + { + unsigned int tix = texel_indexes[j]; + vfloat4 rgba = blk.texel(tix); + + float idx0 = undec_weight_ref[tix]; + + float om_idx0 = 1.0f - idx0; + wmin1 = astc::min(idx0, wmin1); + wmax1 = astc::max(idx0, wmax1); + + float scale = dot3_s(scale_dir, rgba); + scale_min = astc::min(scale, scale_min); + scale_max = astc::max(scale, scale_max); + + left_sum_s += om_idx0 * om_idx0; + middle_sum_s += om_idx0 * idx0; + right_sum_s += idx0 * idx0; + weight_weight_sum_s += idx0; + + vfloat4 color_idx(idx0); + vfloat4 cwprod = rgba; + vfloat4 cwiprod = cwprod * color_idx; + + color_vec_y += cwiprod; + color_vec_x += cwprod - cwiprod; + + scale_vec += vfloat2(om_idx0, idx0) * (scale * ls_weight); + } + + vfloat4 left_sum = vfloat4(left_sum_s) * color_weight; + vfloat4 middle_sum = vfloat4(middle_sum_s) * color_weight; + vfloat4 right_sum = vfloat4(right_sum_s) * color_weight; + vfloat4 lmrs_sum = vfloat3(left_sum_s, middle_sum_s, right_sum_s) * ls_weight; + + color_vec_x = color_vec_x * color_weight; + color_vec_y = color_vec_y * color_weight; + + // Initialize the luminance and scale vectors with a reasonable default + float scalediv = scale_min / astc::max(scale_max, 1e-10f); + scalediv = astc::clamp1f(scalediv); + + vfloat4 sds = scale_dir * scale_max; + + rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); + + if (wmin1 >= wmax1 * 0.999f) + { + // If all weights in the partition were equal, then just take average of all colors in + // the partition and use that as both endpoint colors + vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; + + vmask4 notnan_mask = avg == avg; + ep.endpt0[i] = select(ep.endpt0[i], avg, notnan_mask); + ep.endpt1[i] = select(ep.endpt1[i], avg, notnan_mask); + + rgbs_vectors[i] = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); + } + else + { + // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given + // set of texel weights and pixel colors + vfloat4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum); + vfloat4 color_rdet1 = 1.0f / color_det1; + + float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); + float ls_rdet1 = 1.0f / ls_det1; + + vfloat4 color_mss1 = (left_sum * left_sum) + + (2.0f * middle_sum * middle_sum) + + (right_sum * right_sum); + + float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) + + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) + + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); + + vfloat4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1; + vfloat4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1; + + vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); + vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); + vmask4 full_mask = det_mask & notnan_mask; + + ep.endpt0[i] = select(ep.endpt0[i], ep0, full_mask); + ep.endpt1[i] = select(ep.endpt1[i], ep1, full_mask); + + float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; + float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; + + if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) + { + float scalediv2 = scale_ep0 / scale_ep1; + vfloat4 sdsm = scale_dir * scale_ep1; + rgbs_vectors[i] = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); + } + } + + // Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR + if (blk.rgb_lns[0] || blk.alpha_lns[0]) + { + vfloat4 weight_weight_sum = vfloat4(weight_weight_sum_s) * color_weight; + float psum = right_sum_s * hadd_rgb_s(color_weight); + + vfloat4 rgbq_sum = color_vec_x + color_vec_y; + rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); + + vfloat4 rgbovec = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); + rgbo_vectors[i] = rgbovec; + + // We can get a failure due to the use of a singular (non-invertible) matrix + // If it failed, compute rgbo_vectors[] with a different method ... + if (astc::isnan(dot_s(rgbovec, rgbovec))) + { + vfloat4 v0 = ep.endpt0[i]; + vfloat4 v1 = ep.endpt1[i]; + + float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); + avgdif = astc::max(avgdif, 0.0f); + + vfloat4 avg = (v0 + v1) * 0.5f; + vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; + rgbo_vectors[i] = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); + } + } + } +} + +/* See header for documentation. */ +void recompute_ideal_colors_2planes( + const image_block& blk, + const block_size_descriptor& bsd, + const decimation_info& di, + const uint8_t* dec_weights_uquant_plane1, + const uint8_t* dec_weights_uquant_plane2, + endpoints& ep, + vfloat4& rgbs_vector, + vfloat4& rgbo_vector, + int plane2_component +) { + unsigned int weight_count = di.weight_count; + unsigned int total_texel_count = blk.texel_count; + + promise(total_texel_count > 0); + promise(weight_count > 0); + + alignas(ASTCENC_VECALIGN) float dec_weight_plane1[BLOCK_MAX_WEIGHTS_2PLANE]; + alignas(ASTCENC_VECALIGN) float dec_weight_plane2[BLOCK_MAX_WEIGHTS_2PLANE]; + + assert(weight_count <= BLOCK_MAX_WEIGHTS_2PLANE); + + for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + vint unquant_value1(dec_weights_uquant_plane1 + i); + vfloat unquant_value1f = int_to_float(unquant_value1) * vfloat(1.0f / 64.0f); + storea(unquant_value1f, dec_weight_plane1 + i); + + vint unquant_value2(dec_weights_uquant_plane2 + i); + vfloat unquant_value2f = int_to_float(unquant_value2) * vfloat(1.0f / 64.0f); + storea(unquant_value2f, dec_weight_plane2 + i); + } + + alignas(ASTCENC_VECALIGN) float undec_weight_plane1[BLOCK_MAX_TEXELS]; + alignas(ASTCENC_VECALIGN) float undec_weight_plane2[BLOCK_MAX_TEXELS]; + + float* undec_weight_plane1_ref; + float* undec_weight_plane2_ref; + + if (di.max_texel_weight_count == 1) + { + undec_weight_plane1_ref = dec_weight_plane1; + undec_weight_plane2_ref = dec_weight_plane2; + } + else if (di.max_texel_weight_count <= 2) + { + for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla_2(di, dec_weight_plane1, i); + storea(weight, undec_weight_plane1 + i); + + weight = bilinear_infill_vla_2(di, dec_weight_plane2, i); + storea(weight, undec_weight_plane2 + i); + } + + undec_weight_plane1_ref = undec_weight_plane1; + undec_weight_plane2_ref = undec_weight_plane2; + } + else + { + for (unsigned int i = 0; i < total_texel_count; i += ASTCENC_SIMD_WIDTH) + { + vfloat weight = bilinear_infill_vla(di, dec_weight_plane1, i); + storea(weight, undec_weight_plane1 + i); + + weight = bilinear_infill_vla(di, dec_weight_plane2, i); + storea(weight, undec_weight_plane2 + i); + } + + undec_weight_plane1_ref = undec_weight_plane1; + undec_weight_plane2_ref = undec_weight_plane2; + } + + unsigned int texel_count = bsd.texel_count; + vfloat4 rgba_weight_sum = max(blk.channel_weight * static_cast<float>(texel_count), 1e-17f); + vfloat4 scale_dir = normalize(blk.data_mean.swz<0, 1, 2>()); + + float scale_max = 0.0f; + float scale_min = 1e10f; + + float wmin1 = 1.0f; + float wmax1 = 0.0f; + + float wmin2 = 1.0f; + float wmax2 = 0.0f; + + float left1_sum_s = 0.0f; + float middle1_sum_s = 0.0f; + float right1_sum_s = 0.0f; + + float left2_sum_s = 0.0f; + float middle2_sum_s = 0.0f; + float right2_sum_s = 0.0f; + + vfloat4 color_vec_x = vfloat4::zero(); + vfloat4 color_vec_y = vfloat4::zero(); + + vfloat4 scale_vec = vfloat4::zero(); + + vfloat4 weight_weight_sum = vfloat4(1e-17f); + + vmask4 p2_mask = vint4::lane_id() == vint4(plane2_component); + vfloat4 color_weight = blk.channel_weight; + float ls_weight = hadd_rgb_s(color_weight); + + for (unsigned int j = 0; j < texel_count; j++) + { + vfloat4 rgba = blk.texel(j); + + float idx0 = undec_weight_plane1_ref[j]; + + float om_idx0 = 1.0f - idx0; + wmin1 = astc::min(idx0, wmin1); + wmax1 = astc::max(idx0, wmax1); + + float scale = dot3_s(scale_dir, rgba); + scale_min = astc::min(scale, scale_min); + scale_max = astc::max(scale, scale_max); + + left1_sum_s += om_idx0 * om_idx0; + middle1_sum_s += om_idx0 * idx0; + right1_sum_s += idx0 * idx0; + + float idx1 = undec_weight_plane2_ref[j]; + + float om_idx1 = 1.0f - idx1; + wmin2 = astc::min(idx1, wmin2); + wmax2 = astc::max(idx1, wmax2); + + left2_sum_s += om_idx1 * om_idx1; + middle2_sum_s += om_idx1 * idx1; + right2_sum_s += idx1 * idx1; + + vfloat4 color_idx = select(vfloat4(idx0), vfloat4(idx1), p2_mask); + + vfloat4 cwprod = rgba; + vfloat4 cwiprod = cwprod * color_idx; + + color_vec_y += cwiprod; + color_vec_x += cwprod - cwiprod; + + scale_vec += vfloat2(om_idx0, idx0) * (ls_weight * scale); + weight_weight_sum += color_idx; + } + + vfloat4 left1_sum = vfloat4(left1_sum_s) * color_weight; + vfloat4 middle1_sum = vfloat4(middle1_sum_s) * color_weight; + vfloat4 right1_sum = vfloat4(right1_sum_s) * color_weight; + vfloat4 lmrs_sum = vfloat3(left1_sum_s, middle1_sum_s, right1_sum_s) * ls_weight; + + vfloat4 left2_sum = vfloat4(left2_sum_s) * color_weight; + vfloat4 middle2_sum = vfloat4(middle2_sum_s) * color_weight; + vfloat4 right2_sum = vfloat4(right2_sum_s) * color_weight; + + color_vec_x = color_vec_x * color_weight; + color_vec_y = color_vec_y * color_weight; + + // Initialize the luminance and scale vectors with a reasonable default + float scalediv = scale_min / astc::max(scale_max, 1e-10f); + scalediv = astc::clamp1f(scalediv); + + vfloat4 sds = scale_dir * scale_max; + + rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), scalediv); + + if (wmin1 >= wmax1 * 0.999f) + { + // If all weights in the partition were equal, then just take average of all colors in + // the partition and use that as both endpoint colors + vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; + + vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); + vmask4 notnan_mask = avg == avg; + vmask4 full_mask = p1_mask & notnan_mask; + + ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask); + ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask); + + rgbs_vector = vfloat4(sds.lane<0>(), sds.lane<1>(), sds.lane<2>(), 1.0f); + } + else + { + // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given + // set of texel weights and pixel colors + vfloat4 color_det1 = (left1_sum * right1_sum) - (middle1_sum * middle1_sum); + vfloat4 color_rdet1 = 1.0f / color_det1; + + float ls_det1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<2>()) - (lmrs_sum.lane<1>() * lmrs_sum.lane<1>()); + float ls_rdet1 = 1.0f / ls_det1; + + vfloat4 color_mss1 = (left1_sum * left1_sum) + + (2.0f * middle1_sum * middle1_sum) + + (right1_sum * right1_sum); + + float ls_mss1 = (lmrs_sum.lane<0>() * lmrs_sum.lane<0>()) + + (2.0f * lmrs_sum.lane<1>() * lmrs_sum.lane<1>()) + + (lmrs_sum.lane<2>() * lmrs_sum.lane<2>()); + + vfloat4 ep0 = (right1_sum * color_vec_x - middle1_sum * color_vec_y) * color_rdet1; + vfloat4 ep1 = (left1_sum * color_vec_y - middle1_sum * color_vec_x) * color_rdet1; + + float scale_ep0 = (lmrs_sum.lane<2>() * scale_vec.lane<0>() - lmrs_sum.lane<1>() * scale_vec.lane<1>()) * ls_rdet1; + float scale_ep1 = (lmrs_sum.lane<0>() * scale_vec.lane<1>() - lmrs_sum.lane<1>() * scale_vec.lane<0>()) * ls_rdet1; + + vmask4 p1_mask = vint4::lane_id() != vint4(plane2_component); + vmask4 det_mask = abs(color_det1) > (color_mss1 * 1e-4f); + vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); + vmask4 full_mask = p1_mask & det_mask & notnan_mask; + + ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask); + ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask); + + if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1) + { + float scalediv2 = scale_ep0 / scale_ep1; + vfloat4 sdsm = scale_dir * scale_ep1; + rgbs_vector = vfloat4(sdsm.lane<0>(), sdsm.lane<1>(), sdsm.lane<2>(), scalediv2); + } + } + + if (wmin2 >= wmax2 * 0.999f) + { + // If all weights in the partition were equal, then just take average of all colors in + // the partition and use that as both endpoint colors + vfloat4 avg = (color_vec_x + color_vec_y) / rgba_weight_sum; + + vmask4 notnan_mask = avg == avg; + vmask4 full_mask = p2_mask & notnan_mask; + + ep.endpt0[0] = select(ep.endpt0[0], avg, full_mask); + ep.endpt1[0] = select(ep.endpt1[0], avg, full_mask); + } + else + { + // Otherwise, complete the analytic calculation of ideal-endpoint-values for the given + // set of texel weights and pixel colors + vfloat4 color_det2 = (left2_sum * right2_sum) - (middle2_sum * middle2_sum); + vfloat4 color_rdet2 = 1.0f / color_det2; + + vfloat4 color_mss2 = (left2_sum * left2_sum) + + (2.0f * middle2_sum * middle2_sum) + + (right2_sum * right2_sum); + + vfloat4 ep0 = (right2_sum * color_vec_x - middle2_sum * color_vec_y) * color_rdet2; + vfloat4 ep1 = (left2_sum * color_vec_y - middle2_sum * color_vec_x) * color_rdet2; + + vmask4 det_mask = abs(color_det2) > (color_mss2 * 1e-4f); + vmask4 notnan_mask = (ep0 == ep0) & (ep1 == ep1); + vmask4 full_mask = p2_mask & det_mask & notnan_mask; + + ep.endpt0[0] = select(ep.endpt0[0], ep0, full_mask); + ep.endpt1[0] = select(ep.endpt1[0], ep1, full_mask); + } + + // Calculations specific to mode #7, the HDR RGB-scale mode - skip if known LDR + if (blk.rgb_lns[0] || blk.alpha_lns[0]) + { + weight_weight_sum = weight_weight_sum * color_weight; + float psum = dot3_s(select(right1_sum, right2_sum, p2_mask), color_weight); + + vfloat4 rgbq_sum = color_vec_x + color_vec_y; + rgbq_sum.set_lane<3>(hadd_rgb_s(color_vec_y)); + + rgbo_vector = compute_rgbo_vector(rgba_weight_sum, weight_weight_sum, rgbq_sum, psum); + + // We can get a failure due to the use of a singular (non-invertible) matrix + // If it failed, compute rgbo_vectors[] with a different method ... + if (astc::isnan(dot_s(rgbo_vector, rgbo_vector))) + { + vfloat4 v0 = ep.endpt0[0]; + vfloat4 v1 = ep.endpt1[0]; + + float avgdif = hadd_rgb_s(v1 - v0) * (1.0f / 3.0f); + avgdif = astc::max(avgdif, 0.0f); + + vfloat4 avg = (v0 + v1) * 0.5f; + vfloat4 ep0 = avg - vfloat4(avgdif) * 0.5f; + + rgbo_vector = vfloat4(ep0.lane<0>(), ep0.lane<1>(), ep0.lane<2>(), avgdif); + } + } +} + +#endif diff --git a/thirdparty/astcenc/astcenc_image.cpp b/thirdparty/astcenc/astcenc_image.cpp new file mode 100644 index 0000000000..9c0d6727d0 --- /dev/null +++ b/thirdparty/astcenc/astcenc_image.cpp @@ -0,0 +1,558 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for creating in-memory ASTC image structures. + */ + +#include <cassert> +#include <cstring> + +#include "astcenc_internal.h" + +/** + * @brief Loader pipeline function type for data fetch from memory. + */ +using pixel_loader = vfloat4(*)(const void*, int); + +/** + * @brief Loader pipeline function type for swizzling data in a vector. + */ +using pixel_swizzler = vfloat4(*)(vfloat4, const astcenc_swizzle&); + +/** + * @brief Loader pipeline function type for converting data in a vector to LNS. + */ +using pixel_converter = vfloat4(*)(vfloat4, vmask4); + +/** + * @brief Load a 8-bit UNORM texel from a data array. + * + * @param data The data pointer. + * @param base_offset The index offset to the start of the pixel. + */ +static vfloat4 load_texel_u8( + const void* data, + int base_offset +) { + const uint8_t* data8 = static_cast<const uint8_t*>(data); + return int_to_float(vint4(data8 + base_offset)) / 255.0f; +} + +/** + * @brief Load a 16-bit fp16 texel from a data array. + * + * @param data The data pointer. + * @param base_offset The index offset to the start of the pixel. + */ +static vfloat4 load_texel_f16( + const void* data, + int base_offset +) { + const uint16_t* data16 = static_cast<const uint16_t*>(data); + int r = data16[base_offset ]; + int g = data16[base_offset + 1]; + int b = data16[base_offset + 2]; + int a = data16[base_offset + 3]; + return float16_to_float(vint4(r, g, b, a)); +} + +/** + * @brief Load a 32-bit float texel from a data array. + * + * @param data The data pointer. + * @param base_offset The index offset to the start of the pixel. + */ +static vfloat4 load_texel_f32( + const void* data, + int base_offset +) { + const float* data32 = static_cast<const float*>(data); + return vfloat4(data32 + base_offset); +} + +/** + * @brief Dummy no-op swizzle function. + * + * @param data The source RGBA vector to swizzle. + * @param swz The swizzle to use. + */ +static vfloat4 swz_texel_skip( + vfloat4 data, + const astcenc_swizzle& swz +) { + (void)swz; + return data; +} + +/** + * @brief Swizzle a texel into a new arrangement. + * + * @param data The source RGBA vector to swizzle. + * @param swz The swizzle to use. + */ +static vfloat4 swz_texel( + vfloat4 data, + const astcenc_swizzle& swz +) { + alignas(16) float datas[6]; + + storea(data, datas); + datas[ASTCENC_SWZ_0] = 0.0f; + datas[ASTCENC_SWZ_1] = 1.0f; + + return vfloat4(datas[swz.r], datas[swz.g], datas[swz.b], datas[swz.a]); +} + +/** + * @brief Encode a texel that is entirely LDR linear. + * + * @param data The RGBA data to encode. + * @param lns_mask The mask for the HDR channels than need LNS encoding. + */ +static vfloat4 encode_texel_unorm( + vfloat4 data, + vmask4 lns_mask +) { + (void)lns_mask; + return data * 65535.0f; +} + +/** + * @brief Encode a texel that includes at least some HDR LNS texels. + * + * @param data The RGBA data to encode. + * @param lns_mask The mask for the HDR channels than need LNS encoding. + */ +static vfloat4 encode_texel_lns( + vfloat4 data, + vmask4 lns_mask +) { + vfloat4 datav_unorm = data * 65535.0f; + vfloat4 datav_lns = float_to_lns(data); + return select(datav_unorm, datav_lns, lns_mask); +} + +/* See header for documentation. */ +void load_image_block( + astcenc_profile decode_mode, + const astcenc_image& img, + image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz +) { + unsigned int xsize = img.dim_x; + unsigned int ysize = img.dim_y; + unsigned int zsize = img.dim_z; + + blk.xpos = xpos; + blk.ypos = ypos; + blk.zpos = zpos; + + // True if any non-identity swizzle + bool needs_swz = (swz.r != ASTCENC_SWZ_R) || (swz.g != ASTCENC_SWZ_G) || + (swz.b != ASTCENC_SWZ_B) || (swz.a != ASTCENC_SWZ_A); + + int idx = 0; + + vfloat4 data_min(1e38f); + vfloat4 data_mean(0.0f); + vfloat4 data_mean_scale(1.0f / static_cast<float>(bsd.texel_count)); + vfloat4 data_max(-1e38f); + vmask4 grayscalev(true); + + // This works because we impose the same choice everywhere during encode + uint8_t rgb_lns = (decode_mode == ASTCENC_PRF_HDR) || + (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A) ? 1 : 0; + uint8_t a_lns = decode_mode == ASTCENC_PRF_HDR ? 1 : 0; + vint4 use_lns(rgb_lns, rgb_lns, rgb_lns, a_lns); + vmask4 lns_mask = use_lns != vint4::zero(); + + // Set up the function pointers for loading pipeline as needed + pixel_loader loader = load_texel_u8; + if (img.data_type == ASTCENC_TYPE_F16) + { + loader = load_texel_f16; + } + else if (img.data_type == ASTCENC_TYPE_F32) + { + loader = load_texel_f32; + } + + pixel_swizzler swizzler = swz_texel_skip; + if (needs_swz) + { + swizzler = swz_texel; + } + + pixel_converter converter = encode_texel_unorm; + if (any(lns_mask)) + { + converter = encode_texel_lns; + } + + for (unsigned int z = 0; z < bsd.zdim; z++) + { + unsigned int zi = astc::min(zpos + z, zsize - 1); + void* plane = img.data[zi]; + + for (unsigned int y = 0; y < bsd.ydim; y++) + { + unsigned int yi = astc::min(ypos + y, ysize - 1); + + for (unsigned int x = 0; x < bsd.xdim; x++) + { + unsigned int xi = astc::min(xpos + x, xsize - 1); + + vfloat4 datav = loader(plane, (4 * xsize * yi) + (4 * xi)); + datav = swizzler(datav, swz); + datav = converter(datav, lns_mask); + + // Compute block metadata + data_min = min(data_min, datav); + data_mean += datav * data_mean_scale; + data_max = max(data_max, datav); + + grayscalev = grayscalev & (datav.swz<0,0,0,0>() == datav.swz<1,1,2,2>()); + + blk.data_r[idx] = datav.lane<0>(); + blk.data_g[idx] = datav.lane<1>(); + blk.data_b[idx] = datav.lane<2>(); + blk.data_a[idx] = datav.lane<3>(); + + blk.rgb_lns[idx] = rgb_lns; + blk.alpha_lns[idx] = a_lns; + + idx++; + } + } + } + + // Reverse the encoding so we store origin block in the original format + vfloat4 data_enc = blk.texel(0); + vfloat4 data_enc_unorm = data_enc / 65535.0f; + vfloat4 data_enc_lns = vfloat4::zero(); + + if (rgb_lns || a_lns) + { + data_enc_lns = float16_to_float(lns_to_sf16(float_to_int(data_enc))); + } + + blk.origin_texel = select(data_enc_unorm, data_enc_lns, lns_mask); + + // Store block metadata + blk.data_min = data_min; + blk.data_mean = data_mean; + blk.data_max = data_max; + blk.grayscale = all(grayscalev); +} + +/* See header for documentation. */ +void load_image_block_fast_ldr( + astcenc_profile decode_mode, + const astcenc_image& img, + image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz +) { + (void)swz; + (void)decode_mode; + + unsigned int xsize = img.dim_x; + unsigned int ysize = img.dim_y; + + blk.xpos = xpos; + blk.ypos = ypos; + blk.zpos = zpos; + + vfloat4 data_min(1e38f); + vfloat4 data_mean = vfloat4::zero(); + vfloat4 data_max(-1e38f); + vmask4 grayscalev(true); + int idx = 0; + + const uint8_t* plane = static_cast<const uint8_t*>(img.data[0]); + for (unsigned int y = ypos; y < ypos + bsd.ydim; y++) + { + unsigned int yi = astc::min(y, ysize - 1); + + for (unsigned int x = xpos; x < xpos + bsd.xdim; x++) + { + unsigned int xi = astc::min(x, xsize - 1); + + vint4 datavi = vint4(plane + (4 * xsize * yi) + (4 * xi)); + vfloat4 datav = int_to_float(datavi) * (65535.0f / 255.0f); + + // Compute block metadata + data_min = min(data_min, datav); + data_mean += datav; + data_max = max(data_max, datav); + + grayscalev = grayscalev & (datav.swz<0,0,0,0>() == datav.swz<1,1,2,2>()); + + blk.data_r[idx] = datav.lane<0>(); + blk.data_g[idx] = datav.lane<1>(); + blk.data_b[idx] = datav.lane<2>(); + blk.data_a[idx] = datav.lane<3>(); + + idx++; + } + } + + // Reverse the encoding so we store origin block in the original format + blk.origin_texel = blk.texel(0) / 65535.0f; + + // Store block metadata + blk.rgb_lns[0] = 0; + blk.alpha_lns[0] = 0; + blk.data_min = data_min; + blk.data_mean = data_mean / static_cast<float>(bsd.texel_count); + blk.data_max = data_max; + blk.grayscale = all(grayscalev); +} + +/* See header for documentation. */ +void store_image_block( + astcenc_image& img, + const image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz +) { + unsigned int x_size = img.dim_x; + unsigned int x_start = xpos; + unsigned int x_end = astc::min(x_size, xpos + bsd.xdim); + unsigned int x_count = x_end - x_start; + unsigned int x_nudge = bsd.xdim - x_count; + + unsigned int y_size = img.dim_y; + unsigned int y_start = ypos; + unsigned int y_end = astc::min(y_size, ypos + bsd.ydim); + unsigned int y_count = y_end - y_start; + unsigned int y_nudge = (bsd.ydim - y_count) * bsd.xdim; + + unsigned int z_size = img.dim_z; + unsigned int z_start = zpos; + unsigned int z_end = astc::min(z_size, zpos + bsd.zdim); + + // True if any non-identity swizzle + bool needs_swz = (swz.r != ASTCENC_SWZ_R) || (swz.g != ASTCENC_SWZ_G) || + (swz.b != ASTCENC_SWZ_B) || (swz.a != ASTCENC_SWZ_A); + + // True if any swizzle uses Z reconstruct + bool needs_z = (swz.r == ASTCENC_SWZ_Z) || (swz.g == ASTCENC_SWZ_Z) || + (swz.b == ASTCENC_SWZ_Z) || (swz.a == ASTCENC_SWZ_Z); + + int idx = 0; + if (img.data_type == ASTCENC_TYPE_U8) + { + for (unsigned int z = z_start; z < z_end; z++) + { + // Fetch the image plane + uint8_t* data8 = static_cast<uint8_t*>(img.data[z]); + + for (unsigned int y = y_start; y < y_end; y++) + { + uint8_t* data8_row = data8 + (4 * x_size * y) + (4 * x_start); + + for (unsigned int x = 0; x < x_count; x += ASTCENC_SIMD_WIDTH) + { + unsigned int max_texels = ASTCENC_SIMD_WIDTH; + unsigned int used_texels = astc::min(x_count - x, max_texels); + + // Unaligned load as rows are not always SIMD_WIDTH long + vfloat data_r(blk.data_r + idx); + vfloat data_g(blk.data_g + idx); + vfloat data_b(blk.data_b + idx); + vfloat data_a(blk.data_a + idx); + + vint data_ri = float_to_int_rtn(min(data_r, 1.0f) * 255.0f); + vint data_gi = float_to_int_rtn(min(data_g, 1.0f) * 255.0f); + vint data_bi = float_to_int_rtn(min(data_b, 1.0f) * 255.0f); + vint data_ai = float_to_int_rtn(min(data_a, 1.0f) * 255.0f); + + if (needs_swz) + { + vint swizzle_table[7]; + swizzle_table[ASTCENC_SWZ_0] = vint(0); + swizzle_table[ASTCENC_SWZ_1] = vint(255); + swizzle_table[ASTCENC_SWZ_R] = data_ri; + swizzle_table[ASTCENC_SWZ_G] = data_gi; + swizzle_table[ASTCENC_SWZ_B] = data_bi; + swizzle_table[ASTCENC_SWZ_A] = data_ai; + + if (needs_z) + { + vfloat data_x = (data_r * vfloat(2.0f)) - vfloat(1.0f); + vfloat data_y = (data_a * vfloat(2.0f)) - vfloat(1.0f); + vfloat data_z = vfloat(1.0f) - (data_x * data_x) - (data_y * data_y); + data_z = max(data_z, 0.0f); + data_z = (sqrt(data_z) * vfloat(0.5f)) + vfloat(0.5f); + + swizzle_table[ASTCENC_SWZ_Z] = float_to_int_rtn(min(data_z, 1.0f) * 255.0f); + } + + data_ri = swizzle_table[swz.r]; + data_gi = swizzle_table[swz.g]; + data_bi = swizzle_table[swz.b]; + data_ai = swizzle_table[swz.a]; + } + + // Errors are NaN encoded - convert to magenta error color + // Branch is OK here - it is almost never true so predicts well + vmask nan_mask = data_r != data_r; + if (any(nan_mask)) + { + data_ri = select(data_ri, vint(0xFF), nan_mask); + data_gi = select(data_gi, vint(0x00), nan_mask); + data_bi = select(data_bi, vint(0xFF), nan_mask); + data_ai = select(data_ai, vint(0xFF), nan_mask); + } + + vint data_rgbai = interleave_rgba8(data_ri, data_gi, data_bi, data_ai); + vmask store_mask = vint::lane_id() < vint(used_texels); + store_lanes_masked(reinterpret_cast<int*>(data8_row), data_rgbai, store_mask); + + data8_row += ASTCENC_SIMD_WIDTH * 4; + idx += used_texels; + } + idx += x_nudge; + } + idx += y_nudge; + } + } + else if (img.data_type == ASTCENC_TYPE_F16) + { + for (unsigned int z = z_start; z < z_end; z++) + { + // Fetch the image plane + uint16_t* data16 = static_cast<uint16_t*>(img.data[z]); + + for (unsigned int y = y_start; y < y_end; y++) + { + uint16_t* data16_row = data16 + (4 * x_size * y) + (4 * x_start); + + for (unsigned int x = 0; x < x_count; x++) + { + vint4 color; + + // NaNs are handled inline - no need to special case + if (needs_swz) + { + float data[7]; + data[ASTCENC_SWZ_0] = 0.0f; + data[ASTCENC_SWZ_1] = 1.0f; + data[ASTCENC_SWZ_R] = blk.data_r[idx]; + data[ASTCENC_SWZ_G] = blk.data_g[idx]; + data[ASTCENC_SWZ_B] = blk.data_b[idx]; + data[ASTCENC_SWZ_A] = blk.data_a[idx]; + + if (needs_z) + { + float xN = (data[0] * 2.0f) - 1.0f; + float yN = (data[3] * 2.0f) - 1.0f; + float zN = 1.0f - xN * xN - yN * yN; + if (zN < 0.0f) + { + zN = 0.0f; + } + data[ASTCENC_SWZ_Z] = (astc::sqrt(zN) * 0.5f) + 0.5f; + } + + vfloat4 colorf(data[swz.r], data[swz.g], data[swz.b], data[swz.a]); + color = float_to_float16(colorf); + } + else + { + vfloat4 colorf = blk.texel(idx); + color = float_to_float16(colorf); + } + + // TODO: Vectorize with store N shorts? + data16_row[0] = static_cast<uint16_t>(color.lane<0>()); + data16_row[1] = static_cast<uint16_t>(color.lane<1>()); + data16_row[2] = static_cast<uint16_t>(color.lane<2>()); + data16_row[3] = static_cast<uint16_t>(color.lane<3>()); + data16_row += 4; + idx++; + } + idx += x_nudge; + } + idx += y_nudge; + } + } + else // if (img.data_type == ASTCENC_TYPE_F32) + { + assert(img.data_type == ASTCENC_TYPE_F32); + + for (unsigned int z = z_start; z < z_end; z++) + { + // Fetch the image plane + float* data32 = static_cast<float*>(img.data[z]); + + for (unsigned int y = y_start; y < y_end; y++) + { + float* data32_row = data32 + (4 * x_size * y) + (4 * x_start); + + for (unsigned int x = 0; x < x_count; x++) + { + vfloat4 color = blk.texel(idx); + + // NaNs are handled inline - no need to special case + if (needs_swz) + { + float data[7]; + data[ASTCENC_SWZ_0] = 0.0f; + data[ASTCENC_SWZ_1] = 1.0f; + data[ASTCENC_SWZ_R] = color.lane<0>(); + data[ASTCENC_SWZ_G] = color.lane<1>(); + data[ASTCENC_SWZ_B] = color.lane<2>(); + data[ASTCENC_SWZ_A] = color.lane<3>(); + + if (needs_z) + { + float xN = (data[0] * 2.0f) - 1.0f; + float yN = (data[3] * 2.0f) - 1.0f; + float zN = 1.0f - xN * xN - yN * yN; + if (zN < 0.0f) + { + zN = 0.0f; + } + data[ASTCENC_SWZ_Z] = (astc::sqrt(zN) * 0.5f) + 0.5f; + } + + color = vfloat4(data[swz.r], data[swz.g], data[swz.b], data[swz.a]); + } + + store(color, data32_row); + data32_row += 4; + idx++; + } + idx += x_nudge; + } + idx += y_nudge; + } + } +} diff --git a/thirdparty/astcenc/astcenc_integer_sequence.cpp b/thirdparty/astcenc/astcenc_integer_sequence.cpp new file mode 100644 index 0000000000..416750374d --- /dev/null +++ b/thirdparty/astcenc/astcenc_integer_sequence.cpp @@ -0,0 +1,739 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for encoding/decoding Bounded Integer Sequence Encoding. + */ + +#include "astcenc_internal.h" + +#include <array> + +/** @brief Unpacked quint triplets <low,middle,high> for each packed value */ +// TODO: Bitpack these into a uint16_t? +static const uint8_t quints_of_integer[128][3] { + {0, 0, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}, + {4, 0, 0}, {0, 4, 0}, {4, 4, 0}, {4, 4, 4}, + {0, 1, 0}, {1, 1, 0}, {2, 1, 0}, {3, 1, 0}, + {4, 1, 0}, {1, 4, 0}, {4, 4, 1}, {4, 4, 4}, + {0, 2, 0}, {1, 2, 0}, {2, 2, 0}, {3, 2, 0}, + {4, 2, 0}, {2, 4, 0}, {4, 4, 2}, {4, 4, 4}, + {0, 3, 0}, {1, 3, 0}, {2, 3, 0}, {3, 3, 0}, + {4, 3, 0}, {3, 4, 0}, {4, 4, 3}, {4, 4, 4}, + {0, 0, 1}, {1, 0, 1}, {2, 0, 1}, {3, 0, 1}, + {4, 0, 1}, {0, 4, 1}, {4, 0, 4}, {0, 4, 4}, + {0, 1, 1}, {1, 1, 1}, {2, 1, 1}, {3, 1, 1}, + {4, 1, 1}, {1, 4, 1}, {4, 1, 4}, {1, 4, 4}, + {0, 2, 1}, {1, 2, 1}, {2, 2, 1}, {3, 2, 1}, + {4, 2, 1}, {2, 4, 1}, {4, 2, 4}, {2, 4, 4}, + {0, 3, 1}, {1, 3, 1}, {2, 3, 1}, {3, 3, 1}, + {4, 3, 1}, {3, 4, 1}, {4, 3, 4}, {3, 4, 4}, + {0, 0, 2}, {1, 0, 2}, {2, 0, 2}, {3, 0, 2}, + {4, 0, 2}, {0, 4, 2}, {2, 0, 4}, {3, 0, 4}, + {0, 1, 2}, {1, 1, 2}, {2, 1, 2}, {3, 1, 2}, + {4, 1, 2}, {1, 4, 2}, {2, 1, 4}, {3, 1, 4}, + {0, 2, 2}, {1, 2, 2}, {2, 2, 2}, {3, 2, 2}, + {4, 2, 2}, {2, 4, 2}, {2, 2, 4}, {3, 2, 4}, + {0, 3, 2}, {1, 3, 2}, {2, 3, 2}, {3, 3, 2}, + {4, 3, 2}, {3, 4, 2}, {2, 3, 4}, {3, 3, 4}, + {0, 0, 3}, {1, 0, 3}, {2, 0, 3}, {3, 0, 3}, + {4, 0, 3}, {0, 4, 3}, {0, 0, 4}, {1, 0, 4}, + {0, 1, 3}, {1, 1, 3}, {2, 1, 3}, {3, 1, 3}, + {4, 1, 3}, {1, 4, 3}, {0, 1, 4}, {1, 1, 4}, + {0, 2, 3}, {1, 2, 3}, {2, 2, 3}, {3, 2, 3}, + {4, 2, 3}, {2, 4, 3}, {0, 2, 4}, {1, 2, 4}, + {0, 3, 3}, {1, 3, 3}, {2, 3, 3}, {3, 3, 3}, + {4, 3, 3}, {3, 4, 3}, {0, 3, 4}, {1, 3, 4} +}; + +/** @brief Packed quint values for each unpacked value, indexed [hi][mid][lo]. */ +static const uint8_t integer_of_quints[5][5][5] { + { + {0, 1, 2, 3, 4}, + {8, 9, 10, 11, 12}, + {16, 17, 18, 19, 20}, + {24, 25, 26, 27, 28}, + {5, 13, 21, 29, 6} + }, + { + {32, 33, 34, 35, 36}, + {40, 41, 42, 43, 44}, + {48, 49, 50, 51, 52}, + {56, 57, 58, 59, 60}, + {37, 45, 53, 61, 14} + }, + { + {64, 65, 66, 67, 68}, + {72, 73, 74, 75, 76}, + {80, 81, 82, 83, 84}, + {88, 89, 90, 91, 92}, + {69, 77, 85, 93, 22} + }, + { + {96, 97, 98, 99, 100}, + {104, 105, 106, 107, 108}, + {112, 113, 114, 115, 116}, + {120, 121, 122, 123, 124}, + {101, 109, 117, 125, 30} + }, + { + {102, 103, 70, 71, 38}, + {110, 111, 78, 79, 46}, + {118, 119, 86, 87, 54}, + {126, 127, 94, 95, 62}, + {39, 47, 55, 63, 31} + } +}; + +/** @brief Unpacked trit quintuplets <low,...,high> for each packed value */ +// TODO: Bitpack these into a uint16_t? +static const uint8_t trits_of_integer[256][5] { + {0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {2, 0, 0, 0, 0}, {0, 0, 2, 0, 0}, + {0, 1, 0, 0, 0}, {1, 1, 0, 0, 0}, {2, 1, 0, 0, 0}, {1, 0, 2, 0, 0}, + {0, 2, 0, 0, 0}, {1, 2, 0, 0, 0}, {2, 2, 0, 0, 0}, {2, 0, 2, 0, 0}, + {0, 2, 2, 0, 0}, {1, 2, 2, 0, 0}, {2, 2, 2, 0, 0}, {2, 0, 2, 0, 0}, + {0, 0, 1, 0, 0}, {1, 0, 1, 0, 0}, {2, 0, 1, 0, 0}, {0, 1, 2, 0, 0}, + {0, 1, 1, 0, 0}, {1, 1, 1, 0, 0}, {2, 1, 1, 0, 0}, {1, 1, 2, 0, 0}, + {0, 2, 1, 0, 0}, {1, 2, 1, 0, 0}, {2, 2, 1, 0, 0}, {2, 1, 2, 0, 0}, + {0, 0, 0, 2, 2}, {1, 0, 0, 2, 2}, {2, 0, 0, 2, 2}, {0, 0, 2, 2, 2}, + {0, 0, 0, 1, 0}, {1, 0, 0, 1, 0}, {2, 0, 0, 1, 0}, {0, 0, 2, 1, 0}, + {0, 1, 0, 1, 0}, {1, 1, 0, 1, 0}, {2, 1, 0, 1, 0}, {1, 0, 2, 1, 0}, + {0, 2, 0, 1, 0}, {1, 2, 0, 1, 0}, {2, 2, 0, 1, 0}, {2, 0, 2, 1, 0}, + {0, 2, 2, 1, 0}, {1, 2, 2, 1, 0}, {2, 2, 2, 1, 0}, {2, 0, 2, 1, 0}, + {0, 0, 1, 1, 0}, {1, 0, 1, 1, 0}, {2, 0, 1, 1, 0}, {0, 1, 2, 1, 0}, + {0, 1, 1, 1, 0}, {1, 1, 1, 1, 0}, {2, 1, 1, 1, 0}, {1, 1, 2, 1, 0}, + {0, 2, 1, 1, 0}, {1, 2, 1, 1, 0}, {2, 2, 1, 1, 0}, {2, 1, 2, 1, 0}, + {0, 1, 0, 2, 2}, {1, 1, 0, 2, 2}, {2, 1, 0, 2, 2}, {1, 0, 2, 2, 2}, + {0, 0, 0, 2, 0}, {1, 0, 0, 2, 0}, {2, 0, 0, 2, 0}, {0, 0, 2, 2, 0}, + {0, 1, 0, 2, 0}, {1, 1, 0, 2, 0}, {2, 1, 0, 2, 0}, {1, 0, 2, 2, 0}, + {0, 2, 0, 2, 0}, {1, 2, 0, 2, 0}, {2, 2, 0, 2, 0}, {2, 0, 2, 2, 0}, + {0, 2, 2, 2, 0}, {1, 2, 2, 2, 0}, {2, 2, 2, 2, 0}, {2, 0, 2, 2, 0}, + {0, 0, 1, 2, 0}, {1, 0, 1, 2, 0}, {2, 0, 1, 2, 0}, {0, 1, 2, 2, 0}, + {0, 1, 1, 2, 0}, {1, 1, 1, 2, 0}, {2, 1, 1, 2, 0}, {1, 1, 2, 2, 0}, + {0, 2, 1, 2, 0}, {1, 2, 1, 2, 0}, {2, 2, 1, 2, 0}, {2, 1, 2, 2, 0}, + {0, 2, 0, 2, 2}, {1, 2, 0, 2, 2}, {2, 2, 0, 2, 2}, {2, 0, 2, 2, 2}, + {0, 0, 0, 0, 2}, {1, 0, 0, 0, 2}, {2, 0, 0, 0, 2}, {0, 0, 2, 0, 2}, + {0, 1, 0, 0, 2}, {1, 1, 0, 0, 2}, {2, 1, 0, 0, 2}, {1, 0, 2, 0, 2}, + {0, 2, 0, 0, 2}, {1, 2, 0, 0, 2}, {2, 2, 0, 0, 2}, {2, 0, 2, 0, 2}, + {0, 2, 2, 0, 2}, {1, 2, 2, 0, 2}, {2, 2, 2, 0, 2}, {2, 0, 2, 0, 2}, + {0, 0, 1, 0, 2}, {1, 0, 1, 0, 2}, {2, 0, 1, 0, 2}, {0, 1, 2, 0, 2}, + {0, 1, 1, 0, 2}, {1, 1, 1, 0, 2}, {2, 1, 1, 0, 2}, {1, 1, 2, 0, 2}, + {0, 2, 1, 0, 2}, {1, 2, 1, 0, 2}, {2, 2, 1, 0, 2}, {2, 1, 2, 0, 2}, + {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 0, 2, 2, 2}, + {0, 0, 0, 0, 1}, {1, 0, 0, 0, 1}, {2, 0, 0, 0, 1}, {0, 0, 2, 0, 1}, + {0, 1, 0, 0, 1}, {1, 1, 0, 0, 1}, {2, 1, 0, 0, 1}, {1, 0, 2, 0, 1}, + {0, 2, 0, 0, 1}, {1, 2, 0, 0, 1}, {2, 2, 0, 0, 1}, {2, 0, 2, 0, 1}, + {0, 2, 2, 0, 1}, {1, 2, 2, 0, 1}, {2, 2, 2, 0, 1}, {2, 0, 2, 0, 1}, + {0, 0, 1, 0, 1}, {1, 0, 1, 0, 1}, {2, 0, 1, 0, 1}, {0, 1, 2, 0, 1}, + {0, 1, 1, 0, 1}, {1, 1, 1, 0, 1}, {2, 1, 1, 0, 1}, {1, 1, 2, 0, 1}, + {0, 2, 1, 0, 1}, {1, 2, 1, 0, 1}, {2, 2, 1, 0, 1}, {2, 1, 2, 0, 1}, + {0, 0, 1, 2, 2}, {1, 0, 1, 2, 2}, {2, 0, 1, 2, 2}, {0, 1, 2, 2, 2}, + {0, 0, 0, 1, 1}, {1, 0, 0, 1, 1}, {2, 0, 0, 1, 1}, {0, 0, 2, 1, 1}, + {0, 1, 0, 1, 1}, {1, 1, 0, 1, 1}, {2, 1, 0, 1, 1}, {1, 0, 2, 1, 1}, + {0, 2, 0, 1, 1}, {1, 2, 0, 1, 1}, {2, 2, 0, 1, 1}, {2, 0, 2, 1, 1}, + {0, 2, 2, 1, 1}, {1, 2, 2, 1, 1}, {2, 2, 2, 1, 1}, {2, 0, 2, 1, 1}, + {0, 0, 1, 1, 1}, {1, 0, 1, 1, 1}, {2, 0, 1, 1, 1}, {0, 1, 2, 1, 1}, + {0, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, {2, 1, 1, 1, 1}, {1, 1, 2, 1, 1}, + {0, 2, 1, 1, 1}, {1, 2, 1, 1, 1}, {2, 2, 1, 1, 1}, {2, 1, 2, 1, 1}, + {0, 1, 1, 2, 2}, {1, 1, 1, 2, 2}, {2, 1, 1, 2, 2}, {1, 1, 2, 2, 2}, + {0, 0, 0, 2, 1}, {1, 0, 0, 2, 1}, {2, 0, 0, 2, 1}, {0, 0, 2, 2, 1}, + {0, 1, 0, 2, 1}, {1, 1, 0, 2, 1}, {2, 1, 0, 2, 1}, {1, 0, 2, 2, 1}, + {0, 2, 0, 2, 1}, {1, 2, 0, 2, 1}, {2, 2, 0, 2, 1}, {2, 0, 2, 2, 1}, + {0, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {2, 2, 2, 2, 1}, {2, 0, 2, 2, 1}, + {0, 0, 1, 2, 1}, {1, 0, 1, 2, 1}, {2, 0, 1, 2, 1}, {0, 1, 2, 2, 1}, + {0, 1, 1, 2, 1}, {1, 1, 1, 2, 1}, {2, 1, 1, 2, 1}, {1, 1, 2, 2, 1}, + {0, 2, 1, 2, 1}, {1, 2, 1, 2, 1}, {2, 2, 1, 2, 1}, {2, 1, 2, 2, 1}, + {0, 2, 1, 2, 2}, {1, 2, 1, 2, 2}, {2, 2, 1, 2, 2}, {2, 1, 2, 2, 2}, + {0, 0, 0, 1, 2}, {1, 0, 0, 1, 2}, {2, 0, 0, 1, 2}, {0, 0, 2, 1, 2}, + {0, 1, 0, 1, 2}, {1, 1, 0, 1, 2}, {2, 1, 0, 1, 2}, {1, 0, 2, 1, 2}, + {0, 2, 0, 1, 2}, {1, 2, 0, 1, 2}, {2, 2, 0, 1, 2}, {2, 0, 2, 1, 2}, + {0, 2, 2, 1, 2}, {1, 2, 2, 1, 2}, {2, 2, 2, 1, 2}, {2, 0, 2, 1, 2}, + {0, 0, 1, 1, 2}, {1, 0, 1, 1, 2}, {2, 0, 1, 1, 2}, {0, 1, 2, 1, 2}, + {0, 1, 1, 1, 2}, {1, 1, 1, 1, 2}, {2, 1, 1, 1, 2}, {1, 1, 2, 1, 2}, + {0, 2, 1, 1, 2}, {1, 2, 1, 1, 2}, {2, 2, 1, 1, 2}, {2, 1, 2, 1, 2}, + {0, 2, 2, 2, 2}, {1, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 1, 2, 2, 2} +}; + +/** @brief Packed trit values for each unpacked value, indexed [hi][][][][lo]. */ +static const uint8_t integer_of_trits[3][3][3][3][3] { + { + { + { + {0, 1, 2}, + {4, 5, 6}, + {8, 9, 10} + }, + { + {16, 17, 18}, + {20, 21, 22}, + {24, 25, 26} + }, + { + {3, 7, 15}, + {19, 23, 27}, + {12, 13, 14} + } + }, + { + { + {32, 33, 34}, + {36, 37, 38}, + {40, 41, 42} + }, + { + {48, 49, 50}, + {52, 53, 54}, + {56, 57, 58} + }, + { + {35, 39, 47}, + {51, 55, 59}, + {44, 45, 46} + } + }, + { + { + {64, 65, 66}, + {68, 69, 70}, + {72, 73, 74} + }, + { + {80, 81, 82}, + {84, 85, 86}, + {88, 89, 90} + }, + { + {67, 71, 79}, + {83, 87, 91}, + {76, 77, 78} + } + } + }, + { + { + { + {128, 129, 130}, + {132, 133, 134}, + {136, 137, 138} + }, + { + {144, 145, 146}, + {148, 149, 150}, + {152, 153, 154} + }, + { + {131, 135, 143}, + {147, 151, 155}, + {140, 141, 142} + } + }, + { + { + {160, 161, 162}, + {164, 165, 166}, + {168, 169, 170} + }, + { + {176, 177, 178}, + {180, 181, 182}, + {184, 185, 186} + }, + { + {163, 167, 175}, + {179, 183, 187}, + {172, 173, 174} + } + }, + { + { + {192, 193, 194}, + {196, 197, 198}, + {200, 201, 202} + }, + { + {208, 209, 210}, + {212, 213, 214}, + {216, 217, 218} + }, + { + {195, 199, 207}, + {211, 215, 219}, + {204, 205, 206} + } + } + }, + { + { + { + {96, 97, 98}, + {100, 101, 102}, + {104, 105, 106} + }, + { + {112, 113, 114}, + {116, 117, 118}, + {120, 121, 122} + }, + { + {99, 103, 111}, + {115, 119, 123}, + {108, 109, 110} + } + }, + { + { + {224, 225, 226}, + {228, 229, 230}, + {232, 233, 234} + }, + { + {240, 241, 242}, + {244, 245, 246}, + {248, 249, 250} + }, + { + {227, 231, 239}, + {243, 247, 251}, + {236, 237, 238} + } + }, + { + { + {28, 29, 30}, + {60, 61, 62}, + {92, 93, 94} + }, + { + {156, 157, 158}, + {188, 189, 190}, + {220, 221, 222} + }, + { + {31, 63, 127}, + {159, 191, 255}, + {252, 253, 254} + } + } + } +}; + +/** + * @brief The number of bits, trits, and quints needed for a quant level. + */ +struct btq_count +{ + /** @brief The number of bits. */ + uint8_t bits:6; + + /** @brief The number of trits. */ + uint8_t trits:1; + + /** @brief The number of quints. */ + uint8_t quints:1; +}; + +/** + * @brief The table of bits, trits, and quints needed for a quant encode. + */ +static const std::array<btq_count, 21> btq_counts {{ + { 1, 0, 0 }, // QUANT_2 + { 0, 1, 0 }, // QUANT_3 + { 2, 0, 0 }, // QUANT_4 + { 0, 0, 1 }, // QUANT_5 + { 1, 1, 0 }, // QUANT_6 + { 3, 0, 0 }, // QUANT_8 + { 1, 0, 1 }, // QUANT_10 + { 2, 1, 0 }, // QUANT_12 + { 4, 0, 0 }, // QUANT_16 + { 2, 0, 1 }, // QUANT_20 + { 3, 1, 0 }, // QUANT_24 + { 5, 0, 0 }, // QUANT_32 + { 3, 0, 1 }, // QUANT_40 + { 4, 1, 0 }, // QUANT_48 + { 6, 0, 0 }, // QUANT_64 + { 4, 0, 1 }, // QUANT_80 + { 5, 1, 0 }, // QUANT_96 + { 7, 0, 0 }, // QUANT_128 + { 5, 0, 1 }, // QUANT_160 + { 6, 1, 0 }, // QUANT_192 + { 8, 0, 0 } // QUANT_256 +}}; + +/** + * @brief The sequence scale, round, and divisors needed to compute sizing. + * + * The length of a quantized sequence in bits is: + * (scale * <sequence_len> + round) / divisor + */ +struct ise_size +{ + /** @brief The scaling parameter. */ + uint8_t scale:6; + + /** @brief The divisor parameter. */ + uint8_t divisor:2; +}; + +/** + * @brief The table of scale, round, and divisors needed for quant sizing. + */ +static const std::array<ise_size, 21> ise_sizes {{ + { 1, 0 }, // QUANT_2 + { 8, 2 }, // QUANT_3 + { 2, 0 }, // QUANT_4 + { 7, 1 }, // QUANT_5 + { 13, 2 }, // QUANT_6 + { 3, 0 }, // QUANT_8 + { 10, 1 }, // QUANT_10 + { 18, 2 }, // QUANT_12 + { 4, 0 }, // QUANT_16 + { 13, 1 }, // QUANT_20 + { 23, 2 }, // QUANT_24 + { 5, 0 }, // QUANT_32 + { 16, 1 }, // QUANT_40 + { 28, 2 }, // QUANT_48 + { 6, 0 }, // QUANT_64 + { 19, 1 }, // QUANT_80 + { 33, 2 }, // QUANT_96 + { 7, 0 }, // QUANT_128 + { 22, 1 }, // QUANT_160 + { 38, 2 }, // QUANT_192 + { 8, 0 } // QUANT_256 +}}; + +/* See header for documentation. */ +unsigned int get_ise_sequence_bitcount( + unsigned int character_count, + quant_method quant_level +) { + // Cope with out-of bounds values - input might be invalid + if (static_cast<size_t>(quant_level) >= ise_sizes.size()) + { + // Arbitrary large number that's more than an ASTC block can hold + return 1024; + } + + auto& entry = ise_sizes[quant_level]; + unsigned int divisor = (entry.divisor << 1) + 1; + return (entry.scale * character_count + divisor - 1) / divisor; +} + +/** + * @brief Write up to 8 bits at an arbitrary bit offset. + * + * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may + * span two separate bytes in memory. + * + * @param value The value to write. + * @param bitcount The number of bits to write, starting from LSB. + * @param bitoffset The bit offset to store at, between 0 and 7. + * @param[in,out] ptr The data pointer to write to. + */ +static inline void write_bits( + unsigned int value, + unsigned int bitcount, + unsigned int bitoffset, + uint8_t ptr[2] +) { + unsigned int mask = (1 << bitcount) - 1; + value &= mask; + ptr += bitoffset >> 3; + bitoffset &= 7; + value <<= bitoffset; + mask <<= bitoffset; + mask = ~mask; + + ptr[0] &= mask; + ptr[0] |= value; + ptr[1] &= mask >> 8; + ptr[1] |= value >> 8; +} + +/** + * @brief Read up to 8 bits at an arbitrary bit offset. + * + * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may + * span two separate bytes in memory. + * + * @param bitcount The number of bits to read. + * @param bitoffset The bit offset to read from, between 0 and 7. + * @param[in,out] ptr The data pointer to read from. + * + * @return The read value. + */ +static inline unsigned int read_bits( + unsigned int bitcount, + unsigned int bitoffset, + const uint8_t* ptr +) { + unsigned int mask = (1 << bitcount) - 1; + ptr += bitoffset >> 3; + bitoffset &= 7; + unsigned int value = ptr[0] | (ptr[1] << 8); + value >>= bitoffset; + value &= mask; + return value; +} + +/* See header for documentation. */ +void encode_ise( + quant_method quant_level, + unsigned int character_count, + const uint8_t* input_data, + uint8_t* output_data, + unsigned int bit_offset +) { + promise(character_count > 0); + + unsigned int bits = btq_counts[quant_level].bits; + unsigned int trits = btq_counts[quant_level].trits; + unsigned int quints = btq_counts[quant_level].quints; + unsigned int mask = (1 << bits) - 1; + + // Write out trits and bits + if (trits) + { + unsigned int i = 0; + unsigned int full_trit_blocks = character_count / 5; + + for (unsigned int j = 0; j < full_trit_blocks; j++) + { + unsigned int i4 = input_data[i + 4] >> bits; + unsigned int i3 = input_data[i + 3] >> bits; + unsigned int i2 = input_data[i + 2] >> bits; + unsigned int i1 = input_data[i + 1] >> bits; + unsigned int i0 = input_data[i + 0] >> bits; + + uint8_t T = integer_of_trits[i4][i3][i2][i1][i0]; + + // The max size of a trit bit count is 6, so we can always safely + // pack a single MX value with the following 1 or 2 T bits. + uint8_t pack; + + // Element 0 + T0 + T1 + pack = (input_data[i++] & mask) | (((T >> 0) & 0x3) << bits); + write_bits(pack, bits + 2, bit_offset, output_data); + bit_offset += bits + 2; + + // Element 1 + T2 + T3 + pack = (input_data[i++] & mask) | (((T >> 2) & 0x3) << bits); + write_bits(pack, bits + 2, bit_offset, output_data); + bit_offset += bits + 2; + + // Element 2 + T4 + pack = (input_data[i++] & mask) | (((T >> 4) & 0x1) << bits); + write_bits(pack, bits + 1, bit_offset, output_data); + bit_offset += bits + 1; + + // Element 3 + T5 + T6 + pack = (input_data[i++] & mask) | (((T >> 5) & 0x3) << bits); + write_bits(pack, bits + 2, bit_offset, output_data); + bit_offset += bits + 2; + + // Element 4 + T7 + pack = (input_data[i++] & mask) | (((T >> 7) & 0x1) << bits); + write_bits(pack, bits + 1, bit_offset, output_data); + bit_offset += bits + 1; + } + + // Loop tail for a partial block + if (i != character_count) + { + // i4 cannot be present - we know the block is partial + // i0 must be present - we know the block isn't empty + unsigned int i4 = 0; + unsigned int i3 = i + 3 >= character_count ? 0 : input_data[i + 3] >> bits; + unsigned int i2 = i + 2 >= character_count ? 0 : input_data[i + 2] >> bits; + unsigned int i1 = i + 1 >= character_count ? 0 : input_data[i + 1] >> bits; + unsigned int i0 = input_data[i + 0] >> bits; + + uint8_t T = integer_of_trits[i4][i3][i2][i1][i0]; + + for (unsigned int j = 0; i < character_count; i++, j++) + { + // Truncated table as this iteration is always partital + static const uint8_t tbits[4] { 2, 2, 1, 2 }; + static const uint8_t tshift[4] { 0, 2, 4, 5 }; + + uint8_t pack = (input_data[i] & mask) | + (((T >> tshift[j]) & ((1 << tbits[j]) - 1)) << bits); + + write_bits(pack, bits + tbits[j], bit_offset, output_data); + bit_offset += bits + tbits[j]; + } + } + } + // Write out quints and bits + else if (quints) + { + unsigned int i = 0; + unsigned int full_quint_blocks = character_count / 3; + + for (unsigned int j = 0; j < full_quint_blocks; j++) + { + unsigned int i2 = input_data[i + 2] >> bits; + unsigned int i1 = input_data[i + 1] >> bits; + unsigned int i0 = input_data[i + 0] >> bits; + + uint8_t T = integer_of_quints[i2][i1][i0]; + + // The max size of a quint bit count is 5, so we can always safely + // pack a single M value with the following 2 or 3 T bits. + uint8_t pack; + + // Element 0 + pack = (input_data[i++] & mask) | (((T >> 0) & 0x7) << bits); + write_bits(pack, bits + 3, bit_offset, output_data); + bit_offset += bits + 3; + + // Element 1 + pack = (input_data[i++] & mask) | (((T >> 3) & 0x3) << bits); + write_bits(pack, bits + 2, bit_offset, output_data); + bit_offset += bits + 2; + + // Element 2 + pack = (input_data[i++] & mask) | (((T >> 5) & 0x3) << bits); + write_bits(pack, bits + 2, bit_offset, output_data); + bit_offset += bits + 2; + } + + // Loop tail for a partial block + if (i != character_count) + { + // i2 cannot be present - we know the block is partial + // i0 must be present - we know the block isn't empty + unsigned int i2 = 0; + unsigned int i1 = i + 1 >= character_count ? 0 : input_data[i + 1] >> bits; + unsigned int i0 = input_data[i + 0] >> bits; + + uint8_t T = integer_of_quints[i2][i1][i0]; + + for (unsigned int j = 0; i < character_count; i++, j++) + { + // Truncated table as this iteration is always partital + static const uint8_t tbits[2] { 3, 2 }; + static const uint8_t tshift[2] { 0, 3 }; + + uint8_t pack = (input_data[i] & mask) | + (((T >> tshift[j]) & ((1 << tbits[j]) - 1)) << bits); + + write_bits(pack, bits + tbits[j], bit_offset, output_data); + bit_offset += bits + tbits[j]; + } + } + } + // Write out just bits + else + { + for (unsigned int i = 0; i < character_count; i++) + { + write_bits(input_data[i], bits, bit_offset, output_data); + bit_offset += bits; + } + } +} + +/* See header for documentation. */ +void decode_ise( + quant_method quant_level, + unsigned int character_count, + const uint8_t* input_data, + uint8_t* output_data, + unsigned int bit_offset +) { + promise(character_count > 0); + + // Note: due to how the trit/quint-block unpacking is done in this function, we may write more + // temporary results than the number of outputs. The maximum actual number of results is 64 bit, + // but we keep 4 additional character_count of padding. + uint8_t results[68]; + uint8_t tq_blocks[22] { 0 }; // Trit-blocks or quint-blocks, must be zeroed + + unsigned int bits = btq_counts[quant_level].bits; + unsigned int trits = btq_counts[quant_level].trits; + unsigned int quints = btq_counts[quant_level].quints; + + unsigned int lcounter = 0; + unsigned int hcounter = 0; + + // Collect bits for each element, as well as bits for any trit-blocks and quint-blocks. + for (unsigned int i = 0; i < character_count; i++) + { + results[i] = static_cast<uint8_t>(read_bits(bits, bit_offset, input_data)); + bit_offset += bits; + + if (trits) + { + static const uint8_t bits_to_read[5] { 2, 2, 1, 2, 1 }; + static const uint8_t block_shift[5] { 0, 2, 4, 5, 7 }; + static const uint8_t next_lcounter[5] { 1, 2, 3, 4, 0 }; + static const uint8_t hcounter_incr[5] { 0, 0, 0, 0, 1 }; + unsigned int tdata = read_bits(bits_to_read[lcounter], bit_offset, input_data); + bit_offset += bits_to_read[lcounter]; + tq_blocks[hcounter] |= tdata << block_shift[lcounter]; + hcounter += hcounter_incr[lcounter]; + lcounter = next_lcounter[lcounter]; + } + + if (quints) + { + static const uint8_t bits_to_read[3] { 3, 2, 2 }; + static const uint8_t block_shift[3] { 0, 3, 5 }; + static const uint8_t next_lcounter[3] { 1, 2, 0 }; + static const uint8_t hcounter_incr[3] { 0, 0, 1 }; + unsigned int tdata = read_bits(bits_to_read[lcounter], bit_offset, input_data); + bit_offset += bits_to_read[lcounter]; + tq_blocks[hcounter] |= tdata << block_shift[lcounter]; + hcounter += hcounter_incr[lcounter]; + lcounter = next_lcounter[lcounter]; + } + } + + // Unpack trit-blocks or quint-blocks as needed + if (trits) + { + unsigned int trit_blocks = (character_count + 4) / 5; + promise(trit_blocks > 0); + for (unsigned int i = 0; i < trit_blocks; i++) + { + const uint8_t *tritptr = trits_of_integer[tq_blocks[i]]; + results[5 * i ] |= tritptr[0] << bits; + results[5 * i + 1] |= tritptr[1] << bits; + results[5 * i + 2] |= tritptr[2] << bits; + results[5 * i + 3] |= tritptr[3] << bits; + results[5 * i + 4] |= tritptr[4] << bits; + } + } + + if (quints) + { + unsigned int quint_blocks = (character_count + 2) / 3; + promise(quint_blocks > 0); + for (unsigned int i = 0; i < quint_blocks; i++) + { + const uint8_t *quintptr = quints_of_integer[tq_blocks[i]]; + results[3 * i ] |= quintptr[0] << bits; + results[3 * i + 1] |= quintptr[1] << bits; + results[3 * i + 2] |= quintptr[2] << bits; + } + } + + for (unsigned int i = 0; i < character_count; i++) + { + output_data[i] = results[i]; + } +} diff --git a/thirdparty/astcenc/astcenc_internal.h b/thirdparty/astcenc/astcenc_internal.h new file mode 100644 index 0000000000..0aa8fa0f81 --- /dev/null +++ b/thirdparty/astcenc/astcenc_internal.h @@ -0,0 +1,2196 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions and data declarations. + */ + +#ifndef ASTCENC_INTERNAL_INCLUDED +#define ASTCENC_INTERNAL_INCLUDED + +#include <algorithm> +#include <cstddef> +#include <cstdint> +#if defined(ASTCENC_DIAGNOSTICS) + #include <cstdio> +#endif +#include <cstdlib> + +#include "astcenc.h" +#include "astcenc_mathlib.h" +#include "astcenc_vecmathlib.h" + +/** + * @brief Make a promise to the compiler's optimizer. + * + * A promise is an expression that the optimizer is can assume is true for to help it generate + * faster code. Common use cases for this are to promise that a for loop will iterate more than + * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop + * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer. + */ +#if defined(NDEBUG) + #if !defined(__clang__) && defined(_MSC_VER) + #define promise(cond) __assume(cond) + #elif defined(__clang__) + #if __has_builtin(__builtin_assume) + #define promise(cond) __builtin_assume(cond) + #elif __has_builtin(__builtin_unreachable) + #define promise(cond) if (!(cond)) { __builtin_unreachable(); } + #else + #define promise(cond) + #endif + #else // Assume GCC + #define promise(cond) if (!(cond)) { __builtin_unreachable(); } + #endif +#else + #define promise(cond) assert(cond) +#endif + +/* ============================================================================ + Constants +============================================================================ */ +#if !defined(ASTCENC_BLOCK_MAX_TEXELS) + #define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block +#endif + +/** @brief The maximum number of texels a block can support (6x6x6 block). */ +static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS }; + +/** @brief The maximum number of components a block can support. */ +static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 }; + +/** @brief The maximum number of partitions a block can support. */ +static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 }; + +/** @brief The number of partitionings, per partition count, suported by the ASTC format. */ +static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 }; + +/** @brief The maximum number of weights used during partition selection for texel clustering. */ +static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 }; + +/** @brief The maximum number of weights a block can support. */ +static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 }; + +/** @brief The maximum number of weights a block can support per plane in 2 plane mode. */ +static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 }; + +/** @brief The minimum number of weight bits a candidate encoding must encode. */ +static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 }; + +/** @brief The maximum number of weight bits a candidate encoding can encode. */ +static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 }; + +/** @brief The index indicating a bad (unused) block mode in the remap array. */ +static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu }; + +/** @brief The index indicating a bad (unused) partitioning in the remap array. */ +static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu }; + +/** @brief The number of partition index bits supported by the ASTC format . */ +static constexpr unsigned int PARTITION_INDEX_BITS { 10 }; + +/** @brief The offset of the plane 2 weights in shared weight arrays. */ +static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE }; + +/** @brief The sum of quantized weights for one texel. */ +static constexpr float WEIGHTS_TEXEL_SUM { 16.0f }; + +/** @brief The number of block modes supported by the ASTC format. */ +static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 }; + +/** @brief The number of weight grid decimation modes supported by the ASTC format. */ +static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 }; + +/** @brief The high default error used to initialize error trackers. */ +static constexpr float ERROR_CALC_DEFAULT { 1e30f }; + +/** + * @brief The minimum texel count for a block to use the one partition fast path. + * + * This setting skips 4x4 and 5x4 block sizes. + */ +static constexpr unsigned int TUNE_MIN_TEXELS_MODE0_FASTPATH { 24 }; + +/** + * @brief The maximum number of candidate encodings tested for each encoding mode. + * + * This can be dynamically reduced by the compression quality preset. + */ +static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 }; + +/** + * @brief The maximum number of candidate partitionings tested for each encoding mode. + * + * This can be dynamically reduced by the compression quality preset. + */ +static constexpr unsigned int TUNE_MAX_PARTITIONING_CANDIDATES { 32 }; + +/** + * @brief The maximum quant level using full angular endpoint search method. + * + * The angular endpoint search is used to find the min/max weight that should + * be used for a given quantization level. It is effective but expensive, so + * we only use it where it has the most value - low quant levels with wide + * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we + * assume the min weight is 0.0f, and the max weight is 1.0f. + * + * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills + * one 8-wide vector. Decreasing by one doesn't buy much performance, and + * increasing by one is disproportionately expensive. + */ +static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */ + +static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0, + "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH"); + +static_assert(BLOCK_MAX_TEXELS <= 216, + "BLOCK_MAX_TEXELS must not be greater than 216"); + +static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0, + "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH"); + +static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0, + "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH"); + + +/* ============================================================================ + Commonly used data structures +============================================================================ */ + +/** + * @brief The ASTC endpoint formats. + * + * Note, the values here are used directly in the encoding in the format so do not rearrange. + */ +enum endpoint_formats +{ + FMT_LUMINANCE = 0, + FMT_LUMINANCE_DELTA = 1, + FMT_HDR_LUMINANCE_LARGE_RANGE = 2, + FMT_HDR_LUMINANCE_SMALL_RANGE = 3, + FMT_LUMINANCE_ALPHA = 4, + FMT_LUMINANCE_ALPHA_DELTA = 5, + FMT_RGB_SCALE = 6, + FMT_HDR_RGB_SCALE = 7, + FMT_RGB = 8, + FMT_RGB_DELTA = 9, + FMT_RGB_SCALE_ALPHA = 10, + FMT_HDR_RGB = 11, + FMT_RGBA = 12, + FMT_RGBA_DELTA = 13, + FMT_HDR_RGB_LDR_ALPHA = 14, + FMT_HDR_RGBA = 15 +}; + +/** + * @brief The ASTC quantization methods. + * + * Note, the values here are used directly in the encoding in the format so do not rearrange. + */ +enum quant_method +{ + QUANT_2 = 0, + QUANT_3 = 1, + QUANT_4 = 2, + QUANT_5 = 3, + QUANT_6 = 4, + QUANT_8 = 5, + QUANT_10 = 6, + QUANT_12 = 7, + QUANT_16 = 8, + QUANT_20 = 9, + QUANT_24 = 10, + QUANT_32 = 11, + QUANT_40 = 12, + QUANT_48 = 13, + QUANT_64 = 14, + QUANT_80 = 15, + QUANT_96 = 16, + QUANT_128 = 17, + QUANT_160 = 18, + QUANT_192 = 19, + QUANT_256 = 20 +}; + +/** + * @brief The number of levels use by an ASTC quantization method. + * + * @param method The quantization method + * + * @return The number of levels used by @c method. + */ +static inline unsigned int get_quant_level(quant_method method) +{ + switch (method) + { + case QUANT_2: return 2; + case QUANT_3: return 3; + case QUANT_4: return 4; + case QUANT_5: return 5; + case QUANT_6: return 6; + case QUANT_8: return 8; + case QUANT_10: return 10; + case QUANT_12: return 12; + case QUANT_16: return 16; + case QUANT_20: return 20; + case QUANT_24: return 24; + case QUANT_32: return 32; + case QUANT_40: return 40; + case QUANT_48: return 48; + case QUANT_64: return 64; + case QUANT_80: return 80; + case QUANT_96: return 96; + case QUANT_128: return 128; + case QUANT_160: return 160; + case QUANT_192: return 192; + case QUANT_256: return 256; + } + + // Unreachable - the enum is fully described + return 0; +} + +/** + * @brief Computed metrics about a partition in a block. + */ +struct partition_metrics +{ + /** @brief The error-weighted average color in the partition. */ + vfloat4 avg; + + /** @brief The dominant error-weighted direction in the partition. */ + vfloat4 dir; +}; + +/** + * @brief Computed lines for a a three component analysis. + */ +struct partition_lines3 +{ + /** @brief Line for uncorrelated chroma. */ + line3 uncor_line; + + /** @brief Line for correlated chroma, passing though the origin. */ + line3 samec_line; + + /** @brief Post-processed line for uncorrelated chroma. */ + processed_line3 uncor_pline; + + /** @brief Post-processed line for correlated chroma, passing though the origin. */ + processed_line3 samec_pline; + + /** @brief The length of the line for uncorrelated chroma. */ + float uncor_line_len; + + /** @brief The length of the line for correlated chroma. */ + float samec_line_len; +}; + +/** + * @brief The partition information for a single partition. + * + * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this + * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely + * empty partitions. These are both valid encodings, but astcenc will skip both during compression + * as they are not useful. + */ +struct partition_info +{ + /** @brief The number of partitions in this partitioning. */ + uint16_t partition_count; + + /** @brief The index (seed) of this partitioning. */ + uint16_t partition_index; + + /** + * @brief The number of texels in each partition. + * + * Note that some seeds result in zero texels assigned to a partition are valid, but are skipped + * by this compressor as there is no point spending bits encoding an unused color endpoint. + */ + uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS]; + + /** @brief The partition of each texel in the block. */ + uint8_t partition_of_texel[BLOCK_MAX_TEXELS]; + + /** @brief The list of texels in each partition. */ + uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS]; +}; + +/** + * @brief The weight grid information for a single decimation pattern. + * + * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids + * that are interpolated during decompression to assign a with to a texel. Storing fewer weights + * can free up a substantial amount of bits that we can then spend on more useful things, such as + * more accurate endpoints and weights, or additional partitions. + * + * This data structure is used to store information about a single weight grid decimation pattern, + * for a single block size. + */ +struct decimation_info +{ + /** @brief The total number of texels in the block. */ + uint8_t texel_count; + + /** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */ + uint8_t max_texel_weight_count; + + /** @brief The total number of weights stored. */ + uint8_t weight_count; + + /** @brief The number of stored weights in the X dimension. */ + uint8_t weight_x; + + /** @brief The number of stored weights in the Y dimension. */ + uint8_t weight_y; + + /** @brief The number of stored weights in the Z dimension. */ + uint8_t weight_z; + + /** + * @brief The number of weights that contribute to each texel. + * Value is between 1 and 4. + */ + uint8_t texel_weight_count[BLOCK_MAX_TEXELS]; + + /** + * @brief The weight index of the N weights that are interpolated for each texel. + * Stored transposed to improve vectorization. + */ + uint8_t texel_weights_tr[4][BLOCK_MAX_TEXELS]; + + /** + * @brief The bilinear contribution of the N weights that are interpolated for each texel. + * Value is between 0 and 16, stored transposed to improve vectorization. + */ + uint8_t texel_weight_contribs_int_tr[4][BLOCK_MAX_TEXELS]; + + /** + * @brief The bilinear contribution of the N weights that are interpolated for each texel. + * Value is between 0 and 1, stored transposed to improve vectorization. + */ + alignas(ASTCENC_VECALIGN) float texel_weight_contribs_float_tr[4][BLOCK_MAX_TEXELS]; + + /** @brief The number of texels that each stored weight contributes to. */ + uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS]; + + /** + * @brief The list of texels that use a specific weight index. + * Stored transposed to improve vectorization. + */ + uint8_t weight_texels_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS]; + + /** + * @brief The bilinear contribution to the N texels that use each weight. + * Value is between 0 and 1, stored transposed to improve vectorization. + */ + alignas(ASTCENC_VECALIGN) float weights_texel_contribs_tr[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS]; + + /** + * @brief The bilinear contribution to the Nth texel that uses each weight. + * Value is between 0 and 1, stored transposed to improve vectorization. + */ + float texel_contrib_for_weight[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS]; +}; + +/** + * @brief Metadata for single block mode for a specific block size. + */ +struct block_mode +{ + /** @brief The block mode index in the ASTC encoded form. */ + uint16_t mode_index; + + /** @brief The decimation mode index in the compressor reindexed list. */ + uint8_t decimation_mode; + + /** @brief The weight quantization used by this block mode. */ + uint8_t quant_mode; + + /** @brief The weight quantization used by this block mode. */ + uint8_t weight_bits; + + /** @brief Is a dual weight plane used by this block mode? */ + uint8_t is_dual_plane : 1; + + /** + * @brief Get the weight quantization used by this block mode. + * + * @return The quantization level. + */ + inline quant_method get_weight_quant_mode() const + { + return static_cast<quant_method>(this->quant_mode); + } +}; + +/** + * @brief Metadata for single decimation mode for a specific block size. + */ +struct decimation_mode +{ + /** @brief The max weight precision for 1 plane, or -1 if not supported. */ + int8_t maxprec_1plane; + + /** @brief The max weight precision for 2 planes, or -1 if not supported. */ + int8_t maxprec_2planes; + + /** + * @brief Bitvector indicating weight quant modes used by active 1 plane block modes. + * + * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc. + */ + uint16_t refprec_1_plane; + + /** + * @brief Bitvector indicating weight quant methods used by active 2 plane block modes. + * + * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc. + */ + uint16_t refprec_2_planes; + + /** + * @brief Set a 1 plane weight quant as active. + * + * @param weight_quant The quant method to set. + */ + void set_ref_1_plane(quant_method weight_quant) + { + refprec_1_plane |= (1 << weight_quant); + } + + /** + * @brief Test if this mode is active below a given 1 plane weight quant (inclusive). + * + * @param max_weight_quant The max quant method to test. + */ + bool is_ref_1_plane(quant_method max_weight_quant) const + { + uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1); + return (refprec_1_plane & mask) != 0; + } + + /** + * @brief Set a 2 plane weight quant as active. + * + * @param weight_quant The quant method to set. + */ + void set_ref_2_plane(quant_method weight_quant) + { + refprec_2_planes |= static_cast<uint16_t>(1 << weight_quant); + } + + /** + * @brief Test if this mode is active below a given 2 plane weight quant (inclusive). + * + * @param max_weight_quant The max quant method to test. + */ + bool is_ref_2_plane(quant_method max_weight_quant) const + { + uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1); + return (refprec_2_planes & mask) != 0; + } +}; + +/** + * @brief Data tables for a single block size. + * + * The decimation tables store the information to apply weight grid dimension reductions. We only + * store the decimation modes that are actually needed by the current context; many of the possible + * modes will be unused (too many weights for the current block size or disabled by heuristics). The + * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and + * @c decimation_tables arrays store the active modes contiguously at the start of the array. These + * entries are not stored in any particular order. + * + * The block mode tables store the unpacked block mode settings. Block modes are stored in the + * compressed block as an 11 bit field, but for any given block size and set of compressor + * heuristics, only a subset of the block modes will be used. The actual number of block modes + * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes + * contiguously at the start of the array. These entries are stored in incrementing "packed" value + * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data + * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the + * actual remapped array index. + */ +struct block_size_descriptor +{ + /** @brief The block X dimension, in texels. */ + uint8_t xdim; + + /** @brief The block Y dimension, in texels. */ + uint8_t ydim; + + /** @brief The block Z dimension, in texels. */ + uint8_t zdim; + + /** @brief The block total texel count. */ + uint8_t texel_count; + + /** + * @brief The number of stored decimation modes which are "always" modes. + * + * Always modes are stored at the start of the decimation_modes list. + */ + unsigned int decimation_mode_count_always; + + /** @brief The number of stored decimation modes for selected encodings. */ + unsigned int decimation_mode_count_selected; + + /** @brief The number of stored decimation modes for any encoding. */ + unsigned int decimation_mode_count_all; + + /** + * @brief The number of stored block modes which are "always" modes. + * + * Always modes are stored at the start of the block_modes list. + */ + unsigned int block_mode_count_1plane_always; + + /** @brief The number of stored block modes for active 1 plane encodings. */ + unsigned int block_mode_count_1plane_selected; + + /** @brief The number of stored block modes for active 1 and 2 plane encodings. */ + unsigned int block_mode_count_1plane_2plane_selected; + + /** @brief The number of stored block modes for any encoding. */ + unsigned int block_mode_count_all; + + /** @brief The number of selected partitionings for 1/2/3/4 partitionings. */ + unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS]; + + /** @brief The number of partitionings for 1/2/3/4 partitionings. */ + unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS]; + + /** @brief The active decimation modes, stored in low indices. */ + decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES]; + + /** @brief The active decimation tables, stored in low indices. */ + alignas(ASTCENC_VECALIGN) decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES]; + + /** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */ + uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The active block modes, stored in low indices. */ + block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The active partition tables, stored in low indices per-count. */ + partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1]; + + /** + * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active. + * + * Indexed by partition_count - 2, containing 2, 3 and 4 partitions. + */ + uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS]; + + /** @brief The active texels for k-means partition selection. */ + uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS]; + + /** + * @brief The canonical 2-partition coverage pattern used during block partition search. + * + * Indexed by remapped index, not physical index. + */ + uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2]; + + /** + * @brief The canonical 3-partition coverage pattern used during block partition search. + * + * Indexed by remapped index, not physical index. + */ + uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3]; + + /** + * @brief The canonical 4-partition coverage pattern used during block partition search. + * + * Indexed by remapped index, not physical index. + */ + uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4]; + + /** + * @brief Get the block mode structure for index @c block_mode. + * + * This function can only return block modes that are enabled by the current compressor config. + * Decompression from an arbitrary source should not use this without first checking that the + * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE. + * + * @param block_mode The packed block mode index. + * + * @return The block mode structure. + */ + const block_mode& get_block_mode(unsigned int block_mode) const + { + unsigned int packed_index = this->block_mode_packed_index[block_mode]; + assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all); + return this->block_modes[packed_index]; + } + + /** + * @brief Get the decimation mode structure for index @c decimation_mode. + * + * This function can only return decimation modes that are enabled by the current compressor + * config. The mode array is stored packed, but this is only ever indexed by the packed index + * stored in the @c block_mode and never exists in an unpacked form. + * + * @param decimation_mode The packed decimation mode index. + * + * @return The decimation mode structure. + */ + const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const + { + return this->decimation_modes[decimation_mode]; + } + + /** + * @brief Get the decimation info structure for index @c decimation_mode. + * + * This function can only return decimation modes that are enabled by the current compressor + * config. The mode array is stored packed, but this is only ever indexed by the packed index + * stored in the @c block_mode and never exists in an unpacked form. + * + * @param decimation_mode The packed decimation mode index. + * + * @return The decimation info structure. + */ + const decimation_info& get_decimation_info(unsigned int decimation_mode) const + { + return this->decimation_tables[decimation_mode]; + } + + /** + * @brief Get the partition info table for a given partition count. + * + * @param partition_count The number of partitions we want the table for. + * + * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part). + */ + const partition_info* get_partition_table(unsigned int partition_count) const + { + if (partition_count == 1) + { + partition_count = 5; + } + unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS; + return this->partitionings + index; + } + + /** + * @brief Get the partition info structure for a given partition count and seed. + * + * @param partition_count The number of partitions we want the info for. + * @param index The partition seed (between 0 and 1023). + * + * @return The partition info structure. + */ + const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const + { + unsigned int packed_index = 0; + if (partition_count >= 2) + { + packed_index = this->partitioning_packed_index[partition_count - 2][index]; + } + + assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]); + auto& result = get_partition_table(partition_count)[packed_index]; + assert(index == result.partition_index); + return result; + } + + /** + * @brief Get the partition info structure for a given partition count and seed. + * + * @param partition_count The number of partitions we want the info for. + * @param packed_index The raw array offset. + * + * @return The partition info structure. + */ + const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const + { + assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]); + auto& result = get_partition_table(partition_count)[packed_index]; + return result; + } +}; + +/** + * @brief The image data for a single block. + * + * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy + * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR + * data is stored as direct UNORM data, HDR data is stored as LNS data. + * + * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during + * decompression. The current compressor will always use HDR endpoint formats when in HDR mode. + */ +struct image_block +{ + /** @brief The input (compress) or output (decompress) data for the red color component. */ + alignas(ASTCENC_VECALIGN) float data_r[BLOCK_MAX_TEXELS]; + + /** @brief The input (compress) or output (decompress) data for the green color component. */ + alignas(ASTCENC_VECALIGN) float data_g[BLOCK_MAX_TEXELS]; + + /** @brief The input (compress) or output (decompress) data for the blue color component. */ + alignas(ASTCENC_VECALIGN) float data_b[BLOCK_MAX_TEXELS]; + + /** @brief The input (compress) or output (decompress) data for the alpha color component. */ + alignas(ASTCENC_VECALIGN) float data_a[BLOCK_MAX_TEXELS]; + + /** @brief The number of texels in the block. */ + uint8_t texel_count; + + /** @brief The original data for texel 0 for constant color block encoding. */ + vfloat4 origin_texel; + + /** @brief The min component value of all texels in the block. */ + vfloat4 data_min; + + /** @brief The mean component value of all texels in the block. */ + vfloat4 data_mean; + + /** @brief The max component value of all texels in the block. */ + vfloat4 data_max; + + /** @brief The relative error significance of the color channels. */ + vfloat4 channel_weight; + + /** @brief Is this grayscale block where R == G == B for all texels? */ + bool grayscale; + + /** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */ + uint8_t rgb_lns[BLOCK_MAX_TEXELS]; + + /** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */ + uint8_t alpha_lns[BLOCK_MAX_TEXELS]; + + /** @brief The X position of this block in the input or output image. */ + unsigned int xpos; + + /** @brief The Y position of this block in the input or output image. */ + unsigned int ypos; + + /** @brief The Z position of this block in the input or output image. */ + unsigned int zpos; + + /** + * @brief Get an RGBA texel value from the data. + * + * @param index The texel index. + * + * @return The texel in RGBA component ordering. + */ + inline vfloat4 texel(unsigned int index) const + { + return vfloat4(data_r[index], + data_g[index], + data_b[index], + data_a[index]); + } + + /** + * @brief Get an RGB texel value from the data. + * + * @param index The texel index. + * + * @return The texel in RGB0 component ordering. + */ + inline vfloat4 texel3(unsigned int index) const + { + return vfloat3(data_r[index], + data_g[index], + data_b[index]); + } + + /** + * @brief Get the default alpha value for endpoints that don't store it. + * + * The default depends on whether the alpha endpoint is LDR or HDR. + * + * @return The alpha value in the scaled range used by the compressor. + */ + inline float get_default_alpha() const + { + return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF); + } + + /** + * @brief Test if a single color channel is constant across the block. + * + * Constant color channels are easier to compress as interpolating between two identical colors + * always returns the same value, irrespective of the weight used. They therefore can be ignored + * for the purposes of weight selection and use of a second weight plane. + * + * @return @c true if the channel is constant across the block, @c false otherwise. + */ + inline bool is_constant_channel(int channel) const + { + vmask4 lane_mask = vint4::lane_id() == vint4(channel); + vmask4 color_mask = this->data_min == this->data_max; + return any(lane_mask & color_mask); + } + + /** + * @brief Test if this block is a luminance block with constant 1.0 alpha. + * + * @return @c true if the block is a luminance block , @c false otherwise. + */ + inline bool is_luminance() const + { + float default_alpha = this->get_default_alpha(); + bool alpha1 = (this->data_min.lane<3>() == default_alpha) && + (this->data_max.lane<3>() == default_alpha); + return this->grayscale && alpha1; + } + + /** + * @brief Test if this block is a luminance block with variable alpha. + * + * @return @c true if the block is a luminance + alpha block , @c false otherwise. + */ + inline bool is_luminancealpha() const + { + float default_alpha = this->get_default_alpha(); + bool alpha1 = (this->data_min.lane<3>() == default_alpha) && + (this->data_max.lane<3>() == default_alpha); + return this->grayscale && !alpha1; + } +}; + +/** + * @brief Data structure storing the color endpoints for a block. + */ +struct endpoints +{ + /** @brief The number of partition endpoints stored. */ + unsigned int partition_count; + + /** @brief The colors for endpoint 0. */ + vfloat4 endpt0[BLOCK_MAX_PARTITIONS]; + + /** @brief The colors for endpoint 1. */ + vfloat4 endpt1[BLOCK_MAX_PARTITIONS]; +}; + +/** + * @brief Data structure storing the color endpoints and weights. + */ +struct endpoints_and_weights +{ + /** @brief True if all active values in weight_error_scale are the same. */ + bool is_constant_weight_error_scale; + + /** @brief The color endpoints. */ + endpoints ep; + + /** @brief The ideal weight for each texel; may be undecimated or decimated. */ + alignas(ASTCENC_VECALIGN) float weights[BLOCK_MAX_TEXELS]; + + /** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */ + alignas(ASTCENC_VECALIGN) float weight_error_scale[BLOCK_MAX_TEXELS]; +}; + +/** + * @brief Utility storing estimated errors from choosing particular endpoint encodings. + */ +struct encoding_choice_errors +{ + /** @brief Error of using LDR RGB-scale instead of complete endpoints. */ + float rgb_scale_error; + + /** @brief Error of using HDR RGB-scale instead of complete endpoints. */ + float rgb_luma_error; + + /** @brief Error of using luminance instead of RGB. */ + float luminance_error; + + /** @brief Error of discarding alpha and using a constant 1.0 alpha. */ + float alpha_drop_error; + + /** @brief Can we use delta offset encoding? */ + bool can_offset_encode; + + /** @brief Can we use blue contraction encoding? */ + bool can_blue_contract; +}; + +/** + * @brief Preallocated working buffers, allocated per thread during context creation. + */ +struct alignas(ASTCENC_VECALIGN) compression_working_buffers +{ + /** @brief Ideal endpoints and weights for plane 1. */ + endpoints_and_weights ei1; + + /** @brief Ideal endpoints and weights for plane 2. */ + endpoints_and_weights ei2; + + /** + * @brief Decimated ideal weight values in the ~0-1 range. + * + * Note that values can be slightly below zero or higher than one due to + * endpoint extents being inside the ideal color representation. + * + * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets. + */ + alignas(ASTCENC_VECALIGN) float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS]; + + /** + * @brief Decimated quantized weight values in the unquantized 0-64 range. + * + * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets. + */ + uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS]; + + /** @brief Error of the best encoding combination for each block mode. */ + alignas(ASTCENC_VECALIGN) float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The best color quant for each block mode. */ + uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The best color quant for each block mode if modes are the same and we have spare bits. */ + uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The best endpoint format for each partition. */ + uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS]; + + /** @brief The total bit storage needed for quantized weights for each block mode. */ + int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The cumulative error for quantized weights for each block mode. */ + float qwt_errors[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The low weight value in plane 1 for each block mode. */ + float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The high weight value in plane 1 for each block mode. */ + float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The low weight value in plane 1 for each quant level and decimation mode. */ + float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1]; + + /** @brief The high weight value in plane 1 for each quant level and decimation mode. */ + float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1]; + + /** @brief The low weight value in plane 2 for each block mode. */ + float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The high weight value in plane 2 for each block mode. */ + float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES]; + + /** @brief The low weight value in plane 2 for each quant level and decimation mode. */ + float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1]; + + /** @brief The high weight value in plane 2 for each quant level and decimation mode. */ + float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1]; +}; + +struct dt_init_working_buffers +{ + uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS]; + uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4]; + uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4]; + + uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS]; + uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS]; + uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS]; +}; + +/** + * @brief Weight quantization transfer table. + * + * ASTC can store texel weights at many quantization levels, so for performance we store essential + * information about each level as a precomputed data structure. Unquantized weights are integers + * or floats in the range [0, 64]. + * + * This structure provides a table, used to estimate the closest quantized weight for a given + * floating-point weight. For each quantized weight, the corresponding unquantized values. For each + * quantized weight, a previous-value and a next-value. +*/ +struct quant_and_transfer_table +{ + /** @brief The unscrambled unquantized value. */ + int8_t quant_to_unquant[32]; + + /** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */ + int8_t scramble_map[32]; + + /** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */ + int8_t unscramble_and_unquant_map[32]; + + /** + * @brief A table of previous-and-next weights, indexed by the current unquantized value. + * * bits 7:0 = previous-index, unquantized + * * bits 15:8 = next-index, unquantized + */ + uint16_t prev_next_values[65]; +}; + +/** @brief The precomputed quant and transfer table. */ +extern const quant_and_transfer_table quant_and_xfer_tables[12]; + +/** @brief The block is an error block, and will return error color or NaN. */ +static constexpr uint8_t SYM_BTYPE_ERROR { 0 }; + +/** @brief The block is a constant color block using FP16 colors. */ +static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 }; + +/** @brief The block is a constant color block using UNORM16 colors. */ +static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 }; + +/** @brief The block is a normal non-constant color block. */ +static constexpr uint8_t SYM_BTYPE_NONCONST { 3 }; + +/** + * @brief A symbolic representation of a compressed block. + * + * The symbolic representation stores the unpacked content of a single + * @c physical_compressed_block, in a form which is much easier to access for + * the rest of the compressor code. + */ +struct symbolic_compressed_block +{ + /** @brief The block type, one of the @c SYM_BTYPE_* constants. */ + uint8_t block_type; + + /** @brief The number of partitions; valid for @c NONCONST blocks. */ + uint8_t partition_count; + + /** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */ + uint8_t color_formats_matched; + + /** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */ + int8_t plane2_component; + + /** @brief The block mode; valid for @c NONCONST blocks. */ + uint16_t block_mode; + + /** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */ + uint16_t partition_index; + + /** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */ + uint8_t color_formats[BLOCK_MAX_PARTITIONS]; + + /** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */ + quant_method quant_mode; + + /** @brief The error of the current encoding; valid for @c NONCONST blocks. */ + float errorval; + + // We can't have both of these at the same time + union { + /** @brief The constant color; valid for @c CONST blocks. */ + int constant_color[BLOCK_MAX_COMPONENTS]; + + /** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */ + uint8_t color_values[BLOCK_MAX_PARTITIONS][8]; + }; + + /** @brief The quantized and decimated weights. + * + * Weights are stored in the 0-64 unpacked range allowing them to be used + * directly in encoding passes without per-use unpacking. Packing happens + * when converting to/from the physical bitstream encoding. + * + * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET]. + */ + uint8_t weights[BLOCK_MAX_WEIGHTS]; + + /** + * @brief Get the weight quantization used by this block mode. + * + * @return The quantization level. + */ + inline quant_method get_color_quant_mode() const + { + return this->quant_mode; + } +}; + +/** + * @brief A physical representation of a compressed block. + * + * The physical representation stores the raw bytes of the format in memory. + */ +struct physical_compressed_block +{ + /** @brief The ASTC encoded data for a single block. */ + uint8_t data[16]; +}; + + +/** + * @brief Parameter structure for @c compute_pixel_region_variance(). + * + * This function takes a structure to avoid spilling arguments to the stack on every function + * invocation, as there are a lot of parameters. + */ +struct pixel_region_args +{ + /** @brief The image to analyze. */ + const astcenc_image* img; + + /** @brief The component swizzle pattern. */ + astcenc_swizzle swz; + + /** @brief Should the algorithm bother with Z axis processing? */ + bool have_z; + + /** @brief The kernel radius for alpha processing. */ + unsigned int alpha_kernel_radius; + + /** @brief The X dimension of the working data to process. */ + unsigned int size_x; + + /** @brief The Y dimension of the working data to process. */ + unsigned int size_y; + + /** @brief The Z dimension of the working data to process. */ + unsigned int size_z; + + /** @brief The X position of first src and dst data in the data set. */ + unsigned int offset_x; + + /** @brief The Y position of first src and dst data in the data set. */ + unsigned int offset_y; + + /** @brief The Z position of first src and dst data in the data set. */ + unsigned int offset_z; + + /** @brief The working memory buffer. */ + vfloat4 *work_memory; +}; + +/** + * @brief Parameter structure for @c compute_averages_proc(). + */ +struct avg_args +{ + /** @brief The arguments for the nested variance computation. */ + pixel_region_args arg; + + /** @brief The image X dimensions. */ + unsigned int img_size_x; + + /** @brief The image Y dimensions. */ + unsigned int img_size_y; + + /** @brief The image Z dimensions. */ + unsigned int img_size_z; + + /** @brief The maximum working block dimensions in X and Y dimensions. */ + unsigned int blk_size_xy; + + /** @brief The maximum working block dimensions in Z dimensions. */ + unsigned int blk_size_z; + + /** @brief The working block memory size. */ + unsigned int work_memory_size; +}; + +#if defined(ASTCENC_DIAGNOSTICS) +/* See astcenc_diagnostic_trace header for details. */ +class TraceLog; +#endif + +/** + * @brief The astcenc compression context. + */ +struct astcenc_contexti +{ + /** @brief The configuration this context was created with. */ + astcenc_config config; + + /** @brief The thread count supported by this context. */ + unsigned int thread_count; + + /** @brief The block size descriptor this context was created with. */ + block_size_descriptor* bsd; + + /* + * Fields below here are not needed in a decompress-only build, but some remain as they are + * small and it avoids littering the code with #ifdefs. The most significant contributors to + * large structure size are omitted. + */ + + /** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */ + float* input_alpha_averages; + + /** @brief The scratch working buffers, one per thread (see @c thread_count). */ + compression_working_buffers* working_buffers; + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + /** @brief The pixel region and variance worker arguments. */ + avg_args avg_preprocess_args; +#endif + +#if defined(ASTCENC_DIAGNOSTICS) + /** + * @brief The diagnostic trace logger. + * + * Note that this is a singleton, so can only be used in single threaded mode. It only exists + * here so we have a reference to close the file at the end of the capture. + */ + TraceLog* trace_log; +#endif +}; + +/* ============================================================================ + Functionality for managing block sizes and partition tables. +============================================================================ */ + +/** + * @brief Populate the block size descriptor for the target block size. + * + * This will also initialize the partition table metadata, which is stored as part of the BSD + * structure. + * + * @param x_texels The number of texels in the block X dimension. + * @param y_texels The number of texels in the block Y dimension. + * @param z_texels The number of texels in the block Z dimension. + * @param can_omit_modes Can we discard modes and partitionings that astcenc won't use? + * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings. + * @param mode_cutoff The block mode percentile cutoff [0-1]. + * @param[out] bsd The descriptor to initialize. + */ +void init_block_size_descriptor( + unsigned int x_texels, + unsigned int y_texels, + unsigned int z_texels, + bool can_omit_modes, + unsigned int partition_count_cutoff, + float mode_cutoff, + block_size_descriptor& bsd); + +/** + * @brief Populate the partition tables for the target block size. + * + * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before + * calling this function. + * + * @param[out] bsd The block size information structure to populate. + * @param can_omit_partitionings True if we can we drop partitionings that astcenc won't use. + * @param partition_count_cutoff The partition count cutoff to use, if we can omit partitionings. + */ +void init_partition_tables( + block_size_descriptor& bsd, + bool can_omit_partitionings, + unsigned int partition_count_cutoff); + +/** + * @brief Get the percentile table for 2D block modes. + * + * This is an empirically determined prioritization of which block modes to use in the search in + * terms of their centile (lower centiles = more useful). + * + * Returns a dynamically allocated array; caller must free with delete[]. + * + * @param xdim The block x size. + * @param ydim The block y size. + * + * @return The unpacked table. + */ +const float* get_2d_percentile_table( + unsigned int xdim, + unsigned int ydim); + +/** + * @brief Query if a 2D block size is legal. + * + * @return True if legal, false otherwise. + */ +bool is_legal_2d_block_size( + unsigned int xdim, + unsigned int ydim); + +/** + * @brief Query if a 3D block size is legal. + * + * @return True if legal, false otherwise. + */ +bool is_legal_3d_block_size( + unsigned int xdim, + unsigned int ydim, + unsigned int zdim); + +/* ============================================================================ + Functionality for managing BISE quantization and unquantization. +============================================================================ */ + +/** + * @brief The precomputed table for quantizing color values. + * + * Converts unquant value in 0-255 range into quant value in 0-255 range. + * No BISE scrambling is applied at this stage. + * + * Indexed by [quant_mode - 4][data_value]. + */ +extern const uint8_t color_unquant_to_uquant_tables[17][256]; + +/** + * @brief The precomputed table for packing quantized color values. + * + * Converts quant value in 0-255 range into packed quant value in 0-N range, + * with BISE scrambling applied. + * + * Indexed by [quant_mode - 4][data_value]. + */ +extern const uint8_t color_uquant_to_scrambled_pquant_tables[17][256]; + +/** + * @brief The precomputed table for unpacking color values. + * + * Converts quant value in 0-N range into unpacked value in 0-255 range, + * with BISE unscrambling applied. + * + * Indexed by [quant_mode - 4][data_value]. + */ +extern const uint8_t* color_scrambled_pquant_to_uquant_tables[17]; + +/** + * @brief The precomputed quant mode storage table. + * + * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and + * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot + * ever fit in the supplied storage size. + */ +extern const int8_t quant_mode_table[10][128]; + +/** + * @brief Encode a packed string using BISE. + * + * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can + * start storing strings in a block at arbitrary bit offsets in the encoded data. + * + * @param quant_level The BISE alphabet size. + * @param character_count The number of characters in the string. + * @param input_data The unpacked string, one byte per character. + * @param[in,out] output_data The output packed string. + * @param bit_offset The starting offset in the output storage. + */ +void encode_ise( + quant_method quant_level, + unsigned int character_count, + const uint8_t* input_data, + uint8_t* output_data, + unsigned int bit_offset); + +/** + * @brief Decode a packed string using BISE. + * + * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start + * strings at arbitrary bit offsets in the encoded data. + * + * @param quant_level The BISE alphabet size. + * @param character_count The number of characters in the string. + * @param input_data The packed string. + * @param[in,out] output_data The output storage, one byte per character. + * @param bit_offset The starting offset in the output storage. + */ +void decode_ise( + quant_method quant_level, + unsigned int character_count, + const uint8_t* input_data, + uint8_t* output_data, + unsigned int bit_offset); + +/** + * @brief Return the number of bits needed to encode an ISE sequence. + * + * This implementation assumes that the @c quant level is untrusted, given it may come from random + * data being decompressed, so we return an arbitrary unencodable size if that is the case. + * + * @param character_count The number of items in the sequence. + * @param quant_level The desired quantization level. + * + * @return The number of bits needed to encode the BISE string. + */ +unsigned int get_ise_sequence_bitcount( + unsigned int character_count, + quant_method quant_level); + +/* ============================================================================ + Functionality for managing color partitioning. +============================================================================ */ + +/** + * @brief Compute averages and dominant directions for each partition in a 2 component texture. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param component1 The first component included in the analysis. + * @param component2 The second component included in the analysis. + * @param[out] pm The output partition metrics. + * - Only pi.partition_count array entries actually get initialized. + * - Direction vectors @c pm.dir are not normalized. + */ +void compute_avgs_and_dirs_2_comp( + const partition_info& pi, + const image_block& blk, + unsigned int component1, + unsigned int component2, + partition_metrics pm[BLOCK_MAX_PARTITIONS]); + +/** + * @brief Compute averages and dominant directions for each partition in a 3 component texture. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param omitted_component The component excluded from the analysis. + * @param[out] pm The output partition metrics. + * - Only pi.partition_count array entries actually get initialized. + * - Direction vectors @c pm.dir are not normalized. + */ +void compute_avgs_and_dirs_3_comp( + const partition_info& pi, + const image_block& blk, + unsigned int omitted_component, + partition_metrics pm[BLOCK_MAX_PARTITIONS]); + +/** + * @brief Compute averages and dominant directions for each partition in a 3 component texture. + * + * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is + * always alpha, a common case during partition search. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param[out] pm The output partition metrics. + * - Only pi.partition_count array entries actually get initialized. + * - Direction vectors @c pm.dir are not normalized. + */ +void compute_avgs_and_dirs_3_comp_rgb( + const partition_info& pi, + const image_block& blk, + partition_metrics pm[BLOCK_MAX_PARTITIONS]); + +/** + * @brief Compute averages and dominant directions for each partition in a 4 component texture. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param[out] pm The output partition metrics. + * - Only pi.partition_count array entries actually get initialized. + * - Direction vectors @c pm.dir are not normalized. + */ +void compute_avgs_and_dirs_4_comp( + const partition_info& pi, + const image_block& blk, + partition_metrics pm[BLOCK_MAX_PARTITIONS]); + +/** + * @brief Compute the RGB error for uncorrelated and same chroma projections. + * + * The output of compute averages and dirs is post processed to define two lines, both of which go + * through the mean-color-value. One line has a direction defined by the dominant direction; this + * is used to assess the error from using an uncorrelated color representation. The other line goes + * through (0,0,0) and is used to assess the error from using an RGBS color representation. + * + * This function computes the squared error when using these two representations. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param[in,out] plines Processed line inputs, and line length outputs. + * @param[out] uncor_error The cumulative error for using the uncorrelated line. + * @param[out] samec_error The cumulative error for using the same chroma line. + */ +void compute_error_squared_rgb( + const partition_info& pi, + const image_block& blk, + partition_lines3 plines[BLOCK_MAX_PARTITIONS], + float& uncor_error, + float& samec_error); + +/** + * @brief Compute the RGBA error for uncorrelated and same chroma projections. + * + * The output of compute averages and dirs is post processed to define two lines, both of which go + * through the mean-color-value. One line has a direction defined by the dominant direction; this + * is used to assess the error from using an uncorrelated color representation. The other line goes + * through (0,0,0,1) and is used to assess the error from using an RGBS color representation. + * + * This function computes the squared error when using these two representations. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to be compressed. + * @param uncor_plines Processed uncorrelated partition lines for each partition. + * @param samec_plines Processed same chroma partition lines for each partition. + * @param[out] uncor_lengths The length of each components deviation from the line. + * @param[out] samec_lengths The length of each components deviation from the line. + * @param[out] uncor_error The cumulative error for using the uncorrelated line. + * @param[out] samec_error The cumulative error for using the same chroma line. + */ +void compute_error_squared_rgba( + const partition_info& pi, + const image_block& blk, + const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS], + const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS], + float uncor_lengths[BLOCK_MAX_PARTITIONS], + float samec_lengths[BLOCK_MAX_PARTITIONS], + float& uncor_error, + float& samec_error); + +/** + * @brief Find the best set of partitions to trial for a given block. + * + * On return the @c best_partitions list will contain the two best partition + * candidates; one assuming data has uncorrelated chroma and one assuming the + * data has correlated chroma. The best candidate is returned first in the list. + * + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param partition_count The number of partitions in the block. + * @param partition_search_limit The number of candidate partition encodings to trial. + * @param[out] best_partitions The best partition candidates. + * @param requested_candidates The number of requested partitionings. May return fewer if + * candidates are not available. + * + * @return The actual number of candidates returned. + */ +unsigned int find_best_partition_candidates( + const block_size_descriptor& bsd, + const image_block& blk, + unsigned int partition_count, + unsigned int partition_search_limit, + unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES], + unsigned int requested_candidates); + +/* ============================================================================ + Functionality for managing images and image related data. +============================================================================ */ + +/** + * @brief Setup computation of regional averages in an image. + * + * This must be done by only a single thread per image, before any thread calls + * @c compute_averages(). + * + * Results are written back into @c img->input_alpha_averages. + * + * @param img The input image data, also holds output data. + * @param alpha_kernel_radius The kernel radius (in pixels) for alpha mods. + * @param swz Input data component swizzle. + * @param[out] ag The average variance arguments to init. + * + * @return The number of tasks in the processing stage. + */ +unsigned int init_compute_averages( + const astcenc_image& img, + unsigned int alpha_kernel_radius, + const astcenc_swizzle& swz, + avg_args& ag); + +/** + * @brief Compute averages for a pixel region. + * + * The routine computes both in a single pass, using a summed-area table to decouple the running + * time from the averaging/variance kernel size. + * + * @param[out] ctx The compressor context storing the output data. + * @param arg The input parameter structure. + */ +void compute_pixel_region_variance( + astcenc_contexti& ctx, + const pixel_region_args& arg); +/** + * @brief Load a single image block from the input image. + * + * @param decode_mode The compression color profile. + * @param img The input image data. + * @param[out] blk The image block to populate. + * @param bsd The block size information. + * @param xpos The block X coordinate in the input image. + * @param ypos The block Y coordinate in the input image. + * @param zpos The block Z coordinate in the input image. + * @param swz The swizzle to apply on load. + */ +void load_image_block( + astcenc_profile decode_mode, + const astcenc_image& img, + image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz); + +/** + * @brief Load a single image block from the input image. + * + * This specialized variant can be used only if the block is 2D LDR U8 data, + * with no swizzle. + * + * @param decode_mode The compression color profile. + * @param img The input image data. + * @param[out] blk The image block to populate. + * @param bsd The block size information. + * @param xpos The block X coordinate in the input image. + * @param ypos The block Y coordinate in the input image. + * @param zpos The block Z coordinate in the input image. + * @param swz The swizzle to apply on load. + */ +void load_image_block_fast_ldr( + astcenc_profile decode_mode, + const astcenc_image& img, + image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz); + +/** + * @brief Store a single image block to the output image. + * + * @param[out] img The output image data. + * @param blk The image block to export. + * @param bsd The block size information. + * @param xpos The block X coordinate in the input image. + * @param ypos The block Y coordinate in the input image. + * @param zpos The block Z coordinate in the input image. + * @param swz The swizzle to apply on store. + */ +void store_image_block( + astcenc_image& img, + const image_block& blk, + const block_size_descriptor& bsd, + unsigned int xpos, + unsigned int ypos, + unsigned int zpos, + const astcenc_swizzle& swz); + +/* ============================================================================ + Functionality for computing endpoint colors and weights for a block. +============================================================================ */ + +/** + * @brief Compute ideal endpoint colors and weights for 1 plane of weights. + * + * The ideal endpoints define a color line for the partition. For each texel the ideal weight + * defines an exact position on the partition color line. We can then use these to assess the error + * introduced by removing and quantizing the weight grid. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param[out] ei The endpoint and weight values. + */ +void compute_ideal_colors_and_weights_1plane( + const image_block& blk, + const partition_info& pi, + endpoints_and_weights& ei); + +/** + * @brief Compute ideal endpoint colors and weights for 2 planes of weights. + * + * The ideal endpoints define a color line for the partition. For each texel the ideal weight + * defines an exact position on the partition color line. We can then use these to assess the error + * introduced by removing and quantizing the weight grid. + * + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param plane2_component The component assigned to plane 2. + * @param[out] ei1 The endpoint and weight values for plane 1. + * @param[out] ei2 The endpoint and weight values for plane 2. + */ +void compute_ideal_colors_and_weights_2planes( + const block_size_descriptor& bsd, + const image_block& blk, + unsigned int plane2_component, + endpoints_and_weights& ei1, + endpoints_and_weights& ei2); + +/** + * @brief Compute the optimal unquantized weights for a decimation table. + * + * After computing ideal weights for the case for a complete weight grid, we we want to compute the + * ideal weights for the case where weights exist only for some texels. We do this with a + * steepest-descent grid solver which works as follows: + * + * First, for each actual weight, perform a weighted averaging of the texels affected by the weight. + * Then, set step size to <some initial value> and attempt one step towards the original ideal + * weight if it helps to reduce error. + * + * @param ei The non-decimated endpoints and weights. + * @param di The selected weight decimation. + * @param[out] dec_weight_ideal_value The ideal values for the decimated weight set. + */ +void compute_ideal_weights_for_decimation( + const endpoints_and_weights& ei, + const decimation_info& di, + float* dec_weight_ideal_value); + +/** + * @brief Compute the optimal quantized weights for a decimation table. + * + * We test the two closest weight indices in the allowed quantization range and keep the weight that + * is the closest match. + * + * @param di The selected weight decimation. + * @param low_bound The lowest weight allowed. + * @param high_bound The highest weight allowed. + * @param dec_weight_ideal_value The ideal weight set. + * @param[out] dec_weight_quant_uvalue The output quantized weight as a float. + * @param[out] dec_weight_uquant The output quantized weight as encoded int. + * @param quant_level The desired weight quant level. + */ +void compute_quantized_weights_for_decimation( + const decimation_info& di, + float low_bound, + float high_bound, + const float* dec_weight_ideal_value, + float* dec_weight_quant_uvalue, + uint8_t* dec_weight_uquant, + quant_method quant_level); + +/** + * @brief Compute the error of a decimated weight set for 1 plane. + * + * After computing ideal weights for the case with one weight per texel, we want to compute the + * error for decimated weight grids where weights are stored at a lower resolution. This function + * computes the error of the reduced grid, compared to the full grid. + * + * @param eai The ideal weights for the full grid. + * @param di The selected weight decimation. + * @param dec_weight_quant_uvalue The quantized weights for the decimated grid. + * + * @return The accumulated error. + */ +float compute_error_of_weight_set_1plane( + const endpoints_and_weights& eai, + const decimation_info& di, + const float* dec_weight_quant_uvalue); + +/** + * @brief Compute the error of a decimated weight set for 2 planes. + * + * After computing ideal weights for the case with one weight per texel, we want to compute the + * error for decimated weight grids where weights are stored at a lower resolution. This function + * computes the error of the reduced grid, compared to the full grid. + * + * @param eai1 The ideal weights for the full grid and plane 1. + * @param eai2 The ideal weights for the full grid and plane 2. + * @param di The selected weight decimation. + * @param dec_weight_quant_uvalue_plane1 The quantized weights for the decimated grid plane 1. + * @param dec_weight_quant_uvalue_plane2 The quantized weights for the decimated grid plane 2. + * + * @return The accumulated error. + */ +float compute_error_of_weight_set_2planes( + const endpoints_and_weights& eai1, + const endpoints_and_weights& eai2, + const decimation_info& di, + const float* dec_weight_quant_uvalue_plane1, + const float* dec_weight_quant_uvalue_plane2); + +/** + * @brief Pack a single pair of color endpoints as effectively as possible. + * + * The user requests a base color endpoint mode in @c format, but the quantizer may choose a + * delta-based representation. It will report back the format variant it actually used. + * + * @param color0 The input unquantized color0 endpoint for absolute endpoint pairs. + * @param color1 The input unquantized color1 endpoint for absolute endpoint pairs. + * @param rgbs_color The input unquantized RGBS variant endpoint for same chroma endpoints. + * @param rgbo_color The input unquantized RGBS variant endpoint for HDR endpoints. + * @param format The desired base format. + * @param[out] output The output storage for the quantized colors/ + * @param quant_level The quantization level requested. + * + * @return The actual endpoint mode used. + */ +uint8_t pack_color_endpoints( + vfloat4 color0, + vfloat4 color1, + vfloat4 rgbs_color, + vfloat4 rgbo_color, + int format, + uint8_t* output, + quant_method quant_level); + +/** + * @brief Unpack a single pair of encoded endpoints. + * + * Endpoints must be unscrambled and converted into the 0-255 range before calling this functions. + * + * @param decode_mode The decode mode (LDR, HDR). + * @param format The color endpoint mode used. + * @param input The raw array of encoded input integers. The length of this array + * depends on @c format; it can be safely assumed to be large enough. + * @param[out] rgb_hdr Is the endpoint using HDR for the RGB channels? + * @param[out] alpha_hdr Is the endpoint using HDR for the A channel? + * @param[out] output0 The output color for endpoint 0. + * @param[out] output1 The output color for endpoint 1. + */ +void unpack_color_endpoints( + astcenc_profile decode_mode, + int format, + const uint8_t* input, + bool& rgb_hdr, + bool& alpha_hdr, + vint4& output0, + vint4& output1); + +/** + * @brief Unpack a set of quantized and decimated weights. + * + * TODO: Can we skip this for non-decimated weights now that the @c scb is + * already storing unquantized weights? + * + * @param bsd The block size information. + * @param scb The symbolic compressed encoding. + * @param di The weight grid decimation table. + * @param is_dual_plane @c true if this is a dual plane block, @c false otherwise. + * @param[out] weights_plane1 The output array for storing the plane 1 weights. + * @param[out] weights_plane2 The output array for storing the plane 2 weights. + */ +void unpack_weights( + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const decimation_info& di, + bool is_dual_plane, + int weights_plane1[BLOCK_MAX_TEXELS], + int weights_plane2[BLOCK_MAX_TEXELS]); + +/** + * @brief Identify, for each mode, which set of color endpoint produces the best result. + * + * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding + * combination for each. The modified quantization level can be used when all formats are the same, + * as this frees up two additional bits of storage. + * + * @param pi The partition info for the current trial. + * @param blk The image block color data to compress. + * @param ep The ideal endpoints. + * @param qwt_bitcounts Bit counts for different quantization methods. + * @param qwt_errors Errors for different quantization methods. + * @param tune_candidate_limit The max number of candidates to return, may be less. + * @param start_block_mode The first block mode to inspect. + * @param end_block_mode The last block mode to inspect. + * @param[out] partition_format_specifiers The best formats per partition. + * @param[out] block_mode The best packed block mode indexes. + * @param[out] quant_level The best color quant level. + * @param[out] quant_level_mod The best color quant level if endpoints are the same. + * @param[out] tmpbuf Preallocated scratch buffers for the compressor. + * + * @return The actual number of candidate matches returned. + */ +unsigned int compute_ideal_endpoint_formats( + const partition_info& pi, + const image_block& blk, + const endpoints& ep, + const int8_t* qwt_bitcounts, + const float* qwt_errors, + unsigned int tune_candidate_limit, + unsigned int start_block_mode, + unsigned int end_block_mode, + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS], + int block_mode[TUNE_MAX_TRIAL_CANDIDATES], + quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES], + quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES], + compression_working_buffers& tmpbuf); + +/** + * @brief For a given 1 plane weight set recompute the endpoint colors. + * + * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must + * recompute the ideal colors for a specific weight set. + * + * @param blk The image block color data to compress. + * @param pi The partition info for the current trial. + * @param di The weight grid decimation table. + * @param dec_weights_uquant The quantized weight set. + * @param[in,out] ep The color endpoints (modifed in place). + * @param[out] rgbs_vectors The RGB+scale vectors for LDR blocks. + * @param[out] rgbo_vectors The RGB+offset vectors for HDR blocks. + */ +void recompute_ideal_colors_1plane( + const image_block& blk, + const partition_info& pi, + const decimation_info& di, + const uint8_t* dec_weights_uquant, + endpoints& ep, + vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS], + vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]); + +/** + * @brief For a given 2 plane weight set recompute the endpoint colors. + * + * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must + * recompute the ideal colors for a specific weight set. + * + * @param blk The image block color data to compress. + * @param bsd The block_size descriptor. + * @param di The weight grid decimation table. + * @param dec_weights_uquant_plane1 The quantized weight set for plane 1. + * @param dec_weights_uquant_plane2 The quantized weight set for plane 2. + * @param[in,out] ep The color endpoints (modifed in place). + * @param[out] rgbs_vector The RGB+scale color for LDR blocks. + * @param[out] rgbo_vector The RGB+offset color for HDR blocks. + * @param plane2_component The component assigned to plane 2. + */ +void recompute_ideal_colors_2planes( + const image_block& blk, + const block_size_descriptor& bsd, + const decimation_info& di, + const uint8_t* dec_weights_uquant_plane1, + const uint8_t* dec_weights_uquant_plane2, + endpoints& ep, + vfloat4& rgbs_vector, + vfloat4& rgbo_vector, + int plane2_component); + +/** + * @brief Expand the angular tables needed for the alternative to PCA that we use. + */ +void prepare_angular_tables(); + +/** + * @brief Compute the angular endpoints for one plane for each block mode. + * + * @param only_always Only consider block modes that are always enabled. + * @param bsd The block size descriptor for the current trial. + * @param dec_weight_ideal_value The ideal decimated unquantized weight values. + * @param max_weight_quant The maximum block mode weight quantization allowed. + * @param[out] tmpbuf Preallocated scratch buffers for the compressor. + */ +void compute_angular_endpoints_1plane( + bool only_always, + const block_size_descriptor& bsd, + const float* dec_weight_ideal_value, + unsigned int max_weight_quant, + compression_working_buffers& tmpbuf); + +/** + * @brief Compute the angular endpoints for two planes for each block mode. + * + * @param bsd The block size descriptor for the current trial. + * @param dec_weight_ideal_value The ideal decimated unquantized weight values. + * @param max_weight_quant The maximum block mode weight quantization allowed. + * @param[out] tmpbuf Preallocated scratch buffers for the compressor. + */ +void compute_angular_endpoints_2planes( + const block_size_descriptor& bsd, + const float* dec_weight_ideal_value, + unsigned int max_weight_quant, + compression_working_buffers& tmpbuf); + +/* ============================================================================ + Functionality for high level compression and decompression access. +============================================================================ */ + +/** + * @brief Compress an image block into a physical block. + * + * @param ctx The compressor context and configuration. + * @param blk The image block color data to compress. + * @param[out] pcb The physical compressed block output. + * @param[out] tmpbuf Preallocated scratch buffers for the compressor. + */ +void compress_block( + const astcenc_contexti& ctx, + const image_block& blk, + physical_compressed_block& pcb, + compression_working_buffers& tmpbuf); + +/** + * @brief Decompress a symbolic block in to an image block. + * + * @param decode_mode The decode mode (LDR, HDR, etc). + * @param bsd The block size information. + * @param xpos The X coordinate of the block in the overall image. + * @param ypos The Y coordinate of the block in the overall image. + * @param zpos The Z coordinate of the block in the overall image. + * @param[out] blk The decompressed image block color data. + */ +void decompress_symbolic_block( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + int xpos, + int ypos, + int zpos, + const symbolic_compressed_block& scb, + image_block& blk); + +/** + * @brief Compute the error between a symbolic block and the original input data. + * + * This function is specialized for 2 plane and 1 partition search. + * + * In RGBM mode this will reject blocks that attempt to encode a zero M value. + * + * @param config The compressor config. + * @param bsd The block size information. + * @param scb The symbolic compressed encoding. + * @param blk The original image block color data. + * + * @return Returns the computed error, or a negative value if the encoding + * should be rejected for any reason. + */ +float compute_symbolic_block_difference_2plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk); + +/** + * @brief Compute the error between a symbolic block and the original input data. + * + * This function is specialized for 1 plane and N partition search. + * + * In RGBM mode this will reject blocks that attempt to encode a zero M value. + * + * @param config The compressor config. + * @param bsd The block size information. + * @param scb The symbolic compressed encoding. + * @param blk The original image block color data. + * + * @return Returns the computed error, or a negative value if the encoding + * should be rejected for any reason. + */ +float compute_symbolic_block_difference_1plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk); + +/** + * @brief Compute the error between a symbolic block and the original input data. + * + * This function is specialized for 1 plane and 1 partition search. + * + * In RGBM mode this will reject blocks that attempt to encode a zero M value. + * + * @param config The compressor config. + * @param bsd The block size information. + * @param scb The symbolic compressed encoding. + * @param blk The original image block color data. + * + * @return Returns the computed error, or a negative value if the encoding + * should be rejected for any reason. + */ +float compute_symbolic_block_difference_1plane_1partition( + const astcenc_config& config, + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + const image_block& blk); + +/** + * @brief Convert a symbolic representation into a binary physical encoding. + * + * It is assumed that the symbolic encoding is valid and encodable, or + * previously flagged as an error block if an error color it to be encoded. + * + * @param bsd The block size information. + * @param scb The symbolic representation. + * @param[out] pcb The binary encoded data. + */ +void symbolic_to_physical( + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + physical_compressed_block& pcb); + +/** + * @brief Convert a binary physical encoding into a symbolic representation. + * + * This function can cope with arbitrary input data; output blocks will be + * flagged as an error block if the encoding is invalid. + * + * @param bsd The block size information. + * @param pcb The binary encoded data. + * @param[out] scb The output symbolic representation. + */ +void physical_to_symbolic( + const block_size_descriptor& bsd, + const physical_compressed_block& pcb, + symbolic_compressed_block& scb); + +/* ============================================================================ +Platform-specific functions. +============================================================================ */ +/** + * @brief Run-time detection if the host CPU supports the POPCNT extension. + * + * @return @c true if supported, @c false if not. + */ +bool cpu_supports_popcnt(); + +/** + * @brief Run-time detection if the host CPU supports F16C extension. + * + * @return @c true if supported, @c false if not. + */ +bool cpu_supports_f16c(); + +/** + * @brief Run-time detection if the host CPU supports SSE 4.1 extension. + * + * @return @c true if supported, @c false if not. + */ +bool cpu_supports_sse41(); + +/** + * @brief Run-time detection if the host CPU supports AVX 2 extension. + * + * @return @c true if supported, @c false if not. + */ +bool cpu_supports_avx2(); + +/** + * @brief Allocate an aligned memory buffer. + * + * Allocated memory must be freed by aligned_free; + * + * @param size The desired buffer size. + * @param align The desired buffer alignment; must be 2^N. + * + * @return The memory buffer pointer or nullptr on allocation failure. + */ +template<typename T> +T* aligned_malloc(size_t size, size_t align) +{ + void* ptr; + int error = 0; + +#if defined(_WIN32) + ptr = _aligned_malloc(size, align); +#else + error = posix_memalign(&ptr, align, size); +#endif + + if (error || (!ptr)) + { + return nullptr; + } + + return static_cast<T*>(ptr); +} + +/** + * @brief Free an aligned memory buffer. + * + * @param ptr The buffer to free. + */ +template<typename T> +void aligned_free(T* ptr) +{ +#if defined(_WIN32) + _aligned_free(reinterpret_cast<void*>(ptr)); +#else + free(reinterpret_cast<void*>(ptr)); +#endif +} + +#endif diff --git a/thirdparty/astcenc/astcenc_internal_entry.h b/thirdparty/astcenc/astcenc_internal_entry.h new file mode 100644 index 0000000000..4e8794547a --- /dev/null +++ b/thirdparty/astcenc/astcenc_internal_entry.h @@ -0,0 +1,273 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions and data declarations for the outer context. + * + * The outer context includes thread-pool management, which is slower to + * compile due to increased use of C++ stdlib. The inner context used in the + * majority of the codec library does not include this. + */ + +#ifndef ASTCENC_INTERNAL_ENTRY_INCLUDED +#define ASTCENC_INTERNAL_ENTRY_INCLUDED + +#include <atomic> +#include <condition_variable> +#include <functional> +#include <mutex> + +#include "astcenc_internal.h" + +/* ============================================================================ + Parallel execution control +============================================================================ */ + +/** + * @brief A simple counter-based manager for parallel task execution. + * + * The task processing execution consists of: + * + * * A single-threaded init stage. + * * A multi-threaded processing stage. + * * A condition variable so threads can wait for processing completion. + * + * The init stage will be executed by the first thread to arrive in the critical section, there is + * no main thread in the thread pool. + * + * The processing stage uses dynamic dispatch to assign task tickets to threads on an on-demand + * basis. Threads may each therefore executed different numbers of tasks, depending on their + * processing complexity. The task queue and the task tickets are just counters; the caller must map + * these integers to an actual processing partition in a specific problem domain. + * + * The exit wait condition is needed to ensure processing has finished before a worker thread can + * progress to the next stage of the pipeline. Specifically a worker may exit the processing stage + * because there are no new tasks to assign to it while other worker threads are still processing. + * Calling @c wait() will ensure that all other worker have finished before the thread can proceed. + * + * The basic usage model: + * + * // --------- From single-threaded code --------- + * + * // Reset the tracker state + * manager->reset() + * + * // --------- From multi-threaded code --------- + * + * // Run the stage init; only first thread actually runs the lambda + * manager->init(<lambda>) + * + * do + * { + * // Request a task assignment + * uint task_count; + * uint base_index = manager->get_tasks(<granule>, task_count); + * + * // Process any tasks we were given (task_count <= granule size) + * if (task_count) + * { + * // Run the user task processing code for N tasks here + * ... + * + * // Flag these tasks as complete + * manager->complete_tasks(task_count); + * } + * } while (task_count); + * + * // Wait for all threads to complete tasks before progressing + * manager->wait() + * + * // Run the stage term; only first thread actually runs the lambda + * manager->term(<lambda>) + */ +class ParallelManager +{ +private: + /** @brief Lock used for critical section and condition synchronization. */ + std::mutex m_lock; + + /** @brief True if the stage init() step has been executed. */ + bool m_init_done; + + /** @brief True if the stage term() step has been executed. */ + bool m_term_done; + + /** @brief Condition variable for tracking stage processing completion. */ + std::condition_variable m_complete; + + /** @brief Number of tasks started, but not necessarily finished. */ + std::atomic<unsigned int> m_start_count; + + /** @brief Number of tasks finished. */ + unsigned int m_done_count; + + /** @brief Number of tasks that need to be processed. */ + unsigned int m_task_count; + +public: + /** @brief Create a new ParallelManager. */ + ParallelManager() + { + reset(); + } + + /** + * @brief Reset the tracker for a new processing batch. + * + * This must be called from single-threaded code before starting the multi-threaded processing + * operations. + */ + void reset() + { + m_init_done = false; + m_term_done = false; + m_start_count = 0; + m_done_count = 0; + m_task_count = 0; + } + + /** + * @brief Trigger the pipeline stage init step. + * + * This can be called from multi-threaded code. The first thread to hit this will process the + * initialization. Other threads will block and wait for it to complete. + * + * @param init_func Callable which executes the stage initialization. It must return the + * total number of tasks in the stage. + */ + void init(std::function<unsigned int(void)> init_func) + { + std::lock_guard<std::mutex> lck(m_lock); + if (!m_init_done) + { + m_task_count = init_func(); + m_init_done = true; + } + } + + /** + * @brief Trigger the pipeline stage init step. + * + * This can be called from multi-threaded code. The first thread to hit this will process the + * initialization. Other threads will block and wait for it to complete. + * + * @param task_count Total number of tasks needing processing. + */ + void init(unsigned int task_count) + { + std::lock_guard<std::mutex> lck(m_lock); + if (!m_init_done) + { + m_task_count = task_count; + m_init_done = true; + } + } + + /** + * @brief Request a task assignment. + * + * Assign up to @c granule tasks to the caller for processing. + * + * @param granule Maximum number of tasks that can be assigned. + * @param[out] count Actual number of tasks assigned, or zero if no tasks were assigned. + * + * @return Task index of the first assigned task; assigned tasks increment from this. + */ + unsigned int get_task_assignment(unsigned int granule, unsigned int& count) + { + unsigned int base = m_start_count.fetch_add(granule, std::memory_order_relaxed); + if (base >= m_task_count) + { + count = 0; + return 0; + } + + count = astc::min(m_task_count - base, granule); + return base; + } + + /** + * @brief Complete a task assignment. + * + * Mark @c count tasks as complete. This will notify all threads blocked on @c wait() if this + * completes the processing of the stage. + * + * @param count The number of completed tasks. + */ + void complete_task_assignment(unsigned int count) + { + // Note: m_done_count cannot use an atomic without the mutex; this has a race between the + // update here and the wait() for other threads + std::unique_lock<std::mutex> lck(m_lock); + this->m_done_count += count; + if (m_done_count == m_task_count) + { + lck.unlock(); + m_complete.notify_all(); + } + } + + /** + * @brief Wait for stage processing to complete. + */ + void wait() + { + std::unique_lock<std::mutex> lck(m_lock); + m_complete.wait(lck, [this]{ return m_done_count == m_task_count; }); + } + + /** + * @brief Trigger the pipeline stage term step. + * + * This can be called from multi-threaded code. The first thread to hit this will process the + * work pool termination. Caller must have called @c wait() prior to calling this function to + * ensure that processing is complete. + * + * @param term_func Callable which executes the stage termination. + */ + void term(std::function<void(void)> term_func) + { + std::lock_guard<std::mutex> lck(m_lock); + if (!m_term_done) + { + term_func(); + m_term_done = true; + } + } +}; + +/** + * @brief The astcenc compression context. + */ +struct astcenc_context +{ + /** @brief The context internal state. */ + astcenc_contexti context; + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + /** @brief The parallel manager for averages computation. */ + ParallelManager manage_avg; + + /** @brief The parallel manager for compression. */ + ParallelManager manage_compress; +#endif + + /** @brief The parallel manager for decompression. */ + ParallelManager manage_decompress; +}; + +#endif diff --git a/thirdparty/astcenc/astcenc_mathlib.cpp b/thirdparty/astcenc/astcenc_mathlib.cpp new file mode 100644 index 0000000000..f276ac7e3d --- /dev/null +++ b/thirdparty/astcenc/astcenc_mathlib.cpp @@ -0,0 +1,48 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#include "astcenc_mathlib.h" + +/** + * @brief 64-bit rotate left. + * + * @param val The value to rotate. + * @param count The rotation, in bits. + */ +static inline uint64_t rotl(uint64_t val, int count) +{ + return (val << count) | (val >> (64 - count)); +} + +/* See header for documentation. */ +void astc::rand_init(uint64_t state[2]) +{ + state[0] = 0xfaf9e171cea1ec6bULL; + state[1] = 0xf1b318cc06af5d71ULL; +} + +/* See header for documentation. */ +uint64_t astc::rand(uint64_t state[2]) +{ + uint64_t s0 = state[0]; + uint64_t s1 = state[1]; + uint64_t res = s0 + s1; + s1 ^= s0; + state[0] = rotl(s0, 24) ^ s1 ^ (s1 << 16); + state[1] = rotl(s1, 37); + return res; +} diff --git a/thirdparty/astcenc/astcenc_mathlib.h b/thirdparty/astcenc/astcenc_mathlib.h new file mode 100644 index 0000000000..0540c4fedd --- /dev/null +++ b/thirdparty/astcenc/astcenc_mathlib.h @@ -0,0 +1,476 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/* + * This module implements a variety of mathematical data types and library + * functions used by the codec. + */ + +#ifndef ASTC_MATHLIB_H_INCLUDED +#define ASTC_MATHLIB_H_INCLUDED + +#include <cassert> +#include <cstdint> +#include <cmath> + +#ifndef ASTCENC_POPCNT + #if defined(__POPCNT__) + #define ASTCENC_POPCNT 1 + #else + #define ASTCENC_POPCNT 0 + #endif +#endif + +#ifndef ASTCENC_F16C + #if defined(__F16C__) + #define ASTCENC_F16C 1 + #else + #define ASTCENC_F16C 0 + #endif +#endif + +#ifndef ASTCENC_SSE + #if defined(__SSE4_2__) + #define ASTCENC_SSE 42 + #elif defined(__SSE4_1__) + #define ASTCENC_SSE 41 + #elif defined(__SSE2__) + #define ASTCENC_SSE 20 + #else + #define ASTCENC_SSE 0 + #endif +#endif + +#ifndef ASTCENC_AVX + #if defined(__AVX2__) + #define ASTCENC_AVX 2 + #elif defined(__AVX__) + #define ASTCENC_AVX 1 + #else + #define ASTCENC_AVX 0 + #endif +#endif + +#ifndef ASTCENC_NEON + #if defined(__aarch64__) + #define ASTCENC_NEON 1 + #else + #define ASTCENC_NEON 0 + #endif +#endif + +#if ASTCENC_AVX + #define ASTCENC_VECALIGN 32 +#else + #define ASTCENC_VECALIGN 16 +#endif + +#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0 || ASTCENC_POPCNT != 0 + #include <immintrin.h> +#endif + +/* ============================================================================ + Fast math library; note that many of the higher-order functions in this set + use approximations which are less accurate, but faster, than <cmath> standard + library equivalents. + + Note: Many of these are not necessarily faster than simple C versions when + used on a single scalar value, but are included for testing purposes as most + have an option based on SSE intrinsics and therefore provide an obvious route + to future vectorization. +============================================================================ */ + +// Union for manipulation of float bit patterns +typedef union +{ + uint32_t u; + int32_t s; + float f; +} if32; + +// These are namespaced to avoid colliding with C standard library functions. +namespace astc +{ + +static const float PI = 3.14159265358979323846f; +static const float PI_OVER_TWO = 1.57079632679489661923f; + +/** + * @brief SP float absolute value. + * + * @param v The value to make absolute. + * + * @return The absolute value. + */ +static inline float fabs(float v) +{ + return std::fabs(v); +} + +/** + * @brief Test if a float value is a nan. + * + * @param v The value test. + * + * @return Zero is not a NaN, non-zero otherwise. + */ +static inline bool isnan(float v) +{ + return v != v; +} + +/** + * @brief Return the minimum of two values. + * + * For floats, NaNs are turned into @c q. + * + * @param p The first value to compare. + * @param q The second value to compare. + * + * @return The smallest value. + */ +template<typename T> +static inline T min(T p, T q) +{ + return p < q ? p : q; +} + +/** + * @brief Return the minimum of three values. + * + * For floats, NaNs are turned into @c r. + * + * @param p The first value to compare. + * @param q The second value to compare. + * @param r The third value to compare. + * + * @return The smallest value. + */ +template<typename T> +static inline T min(T p, T q, T r) +{ + return min(min(p, q), r); +} + +/** + * @brief Return the minimum of four values. + * + * For floats, NaNs are turned into @c s. + * + * @param p The first value to compare. + * @param q The second value to compare. + * @param r The third value to compare. + * @param s The fourth value to compare. + * + * @return The smallest value. + */ +template<typename T> +static inline T min(T p, T q, T r, T s) +{ + return min(min(p, q), min(r, s)); +} + +/** + * @brief Return the maximum of two values. + * + * For floats, NaNs are turned into @c q. + * + * @param p The first value to compare. + * @param q The second value to compare. + * + * @return The largest value. + */ +template<typename T> +static inline T max(T p, T q) +{ + return p > q ? p : q; +} + +/** + * @brief Return the maximum of three values. + * + * For floats, NaNs are turned into @c r. + * + * @param p The first value to compare. + * @param q The second value to compare. + * @param r The third value to compare. + * + * @return The largest value. + */ +template<typename T> +static inline T max(T p, T q, T r) +{ + return max(max(p, q), r); +} + +/** + * @brief Return the maximum of four values. + * + * For floats, NaNs are turned into @c s. + * + * @param p The first value to compare. + * @param q The second value to compare. + * @param r The third value to compare. + * @param s The fourth value to compare. + * + * @return The largest value. + */ +template<typename T> +static inline T max(T p, T q, T r, T s) +{ + return max(max(p, q), max(r, s)); +} + +/** + * @brief Clamp a value value between @c mn and @c mx. + * + * For floats, NaNs are turned into @c mn. + * + * @param v The value to clamp. + * @param mn The min value (inclusive). + * @param mx The max value (inclusive). + * + * @return The clamped value. + */ +template<typename T> +inline T clamp(T v, T mn, T mx) +{ + // Do not reorder; correct NaN handling relies on the fact that comparison + // with NaN returns false and will fall-though to the "min" value. + if (v > mx) return mx; + if (v > mn) return v; + return mn; +} + +/** + * @brief Clamp a float value between 0.0f and 1.0f. + * + * NaNs are turned into 0.0f. + * + * @param v The value to clamp. + * + * @return The clamped value. + */ +static inline float clamp1f(float v) +{ + return astc::clamp(v, 0.0f, 1.0f); +} + +/** + * @brief Clamp a float value between 0.0f and 255.0f. + * + * NaNs are turned into 0.0f. + * + * @param v The value to clamp. + * + * @return The clamped value. + */ +static inline float clamp255f(float v) +{ + return astc::clamp(v, 0.0f, 255.0f); +} + +/** + * @brief SP float round-down. + * + * @param v The value to round. + * + * @return The rounded value. + */ +static inline float flt_rd(float v) +{ + return std::floor(v); +} + +/** + * @brief SP float round-to-nearest and convert to integer. + * + * @param v The value to round. + * + * @return The rounded value. + */ +static inline int flt2int_rtn(float v) +{ + + return static_cast<int>(v + 0.5f); +} + +/** + * @brief SP float round down and convert to integer. + * + * @param v The value to round. + * + * @return The rounded value. + */ +static inline int flt2int_rd(float v) +{ + return static_cast<int>(v); +} + +/** + * @brief SP float bit-interpreted as an integer. + * + * @param v The value to bitcast. + * + * @return The converted value. + */ +static inline int float_as_int(float v) +{ + union { int a; float b; } u; + u.b = v; + return u.a; +} + +/** + * @brief Integer bit-interpreted as an SP float. + * + * @param v The value to bitcast. + * + * @return The converted value. + */ +static inline float int_as_float(int v) +{ + union { int a; float b; } u; + u.a = v; + return u.b; +} + +/** + * @brief Fast approximation of 1.0 / sqrt(val). + * + * @param v The input value. + * + * @return The approximated result. + */ +static inline float rsqrt(float v) +{ + return 1.0f / std::sqrt(v); +} + +/** + * @brief Fast approximation of sqrt(val). + * + * @param v The input value. + * + * @return The approximated result. + */ +static inline float sqrt(float v) +{ + return std::sqrt(v); +} + +/** + * @brief Extract mantissa and exponent of a float value. + * + * @param v The input value. + * @param[out] expo The output exponent. + * + * @return The mantissa. + */ +static inline float frexp(float v, int* expo) +{ + if32 p; + p.f = v; + *expo = ((p.u >> 23) & 0xFF) - 126; + p.u = (p.u & 0x807fffff) | 0x3f000000; + return p.f; +} + +/** + * @brief Initialize the seed structure for a random number generator. + * + * Important note: For the purposes of ASTC we want sets of random numbers to + * use the codec, but we want the same seed value across instances and threads + * to ensure that image output is stable across compressor runs and across + * platforms. Every PRNG created by this call will therefore return the same + * sequence of values ... + * + * @param state The state structure to initialize. + */ +void rand_init(uint64_t state[2]); + +/** + * @brief Return the next random number from the generator. + * + * This RNG is an implementation of the "xoroshoro-128+ 1.0" PRNG, based on the + * public-domain implementation given by David Blackman & Sebastiano Vigna at + * http://vigna.di.unimi.it/xorshift/xoroshiro128plus.c + * + * @param state The state structure to use/update. + */ +uint64_t rand(uint64_t state[2]); + +} + +/* ============================================================================ + Softfloat library with fp32 and fp16 conversion functionality. +============================================================================ */ +#if (ASTCENC_F16C == 0) && (ASTCENC_NEON == 0) + /* narrowing float->float conversions */ + uint16_t float_to_sf16(float val); + float sf16_to_float(uint16_t val); +#endif + +/********************************* + Vector library +*********************************/ +#include "astcenc_vecmathlib.h" + +/********************************* + Declaration of line types +*********************************/ +// parametric line, 2D: The line is given by line = a + b * t. + +struct line2 +{ + vfloat4 a; + vfloat4 b; +}; + +// parametric line, 3D +struct line3 +{ + vfloat4 a; + vfloat4 b; +}; + +struct line4 +{ + vfloat4 a; + vfloat4 b; +}; + + +struct processed_line2 +{ + vfloat4 amod; + vfloat4 bs; +}; + +struct processed_line3 +{ + vfloat4 amod; + vfloat4 bs; +}; + +struct processed_line4 +{ + vfloat4 amod; + vfloat4 bs; +}; + +#endif diff --git a/thirdparty/astcenc/astcenc_mathlib_softfloat.cpp b/thirdparty/astcenc/astcenc_mathlib_softfloat.cpp new file mode 100644 index 0000000000..42db764549 --- /dev/null +++ b/thirdparty/astcenc/astcenc_mathlib_softfloat.cpp @@ -0,0 +1,411 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Soft-float library for IEEE-754. + */ +#if (ASTCENC_F16C == 0) && (ASTCENC_NEON == 0) + +#include "astcenc_mathlib.h" + +/* sized soft-float types. These are mapped to the sized integer + types of C99, instead of C's floating-point types; this is because + the library needs to maintain exact, bit-level control on all + operations on these data types. */ +typedef uint16_t sf16; +typedef uint32_t sf32; + +/****************************************** + helper functions and their lookup tables + ******************************************/ +/* count leading zeros functions. Only used when the input is nonzero. */ + +#if defined(__GNUC__) && (defined(__i386) || defined(__amd64)) +#elif defined(__arm__) && defined(__ARMCC_VERSION) +#elif defined(__arm__) && defined(__GNUC__) +#else + /* table used for the slow default versions. */ + static const uint8_t clz_table[256] = + { + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; +#endif + +/* + 32-bit count-leading-zeros function: use the Assembly instruction whenever possible. */ +static uint32_t clz32(uint32_t inp) +{ + #if defined(__GNUC__) && (defined(__i386) || defined(__amd64)) + uint32_t bsr; + __asm__("bsrl %1, %0": "=r"(bsr):"r"(inp | 1)); + return 31 - bsr; + #else + #if defined(__arm__) && defined(__ARMCC_VERSION) + return __clz(inp); /* armcc builtin */ + #else + #if defined(__arm__) && defined(__GNUC__) + uint32_t lz; + __asm__("clz %0, %1": "=r"(lz):"r"(inp)); + return lz; + #else + /* slow default version */ + uint32_t summa = 24; + if (inp >= UINT32_C(0x10000)) + { + inp >>= 16; + summa -= 16; + } + if (inp >= UINT32_C(0x100)) + { + inp >>= 8; + summa -= 8; + } + return summa + clz_table[inp]; + #endif + #endif + #endif +} + +/* the five rounding modes that IEEE-754r defines */ +typedef enum +{ + SF_UP = 0, /* round towards positive infinity */ + SF_DOWN = 1, /* round towards negative infinity */ + SF_TOZERO = 2, /* round towards zero */ + SF_NEARESTEVEN = 3, /* round toward nearest value; if mid-between, round to even value */ + SF_NEARESTAWAY = 4 /* round toward nearest value; if mid-between, round away from zero */ +} roundmode; + + +static uint32_t rtne_shift32(uint32_t inp, uint32_t shamt) +{ + uint32_t vl1 = UINT32_C(1) << shamt; + uint32_t inp2 = inp + (vl1 >> 1); /* added 0.5 ULP */ + uint32_t msk = (inp | UINT32_C(1)) & vl1; /* nonzero if odd. '| 1' forces it to 1 if the shamt is 0. */ + msk--; /* negative if even, nonnegative if odd. */ + inp2 -= (msk >> 31); /* subtract epsilon before shift if even. */ + inp2 >>= shamt; + return inp2; +} + +static uint32_t rtna_shift32(uint32_t inp, uint32_t shamt) +{ + uint32_t vl1 = (UINT32_C(1) << shamt) >> 1; + inp += vl1; + inp >>= shamt; + return inp; +} + +static uint32_t rtup_shift32(uint32_t inp, uint32_t shamt) +{ + uint32_t vl1 = UINT32_C(1) << shamt; + inp += vl1; + inp--; + inp >>= shamt; + return inp; +} + +/* convert from FP16 to FP32. */ +static sf32 sf16_to_sf32(sf16 inp) +{ + uint32_t inpx = inp; + + /* + This table contains, for every FP16 sign/exponent value combination, + the difference between the input FP16 value and the value obtained + by shifting the correct FP32 result right by 13 bits. + This table allows us to handle every case except denormals and NaN + with just 1 table lookup, 2 shifts and 1 add. + */ + + #define WITH_MSB(a) (UINT32_C(a) | (1u << 31)) + static const uint32_t tbl[64] = + { + WITH_MSB(0x00000), 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, + 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, + 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, + 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, 0x1C000, WITH_MSB(0x38000), + WITH_MSB(0x38000), 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, + 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, + 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, + 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, 0x54000, WITH_MSB(0x70000) + }; + + uint32_t res = tbl[inpx >> 10]; + res += inpx; + + /* Normal cases: MSB of 'res' not set. */ + if ((res & WITH_MSB(0)) == 0) + { + return res << 13; + } + + /* Infinity and Zero: 10 LSB of 'res' not set. */ + if ((res & 0x3FF) == 0) + { + return res << 13; + } + + /* NaN: the exponent field of 'inp' is non-zero. */ + if ((inpx & 0x7C00) != 0) + { + /* All NaNs are quietened. */ + return (res << 13) | 0x400000; + } + + /* Denormal cases */ + uint32_t sign = (inpx & 0x8000) << 16; + uint32_t mskval = inpx & 0x7FFF; + uint32_t leadingzeroes = clz32(mskval); + mskval <<= leadingzeroes; + return (mskval >> 8) + ((0x85 - leadingzeroes) << 23) + sign; +} + +/* Conversion routine that converts from FP32 to FP16. It supports denormals and all rounding modes. If a NaN is given as input, it is quietened. */ +static sf16 sf32_to_sf16(sf32 inp, roundmode rmode) +{ + /* for each possible sign/exponent combination, store a case index. This gives a 512-byte table */ + static const uint8_t tab[512] { + 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, + 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, + + 5, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, + 25, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, + 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, + 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, + }; + + /* many of the cases below use a case-dependent magic constant. So we look up a magic constant before actually performing the switch. This table allows us to group cases, thereby minimizing code + size. */ + static const uint32_t tabx[60] { + UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0x8000), UINT32_C(0x80000000), UINT32_C(0x8000), UINT32_C(0x8000), UINT32_C(0x8000), + UINT32_C(1), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0x8000), UINT32_C(0x8001), UINT32_C(0x8000), UINT32_C(0x8000), UINT32_C(0x8000), + UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0), UINT32_C(0x8000), UINT32_C(0x8000), UINT32_C(0x8000), UINT32_C(0x8000), UINT32_C(0x8000), + UINT32_C(0xC8001FFF), UINT32_C(0xC8000000), UINT32_C(0xC8000000), UINT32_C(0xC8000FFF), UINT32_C(0xC8001000), + UINT32_C(0x58000000), UINT32_C(0x38001FFF), UINT32_C(0x58000000), UINT32_C(0x58000FFF), UINT32_C(0x58001000), + UINT32_C(0x7C00), UINT32_C(0x7BFF), UINT32_C(0x7BFF), UINT32_C(0x7C00), UINT32_C(0x7C00), + UINT32_C(0xFBFF), UINT32_C(0xFC00), UINT32_C(0xFBFF), UINT32_C(0xFC00), UINT32_C(0xFC00), + UINT32_C(0x90000000), UINT32_C(0x90000000), UINT32_C(0x90000000), UINT32_C(0x90000000), UINT32_C(0x90000000), + UINT32_C(0x20000000), UINT32_C(0x20000000), UINT32_C(0x20000000), UINT32_C(0x20000000), UINT32_C(0x20000000) + }; + + uint32_t p; + uint32_t idx = rmode + tab[inp >> 23]; + uint32_t vlx = tabx[idx]; + switch (idx) + { + /* + Positive number which may be Infinity or NaN. + We need to check whether it is NaN; if it is, quieten it by setting the top bit of the mantissa. + (If we don't do this quieting, then a NaN that is distinguished only by having + its low-order bits set, would be turned into an INF. */ + case 50: + case 51: + case 52: + case 53: + case 54: + case 55: + case 56: + case 57: + case 58: + case 59: + /* + the input value is 0x7F800000 or 0xFF800000 if it is INF. + By subtracting 1, we get 7F7FFFFF or FF7FFFFF, that is, bit 23 becomes zero. + For NaNs, however, this operation will keep bit 23 with the value 1. + We can then extract bit 23, and logical-OR bit 9 of the result with this + bit in order to quieten the NaN (a Quiet NaN is a NaN where the top bit + of the mantissa is set.) + */ + p = (inp - 1) & UINT32_C(0x800000); /* zero if INF, nonzero if NaN. */ + return static_cast<sf16>(((inp + vlx) >> 13) | (p >> 14)); + /* + positive, exponent = 0, round-mode == UP; need to check whether number actually is 0. + If it is, then return 0, else return 1 (the smallest representable nonzero number) + */ + case 0: + /* + -inp will set the MSB if the input number is nonzero. + Thus (-inp) >> 31 will turn into 0 if the input number is 0 and 1 otherwise. + */ + return static_cast<sf16>(static_cast<uint32_t>((-static_cast<int32_t>(inp))) >> 31); + + /* + negative, exponent = , round-mode == DOWN, need to check whether number is + actually 0. If it is, return 0x8000 ( float -0.0 ) + Else return the smallest negative number ( 0x8001 ) */ + case 6: + /* + in this case 'vlx' is 0x80000000. By subtracting the input value from it, + we obtain a value that is 0 if the input value is in fact zero and has + the MSB set if it isn't. We then right-shift the value by 31 places to + get a value that is 0 if the input is -0.0 and 1 otherwise. + */ + return static_cast<sf16>(((vlx - inp) >> 31) + UINT32_C(0x8000)); + + /* + for all other cases involving underflow/overflow, we don't need to + do actual tests; we just return 'vlx'. + */ + case 1: + case 2: + case 3: + case 4: + case 5: + case 7: + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: + case 16: + case 17: + case 18: + case 19: + case 40: + case 41: + case 42: + case 43: + case 44: + case 45: + case 46: + case 47: + case 48: + case 49: + return static_cast<sf16>(vlx); + + /* + for normal numbers, 'vlx' is the difference between the FP32 value of a number and the + FP16 representation of the same number left-shifted by 13 places. In addition, a rounding constant is + baked into 'vlx': for rounding-away-from zero, the constant is 2^13 - 1, causing roundoff away + from zero. for round-to-nearest away, the constant is 2^12, causing roundoff away from zero. + for round-to-nearest-even, the constant is 2^12 - 1. This causes correct round-to-nearest-even + except for odd input numbers. For odd input numbers, we need to add 1 to the constant. */ + + /* normal number, all rounding modes except round-to-nearest-even: */ + case 30: + case 31: + case 32: + case 34: + case 35: + case 36: + case 37: + case 39: + return static_cast<sf16>((inp + vlx) >> 13); + + /* normal number, round-to-nearest-even. */ + case 33: + case 38: + p = inp + vlx; + p += (inp >> 13) & 1; + return static_cast<sf16>(p >> 13); + + /* + the various denormal cases. These are not expected to be common, so their performance is a bit + less important. For each of these cases, we need to extract an exponent and a mantissa + (including the implicit '1'!), and then right-shift the mantissa by a shift-amount that + depends on the exponent. The shift must apply the correct rounding mode. 'vlx' is used to supply the + sign of the resulting denormal number. + */ + case 21: + case 22: + case 25: + case 27: + /* denormal, round towards zero. */ + p = 126 - ((inp >> 23) & 0xFF); + return static_cast<sf16>((((inp & UINT32_C(0x7FFFFF)) + UINT32_C(0x800000)) >> p) | vlx); + case 20: + case 26: + /* denormal, round away from zero. */ + p = 126 - ((inp >> 23) & 0xFF); + return static_cast<sf16>(rtup_shift32((inp & UINT32_C(0x7FFFFF)) + UINT32_C(0x800000), p) | vlx); + case 24: + case 29: + /* denormal, round to nearest-away */ + p = 126 - ((inp >> 23) & 0xFF); + return static_cast<sf16>(rtna_shift32((inp & UINT32_C(0x7FFFFF)) + UINT32_C(0x800000), p) | vlx); + case 23: + case 28: + /* denormal, round to nearest-even. */ + p = 126 - ((inp >> 23) & 0xFF); + return static_cast<sf16>(rtne_shift32((inp & UINT32_C(0x7FFFFF)) + UINT32_C(0x800000), p) | vlx); + } + + return 0; +} + +/* convert from soft-float to native-float */ +float sf16_to_float(uint16_t p) +{ + if32 i; + i.u = sf16_to_sf32(p); + return i.f; +} + +/* convert from native-float to soft-float */ +uint16_t float_to_sf16(float p) +{ + if32 i; + i.f = p; + return sf32_to_sf16(i.u, SF_NEARESTEVEN); +} + +#endif diff --git a/thirdparty/astcenc/astcenc_partition_tables.cpp b/thirdparty/astcenc/astcenc_partition_tables.cpp new file mode 100644 index 0000000000..cad42384d7 --- /dev/null +++ b/thirdparty/astcenc/astcenc_partition_tables.cpp @@ -0,0 +1,481 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for generating partition tables on demand. + */ + +#include "astcenc_internal.h" + +/** @brief The number of 64-bit words needed to represent a canonical partition bit pattern. */ +#define BIT_PATTERN_WORDS (((ASTCENC_BLOCK_MAX_TEXELS * 2) + 63) / 64) + +/** + * @brief Generate a canonical representation of a partition pattern. + * + * The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store + * the remapped texel index. Remapping ensures that we only match on the partition pattern, + * independent of the partition order generated by the hash. + * + * @param texel_count The number of texels in the block. + * @param partition_of_texel The partition assignments, in hash order. + * @param[out] bit_pattern The output bit pattern representation. + */ +static void generate_canonical_partitioning( + unsigned int texel_count, + const uint8_t* partition_of_texel, + uint64_t bit_pattern[BIT_PATTERN_WORDS] +) { + // Clear the pattern + for (unsigned int i = 0; i < BIT_PATTERN_WORDS; i++) + { + bit_pattern[i] = 0; + } + + // Store a mapping to reorder the raw partitions so that the partitions are ordered such + // that the lowest texel index in partition N is smaller than the lowest texel index in + // partition N + 1. + int mapped_index[BLOCK_MAX_PARTITIONS]; + int map_weight_count = 0; + + for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++) + { + mapped_index[i] = -1; + } + + for (unsigned int i = 0; i < texel_count; i++) + { + int index = partition_of_texel[i]; + if (mapped_index[index] < 0) + { + mapped_index[index] = map_weight_count++; + } + + uint64_t xlat_index = mapped_index[index]; + bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F)); + } +} + +/** + * @brief Compare two canonical patterns to see if they are the same. + * + * @param part1 The first canonical bit pattern to check. + * @param part2 The second canonical bit pattern to check. + * + * @return @c true if the patterns are the same, @c false otherwise. + */ +static bool compare_canonical_partitionings( + const uint64_t part1[BIT_PATTERN_WORDS], + const uint64_t part2[BIT_PATTERN_WORDS] +) { + return (part1[0] == part2[0]) +#if BIT_PATTERN_WORDS > 1 + && (part1[1] == part2[1]) +#endif +#if BIT_PATTERN_WORDS > 2 + && (part1[2] == part2[2]) +#endif +#if BIT_PATTERN_WORDS > 3 + && (part1[3] == part2[3]) +#endif +#if BIT_PATTERN_WORDS > 4 + && (part1[4] == part2[4]) +#endif +#if BIT_PATTERN_WORDS > 5 + && (part1[5] == part2[5]) +#endif +#if BIT_PATTERN_WORDS > 6 + && (part1[6] == part2[6]) +#endif + ; +} + +/** + * @brief Hash function used for procedural partition assignment. + * + * @param inp The hash seed. + * + * @return The hashed value. + */ +static uint32_t hash52( + uint32_t inp +) { + inp ^= inp >> 15; + + // (2^4 + 1) * (2^7 + 1) * (2^17 - 1) + inp *= 0xEEDE0891; + inp ^= inp >> 5; + inp += inp << 16; + inp ^= inp >> 7; + inp ^= inp >> 3; + inp ^= inp << 6; + inp ^= inp >> 17; + return inp; +} + +/** + * @brief Select texel assignment for a single coordinate. + * + * @param seed The seed - the partition index from the block. + * @param x The texel X coordinate in the block. + * @param y The texel Y coordinate in the block. + * @param z The texel Z coordinate in the block. + * @param partition_count The total partition count of this encoding. + * @param small_block @c true if the block has fewer than 32 texels. + * + * @return The assigned partition index for this texel. + */ +static uint8_t select_partition( + int seed, + int x, + int y, + int z, + int partition_count, + bool small_block +) { + // For small blocks bias the coordinates to get better distribution + if (small_block) + { + x <<= 1; + y <<= 1; + z <<= 1; + } + + seed += (partition_count - 1) * 1024; + + uint32_t rnum = hash52(seed); + + uint8_t seed1 = rnum & 0xF; + uint8_t seed2 = (rnum >> 4) & 0xF; + uint8_t seed3 = (rnum >> 8) & 0xF; + uint8_t seed4 = (rnum >> 12) & 0xF; + uint8_t seed5 = (rnum >> 16) & 0xF; + uint8_t seed6 = (rnum >> 20) & 0xF; + uint8_t seed7 = (rnum >> 24) & 0xF; + uint8_t seed8 = (rnum >> 28) & 0xF; + uint8_t seed9 = (rnum >> 18) & 0xF; + uint8_t seed10 = (rnum >> 22) & 0xF; + uint8_t seed11 = (rnum >> 26) & 0xF; + uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; + + // Squaring all the seeds in order to bias their distribution towards lower values. + seed1 *= seed1; + seed2 *= seed2; + seed3 *= seed3; + seed4 *= seed4; + seed5 *= seed5; + seed6 *= seed6; + seed7 *= seed7; + seed8 *= seed8; + seed9 *= seed9; + seed10 *= seed10; + seed11 *= seed11; + seed12 *= seed12; + + int sh1, sh2; + if (seed & 1) + { + sh1 = (seed & 2 ? 4 : 5); + sh2 = (partition_count == 3 ? 6 : 5); + } + else + { + sh1 = (partition_count == 3 ? 6 : 5); + sh2 = (seed & 2 ? 4 : 5); + } + + int sh3 = (seed & 0x10) ? sh1 : sh2; + + seed1 >>= sh1; + seed2 >>= sh2; + seed3 >>= sh1; + seed4 >>= sh2; + seed5 >>= sh1; + seed6 >>= sh2; + seed7 >>= sh1; + seed8 >>= sh2; + + seed9 >>= sh3; + seed10 >>= sh3; + seed11 >>= sh3; + seed12 >>= sh3; + + int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); + int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); + int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); + int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); + + // Apply the saw + a &= 0x3F; + b &= 0x3F; + c &= 0x3F; + d &= 0x3F; + + // Remove some of the components if we are to output < 4 partitions. + if (partition_count <= 3) + { + d = 0; + } + + if (partition_count <= 2) + { + c = 0; + } + + if (partition_count <= 1) + { + b = 0; + } + + uint8_t partition; + if (a >= b && a >= c && a >= d) + { + partition = 0; + } + else if (b >= c && b >= d) + { + partition = 1; + } + else if (c >= d) + { + partition = 2; + } + else + { + partition = 3; + } + + return partition; +} + +/** + * @brief Generate a single partition info structure. + * + * @param[out] bsd The block size information. + * @param partition_count The partition count of this partitioning. + * @param partition_index The partition index / seed of this partitioning. + * @param partition_remap_index The remapped partition index of this partitioning. + * @param[out] pi The partition info structure to populate. + * + * @return True if this is a useful partition index, False if we can skip it. + */ +static bool generate_one_partition_info_entry( + block_size_descriptor& bsd, + unsigned int partition_count, + unsigned int partition_index, + unsigned int partition_remap_index, + partition_info& pi +) { + int texels_per_block = bsd.texel_count; + bool small_block = texels_per_block < 32; + + uint8_t *partition_of_texel = pi.partition_of_texel; + + // Assign texels to partitions + int texel_idx = 0; + int counts[BLOCK_MAX_PARTITIONS] { 0 }; + for (unsigned int z = 0; z < bsd.zdim; z++) + { + for (unsigned int y = 0; y < bsd.ydim; y++) + { + for (unsigned int x = 0; x < bsd.xdim; x++) + { + uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block); + pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++); + *partition_of_texel++ = part; + } + } + } + + // Fill loop tail so we can overfetch later + for (unsigned int i = 0; i < partition_count; i++) + { + int ptex_count = counts[i]; + int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count); + for (int j = ptex_count; j < ptex_count_simd; j++) + { + pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1]; + } + } + + // Populate the actual procedural partition count + if (counts[0] == 0) + { + pi.partition_count = 0; + } + else if (counts[1] == 0) + { + pi.partition_count = 1; + } + else if (counts[2] == 0) + { + pi.partition_count = 2; + } + else if (counts[3] == 0) + { + pi.partition_count = 3; + } + else + { + pi.partition_count = 4; + } + + // Populate the partition index + pi.partition_index = static_cast<uint16_t>(partition_index); + + // Populate the coverage bitmaps for 2/3/4 partitions + uint64_t* bitmaps { nullptr }; + if (partition_count == 2) + { + bitmaps = bsd.coverage_bitmaps_2[partition_remap_index]; + } + else if (partition_count == 3) + { + bitmaps = bsd.coverage_bitmaps_3[partition_remap_index]; + } + else if (partition_count == 4) + { + bitmaps = bsd.coverage_bitmaps_4[partition_remap_index]; + } + + for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++) + { + pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]); + } + + // Valid partitionings have texels in all of the requested partitions + bool valid = pi.partition_count == partition_count; + + if (bitmaps) + { + // Populate the partition coverage bitmap + for (unsigned int i = 0; i < partition_count; i++) + { + bitmaps[i] = 0ULL; + } + + unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS); + for (unsigned int i = 0; i < texels_to_process; i++) + { + unsigned int idx = bsd.kmeans_texels[i]; + bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i; + } + } + + return valid; +} + +static void build_partition_table_for_one_partition_count( + block_size_descriptor& bsd, + bool can_omit_partitionings, + unsigned int partition_count_cutoff, + unsigned int partition_count, + partition_info* ptab, + uint64_t* canonical_patterns +) { + unsigned int next_index = 0; + bsd.partitioning_count_selected[partition_count - 1] = 0; + bsd.partitioning_count_all[partition_count - 1] = 0; + + // Skip tables larger than config max partition count if we can omit modes + if (can_omit_partitionings && (partition_count > partition_count_cutoff)) + { + return; + } + + // Iterate through twice + // - Pass 0: Keep selected partitionings + // - Pass 1: Keep non-selected partitionings (skip if in omit mode) + unsigned int max_iter = can_omit_partitionings ? 1 : 2; + + // Tracker for things we built in the first iteration + uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 }; + for (unsigned int x = 0; x < max_iter; x++) + { + for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++) + { + // Don't include things we built in the first pass + if ((x == 1) && build[i]) + { + continue; + } + + bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]); + if ((x == 0) && !keep_useful) + { + continue; + } + + generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * BIT_PATTERN_WORDS); + bool keep_canonical = true; + for (unsigned int j = 0; j < next_index; j++) + { + bool match = compare_canonical_partitionings(canonical_patterns + next_index * BIT_PATTERN_WORDS, canonical_patterns + j * BIT_PATTERN_WORDS); + if (match) + { + keep_canonical = false; + break; + } + } + + if (keep_useful && keep_canonical) + { + if (x == 0) + { + bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index); + bsd.partitioning_count_selected[partition_count - 1]++; + bsd.partitioning_count_all[partition_count - 1]++; + build[i] = 1; + next_index++; + } + } + else + { + if (x == 1) + { + bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index); + bsd.partitioning_count_all[partition_count - 1]++; + next_index++; + } + } + } + } +} + +/* See header for documentation. */ +void init_partition_tables( + block_size_descriptor& bsd, + bool can_omit_partitionings, + unsigned int partition_count_cutoff +) { + partition_info* par_tab2 = bsd.partitionings; + partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS; + partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS; + partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS; + + generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1); + bsd.partitioning_count_selected[0] = 1; + bsd.partitioning_count_all[0] = 1; + + uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * BIT_PATTERN_WORDS]; + + build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns); + build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns); + build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns); + + delete[] canonical_patterns; +} diff --git a/thirdparty/astcenc/astcenc_percentile_tables.cpp b/thirdparty/astcenc/astcenc_percentile_tables.cpp new file mode 100644 index 0000000000..448ddcc968 --- /dev/null +++ b/thirdparty/astcenc/astcenc_percentile_tables.cpp @@ -0,0 +1,1251 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Percentile data tables for different block encodings. + * + * To reduce binary size the tables are stored using a packed differential encoding. + */ + +#include "astcenc_internal.h" + +#if !defined(ASTCENC_DECOMPRESS_ONLY) +/** + * @brief Structure containing packed percentile metadata. + * + * Note that percentile tables do not exist for 3D textures, so no zdim is stored. + */ +struct packed_percentile_table +{ + /** The block X dimension. */ + uint8_t xdim; + + /** The block Y dimension. */ + uint8_t ydim; + + /** The number of packed items in the 1 and 2 plane data. */ + uint16_t item_count[2]; + + /** The accumulator divisor for 1 and 2 plane data. */ + uint16_t difscales[2]; + + /** The initial accumulator values for 1 and 2 plane data. */ + uint16_t initial_percs[2]; + + /** The packed data for the 1 and 2 plane data. */ + const uint16_t *items[2]; +}; + +#if ASTCENC_BLOCK_MAX_TEXELS >= (4 * 4) +static const uint16_t percentile_arr_4x4_0[61] { + 0x0242, 0x7243, 0x6A51, 0x6A52, 0x5A41, 0x4A53, 0x8851, 0x3842, + 0x3852, 0x3853, 0x3043, 0xFA33, 0x1BDF, 0x2022, 0x1032, 0x29CE, + 0x21DE, 0x2823, 0x0813, 0x0A13, 0x0A31, 0x0A23, 0x09CF, 0x0833, + 0x0A32, 0x01DF, 0x0BDD, 0x0BCF, 0x0221, 0x095F, 0x0A01, 0x0BDE, + 0x0BCD, 0x0A22, 0x09AF, 0x0B5F, 0x0B4D, 0x0BCE, 0x0BBF, 0x0A11, + 0x01BF, 0x0202, 0x0B5D, 0x1203, 0x034E, 0x0B8E, 0x035E, 0x0212, + 0x032E, 0x0B4F, 0x03AF, 0x03AD, 0x03BD, 0x0BBE, 0x03AE, 0x039F, + 0x039E, 0x033E, 0x033F, 0x038F, 0x032F +}; + +static const uint16_t percentile_arr_4x4_1[84] { + 0x0452, 0xFFAE, 0x2433, 0x1DDF, 0x17CD, 0x1E21, 0x1C43, 0x1442, + 0x3FBE, 0x1FDD, 0x0E31, 0x0F4F, 0x1423, 0x0FBD, 0x1451, 0x0E03, + 0x05CF, 0x0C32, 0x0DDE, 0x27AD, 0x274E, 0x0E02, 0x0F5E, 0x07AF, + 0x0F5F, 0x0DCE, 0x0C41, 0x0422, 0x0613, 0x0E12, 0x0611, 0x0F3F, + 0x0601, 0x0DBF, 0x05DD, 0x075D, 0x0C02, 0x054E, 0x0431, 0x0413, + 0x079F, 0x05BE, 0x0F4D, 0x0403, 0x05AF, 0x055F, 0x05AE, 0x054F, + 0x0421, 0x05BD, 0x0DCD, 0x0411, 0x0412, 0x055E, 0x055D, 0x073D, + 0x058E, 0x072F, 0x072D, 0x079D, 0x0D2E, 0x0453, 0x078D, 0x053E, + 0x053F, 0x059E, 0x052F, 0x058F, 0x072E, 0x078F, 0x059F, 0x078E, + 0x071F, 0x073E, 0x051F, 0x070D, 0x079E, 0x070E, 0x071D, 0x0622, + 0x070F, 0x071E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_4x4 { + 4, 4, + { 61, 84 }, + { 184, 141 }, + { 0, 53 }, + { percentile_arr_4x4_0, percentile_arr_4x4_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (5 * 4) +static const uint16_t percentile_arr_5x4_0[91] { + 0x02C1, 0xFAD1, 0xE8D3, 0xDAC2, 0xA8D2, 0x70D1, 0x50C2, 0x80C3, + 0xD2C3, 0x4AA2, 0x2AD2, 0x2242, 0x2251, 0x42A3, 0x1A43, 0x4A52, + 0x32B3, 0x2A41, 0x1042, 0x1851, 0x5892, 0x10A2, 0x2253, 0x10B2, + 0x10B3, 0x13DF, 0x3083, 0x08B1, 0x1043, 0x12B1, 0x0AB2, 0x1A93, + 0x1852, 0x1A33, 0x09CE, 0x08A3, 0x1022, 0x1283, 0x0853, 0x1AA1, + 0x1093, 0x11DE, 0x135F, 0x1832, 0x195F, 0x0A81, 0x11CF, 0x0A31, + 0x09DF, 0x0B4D, 0x09AF, 0x03CF, 0x0813, 0x03DD, 0x0A92, 0x0A82, + 0x03CD, 0x0023, 0x0BDE, 0x0BBF, 0x1232, 0x0221, 0x0291, 0x0A23, + 0x0833, 0x035D, 0x0BCE, 0x01BF, 0x0222, 0x134E, 0x0213, 0x0A01, + 0x0B4F, 0x0B5E, 0x038E, 0x032E, 0x03AF, 0x0A11, 0x03AD, 0x0203, + 0x0202, 0x0BBD, 0x033E, 0x03AE, 0x03BE, 0x0212, 0x033F, 0x039E, + 0x039F, 0x032F, 0x038F +}; + +static const uint16_t percentile_arr_5x4_1[104] { + 0x0433, 0xB621, 0x5452, 0x4443, 0x7FAE, 0xFCA3, 0x7CC2, 0x24B2, + 0x45DF, 0x44B3, 0x7631, 0x27CD, 0x1CD1, 0x1E03, 0x4FBE, 0x774F, + 0x1C42, 0x7691, 0x24A2, 0x2681, 0x3C23, 0x3C93, 0x0FBD, 0x1C32, + 0x1E82, 0x1E12, 0x0F4E, 0x1602, 0x0FAD, 0x0C51, 0x1FDD, 0x0E13, + 0x0DCF, 0x175E, 0x0C22, 0x175F, 0x15DE, 0x0CB1, 0x17AF, 0x1CC1, + 0x1F3F, 0x1483, 0x0441, 0x0C91, 0x04D2, 0x0DCE, 0x154E, 0x079F, + 0x0CA1, 0x0F5D, 0x0431, 0x15DD, 0x05BF, 0x0C92, 0x0611, 0x0C82, + 0x0402, 0x074D, 0x0DBD, 0x055E, 0x05BE, 0x0DCD, 0x0421, 0x05AF, + 0x0403, 0x0D4F, 0x055F, 0x05AE, 0x0413, 0x0E01, 0x055D, 0x073D, + 0x0C12, 0x0692, 0x0411, 0x072D, 0x078D, 0x079D, 0x058E, 0x0D2E, + 0x0453, 0x072F, 0x059E, 0x052F, 0x071F, 0x053F, 0x053E, 0x078F, + 0x058F, 0x051F, 0x0F2E, 0x059F, 0x078E, 0x073E, 0x071D, 0x070D, + 0x070E, 0x079E, 0x0622, 0x0683, 0x070F, 0x071E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_5x4 { + 5, 4, + { 91, 104 }, + { 322, 464 }, + { 0, 202 }, + { percentile_arr_5x4_0, percentile_arr_5x4_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (5 * 5) +static const uint16_t percentile_arr_5x5_0[129] { + 0x00F3, 0xF8F2, 0x70E3, 0x62E1, 0x60E1, 0x4AC1, 0x3261, 0x38D3, + 0x3271, 0x5AF1, 0x5873, 0x2AD1, 0x28E2, 0x28F1, 0x2262, 0x9AC2, + 0x18D2, 0x1072, 0x1071, 0x22A2, 0x2062, 0x1A51, 0x10C2, 0x0892, + 0x08D1, 0x1AA3, 0x23EE, 0x08C3, 0x0BEF, 0x2242, 0x0863, 0x0AB3, + 0x0BFF, 0x0A93, 0x08A2, 0x0A41, 0x1083, 0x0842, 0x10B3, 0x21EE, + 0x10B2, 0x00B1, 0x1263, 0x12C3, 0x0A83, 0x0851, 0x11FE, 0x0253, + 0x09FD, 0x0A72, 0x09FF, 0x1AB2, 0x0BDF, 0x0A33, 0x0243, 0x0B7F, + 0x0AB1, 0x12D2, 0x0252, 0x096F, 0x00A3, 0x0893, 0x0822, 0x0843, + 0x097E, 0x097F, 0x01EF, 0x09CE, 0x03FE, 0x0A81, 0x036F, 0x0052, + 0x13FD, 0x0AA1, 0x1853, 0x036D, 0x0A92, 0x0832, 0x01DE, 0x0A82, + 0x0BED, 0x0231, 0x0BBF, 0x03DD, 0x0B6E, 0x01AF, 0x0813, 0x0023, + 0x0A91, 0x015F, 0x037E, 0x01CF, 0x0232, 0x0BCD, 0x0221, 0x0BDE, + 0x0213, 0x035F, 0x0B7D, 0x0223, 0x01BF, 0x0BCF, 0x01DF, 0x0033, + 0x0222, 0x03CE, 0x0A01, 0x03AF, 0x034D, 0x0B8E, 0x032E, 0x0203, + 0x0211, 0x0202, 0x0B5D, 0x03AD, 0x034E, 0x03AE, 0x034F, 0x033F, + 0x039F, 0x03BD, 0x03BE, 0x035E, 0x0212, 0x033E, 0x039E, 0x032F, + 0x038F +}; + +static const uint16_t percentile_arr_5x5_1[126] { + 0x0443, 0x6452, 0xFE21, 0x27AE, 0x2433, 0x1FCD, 0x25DF, 0x6CC2, + 0x2C62, 0x1F4F, 0x4C42, 0x1FBE, 0x0DEF, 0x34A3, 0x0E03, 0x54B2, + 0x1F7D, 0x17DD, 0x0DFF, 0x0CD1, 0x0E31, 0x0C71, 0x1CF1, 0x15FE, + 0x1691, 0x1681, 0x24B3, 0x174E, 0x0F6E, 0x0493, 0x175E, 0x1C51, + 0x17BD, 0x076D, 0x2CA2, 0x05EE, 0x1472, 0x2423, 0x0DCF, 0x0432, + 0x15DE, 0x0612, 0x0CD2, 0x0682, 0x0F5F, 0x07AD, 0x0602, 0x0CE1, + 0x0C91, 0x0FAF, 0x073F, 0x0E13, 0x0D7F, 0x0DCE, 0x0422, 0x0D7D, + 0x0441, 0x05FD, 0x0CB1, 0x0C83, 0x04C1, 0x0461, 0x0F9F, 0x0DDD, + 0x056E, 0x0C92, 0x0482, 0x0431, 0x05ED, 0x0D6F, 0x075D, 0x0402, + 0x057E, 0x0DBF, 0x04A1, 0x054E, 0x0F4D, 0x0403, 0x05CD, 0x0453, + 0x05AE, 0x0421, 0x0F1F, 0x05BE, 0x0601, 0x0611, 0x05BD, 0x05AF, + 0x078D, 0x072D, 0x073D, 0x055E, 0x0F9D, 0x0411, 0x0413, 0x0412, + 0x055F, 0x077E, 0x055D, 0x052E, 0x054F, 0x053E, 0x058E, 0x078F, + 0x059E, 0x071D, 0x0E92, 0x053F, 0x059F, 0x051F, 0x072F, 0x052F, + 0x070D, 0x079E, 0x058F, 0x072E, 0x070E, 0x078E, 0x070F, 0x073E, + 0x0622, 0x0683, 0x071E, 0x076F, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_5x5 { + 5, 5, + { 129, 126 }, + { 258, 291 }, + { 0, 116 }, + { percentile_arr_5x5_0, percentile_arr_5x5_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (6 * 5) +static const uint16_t percentile_arr_6x5_0[165] { + 0x0163, 0xF8F3, 0x9962, 0x8972, 0x7961, 0x7173, 0x6953, 0x5943, + 0x4B41, 0x3AE1, 0x38E3, 0x6971, 0x32C1, 0x28D3, 0x2A61, 0xC8F2, + 0x2271, 0x4873, 0x5B21, 0x3AD1, 0x1B13, 0x1952, 0x1B51, 0x12F1, + 0x1A62, 0x1322, 0x1951, 0x10E2, 0x1B31, 0x20F1, 0x2102, 0x2072, + 0x10D2, 0x1142, 0x2912, 0x3871, 0x2BEE, 0x0862, 0x1123, 0x0AC2, + 0x12A2, 0x0A51, 0x1922, 0x0941, 0x1BEF, 0x0B42, 0x08D1, 0x13FF, + 0x1933, 0x08C3, 0x08C2, 0x1131, 0x08E1, 0x2903, 0x0863, 0x0B32, + 0x1132, 0x1AC3, 0x0A42, 0x1A41, 0x0042, 0x21EE, 0x09FF, 0x03DF, + 0x0AA3, 0x11FE, 0x02B3, 0x0B11, 0x10B3, 0x0B03, 0x11FD, 0x0913, + 0x0A53, 0x037F, 0x1263, 0x0051, 0x0A33, 0x0B01, 0x016F, 0x0A72, + 0x1312, 0x08A2, 0x10B1, 0x0BFE, 0x11EF, 0x0B02, 0x0A52, 0x0043, + 0x0822, 0x01CE, 0x0A43, 0x097F, 0x036F, 0x08B2, 0x03FD, 0x0A83, + 0x0B33, 0x0AB1, 0x017E, 0x0B23, 0x0852, 0x02D2, 0x0BBF, 0x0BDD, + 0x03ED, 0x0AB2, 0x02A1, 0x0853, 0x036D, 0x0892, 0x0032, 0x0A31, + 0x0083, 0x09DE, 0x0A93, 0x08A3, 0x1213, 0x0BDE, 0x03CD, 0x036E, + 0x037E, 0x0A21, 0x0023, 0x0BCF, 0x01CF, 0x0013, 0x01AF, 0x0A92, + 0x0232, 0x035F, 0x0093, 0x0B7D, 0x015F, 0x0282, 0x01BF, 0x09DF, + 0x03CE, 0x0223, 0x0833, 0x0222, 0x03AF, 0x0A01, 0x0291, 0x0B4D, + 0x032E, 0x038E, 0x0203, 0x0281, 0x035D, 0x03AD, 0x0B9F, 0x0202, + 0x034F, 0x03BE, 0x0211, 0x03AE, 0x03BD, 0x0212, 0x034E, 0x033F, + 0x033E, 0x035E, 0x039E, 0x032F, 0x038F +}; + +static const uint16_t percentile_arr_6x5_1[145] { + 0x0443, 0xEFAE, 0x2CC2, 0x2E21, 0x2C52, 0x7C33, 0x47CD, 0x25DF, + 0x3CA3, 0xFFBE, 0x2551, 0x24B3, 0x474F, 0x1513, 0x2691, 0x1603, + 0x1462, 0x1D32, 0x14B2, 0x5442, 0x2CD2, 0x35EF, 0x0CD1, 0x3D22, + 0x17BD, 0x0FDD, 0x0DFF, 0x2631, 0x177D, 0x0CF1, 0x1E81, 0x0E82, + 0x1DFE, 0x0F5E, 0x0701, 0x2CA2, 0x1D03, 0x0F4E, 0x1471, 0x0C51, + 0x1F6E, 0x2FAF, 0x0561, 0x0C72, 0x176D, 0x0FAD, 0x0DEE, 0x05CF, + 0x0E13, 0x0F5F, 0x0E12, 0x0C23, 0x1E02, 0x1D12, 0x0CB1, 0x0C32, + 0x0C93, 0x15DE, 0x0F9F, 0x0F3F, 0x0D41, 0x0C41, 0x0CC1, 0x0D31, + 0x0C22, 0x05FD, 0x057F, 0x0D01, 0x0461, 0x04E1, 0x0D7D, 0x05CE, + 0x0502, 0x0C31, 0x05ED, 0x05DD, 0x0511, 0x0F11, 0x0491, 0x0D6F, + 0x0521, 0x056E, 0x0C83, 0x0D23, 0x04A1, 0x0C02, 0x075D, 0x05BF, + 0x0C21, 0x079D, 0x0482, 0x05BD, 0x0DBE, 0x05CD, 0x054E, 0x057E, + 0x0DAE, 0x074D, 0x078D, 0x0542, 0x0492, 0x05AF, 0x0611, 0x0F3D, + 0x0601, 0x071F, 0x055E, 0x059E, 0x0571, 0x054F, 0x0412, 0x0453, + 0x058E, 0x0413, 0x0D3E, 0x077E, 0x072D, 0x052E, 0x059F, 0x055D, + 0x072F, 0x0403, 0x0411, 0x058F, 0x055F, 0x0692, 0x078E, 0x053F, + 0x0D2F, 0x078F, 0x070D, 0x071D, 0x051F, 0x072E, 0x079E, 0x070E, + 0x070F, 0x073E, 0x0622, 0x0683, 0x0702, 0x071E, 0x076F, 0x07BF, + 0x07CE +}; + +static const packed_percentile_table block_pcd_6x5 { + 6, 5, + { 165, 145 }, + { 388, 405 }, + { 0, 156 }, + { percentile_arr_6x5_0, percentile_arr_6x5_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (6 * 6) +static const uint16_t percentile_arr_6x6_0[206] { + 0x006F, 0xF908, 0xF104, 0xE918, 0xE963, 0xD114, 0xB0F3, 0xA07E, + 0x7972, 0x705F, 0x687F, 0x6162, 0x5953, 0x586E, 0x610C, 0x524D, + 0x5973, 0x9943, 0x98E3, 0x904F, 0x8341, 0x7AC1, 0x3A61, 0x70D3, + 0xA073, 0x6AE1, 0x30F2, 0x3313, 0x2B21, 0x9A2E, 0x4322, 0x225D, + 0x2331, 0x2271, 0x22D1, 0x1A2D, 0x221F, 0x22F1, 0x1971, 0x6952, + 0x1951, 0x187D, 0x18F1, 0x1902, 0x185E, 0x1B51, 0x105D, 0x1A3D, + 0x30E2, 0x10D2, 0x1961, 0x12A2, 0x6072, 0x3942, 0x386D, 0x33EE, + 0x104E, 0x4923, 0x101E, 0x2122, 0x1251, 0x1141, 0x182F, 0x3133, + 0x080E, 0x1262, 0x123E, 0x1B32, 0x102E, 0x1931, 0x10D1, 0x1912, + 0x0871, 0x12C2, 0x08C2, 0x1103, 0x0B03, 0x1062, 0x083D, 0x08E1, + 0x1132, 0x184D, 0x0863, 0x08C3, 0x303F, 0x083E, 0x10B3, 0x12A3, + 0x0BEF, 0x0B11, 0x1A42, 0x2233, 0x13FF, 0x080F, 0x0A41, 0x0AC3, + 0x0842, 0x1A63, 0x0BDF, 0x09FF, 0x12B3, 0x124E, 0x0B12, 0x0B42, + 0x0A2F, 0x1253, 0x0913, 0x1051, 0x0B01, 0x120F, 0x0B02, 0x08A2, + 0x0BBF, 0x00B1, 0x22B1, 0x01EE, 0x1B33, 0x0B23, 0x0283, 0x13FD, + 0x0AB2, 0x11FD, 0x09FE, 0x0A43, 0x08B2, 0x0A1D, 0x0A52, 0x023F, + 0x101F, 0x01CE, 0x0A31, 0x0BDD, 0x0293, 0x1822, 0x12A1, 0x03FE, + 0x121E, 0x0843, 0x0272, 0x0B6F, 0x0052, 0x0A0D, 0x0BED, 0x12D2, + 0x1B7F, 0x1053, 0x0032, 0x01DE, 0x08A3, 0x020E, 0x0883, 0x09EF, + 0x0892, 0x0A21, 0x03CD, 0x0B5F, 0x0213, 0x0A32, 0x016F, 0x1292, + 0x03DE, 0x017E, 0x0BAF, 0x0223, 0x1093, 0x0BCF, 0x037E, 0x01DF, + 0x09CF, 0x015F, 0x09AF, 0x0023, 0x01BF, 0x0222, 0x0282, 0x03CE, + 0x1013, 0x036E, 0x097F, 0x0033, 0x0A01, 0x0B6D, 0x03BE, 0x037D, + 0x0281, 0x0BAE, 0x0203, 0x032E, 0x034D, 0x034F, 0x0291, 0x0211, + 0x038E, 0x03BD, 0x039E, 0x0BAD, 0x033E, 0x034E, 0x039F, 0x0202, + 0x035D, 0x0212, 0x033F, 0x035E, 0x038F, 0x032F +}; + +static const uint16_t percentile_arr_6x6_1[164] { + 0x07AE, 0x8443, 0x7E21, 0x77CD, 0x6C62, 0x9433, 0x6452, 0x34C2, + 0x5DDF, 0xC7BE, 0x25EF, 0x24A3, 0x3CF1, 0xFDFF, 0x177D, 0x1F4F, + 0xC551, 0x5CB3, 0x1532, 0x1513, 0x143E, 0x245D, 0x14B2, 0x2472, + 0x14D2, 0x1FBD, 0x1631, 0x2DFE, 0x1691, 0x17DD, 0x2E03, 0x376E, + 0x2442, 0x0F6D, 0x3C71, 0x2CD1, 0x2522, 0x6C51, 0x260D, 0x17AF, + 0x0DEE, 0x1C1F, 0x2F01, 0x142E, 0x0CA2, 0x0FAD, 0x3D03, 0x275E, + 0x1681, 0x274E, 0x1682, 0x1C23, 0x273F, 0x0F5F, 0x05DE, 0x15FD, + 0x0DCF, 0x1E02, 0x04B1, 0x144D, 0x0E12, 0x0D12, 0x1CC1, 0x0E13, + 0x1C6D, 0x0C32, 0x043D, 0x0C61, 0x0F9F, 0x04E1, 0x0DCE, 0x0D41, + 0x1C93, 0x0C22, 0x061D, 0x0D7F, 0x0C41, 0x0561, 0x0531, 0x0D21, + 0x0711, 0x0C91, 0x0501, 0x0C1E, 0x040F, 0x15DD, 0x0431, 0x0C2F, + 0x057D, 0x0C2D, 0x0DBE, 0x040E, 0x0D02, 0x0D11, 0x054E, 0x040D, + 0x0D23, 0x0DBF, 0x04A1, 0x05ED, 0x0C1D, 0x05BD, 0x072D, 0x056E, + 0x0483, 0x0F3D, 0x0482, 0x078D, 0x0F5D, 0x0453, 0x0D9E, 0x0C4E, + 0x05CD, 0x079D, 0x0402, 0x05AE, 0x0F1F, 0x0542, 0x074D, 0x056F, + 0x0421, 0x0D4F, 0x0601, 0x0571, 0x0492, 0x059F, 0x053F, 0x05AF, + 0x0611, 0x055E, 0x0D8E, 0x053E, 0x055D, 0x047D, 0x0411, 0x052E, + 0x058F, 0x051F, 0x055F, 0x0D7E, 0x072F, 0x052F, 0x0412, 0x078F, + 0x0403, 0x077E, 0x070D, 0x070E, 0x078E, 0x0F1D, 0x072E, 0x0413, + 0x070F, 0x0692, 0x079E, 0x060E, 0x0622, 0x0683, 0x0702, 0x071E, + 0x073E, 0x076F, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_6x6 { + 6, 6, + { 206, 164 }, + { 769, 644 }, + { 0, 256 }, + { percentile_arr_6x6_0, percentile_arr_6x6_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 5) +static const uint16_t percentile_arr_8x5_0[226] { + 0x0066, 0xF865, 0xE963, 0xA856, 0xA1F2, 0x9875, 0x91C3, 0x91E2, + 0x80F3, 0x8076, 0x61E3, 0x6153, 0x5172, 0x59D2, 0x51D3, 0x5047, + 0xA943, 0x49B3, 0x4846, 0x4962, 0xC037, 0x4173, 0x39F1, 0x7027, + 0xA2C1, 0x3AE1, 0x9341, 0x30D3, 0x5225, 0x2A61, 0x33C1, 0x28E3, + 0x53A1, 0x49C2, 0x2A06, 0x4055, 0x2006, 0x21D1, 0x2271, 0x4321, + 0x3873, 0x18F2, 0x2015, 0x1A15, 0x1857, 0x52D1, 0x3045, 0x4835, + 0x1952, 0x29E1, 0x3207, 0x1036, 0x1816, 0x2A16, 0x2971, 0x13B1, + 0x2A17, 0x2351, 0x1025, 0x1826, 0x30E2, 0x1262, 0x20F1, 0x1007, + 0x1072, 0x1151, 0x10D2, 0x1235, 0x1205, 0x1062, 0x4AF1, 0x1251, + 0x0B31, 0x1381, 0x13EE, 0x1B92, 0x13EF, 0x0942, 0x1AA2, 0x13FF, + 0x1161, 0x0B93, 0x19A2, 0x11B1, 0x08D1, 0x12C2, 0x0B13, 0x1B22, + 0x2123, 0x09A3, 0x2071, 0x1B7F, 0x1817, 0x0A42, 0x10C2, 0x1233, + 0x08C3, 0x0A41, 0x0B42, 0x09C1, 0x0933, 0x1AB3, 0x1382, 0x1BDF, + 0x2122, 0x0A53, 0x0AC3, 0x20E1, 0x0941, 0x0931, 0x0042, 0x0BA2, + 0x0AA3, 0x0992, 0x0863, 0x08B3, 0x11B2, 0x0902, 0x1283, 0x09FF, + 0x0B83, 0x0982, 0x0932, 0x0BFE, 0x0B32, 0x0BBF, 0x11FE, 0x036F, + 0x0851, 0x08B1, 0x18A2, 0x11EE, 0x0A52, 0x0BB2, 0x01FD, 0x0A43, + 0x1A63, 0x1193, 0x0B91, 0x0043, 0x1231, 0x0A26, 0x0AB1, 0x03FD, + 0x096F, 0x00B2, 0x0983, 0x0A72, 0x01CE, 0x0BDD, 0x0022, 0x0B11, + 0x1213, 0x0B6D, 0x017E, 0x1333, 0x0112, 0x0852, 0x02D2, 0x097F, + 0x01EF, 0x0AB2, 0x0293, 0x0853, 0x0BED, 0x0B12, 0x1303, 0x02A1, + 0x0892, 0x0032, 0x0883, 0x0B6E, 0x0292, 0x0A32, 0x037E, 0x0B23, + 0x0103, 0x0A21, 0x0B01, 0x0302, 0x0BCD, 0x00A3, 0x0BCF, 0x0BDE, + 0x0113, 0x01DE, 0x0B5F, 0x0013, 0x0BAF, 0x0223, 0x0222, 0x0A82, + 0x0833, 0x0023, 0x09CF, 0x037D, 0x01AF, 0x095F, 0x03CE, 0x09DF, + 0x01BF, 0x0893, 0x0203, 0x0201, 0x0B4D, 0x03BE, 0x032E, 0x03AE, + 0x0291, 0x0A02, 0x0211, 0x039F, 0x0281, 0x038E, 0x03AD, 0x033F, + 0x035D, 0x033E, 0x034E, 0x034F, 0x0212, 0x03BD, 0x032F, 0x035E, + 0x038F, 0x039E +}; + +static const uint16_t percentile_arr_8x5_1[167] { + 0x0621, 0xFCC2, 0x3443, 0xA433, 0x5532, 0x2551, 0x6CA3, 0x27AE, + 0x6452, 0x8E03, 0x3CB3, 0x4DA2, 0x6DDF, 0x37CD, 0x6F01, 0x1691, + 0x2E82, 0x27BE, 0x1513, 0x34D2, 0x1D22, 0x3E31, 0x2593, 0x2CB2, + 0x1C16, 0x374F, 0x0DD1, 0x2583, 0x6613, 0x0CD1, 0x0C35, 0x1462, + 0x3E81, 0x2612, 0x2C42, 0x3407, 0x14A2, 0x0E02, 0x1CF1, 0x0C06, + 0x17BD, 0x0F7D, 0x1D23, 0x35B1, 0x179F, 0x0D92, 0x0F5E, 0x1451, + 0x04B1, 0x1F6E, 0x0DEF, 0x0D31, 0x374E, 0x15C1, 0x0541, 0x2405, + 0x17AD, 0x0471, 0x1472, 0x0DFE, 0x0711, 0x0FDD, 0x0DFF, 0x0432, + 0x1D82, 0x0423, 0x0F6D, 0x07AF, 0x0F5F, 0x04C1, 0x1542, 0x0561, + 0x0DCF, 0x1D03, 0x1493, 0x0422, 0x0445, 0x0D12, 0x0C25, 0x0415, + 0x0DA1, 0x1591, 0x0DEE, 0x05DE, 0x0C31, 0x0491, 0x0441, 0x0D21, + 0x078D, 0x057D, 0x0C61, 0x0F3F, 0x0581, 0x0D6E, 0x0501, 0x0CA1, + 0x04E1, 0x0DFD, 0x057F, 0x0502, 0x0511, 0x0C82, 0x0483, 0x0C03, + 0x079D, 0x0402, 0x0DDD, 0x0611, 0x05AE, 0x0DCE, 0x056F, 0x0421, + 0x057E, 0x071F, 0x0DBF, 0x05BE, 0x0412, 0x059F, 0x054E, 0x077E, + 0x0C26, 0x05ED, 0x073D, 0x0601, 0x0492, 0x0453, 0x075D, 0x058E, + 0x0F2D, 0x05CD, 0x0571, 0x053E, 0x0692, 0x05BD, 0x054F, 0x055E, + 0x0411, 0x0F1D, 0x074D, 0x059E, 0x05AF, 0x070D, 0x053F, 0x058F, + 0x0413, 0x070F, 0x055D, 0x070E, 0x078F, 0x052E, 0x072F, 0x055F, + 0x078E, 0x0F2E, 0x052F, 0x051F, 0x0417, 0x071E, 0x0781, 0x0622, + 0x0683, 0x0702, 0x073E, 0x076F, 0x079E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_8x5 { + 8, 5, + { 226, 167 }, + { 763, 517 }, + { 0, 178 }, + { percentile_arr_8x5_0, percentile_arr_8x5_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 6) +static const uint16_t percentile_arr_8x6_0[273] { + 0x0154, 0xF944, 0xE066, 0xA128, 0x9963, 0x8118, 0x806F, 0x79F2, + 0x79E2, 0x7108, 0xD934, 0x6056, 0x69C3, 0x60F3, 0x5972, 0x59E3, + 0x5075, 0x91B3, 0xC9D2, 0x807E, 0x385F, 0x4153, 0x3943, 0x4162, + 0x3837, 0x3847, 0x7173, 0x31D3, 0x6948, 0x3046, 0x307F, 0x5827, + 0x3114, 0x32C1, 0x3076, 0x2A4D, 0x58E3, 0x306E, 0x2924, 0x2A61, + 0x29F1, 0x50D3, 0x704F, 0x210C, 0x2BA1, 0x2225, 0x2873, 0x4865, + 0x2206, 0x8341, 0x2006, 0x3B21, 0x18F2, 0x21C2, 0x1A1F, 0x23C1, + 0x3AE1, 0x1855, 0x19D1, 0x1A15, 0x3815, 0x1207, 0x1835, 0x2A2E, + 0x1A16, 0x1836, 0x2271, 0x2845, 0x1A2D, 0x11E1, 0x1816, 0x1171, + 0x2217, 0x1952, 0x12D1, 0x3904, 0x125D, 0x4BB1, 0x207D, 0x10E2, + 0x1026, 0x2025, 0x12F1, 0x28F1, 0x105D, 0x1235, 0x12A2, 0x1007, + 0x123D, 0x1A05, 0x1072, 0x1331, 0x101E, 0x0951, 0x10D2, 0x1057, + 0x1B92, 0x185E, 0x1251, 0x19A2, 0x186D, 0x0B81, 0x2BEE, 0x080E, + 0x1A33, 0x1942, 0x0B13, 0x0B51, 0x11A3, 0x0923, 0x2322, 0x09B1, + 0x184E, 0x1161, 0x18D1, 0x0933, 0x0B93, 0x4A62, 0x1017, 0x082F, + 0x0A42, 0x0B82, 0x0AA3, 0x0A41, 0x08C2, 0x08B3, 0x0A3E, 0x22B3, + 0x0871, 0x1BBF, 0x09C1, 0x0AC2, 0x09B2, 0x0BEF, 0x082E, 0x1062, + 0x0922, 0x08C3, 0x1063, 0x0A53, 0x0BDF, 0x080F, 0x0B42, 0x0A83, + 0x084D, 0x103F, 0x0931, 0x08E1, 0x0A0F, 0x1BA2, 0x09FF, 0x1332, + 0x03FF, 0x0941, 0x12C3, 0x0A63, 0x003D, 0x0842, 0x083E, 0x0B83, + 0x0BB2, 0x0A31, 0x0932, 0x1102, 0x0992, 0x0982, 0x1051, 0x08B1, + 0x0A2F, 0x121E, 0x02B1, 0x0A4E, 0x11EE, 0x00A2, 0x1022, 0x0043, + 0x0A52, 0x0A1D, 0x0226, 0x1193, 0x03DD, 0x08B2, 0x0BFD, 0x0A43, + 0x0A13, 0x0AB2, 0x01FD, 0x09FE, 0x020D, 0x081F, 0x0B33, 0x0053, + 0x0B91, 0x0293, 0x0B11, 0x0B7F, 0x0AA1, 0x0B03, 0x0A0E, 0x03FE, + 0x01CE, 0x0B6F, 0x0183, 0x0912, 0x023F, 0x0852, 0x0A21, 0x0323, + 0x03ED, 0x0A32, 0x13AF, 0x0272, 0x08A3, 0x0B12, 0x0083, 0x0832, + 0x13CD, 0x0223, 0x0A92, 0x0092, 0x0AD2, 0x0301, 0x0302, 0x0BDE, + 0x0A22, 0x01EF, 0x0B5F, 0x0103, 0x0BCF, 0x096F, 0x017E, 0x0113, + 0x01DE, 0x0823, 0x0282, 0x0B6E, 0x015F, 0x0813, 0x01AF, 0x01CF, + 0x0B7E, 0x0033, 0x01DF, 0x0BCE, 0x01BF, 0x036D, 0x0A03, 0x017F, + 0x03BE, 0x0201, 0x0893, 0x038E, 0x034D, 0x03AE, 0x0202, 0x039F, + 0x0291, 0x0A11, 0x032E, 0x033F, 0x034F, 0x0281, 0x037D, 0x03BD, + 0x0212, 0x033E, 0x035E, 0x034E, 0x035D, 0x03AD, 0x032F, 0x038F, + 0x039E +}; + +static const uint16_t percentile_arr_8x6_1[186] { + 0x0621, 0xFC33, 0x37AE, 0x1CC2, 0x2C43, 0xAD32, 0x34A3, 0x4551, + 0x6452, 0x5C62, 0x1FCD, 0x14F1, 0x4CB3, 0x24D2, 0x15DF, 0x0FBE, + 0x2603, 0x3DA2, 0x2E31, 0x25D1, 0x25EF, 0x0D22, 0x2E91, 0x1E82, + 0x0FBD, 0x1513, 0x0CB2, 0x0CD1, 0x0F4F, 0x1F7D, 0x1701, 0x0C16, + 0x2593, 0x2C42, 0x0C72, 0x14A2, 0x0F6E, 0x0C35, 0x0C71, 0x0D83, + 0x0C07, 0x1DFF, 0x043E, 0x1613, 0x07DD, 0x0FAD, 0x1451, 0x076D, + 0x0E81, 0x05FE, 0x0406, 0x0E0D, 0x045D, 0x2612, 0x0E02, 0x07AF, + 0x0DB1, 0x0F5E, 0x15C1, 0x0C23, 0x1523, 0x0C1F, 0x0D92, 0x04B1, + 0x0D31, 0x0432, 0x0D61, 0x0F4E, 0x0D41, 0x0DEE, 0x0D42, 0x04C1, + 0x0CE1, 0x079F, 0x0C2E, 0x0405, 0x0C22, 0x0461, 0x0E1D, 0x0582, + 0x073F, 0x0571, 0x0C4D, 0x0DFD, 0x05CE, 0x0C6D, 0x05DE, 0x0415, + 0x0C45, 0x075F, 0x0C41, 0x0D03, 0x05A1, 0x0711, 0x05CF, 0x0425, + 0x0C93, 0x0D21, 0x0591, 0x043D, 0x0D12, 0x0501, 0x040F, 0x0511, + 0x0431, 0x0C03, 0x04A1, 0x078D, 0x0581, 0x041E, 0x040D, 0x0C02, + 0x040E, 0x05DD, 0x057F, 0x079D, 0x042D, 0x0D9F, 0x0502, 0x056E, + 0x0412, 0x071F, 0x044E, 0x05BF, 0x0C1D, 0x0482, 0x05AE, 0x042F, + 0x057D, 0x0491, 0x054E, 0x047D, 0x0DBE, 0x0611, 0x0492, 0x0601, + 0x05BD, 0x05CD, 0x0426, 0x05ED, 0x072D, 0x073D, 0x0483, 0x0F5D, + 0x0421, 0x056F, 0x053F, 0x058E, 0x054F, 0x078F, 0x053E, 0x059E, + 0x057E, 0x051F, 0x055D, 0x0413, 0x070D, 0x05AF, 0x0411, 0x0453, + 0x0D5E, 0x077E, 0x052F, 0x070F, 0x074D, 0x0692, 0x070E, 0x072F, + 0x072E, 0x058F, 0x071D, 0x052E, 0x0417, 0x073E, 0x0781, 0x078E, + 0x055F, 0x060E, 0x0622, 0x0683, 0x0702, 0x071E, 0x076F, 0x079E, + 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_8x6 { + 8, 6, + { 273, 186 }, + { 880, 300 }, + { 0, 64 }, + { percentile_arr_8x6_0, percentile_arr_8x6_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 8) +static const uint16_t percentile_arr_8x8_0[347] { + 0x0334, 0xFD44, 0xDD14, 0x9154, 0x9B08, 0x906A, 0x8928, 0x8108, + 0xE866, 0xC918, 0x606F, 0xC0FE, 0x5963, 0x58EE, 0x6534, 0x505A, + 0x51E2, 0xA8CF, 0x5354, 0x5314, 0x5134, 0x5524, 0x48F3, 0x504B, + 0x487E, 0x5344, 0x49C3, 0x4972, 0x49F2, 0x4856, 0xD0EF, 0x81D2, + 0x78DE, 0x4261, 0x3AC1, 0x71E3, 0x6879, 0x390C, 0x3143, 0x31B3, + 0x385F, 0x3153, 0x306E, 0x3037, 0x30DF, 0x3162, 0x304F, 0x3075, + 0xB03B, 0x2847, 0x28E3, 0x2914, 0x507F, 0x28BF, 0x5173, 0x5073, + 0x20D3, 0x2A06, 0x2827, 0x2508, 0x2229, 0x29D3, 0x204A, 0x207A, + 0x2046, 0x4148, 0x20FD, 0x4225, 0x23A1, 0x3944, 0x2065, 0x1924, + 0x2324, 0x1806, 0x19F1, 0x2215, 0x1876, 0x22AD, 0x502B, 0x1B04, + 0x18F2, 0x3A4D, 0x3216, 0x3504, 0x18DD, 0x1B21, 0x10CE, 0x1869, + 0x1B41, 0x1855, 0x1207, 0x1AE1, 0x2845, 0x19D1, 0x2A0A, 0x1A2D, + 0x2A1A, 0x11C2, 0x1A0B, 0x1217, 0x2816, 0x121B, 0x1271, 0x2AD1, + 0x1035, 0x1015, 0x287D, 0x12F1, 0x43C1, 0x1171, 0x1A05, 0x08E2, + 0x11E1, 0x3251, 0x2049, 0x20F1, 0x12CD, 0x0A39, 0x1219, 0x1059, + 0x1104, 0x1036, 0x1872, 0x3007, 0x08ED, 0x205E, 0x1026, 0x0952, + 0x1392, 0x1019, 0x0951, 0x100A, 0x13EE, 0x08D2, 0x1242, 0x0ABD, + 0x22A2, 0x0BDF, 0x2B81, 0x0A35, 0x13B1, 0x0839, 0x13BF, 0x0A33, + 0x1B31, 0x205D, 0x1241, 0x183A, 0x2025, 0x0B93, 0x0A3D, 0x1017, + 0x1313, 0x1253, 0x082A, 0x204E, 0x09A2, 0x080B, 0x0A1F, 0x125D, + 0x0A2E, 0x081A, 0x08D1, 0x082F, 0x086D, 0x1B82, 0x0A09, 0x0B22, + 0x1062, 0x11A3, 0x2161, 0x0923, 0x129F, 0x1A62, 0x0871, 0x0942, + 0x081B, 0x1133, 0x18AE, 0x0A9E, 0x0863, 0x09FF, 0x18C2, 0x0B51, + 0x08BD, 0x0AA3, 0x09B1, 0x1AC2, 0x08B3, 0x0829, 0x0BEF, 0x0B83, + 0x0AAE, 0x0A8D, 0x1857, 0x185B, 0x08AF, 0x103F, 0x08C3, 0x09B2, + 0x0A4E, 0x11C1, 0x0A31, 0x0B42, 0x0A83, 0x0BFF, 0x13DD, 0x00CD, + 0x0AB3, 0x0842, 0x08BE, 0x0922, 0x1A8E, 0x08E1, 0x002E, 0x0BA2, + 0x0A8F, 0x2263, 0x0252, 0x0B32, 0x0AC3, 0x0941, 0x0A43, 0x083D, + 0x083E, 0x0A3E, 0x084D, 0x1131, 0x136F, 0x0AB1, 0x0193, 0x0BFD, + 0x0391, 0x0851, 0x13AF, 0x0843, 0x0213, 0x1226, 0x0932, 0x03B2, + 0x0902, 0x0BCD, 0x0221, 0x089E, 0x00B1, 0x0BDE, 0x03FE, 0x02A1, + 0x0982, 0x009F, 0x080E, 0x0B5F, 0x02BE, 0x0A32, 0x0A2A, 0x01EE, + 0x0053, 0x0AB2, 0x0192, 0x09FD, 0x0052, 0x0B03, 0x0293, 0x00A2, + 0x0B7F, 0x0BED, 0x0311, 0x08B2, 0x0A72, 0x088E, 0x0333, 0x0B12, + 0x0A23, 0x0822, 0x0083, 0x11CE, 0x021D, 0x08A3, 0x088F, 0x029D, + 0x0A22, 0x0A3F, 0x01FE, 0x020F, 0x0983, 0x02D2, 0x0292, 0x0B23, + 0x001E, 0x0BCF, 0x03CE, 0x09AF, 0x0B02, 0x0301, 0x022F, 0x137E, + 0x021E, 0x09EF, 0x016F, 0x0112, 0x097E, 0x080F, 0x020D, 0x0092, + 0x01DE, 0x09DF, 0x0032, 0x0033, 0x0A82, 0x03BE, 0x0B6E, 0x001F, + 0x020E, 0x0023, 0x09CF, 0x0113, 0x0103, 0x0013, 0x0BAE, 0x0203, + 0x0BAD, 0x01BF, 0x034F, 0x095F, 0x036D, 0x0202, 0x017F, 0x0093, + 0x0201, 0x034D, 0x0212, 0x035D, 0x03BD, 0x0B3F, 0x035E, 0x0211, + 0x0281, 0x0291, 0x032E, 0x037D, 0x034E, 0x038E, 0x039F, 0x032F, + 0x033E, 0x038F, 0x039E +}; + +static const uint16_t percentile_arr_8x8_1[208] { + 0x0621, 0x3443, 0x47CD, 0x97AE, 0xFC62, 0x14F1, 0x24C2, 0x25DF, + 0x3C33, 0x1C52, 0x9C72, 0x0FBE, 0x0C5D, 0x343E, 0x24A3, 0x1551, + 0x5D32, 0x1CD2, 0x15EF, 0x4E31, 0x04DD, 0x1FDD, 0x174F, 0x0DD1, + 0x3E0D, 0x15FF, 0x0DA2, 0x1E03, 0x17BD, 0x177D, 0x14B3, 0x0471, + 0x0CAE, 0x1C1F, 0x04D1, 0x0F6E, 0x0DFE, 0x1C42, 0x0C16, 0x0D22, + 0x0C9F, 0x2C2E, 0x0FAD, 0x0571, 0x147D, 0x0C07, 0x04B2, 0x0F6D, + 0x0F5E, 0x07AF, 0x146D, 0x0C51, 0x0593, 0x2583, 0x0C4E, 0x040B, + 0x0C35, 0x0513, 0x0E91, 0x0406, 0x073F, 0x144D, 0x0561, 0x048F, + 0x0F01, 0x0F4E, 0x0CA2, 0x075F, 0x1682, 0x04E1, 0x0C1A, 0x04BD, + 0x0542, 0x0D41, 0x0DEE, 0x04CD, 0x0DCF, 0x04B1, 0x0C15, 0x0C3D, + 0x0423, 0x0592, 0x0DDE, 0x0422, 0x0432, 0x05FD, 0x0DC1, 0x05B1, + 0x0DCE, 0x0612, 0x0C2F, 0x0445, 0x0602, 0x0531, 0x0439, 0x0E81, + 0x0582, 0x0C61, 0x061D, 0x049E, 0x0405, 0x0409, 0x0DBE, 0x079F, + 0x0D21, 0x04C1, 0x0C0A, 0x0E13, 0x04AD, 0x040E, 0x0581, 0x0419, + 0x05DD, 0x0D03, 0x049D, 0x0449, 0x0429, 0x048E, 0x0DA1, 0x0425, + 0x0512, 0x0501, 0x0431, 0x0523, 0x0441, 0x042D, 0x040F, 0x0D7D, + 0x0511, 0x0502, 0x05BF, 0x04A1, 0x0C03, 0x0402, 0x079D, 0x05AE, + 0x075D, 0x057F, 0x041D, 0x048D, 0x042A, 0x0453, 0x05AF, 0x078D, + 0x0C0D, 0x073D, 0x0491, 0x0591, 0x05BD, 0x072D, 0x057E, 0x051F, + 0x0482, 0x0492, 0x041E, 0x0412, 0x0D9F, 0x0421, 0x0493, 0x0711, + 0x056E, 0x059E, 0x054E, 0x0611, 0x05ED, 0x074D, 0x070F, 0x056F, + 0x052F, 0x053F, 0x071F, 0x054F, 0x05CD, 0x0483, 0x055E, 0x072F, + 0x0E01, 0x0426, 0x058F, 0x0413, 0x078F, 0x071D, 0x055F, 0x058E, + 0x0411, 0x053E, 0x071E, 0x055D, 0x077E, 0x052E, 0x0692, 0x0417, + 0x070D, 0x078E, 0x070E, 0x072E, 0x041B, 0x060E, 0x0622, 0x0683, + 0x068D, 0x0702, 0x073E, 0x076F, 0x0781, 0x079E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_8x8 { + 8, 8, + { 347, 208 }, + { 1144, 267 }, + { 0, 38 }, + { percentile_arr_8x8_0, percentile_arr_8x8_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 5) +static const uint16_t percentile_arr_10x5_0[274] { + 0x0165, 0xF975, 0xD866, 0xC056, 0xA946, 0x90C6, 0x90F5, 0x8963, + 0x80D6, 0x80E6, 0x60F3, 0x61C3, 0x59F2, 0xA927, 0x5075, 0x4847, + 0x5153, 0x4955, 0x49E2, 0x48B6, 0x41D2, 0x4943, 0x8305, 0x8172, + 0x4046, 0x4037, 0x40A7, 0x70B7, 0x7AC1, 0x31E3, 0x7027, 0x30E5, + 0x69D3, 0x99B3, 0x3315, 0x6115, 0x3136, 0x3076, 0x3173, 0x30D5, + 0x3106, 0x8962, 0x2916, 0x30C7, 0x5126, 0x30D3, 0x2956, 0x5117, + 0x2B41, 0x2AE1, 0x2A61, 0x29F1, 0x2306, 0x2145, 0x4A85, 0x2057, + 0x40E3, 0x4137, 0x3B21, 0x23C1, 0x2065, 0x1925, 0x51C2, 0x5225, + 0x4935, 0x1AD1, 0x23A1, 0x19D1, 0x1A71, 0x4055, 0x1873, 0x1A86, + 0x1295, 0x18F2, 0x28A6, 0x1952, 0x4AA5, 0x20B5, 0x10C5, 0x2AA2, + 0x11E1, 0x1107, 0x10D2, 0x2171, 0x1351, 0x3036, 0x1331, 0x1BEE, + 0x2035, 0x1045, 0x1313, 0x0A15, 0x1087, 0x1296, 0x13EF, 0x18E2, + 0x1151, 0x1086, 0x10F1, 0x08A5, 0x12C2, 0x1BFF, 0x1095, 0x1A62, + 0x1322, 0x0942, 0x1026, 0x1872, 0x1062, 0x0897, 0x1123, 0x08D1, + 0x1A06, 0x0806, 0x137F, 0x13B1, 0x13DF, 0x1A51, 0x09B1, 0x0A83, + 0x1015, 0x22F1, 0x0961, 0x0B81, 0x12B3, 0x0A35, 0x0AA3, 0x20B3, + 0x08C3, 0x2342, 0x0933, 0x0A33, 0x09A2, 0x10C2, 0x0896, 0x2205, + 0x0825, 0x20E1, 0x0922, 0x1242, 0x0B16, 0x0B32, 0x09A3, 0x0AC3, + 0x0BBF, 0x0B93, 0x0071, 0x0931, 0x0A41, 0x2392, 0x13FE, 0x09C1, + 0x0B07, 0x0016, 0x1182, 0x09B2, 0x0A26, 0x0132, 0x0941, 0x0A93, + 0x0992, 0x1063, 0x1217, 0x01FF, 0x11EE, 0x1216, 0x0B23, 0x0B82, + 0x0042, 0x1102, 0x0213, 0x0B6F, 0x09FE, 0x1207, 0x0807, 0x18B1, + 0x0253, 0x0AB1, 0x08A2, 0x13FD, 0x01FD, 0x1983, 0x0AB2, 0x0A31, + 0x016F, 0x0B11, 0x00B2, 0x0851, 0x0AD2, 0x0993, 0x0BDD, 0x12A1, + 0x017F, 0x0A97, 0x1022, 0x0383, 0x0843, 0x0A52, 0x03A2, 0x097E, + 0x0817, 0x03B2, 0x0A43, 0x09EF, 0x0A63, 0x0B33, 0x0B03, 0x0292, + 0x0272, 0x09CE, 0x0287, 0x136D, 0x0053, 0x0B12, 0x0083, 0x0892, + 0x0112, 0x1282, 0x03ED, 0x0852, 0x0301, 0x1391, 0x0232, 0x0B7E, + 0x0221, 0x08A3, 0x0BCD, 0x0BCF, 0x036E, 0x09DE, 0x0103, 0x03DE, + 0x0832, 0x0BAF, 0x0302, 0x13CE, 0x035F, 0x0093, 0x0A23, 0x01DF, + 0x0013, 0x0A22, 0x0023, 0x0113, 0x09AF, 0x01BF, 0x0033, 0x095F, + 0x0203, 0x0281, 0x09CF, 0x037D, 0x0201, 0x0B4D, 0x03AE, 0x03BE, + 0x0291, 0x035E, 0x038E, 0x0B9F, 0x03AD, 0x0202, 0x034F, 0x0211, + 0x035D, 0x0212, 0x032E, 0x039E, 0x033F, 0x034E, 0x03BD, 0x032F, + 0x033E, 0x038F +}; + +static const uint16_t percentile_arr_10x5_1[180] { + 0x0532, 0xFCA3, 0x3621, 0x6E82, 0x2CC2, 0x3D51, 0x3F01, 0x2691, + 0x17AE, 0x35A2, 0x74B3, 0x1603, 0x4433, 0x3C43, 0x6C35, 0x25D1, + 0x1D13, 0x15DF, 0x37CD, 0x0D93, 0x1D22, 0x0E81, 0x1452, 0x0CD2, + 0x37BE, 0x0CB2, 0x3407, 0x1523, 0x0C16, 0x0CB5, 0x0C96, 0x1486, + 0x2631, 0x1506, 0x0F4F, 0x1583, 0x0CD1, 0x2CA2, 0x2612, 0x1613, + 0x1602, 0x1F11, 0x179F, 0x17BD, 0x15B1, 0x0406, 0x1D41, 0x0CF1, + 0x0D31, 0x0442, 0x1C62, 0x0F6E, 0x077D, 0x0C51, 0x0445, 0x0D15, + 0x2592, 0x0CB1, 0x05EF, 0x0542, 0x17AF, 0x1425, 0x075E, 0x0FAD, + 0x0CC1, 0x0503, 0x0512, 0x15C1, 0x0C95, 0x0415, 0x0505, 0x0F4E, + 0x04A5, 0x0493, 0x0C32, 0x0F5F, 0x04E1, 0x0521, 0x0C85, 0x07DD, + 0x0582, 0x15FF, 0x05CF, 0x0405, 0x0D91, 0x05A1, 0x05FE, 0x0C23, + 0x0561, 0x0472, 0x0471, 0x0C22, 0x0DEE, 0x076D, 0x0502, 0x0426, + 0x0C61, 0x0D7D, 0x0525, 0x05DE, 0x0DCE, 0x079D, 0x0692, 0x0441, + 0x0C91, 0x05DD, 0x0511, 0x057F, 0x0611, 0x0DFD, 0x078D, 0x056E, + 0x0492, 0x04A1, 0x073F, 0x0C31, 0x05BE, 0x0483, 0x0571, 0x056F, + 0x0D9F, 0x0581, 0x0501, 0x057E, 0x05BF, 0x078F, 0x0516, 0x05ED, + 0x0402, 0x0F7E, 0x0482, 0x054E, 0x075D, 0x071F, 0x05CD, 0x0535, + 0x05AE, 0x0C11, 0x058F, 0x05AF, 0x0421, 0x0413, 0x0601, 0x054F, + 0x073D, 0x059E, 0x0487, 0x070F, 0x078E, 0x0781, 0x053E, 0x0403, + 0x072D, 0x055D, 0x05BD, 0x079E, 0x0D8E, 0x0412, 0x052E, 0x074D, + 0x053F, 0x051F, 0x070E, 0x055F, 0x072F, 0x052F, 0x070D, 0x055E, + 0x0417, 0x0453, 0x072E, 0x0622, 0x0683, 0x0702, 0x071D, 0x071E, + 0x073E, 0x076F, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_10x5 { + 10, 5, + { 274, 180 }, + { 954, 324 }, + { 0, 79 }, + { percentile_arr_10x5_0, percentile_arr_10x5_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 6) +static const uint16_t percentile_arr_10x6_0[325] { + 0x01A4, 0xF954, 0xA066, 0x9975, 0x80F5, 0x7056, 0x6918, 0x6963, + 0x58C6, 0x5946, 0x5928, 0x5174, 0x586F, 0xA0E6, 0x5108, 0x48D6, + 0x49E2, 0x40F3, 0x9172, 0x41F2, 0xB875, 0x3927, 0x39C3, 0xA953, + 0x3934, 0x3305, 0x30B6, 0x6943, 0x31D2, 0x3876, 0x3037, 0x2955, + 0x30A7, 0x32C1, 0x29B3, 0x3027, 0x287E, 0x30B7, 0x29E3, 0x5846, + 0x2B15, 0x2847, 0x3162, 0x5173, 0x4936, 0x285F, 0x48D3, 0x2164, + 0x4906, 0x20E5, 0x2915, 0x2116, 0x407F, 0x20D5, 0x2A61, 0x4117, + 0x20E3, 0x2126, 0x4148, 0x206E, 0x39D3, 0x2145, 0x41B4, 0x1B06, + 0x2114, 0x2165, 0x5321, 0x5A85, 0x1A4D, 0x1A1F, 0x19F1, 0x3341, + 0x184F, 0x1956, 0x3125, 0x30C7, 0x28F2, 0x1937, 0x1AE1, 0x1073, + 0x1BA1, 0x1935, 0x110C, 0x1BC1, 0x3A25, 0x19C2, 0x1295, 0x122E, + 0x1944, 0x11D1, 0x1124, 0x1857, 0x22D1, 0x2286, 0x1A2D, 0x12A2, + 0x2107, 0x1055, 0x2065, 0x0A71, 0x2152, 0x10C5, 0x10D2, 0x1331, + 0x08B5, 0x1171, 0x2836, 0x10A6, 0x0904, 0x123D, 0x20F1, 0x12A5, + 0x10E2, 0x107D, 0x1AF1, 0x1313, 0x0951, 0x11E1, 0x1B22, 0x1B51, + 0x0835, 0x101E, 0x0A5D, 0x0A15, 0x3045, 0x0A96, 0x08A5, 0x1142, + 0x12A3, 0x1872, 0x085D, 0x09B1, 0x100E, 0x0887, 0x0886, 0x086D, + 0x0933, 0x12B3, 0x0897, 0x08B3, 0x0A33, 0x0923, 0x1095, 0x0BEE, + 0x2BB1, 0x085E, 0x1283, 0x0A51, 0x1026, 0x0A06, 0x12C2, 0x08D1, + 0x11A2, 0x13BF, 0x08C3, 0x10C2, 0x0A3E, 0x0BDF, 0x0B81, 0x13EF, + 0x0A35, 0x0B16, 0x082F, 0x2161, 0x1B32, 0x0806, 0x084E, 0x11A3, + 0x1015, 0x1122, 0x2931, 0x0342, 0x0825, 0x0A0F, 0x0896, 0x0A05, + 0x0241, 0x09C1, 0x083F, 0x0A42, 0x0071, 0x0B07, 0x082E, 0x0393, + 0x12B1, 0x0A62, 0x0226, 0x0A2F, 0x0B92, 0x0063, 0x0932, 0x0862, + 0x09FF, 0x0A31, 0x00E1, 0x12B2, 0x09B2, 0x0AC3, 0x0941, 0x0293, + 0x1323, 0x104D, 0x003E, 0x083D, 0x0992, 0x1382, 0x03FF, 0x0A13, + 0x1016, 0x0A53, 0x0182, 0x1007, 0x0AA1, 0x080F, 0x0A16, 0x0A1E, + 0x0042, 0x0902, 0x13DD, 0x0BB2, 0x0A63, 0x00A2, 0x08B1, 0x03FE, + 0x1207, 0x08B2, 0x0B83, 0x09EE, 0x0311, 0x0A87, 0x0BAF, 0x03A2, + 0x09FD, 0x0051, 0x0B33, 0x020D, 0x09CE, 0x0217, 0x021D, 0x0817, + 0x020E, 0x0A4E, 0x001F, 0x0BFD, 0x0297, 0x0983, 0x0A92, 0x0252, + 0x0243, 0x0B03, 0x0193, 0x036F, 0x0B12, 0x0043, 0x0822, 0x0A21, + 0x01FE, 0x0853, 0x037F, 0x023F, 0x0BED, 0x02D2, 0x0B91, 0x0232, + 0x0282, 0x0912, 0x08A3, 0x0852, 0x0223, 0x0BCD, 0x0083, 0x0301, + 0x0832, 0x01EF, 0x0892, 0x0302, 0x0A72, 0x03DE, 0x0893, 0x0BCF, + 0x09DE, 0x03CE, 0x035F, 0x0833, 0x0023, 0x0103, 0x017E, 0x0813, + 0x01CF, 0x01BF, 0x016F, 0x0A22, 0x037E, 0x0113, 0x01AF, 0x0B6E, + 0x03BE, 0x0201, 0x0A03, 0x01DF, 0x036D, 0x03AE, 0x015F, 0x0281, + 0x033E, 0x0A02, 0x038E, 0x017F, 0x0291, 0x034D, 0x03BD, 0x0B7D, + 0x03AD, 0x0211, 0x0212, 0x034F, 0x032E, 0x039F, 0x034E, 0x035D, + 0x035E, 0x033F, 0x039E, 0x032F, 0x038F +}; + +static const uint16_t percentile_arr_10x6_1[199] { + 0x0621, 0xBD32, 0x5CA3, 0x1FAE, 0x64C2, 0x1D51, 0x6C33, 0xFC43, + 0x5CB3, 0x25A2, 0x2E82, 0x35D1, 0x4F01, 0x3FBE, 0x3691, 0x2DDF, + 0x2E03, 0x3FCD, 0x14D2, 0x1CF1, 0x0C52, 0x3C35, 0x2D22, 0x1513, + 0x1462, 0x54B2, 0x0E31, 0x4E81, 0x1593, 0x1D23, 0x1CD1, 0x14B5, + 0x2FBD, 0x0C07, 0x1D06, 0x0DEF, 0x14A2, 0x1612, 0x1F4F, 0x0C16, + 0x1F7D, 0x0C96, 0x0486, 0x1F9F, 0x0D42, 0x4583, 0x0E02, 0x0472, + 0x0DB1, 0x1613, 0x0FAD, 0x0D41, 0x0F11, 0x0E0D, 0x1C42, 0x143E, + 0x076E, 0x04B1, 0x0FAF, 0x0D61, 0x0531, 0x0C71, 0x0DFF, 0x0DFE, + 0x0406, 0x0C45, 0x0451, 0x0D15, 0x05C1, 0x2CC1, 0x141F, 0x0CE1, + 0x0FDD, 0x0C22, 0x0582, 0x0D92, 0x0571, 0x0F6D, 0x0C93, 0x045D, + 0x0F5E, 0x044D, 0x0423, 0x0D05, 0x0425, 0x0C95, 0x04A5, 0x0DCE, + 0x075F, 0x0E1D, 0x0503, 0x042E, 0x0D91, 0x0512, 0x0DDE, 0x05A1, + 0x074E, 0x0C32, 0x0431, 0x0415, 0x0D21, 0x05EE, 0x040E, 0x0DDD, + 0x0485, 0x1525, 0x0491, 0x0C26, 0x046D, 0x0C05, 0x05CF, 0x05FD, + 0x0E92, 0x073F, 0x0C0D, 0x043D, 0x0502, 0x0C1E, 0x041D, 0x0461, + 0x04A1, 0x0511, 0x0581, 0x05BD, 0x0C41, 0x059F, 0x05BF, 0x040F, + 0x0C7D, 0x0402, 0x054E, 0x057D, 0x0403, 0x078D, 0x05AE, 0x042D, + 0x0483, 0x079D, 0x0D7F, 0x0482, 0x0611, 0x056E, 0x0516, 0x05BE, + 0x0535, 0x044E, 0x05AF, 0x0DED, 0x042F, 0x0492, 0x058E, 0x078F, + 0x0412, 0x057E, 0x053E, 0x0F1F, 0x073D, 0x0601, 0x0501, 0x075D, + 0x059E, 0x05CD, 0x053F, 0x054F, 0x055E, 0x055D, 0x0421, 0x074D, + 0x051F, 0x072F, 0x0781, 0x0411, 0x0D6F, 0x077E, 0x0487, 0x070E, + 0x070F, 0x072D, 0x058F, 0x078E, 0x079E, 0x052E, 0x0413, 0x072E, + 0x071D, 0x052F, 0x055F, 0x073E, 0x0417, 0x0453, 0x060E, 0x0622, + 0x0683, 0x0702, 0x070D, 0x071E, 0x076F, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_10x6 { + 10, 6, + { 325, 199 }, + { 922, 381 }, + { 0, 78 }, + { percentile_arr_10x6_0, percentile_arr_10x6_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 8) +static const uint16_t percentile_arr_10x8_0[400] { + 0x0154, 0xAB34, 0xAD44, 0x8308, 0x7866, 0x7B64, 0x79A4, 0x7975, + 0x686A, 0x6908, 0xC514, 0x6174, 0x6128, 0x6118, 0x5B54, 0x5163, + 0xF856, 0x50F5, 0x986F, 0xDD34, 0x48FE, 0x4972, 0x48E6, 0x4146, + 0x48EE, 0x40F3, 0x4AC1, 0x38C6, 0x41E2, 0xBB05, 0x707E, 0x38D6, + 0x3927, 0x6B14, 0x384B, 0x3948, 0x3153, 0x385A, 0x3134, 0x6B15, + 0x39F2, 0x30CF, 0x3143, 0x91D2, 0x31C3, 0x60EF, 0x5973, 0x3076, + 0x28D3, 0x3261, 0x2875, 0x28DE, 0x290C, 0x51E3, 0x28A7, 0x20E3, + 0x2962, 0x2B06, 0x2917, 0x483B, 0x20B6, 0x2D24, 0x206E, 0x285F, + 0x20B7, 0x2936, 0x4047, 0x2037, 0x20DF, 0x28BF, 0x21B4, 0x21B3, + 0x1D08, 0x2027, 0x404F, 0x3846, 0x2116, 0x187F, 0x1879, 0x2285, + 0x1A29, 0x3915, 0x4873, 0x1955, 0x3114, 0x1B44, 0x2165, 0x107A, + 0x1956, 0x6137, 0x1106, 0x3145, 0x1B21, 0x19D3, 0x12AD, 0x1B41, + 0x1AD1, 0x1126, 0x18F2, 0x282B, 0x40E5, 0x20D5, 0x2A0A, 0x284A, + 0x1286, 0x1295, 0x121A, 0x2A0B, 0x321B, 0x122D, 0x10FD, 0x13A1, + 0x32A2, 0x12E1, 0x1164, 0x13C1, 0x124D, 0x1239, 0x4504, 0x10C7, + 0x22F1, 0x11F1, 0x0AC2, 0x2125, 0x1225, 0x0B04, 0x1107, 0x1069, + 0x1A19, 0x13BF, 0x2A96, 0x08D2, 0x1271, 0x0952, 0x2BDF, 0x0B31, + 0x1251, 0x2124, 0x0B13, 0x12BD, 0x1233, 0x13EE, 0x2144, 0x0B16, + 0x0A15, 0x18E2, 0x08DD, 0x1097, 0x0857, 0x0B24, 0x0AA5, 0x12A3, + 0x11C2, 0x11D1, 0x10CE, 0x0865, 0x123D, 0x08B3, 0x0B51, 0x1971, + 0x0A41, 0x0A06, 0x1039, 0x080A, 0x0B22, 0x0923, 0x0836, 0x08C3, + 0x0A1F, 0x1072, 0x080B, 0x0935, 0x0855, 0x18A6, 0x0A42, 0x1133, + 0x0A83, 0x0A09, 0x0ACD, 0x0A2E, 0x0887, 0x083A, 0x10C5, 0x085E, + 0x13B1, 0x087D, 0x0819, 0x0A9F, 0x0049, 0x08F1, 0x0BEF, 0x1161, + 0x0B42, 0x09E1, 0x0A05, 0x0904, 0x12AE, 0x029E, 0x0A31, 0x09FF, + 0x0951, 0x0859, 0x001A, 0x082F, 0x0B81, 0x08B5, 0x0A35, 0x082A, + 0x08ED, 0x1142, 0x1262, 0x0B32, 0x08A5, 0x12D2, 0x03DD, 0x0B07, + 0x18AE, 0x083F, 0x00AF, 0x0AB3, 0x086D, 0x0287, 0x0A93, 0x025D, + 0x0816, 0x13FF, 0x0A8D, 0x005D, 0x08D1, 0x0392, 0x0845, 0x0AC3, + 0x08C2, 0x01A3, 0x0AB1, 0x09A2, 0x005B, 0x0B93, 0x02B2, 0x1086, + 0x001B, 0x0863, 0x0216, 0x0AA1, 0x0896, 0x0A8F, 0x084E, 0x0A8E, + 0x0A53, 0x0026, 0x0A26, 0x0382, 0x0807, 0x0862, 0x0029, 0x0871, + 0x00BD, 0x0835, 0x024E, 0x0806, 0x0941, 0x0895, 0x03AF, 0x0A13, + 0x0932, 0x03ED, 0x0BFD, 0x0207, 0x0B83, 0x0993, 0x09B1, 0x03CD, + 0x0A3E, 0x03FE, 0x0A21, 0x0015, 0x0B11, 0x0A43, 0x00E1, 0x136F, + 0x00BE, 0x00A2, 0x0842, 0x0043, 0x0825, 0x082E, 0x0A2A, 0x03DE, + 0x0BA2, 0x0122, 0x0BCF, 0x004D, 0x0323, 0x09C1, 0x0292, 0x083E, + 0x0252, 0x0017, 0x0A72, 0x00CD, 0x0182, 0x0A63, 0x0131, 0x09B2, + 0x0303, 0x0902, 0x0053, 0x035F, 0x0A32, 0x003D, 0x0992, 0x0A2F, + 0x03B2, 0x0ABE, 0x009F, 0x0183, 0x0312, 0x08B1, 0x0B02, 0x0A17, + 0x0B7F, 0x0333, 0x0297, 0x0A23, 0x020F, 0x0282, 0x0851, 0x0822, + 0x03CE, 0x01EE, 0x000E, 0x08B2, 0x0083, 0x0A1D, 0x00A3, 0x0222, + 0x088F, 0x0112, 0x029D, 0x0092, 0x0A3F, 0x0391, 0x089E, 0x0301, + 0x01FD, 0x09BF, 0x01CE, 0x0852, 0x01FE, 0x0013, 0x0903, 0x088E, + 0x037E, 0x021E, 0x01EF, 0x095F, 0x016F, 0x09DE, 0x03BE, 0x020E, + 0x0113, 0x01DF, 0x080F, 0x020D, 0x0833, 0x03AE, 0x0032, 0x03BD, + 0x0823, 0x001E, 0x01AF, 0x0203, 0x034F, 0x0093, 0x0A81, 0x036E, + 0x0291, 0x038E, 0x0A01, 0x001F, 0x017F, 0x01CF, 0x017E, 0x0202, + 0x0BAD, 0x0211, 0x035D, 0x035E, 0x039F, 0x0212, 0x032E, 0x033F, + 0x034D, 0x034E, 0x036D, 0x032F, 0x033E, 0x037D, 0x038F, 0x039E +}; + +static const uint16_t percentile_arr_10x8_1[221] { + 0x0621, 0xDFAE, 0x2443, 0x54C2, 0x37CD, 0x1CF1, 0xFCA3, 0x14D2, + 0x2D32, 0x5551, 0x7DDF, 0x5C33, 0x15D1, 0x3462, 0x24B3, 0x7452, + 0x5FBE, 0x6472, 0x65A2, 0x1D06, 0x445D, 0x15EF, 0x0E31, 0x1D71, + 0x343E, 0x0D42, 0x0CDD, 0x1F01, 0x4691, 0x1435, 0x0E82, 0x0DFF, + 0x17DD, 0x0D22, 0x24B2, 0x1603, 0x04B5, 0x24AE, 0x060D, 0x2D13, + 0x0C7D, 0x0496, 0x17BD, 0x1F4F, 0x1F7D, 0x1486, 0x0593, 0x1C16, + 0x0C07, 0x15FE, 0x041F, 0x14D1, 0x0C9F, 0x0E81, 0x0D15, 0x27AF, + 0x0C2E, 0x0D23, 0x176E, 0x0FAD, 0x1C06, 0x1561, 0x0DB1, 0x040B, + 0x1C4E, 0x0D83, 0x1711, 0x0C42, 0x0C71, 0x1C1A, 0x0D25, 0x04A2, + 0x0C45, 0x076D, 0x0F9F, 0x075F, 0x0E12, 0x046D, 0x048F, 0x1D92, + 0x0602, 0x0C39, 0x174E, 0x0C51, 0x0CA1, 0x075E, 0x05C1, 0x14BD, + 0x0D31, 0x0423, 0x0F3F, 0x0495, 0x0C93, 0x049E, 0x0D05, 0x04E1, + 0x0DEE, 0x0415, 0x04B1, 0x0503, 0x0CCD, 0x042F, 0x0DCF, 0x044D, + 0x0541, 0x1582, 0x05DE, 0x0D01, 0x0487, 0x040A, 0x0516, 0x0CA5, + 0x05FD, 0x05BF, 0x057D, 0x0DA1, 0x0426, 0x040F, 0x071F, 0x0613, + 0x0432, 0x0D12, 0x043D, 0x0425, 0x0461, 0x061D, 0x0D21, 0x0591, + 0x079D, 0x048D, 0x0429, 0x0C49, 0x04C1, 0x042A, 0x040E, 0x0485, + 0x0511, 0x0405, 0x0502, 0x0441, 0x0C19, 0x0692, 0x0535, 0x058F, + 0x041D, 0x059F, 0x072D, 0x04AD, 0x049D, 0x05CE, 0x048E, 0x0C31, + 0x057F, 0x078D, 0x0409, 0x041E, 0x05AE, 0x0611, 0x058E, 0x05DD, + 0x05CD, 0x056E, 0x0483, 0x073D, 0x054E, 0x0D9E, 0x0402, 0x0491, + 0x040D, 0x056F, 0x042D, 0x0581, 0x0421, 0x057E, 0x0781, 0x053E, + 0x0482, 0x078F, 0x0413, 0x052E, 0x0601, 0x0422, 0x0492, 0x055E, + 0x05BE, 0x0F9E, 0x072F, 0x074D, 0x0412, 0x070F, 0x075D, 0x05BD, + 0x051F, 0x071D, 0x073E, 0x077E, 0x0403, 0x0411, 0x078E, 0x055D, + 0x05AF, 0x05ED, 0x052F, 0x053F, 0x070D, 0x070E, 0x072E, 0x054F, + 0x0417, 0x041B, 0x0453, 0x055F, 0x060E, 0x0622, 0x0683, 0x068D, + 0x0702, 0x071E, 0x076F, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_10x8 = +{ + 10, 8, + { 400, 221 }, + { 1119, 376 }, + { 0, 52 }, + { percentile_arr_10x8_0, percentile_arr_10x8_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 10) +static const uint16_t percentile_arr_10x10_0[453] { + 0x0334, 0x9514, 0x8954, 0x806A, 0x6F14, 0x6724, 0x6108, 0x6364, + 0x5175, 0x5D44, 0x5866, 0x5118, 0x5308, 0xA179, 0x5128, 0xF534, + 0x49A4, 0x5354, 0x9174, 0x486F, 0x48EA, 0x40F3, 0x4963, 0x414A, + 0xF8F9, 0x3984, 0x4172, 0x387E, 0x405A, 0x38DA, 0x38F5, 0x9B05, + 0x30EE, 0x32C1, 0x3261, 0x3D08, 0x31E2, 0x3056, 0x292B, 0x3146, + 0x3127, 0x3315, 0x58CA, 0x58E6, 0x290C, 0x3314, 0x8134, 0x28E3, + 0x28FE, 0x2948, 0x28C6, 0x78DE, 0x28BB, 0x68D6, 0x286E, 0x2173, + 0x2962, 0x21D2, 0x205F, 0x49F2, 0x2917, 0x2306, 0x207F, 0x404F, + 0x2153, 0x2943, 0x20CF, 0x21C3, 0x2073, 0x20D3, 0x2136, 0x183B, + 0x430A, 0x40A7, 0x18B6, 0x2079, 0x2309, 0x2075, 0x184B, 0x20EF, + 0x187A, 0x7837, 0x1B19, 0x20AB, 0x18BA, 0x20B7, 0x1994, 0x19E3, + 0x21B4, 0x49B3, 0x38BF, 0x193B, 0x1876, 0x182B, 0x30F2, 0x193A, + 0x1827, 0x1965, 0x1914, 0x184A, 0x4047, 0x1916, 0x1285, 0x1937, + 0x122D, 0x1915, 0x1321, 0x1955, 0x1046, 0x191B, 0x2106, 0x2919, + 0x1344, 0x1524, 0x12E1, 0x3926, 0x10E5, 0x2295, 0x1159, 0x1145, + 0x10DF, 0x124D, 0x1271, 0x092A, 0x2169, 0x1704, 0x22A2, 0x1164, + 0x13EE, 0x12F1, 0x0AD1, 0x128A, 0x110A, 0x11D3, 0x1286, 0x115A, + 0x2BA1, 0x0BBF, 0x3956, 0x2A89, 0x12AD, 0x10E9, 0x0B41, 0x1A29, + 0x2225, 0x08FD, 0x1107, 0x08D5, 0x191A, 0x1125, 0x1A96, 0x0B04, + 0x18D9, 0x2B16, 0x11F1, 0x0A33, 0x0924, 0x131A, 0x1149, 0x1324, + 0x0BEF, 0x0A99, 0x08CB, 0x123D, 0x1331, 0x0BDF, 0x0872, 0x22A3, + 0x0AC2, 0x1144, 0x0D04, 0x08D2, 0x08CE, 0x0AA9, 0x0A9A, 0x0B13, + 0x1251, 0x0865, 0x1069, 0x0897, 0x1215, 0x18B3, 0x1A62, 0x08C7, + 0x185E, 0x10E2, 0x0AA5, 0x21FF, 0x090B, 0x0952, 0x09E1, 0x0A42, + 0x08F1, 0x0A06, 0x0B22, 0x087D, 0x1139, 0x021F, 0x122E, 0x082F, + 0x09C2, 0x0887, 0x0A0A, 0x03C1, 0x0929, 0x0A5D, 0x0A83, 0x0BFF, + 0x0935, 0x085B, 0x0104, 0x08DD, 0x0923, 0x083F, 0x0241, 0x09D1, + 0x0A39, 0x0863, 0x0A8B, 0x08A6, 0x008B, 0x1133, 0x13B1, 0x089B, + 0x0AB3, 0x0036, 0x0BDD, 0x08ED, 0x0857, 0x0971, 0x0219, 0x1235, + 0x0AB1, 0x0ACD, 0x036F, 0x0A31, 0x08AA, 0x003A, 0x08C3, 0x0A05, + 0x02BD, 0x0B92, 0x0B07, 0x12B2, 0x08C5, 0x0B51, 0x0381, 0x0A8D, + 0x01A3, 0x0896, 0x0855, 0x0BFD, 0x005D, 0x0BFE, 0x023E, 0x08AF, + 0x00B9, 0x0A93, 0x00B5, 0x0862, 0x0A0B, 0x0A09, 0x0A72, 0x0332, + 0x0AA1, 0x08C9, 0x024E, 0x1382, 0x0951, 0x00A5, 0x0A2A, 0x0059, + 0x0A9E, 0x0B42, 0x004E, 0x0942, 0x03ED, 0x09B2, 0x02D2, 0x0849, + 0x0035, 0x0216, 0x0961, 0x0BAF, 0x00AE, 0x0826, 0x0287, 0x0A1A, + 0x0393, 0x0221, 0x09A2, 0x086D, 0x0226, 0x0871, 0x0039, 0x082A, + 0x08C2, 0x08E1, 0x0845, 0x0207, 0x0B23, 0x0015, 0x00D1, 0x0B83, + 0x037F, 0x0252, 0x08A9, 0x0099, 0x0A13, 0x0053, 0x0807, 0x03CD, + 0x0BDE, 0x0016, 0x089A, 0x0232, 0x035F, 0x0A8E, 0x0AC3, 0x022F, + 0x0263, 0x0829, 0x004D, 0x0132, 0x0806, 0x0311, 0x01B1, 0x0941, + 0x0086, 0x000B, 0x1122, 0x0025, 0x0842, 0x00BD, 0x0BCF, 0x03A2, + 0x0043, 0x0B03, 0x0895, 0x0A8F, 0x008A, 0x09EF, 0x0253, 0x0A1B, + 0x0182, 0x0243, 0x0A92, 0x00CD, 0x083E, 0x030B, 0x0223, 0x081A, + 0x0A9F, 0x0193, 0x00BE, 0x0017, 0x0931, 0x0391, 0x037E, 0x09C1, + 0x0312, 0x0333, 0x03B2, 0x083D, 0x08B1, 0x00B2, 0x002E, 0x021D, + 0x0A9D, 0x0192, 0x02AE, 0x0102, 0x0022, 0x081B, 0x0222, 0x009E, + 0x021E, 0x000A, 0x089F, 0x0217, 0x0BCE, 0x0052, 0x020F, 0x0A97, + 0x0282, 0x008E, 0x0A3F, 0x01FD, 0x00A3, 0x0019, 0x08A2, 0x0301, + 0x036E, 0x01FE, 0x03BE, 0x0ABE, 0x01CE, 0x0302, 0x029B, 0x0051, + 0x0883, 0x008F, 0x0BAE, 0x01DF, 0x0183, 0x0912, 0x000E, 0x020D, + 0x01EE, 0x0B4F, 0x0033, 0x0103, 0x020E, 0x0832, 0x01AF, 0x0913, + 0x01DE, 0x0203, 0x001E, 0x0092, 0x0093, 0x000F, 0x015F, 0x0291, + 0x0281, 0x0813, 0x001F, 0x01CF, 0x033F, 0x0023, 0x01BF, 0x0202, + 0x016F, 0x017E, 0x03AD, 0x0201, 0x034E, 0x0BBD, 0x036D, 0x017F, + 0x0211, 0x038E, 0x0212, 0x032E, 0x034D, 0x035E, 0x037D, 0x039E, + 0x032F, 0x033E, 0x035D, 0x038F, 0x039F +}; + +static const uint16_t percentile_arr_10x10_1[234] { + 0x07CD, 0x6E21, 0x24F1, 0x8443, 0xD7AE, 0x24C2, 0x1C62, 0xCCA3, + 0x1C33, 0xFDEF, 0x2532, 0x55DF, 0x1472, 0x6C3E, 0x14D2, 0x34DD, + 0x1452, 0x745D, 0x4D51, 0x8DD1, 0x247D, 0x75FF, 0x0CB3, 0x17BE, + 0x6CAE, 0x17DD, 0x1571, 0x3D06, 0x4E31, 0x0DA2, 0x67BD, 0x160D, + 0x2C4E, 0x0D22, 0x176E, 0x3CB2, 0x142E, 0x4DFE, 0x0F4F, 0x1435, + 0x0F01, 0x0D42, 0x0F7D, 0x0CB5, 0x1E03, 0x149F, 0x1C96, 0x141F, + 0x14B9, 0x0FAF, 0x0439, 0x0E91, 0x2682, 0x1D13, 0x1FAD, 0x0407, + 0x3471, 0x0C86, 0x0F6D, 0x0D15, 0x0D61, 0x040B, 0x0C6D, 0x0C16, + 0x0C9A, 0x0D0A, 0x0593, 0x0CD1, 0x248F, 0x0C2F, 0x3C42, 0x1523, + 0x0445, 0x0E81, 0x0CA2, 0x1525, 0x0406, 0x1C8A, 0x0C1A, 0x04BD, + 0x0F5E, 0x0F3F, 0x1F4E, 0x0E1D, 0x0423, 0x0DCF, 0x044D, 0x0D92, + 0x0583, 0x0DB1, 0x1449, 0x15EE, 0x0F5F, 0x079F, 0x0D19, 0x0409, + 0x04CD, 0x05FD, 0x143D, 0x0612, 0x0D03, 0x0D82, 0x04B1, 0x0C95, + 0x0C2A, 0x049E, 0x05AF, 0x0D31, 0x05BE, 0x04E1, 0x0D05, 0x0516, + 0x0711, 0x05C1, 0x0509, 0x0D41, 0x0493, 0x048E, 0x0602, 0x05BF, + 0x0CA5, 0x0529, 0x0535, 0x0D12, 0x0539, 0x0451, 0x0C29, 0x071F, + 0x040A, 0x0F3D, 0x0432, 0x059F, 0x0425, 0x0C99, 0x05DE, 0x05CE, + 0x0C0F, 0x0489, 0x051A, 0x0501, 0x0415, 0x057F, 0x0431, 0x0E13, + 0x040D, 0x041D, 0x075D, 0x0C53, 0x0502, 0x04C1, 0x049D, 0x0426, + 0x040E, 0x05A1, 0x055F, 0x0781, 0x0591, 0x04A9, 0x048B, 0x0D8E, + 0x052E, 0x0412, 0x0521, 0x0405, 0x04AD, 0x074D, 0x0611, 0x077E, + 0x078F, 0x078D, 0x048D, 0x041E, 0x0487, 0x0461, 0x0C85, 0x05ED, + 0x0402, 0x0483, 0x0419, 0x0511, 0x0491, 0x0482, 0x059E, 0x068D, + 0x055D, 0x072E, 0x05DD, 0x054E, 0x0441, 0x0422, 0x052F, 0x057D, + 0x072D, 0x079D, 0x0CA1, 0x072F, 0x079E, 0x0581, 0x042D, 0x055E, + 0x0601, 0x0413, 0x0692, 0x0403, 0x051F, 0x053F, 0x054F, 0x05CD, + 0x070F, 0x071D, 0x05AE, 0x05BD, 0x0492, 0x056E, 0x0411, 0x0417, + 0x041B, 0x0421, 0x053E, 0x056F, 0x057E, 0x058F, 0x060E, 0x0622, + 0x0683, 0x0702, 0x070D, 0x070E, 0x071E, 0x073E, 0x076F, 0x078E, + 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_10x10 { + 10, 10, + { 453, 234 }, + { 1095, 472 }, + { 0, 70 }, + { percentile_arr_10x10_0, percentile_arr_10x10_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (12 * 10) +static const uint16_t percentile_arr_12x10_0[491] { + 0x0334, 0x9954, 0x8514, 0x7128, 0x6364, 0xC174, 0x5D34, 0x5866, + 0x5975, 0x5354, 0xAF14, 0x506A, 0x5108, 0x5724, 0x5308, 0x4544, + 0x4918, 0x4064, 0x49E2, 0x4179, 0x8163, 0x4054, 0xF81C, 0x394A, + 0x38F3, 0x4172, 0x38F5, 0xA06F, 0x68EA, 0x69F2, 0x3134, 0x31A4, + 0x305A, 0x68DA, 0x3056, 0x3146, 0x31F5, 0x3148, 0x5A61, 0x32C1, + 0x31D2, 0x307E, 0x29E3, 0x30E6, 0x59C3, 0x2984, 0x29B6, 0x28F9, + 0x5204, 0x28EE, 0x50CA, 0x2997, 0x48C6, 0x4838, 0x2953, 0x200C, + 0x2943, 0x2173, 0x2D08, 0x4162, 0x29B4, 0x2314, 0x21B3, 0x212B, + 0x210C, 0x48E3, 0x60DE, 0x205F, 0x20FE, 0x2028, 0x21A6, 0x404F, + 0x20D6, 0x2214, 0x2127, 0x1873, 0x40CF, 0x206E, 0x1B09, 0x21C6, + 0x2075, 0x19D5, 0x2305, 0x18D3, 0x2076, 0x1804, 0x230A, 0x304B, + 0x20BB, 0x18B6, 0x1936, 0x1B19, 0x3037, 0x187F, 0x18A7, 0x1B85, + 0x30BA, 0x183B, 0x1027, 0x18EF, 0x1B21, 0x1879, 0x10AB, 0x1917, + 0x1114, 0x18BF, 0x1074, 0x1994, 0x2847, 0x111B, 0x28F2, 0x11E5, + 0x19A7, 0x113A, 0x1046, 0x28B7, 0x207A, 0x182B, 0x1155, 0x104A, + 0x1344, 0x293B, 0x11D3, 0x2014, 0x1044, 0x1018, 0x13A1, 0x1315, + 0x2524, 0x20DF, 0x10E5, 0x1126, 0x12A2, 0x1824, 0x2271, 0x11F1, + 0x2964, 0x12D1, 0x115A, 0x092A, 0x2341, 0x1A2D, 0x12E1, 0x090A, + 0x13BF, 0x0A4D, 0x2119, 0x0BC1, 0x1233, 0x1A8A, 0x2008, 0x1159, + 0x1A89, 0x08D5, 0x1156, 0x0834, 0x13EE, 0x1169, 0x1187, 0x1AA3, + 0x1229, 0x1331, 0x0A85, 0x0937, 0x1704, 0x08FD, 0x2124, 0x0B13, + 0x1251, 0x0AAD, 0x082C, 0x091A, 0x18D9, 0x0A99, 0x1848, 0x18E9, + 0x0B95, 0x1144, 0x0AF1, 0x1A25, 0x131A, 0x09C5, 0x0986, 0x1BDF, + 0x0B24, 0x0965, 0x1262, 0x0949, 0x0872, 0x09C2, 0x12C2, 0x0916, + 0x085E, 0x0B06, 0x08CB, 0x08C7, 0x1242, 0x1BEF, 0x0A9A, 0x1152, + 0x08B3, 0x0AA9, 0x090B, 0x08D2, 0x1B22, 0x0B04, 0x0865, 0x0A15, + 0x1286, 0x0A83, 0x0A95, 0x09D1, 0x0A06, 0x0196, 0x1139, 0x0A3D, + 0x0933, 0x13B1, 0x0123, 0x0D04, 0x08E2, 0x122E, 0x08A6, 0x00CE, + 0x0A31, 0x1241, 0x0B51, 0x1057, 0x1171, 0x007D, 0x1145, 0x0A0A, + 0x0129, 0x09FF, 0x089B, 0x085B, 0x0063, 0x0AB1, 0x0A1F, 0x0A5D, + 0x0AA5, 0x0036, 0x0904, 0x0B86, 0x0A8B, 0x0897, 0x11E1, 0x0332, + 0x083F, 0x0A19, 0x02B3, 0x0859, 0x08C3, 0x0855, 0x11B5, 0x01A5, + 0x0AB2, 0x0392, 0x10DD, 0x09A3, 0x00ED, 0x0907, 0x1161, 0x002F, + 0x0887, 0x0216, 0x0ABD, 0x0B81, 0x0A93, 0x0A21, 0x003A, 0x0ACD, + 0x0AA1, 0x0A35, 0x0272, 0x0BDD, 0x03FE, 0x0BAF, 0x0869, 0x0213, + 0x088B, 0x020B, 0x00B5, 0x1035, 0x08F1, 0x0151, 0x0A4E, 0x0239, + 0x0BA2, 0x00AA, 0x0896, 0x0382, 0x0A08, 0x0A05, 0x0A09, 0x0142, + 0x086D, 0x004E, 0x0B23, 0x0106, 0x0807, 0x036F, 0x0995, 0x03FD, + 0x08AF, 0x08C5, 0x0062, 0x0053, 0x0B42, 0x0826, 0x021A, 0x01A2, + 0x09B1, 0x00C9, 0x09B2, 0x0045, 0x0207, 0x08B9, 0x00A5, 0x0AD2, + 0x0095, 0x003E, 0x0A32, 0x0383, 0x0849, 0x0135, 0x029E, 0x0A26, + 0x023E, 0x0BFF, 0x0A52, 0x0311, 0x001B, 0x0915, 0x0A8D, 0x0223, + 0x022A, 0x0BED, 0x0086, 0x0A96, 0x0222, 0x035F, 0x0A43, 0x085D, + 0x0303, 0x0393, 0x0A63, 0x082A, 0x037F, 0x0932, 0x0043, 0x0292, + 0x03CD, 0x0BDE, 0x009F, 0x0125, 0x08A9, 0x0253, 0x0015, 0x0192, + 0x0A17, 0x08C2, 0x0316, 0x00D1, 0x0282, 0x0871, 0x0312, 0x0122, + 0x0A9F, 0x02AE, 0x0006, 0x0A8E, 0x08E1, 0x0016, 0x0B0B, 0x00AE, + 0x0025, 0x0193, 0x0AC3, 0x0017, 0x0307, 0x00BD, 0x08BE, 0x0039, + 0x0BB2, 0x021B, 0x01FD, 0x084D, 0x03CE, 0x00A3, 0x0302, 0x0BCF, + 0x0033, 0x0391, 0x028F, 0x0852, 0x0287, 0x008A, 0x0333, 0x080B, + 0x0131, 0x01C1, 0x037E, 0x0A0F, 0x00B1, 0x002E, 0x0099, 0x0902, + 0x009A, 0x003D, 0x0982, 0x0301, 0x00CD, 0x0941, 0x0042, 0x0183, + 0x029D, 0x08A2, 0x021D, 0x001A, 0x0A97, 0x01EF, 0x01CE, 0x0051, + 0x0BAE, 0x022F, 0x03BE, 0x021E, 0x000A, 0x09DF, 0x0029, 0x020D, + 0x02BE, 0x029B, 0x09EE, 0x00B2, 0x0912, 0x036E, 0x009E, 0x0022, + 0x0019, 0x0892, 0x0032, 0x01FE, 0x0083, 0x023F, 0x0B96, 0x000E, + 0x008F, 0x0113, 0x0103, 0x001E, 0x0A0E, 0x0013, 0x008E, 0x0281, + 0x09AF, 0x017E, 0x0203, 0x016F, 0x0291, 0x0023, 0x0093, 0x03BD, + 0x001F, 0x01CF, 0x01DE, 0x0201, 0x01BF, 0x0B4F, 0x000F, 0x0202, + 0x037D, 0x038E, 0x0211, 0x0212, 0x034E, 0x039F, 0x03AD, 0x015F, + 0x017F, 0x032E, 0x033F, 0x034D, 0x035E, 0x036D, 0x032F, 0x033E, + 0x035D, 0x038F, 0x039E +}; + +static const uint16_t percentile_arr_12x10_1[240] { + 0x0621, 0xA443, 0xFCC2, 0x3CA3, 0x1D32, 0x14F1, 0x7462, 0x1433, + 0x27CD, 0x2571, 0x57AE, 0x5DD1, 0x64B3, 0x44D2, 0x2C72, 0x25A2, + 0x1E31, 0x55DF, 0x4C52, 0x1DEF, 0x0D51, 0x3C5D, 0x3C3E, 0x74DD, + 0x347D, 0x27BE, 0x5CB5, 0x17DD, 0x2C14, 0x0CAE, 0x24B2, 0x15FF, + 0x2701, 0x0D42, 0x1FBD, 0x0C35, 0x1603, 0x060D, 0x1D93, 0x0C96, + 0x1C07, 0x1522, 0x0D06, 0x0F4F, 0x0C9F, 0x1F6E, 0x0D86, 0x0C2E, + 0x1DFE, 0x0682, 0x1E91, 0x0F7D, 0x0C86, 0x040B, 0x1513, 0x044E, + 0x14D1, 0x0C39, 0x14B9, 0x1C71, 0x05B1, 0x0C1F, 0x0681, 0x1445, + 0x0C16, 0x0D95, 0x1583, 0x0D61, 0x0FAD, 0x1442, 0x048F, 0x0D0A, + 0x049A, 0x0F6D, 0x146D, 0x0C2F, 0x0D25, 0x0406, 0x0C1A, 0x0D23, + 0x0612, 0x0FAF, 0x0F11, 0x0592, 0x0515, 0x14E1, 0x0602, 0x048A, + 0x0E1D, 0x0CBD, 0x0F9F, 0x0423, 0x075E, 0x174E, 0x0426, 0x0404, + 0x0C22, 0x0CA2, 0x0DEE, 0x0CA5, 0x0F3F, 0x05C1, 0x0CCD, 0x0503, + 0x044D, 0x0D16, 0x0449, 0x0D82, 0x0613, 0x0585, 0x0519, 0x0C95, + 0x075F, 0x0D35, 0x04B1, 0x0509, 0x0531, 0x0DA1, 0x049E, 0x040A, + 0x05CF, 0x0D41, 0x0415, 0x0692, 0x05FD, 0x0C25, 0x04A1, 0x0529, + 0x0591, 0x0C93, 0x057F, 0x04C1, 0x0512, 0x051A, 0x078D, 0x0451, + 0x0C0F, 0x0487, 0x0611, 0x0432, 0x042A, 0x05AF, 0x0461, 0x072D, + 0x0409, 0x0405, 0x0D39, 0x05DE, 0x048E, 0x0499, 0x0483, 0x04A9, + 0x0491, 0x042D, 0x049D, 0x0429, 0x040E, 0x05AE, 0x0521, 0x043D, + 0x0581, 0x05DD, 0x0492, 0x0CAD, 0x041E, 0x058F, 0x071F, 0x072F, + 0x0419, 0x073D, 0x057D, 0x0511, 0x05CE, 0x041D, 0x0485, 0x056E, + 0x0412, 0x0431, 0x05BF, 0x0441, 0x054E, 0x0489, 0x0421, 0x0502, + 0x0408, 0x040D, 0x051F, 0x059F, 0x073E, 0x078F, 0x0482, 0x079D, + 0x0C02, 0x05BE, 0x048B, 0x0411, 0x0505, 0x057E, 0x052E, 0x074D, + 0x077E, 0x054F, 0x0601, 0x055F, 0x068D, 0x070D, 0x070F, 0x071E, + 0x072E, 0x05CD, 0x0403, 0x0501, 0x055D, 0x059E, 0x0781, 0x0413, + 0x0417, 0x041B, 0x0453, 0x048D, 0x052F, 0x053E, 0x053F, 0x055E, + 0x056F, 0x058E, 0x05BD, 0x05ED, 0x060E, 0x0622, 0x0683, 0x0702, + 0x070E, 0x071D, 0x075D, 0x076F, 0x078E, 0x079E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_12x10 = +{ + 12, 10, + { 491, 240 }, + { 1099, 341 }, + { 0, 23 }, + { percentile_arr_12x10_0, percentile_arr_12x10_1 } +}; +#endif + +#if ASTCENC_BLOCK_MAX_TEXELS >= (12 * 12) +static const uint16_t percentile_arr_12x12_0[529] { + 0x0334, 0xF534, 0x8514, 0x8954, 0x7F14, 0xFB54, 0x7B08, 0x7128, + 0x7974, 0x6179, 0x6B64, 0x6908, 0x606A, 0x6724, 0xB544, 0xB066, + 0xA14A, 0x5118, 0x9975, 0x51F9, 0x981C, 0x49CA, 0x4854, 0x886F, + 0x88D4, 0x48EE, 0x41E2, 0x4163, 0x40F3, 0x4261, 0x4064, 0x407E, + 0x385A, 0x42C1, 0x4172, 0x38EA, 0x3946, 0x78CF, 0xA056, 0x38DE, + 0x3D08, 0x38F9, 0x3B14, 0x38FE, 0xA134, 0x38B8, 0x31A4, 0x71D2, + 0x60DA, 0x39C3, 0x99BA, 0x60CA, 0x39F2, 0x30F5, 0x304F, 0x31B6, + 0x31F5, 0x3204, 0x3148, 0x305F, 0x2953, 0x3194, 0x3184, 0x310C, + 0x889C, 0x300C, 0x2943, 0x30EF, 0x28C6, 0x2997, 0x2838, 0x58E6, + 0x20E4, 0x28E3, 0x2873, 0x29E3, 0x2A84, 0x28D3, 0x492B, 0x2962, + 0x286E, 0x20BF, 0x21AA, 0x29A6, 0x6A14, 0x2828, 0x89C6, 0x21B3, + 0x2305, 0x29B4, 0x2173, 0x2127, 0x20D6, 0x407F, 0x2294, 0x21D9, + 0x21D5, 0x2004, 0x404B, 0x18DF, 0x2079, 0x219B, 0x18A8, 0x2385, + 0x1936, 0x21AB, 0x188C, 0x1B09, 0x18BA, 0x203B, 0x187A, 0x1875, + 0x2344, 0x18BB, 0x18B6, 0x193A, 0x1837, 0x1914, 0x1846, 0x1876, + 0x1884, 0x1D24, 0x182B, 0x284A, 0x18A7, 0x18AB, 0x1917, 0x322D, + 0x1047, 0x1874, 0x1818, 0x18F2, 0x1164, 0x1B89, 0x2959, 0x1B21, + 0x39E5, 0x1827, 0x10F4, 0x18B7, 0x11D3, 0x1A4D, 0x1315, 0x12AD, + 0x1AD1, 0x3A71, 0x1319, 0x11A7, 0x2044, 0x2F04, 0x2341, 0x10E5, + 0x1155, 0x195A, 0x1024, 0x111B, 0x1251, 0x1233, 0x12E1, 0x13A1, + 0x13BF, 0x212A, 0x22A2, 0x113B, 0x23DF, 0x10D5, 0x2399, 0x0814, + 0x1126, 0x13EE, 0x1285, 0x10C4, 0x18FD, 0x20D9, 0x0987, 0x1242, + 0x29C5, 0x2313, 0x0898, 0x13C1, 0x08C8, 0x11F1, 0x1034, 0x1B24, + 0x0B0A, 0x11E9, 0x0808, 0x125D, 0x18E9, 0x0848, 0x1395, 0x0965, + 0x123D, 0x2186, 0x1295, 0x18CE, 0x098B, 0x0BEF, 0x1504, 0x082C, + 0x0A41, 0x1144, 0x0A89, 0x0956, 0x1331, 0x085E, 0x0B04, 0x128A, + 0x12A3, 0x1937, 0x19C2, 0x0952, 0x0872, 0x08B4, 0x1262, 0x1124, + 0x1969, 0x1063, 0x0AF1, 0x1225, 0x0894, 0x11C9, 0x18D2, 0x0ACD, + 0x0A29, 0x0B06, 0x09B5, 0x18C7, 0x0916, 0x1088, 0x09FF, 0x2206, + 0x0A15, 0x08B3, 0x0B51, 0x0A1F, 0x18CB, 0x0AC2, 0x0A2E, 0x1865, + 0x08AC, 0x0A31, 0x08A4, 0x138A, 0x0A99, 0x09D1, 0x0A86, 0x189B, + 0x0283, 0x0BDD, 0x0ABD, 0x1933, 0x083F, 0x1386, 0x0923, 0x0322, + 0x0869, 0x10DD, 0x13B1, 0x082F, 0x087D, 0x11B9, 0x085B, 0x08ED, + 0x00C3, 0x08E2, 0x084E, 0x0887, 0x0855, 0x0A0A, 0x0857, 0x0B92, + 0x1036, 0x12A5, 0x0293, 0x0945, 0x08A6, 0x0196, 0x19A3, 0x036F, + 0x0904, 0x1205, 0x09E1, 0x0381, 0x0971, 0x1219, 0x0BAF, 0x0949, + 0x00AF, 0x0AA9, 0x018A, 0x0907, 0x0BFD, 0x003A, 0x0BCD, 0x0AB2, + 0x088B, 0x0252, 0x0A4E, 0x03FF, 0x0845, 0x0897, 0x0059, 0x090B, + 0x0B42, 0x0807, 0x0A16, 0x0853, 0x0A8D, 0x01B2, 0x0AB1, 0x091A, + 0x0195, 0x0A35, 0x00B5, 0x10AA, 0x0115, 0x0A21, 0x0096, 0x0A08, + 0x03FE, 0x0B7F, 0x08B9, 0x12B3, 0x023E, 0x0A23, 0x029E, 0x08F1, + 0x01A9, 0x0BDE, 0x0843, 0x02D2, 0x0A1A, 0x08C5, 0x0151, 0x0A43, + 0x0332, 0x0383, 0x0826, 0x0BED, 0x10C2, 0x00AE, 0x0B82, 0x0213, + 0x0232, 0x085D, 0x02A1, 0x101B, 0x035F, 0x0303, 0x0A39, 0x0207, + 0x0A53, 0x0142, 0x01A5, 0x082A, 0x0099, 0x0A17, 0x03CF, 0x0906, + 0x0125, 0x0A96, 0x0A9A, 0x0209, 0x0393, 0x0961, 0x0131, 0x0A88, + 0x0139, 0x099A, 0x0292, 0x0272, 0x0862, 0x08BE, 0x0141, 0x02C3, + 0x0886, 0x0039, 0x08A9, 0x01A2, 0x01B1, 0x0851, 0x020B, 0x086D, + 0x0312, 0x08CD, 0x020F, 0x0311, 0x0BCE, 0x0135, 0x0006, 0x0849, + 0x0132, 0x0A8F, 0x022F, 0x022A, 0x0AAE, 0x0A8E, 0x0263, 0x03A2, + 0x083E, 0x009A, 0x021B, 0x0835, 0x0323, 0x0871, 0x0993, 0x0226, + 0x0302, 0x0922, 0x0119, 0x0222, 0x021D, 0x0B07, 0x08C9, 0x037E, + 0x08BD, 0x0042, 0x00D1, 0x0B33, 0x01C1, 0x0B9A, 0x0282, 0x088A, + 0x0182, 0x083D, 0x004D, 0x010A, 0x0A1E, 0x0019, 0x00B2, 0x0999, + 0x00A5, 0x0095, 0x0817, 0x0022, 0x031A, 0x0902, 0x00A3, 0x01BF, + 0x029F, 0x0816, 0x03B2, 0x0015, 0x0391, 0x0BBE, 0x01FE, 0x1129, + 0x002E, 0x01DF, 0x0301, 0x0033, 0x0B6E, 0x00E1, 0x0297, 0x00B1, + 0x009F, 0x0B16, 0x000A, 0x001A, 0x0052, 0x080B, 0x030B, 0x029D, + 0x0BAE, 0x01FD, 0x020E, 0x00A2, 0x0A3F, 0x0192, 0x0ABE, 0x020D, + 0x008F, 0x028B, 0x0083, 0x0025, 0x09EE, 0x01EF, 0x0029, 0x0291, + 0x0B4F, 0x0396, 0x0287, 0x008E, 0x0092, 0x0B4E, 0x017E, 0x001E, + 0x009E, 0x0103, 0x080F, 0x000E, 0x0113, 0x0203, 0x01CF, 0x0183, + 0x01CE, 0x001F, 0x0112, 0x01DE, 0x038E, 0x0832, 0x033E, 0x0212, + 0x029B, 0x0023, 0x016F, 0x0201, 0x09AF, 0x0202, 0x0281, 0x035E, + 0x034D, 0x037D, 0x03AD, 0x0013, 0x0093, 0x015F, 0x0211, 0x033F, + 0x036D, 0x039F, 0x03BD, 0x017F, 0x032E, 0x032F, 0x035D, 0x038F, + 0x039E +}; + +static const uint16_t percentile_arr_12x12_1[246] { + 0x0443, 0xFFCD, 0x2C62, 0x2E21, 0x3CF1, 0x34C2, 0x4CDD, 0x2452, + 0xD5DF, 0x1DD1, 0x0FAE, 0x64A3, 0x0C7D, 0x3433, 0x1CD2, 0x2DEF, + 0x0C3E, 0x1D71, 0xA472, 0x0D32, 0x54B3, 0x4D51, 0x445D, 0x0E31, + 0x1FDD, 0x0DFF, 0x0CAE, 0x45A2, 0x2FBE, 0xA4B9, 0x1C4E, 0x2C9F, + 0x160D, 0x0D42, 0x342E, 0x074F, 0x1414, 0x0F6E, 0x0CB2, 0x34B5, + 0x0DFE, 0x0D86, 0x1496, 0x1D22, 0x0691, 0x140B, 0x041F, 0x0C35, + 0x1D93, 0x1506, 0x1439, 0x0C9A, 0x0F01, 0x2442, 0x0C8F, 0x04D1, + 0x1486, 0x0C6D, 0x0513, 0x0C71, 0x0E82, 0x177D, 0x0E03, 0x07BD, + 0x0C2F, 0x0D83, 0x07AF, 0x0D61, 0x1407, 0x0DB1, 0x050A, 0x0C94, + 0x07AD, 0x0D8A, 0x0C04, 0x0416, 0x0C49, 0x0445, 0x15C1, 0x0C1A, + 0x0525, 0x0595, 0x0C8A, 0x075E, 0x0CBD, 0x0681, 0x0F4E, 0x075F, + 0x061D, 0x1541, 0x0CB1, 0x0F3F, 0x0406, 0x076D, 0x0DCF, 0x05EE, + 0x0D23, 0x0599, 0x0CCD, 0x0711, 0x0C23, 0x079F, 0x0D15, 0x0585, + 0x04A2, 0x042A, 0x0D31, 0x05BF, 0x0D92, 0x0C26, 0x043D, 0x0C93, + 0x0502, 0x0C15, 0x048B, 0x0D03, 0x0613, 0x0516, 0x0495, 0x0C29, + 0x04A5, 0x040F, 0x0425, 0x0539, 0x0D19, 0x04E1, 0x05BE, 0x0422, + 0x0432, 0x0C0A, 0x0431, 0x041E, 0x0492, 0x04A9, 0x0582, 0x0529, + 0x0487, 0x0C4D, 0x0512, 0x049E, 0x0505, 0x0451, 0x0D7F, 0x0489, + 0x0602, 0x05DE, 0x0591, 0x0535, 0x074D, 0x055E, 0x04C1, 0x0612, + 0x05DD, 0x05FD, 0x0C61, 0x0521, 0x0484, 0x05CE, 0x0581, 0x0491, + 0x051A, 0x04A1, 0x048E, 0x040D, 0x0499, 0x071F, 0x072E, 0x075D, + 0x0441, 0x0589, 0x057E, 0x0CAD, 0x0501, 0x054F, 0x0692, 0x0511, + 0x049D, 0x0509, 0x056E, 0x040E, 0x0409, 0x0601, 0x048D, 0x0413, + 0x053E, 0x0419, 0x072D, 0x0408, 0x0485, 0x042D, 0x041D, 0x05A1, + 0x0781, 0x0402, 0x05ED, 0x0C82, 0x0403, 0x057D, 0x05CD, 0x0611, + 0x0488, 0x0411, 0x054E, 0x051F, 0x053F, 0x056F, 0x059F, 0x070F, + 0x071D, 0x073D, 0x073E, 0x077E, 0x078F, 0x0405, 0x079D, 0x079E, + 0x058E, 0x0412, 0x055D, 0x05AE, 0x041B, 0x0421, 0x0453, 0x0417, + 0x0483, 0x052E, 0x052F, 0x055F, 0x058F, 0x059E, 0x05AF, 0x05BD, + 0x060E, 0x0622, 0x0683, 0x068D, 0x0702, 0x070D, 0x070E, 0x071E, + 0x072F, 0x076F, 0x078D, 0x078E, 0x07BF, 0x07CE +}; + +static const packed_percentile_table block_pcd_12x12 { + 12, 12, + { 529, 246 }, + { 1435, 335 }, + { 0, 22 }, + { percentile_arr_12x12_0, percentile_arr_12x12_1 } +}; +#endif + +/** + * @brief Fetch the packed percentile table for the given 2D block size. + * + * @param xdim The block x size. + * @param ydim The block y size. + * + * @return The packed table. + */ +static const packed_percentile_table *get_packed_table( + int xdim, + int ydim +) { + int idx = (ydim << 8) | xdim; + switch (idx) + { +#if ASTCENC_BLOCK_MAX_TEXELS >= (4 * 4) + case 0x0404: return &block_pcd_4x4; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (5 * 4) + case 0x0405: return &block_pcd_5x4; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (5 * 5) + case 0x0505: return &block_pcd_5x5; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (6 * 5) + case 0x0506: return &block_pcd_6x5; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (6 * 6) + case 0x0606: return &block_pcd_6x6; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 5) + case 0x0508: return &block_pcd_8x5; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 6) + case 0x0608: return &block_pcd_8x6; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (8 * 8) + case 0x0808: return &block_pcd_8x8; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 5) + case 0x050A: return &block_pcd_10x5; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 6) + case 0x060A: return &block_pcd_10x6; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 8) + case 0x080A: return &block_pcd_10x8; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (10 * 10) + case 0x0A0A: return &block_pcd_10x10; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (12 * 10) + case 0x0A0C: return &block_pcd_12x10; +#endif +#if ASTCENC_BLOCK_MAX_TEXELS >= (12 * 12) + case 0x0C0C: return &block_pcd_12x12; +#endif + } + + // Should never hit this with a valid 2D block size + return nullptr; +} + +/* See header for documentation. */ +const float *get_2d_percentile_table( + unsigned int xdim, + unsigned int ydim +) { + float* unpacked_table = new float[WEIGHTS_MAX_BLOCK_MODES]; + const packed_percentile_table *apt = get_packed_table(xdim, ydim); + + // Set the default percentile + for (unsigned int i = 0; i < WEIGHTS_MAX_BLOCK_MODES; i++) + { + unpacked_table[i] = 1.0f; + } + + // Populate the unpacked percentile values + for (int i = 0; i < 2; i++) + { + unsigned int itemcount = apt->item_count[i]; + unsigned int difscale = apt->difscales[i]; + unsigned int accum = apt->initial_percs[i]; + const uint16_t *item_ptr = apt->items[i]; + + for (unsigned int j = 0; j < itemcount; j++) + { + uint16_t item = item_ptr[j]; + unsigned int idx = item & 0x7FF; + unsigned int weight = (item >> 11) & 0x1F; + accum += weight; + unpacked_table[idx] = static_cast<float>(accum) / static_cast<float>(difscale); + } + } + + return unpacked_table; +} +#endif + +/* See header for documentation. */ +bool is_legal_2d_block_size( + unsigned int xdim, + unsigned int ydim +) { + unsigned int idx = (xdim << 8) | ydim; + switch (idx) + { + case 0x0404: + case 0x0504: + case 0x0505: + case 0x0605: + case 0x0606: + case 0x0805: + case 0x0806: + case 0x0808: + case 0x0A05: + case 0x0A06: + case 0x0A08: + case 0x0A0A: + case 0x0C0A: + case 0x0C0C: + return true; + } + + return false; +} + +/* See header for documentation. */ +bool is_legal_3d_block_size( + unsigned int xdim, + unsigned int ydim, + unsigned int zdim +) { + unsigned int idx = (xdim << 16) | (ydim << 8) | zdim; + switch (idx) + { + case 0x030303: + case 0x040303: + case 0x040403: + case 0x040404: + case 0x050404: + case 0x050504: + case 0x050505: + case 0x060505: + case 0x060605: + case 0x060606: + return true; + } + + return false; +} diff --git a/thirdparty/astcenc/astcenc_pick_best_endpoint_format.cpp b/thirdparty/astcenc/astcenc_pick_best_endpoint_format.cpp new file mode 100644 index 0000000000..f25140d4c7 --- /dev/null +++ b/thirdparty/astcenc/astcenc_pick_best_endpoint_format.cpp @@ -0,0 +1,1350 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for finding best endpoint format. + * + * We assume there are two independent sources of error in any given partition: + * + * - Encoding choice errors + * - Quantization errors + * + * Encoding choice errors are caused by encoder decisions. For example: + * + * - Using luminance instead of separate RGB components. + * - Using a constant 1.0 alpha instead of storing an alpha component. + * - Using RGB+scale instead of storing two full RGB endpoints. + * + * Quantization errors occur due to the limited precision we use for storage. These errors generally + * scale with quantization level, but are not actually independent of color encoding. In particular: + * + * - If we can use offset encoding then quantization error is halved. + * - If we can use blue-contraction then quantization error for RG is halved. + * - If we use HDR endpoints the quantization error is higher. + * + * Apart from these effects, we assume the error is proportional to the quantization step size. + */ + + +#include "astcenc_internal.h" +#include "astcenc_vecmathlib.h" + +#include <assert.h> + +/** + * @brief Compute the errors of the endpoint line options for one partition. + * + * Uncorrelated data assumes storing completely independent RGBA channels for each endpoint. Same + * chroma data assumes storing RGBA endpoints which pass though the origin (LDR only). RGBL data + * assumes storing RGB + lumashift (HDR only). Luminance error assumes storing RGB channels as a + * single value. + * + * + * @param pi The partition info data. + * @param partition_index The partition index to compule the error for. + * @param blk The image block. + * @param uncor_pline The endpoint line assuming uncorrelated endpoints. + * @param[out] uncor_err The computed error for the uncorrelated endpoint line. + * @param samec_pline The endpoint line assuming the same chroma for both endpoints. + * @param[out] samec_err The computed error for the uncorrelated endpoint line. + * @param rgbl_pline The endpoint line assuming RGB + lumashift data. + * @param[out] rgbl_err The computed error for the RGB + lumashift endpoint line. + * @param l_pline The endpoint line assuming luminance data. + * @param[out] l_err The computed error for the luminance endpoint line. + * @param[out] a_drop_err The computed error for dropping the alpha component. + */ +static void compute_error_squared_rgb_single_partition( + const partition_info& pi, + int partition_index, + const image_block& blk, + const processed_line3& uncor_pline, + float& uncor_err, + const processed_line3& samec_pline, + float& samec_err, + const processed_line3& rgbl_pline, + float& rgbl_err, + const processed_line3& l_pline, + float& l_err, + float& a_drop_err +) { + vfloat4 ews = blk.channel_weight; + + unsigned int texel_count = pi.partition_texel_count[partition_index]; + const uint8_t* texel_indexes = pi.texels_of_partition[partition_index]; + promise(texel_count > 0); + + vfloatacc a_drop_errv = vfloatacc::zero(); + vfloat default_a(blk.get_default_alpha()); + + vfloatacc uncor_errv = vfloatacc::zero(); + vfloat uncor_bs0(uncor_pline.bs.lane<0>()); + vfloat uncor_bs1(uncor_pline.bs.lane<1>()); + vfloat uncor_bs2(uncor_pline.bs.lane<2>()); + + vfloat uncor_amod0(uncor_pline.amod.lane<0>()); + vfloat uncor_amod1(uncor_pline.amod.lane<1>()); + vfloat uncor_amod2(uncor_pline.amod.lane<2>()); + + vfloatacc samec_errv = vfloatacc::zero(); + vfloat samec_bs0(samec_pline.bs.lane<0>()); + vfloat samec_bs1(samec_pline.bs.lane<1>()); + vfloat samec_bs2(samec_pline.bs.lane<2>()); + + vfloatacc rgbl_errv = vfloatacc::zero(); + vfloat rgbl_bs0(rgbl_pline.bs.lane<0>()); + vfloat rgbl_bs1(rgbl_pline.bs.lane<1>()); + vfloat rgbl_bs2(rgbl_pline.bs.lane<2>()); + + vfloat rgbl_amod0(rgbl_pline.amod.lane<0>()); + vfloat rgbl_amod1(rgbl_pline.amod.lane<1>()); + vfloat rgbl_amod2(rgbl_pline.amod.lane<2>()); + + vfloatacc l_errv = vfloatacc::zero(); + vfloat l_bs0(l_pline.bs.lane<0>()); + vfloat l_bs1(l_pline.bs.lane<1>()); + vfloat l_bs2(l_pline.bs.lane<2>()); + + vint lane_ids = vint::lane_id(); + for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) + { + vint tix(texel_indexes + i); + + vmask mask = lane_ids < vint(texel_count); + lane_ids += vint(ASTCENC_SIMD_WIDTH); + + // Compute the error that arises from just ditching alpha + vfloat data_a = gatherf(blk.data_a, tix); + vfloat alpha_diff = data_a - default_a; + alpha_diff = alpha_diff * alpha_diff; + + haccumulate(a_drop_errv, alpha_diff, mask); + + vfloat data_r = gatherf(blk.data_r, tix); + vfloat data_g = gatherf(blk.data_g, tix); + vfloat data_b = gatherf(blk.data_b, tix); + + // Compute uncorrelated error + vfloat param = data_r * uncor_bs0 + + data_g * uncor_bs1 + + data_b * uncor_bs2; + + vfloat dist0 = (uncor_amod0 + param * uncor_bs0) - data_r; + vfloat dist1 = (uncor_amod1 + param * uncor_bs1) - data_g; + vfloat dist2 = (uncor_amod2 + param * uncor_bs2) - data_b; + + vfloat error = dist0 * dist0 * ews.lane<0>() + + dist1 * dist1 * ews.lane<1>() + + dist2 * dist2 * ews.lane<2>(); + + haccumulate(uncor_errv, error, mask); + + // Compute same chroma error - no "amod", its always zero + param = data_r * samec_bs0 + + data_g * samec_bs1 + + data_b * samec_bs2; + + dist0 = (param * samec_bs0) - data_r; + dist1 = (param * samec_bs1) - data_g; + dist2 = (param * samec_bs2) - data_b; + + error = dist0 * dist0 * ews.lane<0>() + + dist1 * dist1 * ews.lane<1>() + + dist2 * dist2 * ews.lane<2>(); + + haccumulate(samec_errv, error, mask); + + // Compute rgbl error + param = data_r * rgbl_bs0 + + data_g * rgbl_bs1 + + data_b * rgbl_bs2; + + dist0 = (rgbl_amod0 + param * rgbl_bs0) - data_r; + dist1 = (rgbl_amod1 + param * rgbl_bs1) - data_g; + dist2 = (rgbl_amod2 + param * rgbl_bs2) - data_b; + + error = dist0 * dist0 * ews.lane<0>() + + dist1 * dist1 * ews.lane<1>() + + dist2 * dist2 * ews.lane<2>(); + + haccumulate(rgbl_errv, error, mask); + + // Compute luma error - no "amod", its always zero + param = data_r * l_bs0 + + data_g * l_bs1 + + data_b * l_bs2; + + dist0 = (param * l_bs0) - data_r; + dist1 = (param * l_bs1) - data_g; + dist2 = (param * l_bs2) - data_b; + + error = dist0 * dist0 * ews.lane<0>() + + dist1 * dist1 * ews.lane<1>() + + dist2 * dist2 * ews.lane<2>(); + + haccumulate(l_errv, error, mask); + } + + a_drop_err = hadd_s(a_drop_errv) * ews.lane<3>(); + uncor_err = hadd_s(uncor_errv); + samec_err = hadd_s(samec_errv); + rgbl_err = hadd_s(rgbl_errv); + l_err = hadd_s(l_errv); +} + +/** + * @brief For a given set of input colors and partitioning determine endpoint encode errors. + * + * This function determines the color error that results from RGB-scale encoding (LDR only), + * RGB-lumashift encoding (HDR only), luminance-encoding, and alpha drop. Also determines whether + * the endpoints are eligible for offset encoding or blue-contraction + * + * @param blk The image block. + * @param pi The partition info data. + * @param ep The idealized endpoints. + * @param[out] eci The resulting encoding choice error metrics. + */ +static void compute_encoding_choice_errors( + const image_block& blk, + const partition_info& pi, + const endpoints& ep, + encoding_choice_errors eci[BLOCK_MAX_PARTITIONS]) +{ + int partition_count = pi.partition_count; + promise(partition_count > 0); + + partition_metrics pms[BLOCK_MAX_PARTITIONS]; + + compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms); + + for (int i = 0; i < partition_count; i++) + { + partition_metrics& pm = pms[i]; + + line3 uncor_rgb_lines; + line3 samec_rgb_lines; // for LDR-RGB-scale + line3 rgb_luma_lines; // for HDR-RGB-scale + + processed_line3 uncor_rgb_plines; + processed_line3 samec_rgb_plines; + processed_line3 rgb_luma_plines; + processed_line3 luminance_plines; + + float uncorr_rgb_error; + float samechroma_rgb_error; + float rgb_luma_error; + float luminance_rgb_error; + float alpha_drop_error; + + uncor_rgb_lines.a = pm.avg; + uncor_rgb_lines.b = normalize_safe(pm.dir, unit3()); + + samec_rgb_lines.a = vfloat4::zero(); + samec_rgb_lines.b = normalize_safe(pm.avg, unit3()); + + rgb_luma_lines.a = pm.avg; + rgb_luma_lines.b = unit3(); + + uncor_rgb_plines.amod = uncor_rgb_lines.a - uncor_rgb_lines.b * dot3(uncor_rgb_lines.a, uncor_rgb_lines.b); + uncor_rgb_plines.bs = uncor_rgb_lines.b; + + // Same chroma always goes though zero, so this is simpler than the others + samec_rgb_plines.amod = vfloat4::zero(); + samec_rgb_plines.bs = samec_rgb_lines.b; + + rgb_luma_plines.amod = rgb_luma_lines.a - rgb_luma_lines.b * dot3(rgb_luma_lines.a, rgb_luma_lines.b); + rgb_luma_plines.bs = rgb_luma_lines.b; + + // Luminance always goes though zero, so this is simpler than the others + luminance_plines.amod = vfloat4::zero(); + luminance_plines.bs = unit3(); + + compute_error_squared_rgb_single_partition( + pi, i, blk, + uncor_rgb_plines, uncorr_rgb_error, + samec_rgb_plines, samechroma_rgb_error, + rgb_luma_plines, rgb_luma_error, + luminance_plines, luminance_rgb_error, + alpha_drop_error); + + // Determine if we can offset encode RGB lanes + vfloat4 endpt0 = ep.endpt0[i]; + vfloat4 endpt1 = ep.endpt1[i]; + vfloat4 endpt_diff = abs(endpt1 - endpt0); + vmask4 endpt_can_offset = endpt_diff < vfloat4(0.12f * 65535.0f); + bool can_offset_encode = (mask(endpt_can_offset) & 0x7) == 0x7; + + // Store out the settings + eci[i].rgb_scale_error = (samechroma_rgb_error - uncorr_rgb_error) * 0.7f; // empirical + eci[i].rgb_luma_error = (rgb_luma_error - uncorr_rgb_error) * 1.5f; // wild guess + eci[i].luminance_error = (luminance_rgb_error - uncorr_rgb_error) * 3.0f; // empirical + eci[i].alpha_drop_error = alpha_drop_error * 3.0f; + eci[i].can_offset_encode = can_offset_encode; + eci[i].can_blue_contract = !blk.is_luminance(); + } +} + +/** + * @brief For a given partition compute the error for every endpoint integer count and quant level. + * + * @param encode_hdr_rgb @c true if using HDR for RGB, @c false for LDR. + * @param encode_hdr_alpha @c true if using HDR for alpha, @c false for LDR. + * @param partition_index The partition index. + * @param pi The partition info. + * @param eci The encoding choice error metrics. + * @param ep The idealized endpoints. + * @param error_weight The resulting encoding choice error metrics. + * @param[out] best_error The best error for each integer count and quant level. + * @param[out] format_of_choice The preferred endpoint format for each integer count and quant level. + */ +static void compute_color_error_for_every_integer_count_and_quant_level( + bool encode_hdr_rgb, + bool encode_hdr_alpha, + int partition_index, + const partition_info& pi, + const encoding_choice_errors& eci, + const endpoints& ep, + vfloat4 error_weight, + float best_error[21][4], + uint8_t format_of_choice[21][4] +) { + int partition_size = pi.partition_texel_count[partition_index]; + + static const float baseline_quant_error[21 - QUANT_6] { + (65536.0f * 65536.0f / 18.0f) / (5 * 5), + (65536.0f * 65536.0f / 18.0f) / (7 * 7), + (65536.0f * 65536.0f / 18.0f) / (9 * 9), + (65536.0f * 65536.0f / 18.0f) / (11 * 11), + (65536.0f * 65536.0f / 18.0f) / (15 * 15), + (65536.0f * 65536.0f / 18.0f) / (19 * 19), + (65536.0f * 65536.0f / 18.0f) / (23 * 23), + (65536.0f * 65536.0f / 18.0f) / (31 * 31), + (65536.0f * 65536.0f / 18.0f) / (39 * 39), + (65536.0f * 65536.0f / 18.0f) / (47 * 47), + (65536.0f * 65536.0f / 18.0f) / (63 * 63), + (65536.0f * 65536.0f / 18.0f) / (79 * 79), + (65536.0f * 65536.0f / 18.0f) / (95 * 95), + (65536.0f * 65536.0f / 18.0f) / (127 * 127), + (65536.0f * 65536.0f / 18.0f) / (159 * 159), + (65536.0f * 65536.0f / 18.0f) / (191 * 191), + (65536.0f * 65536.0f / 18.0f) / (255 * 255) + }; + + vfloat4 ep0 = ep.endpt0[partition_index]; + vfloat4 ep1 = ep.endpt1[partition_index]; + + float ep1_min = hmin_rgb_s(ep1); + ep1_min = astc::max(ep1_min, 0.0f); + + float error_weight_rgbsum = hadd_rgb_s(error_weight); + + float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f; + float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f; + + // It is possible to get endpoint colors significantly outside [0,upper-limit] even if the + // input data are safely contained in [0,upper-limit]; we need to add an error term for this + vfloat4 offset(range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_alpha); + vfloat4 ep0_range_error_high = max(ep0 - offset, 0.0f); + vfloat4 ep1_range_error_high = max(ep1 - offset, 0.0f); + + vfloat4 ep0_range_error_low = min(ep0, 0.0f); + vfloat4 ep1_range_error_low = min(ep1, 0.0f); + + vfloat4 sum_range_error = + (ep0_range_error_low * ep0_range_error_low) + + (ep1_range_error_low * ep1_range_error_low) + + (ep0_range_error_high * ep0_range_error_high) + + (ep1_range_error_high * ep1_range_error_high); + + float rgb_range_error = dot3_s(sum_range_error, error_weight) + * 0.5f * static_cast<float>(partition_size); + float alpha_range_error = sum_range_error.lane<3>() * error_weight.lane<3>() + * 0.5f * static_cast<float>(partition_size); + + if (encode_hdr_rgb) + { + + // Collect some statistics + float af, cf; + if (ep1.lane<0>() > ep1.lane<1>() && ep1.lane<0>() > ep1.lane<2>()) + { + af = ep1.lane<0>(); + cf = ep1.lane<0>() - ep0.lane<0>(); + } + else if (ep1.lane<1>() > ep1.lane<2>()) + { + af = ep1.lane<1>(); + cf = ep1.lane<1>() - ep0.lane<1>(); + } + else + { + af = ep1.lane<2>(); + cf = ep1.lane<2>() - ep0.lane<2>(); + } + + // Estimate of color-component spread in high endpoint color + float bf = af - ep1_min; + vfloat4 prd = (ep1 - vfloat4(cf)).swz<0, 1, 2>(); + vfloat4 pdif = prd - ep0.swz<0, 1, 2>(); + // Estimate of color-component spread in low endpoint color + float df = hmax_s(abs(pdif)); + + int b = static_cast<int>(bf); + int c = static_cast<int>(cf); + int d = static_cast<int>(df); + + // Determine which one of the 6 submodes is likely to be used in case of an RGBO-mode + int rgbo_mode = 5; // 7 bits per component + // mode 4: 8 7 6 + if (b < 32768 && c < 16384) + { + rgbo_mode = 4; + } + + // mode 3: 9 6 7 + if (b < 8192 && c < 16384) + { + rgbo_mode = 3; + } + + // mode 2: 10 5 8 + if (b < 2048 && c < 16384) + { + rgbo_mode = 2; + } + + // mode 1: 11 6 5 + if (b < 2048 && c < 1024) + { + rgbo_mode = 1; + } + + // mode 0: 11 5 7 + if (b < 1024 && c < 4096) + { + rgbo_mode = 0; + } + + // Determine which one of the 9 submodes is likely to be used in case of an RGB-mode. + int rgb_mode = 8; // 8 bits per component, except 7 bits for blue + + // mode 0: 9 7 6 7 + if (b < 16384 && c < 8192 && d < 8192) + { + rgb_mode = 0; + } + + // mode 1: 9 8 6 6 + if (b < 32768 && c < 8192 && d < 4096) + { + rgb_mode = 1; + } + + // mode 2: 10 6 7 7 + if (b < 4096 && c < 8192 && d < 4096) + { + rgb_mode = 2; + } + + // mode 3: 10 7 7 6 + if (b < 8192 && c < 8192 && d < 2048) + { + rgb_mode = 3; + } + + // mode 4: 11 8 6 5 + if (b < 8192 && c < 2048 && d < 512) + { + rgb_mode = 4; + } + + // mode 5: 11 6 8 6 + if (b < 2048 && c < 8192 && d < 1024) + { + rgb_mode = 5; + } + + // mode 6: 12 7 7 5 + if (b < 2048 && c < 2048 && d < 256) + { + rgb_mode = 6; + } + + // mode 7: 12 6 7 6 + if (b < 1024 && c < 2048 && d < 512) + { + rgb_mode = 7; + } + + static const float rgbo_error_scales[6] { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f }; + static const float rgb_error_scales[9] { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f }; + + float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f; // Empirically determined .... + float mode11mult = rgb_error_scales[rgb_mode] * 0.010f; // Empirically determined .... + + + float lum_high = hadd_rgb_s(ep1) * (1.0f / 3.0f); + float lum_low = hadd_rgb_s(ep0) * (1.0f / 3.0f); + float lumdif = lum_high - lum_low; + float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f; + + mode23mult *= 0.0005f; // Empirically determined .... + + // Pick among the available HDR endpoint modes + for (int i = QUANT_2; i < QUANT_16; i++) + { + best_error[i][3] = ERROR_CALC_DEFAULT; + best_error[i][2] = ERROR_CALC_DEFAULT; + best_error[i][1] = ERROR_CALC_DEFAULT; + best_error[i][0] = ERROR_CALC_DEFAULT; + + format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA); + format_of_choice[i][2] = FMT_HDR_RGB; + format_of_choice[i][1] = FMT_HDR_RGB_SCALE; + format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; + } + + for (int i = QUANT_16; i <= QUANT_256; i++) + { + // The base_quant_error should depend on the scale-factor that would be used during + // actual encode of the color value + + float base_quant_error = baseline_quant_error[i - QUANT_6] * static_cast<float>(partition_size); + float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f; + float alpha_quantization_error = error_weight.lane<3>() * base_quant_error * 2.0f; + float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error; + + // For 8 integers, we have two encodings: one with HDR A and another one with LDR A + + float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error; + best_error[i][3] = full_hdr_rgba_error; + format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA); + + // For 6 integers, we have one HDR-RGB encoding + float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci.alpha_drop_error; + best_error[i][2] = full_hdr_rgb_error; + format_of_choice[i][2] = FMT_HDR_RGB; + + // For 4 integers, we have one HDR-RGB-Scale encoding + float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci.alpha_drop_error + eci.rgb_luma_error; + + best_error[i][1] = hdr_rgb_scale_error; + format_of_choice[i][1] = FMT_HDR_RGB_SCALE; + + // For 2 integers, we assume luminance-with-large-range + float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci.alpha_drop_error + eci.luminance_error; + best_error[i][0] = hdr_luminance_error; + format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE; + } + } + else + { + for (int i = QUANT_2; i < QUANT_6; i++) + { + best_error[i][3] = ERROR_CALC_DEFAULT; + best_error[i][2] = ERROR_CALC_DEFAULT; + best_error[i][1] = ERROR_CALC_DEFAULT; + best_error[i][0] = ERROR_CALC_DEFAULT; + + format_of_choice[i][3] = FMT_RGBA; + format_of_choice[i][2] = FMT_RGB; + format_of_choice[i][1] = FMT_RGB_SCALE; + format_of_choice[i][0] = FMT_LUMINANCE; + } + + float base_quant_error_rgb = error_weight_rgbsum * static_cast<float>(partition_size); + float base_quant_error_a = error_weight.lane<3>() * static_cast<float>(partition_size); + float base_quant_error_rgba = base_quant_error_rgb + base_quant_error_a; + + float error_scale_bc_rgba = eci.can_blue_contract ? 0.625f : 1.0f; + float error_scale_oe_rgba = eci.can_offset_encode ? 0.5f : 1.0f; + + float error_scale_bc_rgb = eci.can_blue_contract ? 0.5f : 1.0f; + float error_scale_oe_rgb = eci.can_offset_encode ? 0.25f : 1.0f; + + // Pick among the available LDR endpoint modes + for (int i = QUANT_6; i <= QUANT_256; i++) + { + // Offset encoding not possible at higher quant levels + if (i >= QUANT_192) + { + error_scale_oe_rgba = 1.0f; + error_scale_oe_rgb = 1.0f; + } + + float base_quant_error = baseline_quant_error[i - QUANT_6]; + float quant_error_rgb = base_quant_error_rgb * base_quant_error; + float quant_error_rgba = base_quant_error_rgba * base_quant_error; + + // 8 integers can encode as RGBA+RGBA + float full_ldr_rgba_error = quant_error_rgba + * error_scale_bc_rgba + * error_scale_oe_rgba + + rgb_range_error + + alpha_range_error; + + best_error[i][3] = full_ldr_rgba_error; + format_of_choice[i][3] = FMT_RGBA; + + // 6 integers can encode as RGB+RGB or RGBS+AA + float full_ldr_rgb_error = quant_error_rgb + * error_scale_bc_rgb + * error_scale_oe_rgb + + rgb_range_error + + eci.alpha_drop_error; + + float rgbs_alpha_error = quant_error_rgba + + eci.rgb_scale_error + + rgb_range_error + + alpha_range_error; + + if (rgbs_alpha_error < full_ldr_rgb_error) + { + best_error[i][2] = rgbs_alpha_error; + format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA; + } + else + { + best_error[i][2] = full_ldr_rgb_error; + format_of_choice[i][2] = FMT_RGB; + } + + // 4 integers can encode as RGBS or LA+LA + float ldr_rgbs_error = quant_error_rgb + + rgb_range_error + + eci.alpha_drop_error + + eci.rgb_scale_error; + + float lum_alpha_error = quant_error_rgba + + rgb_range_error + + alpha_range_error + + eci.luminance_error; + + if (ldr_rgbs_error < lum_alpha_error) + { + best_error[i][1] = ldr_rgbs_error; + format_of_choice[i][1] = FMT_RGB_SCALE; + } + else + { + best_error[i][1] = lum_alpha_error; + format_of_choice[i][1] = FMT_LUMINANCE_ALPHA; + } + + // 2 integers can encode as L+L + float luminance_error = quant_error_rgb + + rgb_range_error + + eci.alpha_drop_error + + eci.luminance_error; + + best_error[i][0] = luminance_error; + format_of_choice[i][0] = FMT_LUMINANCE; + } + } +} + +/** + * @brief For one partition compute the best format and quantization for a given bit count. + * + * @param best_combined_error The best error for each quant level and integer count. + * @param best_combined_format The best format for each quant level and integer count. + * @param bits_available The number of bits available for encoding. + * @param[out] best_quant_level The output best color quant level. + * @param[out] best_format The output best color format. + * + * @return The output error for the best pairing. + */ +static float one_partition_find_best_combination_for_bitcount( + const float best_combined_error[21][4], + const uint8_t best_combined_format[21][4], + int bits_available, + uint8_t& best_quant_level, + uint8_t& best_format +) { + int best_integer_count = 0; + float best_integer_count_error = ERROR_CALC_DEFAULT; + + for (int integer_count = 1; integer_count <= 4; integer_count++) + { + // Compute the quantization level for a given number of integers and a given number of bits + int quant_level = quant_mode_table[integer_count][bits_available]; + + // Don't have enough bits to represent a given endpoint format at all! + if (quant_level < QUANT_6) + { + continue; + } + + float integer_count_error = best_combined_error[quant_level][integer_count - 1]; + if (integer_count_error < best_integer_count_error) + { + best_integer_count_error = integer_count_error; + best_integer_count = integer_count - 1; + } + } + + int ql = quant_mode_table[best_integer_count + 1][bits_available]; + + best_quant_level = static_cast<uint8_t>(ql); + best_format = FMT_LUMINANCE; + + if (ql >= QUANT_6) + { + best_format = best_combined_format[ql][best_integer_count]; + } + + return best_integer_count_error; +} + +/** + * @brief For 2 partitions compute the best format combinations for every pair of quant mode and integer count. + * + * @param best_error The best error for a single endpoint quant level and integer count. + * @param best_format The best format for a single endpoint quant level and integer count. + * @param[out] best_combined_error The best combined error pairings for the 2 partitions. + * @param[out] best_combined_format The best combined format pairings for the 2 partitions. + */ +static void two_partitions_find_best_combination_for_every_quantization_and_integer_count( + const float best_error[2][21][4], // indexed by (partition, quant-level, integer-pair-count-minus-1) + const uint8_t best_format[2][21][4], + float best_combined_error[21][7], // indexed by (quant-level, integer-pair-count-minus-2) + uint8_t best_combined_format[21][7][2] +) { + for (int i = QUANT_2; i <= QUANT_256; i++) + { + for (int j = 0; j < 7; j++) + { + best_combined_error[i][j] = ERROR_CALC_DEFAULT; + } + } + + for (int quant = QUANT_6; quant <= QUANT_256; quant++) + { + for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair + { + for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair + { + int low2 = astc::min(i, j); + int high2 = astc::max(i, j); + if ((high2 - low2) > 1) + { + continue; + } + + int intcnt = i + j; + float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j], 1e10f); + if (errorterm <= best_combined_error[quant][intcnt]) + { + best_combined_error[quant][intcnt] = errorterm; + best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; + best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; + } + } + } + } +} + +/** + * @brief For 2 partitions compute the best format and quantization for a given bit count. + * + * @param best_combined_error The best error for each quant level and integer count. + * @param best_combined_format The best format for each quant level and integer count. + * @param bits_available The number of bits available for encoding. + * @param[out] best_quant_level The output best color quant level. + * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. + * @param[out] best_formats The output best color formats. + * + * @return The output error for the best pairing. + */ +static float two_partitions_find_best_combination_for_bitcount( + float best_combined_error[21][7], + uint8_t best_combined_format[21][7][2], + int bits_available, + uint8_t& best_quant_level, + uint8_t& best_quant_level_mod, + uint8_t* best_formats +) { + int best_integer_count = 0; + float best_integer_count_error = ERROR_CALC_DEFAULT; + + for (int integer_count = 2; integer_count <= 8; integer_count++) + { + // Compute the quantization level for a given number of integers and a given number of bits + int quant_level = quant_mode_table[integer_count][bits_available]; + + // Don't have enough bits to represent a given endpoint format at all! + if (quant_level < QUANT_6) + { + break; + } + + float integer_count_error = best_combined_error[quant_level][integer_count - 2]; + if (integer_count_error < best_integer_count_error) + { + best_integer_count_error = integer_count_error; + best_integer_count = integer_count; + } + } + + int ql = quant_mode_table[best_integer_count][bits_available]; + int ql_mod = quant_mode_table[best_integer_count][bits_available + 2]; + + best_quant_level = static_cast<uint8_t>(ql); + best_quant_level_mod = static_cast<uint8_t>(ql_mod); + + if (ql >= QUANT_6) + { + for (int i = 0; i < 2; i++) + { + best_formats[i] = best_combined_format[ql][best_integer_count - 2][i]; + } + } + else + { + for (int i = 0; i < 2; i++) + { + best_formats[i] = FMT_LUMINANCE; + } + } + + return best_integer_count_error; +} + +/** + * @brief For 3 partitions compute the best format combinations for every pair of quant mode and integer count. + * + * @param best_error The best error for a single endpoint quant level and integer count. + * @param best_format The best format for a single endpoint quant level and integer count. + * @param[out] best_combined_error The best combined error pairings for the 3 partitions. + * @param[out] best_combined_format The best combined format pairings for the 3 partitions. + */ +static void three_partitions_find_best_combination_for_every_quantization_and_integer_count( + const float best_error[3][21][4], // indexed by (partition, quant-level, integer-count) + const uint8_t best_format[3][21][4], + float best_combined_error[21][10], + uint8_t best_combined_format[21][10][3] +) { + for (int i = QUANT_2; i <= QUANT_256; i++) + { + for (int j = 0; j < 10; j++) + { + best_combined_error[i][j] = ERROR_CALC_DEFAULT; + } + } + + for (int quant = QUANT_6; quant <= QUANT_256; quant++) + { + for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair + { + for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair + { + int low2 = astc::min(i, j); + int high2 = astc::max(i, j); + if ((high2 - low2) > 1) + { + continue; + } + + for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair + { + int low3 = astc::min(k, low2); + int high3 = astc::max(k, high2); + if ((high3 - low3) > 1) + { + continue; + } + + int intcnt = i + j + k; + float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f); + if (errorterm <= best_combined_error[quant][intcnt]) + { + best_combined_error[quant][intcnt] = errorterm; + best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; + best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; + best_combined_format[quant][intcnt][2] = best_format[2][quant][k]; + } + } + } + } + } +} + +/** + * @brief For 3 partitions compute the best format and quantization for a given bit count. + * + * @param best_combined_error The best error for each quant level and integer count. + * @param best_combined_format The best format for each quant level and integer count. + * @param bits_available The number of bits available for encoding. + * @param[out] best_quant_level The output best color quant level. + * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. + * @param[out] best_formats The output best color formats. + * + * @return The output error for the best pairing. + */ +static float three_partitions_find_best_combination_for_bitcount( + const float best_combined_error[21][10], + const uint8_t best_combined_format[21][10][3], + int bits_available, + uint8_t& best_quant_level, + uint8_t& best_quant_level_mod, + uint8_t* best_formats +) { + int best_integer_count = 0; + float best_integer_count_error = ERROR_CALC_DEFAULT; + + for (int integer_count = 3; integer_count <= 9; integer_count++) + { + // Compute the quantization level for a given number of integers and a given number of bits + int quant_level = quant_mode_table[integer_count][bits_available]; + + // Don't have enough bits to represent a given endpoint format at all! + if (quant_level < QUANT_6) + { + break; + } + + float integer_count_error = best_combined_error[quant_level][integer_count - 3]; + if (integer_count_error < best_integer_count_error) + { + best_integer_count_error = integer_count_error; + best_integer_count = integer_count; + } + } + + int ql = quant_mode_table[best_integer_count][bits_available]; + int ql_mod = quant_mode_table[best_integer_count][bits_available + 5]; + + best_quant_level = static_cast<uint8_t>(ql); + best_quant_level_mod = static_cast<uint8_t>(ql_mod); + + if (ql >= QUANT_6) + { + for (int i = 0; i < 3; i++) + { + best_formats[i] = best_combined_format[ql][best_integer_count - 3][i]; + } + } + else + { + for (int i = 0; i < 3; i++) + { + best_formats[i] = FMT_LUMINANCE; + } + } + + return best_integer_count_error; +} + +/** + * @brief For 4 partitions compute the best format combinations for every pair of quant mode and integer count. + * + * @param best_error The best error for a single endpoint quant level and integer count. + * @param best_format The best format for a single endpoint quant level and integer count. + * @param[out] best_combined_error The best combined error pairings for the 4 partitions. + * @param[out] best_combined_format The best combined format pairings for the 4 partitions. + */ +static void four_partitions_find_best_combination_for_every_quantization_and_integer_count( + const float best_error[4][21][4], // indexed by (partition, quant-level, integer-count) + const uint8_t best_format[4][21][4], + float best_combined_error[21][13], + uint8_t best_combined_format[21][13][4] +) { + for (int i = QUANT_2; i <= QUANT_256; i++) + { + for (int j = 0; j < 13; j++) + { + best_combined_error[i][j] = ERROR_CALC_DEFAULT; + } + } + + for (int quant = QUANT_6; quant <= QUANT_256; quant++) + { + for (int i = 0; i < 4; i++) // integer-count for first endpoint-pair + { + for (int j = 0; j < 4; j++) // integer-count for second endpoint-pair + { + int low2 = astc::min(i, j); + int high2 = astc::max(i, j); + if ((high2 - low2) > 1) + { + continue; + } + + for (int k = 0; k < 4; k++) // integer-count for third endpoint-pair + { + int low3 = astc::min(k, low2); + int high3 = astc::max(k, high2); + if ((high3 - low3) > 1) + { + continue; + } + + for (int l = 0; l < 4; l++) // integer-count for fourth endpoint-pair + { + int low4 = astc::min(l, low3); + int high4 = astc::max(l, high3); + if ((high4 - low4) > 1) + { + continue; + } + + int intcnt = i + j + k + l; + float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f); + if (errorterm <= best_combined_error[quant][intcnt]) + { + best_combined_error[quant][intcnt] = errorterm; + best_combined_format[quant][intcnt][0] = best_format[0][quant][i]; + best_combined_format[quant][intcnt][1] = best_format[1][quant][j]; + best_combined_format[quant][intcnt][2] = best_format[2][quant][k]; + best_combined_format[quant][intcnt][3] = best_format[3][quant][l]; + } + } + } + } + } + } +} + +/** + * @brief For 4 partitions compute the best format and quantization for a given bit count. + * + * @param best_combined_error The best error for each quant level and integer count. + * @param best_combined_format The best format for each quant level and integer count. + * @param bits_available The number of bits available for encoding. + * @param[out] best_quant_level The output best color quant level. + * @param[out] best_quant_level_mod The output best color quant level assuming two more bits are available. + * @param[out] best_formats The output best color formats. + * + * @return best_error The output error for the best pairing. + */ +static float four_partitions_find_best_combination_for_bitcount( + const float best_combined_error[21][13], + const uint8_t best_combined_format[21][13][4], + int bits_available, + uint8_t& best_quant_level, + uint8_t& best_quant_level_mod, + uint8_t* best_formats +) { + int best_integer_count = 0; + float best_integer_count_error = ERROR_CALC_DEFAULT; + + for (int integer_count = 4; integer_count <= 9; integer_count++) + { + // Compute the quantization level for a given number of integers and a given number of bits + int quant_level = quant_mode_table[integer_count][bits_available]; + + // Don't have enough bits to represent a given endpoint format at all! + if (quant_level < QUANT_6) + { + break; + } + + float integer_count_error = best_combined_error[quant_level][integer_count - 4]; + if (integer_count_error < best_integer_count_error) + { + best_integer_count_error = integer_count_error; + best_integer_count = integer_count; + } + } + + int ql = quant_mode_table[best_integer_count][bits_available]; + int ql_mod = quant_mode_table[best_integer_count][bits_available + 8]; + + best_quant_level = static_cast<uint8_t>(ql); + best_quant_level_mod = static_cast<uint8_t>(ql_mod); + + if (ql >= QUANT_6) + { + for (int i = 0; i < 4; i++) + { + best_formats[i] = best_combined_format[ql][best_integer_count - 4][i]; + } + } + else + { + for (int i = 0; i < 4; i++) + { + best_formats[i] = FMT_LUMINANCE; + } + } + + return best_integer_count_error; +} + +/* See header for documentation. */ +unsigned int compute_ideal_endpoint_formats( + const partition_info& pi, + const image_block& blk, + const endpoints& ep, + // bitcounts and errors computed for the various quantization methods + const int8_t* qwt_bitcounts, + const float* qwt_errors, + unsigned int tune_candidate_limit, + unsigned int start_block_mode, + unsigned int end_block_mode, + // output data + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS], + int block_mode[TUNE_MAX_TRIAL_CANDIDATES], + quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES], + quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES], + compression_working_buffers& tmpbuf +) { + int partition_count = pi.partition_count; + + promise(partition_count > 0); + + bool encode_hdr_rgb = static_cast<bool>(blk.rgb_lns[0]); + bool encode_hdr_alpha = static_cast<bool>(blk.alpha_lns[0]); + + // Compute the errors that result from various encoding choices (such as using luminance instead + // of RGB, discarding Alpha, using RGB-scale in place of two separate RGB endpoints and so on) + encoding_choice_errors eci[BLOCK_MAX_PARTITIONS]; + compute_encoding_choice_errors(blk, pi, ep, eci); + + float best_error[BLOCK_MAX_PARTITIONS][21][4]; + uint8_t format_of_choice[BLOCK_MAX_PARTITIONS][21][4]; + for (int i = 0; i < partition_count; i++) + { + compute_color_error_for_every_integer_count_and_quant_level( + encode_hdr_rgb, encode_hdr_alpha, i, + pi, eci[i], ep, blk.channel_weight, best_error[i], + format_of_choice[i]); + } + + float* errors_of_best_combination = tmpbuf.errors_of_best_combination; + uint8_t* best_quant_levels = tmpbuf.best_quant_levels; + uint8_t* best_quant_levels_mod = tmpbuf.best_quant_levels_mod; + uint8_t (&best_ep_formats)[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS] = tmpbuf.best_ep_formats; + + // Ensure that the first iteration understep contains data that will never be picked + vfloat clear_error(ERROR_CALC_DEFAULT); + vint clear_quant(0); + + unsigned int packed_start_block_mode = round_down_to_simd_multiple_vla(start_block_mode); + storea(clear_error, errors_of_best_combination + packed_start_block_mode); + store_nbytes(clear_quant, best_quant_levels + packed_start_block_mode); + store_nbytes(clear_quant, best_quant_levels_mod + packed_start_block_mode); + + // Ensure that last iteration overstep contains data that will never be picked + unsigned int packed_end_block_mode = round_down_to_simd_multiple_vla(end_block_mode - 1); + storea(clear_error, errors_of_best_combination + packed_end_block_mode); + store_nbytes(clear_quant, best_quant_levels + packed_end_block_mode); + store_nbytes(clear_quant, best_quant_levels_mod + packed_end_block_mode); + + // Track a scalar best to avoid expensive search at least once ... + float error_of_best_combination = ERROR_CALC_DEFAULT; + int index_of_best_combination = -1; + + // The block contains 1 partition + if (partition_count == 1) + { + for (unsigned int i = start_block_mode; i < end_block_mode; i++) + { + if (qwt_errors[i] >= ERROR_CALC_DEFAULT) + { + errors_of_best_combination[i] = ERROR_CALC_DEFAULT; + continue; + } + + float error_of_best = one_partition_find_best_combination_for_bitcount( + best_error[0], format_of_choice[0], qwt_bitcounts[i], + best_quant_levels[i], best_ep_formats[i][0]); + + float total_error = error_of_best + qwt_errors[i]; + errors_of_best_combination[i] = total_error; + best_quant_levels_mod[i] = best_quant_levels[i]; + + if (total_error < error_of_best_combination) + { + error_of_best_combination = total_error; + index_of_best_combination = i; + } + } + } + // The block contains 2 partitions + else if (partition_count == 2) + { + float combined_best_error[21][7]; + uint8_t formats_of_choice[21][7][2]; + + two_partitions_find_best_combination_for_every_quantization_and_integer_count( + best_error, format_of_choice, combined_best_error, formats_of_choice); + + assert(start_block_mode == 0); + for (unsigned int i = 0; i < end_block_mode; i++) + { + if (qwt_errors[i] >= ERROR_CALC_DEFAULT) + { + errors_of_best_combination[i] = ERROR_CALC_DEFAULT; + continue; + } + + float error_of_best = two_partitions_find_best_combination_for_bitcount( + combined_best_error, formats_of_choice, qwt_bitcounts[i], + best_quant_levels[i], best_quant_levels_mod[i], + best_ep_formats[i]); + + float total_error = error_of_best + qwt_errors[i]; + errors_of_best_combination[i] = total_error; + + if (total_error < error_of_best_combination) + { + error_of_best_combination = total_error; + index_of_best_combination = i; + } + } + } + // The block contains 3 partitions + else if (partition_count == 3) + { + float combined_best_error[21][10]; + uint8_t formats_of_choice[21][10][3]; + + three_partitions_find_best_combination_for_every_quantization_and_integer_count( + best_error, format_of_choice, combined_best_error, formats_of_choice); + + assert(start_block_mode == 0); + for (unsigned int i = 0; i < end_block_mode; i++) + { + if (qwt_errors[i] >= ERROR_CALC_DEFAULT) + { + errors_of_best_combination[i] = ERROR_CALC_DEFAULT; + continue; + } + + float error_of_best = three_partitions_find_best_combination_for_bitcount( + combined_best_error, formats_of_choice, qwt_bitcounts[i], + best_quant_levels[i], best_quant_levels_mod[i], + best_ep_formats[i]); + + float total_error = error_of_best + qwt_errors[i]; + errors_of_best_combination[i] = total_error; + + if (total_error < error_of_best_combination) + { + error_of_best_combination = total_error; + index_of_best_combination = i; + } + } + } + // The block contains 4 partitions + else // if (partition_count == 4) + { + assert(partition_count == 4); + float combined_best_error[21][13]; + uint8_t formats_of_choice[21][13][4]; + + four_partitions_find_best_combination_for_every_quantization_and_integer_count( + best_error, format_of_choice, combined_best_error, formats_of_choice); + + assert(start_block_mode == 0); + for (unsigned int i = 0; i < end_block_mode; i++) + { + if (qwt_errors[i] >= ERROR_CALC_DEFAULT) + { + errors_of_best_combination[i] = ERROR_CALC_DEFAULT; + continue; + } + + float error_of_best = four_partitions_find_best_combination_for_bitcount( + combined_best_error, formats_of_choice, qwt_bitcounts[i], + best_quant_levels[i], best_quant_levels_mod[i], + best_ep_formats[i]); + + float total_error = error_of_best + qwt_errors[i]; + errors_of_best_combination[i] = total_error; + + if (total_error < error_of_best_combination) + { + error_of_best_combination = total_error; + index_of_best_combination = i; + } + } + } + + int best_error_weights[TUNE_MAX_TRIAL_CANDIDATES]; + + // Fast path the first result and avoid the list search for trial 0 + best_error_weights[0] = index_of_best_combination; + if (index_of_best_combination >= 0) + { + errors_of_best_combination[index_of_best_combination] = ERROR_CALC_DEFAULT; + } + + // Search the remaining results and pick the best candidate modes for trial 1+ + for (unsigned int i = 1; i < tune_candidate_limit; i++) + { + vint vbest_error_index(-1); + vfloat vbest_ep_error(ERROR_CALC_DEFAULT); + + start_block_mode = round_down_to_simd_multiple_vla(start_block_mode); + vint lane_ids = vint::lane_id() + vint(start_block_mode); + for (unsigned int j = start_block_mode; j < end_block_mode; j += ASTCENC_SIMD_WIDTH) + { + vfloat err = vfloat(errors_of_best_combination + j); + vmask mask = err < vbest_ep_error; + vbest_ep_error = select(vbest_ep_error, err, mask); + vbest_error_index = select(vbest_error_index, lane_ids, mask); + lane_ids += vint(ASTCENC_SIMD_WIDTH); + } + + // Pick best mode from the SIMD result, using lowest matching index to ensure invariance + vmask lanes_min_error = vbest_ep_error == hmin(vbest_ep_error); + vbest_error_index = select(vint(0x7FFFFFFF), vbest_error_index, lanes_min_error); + vbest_error_index = hmin(vbest_error_index); + int best_error_index = vbest_error_index.lane<0>(); + + best_error_weights[i] = best_error_index; + + // Max the error for this candidate so we don't pick it again + if (best_error_index >= 0) + { + errors_of_best_combination[best_error_index] = ERROR_CALC_DEFAULT; + } + // Early-out if no more candidates are valid + else + { + break; + } + } + + for (unsigned int i = 0; i < tune_candidate_limit; i++) + { + if (best_error_weights[i] < 0) + { + return i; + } + + block_mode[i] = best_error_weights[i]; + + quant_level[i] = static_cast<quant_method>(best_quant_levels[best_error_weights[i]]); + quant_level_mod[i] = static_cast<quant_method>(best_quant_levels_mod[best_error_weights[i]]); + + assert(quant_level[i] >= QUANT_6 && quant_level[i] <= QUANT_256); + assert(quant_level_mod[i] >= QUANT_6 && quant_level_mod[i] <= QUANT_256); + + for (int j = 0; j < partition_count; j++) + { + partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j]; + } + } + + return tune_candidate_limit; +} + +#endif diff --git a/thirdparty/astcenc/astcenc_platform_isa_detection.cpp b/thirdparty/astcenc/astcenc_platform_isa_detection.cpp new file mode 100644 index 0000000000..8ed98437ea --- /dev/null +++ b/thirdparty/astcenc/astcenc_platform_isa_detection.cpp @@ -0,0 +1,166 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2020-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Platform-specific function implementations. + * + * This module contains functions for querying the host extended ISA support. + */ + +// Include before the defines below to pick up any auto-setup based on compiler +// built-in config, if not being set explicitly by the build system +#include "astcenc_internal.h" + +#if (ASTCENC_SSE > 0) || (ASTCENC_AVX > 0) || \ + (ASTCENC_POPCNT > 0) || (ASTCENC_F16C > 0) + +static bool g_init { false }; + +/** Does this CPU support SSE 4.1? Set to -1 if not yet initialized. */ +static bool g_cpu_has_sse41 { false }; + +/** Does this CPU support AVX2? Set to -1 if not yet initialized. */ +static bool g_cpu_has_avx2 { false }; + +/** Does this CPU support POPCNT? Set to -1 if not yet initialized. */ +static bool g_cpu_has_popcnt { false }; + +/** Does this CPU support F16C? Set to -1 if not yet initialized. */ +static bool g_cpu_has_f16c { false }; + +/* ============================================================================ + Platform code for Visual Studio +============================================================================ */ +#if !defined(__clang__) && defined(_MSC_VER) +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#include <intrin.h> + +/** + * @brief Detect platform CPU ISA support and update global trackers. + */ +static void detect_cpu_isa() +{ + int data[4]; + + __cpuid(data, 0); + int num_id = data[0]; + + if (num_id >= 1) + { + __cpuidex(data, 1, 0); + // SSE41 = Bank 1, ECX, bit 19 + g_cpu_has_sse41 = data[2] & (1 << 19) ? true : false; + // POPCNT = Bank 1, ECX, bit 23 + g_cpu_has_popcnt = data[2] & (1 << 23) ? true : false; + // F16C = Bank 1, ECX, bit 29 + g_cpu_has_f16c = data[2] & (1 << 29) ? true : false; + } + + if (num_id >= 7) + { + __cpuidex(data, 7, 0); + // AVX2 = Bank 7, EBX, bit 5 + g_cpu_has_avx2 = data[1] & (1 << 5) ? true : false; + } + + // Ensure state bits are updated before init flag is updated + MemoryBarrier(); + g_init = true; +} + +/* ============================================================================ + Platform code for GCC and Clang +============================================================================ */ +#else +#include <cpuid.h> + +/** + * @brief Detect platform CPU ISA support and update global trackers. + */ +static void detect_cpu_isa() +{ + unsigned int data[4]; + + if (__get_cpuid_count(1, 0, &data[0], &data[1], &data[2], &data[3])) + { + // SSE41 = Bank 1, ECX, bit 19 + g_cpu_has_sse41 = data[2] & (1 << 19) ? true : false; + // POPCNT = Bank 1, ECX, bit 23 + g_cpu_has_popcnt = data[2] & (1 << 23) ? true : false; + // F16C = Bank 1, ECX, bit 29 + g_cpu_has_f16c = data[2] & (1 << 29) ? true : false; + } + + g_cpu_has_avx2 = 0; + if (__get_cpuid_count(7, 0, &data[0], &data[1], &data[2], &data[3])) + { + // AVX2 = Bank 7, EBX, bit 5 + g_cpu_has_avx2 = data[1] & (1 << 5) ? true : false; + } + + // Ensure state bits are updated before init flag is updated + __sync_synchronize(); + g_init = true; +} +#endif + +/* See header for documentation. */ +bool cpu_supports_popcnt() +{ + if (!g_init) + { + detect_cpu_isa(); + } + + return g_cpu_has_popcnt; +} + +/* See header for documentation. */ +bool cpu_supports_f16c() +{ + if (!g_init) + { + detect_cpu_isa(); + } + + return g_cpu_has_f16c; +} + +/* See header for documentation. */ +bool cpu_supports_sse41() +{ + if (!g_init) + { + detect_cpu_isa(); + } + + return g_cpu_has_sse41; +} + +/* See header for documentation. */ +bool cpu_supports_avx2() +{ + if (!g_init) + { + detect_cpu_isa(); + } + + return g_cpu_has_avx2; +} + +#endif diff --git a/thirdparty/astcenc/astcenc_quantization.cpp b/thirdparty/astcenc/astcenc_quantization.cpp new file mode 100644 index 0000000000..478a21ead7 --- /dev/null +++ b/thirdparty/astcenc/astcenc_quantization.cpp @@ -0,0 +1,904 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions and data tables for numeric quantization.. + */ + +#include "astcenc_internal.h" + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +// Starts from QUANT_6 +// Not scrambled +const uint8_t color_unquant_to_uquant_tables[17][256] { + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 51, 51, 51, 51, 51, + 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, + 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, + 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 102, 102, 102, + 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, + 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, + 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, + 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, + 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, + 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, + 153, 153, 153, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, + 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, + 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, + 204, 204, 204, 204, 204, 204, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, + 36, 36, 36, 36, 36, 36, 36, 73, 73, 73, 73, 73, 73, 73, 73, 73, + 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, + 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 109, 109, 109, 109, + 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, + 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, + 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, + 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, 146, + 146, 146, 146, 146, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, + 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, 182, + 182, 182, 182, 182, 182, 182, 182, 182, 182, 219, 219, 219, 219, 219, 219, 219, + 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, + 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 219, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, + 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, + 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 56, 56, 56, 56, 56, + 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, + 56, 56, 56, 56, 56, 56, 56, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, + 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, + 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, + 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 142, 171, 171, 171, + 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, 171, + 171, 171, 171, 171, 171, 171, 171, 171, 171, 199, 199, 199, 199, 199, 199, 199, + 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, + 199, 199, 199, 199, 199, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, + 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, 227, + 227, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 23, 23, 23, + 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, + 23, 23, 23, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, + 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 69, 69, 69, 69, 69, 69, + 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, + 69, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, + 92, 92, 92, 92, 92, 92, 92, 92, 92, 116, 116, 116, 116, 116, 116, 116, + 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, + 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, 139, + 139, 139, 139, 139, 139, 139, 139, 163, 163, 163, 163, 163, 163, 163, 163, 163, + 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 163, 186, + 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, 186, + 186, 186, 186, 186, 186, 186, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, + 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 209, 232, 232, 232, + 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, 232, + 232, 232, 232, 232, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 17, 17, 17, 17, + 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 34, 34, 34, 34, 34, 34, + 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 51, 51, 51, 51, 51, + 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 68, 68, 68, 68, + 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 85, 85, 85, + 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 102, 102, + 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 119, + 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, + 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, + 136, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, + 153, 153, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170, + 170, 170, 170, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, 187, + 187, 187, 187, 187, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, 204, + 204, 204, 204, 204, 204, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, 221, + 221, 221, 221, 221, 221, 221, 238, 238, 238, 238, 238, 238, 238, 238, 238, 238, + 238, 238, 238, 238, 238, 238, 238, 255, 255, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 0, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, + 27, 27, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 67, 67, 67, + 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 94, 94, 94, 94, 94, 94, 94, 94, + 94, 94, 94, 94, 94, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, + 107, 107, 107, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, + 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 148, 148, 148, + 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 148, 161, 161, 161, 161, 161, + 161, 161, 161, 161, 161, 161, 161, 161, 175, 175, 175, 175, 175, 175, 175, 175, + 175, 175, 175, 175, 175, 175, 188, 188, 188, 188, 188, 188, 188, 188, 188, 188, + 188, 188, 188, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, + 215, 215, 215, 215, 215, 215, 215, 215, 215, 215, 215, 215, 215, 215, 228, 228, + 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 242, 242, 242, 242, 242, + 242, 242, 242, 242, 242, 242, 242, 242, 242, 255, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 33, 33, 33, 33, + 33, 33, 33, 33, 33, 33, 33, 44, 44, 44, 44, 44, 44, 44, 44, 44, + 44, 44, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, + 66, 66, 66, 66, 66, 66, 66, 66, 77, 77, 77, 77, 77, 77, 77, 77, + 77, 77, 77, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, + 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 145, 145, 145, 145, + 145, 145, 145, 145, 145, 145, 145, 156, 156, 156, 156, 156, 156, 156, 156, 156, + 156, 156, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 178, 178, 178, + 178, 178, 178, 178, 178, 178, 178, 178, 189, 189, 189, 189, 189, 189, 189, 189, + 189, 189, 189, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 211, 211, + 211, 211, 211, 211, 211, 211, 211, 211, 211, 222, 222, 222, 222, 222, 222, 222, + 222, 222, 222, 222, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 244, + 244, 244, 244, 244, 244, 244, 244, 244, 244, 244, 255, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, + 16, 16, 16, 16, 16, 24, 24, 24, 24, 24, 24, 24, 24, 33, 33, 33, + 33, 33, 33, 33, 33, 33, 41, 41, 41, 41, 41, 41, 41, 41, 49, 49, + 49, 49, 49, 49, 49, 49, 57, 57, 57, 57, 57, 57, 57, 57, 66, 66, + 66, 66, 66, 66, 66, 66, 66, 74, 74, 74, 74, 74, 74, 74, 74, 82, + 82, 82, 82, 82, 82, 82, 82, 90, 90, 90, 90, 90, 90, 90, 90, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 107, 107, 107, 107, 107, 107, 107, 107, + 115, 115, 115, 115, 115, 115, 115, 115, 123, 123, 123, 123, 123, 123, 123, 123, + 132, 132, 132, 132, 132, 132, 132, 132, 140, 140, 140, 140, 140, 140, 140, 140, + 148, 148, 148, 148, 148, 148, 148, 148, 156, 156, 156, 156, 156, 156, 156, 156, + 156, 165, 165, 165, 165, 165, 165, 165, 165, 173, 173, 173, 173, 173, 173, 173, + 173, 181, 181, 181, 181, 181, 181, 181, 181, 189, 189, 189, 189, 189, 189, 189, + 189, 189, 198, 198, 198, 198, 198, 198, 198, 198, 206, 206, 206, 206, 206, 206, + 206, 206, 214, 214, 214, 214, 214, 214, 214, 214, 222, 222, 222, 222, 222, 222, + 222, 222, 222, 231, 231, 231, 231, 231, 231, 231, 231, 239, 239, 239, 239, 239, + 239, 239, 239, 247, 247, 247, 247, 247, 247, 247, 247, 255, 255, 255, 255, 255 + }, + { + 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 13, 13, 13, 13, 13, 13, + 13, 19, 19, 19, 19, 19, 19, 26, 26, 26, 26, 26, 26, 26, 32, 32, + 32, 32, 32, 32, 39, 39, 39, 39, 39, 39, 39, 45, 45, 45, 45, 45, + 45, 52, 52, 52, 52, 52, 52, 52, 58, 58, 58, 58, 58, 58, 65, 65, + 65, 65, 65, 65, 65, 71, 71, 71, 71, 71, 71, 78, 78, 78, 78, 78, + 78, 78, 84, 84, 84, 84, 84, 84, 91, 91, 91, 91, 91, 91, 91, 97, + 97, 97, 97, 97, 97, 104, 104, 104, 104, 104, 104, 104, 110, 110, 110, 110, + 110, 110, 117, 117, 117, 117, 117, 117, 117, 123, 123, 123, 123, 123, 123, 123, + 132, 132, 132, 132, 132, 132, 132, 138, 138, 138, 138, 138, 138, 138, 145, 145, + 145, 145, 145, 145, 151, 151, 151, 151, 151, 151, 151, 158, 158, 158, 158, 158, + 158, 164, 164, 164, 164, 164, 164, 164, 171, 171, 171, 171, 171, 171, 177, 177, + 177, 177, 177, 177, 177, 184, 184, 184, 184, 184, 184, 190, 190, 190, 190, 190, + 190, 190, 197, 197, 197, 197, 197, 197, 203, 203, 203, 203, 203, 203, 203, 210, + 210, 210, 210, 210, 210, 216, 216, 216, 216, 216, 216, 216, 223, 223, 223, 223, + 223, 223, 229, 229, 229, 229, 229, 229, 229, 236, 236, 236, 236, 236, 236, 242, + 242, 242, 242, 242, 242, 242, 249, 249, 249, 249, 249, 249, 255, 255, 255, 255 + }, + { + 0, 0, 0, 5, 5, 5, 5, 5, 5, 11, 11, 11, 11, 11, 16, 16, + 16, 16, 16, 21, 21, 21, 21, 21, 21, 27, 27, 27, 27, 27, 32, 32, + 32, 32, 32, 32, 38, 38, 38, 38, 38, 43, 43, 43, 43, 43, 48, 48, + 48, 48, 48, 48, 54, 54, 54, 54, 54, 59, 59, 59, 59, 59, 59, 65, + 65, 65, 65, 65, 70, 70, 70, 70, 70, 70, 76, 76, 76, 76, 76, 81, + 81, 81, 81, 81, 86, 86, 86, 86, 86, 86, 92, 92, 92, 92, 92, 97, + 97, 97, 97, 97, 97, 103, 103, 103, 103, 103, 108, 108, 108, 108, 108, 113, + 113, 113, 113, 113, 113, 119, 119, 119, 119, 119, 124, 124, 124, 124, 124, 124, + 131, 131, 131, 131, 131, 131, 136, 136, 136, 136, 136, 142, 142, 142, 142, 142, + 142, 147, 147, 147, 147, 147, 152, 152, 152, 152, 152, 158, 158, 158, 158, 158, + 158, 163, 163, 163, 163, 163, 169, 169, 169, 169, 169, 169, 174, 174, 174, 174, + 174, 179, 179, 179, 179, 179, 185, 185, 185, 185, 185, 185, 190, 190, 190, 190, + 190, 196, 196, 196, 196, 196, 196, 201, 201, 201, 201, 201, 207, 207, 207, 207, + 207, 207, 212, 212, 212, 212, 212, 217, 217, 217, 217, 217, 223, 223, 223, 223, + 223, 223, 228, 228, 228, 228, 228, 234, 234, 234, 234, 234, 234, 239, 239, 239, + 239, 239, 244, 244, 244, 244, 244, 250, 250, 250, 250, 250, 250, 255, 255, 255 + }, + { + 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, + 16, 16, 16, 20, 20, 20, 20, 24, 24, 24, 24, 28, 28, 28, 28, 32, + 32, 32, 32, 36, 36, 36, 36, 40, 40, 40, 40, 44, 44, 44, 44, 48, + 48, 48, 48, 52, 52, 52, 52, 56, 56, 56, 56, 60, 60, 60, 60, 65, + 65, 65, 65, 65, 69, 69, 69, 69, 73, 73, 73, 73, 77, 77, 77, 77, + 81, 81, 81, 81, 85, 85, 85, 85, 89, 89, 89, 89, 93, 93, 93, 93, + 97, 97, 97, 97, 101, 101, 101, 101, 105, 105, 105, 105, 109, 109, 109, 109, + 113, 113, 113, 113, 117, 117, 117, 117, 121, 121, 121, 121, 125, 125, 125, 125, + 130, 130, 130, 130, 134, 134, 134, 134, 138, 138, 138, 138, 142, 142, 142, 142, + 146, 146, 146, 146, 150, 150, 150, 150, 154, 154, 154, 154, 158, 158, 158, 158, + 162, 162, 162, 162, 166, 166, 166, 166, 170, 170, 170, 170, 174, 174, 174, 174, + 178, 178, 178, 178, 182, 182, 182, 182, 186, 186, 186, 186, 190, 190, 190, 190, + 190, 195, 195, 195, 195, 199, 199, 199, 199, 203, 203, 203, 203, 207, 207, 207, + 207, 211, 211, 211, 211, 215, 215, 215, 215, 219, 219, 219, 219, 223, 223, 223, + 223, 227, 227, 227, 227, 231, 231, 231, 231, 235, 235, 235, 235, 239, 239, 239, + 239, 243, 243, 243, 243, 247, 247, 247, 247, 251, 251, 251, 251, 255, 255, 255 + }, + { + 0, 0, 3, 3, 3, 6, 6, 6, 9, 9, 9, 9, 13, 13, 13, 16, + 16, 16, 19, 19, 19, 22, 22, 22, 25, 25, 25, 25, 29, 29, 29, 32, + 32, 32, 35, 35, 35, 38, 38, 38, 38, 42, 42, 42, 45, 45, 45, 48, + 48, 48, 51, 51, 51, 54, 54, 54, 54, 58, 58, 58, 61, 61, 61, 64, + 64, 64, 67, 67, 67, 67, 71, 71, 71, 74, 74, 74, 77, 77, 77, 80, + 80, 80, 83, 83, 83, 83, 87, 87, 87, 90, 90, 90, 93, 93, 93, 96, + 96, 96, 96, 100, 100, 100, 103, 103, 103, 106, 106, 106, 109, 109, 109, 112, + 112, 112, 112, 116, 116, 116, 119, 119, 119, 122, 122, 122, 125, 125, 125, 125, + 130, 130, 130, 130, 133, 133, 133, 136, 136, 136, 139, 139, 139, 143, 143, 143, + 143, 146, 146, 146, 149, 149, 149, 152, 152, 152, 155, 155, 155, 159, 159, 159, + 159, 162, 162, 162, 165, 165, 165, 168, 168, 168, 172, 172, 172, 172, 175, 175, + 175, 178, 178, 178, 181, 181, 181, 184, 184, 184, 188, 188, 188, 188, 191, 191, + 191, 194, 194, 194, 197, 197, 197, 201, 201, 201, 201, 204, 204, 204, 207, 207, + 207, 210, 210, 210, 213, 213, 213, 217, 217, 217, 217, 220, 220, 220, 223, 223, + 223, 226, 226, 226, 230, 230, 230, 230, 233, 233, 233, 236, 236, 236, 239, 239, + 239, 242, 242, 242, 246, 246, 246, 246, 249, 249, 249, 252, 252, 252, 255, 255 + }, + { + 0, 0, 2, 2, 5, 5, 5, 8, 8, 8, 10, 10, 13, 13, 13, 16, + 16, 16, 18, 18, 21, 21, 21, 24, 24, 24, 26, 26, 29, 29, 29, 32, + 32, 32, 35, 35, 35, 37, 37, 40, 40, 40, 43, 43, 43, 45, 45, 48, + 48, 48, 51, 51, 51, 53, 53, 56, 56, 56, 59, 59, 59, 61, 61, 64, + 64, 64, 67, 67, 67, 70, 70, 70, 72, 72, 75, 75, 75, 78, 78, 78, + 80, 80, 83, 83, 83, 86, 86, 86, 88, 88, 91, 91, 91, 94, 94, 94, + 96, 96, 99, 99, 99, 102, 102, 102, 104, 104, 107, 107, 107, 110, 110, 110, + 112, 112, 115, 115, 115, 118, 118, 118, 120, 120, 123, 123, 123, 126, 126, 126, + 129, 129, 129, 132, 132, 132, 135, 135, 137, 137, 137, 140, 140, 140, 143, 143, + 145, 145, 145, 148, 148, 148, 151, 151, 153, 153, 153, 156, 156, 156, 159, 159, + 161, 161, 161, 164, 164, 164, 167, 167, 169, 169, 169, 172, 172, 172, 175, 175, + 177, 177, 177, 180, 180, 180, 183, 183, 185, 185, 185, 188, 188, 188, 191, 191, + 191, 194, 194, 196, 196, 196, 199, 199, 199, 202, 202, 204, 204, 204, 207, 207, + 207, 210, 210, 212, 212, 212, 215, 215, 215, 218, 218, 220, 220, 220, 223, 223, + 223, 226, 226, 226, 229, 229, 231, 231, 231, 234, 234, 234, 237, 237, 239, 239, + 239, 242, 242, 242, 245, 245, 247, 247, 247, 250, 250, 250, 253, 253, 255, 255 + }, + { + 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, + 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, + 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, + 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, + 64, 64, 66, 66, 68, 68, 70, 70, 72, 72, 74, 74, 76, 76, 78, 78, + 80, 80, 82, 82, 84, 84, 86, 86, 88, 88, 90, 90, 92, 92, 94, 94, + 96, 96, 98, 98, 100, 100, 102, 102, 104, 104, 106, 106, 108, 108, 110, 110, + 112, 112, 114, 114, 116, 116, 118, 118, 120, 120, 122, 122, 124, 124, 126, 126, + 129, 129, 131, 131, 133, 133, 135, 135, 137, 137, 139, 139, 141, 141, 143, 143, + 145, 145, 147, 147, 149, 149, 151, 151, 153, 153, 155, 155, 157, 157, 159, 159, + 161, 161, 163, 163, 165, 165, 167, 167, 169, 169, 171, 171, 173, 173, 175, 175, + 177, 177, 179, 179, 181, 181, 183, 183, 185, 185, 187, 187, 189, 189, 191, 191, + 193, 193, 195, 195, 197, 197, 199, 199, 201, 201, 203, 203, 205, 205, 207, 207, + 209, 209, 211, 211, 213, 213, 215, 215, 217, 217, 219, 219, 221, 221, 223, 223, + 225, 225, 227, 227, 229, 229, 231, 231, 233, 233, 235, 235, 237, 237, 239, 239, + 241, 241, 243, 243, 245, 245, 247, 247, 249, 249, 251, 251, 253, 253, 255, 255 + }, + { + 0, 1, 1, 3, 4, 4, 6, 6, 8, 9, 9, 11, 12, 12, 14, 14, + 16, 17, 17, 19, 20, 20, 22, 22, 24, 25, 25, 27, 28, 28, 30, 30, + 32, 33, 33, 35, 36, 36, 38, 38, 40, 41, 41, 43, 44, 44, 46, 46, + 48, 49, 49, 51, 52, 52, 54, 54, 56, 57, 57, 59, 60, 60, 62, 62, + 64, 65, 65, 67, 68, 68, 70, 70, 72, 73, 73, 75, 76, 76, 78, 78, + 80, 81, 81, 83, 84, 84, 86, 86, 88, 89, 89, 91, 92, 92, 94, 94, + 96, 97, 97, 99, 100, 100, 102, 102, 104, 105, 105, 107, 108, 108, 110, 110, + 112, 113, 113, 115, 116, 116, 118, 118, 120, 121, 121, 123, 124, 124, 126, 126, + 129, 129, 131, 131, 132, 134, 134, 135, 137, 137, 139, 139, 140, 142, 142, 143, + 145, 145, 147, 147, 148, 150, 150, 151, 153, 153, 155, 155, 156, 158, 158, 159, + 161, 161, 163, 163, 164, 166, 166, 167, 169, 169, 171, 171, 172, 174, 174, 175, + 177, 177, 179, 179, 180, 182, 182, 183, 185, 185, 187, 187, 188, 190, 190, 191, + 193, 193, 195, 195, 196, 198, 198, 199, 201, 201, 203, 203, 204, 206, 206, 207, + 209, 209, 211, 211, 212, 214, 214, 215, 217, 217, 219, 219, 220, 222, 222, 223, + 225, 225, 227, 227, 228, 230, 230, 231, 233, 233, 235, 235, 236, 238, 238, 239, + 241, 241, 243, 243, 244, 246, 246, 247, 249, 249, 251, 251, 252, 254, 254, 255 + }, + { + 0, 1, 2, 2, 4, 5, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, + 16, 17, 18, 18, 20, 21, 22, 22, 24, 25, 26, 26, 28, 29, 30, 30, + 32, 33, 34, 34, 36, 37, 38, 38, 40, 41, 42, 42, 44, 45, 46, 46, + 48, 49, 50, 50, 52, 53, 54, 54, 56, 57, 58, 58, 60, 61, 62, 62, + 64, 65, 66, 66, 68, 69, 70, 70, 72, 73, 74, 74, 76, 77, 78, 78, + 80, 81, 82, 82, 84, 85, 86, 86, 88, 89, 90, 90, 92, 93, 94, 94, + 96, 97, 98, 98, 100, 101, 102, 102, 104, 105, 106, 106, 108, 109, 110, 110, + 112, 113, 114, 114, 116, 117, 118, 118, 120, 121, 122, 122, 124, 125, 126, 126, + 129, 129, 130, 131, 133, 133, 134, 135, 137, 137, 138, 139, 141, 141, 142, 143, + 145, 145, 146, 147, 149, 149, 150, 151, 153, 153, 154, 155, 157, 157, 158, 159, + 161, 161, 162, 163, 165, 165, 166, 167, 169, 169, 170, 171, 173, 173, 174, 175, + 177, 177, 178, 179, 181, 181, 182, 183, 185, 185, 186, 187, 189, 189, 190, 191, + 193, 193, 194, 195, 197, 197, 198, 199, 201, 201, 202, 203, 205, 205, 206, 207, + 209, 209, 210, 211, 213, 213, 214, 215, 217, 217, 218, 219, 221, 221, 222, 223, + 225, 225, 226, 227, 229, 229, 230, 231, 233, 233, 234, 235, 237, 237, 238, 239, + 241, 241, 242, 243, 245, 245, 246, 247, 249, 249, 250, 251, 253, 253, 254, 255 + }, + { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255 + } +}; + +// Starts from QUANT_6 +// Scrambled +const uint8_t color_uquant_to_scrambled_pquant_tables[17][256] { + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15 + }, + { + 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, + 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1 + }, + { + 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, + 12, 12, 12, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 14, 14, 14, 14, 14, 14, 14, + 14, 14, 14, 14, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, + 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 15, 15, 15, 15, + 15, 15, 15, 15, 15, 15, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 13, 13, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1 + }, + { + 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, + 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, + 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, + 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, + 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, + 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, + 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, + 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, + 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, + 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, + 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, + 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, + 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, + 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31 + }, + { + 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, + 16, 24, 24, 24, 24, 24, 24, 32, 32, 32, 32, 32, 32, 32, 2, 2, + 2, 2, 2, 2, 10, 10, 10, 10, 10, 10, 10, 18, 18, 18, 18, 18, + 18, 26, 26, 26, 26, 26, 26, 26, 34, 34, 34, 34, 34, 34, 4, 4, + 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 20, 20, 20, 20, 20, + 20, 20, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 6, + 6, 6, 6, 6, 6, 14, 14, 14, 14, 14, 14, 14, 22, 22, 22, 22, + 22, 22, 30, 30, 30, 30, 30, 30, 30, 38, 38, 38, 38, 38, 38, 38, + 39, 39, 39, 39, 39, 39, 39, 31, 31, 31, 31, 31, 31, 31, 23, 23, + 23, 23, 23, 23, 15, 15, 15, 15, 15, 15, 15, 7, 7, 7, 7, 7, + 7, 37, 37, 37, 37, 37, 37, 37, 29, 29, 29, 29, 29, 29, 21, 21, + 21, 21, 21, 21, 21, 13, 13, 13, 13, 13, 13, 5, 5, 5, 5, 5, + 5, 5, 35, 35, 35, 35, 35, 35, 27, 27, 27, 27, 27, 27, 27, 19, + 19, 19, 19, 19, 19, 11, 11, 11, 11, 11, 11, 11, 3, 3, 3, 3, + 3, 3, 33, 33, 33, 33, 33, 33, 33, 25, 25, 25, 25, 25, 25, 17, + 17, 17, 17, 17, 17, 17, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1 + }, + { + 0, 0, 0, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 2, 2, + 2, 2, 2, 18, 18, 18, 18, 18, 18, 34, 34, 34, 34, 34, 4, 4, + 4, 4, 4, 4, 20, 20, 20, 20, 20, 36, 36, 36, 36, 36, 6, 6, + 6, 6, 6, 6, 22, 22, 22, 22, 22, 38, 38, 38, 38, 38, 38, 8, + 8, 8, 8, 8, 24, 24, 24, 24, 24, 24, 40, 40, 40, 40, 40, 10, + 10, 10, 10, 10, 26, 26, 26, 26, 26, 26, 42, 42, 42, 42, 42, 12, + 12, 12, 12, 12, 12, 28, 28, 28, 28, 28, 44, 44, 44, 44, 44, 14, + 14, 14, 14, 14, 14, 30, 30, 30, 30, 30, 46, 46, 46, 46, 46, 46, + 47, 47, 47, 47, 47, 47, 31, 31, 31, 31, 31, 15, 15, 15, 15, 15, + 15, 45, 45, 45, 45, 45, 29, 29, 29, 29, 29, 13, 13, 13, 13, 13, + 13, 43, 43, 43, 43, 43, 27, 27, 27, 27, 27, 27, 11, 11, 11, 11, + 11, 41, 41, 41, 41, 41, 25, 25, 25, 25, 25, 25, 9, 9, 9, 9, + 9, 39, 39, 39, 39, 39, 39, 23, 23, 23, 23, 23, 7, 7, 7, 7, + 7, 7, 37, 37, 37, 37, 37, 21, 21, 21, 21, 21, 5, 5, 5, 5, + 5, 5, 35, 35, 35, 35, 35, 19, 19, 19, 19, 19, 19, 3, 3, 3, + 3, 3, 33, 33, 33, 33, 33, 17, 17, 17, 17, 17, 17, 1, 1, 1 + }, + { + 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, + 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, + 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, + 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, + 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, + 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, + 24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, + 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, + 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, + 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, + 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, + 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, + 47, 48, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, + 51, 52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54, 54, 55, 55, 55, + 55, 56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, + 59, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63 + }, + { + 0, 0, 16, 16, 16, 32, 32, 32, 48, 48, 48, 48, 64, 64, 64, 2, + 2, 2, 18, 18, 18, 34, 34, 34, 50, 50, 50, 50, 66, 66, 66, 4, + 4, 4, 20, 20, 20, 36, 36, 36, 36, 52, 52, 52, 68, 68, 68, 6, + 6, 6, 22, 22, 22, 38, 38, 38, 38, 54, 54, 54, 70, 70, 70, 8, + 8, 8, 24, 24, 24, 24, 40, 40, 40, 56, 56, 56, 72, 72, 72, 10, + 10, 10, 26, 26, 26, 26, 42, 42, 42, 58, 58, 58, 74, 74, 74, 12, + 12, 12, 12, 28, 28, 28, 44, 44, 44, 60, 60, 60, 76, 76, 76, 14, + 14, 14, 14, 30, 30, 30, 46, 46, 46, 62, 62, 62, 78, 78, 78, 78, + 79, 79, 79, 79, 63, 63, 63, 47, 47, 47, 31, 31, 31, 15, 15, 15, + 15, 77, 77, 77, 61, 61, 61, 45, 45, 45, 29, 29, 29, 13, 13, 13, + 13, 75, 75, 75, 59, 59, 59, 43, 43, 43, 27, 27, 27, 27, 11, 11, + 11, 73, 73, 73, 57, 57, 57, 41, 41, 41, 25, 25, 25, 25, 9, 9, + 9, 71, 71, 71, 55, 55, 55, 39, 39, 39, 39, 23, 23, 23, 7, 7, + 7, 69, 69, 69, 53, 53, 53, 37, 37, 37, 37, 21, 21, 21, 5, 5, + 5, 67, 67, 67, 51, 51, 51, 51, 35, 35, 35, 19, 19, 19, 3, 3, + 3, 65, 65, 65, 49, 49, 49, 49, 33, 33, 33, 17, 17, 17, 1, 1 + }, + { + 0, 0, 32, 32, 64, 64, 64, 2, 2, 2, 34, 34, 66, 66, 66, 4, + 4, 4, 36, 36, 68, 68, 68, 6, 6, 6, 38, 38, 70, 70, 70, 8, + 8, 8, 40, 40, 40, 72, 72, 10, 10, 10, 42, 42, 42, 74, 74, 12, + 12, 12, 44, 44, 44, 76, 76, 14, 14, 14, 46, 46, 46, 78, 78, 16, + 16, 16, 48, 48, 48, 80, 80, 80, 18, 18, 50, 50, 50, 82, 82, 82, + 20, 20, 52, 52, 52, 84, 84, 84, 22, 22, 54, 54, 54, 86, 86, 86, + 24, 24, 56, 56, 56, 88, 88, 88, 26, 26, 58, 58, 58, 90, 90, 90, + 28, 28, 60, 60, 60, 92, 92, 92, 30, 30, 62, 62, 62, 94, 94, 94, + 95, 95, 95, 63, 63, 63, 31, 31, 93, 93, 93, 61, 61, 61, 29, 29, + 91, 91, 91, 59, 59, 59, 27, 27, 89, 89, 89, 57, 57, 57, 25, 25, + 87, 87, 87, 55, 55, 55, 23, 23, 85, 85, 85, 53, 53, 53, 21, 21, + 83, 83, 83, 51, 51, 51, 19, 19, 81, 81, 81, 49, 49, 49, 17, 17, + 17, 79, 79, 47, 47, 47, 15, 15, 15, 77, 77, 45, 45, 45, 13, 13, + 13, 75, 75, 43, 43, 43, 11, 11, 11, 73, 73, 41, 41, 41, 9, 9, + 9, 71, 71, 71, 39, 39, 7, 7, 7, 69, 69, 69, 37, 37, 5, 5, + 5, 67, 67, 67, 35, 35, 3, 3, 3, 65, 65, 65, 33, 33, 1, 1 + }, + { + 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, + 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, + 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, + 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, + 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, + 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, + 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55, 55, + 56, 56, 57, 57, 58, 58, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, + 64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, + 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, + 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, + 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, + 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 103, 103, + 104, 104, 105, 105, 106, 106, 107, 107, 108, 108, 109, 109, 110, 110, 111, 111, + 112, 112, 113, 113, 114, 114, 115, 115, 116, 116, 117, 117, 118, 118, 119, 119, + 120, 120, 121, 121, 122, 122, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127 + }, + { + 0, 32, 32, 64, 96, 96, 128, 128, 2, 34, 34, 66, 98, 98, 130, 130, + 4, 36, 36, 68, 100, 100, 132, 132, 6, 38, 38, 70, 102, 102, 134, 134, + 8, 40, 40, 72, 104, 104, 136, 136, 10, 42, 42, 74, 106, 106, 138, 138, + 12, 44, 44, 76, 108, 108, 140, 140, 14, 46, 46, 78, 110, 110, 142, 142, + 16, 48, 48, 80, 112, 112, 144, 144, 18, 50, 50, 82, 114, 114, 146, 146, + 20, 52, 52, 84, 116, 116, 148, 148, 22, 54, 54, 86, 118, 118, 150, 150, + 24, 56, 56, 88, 120, 120, 152, 152, 26, 58, 58, 90, 122, 122, 154, 154, + 28, 60, 60, 92, 124, 124, 156, 156, 30, 62, 62, 94, 126, 126, 158, 158, + 159, 159, 127, 127, 95, 63, 63, 31, 157, 157, 125, 125, 93, 61, 61, 29, + 155, 155, 123, 123, 91, 59, 59, 27, 153, 153, 121, 121, 89, 57, 57, 25, + 151, 151, 119, 119, 87, 55, 55, 23, 149, 149, 117, 117, 85, 53, 53, 21, + 147, 147, 115, 115, 83, 51, 51, 19, 145, 145, 113, 113, 81, 49, 49, 17, + 143, 143, 111, 111, 79, 47, 47, 15, 141, 141, 109, 109, 77, 45, 45, 13, + 139, 139, 107, 107, 75, 43, 43, 11, 137, 137, 105, 105, 73, 41, 41, 9, + 135, 135, 103, 103, 71, 39, 39, 7, 133, 133, 101, 101, 69, 37, 37, 5, + 131, 131, 99, 99, 67, 35, 35, 3, 129, 129, 97, 97, 65, 33, 33, 1 + }, + { + 0, 64, 128, 128, 2, 66, 130, 130, 4, 68, 132, 132, 6, 70, 134, 134, + 8, 72, 136, 136, 10, 74, 138, 138, 12, 76, 140, 140, 14, 78, 142, 142, + 16, 80, 144, 144, 18, 82, 146, 146, 20, 84, 148, 148, 22, 86, 150, 150, + 24, 88, 152, 152, 26, 90, 154, 154, 28, 92, 156, 156, 30, 94, 158, 158, + 32, 96, 160, 160, 34, 98, 162, 162, 36, 100, 164, 164, 38, 102, 166, 166, + 40, 104, 168, 168, 42, 106, 170, 170, 44, 108, 172, 172, 46, 110, 174, 174, + 48, 112, 176, 176, 50, 114, 178, 178, 52, 116, 180, 180, 54, 118, 182, 182, + 56, 120, 184, 184, 58, 122, 186, 186, 60, 124, 188, 188, 62, 126, 190, 190, + 191, 191, 127, 63, 189, 189, 125, 61, 187, 187, 123, 59, 185, 185, 121, 57, + 183, 183, 119, 55, 181, 181, 117, 53, 179, 179, 115, 51, 177, 177, 113, 49, + 175, 175, 111, 47, 173, 173, 109, 45, 171, 171, 107, 43, 169, 169, 105, 41, + 167, 167, 103, 39, 165, 165, 101, 37, 163, 163, 99, 35, 161, 161, 97, 33, + 159, 159, 95, 31, 157, 157, 93, 29, 155, 155, 91, 27, 153, 153, 89, 25, + 151, 151, 87, 23, 149, 149, 85, 21, 147, 147, 83, 19, 145, 145, 81, 17, + 143, 143, 79, 15, 141, 141, 77, 13, 139, 139, 75, 11, 137, 137, 73, 9, + 135, 135, 71, 7, 133, 133, 69, 5, 131, 131, 67, 3, 129, 129, 65, 1 + }, + { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255 + } +}; + +#endif + +// Starts from QUANT_6 +// Scrambled +static const uint8_t color_scrambled_pquant_to_uquant_q6[6] { + 0, 255, 51, 204, 102, 153 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q8[8] { + 0, 36, 73, 109, 146, 182, 219, 255 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q10[10] { + 0, 255, 28, 227, 56, 199, 84, 171, 113, 142 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q12[12] { + 0, 255, 69, 186, 23, 232, 92, 163, 46, 209, 116, 139 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q16[16] { + 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q20[20] { + 0, 255, 67, 188, 13, 242, 80, 175, 27, 228, 94, 161, 40, 215, 107, 148, + 54, 201, 121, 134 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q24[24] { + 0, 255, 33, 222, 66, 189, 99, 156, 11, 244, 44, 211, 77, 178, 110, 145, + 22, 233, 55, 200, 88, 167, 121, 134 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q32[32] { + 0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, + 132, 140, 148, 156, 165, 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q40[40] { + 0, 255, 32, 223, 65, 190, 97, 158, 6, 249, 39, 216, 71, 184, 104, 151, + 13, 242, 45, 210, 78, 177, 110, 145, 19, 236, 52, 203, 84, 171, 117, 138, + 26, 229, 58, 197, 91, 164, 123, 132 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q48[48] { + 0, 255, 16, 239, 32, 223, 48, 207, 65, 190, 81, 174, 97, 158, 113, 142, + 5, 250, 21, 234, 38, 217, 54, 201, 70, 185, 86, 169, 103, 152, 119, 136, + 11, 244, 27, 228, 43, 212, 59, 196, 76, 179, 92, 163, 108, 147, 124, 131 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q64[64] { + 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, + 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, + 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, + 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q80[80] { + 0, 255, 16, 239, 32, 223, 48, 207, 64, 191, 80, 175, 96, 159, 112, 143, + 3, 252, 19, 236, 35, 220, 51, 204, 67, 188, 83, 172, 100, 155, 116, 139, + 6, 249, 22, 233, 38, 217, 54, 201, 71, 184, 87, 168, 103, 152, 119, 136, + 9, 246, 25, 230, 42, 213, 58, 197, 74, 181, 90, 165, 106, 149, 122, 133, + 13, 242, 29, 226, 45, 210, 61, 194, 77, 178, 93, 162, 109, 146, 125, 130 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q96[96] { + 0, 255, 8, 247, 16, 239, 24, 231, 32, 223, 40, 215, 48, 207, 56, 199, + 64, 191, 72, 183, 80, 175, 88, 167, 96, 159, 104, 151, 112, 143, 120, 135, + 2, 253, 10, 245, 18, 237, 26, 229, 35, 220, 43, 212, 51, 204, 59, 196, + 67, 188, 75, 180, 83, 172, 91, 164, 99, 156, 107, 148, 115, 140, 123, 132, + 5, 250, 13, 242, 21, 234, 29, 226, 37, 218, 45, 210, 53, 202, 61, 194, + 70, 185, 78, 177, 86, 169, 94, 161, 102, 153, 110, 145, 118, 137, 126, 129 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q128[128] { + 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, + 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, + 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, + 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, + 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, + 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, + 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, + 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q160[160] { + 0, 255, 8, 247, 16, 239, 24, 231, 32, 223, 40, 215, 48, 207, 56, 199, + 64, 191, 72, 183, 80, 175, 88, 167, 96, 159, 104, 151, 112, 143, 120, 135, + 1, 254, 9, 246, 17, 238, 25, 230, 33, 222, 41, 214, 49, 206, 57, 198, + 65, 190, 73, 182, 81, 174, 89, 166, 97, 158, 105, 150, 113, 142, 121, 134, + 3, 252, 11, 244, 19, 236, 27, 228, 35, 220, 43, 212, 51, 204, 59, 196, + 67, 188, 75, 180, 83, 172, 91, 164, 99, 156, 107, 148, 115, 140, 123, 132, + 4, 251, 12, 243, 20, 235, 28, 227, 36, 219, 44, 211, 52, 203, 60, 195, + 68, 187, 76, 179, 84, 171, 92, 163, 100, 155, 108, 147, 116, 139, 124, 131, + 6, 249, 14, 241, 22, 233, 30, 225, 38, 217, 46, 209, 54, 201, 62, 193, + 70, 185, 78, 177, 86, 169, 94, 161, 102, 153, 110, 145, 118, 137, 126, 129 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q192[192] { + 0, 255, 4, 251, 8, 247, 12, 243, 16, 239, 20, 235, 24, 231, 28, 227, + 32, 223, 36, 219, 40, 215, 44, 211, 48, 207, 52, 203, 56, 199, 60, 195, + 64, 191, 68, 187, 72, 183, 76, 179, 80, 175, 84, 171, 88, 167, 92, 163, + 96, 159, 100, 155, 104, 151, 108, 147, 112, 143, 116, 139, 120, 135, 124, 131, + 1, 254, 5, 250, 9, 246, 13, 242, 17, 238, 21, 234, 25, 230, 29, 226, + 33, 222, 37, 218, 41, 214, 45, 210, 49, 206, 53, 202, 57, 198, 61, 194, + 65, 190, 69, 186, 73, 182, 77, 178, 81, 174, 85, 170, 89, 166, 93, 162, + 97, 158, 101, 154, 105, 150, 109, 146, 113, 142, 117, 138, 121, 134, 125, 130, + 2, 253, 6, 249, 10, 245, 14, 241, 18, 237, 22, 233, 26, 229, 30, 225, + 34, 221, 38, 217, 42, 213, 46, 209, 50, 205, 54, 201, 58, 197, 62, 193, + 66, 189, 70, 185, 74, 181, 78, 177, 82, 173, 86, 169, 90, 165, 94, 161, + 98, 157, 102, 153, 106, 149, 110, 145, 114, 141, 118, 137, 122, 133, 126, 129 +}; + +static const uint8_t color_scrambled_pquant_to_uquant_q256[256] { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255 +}; + +const uint8_t* color_scrambled_pquant_to_uquant_tables[17] { + color_scrambled_pquant_to_uquant_q6, + color_scrambled_pquant_to_uquant_q8, + color_scrambled_pquant_to_uquant_q10, + color_scrambled_pquant_to_uquant_q12, + color_scrambled_pquant_to_uquant_q16, + color_scrambled_pquant_to_uquant_q20, + color_scrambled_pquant_to_uquant_q24, + color_scrambled_pquant_to_uquant_q32, + color_scrambled_pquant_to_uquant_q40, + color_scrambled_pquant_to_uquant_q48, + color_scrambled_pquant_to_uquant_q64, + color_scrambled_pquant_to_uquant_q80, + color_scrambled_pquant_to_uquant_q96, + color_scrambled_pquant_to_uquant_q128, + color_scrambled_pquant_to_uquant_q160, + color_scrambled_pquant_to_uquant_q192, + color_scrambled_pquant_to_uquant_q256 +}; + +// The quant_mode_table[integer_count/2][bits] gives us the quantization level for a given integer +// count and number of bits that the integer may fit into. +const int8_t quant_mode_table[10][128] { + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 + }, + { + -1, -1, 0, 0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, 0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, + 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, + 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, + 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, + 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, + 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, + 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, + 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, + 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, + 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, + 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, + 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, + 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, + 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, + 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, + 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, + 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, + 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, + 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, + 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, + 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, + 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19 + }, + { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, + 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, + 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, + 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, + 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, + 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, + 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17 + } +}; diff --git a/thirdparty/astcenc/astcenc_symbolic_physical.cpp b/thirdparty/astcenc/astcenc_symbolic_physical.cpp new file mode 100644 index 0000000000..80221a6013 --- /dev/null +++ b/thirdparty/astcenc/astcenc_symbolic_physical.cpp @@ -0,0 +1,534 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Functions for converting between symbolic and physical encodings. + */ + +#include "astcenc_internal.h" + +#include <cassert> + +/** + * @brief Write up to 8 bits at an arbitrary bit offset. + * + * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so + * may span two separate bytes in memory. + * + * @param value The value to write. + * @param bitcount The number of bits to write, starting from LSB. + * @param bitoffset The bit offset to store at, between 0 and 7. + * @param[in,out] ptr The data pointer to write to. + */ +static inline void write_bits( + int value, + int bitcount, + int bitoffset, + uint8_t* ptr +) { + int mask = (1 << bitcount) - 1; + value &= mask; + ptr += bitoffset >> 3; + bitoffset &= 7; + value <<= bitoffset; + mask <<= bitoffset; + mask = ~mask; + + ptr[0] &= mask; + ptr[0] |= value; + ptr[1] &= mask >> 8; + ptr[1] |= value >> 8; +} + +/** + * @brief Read up to 8 bits at an arbitrary bit offset. + * + * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may + * span two separate bytes in memory. + * + * @param bitcount The number of bits to read. + * @param bitoffset The bit offset to read from, between 0 and 7. + * @param[in,out] ptr The data pointer to read from. + * + * @return The read value. + */ +static inline int read_bits( + int bitcount, + int bitoffset, + const uint8_t* ptr +) { + int mask = (1 << bitcount) - 1; + ptr += bitoffset >> 3; + bitoffset &= 7; + int value = ptr[0] | (ptr[1] << 8); + value >>= bitoffset; + value &= mask; + return value; +} + +/** + * @brief Reverse bits in a byte. + * + * @param p The value to reverse. + * + * @return The reversed result. + */ +static inline int bitrev8(int p) +{ + p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F); + p = ((p & 0x33) << 2) | ((p >> 2) & 0x33); + p = ((p & 0x55) << 1) | ((p >> 1) & 0x55); + return p; +} + +/* See header for documentation. */ +void symbolic_to_physical( + const block_size_descriptor& bsd, + const symbolic_compressed_block& scb, + physical_compressed_block& pcb +) { + assert(scb.block_type != SYM_BTYPE_ERROR); + + // Constant color block using UNORM16 colors + if (scb.block_type == SYM_BTYPE_CONST_U16) + { + // There is currently no attempt to coalesce larger void-extents + static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; + for (unsigned int i = 0; i < 8; i++) + { + pcb.data[i] = cbytes[i]; + } + + for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) + { + pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; + pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; + } + + return; + } + + // Constant color block using FP16 colors + if (scb.block_type == SYM_BTYPE_CONST_F16) + { + // There is currently no attempt to coalesce larger void-extents + static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; + for (unsigned int i = 0; i < 8; i++) + { + pcb.data[i] = cbytes[i]; + } + + for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++) + { + pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF; + pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF; + } + + return; + } + + unsigned int partition_count = scb.partition_count; + + // Compress the weights. + // They are encoded as an ordinary integer-sequence, then bit-reversed + uint8_t weightbuf[16] { 0 }; + + const auto& bm = bsd.get_block_mode(scb.block_mode); + const auto& di = bsd.get_decimation_info(bm.decimation_mode); + int weight_count = di.weight_count; + quant_method weight_quant_method = bm.get_weight_quant_mode(); + float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method)); + int is_dual_plane = bm.is_dual_plane; + + const auto& qat = quant_and_xfer_tables[weight_quant_method]; + + int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; + + int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); + + uint8_t weights[64]; + if (is_dual_plane) + { + for (int i = 0; i < weight_count; i++) + { + float uqw = static_cast<float>(scb.weights[i]); + float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); + int qwi = static_cast<int>(qw + 0.5f); + weights[2 * i] = qat.scramble_map[qwi]; + + uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]); + qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); + qwi = static_cast<int>(qw + 0.5f); + weights[2 * i + 1] = qat.scramble_map[qwi]; + } + } + else + { + for (int i = 0; i < weight_count; i++) + { + float uqw = static_cast<float>(scb.weights[i]); + float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f); + int qwi = static_cast<int>(qw + 0.5f); + weights[i] = qat.scramble_map[qwi]; + } + } + + encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0); + + for (int i = 0; i < 16; i++) + { + pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i])); + } + + write_bits(scb.block_mode, 11, 0, pcb.data); + write_bits(partition_count - 1, 2, 11, pcb.data); + + int below_weights_pos = 128 - bits_for_weights; + + // Encode partition index and color endpoint types for blocks with 2+ partitions + if (partition_count > 1) + { + write_bits(scb.partition_index, 6, 13, pcb.data); + write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data); + + if (scb.color_formats_matched) + { + write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data); + } + else + { + // Check endpoint types for each partition to determine the lowest class present + int low_class = 4; + + for (unsigned int i = 0; i < partition_count; i++) + { + int class_of_format = scb.color_formats[i] >> 2; + low_class = astc::min(class_of_format, low_class); + } + + if (low_class == 3) + { + low_class = 2; + } + + int encoded_type = low_class + 1; + int bitpos = 2; + + for (unsigned int i = 0; i < partition_count; i++) + { + int classbit_of_format = (scb.color_formats[i] >> 2) - low_class; + encoded_type |= classbit_of_format << bitpos; + bitpos++; + } + + for (unsigned int i = 0; i < partition_count; i++) + { + int lowbits_of_format = scb.color_formats[i] & 3; + encoded_type |= lowbits_of_format << bitpos; + bitpos += 2; + } + + int encoded_type_lowpart = encoded_type & 0x3F; + int encoded_type_highpart = encoded_type >> 6; + int encoded_type_highpart_size = (3 * partition_count) - 4; + int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size; + write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data); + write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data); + below_weights_pos -= encoded_type_highpart_size; + } + } + else + { + write_bits(scb.color_formats[0], 4, 13, pcb.data); + } + + // In dual-plane mode, encode the color component of the second plane of weights + if (is_dual_plane) + { + write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data); + } + + // Encode the color components + uint8_t values_to_encode[32]; + int valuecount_to_encode = 0; + + const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6]; + for (unsigned int i = 0; i < scb.partition_count; i++) + { + int vals = 2 * (scb.color_formats[i] >> 2) + 2; + assert(vals <= 8); + for (int j = 0; j < vals; j++) + { + values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]]; + } + valuecount_to_encode += vals; + } + + encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data, + scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS); +} + +/* See header for documentation. */ +void physical_to_symbolic( + const block_size_descriptor& bsd, + const physical_compressed_block& pcb, + symbolic_compressed_block& scb +) { + uint8_t bswapped[16]; + + scb.block_type = SYM_BTYPE_NONCONST; + + // Extract header fields + int block_mode = read_bits(11, 0, pcb.data); + if ((block_mode & 0x1FF) == 0x1FC) + { + // Constant color block + + // Check what format the data has + if (block_mode & 0x200) + { + scb.block_type = SYM_BTYPE_CONST_F16; + } + else + { + scb.block_type = SYM_BTYPE_CONST_U16; + } + + scb.partition_count = 0; + for (int i = 0; i < 4; i++) + { + scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8); + } + + // Additionally, check that the void-extent + if (bsd.zdim == 1) + { + // 2D void-extent + int rsvbits = read_bits(2, 10, pcb.data); + if (rsvbits != 3) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + + int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8); + int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8); + int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8); + int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8); + + int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF; + + if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + } + else + { + // 3D void-extent + int vx_low_s = read_bits(9, 10, pcb.data); + int vx_high_s = read_bits(9, 19, pcb.data); + int vx_low_t = read_bits(9, 28, pcb.data); + int vx_high_t = read_bits(9, 37, pcb.data); + int vx_low_p = read_bits(9, 46, pcb.data); + int vx_high_p = read_bits(9, 55, pcb.data); + + int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF; + + if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + } + + return; + } + + unsigned int packed_index = bsd.block_mode_packed_index[block_mode]; + if (packed_index == BLOCK_BAD_BLOCK_MODE) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + + const auto& bm = bsd.get_block_mode(block_mode); + const auto& di = bsd.get_decimation_info(bm.decimation_mode); + + int weight_count = di.weight_count; + promise(weight_count > 0); + + quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode); + int is_dual_plane = bm.is_dual_plane; + + int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count; + + int partition_count = read_bits(2, 11, pcb.data) + 1; + promise(partition_count > 0); + + scb.block_mode = static_cast<uint16_t>(block_mode); + scb.partition_count = static_cast<uint8_t>(partition_count); + + for (int i = 0; i < 16; i++) + { + bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i])); + } + + int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method); + + int below_weights_pos = 128 - bits_for_weights; + + uint8_t indices[64]; + const auto& qat = quant_and_xfer_tables[weight_quant_method]; + + decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0); + + if (is_dual_plane) + { + for (int i = 0; i < weight_count; i++) + { + scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]]; + scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]]; + } + } + else + { + for (int i = 0; i < weight_count; i++) + { + scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]]; + } + } + + if (is_dual_plane && partition_count == 4) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + + scb.color_formats_matched = 0; + + // Determine the format of each endpoint pair + int color_formats[BLOCK_MAX_PARTITIONS]; + int encoded_type_highpart_size = 0; + if (partition_count == 1) + { + color_formats[0] = read_bits(4, 13, pcb.data); + scb.partition_index = 0; + } + else + { + encoded_type_highpart_size = (3 * partition_count) - 4; + below_weights_pos -= encoded_type_highpart_size; + int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6); + int baseclass = encoded_type & 0x3; + if (baseclass == 0) + { + for (int i = 0; i < partition_count; i++) + { + color_formats[i] = (encoded_type >> 2) & 0xF; + } + + below_weights_pos += encoded_type_highpart_size; + scb.color_formats_matched = 1; + encoded_type_highpart_size = 0; + } + else + { + int bitpos = 2; + baseclass--; + + for (int i = 0; i < partition_count; i++) + { + color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2; + bitpos++; + } + + for (int i = 0; i < partition_count; i++) + { + color_formats[i] |= (encoded_type >> bitpos) & 3; + bitpos += 2; + } + } + scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6)); + } + + for (int i = 0; i < partition_count; i++) + { + scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]); + } + + // Determine number of color endpoint integers + int color_integer_count = 0; + for (int i = 0; i < partition_count; i++) + { + int endpoint_class = color_formats[i] >> 2; + color_integer_count += (endpoint_class + 1) * 2; + } + + if (color_integer_count > 18) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + + // Determine the color endpoint format to use + static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS }; + int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size; + if (is_dual_plane) + { + color_bits -= 2; + } + + if (color_bits < 0) + { + color_bits = 0; + } + + int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits]; + if (color_quant_level < QUANT_6) + { + scb.block_type = SYM_BTYPE_ERROR; + return; + } + + // Unpack the integer color values and assign to endpoints + scb.quant_mode = static_cast<quant_method>(color_quant_level); + + uint8_t values_to_decode[32]; + decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data, + values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS)); + + int valuecount_to_decode = 0; + const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6]; + for (int i = 0; i < partition_count; i++) + { + int vals = 2 * (color_formats[i] >> 2) + 2; + for (int j = 0; j < vals; j++) + { + scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]]; + } + valuecount_to_decode += vals; + } + + // Fetch component for second-plane in the case of dual plane of weights. + scb.plane2_component = -1; + if (is_dual_plane) + { + scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data)); + } +} diff --git a/thirdparty/astcenc/astcenc_vecmathlib.h b/thirdparty/astcenc/astcenc_vecmathlib.h new file mode 100644 index 0000000000..d48f1d73ea --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib.h @@ -0,0 +1,570 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// Copyright 2008 Jose Fonseca +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/* + * This module implements vector support for floats, ints, and vector lane + * control masks. It provides access to both explicit vector width types, and + * flexible N-wide types where N can be determined at compile time. + * + * The design of this module encourages use of vector length agnostic code, via + * the vint, vfloat, and vmask types. These will take on the widest SIMD vector + * with that is available at compile time. The current vector width is + * accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant. + * + * Explicit scalar types are accessible via the vint1, vfloat1, vmask1 types. + * These are provided primarily for prototyping and algorithm debug of VLA + * implementations. + * + * Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4 + * types. These are provided for use by VLA code, but are also expected to be + * used as a fixed-width type and will supported a reference C++ fallback for + * use on platforms without SIMD intrinsics. + * + * Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8 + * types. These are provide for use by VLA code, and are not expected to be + * used as a fixed-width type in normal code. No reference C implementation is + * provided on platforms without underlying SIMD intrinsics. + * + * With the current implementation ISA support is provided for: + * + * * 1-wide for scalar reference. + * * 4-wide for Armv8-A NEON. + * * 4-wide for x86-64 SSE2. + * * 4-wide for x86-64 SSE4.1. + * * 8-wide for x86-64 AVX2. + */ + +#ifndef ASTC_VECMATHLIB_H_INCLUDED +#define ASTC_VECMATHLIB_H_INCLUDED + +#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0 + #include <immintrin.h> +#elif ASTCENC_NEON != 0 + #include <arm_neon.h> +#endif + +#if !defined(__clang__) && defined(_MSC_VER) + #define ASTCENC_SIMD_INLINE __forceinline + #define ASTCENC_NO_INLINE +#elif defined(__GNUC__) && !defined(__clang__) + #define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline + #define ASTCENC_NO_INLINE __attribute__ ((noinline)) +#else + #define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline + #define ASTCENC_NO_INLINE __attribute__ ((noinline)) +#endif + +#if ASTCENC_AVX >= 2 + /* If we have AVX2 expose 8-wide VLA. */ + #include "astcenc_vecmathlib_sse_4.h" + #include "astcenc_vecmathlib_common_4.h" + #include "astcenc_vecmathlib_avx2_8.h" + + #define ASTCENC_SIMD_WIDTH 8 + + using vfloat = vfloat8; + + #if defined(ASTCENC_NO_INVARIANCE) + using vfloatacc = vfloat8; + #else + using vfloatacc = vfloat4; + #endif + + using vint = vint8; + using vmask = vmask8; + + constexpr auto loada = vfloat8::loada; + constexpr auto load1 = vfloat8::load1; + +#elif ASTCENC_SSE >= 20 + /* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */ + #include "astcenc_vecmathlib_sse_4.h" + #include "astcenc_vecmathlib_common_4.h" + + #define ASTCENC_SIMD_WIDTH 4 + + using vfloat = vfloat4; + using vfloatacc = vfloat4; + using vint = vint4; + using vmask = vmask4; + + constexpr auto loada = vfloat4::loada; + constexpr auto load1 = vfloat4::load1; + +#elif ASTCENC_NEON > 0 + /* If we have NEON expose 4-wide VLA. */ + #include "astcenc_vecmathlib_neon_4.h" + #include "astcenc_vecmathlib_common_4.h" + + #define ASTCENC_SIMD_WIDTH 4 + + using vfloat = vfloat4; + using vfloatacc = vfloat4; + using vint = vint4; + using vmask = vmask4; + + constexpr auto loada = vfloat4::loada; + constexpr auto load1 = vfloat4::load1; + +#else + // If we have nothing expose 4-wide VLA, and 4-wide fixed width. + + // Note: We no longer expose the 1-wide scalar fallback because it is not + // invariant with the 4-wide path due to algorithms that use horizontal + // operations that accumulate a local vector sum before accumulating into + // a running sum. + // + // For 4 items adding into an accumulator using 1-wide vectors the sum is: + // + // result = ((((sum + l0) + l1) + l2) + l3) + // + // ... whereas the accumulator for a 4-wide vector sum is: + // + // result = sum + ((l0 + l2) + (l1 + l3)) + // + // In "normal maths" this is the same, but the floating point reassociation + // differences mean that these will not produce the same result. + + #include "astcenc_vecmathlib_none_4.h" + #include "astcenc_vecmathlib_common_4.h" + + #define ASTCENC_SIMD_WIDTH 4 + + using vfloat = vfloat4; + using vfloatacc = vfloat4; + using vint = vint4; + using vmask = vmask4; + + constexpr auto loada = vfloat4::loada; + constexpr auto load1 = vfloat4::load1; +#endif + +/** + * @brief Round a count down to the largest multiple of 8. + * + * @param count The unrounded value. + * + * @return The rounded value. + */ +ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count) +{ + return count & static_cast<unsigned int>(~(8 - 1)); +} + +/** + * @brief Round a count down to the largest multiple of 4. + * + * @param count The unrounded value. + * + * @return The rounded value. + */ +ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count) +{ + return count & static_cast<unsigned int>(~(4 - 1)); +} + +/** + * @brief Round a count down to the largest multiple of the SIMD width. + * + * Assumption that the vector width is a power of two ... + * + * @param count The unrounded value. + * + * @return The rounded value. + */ +ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count) +{ + return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1)); +} + +/** + * @brief Round a count up to the largest multiple of the SIMD width. + * + * Assumption that the vector width is a power of two ... + * + * @param count The unrounded value. + * + * @return The rounded value. + */ +ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count) +{ + unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH; + return multiples * ASTCENC_SIMD_WIDTH; +} + +/** + * @brief Return @c a with lanes negated if the @c b lane is negative. + */ +ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b) +{ + vint ia = float_as_int(a); + vint ib = float_as_int(b); + vint sign_mask(static_cast<int>(0x80000000)); + vint r = ia ^ (ib & sign_mask); + return int_as_float(r); +} + +/** + * @brief Return fast, but approximate, vector atan(x). + * + * Max error of this implementation is 0.004883. + */ +ASTCENC_SIMD_INLINE vfloat atan(vfloat x) +{ + vmask c = abs(x) > vfloat(1.0f); + vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x); + vfloat y = select(x, vfloat(1.0f) / x, c); + y = y / (y * y * vfloat(0.28f) + vfloat(1.0f)); + return select(y, z - y, c); +} + +/** + * @brief Return fast, but approximate, vector atan2(x, y). + */ +ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x) +{ + vfloat z = atan(abs(y / x)); + vmask xmask = vmask(float_as_int(x).m); + return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y); +} + +/* + * @brief Factory that returns a unit length 4 component vfloat4. + */ +static ASTCENC_SIMD_INLINE vfloat4 unit4() +{ + return vfloat4(0.5f); +} + +/** + * @brief Factory that returns a unit length 3 component vfloat4. + */ +static ASTCENC_SIMD_INLINE vfloat4 unit3() +{ + float val = 0.577350258827209473f; + return vfloat4(val, val, val, 0.0f); +} + +/** + * @brief Factory that returns a unit length 2 component vfloat4. + */ +static ASTCENC_SIMD_INLINE vfloat4 unit2() +{ + float val = 0.707106769084930420f; + return vfloat4(val, val, 0.0f, 0.0f); +} + +/** + * @brief Factory that returns a 3 component vfloat4. + */ +static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c) +{ + return vfloat4(a, b, c, 0.0f); +} + +/** + * @brief Factory that returns a 2 component vfloat4. + */ +static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b) +{ + return vfloat4(a, b, 0.0f, 0.0f); +} + +/** + * @brief Normalize a non-zero length vector to unit length. + */ +static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a) +{ + vfloat4 length = dot(a, a); + return a / sqrt(length); +} + +/** + * @brief Normalize a vector, returning @c safe if len is zero. + */ +static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe) +{ + vfloat4 length = dot(a, a); + if (length.lane<0>() != 0.0f) + { + return a / sqrt(length); + } + + return safe; +} + + + +#define POLY0(x, c0) ( c0) +#define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0) +#define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0) +#define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0) +#define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0) +#define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0) + +/** + * @brief Compute an approximate exp2(x) for each lane in the vector. + * + * Based on 5th degree minimax polynomials, ported from this blog + * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html + */ +static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x) +{ + x = clamp(-126.99999f, 129.0f, x); + + vint4 ipart = float_to_int(x - 0.5f); + vfloat4 fpart = x - int_to_float(ipart); + + // Integer contrib, using 1 << ipart + vfloat4 iexp = int_as_float(lsl<23>(ipart + 127)); + + // Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5) + vfloat4 fexp = POLY5(fpart, + 9.9999994e-1f, + 6.9315308e-1f, + 2.4015361e-1f, + 5.5826318e-2f, + 8.9893397e-3f, + 1.8775767e-3f); + + return iexp * fexp; +} + +/** + * @brief Compute an approximate log2(x) for each lane in the vector. + * + * Based on 5th degree minimax polynomials, ported from this blog + * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html + */ +static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x) +{ + vint4 exp(0x7F800000); + vint4 mant(0x007FFFFF); + vint4 one(0x3F800000); + + vint4 i = float_as_int(x); + + vfloat4 e = int_to_float(lsr<23>(i & exp) - 127); + + vfloat4 m = int_as_float((i & mant) | one); + + // Polynomial fit of log2(x)/(x - 1), for x in range [1, 2) + vfloat4 p = POLY4(m, + 2.8882704548164776201f, + -2.52074962577807006663f, + 1.48116647521213171641f, + -0.465725644288844778798f, + 0.0596515482674574969533f); + + // Increases the polynomial degree, but ensures that log2(1) == 0 + p = p * (m - 1.0f); + + return p + e; +} + +/** + * @brief Compute an approximate pow(x, y) for each lane in the vector. + * + * Power function based on the exp2(log2(x) * y) transform. + */ +static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y) +{ + vmask4 zero_mask = y == vfloat4(0.0f); + vfloat4 estimate = exp2(log2(x) * y); + + // Guarantee that y == 0 returns exactly 1.0f + return select(estimate, vfloat4(1.0f), zero_mask); +} + +/** + * @brief Count the leading zeros for each lane in @c a. + * + * Valid for all data values of @c a; will return a per-lane value [0, 32]. + */ +static ASTCENC_SIMD_INLINE vint4 clz(vint4 a) +{ + // This function is a horrible abuse of floating point exponents to convert + // the original integer value into a 2^N encoding we can recover easily. + + // Convert to float without risk of rounding up by keeping only top 8 bits. + // This trick is is guaranteed to keep top 8 bits and clear the 9th. + a = (~lsr<8>(a)) & a; + a = float_as_int(int_to_float(a)); + + // Extract and unbias exponent + a = vint4(127 + 31) - lsr<23>(a); + + // Clamp result to a valid 32-bit range + return clamp(0, 32, a); +} + +/** + * @brief Return lanewise 2^a for each lane in @c a. + * + * Use of signed int means that this is only valid for values in range [0, 31]. + */ +static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a) +{ + // 2^30 is the largest signed number than can be represented + assert(all(a < vint4(31))); + + // This function is a horrible abuse of floating point to use the exponent + // and float conversion to generate a 2^N multiple. + + // Bias the exponent + vint4 exp = a + 127; + exp = lsl<23>(exp); + + // Reinterpret the bits as a float, and then convert to an int + vfloat4 f = int_as_float(exp); + return float_to_int(f); +} + +/** + * @brief Convert unorm16 [0, 65535] to float16 in range [0, 1]. + */ +static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p) +{ + vint4 fp16_one = vint4(0x3C00); + vint4 fp16_small = lsl<8>(p); + + vmask4 is_one = p == vint4(0xFFFF); + vmask4 is_small = p < vint4(4); + + // Manually inline clz() on Visual Studio to avoid release build codegen bug + // see https://github.com/ARM-software/astc-encoder/issues/259 +#if !defined(__clang__) && defined(_MSC_VER) + vint4 a = (~lsr<8>(p)) & p; + a = float_as_int(int_to_float(a)); + a = vint4(127 + 31) - lsr<23>(a); + vint4 lz = clamp(0, 32, a) - 16; +#else + vint4 lz = clz(p) - 16; +#endif + + p = p * two_to_the_n(lz + 1); + p = p & vint4(0xFFFF); + + p = lsr<6>(p); + + p = p | lsl<10>(vint4(14) - lz); + + vint4 r = select(p, fp16_one, is_one); + r = select(r, fp16_small, is_small); + return r; +} + +/** + * @brief Convert 16-bit LNS to float16. + */ +static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p) +{ + vint4 mc = p & 0x7FF; + vint4 ec = lsr<11>(p); + + vint4 mc_512 = mc * 3; + vmask4 mask_512 = mc < vint4(512); + + vint4 mc_1536 = mc * 4 - 512; + vmask4 mask_1536 = mc < vint4(1536); + + vint4 mc_else = mc * 5 - 2048; + + vint4 mt = mc_else; + mt = select(mt, mc_1536, mask_1536); + mt = select(mt, mc_512, mask_512); + + vint4 res = lsl<10>(ec) | lsr<3>(mt); + return min(res, vint4(0x7BFF)); +} + +/** + * @brief Extract mantissa and exponent of a float value. + * + * @param a The input value. + * @param[out] exp The output exponent. + * + * @return The mantissa. + */ +static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp) +{ + // Interpret the bits as an integer + vint4 ai = float_as_int(a); + + // Extract and unbias the exponent + exp = (lsr<23>(ai) & 0xFF) - 126; + + // Extract and unbias the mantissa + vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000; + return int_as_float(manti); +} + +/** + * @brief Convert float to 16-bit LNS. + */ +static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a) +{ + vint4 exp; + vfloat4 mant = frexp(a, exp); + + // Do these early before we start messing about ... + vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f)); + vmask4 mask_infinity = a >= vfloat4(65536.0f); + + // If input is smaller than 2^-14, multiply by 2^25 and don't bias. + vmask4 exp_lt_m13 = exp < vint4(-13); + + vfloat4 a1a = a * 33554432.0f; + vint4 expa = vint4::zero(); + + vfloat4 a1b = (mant - 0.5f) * 4096; + vint4 expb = exp + 14; + + a = select(a1b, a1a, exp_lt_m13); + exp = select(expb, expa, exp_lt_m13); + + vmask4 a_lt_384 = a < vfloat4(384.0f); + vmask4 a_lt_1408 = a <= vfloat4(1408.0f); + + vfloat4 a2a = a * (4.0f / 3.0f); + vfloat4 a2b = a + 128.0f; + vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f); + + a = a2c; + a = select(a, a2b, a_lt_1408); + a = select(a, a2a, a_lt_384); + + a = a + (int_to_float(exp) * 2048.0f) + 1.0f; + + a = select(a, vfloat4(65535.0f), mask_infinity); + a = select(a, vfloat4::zero(), mask_underflow_nan); + + return a; +} + +namespace astc +{ + +static ASTCENC_SIMD_INLINE float pow(float x, float y) +{ + return pow(vfloat4(x), vfloat4(y)).lane<0>(); +} + +} + +#endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h new file mode 100644 index 0000000000..a785aca75b --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h @@ -0,0 +1,1204 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 8x32-bit vectors, implemented using AVX2. + * + * This module implements 8-wide 32-bit float, int, and mask vectors for x86 + * AVX2. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + */ + +#ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED +#define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// Define convenience intrinsics that are missing on older compilers +#define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1) + +// ============================================================================ +// vfloat8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide floats. + */ +struct vfloat8 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat8() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(const float *p) + { + m = _mm256_loadu_ps(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(float a) + { + m = _mm256_set1_ps(a); + } + + /** + * @brief Construct from 8 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat8( + float a, float b, float c, float d, + float e, float f, float g, float h) + { + m = _mm256_set_ps(h, g, f, e, d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + #if !defined(__clang__) && defined(_MSC_VER) + return m.m256_f32[l]; + #else + union { __m256 m; float f[8]; } cvt; + cvt.m = m; + return cvt.f[l]; + #endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat8 zero() + { + return vfloat8(_mm256_setzero_ps()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p) + { + return vfloat8(_mm256_broadcast_ss(p)); + } + + /** + * @brief Factory that returns a vector loaded from 32B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p) + { + return vfloat8(_mm256_load_ps(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat8 lane_id() + { + return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m256 m; +}; + +// ============================================================================ +// vint8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide ints. + */ +struct vint8 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint8() = default; + + /** + * @brief Construct from 8 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint8(const int *p) + { + m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p)); + } + + /** + * @brief Construct from 8 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p) + { + // _mm_loadu_si64 would be nicer syntax, but missing on older GCC + m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p))); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint8(int a) + { + m = _mm256_set1_epi32(a); + } + + /** + * @brief Construct from 8 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint8( + int a, int b, int c, int d, + int e, int f, int g, int h) + { + m = _mm256_set_epi32(h, g, f, e, d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint8(__m256i a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + #if !defined(__clang__) && defined(_MSC_VER) + return m.m256i_i32[l]; + #else + union { __m256i m; int f[8]; } cvt; + cvt.m = m; + return cvt.f[l]; + #endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint8 zero() + { + return vint8(_mm256_setzero_si256()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint8 load1(const int* p) + { + __m128i a = _mm_set1_epi32(*p); + return vint8(_mm256_broadcastd_epi32(a)); + } + + /** + * @brief Factory that returns a vector loaded from 32B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint8 loada(const int* p) + { + return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p))); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint8 lane_id() + { + return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m256i m; +}; + +// ============================================================================ +// vmask8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide control plane masks. + */ +struct vmask8 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask8(__m256 a) + { + m = a; + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask8(__m256i a) + { + m = _mm256_castsi256_ps(a); + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask8(bool a) + { + vint8 mask(a == false ? 0 : -1); + m = _mm256_castsi256_ps(mask.m); + } + + /** + * @brief The vector ... + */ + __m256 m; +}; + +// ============================================================================ +// vmask8 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_or_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_and_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_xor_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a) +{ + return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1))); +} + +/** + * @brief Return a 8-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a) +{ + return static_cast<unsigned int>(_mm256_movemask_ps(a.m)); +} + +/** + * @brief True if any lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool any(vmask8 a) +{ + return mask(a) != 0; +} + +/** + * @brief True if all lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool all(vmask8 a) +{ + return mask(a) == 0xFF; +} + +// ============================================================================ +// vint8 operators and functions +// ============================================================================ +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b) +{ + return vint8(_mm256_add_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b) +{ + return vint8(_mm256_sub_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b) +{ + return vint8(_mm256_mullo_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint8 operator~(vint8 a) +{ + return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1))); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b) +{ + return vint8(_mm256_or_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b) +{ + return vint8(_mm256_and_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b) +{ + return vint8(_mm256_xor_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b) +{ + return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpgt_epi32(b.m, a.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpgt_epi32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a) +{ + return vint8(_mm256_slli_epi32(a.m, s)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a) +{ + return vint8(_mm256_srai_epi32(a.m, s)); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a) +{ + return vint8(_mm256_srli_epi32(a.m, s)); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b) +{ + return vint8(_mm256_min_epi32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b) +{ + return vint8(_mm256_max_epi32(a.m, b.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint8 hmin(vint8 a) +{ + __m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); + m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); + m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); + m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); + + __m256i r = astcenc_mm256_set_m128i(m, m); + vint8 vmin(r); + return vmin; +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint8 hmax(vint8 a) +{ + __m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); + m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); + m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); + m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); + + __m256i r = astcenc_mm256_set_m128i(m, m); + vint8 vmax(r); + return vmax; +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint8 a, int* p) +{ + _mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint8 a, int* p) +{ + _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p) +{ + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + // _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0)) + _mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0)); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices) +{ + return vint8(_mm256_i32gather_epi32(base, indices.m, 4)); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v) +{ + __m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 28, 24, 20, 16, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 12, 8, 4, 0); + __m256i a = _mm256_shuffle_epi8(v.m, shuf); + __m128i a0 = _mm256_extracti128_si256(a, 0); + __m128i a1 = _mm256_extracti128_si256(a, 1); + __m128i b = _mm_unpacklo_epi32(a0, a1); + + __m256i r = astcenc_mm256_set_m128i(b, b); + return vint8(r); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond) +{ + __m256i condi = _mm256_castps_si256(cond.m); + return vint8(_mm256_blendv_epi8(a.m, b.m, condi)); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_add_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_sub_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_mul_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by scalar multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b) +{ + return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b))); +} + +/** + * @brief Overload: scalar by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b) +{ + return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_div_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by scalar division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b) +{ + return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b))); +} + + +/** + * @brief Overload: scalar by vector division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b) +{ + return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m)); +} + + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_min_ps(a.m, b.m)); +} + +/** + * @brief Return the min vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b) +{ + return min(a, vfloat8(b)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_max_ps(a.m, b.m)); +} + +/** + * @brief Return the max vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b) +{ + return max(a, vfloat8(b)); +} + +/** + * @brief Return the clamped value between min and max. + * + * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN + * then @c min will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a) +{ + // Do not reorder - second operand will return if either is NaN + a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min)); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); + return a; +} + +/** + * @brief Return a clamped value between 0.0f and max. + * + * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will + * be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a) +{ + a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); + return a; +} + +/** + * @brief Return a clamped value between 0.0f and 1.0f. + * + * If @c a is NaN then zero will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a) +{ + a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f)); + return a; +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a) +{ + __m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff)); + return vfloat8(_mm256_and_ps(a.m, msk)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a) +{ + constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; + return vfloat8(_mm256_round_ps(a.m, flags)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a) +{ + __m128 vlow = _mm256_castps256_ps128(a.m); + __m128 vhigh = _mm256_extractf128_ps(a.m, 1); + vlow = _mm_min_ps(vlow, vhigh); + + // First do an horizontal reduction. + __m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1)); + __m128 mins = _mm_min_ps(vlow, shuf); + shuf = _mm_movehl_ps(shuf, mins); + mins = _mm_min_ss(mins, shuf); + + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + //__m256i r = _mm256_set_m128(m, m) + __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1); + + return vfloat8(_mm256_permute_ps(r, 0)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a) +{ + return hmin(a).lane<0>(); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a) +{ + __m128 vlow = _mm256_castps256_ps128(a.m); + __m128 vhigh = _mm256_extractf128_ps(a.m, 1); + vhigh = _mm_max_ps(vlow, vhigh); + + // First do an horizontal reduction. + __m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1)); + __m128 maxs = _mm_max_ps(vhigh, shuf); + shuf = _mm_movehl_ps(shuf,maxs); + maxs = _mm_max_ss(maxs, shuf); + + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + //__m256i r = _mm256_set_m128(m, m) + __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1); + return vfloat8(_mm256_permute_ps(r, 0)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a) +{ + return hmax(a).lane<0>(); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a) +{ + // Two sequential 4-wide adds gives invariance with 4-wide code + vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); + vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); + return hadd_s(lo) + hadd_s(hi); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond) +{ + return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond) +{ + return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); +} + +/** + * @brief Accumulate lane-wise sums for a vector, folded 4-wide. + * + * This is invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a) +{ + vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); + haccumulate(accum, lo); + + vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); + haccumulate(accum, hi); +} + +/** + * @brief Accumulate lane-wise sums for a vector. + * + * This is NOT invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a) +{ + accum += a; +} + +/** + * @brief Accumulate masked lane-wise sums for a vector, folded 4-wide. + * + * This is invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m) +{ + a = select(vfloat8::zero(), a, m); + haccumulate(accum, a); +} + +/** + * @brief Accumulate masked lane-wise sums for a vector. + * + * This is NOT invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m) +{ + a = select(vfloat8::zero(), a, m); + haccumulate(accum, a); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a) +{ + return vfloat8(_mm256_sqrt_ps(a.m)); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices) +{ + return vfloat8(_mm256_i32gather_ps(base, indices.m, 4)); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p) +{ + _mm256_storeu_ps(p, a.m); +} + +/** + * @brief Store a vector to a 32B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p) +{ + _mm256_store_ps(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a) +{ + return vint8(_mm256_cvttps_epi32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a) +{ + a = round(a); + return vint8(_mm256_cvttps_epi32(a.m)); +} + + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a) +{ + return vfloat8(_mm256_cvtepi32_ps(a.m)); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a) +{ + return vint8(_mm256_castps_si256(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a) +{ + return vfloat8(_mm256_castsi256_ps(a.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); + + __m128i t1n = _mm_xor_si128(t0.m, t1.m); + t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); + + __m128i t1n = _mm_xor_si128(t0.m, t1.m); + t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); + + __m128i t2n = _mm_xor_si128(t1.m, t2.m); + t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n)); + + __m128i t3n = _mm_xor_si128(t2.m, t3.m); + t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n)); +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + return vint8(result); +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); + result = _mm256_xor_si256(result, result2); + return vint8(result); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); + result = _mm256_xor_si256(result, result2); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + result2 = _mm256_shuffle_epi8(t2.m, idxx); + result = _mm256_xor_si256(result, result2); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + result2 = _mm256_shuffle_epi8(t3.m, idxx); + result = _mm256_xor_si256(result, result2); + + return vint8(result); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint8 data, vmask8 mask) +{ + _mm256_maskstore_epi32(base, _mm256_castps_si256(mask.m), data.m); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void print(vint8 a) +{ + alignas(ASTCENC_VECALIGN) int v[8]; + storea(a, v); + printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n", + v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void printx(vint8 a) +{ + alignas(ASTCENC_VECALIGN) int v[8]; + storea(a, v); + printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n", + v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); +} + +/** + * @brief Debug function to print a vector of floats. + */ +ASTCENC_SIMD_INLINE void print(vfloat8 a) +{ + alignas(ASTCENC_VECALIGN) float v[8]; + storea(a, v); + printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n", + static_cast<double>(v[0]), static_cast<double>(v[1]), + static_cast<double>(v[2]), static_cast<double>(v[3]), + static_cast<double>(v[4]), static_cast<double>(v[5]), + static_cast<double>(v[6]), static_cast<double>(v[7])); +} + +/** + * @brief Debug function to print a vector of masks. + */ +ASTCENC_SIMD_INLINE void print(vmask8 a) +{ + print(select(vint8(0), vint8(1), a)); +} + +#endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_vecmathlib_common_4.h b/thirdparty/astcenc/astcenc_vecmathlib_common_4.h new file mode 100644 index 0000000000..86ee4fd3e1 --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_common_4.h @@ -0,0 +1,423 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2020-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Generic 4x32-bit vector functions. + * + * This module implements generic 4-wide vector functions that are valid for + * all instruction sets, typically implemented using lower level 4-wide + * operations that are ISA-specific. + */ + +#ifndef ASTC_VECMATHLIB_COMMON_4_H_INCLUDED +#define ASTC_VECMATHLIB_COMMON_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief True if any lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool any(vmask4 a) +{ + return mask(a) != 0; +} + +/** + * @brief True if all lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool all(vmask4 a) +{ + return mask(a) == 0xF; +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by scalar addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, int b) +{ + return a + vint4(b); +} + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vint4& operator+=(vint4& a, const vint4& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by scalar subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, int b) +{ + return a - vint4(b); +} + +/** + * @brief Overload: vector by scalar multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, int b) +{ + return a * vint4(b); +} + +/** + * @brief Overload: vector by scalar bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, int b) +{ + return a | vint4(b); +} + +/** + * @brief Overload: vector by scalar bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, int b) +{ + return a & vint4(b); +} + +/** + * @brief Overload: vector by scalar bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, int b) +{ + return a ^ vint4(b); +} + +/** + * @brief Return the clamped value between min and max. + */ +ASTCENC_SIMD_INLINE vint4 clamp(int minv, int maxv, vint4 a) +{ + return min(max(a, vint4(minv)), vint4(maxv)); +} + +/** + * @brief Return the horizontal sum of RGB vector lanes as a scalar. + */ +ASTCENC_SIMD_INLINE int hadd_rgb_s(vint4 a) +{ + return a.lane<0>() + a.lane<1>() + a.lane<2>(); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vfloat4& operator+=(vfloat4& a, const vfloat4& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by scalar addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, float b) +{ + return a + vfloat4(b); +} + +/** + * @brief Overload: vector by scalar subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, float b) +{ + return a - vfloat4(b); +} + +/** + * @brief Overload: vector by scalar multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, float b) +{ + return a * vfloat4(b); +} + +/** + * @brief Overload: scalar by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(float a, vfloat4 b) +{ + return vfloat4(a) * b; +} + +/** + * @brief Overload: vector by scalar division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, float b) +{ + return a / vfloat4(b); +} + +/** + * @brief Overload: scalar by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(float a, vfloat4 b) +{ + return vfloat4(a) / b; +} + +/** + * @brief Return the min vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, float b) +{ + return min(a, vfloat4(b)); +} + +/** + * @brief Return the max vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, float b) +{ + return max(a, vfloat4(b)); +} + +/** + * @brief Return the clamped value between min and max. + * + * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN + * then @c min will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 clamp(float minv, float maxv, vfloat4 a) +{ + // Do not reorder - second operand will return if either is NaN + return min(max(a, minv), maxv); +} + +/** + * @brief Return the clamped value between 0.0f and max. + * + * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will + * be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 clampz(float maxv, vfloat4 a) +{ + // Do not reorder - second operand will return if either is NaN + return min(max(a, vfloat4::zero()), maxv); +} + +/** + * @brief Return the clamped value between 0.0f and 1.0f. + * + * If @c a is NaN then zero will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 clampzo(vfloat4 a) +{ + // Do not reorder - second operand will return if either is NaN + return min(max(a, vfloat4::zero()), 1.0f); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE float hmin_s(vfloat4 a) +{ + return hmin(a).lane<0>(); +} + +/** + * @brief Return the horizontal min of RGB vector lanes as a scalar. + */ +ASTCENC_SIMD_INLINE float hmin_rgb_s(vfloat4 a) +{ + a.set_lane<3>(a.lane<0>()); + return hmin_s(a); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE float hmax_s(vfloat4 a) +{ + return hmax(a).lane<0>(); +} + +/** + * @brief Accumulate lane-wise sums for a vector. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat4 a) +{ + accum = accum + a; +} + +/** + * @brief Accumulate lane-wise sums for a masked vector. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat4 a, vmask4 m) +{ + a = select(vfloat4::zero(), a, m); + haccumulate(accum, a); +} + +/** + * @brief Return the horizontal sum of RGB vector lanes as a scalar. + */ +ASTCENC_SIMD_INLINE float hadd_rgb_s(vfloat4 a) +{ + return a.lane<0>() + a.lane<1>() + a.lane<2>(); +} + +#if !defined(ASTCENC_USE_NATIVE_DOT_PRODUCT) + +/** + * @brief Return the dot product for the full 4 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b) +{ + vfloat4 m = a * b; + return hadd_s(m); +} + +/** + * @brief Return the dot product for the full 4 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b) +{ + vfloat4 m = a * b; + return vfloat4(hadd_s(m)); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b) +{ + vfloat4 m = a * b; + return hadd_rgb_s(m); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b) +{ + vfloat4 m = a * b; + float d3 = hadd_rgb_s(m); + return vfloat4(d3, d3, d3, 0.0f); +} + +#endif + +#if !defined(ASTCENC_USE_NATIVE_POPCOUNT) + +/** + * @brief Population bit count. + * + * @param v The value to population count. + * + * @return The number of 1 bits. + */ +static inline int popcount(uint64_t v) +{ + uint64_t mask1 = 0x5555555555555555ULL; + uint64_t mask2 = 0x3333333333333333ULL; + uint64_t mask3 = 0x0F0F0F0F0F0F0F0FULL; + v -= (v >> 1) & mask1; + v = (v & mask2) + ((v >> 2) & mask2); + v += v >> 4; + v &= mask3; + v *= 0x0101010101010101ULL; + v >>= 56; + return static_cast<int>(v); +} + +#endif + +/** + * @brief Apply signed bit transfer. + * + * @param input0 The first encoded endpoint. + * @param input1 The second encoded endpoint. + */ +static ASTCENC_SIMD_INLINE void bit_transfer_signed( + vint4& input0, + vint4& input1 +) { + input1 = lsr<1>(input1) | (input0 & 0x80); + input0 = lsr<1>(input0) & 0x3F; + + vmask4 mask = (input0 & 0x20) != vint4::zero(); + input0 = select(input0, input0 - 0x40, mask); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void print(vint4 a) +{ + alignas(16) int v[4]; + storea(a, v); + printf("v4_i32:\n %8d %8d %8d %8d\n", + v[0], v[1], v[2], v[3]); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void printx(vint4 a) +{ + alignas(16) int v[4]; + storea(a, v); + printf("v4_i32:\n %08x %08x %08x %08x\n", + v[0], v[1], v[2], v[3]); +} + +/** + * @brief Debug function to print a vector of floats. + */ +ASTCENC_SIMD_INLINE void print(vfloat4 a) +{ + alignas(16) float v[4]; + storea(a, v); + printf("v4_f32:\n %0.4f %0.4f %0.4f %0.4f\n", + static_cast<double>(v[0]), static_cast<double>(v[1]), + static_cast<double>(v[2]), static_cast<double>(v[3])); +} + +/** + * @brief Debug function to print a vector of masks. + */ +ASTCENC_SIMD_INLINE void print(vmask4 a) +{ + print(select(vint4(0), vint4(1), a)); +} + +#endif // #ifndef ASTC_VECMATHLIB_COMMON_4_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h b/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h new file mode 100644 index 0000000000..e742eae6cb --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h @@ -0,0 +1,1072 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using Armv8-A NEON. + * + * This module implements 4-wide 32-bit float, int, and mask vectors for + * Armv8-A NEON. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + * + * The 4-wide vectors are also used as a fixed-width type, and significantly + * extend the functionality above that available to VLA code. + */ + +#ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED +#define ASTC_VECMATHLIB_NEON_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) + { + m = vld1q_f32(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m = vdupq_n_f32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + float v[4] { a, b, c, d }; + m = vld1q_f32(v); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return vgetq_lane_f32(m, l); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { + m = vsetq_lane_f32(a, m, l); + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(vdupq_n_f32(0.0f)); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(vld1q_dup_f32(p)); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(vld1q_f32(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f }; + return vfloat4(vld1q_f32(data)); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f); + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f); + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>()); + } + + /** + * @brief The vector ... + */ + float32x4_t m; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int *p) + { + m = vld1q_s32(p); + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + // Cast is safe - NEON loads are allowed to be unaligned + uint32x2_t t8 = vld1_dup_u32(reinterpret_cast<const uint32_t*>(p)); + uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8))); + m = vreinterpretq_s32_u32(vmovl_u16(t16)); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m = vdupq_n_s32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + int v[4] { a, b, c, d }; + m = vld1q_s32(v); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return vgetq_lane_s32(m, l); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { + m = vsetq_lane_s32(a, m, l); + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(0); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + alignas(16) static const int data[4] { 0, 1, 2, 3 }; + return vint4(vld1q_s32(data)); + } + + /** + * @brief The vector ... + */ + int32x4_t m; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a) + { + m = a; + } + +#if !defined(_MSC_VER) + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a) + { + m = vreinterpretq_u32_s32(a); + } +#endif + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0)); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + int v[4] { + a == true ? -1 : 0, + b == true ? -1 : 0, + c == true ? -1 : 0, + d == true ? -1 : 0 + }; + + int32x4_t ms = vld1q_s32(v); + m = vreinterpretq_u32_s32(ms); + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int32_t l> ASTCENC_SIMD_INLINE uint32_t lane() const + { + return vgetq_lane_u32(m, l); + } + + /** + * @brief The vector ... + */ + uint32x4_t m; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(vorrq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(vandq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(veorq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(vmvnq_u32(a.m)); +} + +/** + * @brief Return a 4-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + static const int shifta[4] { 0, 1, 2, 3 }; + static const int32x4_t shift = vld1q_s32(shifta); + + uint32x4_t tmp = vshrq_n_u32(a.m, 31); + return vaddvq_u32(vshlq_u32(tmp, shift)); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(vaddq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(vsubq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ + return vint4(vmulq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(vmvnq_s32(a.m)); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(vorrq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(vandq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(veorq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(vceqq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return ~vmask4(vceqq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(vcltq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(vcgtq_s32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(vshlq_s32(a.m, vdupq_n_s32(s))); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + uint32x4_t ua = vreinterpretq_u32_s32(a.m); + ua = vshlq_u32(ua, vdupq_n_s32(-s)); + return vint4(vreinterpretq_s32_u32(ua)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(vshlq_s32(a.m, vdupq_n_s32(-s))); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ + return vint4(vminq_s32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ + return vint4(vmaxq_s32(a.m, b.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + return vint4(vminvq_s32(a.m)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + return vint4(vmaxvq_s32(a.m)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m)); + return vget_lane_s32(vpadd_s32(t, t), 0); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + vst1q_s32(p, a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + vst1q_s32(p, a.m); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ + alignas(16) int idx[4]; + storea(indices, idx); + alignas(16) int vals[4]; + vals[0] = base[idx[0]]; + vals[1] = base[idx[1]]; + vals[2] = base[idx[2]]; + vals[3] = base[idx[3]]; + return vint4(vals); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ + alignas(16) uint8_t shuf[16] { + 0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; + uint8x16_t idx = vld1q_u8(shuf); + int8x16_t av = vreinterpretq_s8_s32(a.m); + return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx))); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + return vint4(vbslq_s32(cond.m, b.m, a.m)); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(vaddq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(vsubq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(vmulq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(vdivq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(vceqq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m))); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(vcltq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(vcgtq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(vcleq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(vcgeq_f32(a.m, b.m)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(vminnmq_f32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(vmaxnmq_f32(a.m, b.m)); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + float32x4_t zero = vdupq_n_f32(0.0f); + float32x4_t inv = vsubq_f32(zero, a.m); + return vfloat4(vmaxq_f32(a.m, inv)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ + return vfloat4(vrndnq_f32(a.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + return vfloat4(vminvq_f32(a.m)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + return vfloat4(vmaxvq_f32(a.m)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Perform halving add to ensure invariance; we cannot use vaddqv as this + // does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3). + float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m)); + return vget_lane_f32(vpadd_f32(t, t), 0); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(vsqrtq_f32(a.m)); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4(vbslq_f32(cond.m, b.m, a.m)); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ + static const uint32x4_t msb = vdupq_n_u32(0x80000000u); + uint32x4_t mask = vcgeq_u32(cond.m, msb); + return vfloat4(vbslq_f32(mask, b.m, a.m)); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ + alignas(16) int idx[4]; + storea(indices, idx); + alignas(16) float vals[4]; + vals[0] = base[idx[0]]; + vals[1] = base[idx[1]]; + vals[2] = base[idx[2]]; + vals[3] = base[idx[3]]; + return vfloat4(vals); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) +{ + vst1q_f32(p, a.m); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) +{ + vst1q_f32(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(vcvtq_s32_f32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + a = round(a); + return vint4(vcvtq_s32_f32(a.m)); +} + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(vcvtq_f32_s32(a.m)); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ + // Generate float16 value + float16x4_t f16 = vcvt_f16_f32(a.m); + + // Convert each 16-bit float pattern to a 32-bit pattern + uint16x4_t u16 = vreinterpret_u16_f16(f16); + uint32x4_t u32 = vmovl_u16(u16); + return vint4(vreinterpretq_s32_u32(u32)); +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ + vfloat4 av(a); + return static_cast<uint16_t>(float_to_float16(av).lane<0>()); +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ + // Convert each 32-bit float pattern to a 16-bit pattern + uint32x4_t u32 = vreinterpretq_u32_s32(a.m); + uint16x4_t u16 = vmovn_u32(u32); + float16x4_t f16 = vreinterpret_f16_u16(u16); + + // Generate float16 value + return vfloat4(vcvt_f32_f16(f16)); +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ + vint4 av(a); + return float16_to_float(av).lane<0>(); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + return vint4(vreinterpretq_s32_f32(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) +{ + return vfloat4(vreinterpretq_f32_s32(v.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ + t0p = t0; + t1p = t1; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ + int8x16_t table { + vreinterpretq_s8_s32(t0.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes))); +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ + int8x16x2_t table { + vreinterpretq_s8_s32(t0.m), + vreinterpretq_s8_s32(t1.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes))); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ + int8x16x4_t table { + vreinterpretq_s8_s32(t0.m), + vreinterpretq_s8_s32(t1.m), + vreinterpretq_s8_s32(t2.m), + vreinterpretq_s8_s32(t3.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes))); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ + if (mask.lane<3>()) + { + store(data, base); + } + else if (mask.lane<2>()) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.lane<1>()) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.lane<0>()) + { + base[0] = data.lane<0>(); + } +} + +#define ASTCENC_USE_NATIVE_POPCOUNT 1 + +/** + * @brief Population bit count. + * + * @param v The value to population count. + * + * @return The number of 1 bits. + */ +ASTCENC_SIMD_INLINE int popcount(uint64_t v) +{ + return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v)))); +} + +#endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_vecmathlib_none_4.h b/thirdparty/astcenc/astcenc_vecmathlib_none_4.h new file mode 100644 index 0000000000..d9b52be3e4 --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_none_4.h @@ -0,0 +1,1169 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using plain C++. + * + * This module implements 4-wide 32-bit float, int, and mask vectors. This + * module provides a scalar fallback for VLA code, primarily useful for + * debugging VLA algorithms without the complexity of handling SIMD. Only the + * baseline level of functionality needed to support VLA is provided. + * + * Note that the vector conditional operators implemented by this module are + * designed to behave like SIMD conditional operators that generate lane masks. + * Rather than returning 0/1 booleans like normal C++ code they will return + * 0/-1 to give a full lane-width bitmask. + * + * Note that the documentation for this module still talks about "vectors" to + * help developers think about the implied VLA behavior when writing optimized + * paths. + */ + +#ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED +#define ASTC_VECMATHLIB_NONE_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <algorithm> +#include <cstdio> +#include <cstring> +#include <cfenv> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with wider VLA vectors if data is + * aligned to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 scalar values replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m[0] = a; + m[1] = a; + m[2] = a; + m[3] = a; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + m[0] = a; + m[1] = b; + m[2] = c; + m[3] = d; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return m[l]; + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { + m[l] = a; + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(0.0f); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(*p); + } + + /** + * @brief Factory that returns a vector loaded from aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + return vfloat4(0.0f, 1.0f, 2.0f, 3.0f); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f); + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f); + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>()); + } + + /** + * @brief The vector ... + */ + float m[4]; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using vint4::loada() which is better with wider VLA vectors + * if data is aligned. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + m[0] = a; + m[1] = b; + m[2] = c; + m[3] = d; + } + + + /** + * @brief Construct from 4 scalar values replicated across all lanes. + * + * Consider using vint4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m[0] = a; + m[1] = a; + m[2] = a; + m[3] = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return m[l]; + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { + m[l] = a; + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(0); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + return vint4(0, 1, 2, 3); + } + + /** + * @brief The vector ... + */ + int m[4]; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing mask value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(int* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + m[0] = a == false ? 0 : -1; + m[1] = a == false ? 0 : -1; + m[2] = a == false ? 0 : -1; + m[3] = a == false ? 0 : -1; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + m[0] = a == false ? 0 : -1; + m[1] = b == false ? 0 : -1; + m[2] = c == false ? 0 : -1; + m[3] = d == false ? 0 : -1; + } + + + /** + * @brief The vector ... + */ + int m[4]; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] | b.m[0], + a.m[1] | b.m[1], + a.m[2] | b.m[2], + a.m[3] | b.m[3]); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] & b.m[0], + a.m[1] & b.m[1], + a.m[2] & b.m[2], + a.m[3] & b.m[3]); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] ^ b.m[0], + a.m[1] ^ b.m[1], + a.m[2] ^ b.m[2], + a.m[3] ^ b.m[3]); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(~a.m[0], + ~a.m[1], + ~a.m[2], + ~a.m[3]); +} + +/** + * @brief Return a 1-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + return ((a.m[0] >> 31) & 0x1) | + ((a.m[1] >> 30) & 0x2) | + ((a.m[2] >> 29) & 0x4) | + ((a.m[3] >> 28) & 0x8); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(a.m[0] + b.m[0], + a.m[1] + b.m[1], + a.m[2] + b.m[2], + a.m[3] + b.m[3]); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(a.m[0] - b.m[0], + a.m[1] - b.m[1], + a.m[2] - b.m[2], + a.m[3] - b.m[3]); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ + return vint4(a.m[0] * b.m[0], + a.m[1] * b.m[1], + a.m[2] * b.m[2], + a.m[3] * b.m[3]); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(~a.m[0], + ~a.m[1], + ~a.m[2], + ~a.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(a.m[0] | b.m[0], + a.m[1] | b.m[1], + a.m[2] | b.m[2], + a.m[3] | b.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(a.m[0] & b.m[0], + a.m[1] & b.m[1], + a.m[2] & b.m[2], + a.m[3] & b.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(a.m[0] ^ b.m[0], + a.m[1] ^ b.m[1], + a.m[2] ^ b.m[2], + a.m[3] ^ b.m[3]); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(a.m[0] == b.m[0], + a.m[1] == b.m[1], + a.m[2] == b.m[2], + a.m[3] == b.m[3]); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return vmask4(a.m[0] != b.m[0], + a.m[1] != b.m[1], + a.m[2] != b.m[2], + a.m[3] != b.m[3]); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(a.m[0] < b.m[0], + a.m[1] < b.m[1], + a.m[2] < b.m[2], + a.m[3] < b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(a.m[0] > b.m[0], + a.m[1] > b.m[1], + a.m[2] > b.m[2], + a.m[3] > b.m[3]); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(a.m[0] << s, + a.m[1] << s, + a.m[2] << s, + a.m[3] << s); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + unsigned int as0 = static_cast<unsigned int>(a.m[0]) >> s; + unsigned int as1 = static_cast<unsigned int>(a.m[1]) >> s; + unsigned int as2 = static_cast<unsigned int>(a.m[2]) >> s; + unsigned int as3 = static_cast<unsigned int>(a.m[3]) >> s; + + return vint4(static_cast<int>(as0), + static_cast<int>(as1), + static_cast<int>(as2), + static_cast<int>(as3)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(a.m[0] >> s, + a.m[1] >> s, + a.m[2] >> s, + a.m[3] >> s); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ + return vint4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], + a.m[1] < b.m[1] ? a.m[1] : b.m[1], + a.m[2] < b.m[2] ? a.m[2] : b.m[2], + a.m[3] < b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ + return vint4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], + a.m[1] > b.m[1] ? a.m[1] : b.m[1], + a.m[2] > b.m[2] ? a.m[2] : b.m[2], + a.m[3] > b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the horizontal minimum of a single vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + int b = std::min(a.m[0], a.m[1]); + int c = std::min(a.m[2], a.m[3]); + return vint4(std::min(b, c)); +} + +/** + * @brief Return the horizontal maximum of a single vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + int b = std::max(a.m[0], a.m[1]); + int c = std::max(a.m[2], a.m[3]); + return vint4(std::max(b, c)); +} + +/** + * @brief Return the horizontal sum of vector lanes as a scalar. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + return a.m[0] + a.m[1] + a.m[2] + a.m[3]; +} + +/** + * @brief Store a vector to an aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + p[0] = a.m[0]; + p[1] = a.m[1]; + p[2] = a.m[2]; + p[3] = a.m[3]; +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + p[0] = a.m[0]; + p[1] = a.m[1]; + p[2] = a.m[2]; + p[3] = a.m[3]; +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + int* pi = reinterpret_cast<int*>(p); + *pi = a.m[0]; +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ + return vint4(base[indices.m[0]], + base[indices.m[1]], + base[indices.m[2]], + base[indices.m[3]]); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ + int b0 = a.m[0] & 0xFF; + int b1 = a.m[1] & 0xFF; + int b2 = a.m[2] & 0xFF; + int b3 = a.m[3] & 0xFF; + + int b = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); + return vint4(b, 0, 0, 0); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + return vint4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] + b.m[0], + a.m[1] + b.m[1], + a.m[2] + b.m[2], + a.m[3] + b.m[3]); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] - b.m[0], + a.m[1] - b.m[1], + a.m[2] - b.m[2], + a.m[3] - b.m[3]); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] * b.m[0], + a.m[1] * b.m[1], + a.m[2] * b.m[2], + a.m[3] * b.m[3]); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] / b.m[0], + a.m[1] / b.m[1], + a.m[2] / b.m[2], + a.m[3] / b.m[3]); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] == b.m[0], + a.m[1] == b.m[1], + a.m[2] == b.m[2], + a.m[3] == b.m[3]); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] != b.m[0], + a.m[1] != b.m[1], + a.m[2] != b.m[2], + a.m[3] != b.m[3]); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] < b.m[0], + a.m[1] < b.m[1], + a.m[2] < b.m[2], + a.m[3] < b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] > b.m[0], + a.m[1] > b.m[1], + a.m[2] > b.m[2], + a.m[3] > b.m[3]); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] <= b.m[0], + a.m[1] <= b.m[1], + a.m[2] <= b.m[2], + a.m[3] <= b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] >= b.m[0], + a.m[1] >= b.m[1], + a.m[2] >= b.m[2], + a.m[3] >= b.m[3]); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], + a.m[1] < b.m[1] ? a.m[1] : b.m[1], + a.m[2] < b.m[2] ? a.m[2] : b.m[2], + a.m[3] < b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], + a.m[1] > b.m[1] ? a.m[1] : b.m[1], + a.m[2] > b.m[2] ? a.m[2] : b.m[2], + a.m[3] > b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + return vfloat4(std::abs(a.m[0]), + std::abs(a.m[1]), + std::abs(a.m[2]), + std::abs(a.m[3])); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ + assert(std::fegetround() == FE_TONEAREST); + return vfloat4(std::nearbyint(a.m[0]), + std::nearbyint(a.m[1]), + std::nearbyint(a.m[2]), + std::nearbyint(a.m[3])); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + float tmp1 = std::min(a.m[0], a.m[1]); + float tmp2 = std::min(a.m[2], a.m[3]); + return vfloat4(std::min(tmp1, tmp2)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + float tmp1 = std::max(a.m[0], a.m[1]); + float tmp2 = std::max(a.m[2], a.m[3]); + return vfloat4(std::max(tmp1, tmp2)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Use halving add, gives invariance with SIMD versions + return (a.m[0] + a.m[2]) + (a.m[1] + a.m[3]); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(std::sqrt(a.m[0]), + std::sqrt(a.m[1]), + std::sqrt(a.m[2]), + std::sqrt(a.m[3])); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ + return vfloat4(base[indices.m[0]], + base[indices.m[1]], + base[indices.m[2]], + base[indices.m[3]]); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* ptr) +{ + ptr[0] = a.m[0]; + ptr[1] = a.m[1]; + ptr[2] = a.m[2]; + ptr[3] = a.m[3]; +} + +/** + * @brief Store a vector to an aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* ptr) +{ + ptr[0] = a.m[0]; + ptr[1] = a.m[1]; + ptr[2] = a.m[2]; + ptr[3] = a.m[3]; +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(static_cast<int>(a.m[0]), + static_cast<int>(a.m[1]), + static_cast<int>(a.m[2]), + static_cast<int>(a.m[3])); +} + +/**f + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + return vint4(static_cast<int>(a.m[0] + 0.5f), + static_cast<int>(a.m[1] + 0.5f), + static_cast<int>(a.m[2] + 0.5f), + static_cast<int>(a.m[3] + 0.5f)); +} + +/** + * @brief Return a float value for a integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(static_cast<float>(a.m[0]), + static_cast<float>(a.m[1]), + static_cast<float>(a.m[2]), + static_cast<float>(a.m[3])); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ + return vint4( + float_to_sf16(a.lane<0>()), + float_to_sf16(a.lane<1>()), + float_to_sf16(a.lane<2>()), + float_to_sf16(a.lane<3>())); +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ + return float_to_sf16(a); +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ + return vfloat4( + sf16_to_float(static_cast<uint16_t>(a.lane<0>())), + sf16_to_float(static_cast<uint16_t>(a.lane<1>())), + sf16_to_float(static_cast<uint16_t>(a.lane<2>())), + sf16_to_float(static_cast<uint16_t>(a.lane<3>()))); +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ + return sf16_to_float(a); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + vint4 r; + memcpy(r.m, a.m, 4 * 4); + return r; +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 a) +{ + vfloat4 r; + memcpy(r.m, a.m, 4 * 4); + return r; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ + t0p = t0; + t1p = t1; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ + uint8_t table[16]; + storea(t0, reinterpret_cast<int*>(table + 0)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ + uint8_t table[32]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ + uint8_t table[64]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + storea(t2, reinterpret_cast<int*>(table + 32)); + storea(t3, reinterpret_cast<int*>(table + 48)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ + if (mask.m[3]) + { + store(data, base); + } + else if (mask.m[2]) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.m[1]) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.m[0]) + { + base[0] = data.lane<0>(); + } +} + +#endif // #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h b/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h new file mode 100644 index 0000000000..26dcc4a891 --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h @@ -0,0 +1,1283 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using SSE. + * + * This module implements 4-wide 32-bit float, int, and mask vectors for x86 + * SSE. The implementation requires at least SSE2, but higher levels of SSE can + * be selected at compile time to improve performance. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + * + * The 4-wide vectors are also used as a fixed-width type, and significantly + * extend the functionality above that available to VLA code. + */ + +#ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED +#define ASTC_VECMATHLIB_SSE_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) + { + m = _mm_loadu_ps(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m = _mm_set1_ps(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + m = _mm_set_ps(d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { +#if ASTCENC_SSE >= 41 + __m128 v = _mm_set1_ps(a); + m = _mm_insert_ps(m, v, l << 6 | l << 4); +#else + alignas(16) float idx[4]; + _mm_store_ps(idx, m); + idx[l] = a; + m = _mm_load_ps(idx); +#endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(_mm_setzero_ps()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(_mm_load_ps1(p)); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(_mm_load_ps(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + return vfloat4(_mm_set_ps(3, 2, 1, 0)); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2)); + result.set_lane<2>(0.0f); + result.set_lane<3>(0.0f); + return result; + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4)); + result.set_lane<3>(0.0f); + return result; + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6)); + } + + /** + * @brief The vector ... + */ + __m128 m; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int *p) + { + m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p)); + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + // _mm_loadu_si32 would be nicer syntax, but missing on older GCC + __m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p)); + +#if ASTCENC_SSE >= 41 + m = _mm_cvtepu8_epi32(t); +#else + t = _mm_unpacklo_epi8(t, _mm_setzero_si128()); + m = _mm_unpacklo_epi16(t, _mm_setzero_si128()); +#endif + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m = _mm_set1_epi32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + m = _mm_set_epi32(d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(__m128i a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l)); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { +#if ASTCENC_SSE >= 41 + m = _mm_insert_epi32(m, a, l); +#else + alignas(16) int idx[4]; + _mm_store_si128(reinterpret_cast<__m128i*>(idx), m); + idx[l] = a; + m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx)); +#endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(_mm_setzero_si128()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p))); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + return vint4(_mm_set_epi32(3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m128i m; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(__m128 a) + { + m = a; + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(__m128i a) + { + m = _mm_castsi128_ps(a); + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + vint4 mask(a == false ? 0 : -1); + m = _mm_castsi128_ps(mask.m); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + vint4 mask(a == false ? 0 : -1, + b == false ? 0 : -1, + c == false ? 0 : -1, + d == false ? 0 : -1); + + m = _mm_castsi128_ps(mask.m); + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); + } + + /** + * @brief The vector ... + */ + __m128 m; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(_mm_or_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(_mm_and_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(_mm_xor_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1))); +} + +/** + * @brief Return a 4-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + return static_cast<unsigned int>(_mm_movemask_ps(a.m)); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(_mm_add_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(_mm_sub_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_mullo_epi32 (a.m, b.m)); +#else + __m128i t1 = _mm_mul_epu32(a.m, b.m); + __m128i t2 = _mm_mul_epu32( + _mm_srli_si128(a.m, 4), + _mm_srli_si128(b.m, 4)); + __m128i r = _mm_unpacklo_epi32( + _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)), + _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0))); + return vint4(r); +#endif +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1))); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(_mm_or_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(_mm_and_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(_mm_xor_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(_mm_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return ~vmask4(_mm_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(_mm_cmplt_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(_mm_cmpgt_epi32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(_mm_slli_epi32(a.m, s)); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + return vint4(_mm_srli_epi32(a.m, s)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(_mm_srai_epi32(a.m, s)); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_min_epi32(a.m, b.m)); +#else + vmask4 d = a < b; + __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); + __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); + return vint4(_mm_or_si128(ap,bp)); +#endif +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_max_epi32(a.m, b.m)); +#else + vmask4 d = a > b; + __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); + __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); + return vint4(_mm_or_si128(ap,bp)); +#endif +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/* + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal sum of a vector as a scalar. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + // Add top and bottom halves, lane 1/0 + __m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m), + _mm_castsi128_ps(a.m))); + __m128i t = _mm_add_epi32(a.m, fold); + + // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) + t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55)); + + return _mm_cvtsi128_si32(t); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + _mm_store_si128(reinterpret_cast<__m128i*>(p), a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + // Cast due to missing intrinsics + _mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + // Cast due to missing intrinsics + _mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ +#if ASTCENC_AVX >= 2 + return vint4(_mm_i32gather_epi32(base, indices.m, 4)); +#else + alignas(16) int idx[4]; + storea(indices, idx); + return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); +#endif +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ +#if ASTCENC_SSE >= 41 + __m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0); + return vint4(_mm_shuffle_epi8(a.m, shuf)); +#else + __m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1))); + __m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3))); + return vint4(_mm_unpacklo_epi16(va, vb)); +#endif +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + __m128i condi = _mm_castps_si128(cond.m); + +#if ASTCENC_SSE >= 41 + return vint4(_mm_blendv_epi8(a.m, b.m, condi)); +#else + return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m))); +#endif +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_add_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_sub_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_mul_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_div_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpeq_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpneq_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmplt_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpgt_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmple_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpge_ps(a.m, b.m)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(_mm_min_ps(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(_mm_max_ps(a.m, b.m)); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ +#if ASTCENC_SSE >= 41 + constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; + return vfloat4(_mm_round_ps(a.m, flags)); +#else + __m128 v = a.m; + __m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000))); + __m128 no_fraction = _mm_set1_ps(8388608.0f); + __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF)); + __m128 sign = _mm_and_ps(v, neg_zero); + __m128 s_magic = _mm_or_ps(no_fraction, sign); + __m128 r1 = _mm_add_ps(v, s_magic); + r1 = _mm_sub_ps(r1, s_magic); + __m128 r2 = _mm_and_ps(v, abs_mask); + __m128 mask = _mm_cmple_ps(r2, no_fraction); + r2 = _mm_andnot_ps(mask, v); + r1 = _mm_and_ps(r1, mask); + return vfloat4(_mm_xor_ps(r1, r2)); +#endif +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal sum of a vector as a scalar. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Add top and bottom halves, lane 1/0 + __m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m)); + + // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) + t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55)); + + return _mm_cvtss_f32(t); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(_mm_sqrt_ps(a.m)); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ +#if ASTCENC_SSE >= 41 + return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); +#else + return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m))); +#endif +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ +#if ASTCENC_SSE >= 41 + return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); +#else + __m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31)); + return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m))); +#endif +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ +#if ASTCENC_AVX >= 2 + return vfloat4(_mm_i32gather_ps(base, indices.m, 4)); +#else + alignas(16) int idx[4]; + storea(indices, idx); + return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); +#endif +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) +{ + _mm_storeu_ps(p, a.m); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) +{ + _mm_store_ps(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(_mm_cvttps_epi32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + a = round(a); + return vint4(_mm_cvttps_epi32(a.m)); +} + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(_mm_cvtepi32_ps(a.m)); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ +#if ASTCENC_F16C >= 1 + __m128i packedf16 = _mm_cvtps_ph(a.m, 0); + __m128i f16 = _mm_cvtepu16_epi32(packedf16); + return vint4(f16); +#else + return vint4( + float_to_sf16(a.lane<0>()), + float_to_sf16(a.lane<1>()), + float_to_sf16(a.lane<2>()), + float_to_sf16(a.lane<3>())); +#endif +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ +#if ASTCENC_F16C >= 1 + __m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0); + return static_cast<uint16_t>(_mm_cvtsi128_si32(f16)); +#else + return float_to_sf16(a); +#endif +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ +#if ASTCENC_F16C >= 1 + __m128i packed = _mm_packs_epi32(a.m, a.m); + __m128 f32 = _mm_cvtph_ps(packed); + return vfloat4(f32); +#else + return vfloat4( + sf16_to_float(static_cast<uint16_t>(a.lane<0>())), + sf16_to_float(static_cast<uint16_t>(a.lane<1>())), + sf16_to_float(static_cast<uint16_t>(a.lane<2>())), + sf16_to_float(static_cast<uint16_t>(a.lane<3>()))); +#endif +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ +#if ASTCENC_F16C >= 1 + __m128i packed = _mm_set1_epi16(static_cast<short>(a)); + __m128 f32 = _mm_cvtph_ps(packed); + return _mm_cvtss_f32(f32); +#else + return sf16_to_float(a); +#endif +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + return vint4(_mm_castps_si128(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) +{ + return vfloat4(_mm_castsi128_ps(v.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ +#if ASTCENC_SSE >= 41 + t0p = t0; + t1p = t0 ^ t1; +#else + t0p = t0; + t1p = t1; +#endif +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ +#if ASTCENC_SSE >= 41 + t0p = t0; + t1p = t0 ^ t1; + t2p = t1 ^ t2; + t3p = t2 ^ t3; +#else + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +#endif +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ +#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[16]; + storea(t0, reinterpret_cast<int*>(table + 0)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ +#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); + result = _mm_xor_si128(result, result2); + + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[32]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ +#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); + result = _mm_xor_si128(result, result2); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + result2 = _mm_shuffle_epi8(t2.m, idxx); + result = _mm_xor_si128(result, result2); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + result2 = _mm_shuffle_epi8(t3.m, idxx); + result = _mm_xor_si128(result, result2); + + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[64]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + storea(t2, reinterpret_cast<int*>(table + 32)); + storea(t3, reinterpret_cast<int*>(table + 48)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ +// Workaround an XCode compiler internal fault; note is slower than slli_epi32 +// so we should revert this when we get the opportunity +#if defined(__APPLE__) + __m128i value = r.m; + value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1)); + value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2)); + value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3)); + return vint4(value); +#else + __m128i value = r.m; + value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8)); + value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16)); + value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24)); + return vint4(value); +#endif +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ +#if ASTCENC_AVX >= 2 + _mm_maskstore_epi32(base, _mm_castps_si128(mask.m), data.m); +#else + // Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee + // fault suppression on masked lanes so we can get page faults at the end of an image. + if (mask.lane<3>() != 0.0f) + { + store(data, base); + } + else if (mask.lane<2>() != 0.0f) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.lane<1>() != 0.0f) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.lane<0>() != 0.0f) + { + base[0] = data.lane<0>(); + } +#endif +} + +#if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) + +#define ASTCENC_USE_NATIVE_DOT_PRODUCT 1 + +/** + * @brief Return the dot product for the full 4 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b) +{ + return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF)); +} + +/** + * @brief Return the dot product for the full 4 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF)); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b) +{ + return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77)); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_dp_ps(a.m, b.m, 0x77)); +} + +#endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) + +#if ASTCENC_POPCNT >= 1 + +#define ASTCENC_USE_NATIVE_POPCOUNT 1 + +/** + * @brief Population bit count. + * + * @param v The value to population count. + * + * @return The number of 1 bits. + */ +ASTCENC_SIMD_INLINE int popcount(uint64_t v) +{ + return static_cast<int>(_mm_popcnt_u64(v)); +} + +#endif // ASTCENC_POPCNT >= 1 + +#endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED diff --git a/thirdparty/astcenc/astcenc_weight_align.cpp b/thirdparty/astcenc/astcenc_weight_align.cpp new file mode 100644 index 0000000000..e40a318cf5 --- /dev/null +++ b/thirdparty/astcenc/astcenc_weight_align.cpp @@ -0,0 +1,479 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions for angular-sum algorithm for weight alignment. + * + * This algorithm works as follows: + * - we compute a complex number P as (cos s*i, sin s*i) for each weight, + * where i is the input value and s is a scaling factor based on the spacing between the weights. + * - we then add together complex numbers for all the weights. + * - we then compute the length and angle of the resulting sum. + * + * This should produce the following results: + * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs + * - even distribution results in a vector of length 0. + * - all samples identical results in perfect alignment for every scaling. + * + * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This + * should then result in some scalings standing out as having particularly good alignment factors; + * we can use this to produce a set of candidate scale/shift values for various quantization levels; + * we should then actually try them and see what happens. + */ + +#include "astcenc_internal.h" +#include "astcenc_vecmathlib.h" + +#include <stdio.h> +#include <cassert> +#include <cstring> + +static constexpr unsigned int ANGULAR_STEPS { 32 }; + +static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, + "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH"); + +static_assert(ANGULAR_STEPS >= 32, + "ANGULAR_STEPS must be at least max(steps_for_quant_level)"); + +// Store a reduced sin/cos table for 64 possible weight values; this causes +// slight quality loss compared to using sin() and cos() directly. Must be 2^N. +static constexpr unsigned int SINCOS_STEPS { 64 }; + +static const uint8_t steps_for_quant_level[12] { + 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32 +}; + +alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS]; +alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS]; + +#if defined(ASTCENC_DIAGNOSTICS) + static bool print_once { true }; +#endif + +/* See header for documentation. */ +void prepare_angular_tables() +{ + for (unsigned int i = 0; i < ANGULAR_STEPS; i++) + { + float angle_step = static_cast<float>(i + 1); + + for (unsigned int j = 0; j < SINCOS_STEPS; j++) + { + sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); + cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j))); + } + } +} + +/** + * @brief Compute the angular alignment factors and offsets. + * + * @param weight_count The number of (decimated) weights. + * @param dec_weight_ideal_value The ideal decimated unquantized weight values. + * @param max_angular_steps The maximum number of steps to be tested. + * @param[out] offsets The output angular offsets array. + */ +static void compute_angular_offsets( + unsigned int weight_count, + const float* dec_weight_ideal_value, + unsigned int max_angular_steps, + float* offsets +) { + promise(weight_count > 0); + promise(max_angular_steps > 0); + + alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS]; + + // Precompute isample; arrays are always allocated 64 elements long + for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH) + { + // Add 2^23 and interpreting bits extracts round-to-nearest int + vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f); + vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1)); + storea(isample, isamplev + i); + } + + // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max + vfloat mult = vfloat(1.0f / (2.0f * astc::PI)); + + for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) + { + vfloat anglesum_x = vfloat::zero(); + vfloat anglesum_y = vfloat::zero(); + + for (unsigned int j = 0; j < weight_count; j++) + { + int isample = isamplev[j]; + anglesum_x += loada(cos_table[isample] + i); + anglesum_y += loada(sin_table[isample] + i); + } + + vfloat angle = atan2(anglesum_y, anglesum_x); + vfloat ofs = angle * mult; + storea(ofs, offsets + i); + } +} + +/** + * @brief For a given step size compute the lowest and highest weight. + * + * Compute the lowest and highest weight that results from quantizing using the given stepsize and + * offset, and then compute the resulting error. The cut errors indicate the error that results from + * forcing samples that should have had one weight value one step up or down. + * + * @param weight_count The number of (decimated) weights. + * @param dec_weight_ideal_value The ideal decimated unquantized weight values. + * @param max_angular_steps The maximum number of steps to be tested. + * @param max_quant_steps The maximum quantization level to be tested. + * @param offsets The angular offsets array. + * @param[out] lowest_weight Per angular step, the lowest weight. + * @param[out] weight_span Per angular step, the span between lowest and highest weight. + * @param[out] error Per angular step, the error. + * @param[out] cut_low_weight_error Per angular step, the low weight cut error. + * @param[out] cut_high_weight_error Per angular step, the high weight cut error. + */ +static void compute_lowest_and_highest_weight( + unsigned int weight_count, + const float* dec_weight_ideal_value, + unsigned int max_angular_steps, + unsigned int max_quant_steps, + const float* offsets, + float* lowest_weight, + int* weight_span, + float* error, + float* cut_low_weight_error, + float* cut_high_weight_error +) { + promise(weight_count > 0); + promise(max_angular_steps > 0); + + vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f); + + // Arrays are ANGULAR_STEPS long, so always safe to run full vectors + for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH) + { + vfloat minidx(128.0f); + vfloat maxidx(-128.0f); + vfloat errval = vfloat::zero(); + vfloat cut_low_weight_err = vfloat::zero(); + vfloat cut_high_weight_err = vfloat::zero(); + vfloat offset = loada(offsets + sp); + + for (unsigned int j = 0; j < weight_count; j++) + { + vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset; + vfloat svalrte = round(sval); + vfloat diff = sval - svalrte; + errval += diff * diff; + + // Reset tracker on min hit + vmask mask = svalrte < minidx; + minidx = select(minidx, svalrte, mask); + cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask); + + // Accumulate on min hit + mask = svalrte == minidx; + vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff; + cut_low_weight_err = select(cut_low_weight_err, accum, mask); + + // Reset tracker on max hit + mask = svalrte > maxidx; + maxidx = select(maxidx, svalrte, mask); + cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask); + + // Accumulate on max hit + mask = svalrte == maxidx; + accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff; + cut_high_weight_err = select(cut_high_weight_err, accum, mask); + } + + // Write out min weight and weight span; clamp span to a usable range + vint span = float_to_int(maxidx - minidx + vfloat(1)); + span = min(span, vint(max_quant_steps + 3)); + span = max(span, vint(2)); + storea(minidx, lowest_weight + sp); + storea(span, weight_span + sp); + + // The cut_(lowest/highest)_weight_error indicate the error that results from forcing + // samples that should have had the weight value one step (up/down). + vfloat ssize = 1.0f / rcp_stepsize; + vfloat errscale = ssize * ssize; + storea(errval * errscale, error + sp); + storea(cut_low_weight_err * errscale, cut_low_weight_error + sp); + storea(cut_high_weight_err * errscale, cut_high_weight_error + sp); + + rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH); + } +} + +/** + * @brief The main function for the angular algorithm. + * + * @param weight_count The number of (decimated) weights. + * @param dec_weight_ideal_value The ideal decimated unquantized weight values. + * @param max_quant_level The maximum quantization level to be tested. + * @param[out] low_value Per angular step, the lowest weight value. + * @param[out] high_value Per angular step, the highest weight value. + */ +static void compute_angular_endpoints_for_quant_levels( + unsigned int weight_count, + const float* dec_weight_ideal_value, + unsigned int max_quant_level, + float low_value[TUNE_MAX_ANGULAR_QUANT + 1], + float high_value[TUNE_MAX_ANGULAR_QUANT + 1] +) { + unsigned int max_quant_steps = steps_for_quant_level[max_quant_level]; + unsigned int max_angular_steps = steps_for_quant_level[max_quant_level]; + + alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS]; + + compute_angular_offsets(weight_count, dec_weight_ideal_value, + max_angular_steps, angular_offsets); + + alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS]; + alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS]; + alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS]; + alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS]; + alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS]; + + compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value, + max_angular_steps, max_quant_steps, + angular_offsets, lowest_weight, weight_span, error, + cut_low_weight_error, cut_high_weight_error); + + // For each quantization level, find the best error terms. Use packed vectors so data-dependent + // branches can become selects. This involves some integer to float casts, but the values are + // small enough so they never round the wrong way. + vfloat4 best_results[36]; + + // Initialize the array to some safe defaults + promise(max_quant_steps > 0); + for (unsigned int i = 0; i < (max_quant_steps + 4); i++) + { + // Lane<0> = Best error + // Lane<1> = Best scale; -1 indicates no solution found + // Lane<2> = Cut low weight + best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f); + } + + promise(max_angular_steps > 0); + for (unsigned int i = 0; i < max_angular_steps; i++) + { + float i_flt = static_cast<float>(i); + + int idx_span = weight_span[i]; + + float error_cut_low = error[i] + cut_low_weight_error[i]; + float error_cut_high = error[i] + cut_high_weight_error[i]; + float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i]; + + // Check best error against record N + vfloat4 best_result = best_results[idx_span]; + vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f); + vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]); + best_results[idx_span] = select(best_result, new_result, mask); + + // Check best error against record N-1 with either cut low or cut high + best_result = best_results[idx_span - 1]; + + new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f); + mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low); + best_result = select(best_result, new_result, mask); + + new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f); + mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high); + best_results[idx_span - 1] = select(best_result, new_result, mask); + + // Check best error against record N-2 with both cut low and high + best_result = best_results[idx_span - 2]; + new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f); + mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high); + best_results[idx_span - 2] = select(best_result, new_result, mask); + } + + for (unsigned int i = 0; i <= max_quant_level; i++) + { + unsigned int q = steps_for_quant_level[i]; + int bsi = static_cast<int>(best_results[q].lane<1>()); + + // Did we find anything? +#if defined(ASTCENC_DIAGNOSTICS) + if ((bsi < 0) && print_once) + { + print_once = false; + printf("INFO: Unable to find full encoding within search error limit.\n\n"); + } +#endif + + bsi = astc::max(0, bsi); + + float lwi = lowest_weight[bsi] + best_results[q].lane<2>(); + float hwi = lwi + static_cast<float>(q) - 1.0f; + + float stepsize = 1.0f / (1.0f + static_cast<float>(bsi)); + low_value[i] = (angular_offsets[bsi] + lwi) * stepsize; + high_value[i] = (angular_offsets[bsi] + hwi) * stepsize; + } +} + +/* See header for documentation. */ +void compute_angular_endpoints_1plane( + bool only_always, + const block_size_descriptor& bsd, + const float* dec_weight_ideal_value, + unsigned int max_weight_quant, + compression_working_buffers& tmpbuf +) { + float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; + float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; + + float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; + float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; + + unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always + : bsd.decimation_mode_count_selected; + promise(max_decimation_modes > 0); + for (unsigned int i = 0; i < max_decimation_modes; i++) + { + const decimation_mode& dm = bsd.decimation_modes[i]; + if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + unsigned int weight_count = bsd.get_decimation_info(i).weight_count; + + unsigned int max_precision = dm.maxprec_1plane; + if (max_precision > TUNE_MAX_ANGULAR_QUANT) + { + max_precision = TUNE_MAX_ANGULAR_QUANT; + } + + if (max_precision > max_weight_quant) + { + max_precision = max_weight_quant; + } + + compute_angular_endpoints_for_quant_levels( + weight_count, + dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, + max_precision, low_values[i], high_values[i]); + } + + unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always + : bsd.block_mode_count_1plane_selected; + promise(max_block_modes > 0); + for (unsigned int i = 0; i < max_block_modes; i++) + { + const block_mode& bm = bsd.block_modes[i]; + assert(!bm.is_dual_plane); + + unsigned int quant_mode = bm.quant_mode; + unsigned int decim_mode = bm.decimation_mode; + + if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) + { + low_value[i] = low_values[decim_mode][quant_mode]; + high_value[i] = high_values[decim_mode][quant_mode]; + } + else + { + low_value[i] = 0.0f; + high_value[i] = 1.0f; + } + } +} + +/* See header for documentation. */ +void compute_angular_endpoints_2planes( + const block_size_descriptor& bsd, + const float* dec_weight_ideal_value, + unsigned int max_weight_quant, + compression_working_buffers& tmpbuf +) { + float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1; + float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1; + float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2; + float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2; + + float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1; + float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1; + float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2; + float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2; + + promise(bsd.decimation_mode_count_selected > 0); + for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) + { + const decimation_mode& dm = bsd.decimation_modes[i]; + if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + unsigned int weight_count = bsd.get_decimation_info(i).weight_count; + + unsigned int max_precision = dm.maxprec_2planes; + if (max_precision > TUNE_MAX_ANGULAR_QUANT) + { + max_precision = TUNE_MAX_ANGULAR_QUANT; + } + + if (max_precision > max_weight_quant) + { + max_precision = max_weight_quant; + } + + compute_angular_endpoints_for_quant_levels( + weight_count, + dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS, + max_precision, low_values1[i], high_values1[i]); + + compute_angular_endpoints_for_quant_levels( + weight_count, + dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET, + max_precision, low_values2[i], high_values2[i]); + } + + unsigned int start = bsd.block_mode_count_1plane_selected; + unsigned int end = bsd.block_mode_count_1plane_2plane_selected; + for (unsigned int i = start; i < end; i++) + { + const block_mode& bm = bsd.block_modes[i]; + unsigned int quant_mode = bm.quant_mode; + unsigned int decim_mode = bm.decimation_mode; + + if (quant_mode <= TUNE_MAX_ANGULAR_QUANT) + { + low_value1[i] = low_values1[decim_mode][quant_mode]; + high_value1[i] = high_values1[decim_mode][quant_mode]; + low_value2[i] = low_values2[decim_mode][quant_mode]; + high_value2[i] = high_values2[decim_mode][quant_mode]; + } + else + { + low_value1[i] = 0.0f; + high_value1[i] = 1.0f; + low_value2[i] = 0.0f; + high_value2[i] = 1.0f; + } + } +} + +#endif diff --git a/thirdparty/astcenc/astcenc_weight_quant_xfer_tables.cpp b/thirdparty/astcenc/astcenc_weight_quant_xfer_tables.cpp new file mode 100644 index 0000000000..8fdf73adc2 --- /dev/null +++ b/thirdparty/astcenc/astcenc_weight_quant_xfer_tables.cpp @@ -0,0 +1,147 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2021 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief Data tables for quantization transfer. + */ + +#include "astcenc_internal.h" + +#define _ 0 // Using _ to indicate an entry that will not be used. + +const quant_and_transfer_table quant_and_xfer_tables[12] { + // QUANT2, range 0..1 + { + {0, 64}, + {0, 1}, + {0, 64}, + {0x4000,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, + _,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, + 0x4000} + }, + // QUANT_3, range 0..2 + { + {0, 32, 64}, + {0, 1, 2}, + {0, 32, 64}, + {0x2000,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, + _,_,0x4000,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, + _,_,_,_,0x4020} + }, + // QUANT_4, range 0..3 + { + {0, 21, 43, 64}, + {0, 1, 2, 3}, + {0, 21, 43, 64}, + {0x1500,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,0x2b00,_,_,_,_, + _,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,0x4015,_,_,_,_,_,_,_,_,_,_,_,_, + _,_,_,_,_,_,_,_,0x402b} + }, + //QUANT_5, range 0..4 + { + {0, 16, 32, 48, 64}, + {0, 1, 2, 3, 4}, + {0, 16, 32, 48, 64}, + {0x1000,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,0x2000,_,_,_,_,_,_,_,_,_, + _,_,_,_,_,_,0x3010,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,0x4020,_,_,_, + _,_,_,_,_,_,_,_,_,_,_,_,0x4030} + }, + // QUANT_6, range 0..5 + { + {0, 12, 25, 39, 52, 64}, + {0, 2, 4, 5, 3, 1}, + {0, 64, 12, 52, 25, 39}, + {0x0c00,_,_,_,_,_,_,_,_,_,_,_,0x1900,_,_,_,_,_,_,_,_,_,_,_,_, + 0x270c,_,_,_,_,_,_,_,_,_,_,_,_,_,0x3419,_,_,_,_,_,_,_,_,_,_, + _,_,0x4027,_,_,_,_,_,_,_,_,_,_,_,0x4034} + }, + // QUANT_8, range 0..7 + { + {0, 9, 18, 27, 37, 46, 55, 64}, + {0, 1, 2, 3, 4, 5, 6, 7}, + {0, 9, 18, 27, 37, 46, 55, 64}, + {0x0900,_,_,_,_,_,_,_,_,0x1200,_,_,_,_,_,_,_,_,0x1b09,_,_, + _,_,_,_,_,_,0x2512,_,_,_,_,_,_,_,_,_,0x2e1b,_,_,_,_,_,_,_,_, + 0x3725,_,_,_,_,_,_,_,_,0x402e,_,_,_,_,_,_,_,_,0x4037} + }, + // QUANT_10, range 0..9 + { + {0, 7, 14, 21, 28, 36, 43, 50, 57, 64}, + {0, 2, 4, 6, 8, 9, 7, 5, 3, 1}, + {0, 64, 7, 57, 14, 50, 21, 43, 28, 36}, + {0x0700,_,_,_,_,_,_,0x0e00,_,_,_,_,_,_,0x1507,_,_,_,_,_,_, + 0x1c0e,_,_,_,_,_,_,0x2415,_,_,_,_,_,_,_,0x2b1c,_,_,_,_,_, + _,0x3224,_,_,_,_,_,_,0x392b,_,_,_,_,_,_,0x4032,_,_,_,_,_, + _,0x4039} + }, + // QUANT_12, range 0..11 + { + {0, 5, 11, 17, 23, 28, 36, 41, 47, 53, 59, 64}, + {0, 4, 8, 2, 6, 10, 11, 7, 3, 9, 5, 1}, + {0, 64, 17, 47, 5, 59, 23, 41, 11, 53, 28, 36}, + {0x0500,_,_,_,_,0x0b00,_,_,_,_,_,0x1105,_,_,_,_,_, + 0x170b,_,_,_,_,_,0x1c11,_,_,_,_,0x2417,_,_,_,_,_,_,_, + 0x291c,_,_,_,_,0x2f24,_,_,_,_,_,0x3529,_,_,_,_,_, + 0x3b2f,_,_,_,_,_,0x4035,_,_,_,_,0x403b} + }, + // QUANT_16, range 0..15 + { + {0, 4, 8, 12, 17, 21, 25, 29, 35, 39, 43, 47, 52, 56, 60, 64}, + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, + {0, 4, 8, 12, 17, 21, 25, 29, 35, 39, 43, 47, 52, 56, 60, 64}, + {0x0400,_,_,_,0x0800,_,_,_,0x0c04,_,_,_,0x1108,_,_,_,_, + 0x150c,_,_,_,0x1911,_,_,_,0x1d15,_,_,_,0x2319,_,_,_,_, + _,0x271d,_,_,_,0x2b23,_,_,_,0x2f27,_,_,_,0x342b,_,_,_, + _,0x382f,_,_,_,0x3c34,_,_,_,0x4038,_,_,_,0x403c} + }, + // QUANT_20, range 0..19 + { + {0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 35, 38, 41, 45, 48, 51, 55, 58, 61, 64}, + {0, 4, 8, 12, 16, 2, 6, 10, 14, 18, 19, 15, 11, 7, 3, 17, 13, 9, 5, 1}, + {0, 64, 16, 48, 3, 61, 19, 45, 6, 58, 23, 41, 9, 55, 26, 38, 13, 51, 29, 35}, + {0x0300,_,_,0x0600,_,_,0x0903,_,_,0x0d06,_,_,_, + 0x1009,_,_,0x130d,_,_,0x1710,_,_,_,0x1a13,_,_, + 0x1d17,_,_,0x231a,_,_,_,_,_,0x261d,_,_,0x2923,_,_, + 0x2d26,_,_,_,0x3029,_,_,0x332d,_,_,0x3730,_,_,_, + 0x3a33,_,_,0x3d37,_,_,0x403a,_,_,0x403d} + }, + // QUANT_24, range 0..23 + { + {0, 2, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30, 34, 37, 40, 42, 45, 48, 51, 53, 56, 59, 62, 64}, + {0, 8, 16, 2, 10, 18, 4, 12, 20, 6, 14, 22, 23, 15, 7, 21, 13, 5, 19, 11, 3, 17, 9, 1}, + {0, 64, 8, 56, 16, 48, 24, 40, 2, 62, 11, 53, 19, 45, 27, 37, 5, 59, 13, 51, 22, 42, 30, 34}, + {0x0200,_,0x0500,_,_,0x0802,_,_,0x0b05,_,_,0x0d08, + _,0x100b,_,_,0x130d,_,_,0x1610,_,_,0x1813,_, + 0x1b16,_,_,0x1e18,_,_,0x221b,_,_,_,0x251e,_,_, + 0x2822,_,_,0x2a25,_,0x2d28,_,_,0x302a,_,_,0x332d, + _,_,0x3530,_,0x3833,_,_,0x3b35,_,_,0x3e38,_,_, + 0x403b,_,0x403e} + }, + // QUANT_32, range 0..31 + { + {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64}, + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}, + {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64}, + {0x0200,_,0x0400,_,0x0602,_,0x0804,_,0x0a06,_, + 0x0c08,_,0x0e0a,_,0x100c,_,0x120e,_,0x1410,_, + 0x1612,_,0x1814,_,0x1a16,_,0x1c18,_,0x1e1a,_, + 0x221c,_,_,_,0x241e,_,0x2622,_,0x2824,_,0x2a26,_, + 0x2c28,_,0x2e2a,_,0x302c,_,0x322e,_,0x3430,_, + 0x3632,_,0x3834,_,0x3a36,_,0x3c38,_,0x3e3a,_, + 0x403c,_,0x403e} + } +}; diff --git a/thirdparty/astcenc/patches/fix-build-no-ssse3.patch b/thirdparty/astcenc/patches/fix-build-no-ssse3.patch new file mode 100644 index 0000000000..9da4f3e1f3 --- /dev/null +++ b/thirdparty/astcenc/patches/fix-build-no-ssse3.patch @@ -0,0 +1,81 @@ +From 02c22d3df501dc284ba732fa82a6c408c57b3237 Mon Sep 17 00:00:00 2001 +From: =?UTF-8?q?R=C3=A9mi=20Verschelde?= <rverschelde@gmail.com> +Date: Thu, 19 Jan 2023 23:30:13 +0100 +Subject: [PATCH] mathlib: Remove incomplete support for SSE3 which assumed + SSSE3 + +`_mm_shuffle_epi8` requires SSSE3 so the check on `ASTCENC_SSE >= 30` is +too lax and would fail if `__SSE3__` is supported, but not `__SSSE3__`. + +The only supported configurations are SSE2, SSE4.1, and AVX2, so as +discussed in #393 we drop the SSE3 checks and require SSE4.1 instead. +--- + Source/astcenc_mathlib.h | 2 -- + Source/astcenc_vecmathlib_sse_4.h | 10 +++++----- + 2 files changed, 5 insertions(+), 7 deletions(-) + +diff --git a/Source/astcenc_mathlib.h b/Source/astcenc_mathlib.h +index 67e989e..0540c4f 100644 +--- a/Source/astcenc_mathlib.h ++++ b/Source/astcenc_mathlib.h +@@ -48,8 +48,6 @@ + #define ASTCENC_SSE 42 + #elif defined(__SSE4_1__) + #define ASTCENC_SSE 41 +- #elif defined(__SSE3__) +- #define ASTCENC_SSE 30 + #elif defined(__SSE2__) + #define ASTCENC_SSE 20 + #else +diff --git a/Source/astcenc_vecmathlib_sse_4.h b/Source/astcenc_vecmathlib_sse_4.h +index 76fe577..26dcc4a 100644 +--- a/Source/astcenc_vecmathlib_sse_4.h ++++ b/Source/astcenc_vecmathlib_sse_4.h +@@ -1046,7 +1046,7 @@ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) + */ + ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) + { +-#if ASTCENC_SSE >= 30 ++#if ASTCENC_SSE >= 41 + t0p = t0; + t1p = t0 ^ t1; + #else +@@ -1062,7 +1062,7 @@ ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) + { +-#if ASTCENC_SSE >= 30 ++#if ASTCENC_SSE >= 41 + t0p = t0; + t1p = t0 ^ t1; + t2p = t1 ^ t2; +@@ -1080,7 +1080,7 @@ ASTCENC_SIMD_INLINE void vtable_prepare( + */ + ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) + { +-#if ASTCENC_SSE >= 30 ++#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + +@@ -1102,7 +1102,7 @@ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) + */ + ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) + { +-#if ASTCENC_SSE >= 30 ++#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + +@@ -1130,7 +1130,7 @@ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) + */ + ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) + { +-#if ASTCENC_SSE >= 30 ++#if ASTCENC_SSE >= 41 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + +-- +2.39.1 + |