summaryrefslogtreecommitdiff
path: root/thirdparty
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/misc/clipper.cpp4629
-rw-r--r--thirdparty/misc/clipper.hpp406
2 files changed, 5035 insertions, 0 deletions
diff --git a/thirdparty/misc/clipper.cpp b/thirdparty/misc/clipper.cpp
new file mode 100644
index 0000000000..d3143fe5ab
--- /dev/null
+++ b/thirdparty/misc/clipper.cpp
@@ -0,0 +1,4629 @@
+/*******************************************************************************
+* *
+* Author : Angus Johnson *
+* Version : 6.4.2 *
+* Date : 27 February 2017 *
+* Website : http://www.angusj.com *
+* Copyright : Angus Johnson 2010-2017 *
+* *
+* License: *
+* Use, modification & distribution is subject to Boost Software License Ver 1. *
+* http://www.boost.org/LICENSE_1_0.txt *
+* *
+* Attributions: *
+* The code in this library is an extension of Bala Vatti's clipping algorithm: *
+* "A generic solution to polygon clipping" *
+* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
+* http://portal.acm.org/citation.cfm?id=129906 *
+* *
+* Computer graphics and geometric modeling: implementation and algorithms *
+* By Max K. Agoston *
+* Springer; 1 edition (January 4, 2005) *
+* http://books.google.com/books?q=vatti+clipping+agoston *
+* *
+* See also: *
+* "Polygon Offsetting by Computing Winding Numbers" *
+* Paper no. DETC2005-85513 pp. 565-575 *
+* ASME 2005 International Design Engineering Technical Conferences *
+* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
+* September 24-28, 2005 , Long Beach, California, USA *
+* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
+* *
+*******************************************************************************/
+
+/*******************************************************************************
+* *
+* This is a translation of the Delphi Clipper library and the naming style *
+* used has retained a Delphi flavour. *
+* *
+*******************************************************************************/
+
+#include "clipper.hpp"
+#include <cmath>
+#include <vector>
+#include <algorithm>
+#include <stdexcept>
+#include <cstring>
+#include <cstdlib>
+#include <ostream>
+#include <functional>
+
+namespace ClipperLib {
+
+static double const pi = 3.141592653589793238;
+static double const two_pi = pi *2;
+static double const def_arc_tolerance = 0.25;
+
+enum Direction { dRightToLeft, dLeftToRight };
+
+static int const Unassigned = -1; //edge not currently 'owning' a solution
+static int const Skip = -2; //edge that would otherwise close a path
+
+#define HORIZONTAL (-1.0E+40)
+#define TOLERANCE (1.0e-20)
+#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE))
+
+struct TEdge {
+ IntPoint Bot;
+ IntPoint Curr; //current (updated for every new scanbeam)
+ IntPoint Top;
+ double Dx;
+ PolyType PolyTyp;
+ EdgeSide Side; //side only refers to current side of solution poly
+ int WindDelta; //1 or -1 depending on winding direction
+ int WindCnt;
+ int WindCnt2; //winding count of the opposite polytype
+ int OutIdx;
+ TEdge *Next;
+ TEdge *Prev;
+ TEdge *NextInLML;
+ TEdge *NextInAEL;
+ TEdge *PrevInAEL;
+ TEdge *NextInSEL;
+ TEdge *PrevInSEL;
+};
+
+struct IntersectNode {
+ TEdge *Edge1;
+ TEdge *Edge2;
+ IntPoint Pt;
+};
+
+struct LocalMinimum {
+ cInt Y;
+ TEdge *LeftBound;
+ TEdge *RightBound;
+};
+
+struct OutPt;
+
+//OutRec: contains a path in the clipping solution. Edges in the AEL will
+//carry a pointer to an OutRec when they are part of the clipping solution.
+struct OutRec {
+ int Idx;
+ bool IsHole;
+ bool IsOpen;
+ OutRec *FirstLeft; //see comments in clipper.pas
+ PolyNode *PolyNd;
+ OutPt *Pts;
+ OutPt *BottomPt;
+};
+
+struct OutPt {
+ int Idx;
+ IntPoint Pt;
+ OutPt *Next;
+ OutPt *Prev;
+};
+
+struct Join {
+ OutPt *OutPt1;
+ OutPt *OutPt2;
+ IntPoint OffPt;
+};
+
+struct LocMinSorter
+{
+ inline bool operator()(const LocalMinimum& locMin1, const LocalMinimum& locMin2)
+ {
+ return locMin2.Y < locMin1.Y;
+ }
+};
+
+//------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
+
+inline cInt Round(double val)
+{
+ if ((val < 0)) return static_cast<cInt>(val - 0.5);
+ else return static_cast<cInt>(val + 0.5);
+}
+//------------------------------------------------------------------------------
+
+inline cInt Abs(cInt val)
+{
+ return val < 0 ? -val : val;
+}
+
+//------------------------------------------------------------------------------
+// PolyTree methods ...
+//------------------------------------------------------------------------------
+
+void PolyTree::Clear()
+{
+ for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i)
+ delete AllNodes[i];
+ AllNodes.resize(0);
+ Childs.resize(0);
+}
+//------------------------------------------------------------------------------
+
+PolyNode* PolyTree::GetFirst() const
+{
+ if (!Childs.empty())
+ return Childs[0];
+ else
+ return 0;
+}
+//------------------------------------------------------------------------------
+
+int PolyTree::Total() const
+{
+ int result = (int)AllNodes.size();
+ //with negative offsets, ignore the hidden outer polygon ...
+ if (result > 0 && Childs[0] != AllNodes[0]) result--;
+ return result;
+}
+
+//------------------------------------------------------------------------------
+// PolyNode methods ...
+//------------------------------------------------------------------------------
+
+PolyNode::PolyNode(): Parent(0), Index(0), m_IsOpen(false)
+{
+}
+//------------------------------------------------------------------------------
+
+int PolyNode::ChildCount() const
+{
+ return (int)Childs.size();
+}
+//------------------------------------------------------------------------------
+
+void PolyNode::AddChild(PolyNode& child)
+{
+ unsigned cnt = (unsigned)Childs.size();
+ Childs.push_back(&child);
+ child.Parent = this;
+ child.Index = cnt;
+}
+//------------------------------------------------------------------------------
+
+PolyNode* PolyNode::GetNext() const
+{
+ if (!Childs.empty())
+ return Childs[0];
+ else
+ return GetNextSiblingUp();
+}
+//------------------------------------------------------------------------------
+
+PolyNode* PolyNode::GetNextSiblingUp() const
+{
+ if (!Parent) //protects against PolyTree.GetNextSiblingUp()
+ return 0;
+ else if (Index == Parent->Childs.size() - 1)
+ return Parent->GetNextSiblingUp();
+ else
+ return Parent->Childs[Index + 1];
+}
+//------------------------------------------------------------------------------
+
+bool PolyNode::IsHole() const
+{
+ bool result = true;
+ PolyNode* node = Parent;
+ while (node)
+ {
+ result = !result;
+ node = node->Parent;
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+bool PolyNode::IsOpen() const
+{
+ return m_IsOpen;
+}
+//------------------------------------------------------------------------------
+
+#ifndef use_int32
+
+//------------------------------------------------------------------------------
+// Int128 class (enables safe math on signed 64bit integers)
+// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1
+// Int128 val2((long64)9223372036854775807);
+// Int128 val3 = val1 * val2;
+// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37)
+//------------------------------------------------------------------------------
+
+class Int128
+{
+ public:
+ ulong64 lo;
+ long64 hi;
+
+ Int128(long64 _lo = 0)
+ {
+ lo = (ulong64)_lo;
+ if (_lo < 0) hi = -1; else hi = 0;
+ }
+
+
+ Int128(const Int128 &val): lo(val.lo), hi(val.hi){}
+
+ Int128(const long64& _hi, const ulong64& _lo): lo(_lo), hi(_hi){}
+
+ Int128& operator = (const long64 &val)
+ {
+ lo = (ulong64)val;
+ if (val < 0) hi = -1; else hi = 0;
+ return *this;
+ }
+
+ bool operator == (const Int128 &val) const
+ {return (hi == val.hi && lo == val.lo);}
+
+ bool operator != (const Int128 &val) const
+ { return !(*this == val);}
+
+ bool operator > (const Int128 &val) const
+ {
+ if (hi != val.hi)
+ return hi > val.hi;
+ else
+ return lo > val.lo;
+ }
+
+ bool operator < (const Int128 &val) const
+ {
+ if (hi != val.hi)
+ return hi < val.hi;
+ else
+ return lo < val.lo;
+ }
+
+ bool operator >= (const Int128 &val) const
+ { return !(*this < val);}
+
+ bool operator <= (const Int128 &val) const
+ { return !(*this > val);}
+
+ Int128& operator += (const Int128 &rhs)
+ {
+ hi += rhs.hi;
+ lo += rhs.lo;
+ if (lo < rhs.lo) hi++;
+ return *this;
+ }
+
+ Int128 operator + (const Int128 &rhs) const
+ {
+ Int128 result(*this);
+ result+= rhs;
+ return result;
+ }
+
+ Int128& operator -= (const Int128 &rhs)
+ {
+ *this += -rhs;
+ return *this;
+ }
+
+ Int128 operator - (const Int128 &rhs) const
+ {
+ Int128 result(*this);
+ result -= rhs;
+ return result;
+ }
+
+ Int128 operator-() const //unary negation
+ {
+ if (lo == 0)
+ return Int128(-hi, 0);
+ else
+ return Int128(~hi, ~lo + 1);
+ }
+
+ operator double() const
+ {
+ const double shift64 = 18446744073709551616.0; //2^64
+ if (hi < 0)
+ {
+ if (lo == 0) return (double)hi * shift64;
+ else return -(double)(~lo + ~hi * shift64);
+ }
+ else
+ return (double)(lo + hi * shift64);
+ }
+
+};
+//------------------------------------------------------------------------------
+
+Int128 Int128Mul (long64 lhs, long64 rhs)
+{
+ bool negate = (lhs < 0) != (rhs < 0);
+
+ if (lhs < 0) lhs = -lhs;
+ ulong64 int1Hi = ulong64(lhs) >> 32;
+ ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF);
+
+ if (rhs < 0) rhs = -rhs;
+ ulong64 int2Hi = ulong64(rhs) >> 32;
+ ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF);
+
+ //nb: see comments in clipper.pas
+ ulong64 a = int1Hi * int2Hi;
+ ulong64 b = int1Lo * int2Lo;
+ ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi;
+
+ Int128 tmp;
+ tmp.hi = long64(a + (c >> 32));
+ tmp.lo = long64(c << 32);
+ tmp.lo += long64(b);
+ if (tmp.lo < b) tmp.hi++;
+ if (negate) tmp = -tmp;
+ return tmp;
+};
+#endif
+
+//------------------------------------------------------------------------------
+// Miscellaneous global functions
+//------------------------------------------------------------------------------
+
+bool Orientation(const Path &poly)
+{
+ return Area(poly) >= 0;
+}
+//------------------------------------------------------------------------------
+
+double Area(const Path &poly)
+{
+ int size = (int)poly.size();
+ if (size < 3) return 0;
+
+ double a = 0;
+ for (int i = 0, j = size -1; i < size; ++i)
+ {
+ a += ((double)poly[j].X + poly[i].X) * ((double)poly[j].Y - poly[i].Y);
+ j = i;
+ }
+ return -a * 0.5;
+}
+//------------------------------------------------------------------------------
+
+double Area(const OutPt *op)
+{
+ const OutPt *startOp = op;
+ if (!op) return 0;
+ double a = 0;
+ do {
+ a += (double)(op->Prev->Pt.X + op->Pt.X) * (double)(op->Prev->Pt.Y - op->Pt.Y);
+ op = op->Next;
+ } while (op != startOp);
+ return a * 0.5;
+}
+//------------------------------------------------------------------------------
+
+double Area(const OutRec &outRec)
+{
+ return Area(outRec.Pts);
+}
+//------------------------------------------------------------------------------
+
+bool PointIsVertex(const IntPoint &Pt, OutPt *pp)
+{
+ OutPt *pp2 = pp;
+ do
+ {
+ if (pp2->Pt == Pt) return true;
+ pp2 = pp2->Next;
+ }
+ while (pp2 != pp);
+ return false;
+}
+//------------------------------------------------------------------------------
+
+//See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos
+//http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
+int PointInPolygon(const IntPoint &pt, const Path &path)
+{
+ //returns 0 if false, +1 if true, -1 if pt ON polygon boundary
+ int result = 0;
+ size_t cnt = path.size();
+ if (cnt < 3) return 0;
+ IntPoint ip = path[0];
+ for(size_t i = 1; i <= cnt; ++i)
+ {
+ IntPoint ipNext = (i == cnt ? path[0] : path[i]);
+ if (ipNext.Y == pt.Y)
+ {
+ if ((ipNext.X == pt.X) || (ip.Y == pt.Y &&
+ ((ipNext.X > pt.X) == (ip.X < pt.X)))) return -1;
+ }
+ if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y))
+ {
+ if (ip.X >= pt.X)
+ {
+ if (ipNext.X > pt.X) result = 1 - result;
+ else
+ {
+ double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
+ (double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
+ if (!d) return -1;
+ if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result;
+ }
+ } else
+ {
+ if (ipNext.X > pt.X)
+ {
+ double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) -
+ (double)(ipNext.X - pt.X) * (ip.Y - pt.Y);
+ if (!d) return -1;
+ if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result;
+ }
+ }
+ }
+ ip = ipNext;
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+int PointInPolygon (const IntPoint &pt, OutPt *op)
+{
+ //returns 0 if false, +1 if true, -1 if pt ON polygon boundary
+ int result = 0;
+ OutPt* startOp = op;
+ for(;;)
+ {
+ if (op->Next->Pt.Y == pt.Y)
+ {
+ if ((op->Next->Pt.X == pt.X) || (op->Pt.Y == pt.Y &&
+ ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X)))) return -1;
+ }
+ if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y))
+ {
+ if (op->Pt.X >= pt.X)
+ {
+ if (op->Next->Pt.X > pt.X) result = 1 - result;
+ else
+ {
+ double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
+ (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
+ if (!d) return -1;
+ if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result;
+ }
+ } else
+ {
+ if (op->Next->Pt.X > pt.X)
+ {
+ double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) -
+ (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y);
+ if (!d) return -1;
+ if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result;
+ }
+ }
+ }
+ op = op->Next;
+ if (startOp == op) break;
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2)
+{
+ OutPt* op = OutPt1;
+ do
+ {
+ //nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
+ int res = PointInPolygon(op->Pt, OutPt2);
+ if (res >= 0) return res > 0;
+ op = op->Next;
+ }
+ while (op != OutPt1);
+ return true;
+}
+//----------------------------------------------------------------------
+
+bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range)
+{
+#ifndef use_int32
+ if (UseFullInt64Range)
+ return Int128Mul(e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X) ==
+ Int128Mul(e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y);
+ else
+#endif
+ return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) ==
+ (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y);
+}
+//------------------------------------------------------------------------------
+
+bool SlopesEqual(const IntPoint pt1, const IntPoint pt2,
+ const IntPoint pt3, bool UseFullInt64Range)
+{
+#ifndef use_int32
+ if (UseFullInt64Range)
+ return Int128Mul(pt1.Y-pt2.Y, pt2.X-pt3.X) == Int128Mul(pt1.X-pt2.X, pt2.Y-pt3.Y);
+ else
+#endif
+ return (pt1.Y-pt2.Y)*(pt2.X-pt3.X) == (pt1.X-pt2.X)*(pt2.Y-pt3.Y);
+}
+//------------------------------------------------------------------------------
+
+bool SlopesEqual(const IntPoint pt1, const IntPoint pt2,
+ const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range)
+{
+#ifndef use_int32
+ if (UseFullInt64Range)
+ return Int128Mul(pt1.Y-pt2.Y, pt3.X-pt4.X) == Int128Mul(pt1.X-pt2.X, pt3.Y-pt4.Y);
+ else
+#endif
+ return (pt1.Y-pt2.Y)*(pt3.X-pt4.X) == (pt1.X-pt2.X)*(pt3.Y-pt4.Y);
+}
+//------------------------------------------------------------------------------
+
+inline bool IsHorizontal(TEdge &e)
+{
+ return e.Dx == HORIZONTAL;
+}
+//------------------------------------------------------------------------------
+
+inline double GetDx(const IntPoint pt1, const IntPoint pt2)
+{
+ return (pt1.Y == pt2.Y) ?
+ HORIZONTAL : (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y);
+}
+//---------------------------------------------------------------------------
+
+inline void SetDx(TEdge &e)
+{
+ cInt dy = (e.Top.Y - e.Bot.Y);
+ if (dy == 0) e.Dx = HORIZONTAL;
+ else e.Dx = (double)(e.Top.X - e.Bot.X) / dy;
+}
+//---------------------------------------------------------------------------
+
+inline void SwapSides(TEdge &Edge1, TEdge &Edge2)
+{
+ EdgeSide Side = Edge1.Side;
+ Edge1.Side = Edge2.Side;
+ Edge2.Side = Side;
+}
+//------------------------------------------------------------------------------
+
+inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2)
+{
+ int OutIdx = Edge1.OutIdx;
+ Edge1.OutIdx = Edge2.OutIdx;
+ Edge2.OutIdx = OutIdx;
+}
+//------------------------------------------------------------------------------
+
+inline cInt TopX(TEdge &edge, const cInt currentY)
+{
+ return ( currentY == edge.Top.Y ) ?
+ edge.Top.X : edge.Bot.X + Round(edge.Dx *(currentY - edge.Bot.Y));
+}
+//------------------------------------------------------------------------------
+
+void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip)
+{
+#ifdef use_xyz
+ ip.Z = 0;
+#endif
+
+ double b1, b2;
+ if (Edge1.Dx == Edge2.Dx)
+ {
+ ip.Y = Edge1.Curr.Y;
+ ip.X = TopX(Edge1, ip.Y);
+ return;
+ }
+ else if (Edge1.Dx == 0)
+ {
+ ip.X = Edge1.Bot.X;
+ if (IsHorizontal(Edge2))
+ ip.Y = Edge2.Bot.Y;
+ else
+ {
+ b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx);
+ ip.Y = Round(ip.X / Edge2.Dx + b2);
+ }
+ }
+ else if (Edge2.Dx == 0)
+ {
+ ip.X = Edge2.Bot.X;
+ if (IsHorizontal(Edge1))
+ ip.Y = Edge1.Bot.Y;
+ else
+ {
+ b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx);
+ ip.Y = Round(ip.X / Edge1.Dx + b1);
+ }
+ }
+ else
+ {
+ b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx;
+ b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx;
+ double q = (b2-b1) / (Edge1.Dx - Edge2.Dx);
+ ip.Y = Round(q);
+ if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
+ ip.X = Round(Edge1.Dx * q + b1);
+ else
+ ip.X = Round(Edge2.Dx * q + b2);
+ }
+
+ if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y)
+ {
+ if (Edge1.Top.Y > Edge2.Top.Y)
+ ip.Y = Edge1.Top.Y;
+ else
+ ip.Y = Edge2.Top.Y;
+ if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx))
+ ip.X = TopX(Edge1, ip.Y);
+ else
+ ip.X = TopX(Edge2, ip.Y);
+ }
+ //finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ...
+ if (ip.Y > Edge1.Curr.Y)
+ {
+ ip.Y = Edge1.Curr.Y;
+ //use the more vertical edge to derive X ...
+ if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx))
+ ip.X = TopX(Edge2, ip.Y); else
+ ip.X = TopX(Edge1, ip.Y);
+ }
+}
+//------------------------------------------------------------------------------
+
+void ReversePolyPtLinks(OutPt *pp)
+{
+ if (!pp) return;
+ OutPt *pp1, *pp2;
+ pp1 = pp;
+ do {
+ pp2 = pp1->Next;
+ pp1->Next = pp1->Prev;
+ pp1->Prev = pp2;
+ pp1 = pp2;
+ } while( pp1 != pp );
+}
+//------------------------------------------------------------------------------
+
+void DisposeOutPts(OutPt*& pp)
+{
+ if (pp == 0) return;
+ pp->Prev->Next = 0;
+ while( pp )
+ {
+ OutPt *tmpPp = pp;
+ pp = pp->Next;
+ delete tmpPp;
+ }
+}
+//------------------------------------------------------------------------------
+
+inline void InitEdge(TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt)
+{
+ std::memset(e, 0, sizeof(TEdge));
+ e->Next = eNext;
+ e->Prev = ePrev;
+ e->Curr = Pt;
+ e->OutIdx = Unassigned;
+}
+//------------------------------------------------------------------------------
+
+void InitEdge2(TEdge& e, PolyType Pt)
+{
+ if (e.Curr.Y >= e.Next->Curr.Y)
+ {
+ e.Bot = e.Curr;
+ e.Top = e.Next->Curr;
+ } else
+ {
+ e.Top = e.Curr;
+ e.Bot = e.Next->Curr;
+ }
+ SetDx(e);
+ e.PolyTyp = Pt;
+}
+//------------------------------------------------------------------------------
+
+TEdge* RemoveEdge(TEdge* e)
+{
+ //removes e from double_linked_list (but without removing from memory)
+ e->Prev->Next = e->Next;
+ e->Next->Prev = e->Prev;
+ TEdge* result = e->Next;
+ e->Prev = 0; //flag as removed (see ClipperBase.Clear)
+ return result;
+}
+//------------------------------------------------------------------------------
+
+inline void ReverseHorizontal(TEdge &e)
+{
+ //swap horizontal edges' Top and Bottom x's so they follow the natural
+ //progression of the bounds - ie so their xbots will align with the
+ //adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
+ std::swap(e.Top.X, e.Bot.X);
+#ifdef use_xyz
+ std::swap(e.Top.Z, e.Bot.Z);
+#endif
+}
+//------------------------------------------------------------------------------
+
+void SwapPoints(IntPoint &pt1, IntPoint &pt2)
+{
+ IntPoint tmp = pt1;
+ pt1 = pt2;
+ pt2 = tmp;
+}
+//------------------------------------------------------------------------------
+
+bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a,
+ IntPoint pt2b, IntPoint &pt1, IntPoint &pt2)
+{
+ //precondition: segments are Collinear.
+ if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y))
+ {
+ if (pt1a.X > pt1b.X) SwapPoints(pt1a, pt1b);
+ if (pt2a.X > pt2b.X) SwapPoints(pt2a, pt2b);
+ if (pt1a.X > pt2a.X) pt1 = pt1a; else pt1 = pt2a;
+ if (pt1b.X < pt2b.X) pt2 = pt1b; else pt2 = pt2b;
+ return pt1.X < pt2.X;
+ } else
+ {
+ if (pt1a.Y < pt1b.Y) SwapPoints(pt1a, pt1b);
+ if (pt2a.Y < pt2b.Y) SwapPoints(pt2a, pt2b);
+ if (pt1a.Y < pt2a.Y) pt1 = pt1a; else pt1 = pt2a;
+ if (pt1b.Y > pt2b.Y) pt2 = pt1b; else pt2 = pt2b;
+ return pt1.Y > pt2.Y;
+ }
+}
+//------------------------------------------------------------------------------
+
+bool FirstIsBottomPt(const OutPt* btmPt1, const OutPt* btmPt2)
+{
+ OutPt *p = btmPt1->Prev;
+ while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Prev;
+ double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt));
+ p = btmPt1->Next;
+ while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Next;
+ double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt));
+
+ p = btmPt2->Prev;
+ while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Prev;
+ double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt));
+ p = btmPt2->Next;
+ while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Next;
+ double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt));
+
+ if (std::max(dx1p, dx1n) == std::max(dx2p, dx2n) &&
+ std::min(dx1p, dx1n) == std::min(dx2p, dx2n))
+ return Area(btmPt1) > 0; //if otherwise identical use orientation
+ else
+ return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);
+}
+//------------------------------------------------------------------------------
+
+OutPt* GetBottomPt(OutPt *pp)
+{
+ OutPt* dups = 0;
+ OutPt* p = pp->Next;
+ while (p != pp)
+ {
+ if (p->Pt.Y > pp->Pt.Y)
+ {
+ pp = p;
+ dups = 0;
+ }
+ else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X)
+ {
+ if (p->Pt.X < pp->Pt.X)
+ {
+ dups = 0;
+ pp = p;
+ } else
+ {
+ if (p->Next != pp && p->Prev != pp) dups = p;
+ }
+ }
+ p = p->Next;
+ }
+ if (dups)
+ {
+ //there appears to be at least 2 vertices at BottomPt so ...
+ while (dups != p)
+ {
+ if (!FirstIsBottomPt(p, dups)) pp = dups;
+ dups = dups->Next;
+ while (dups->Pt != pp->Pt) dups = dups->Next;
+ }
+ }
+ return pp;
+}
+//------------------------------------------------------------------------------
+
+bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1,
+ const IntPoint pt2, const IntPoint pt3)
+{
+ if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2))
+ return false;
+ else if (pt1.X != pt3.X)
+ return (pt2.X > pt1.X) == (pt2.X < pt3.X);
+ else
+ return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y);
+}
+//------------------------------------------------------------------------------
+
+bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b)
+{
+ if (seg1a > seg1b) std::swap(seg1a, seg1b);
+ if (seg2a > seg2b) std::swap(seg2a, seg2b);
+ return (seg1a < seg2b) && (seg2a < seg1b);
+}
+
+//------------------------------------------------------------------------------
+// ClipperBase class methods ...
+//------------------------------------------------------------------------------
+
+ClipperBase::ClipperBase() //constructor
+{
+ m_CurrentLM = m_MinimaList.begin(); //begin() == end() here
+ m_UseFullRange = false;
+}
+//------------------------------------------------------------------------------
+
+ClipperBase::~ClipperBase() //destructor
+{
+ Clear();
+}
+//------------------------------------------------------------------------------
+
+void RangeTest(const IntPoint& Pt, bool& useFullRange)
+{
+ if (useFullRange)
+ {
+ if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange)
+ throw clipperException("Coordinate outside allowed range");
+ }
+ else if (Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange)
+ {
+ useFullRange = true;
+ RangeTest(Pt, useFullRange);
+ }
+}
+//------------------------------------------------------------------------------
+
+TEdge* FindNextLocMin(TEdge* E)
+{
+ for (;;)
+ {
+ while (E->Bot != E->Prev->Bot || E->Curr == E->Top) E = E->Next;
+ if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev)) break;
+ while (IsHorizontal(*E->Prev)) E = E->Prev;
+ TEdge* E2 = E;
+ while (IsHorizontal(*E)) E = E->Next;
+ if (E->Top.Y == E->Prev->Bot.Y) continue; //ie just an intermediate horz.
+ if (E2->Prev->Bot.X < E->Bot.X) E = E2;
+ break;
+ }
+ return E;
+}
+//------------------------------------------------------------------------------
+
+TEdge* ClipperBase::ProcessBound(TEdge* E, bool NextIsForward)
+{
+ TEdge *Result = E;
+ TEdge *Horz = 0;
+
+ if (E->OutIdx == Skip)
+ {
+ //if edges still remain in the current bound beyond the skip edge then
+ //create another LocMin and call ProcessBound once more
+ if (NextIsForward)
+ {
+ while (E->Top.Y == E->Next->Bot.Y) E = E->Next;
+ //don't include top horizontals when parsing a bound a second time,
+ //they will be contained in the opposite bound ...
+ while (E != Result && IsHorizontal(*E)) E = E->Prev;
+ }
+ else
+ {
+ while (E->Top.Y == E->Prev->Bot.Y) E = E->Prev;
+ while (E != Result && IsHorizontal(*E)) E = E->Next;
+ }
+
+ if (E == Result)
+ {
+ if (NextIsForward) Result = E->Next;
+ else Result = E->Prev;
+ }
+ else
+ {
+ //there are more edges in the bound beyond result starting with E
+ if (NextIsForward)
+ E = Result->Next;
+ else
+ E = Result->Prev;
+ MinimaList::value_type locMin;
+ locMin.Y = E->Bot.Y;
+ locMin.LeftBound = 0;
+ locMin.RightBound = E;
+ E->WindDelta = 0;
+ Result = ProcessBound(E, NextIsForward);
+ m_MinimaList.push_back(locMin);
+ }
+ return Result;
+ }
+
+ TEdge *EStart;
+
+ if (IsHorizontal(*E))
+ {
+ //We need to be careful with open paths because this may not be a
+ //true local minima (ie E may be following a skip edge).
+ //Also, consecutive horz. edges may start heading left before going right.
+ if (NextIsForward)
+ EStart = E->Prev;
+ else
+ EStart = E->Next;
+ if (IsHorizontal(*EStart)) //ie an adjoining horizontal skip edge
+ {
+ if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X)
+ ReverseHorizontal(*E);
+ }
+ else if (EStart->Bot.X != E->Bot.X)
+ ReverseHorizontal(*E);
+ }
+
+ EStart = E;
+ if (NextIsForward)
+ {
+ while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip)
+ Result = Result->Next;
+ if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip)
+ {
+ //nb: at the top of a bound, horizontals are added to the bound
+ //only when the preceding edge attaches to the horizontal's left vertex
+ //unless a Skip edge is encountered when that becomes the top divide
+ Horz = Result;
+ while (IsHorizontal(*Horz->Prev)) Horz = Horz->Prev;
+ if (Horz->Prev->Top.X > Result->Next->Top.X) Result = Horz->Prev;
+ }
+ while (E != Result)
+ {
+ E->NextInLML = E->Next;
+ if (IsHorizontal(*E) && E != EStart &&
+ E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E);
+ E = E->Next;
+ }
+ if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X)
+ ReverseHorizontal(*E);
+ Result = Result->Next; //move to the edge just beyond current bound
+ } else
+ {
+ while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip)
+ Result = Result->Prev;
+ if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip)
+ {
+ Horz = Result;
+ while (IsHorizontal(*Horz->Next)) Horz = Horz->Next;
+ if (Horz->Next->Top.X == Result->Prev->Top.X ||
+ Horz->Next->Top.X > Result->Prev->Top.X) Result = Horz->Next;
+ }
+
+ while (E != Result)
+ {
+ E->NextInLML = E->Prev;
+ if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
+ ReverseHorizontal(*E);
+ E = E->Prev;
+ }
+ if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X)
+ ReverseHorizontal(*E);
+ Result = Result->Prev; //move to the edge just beyond current bound
+ }
+
+ return Result;
+}
+//------------------------------------------------------------------------------
+
+bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed)
+{
+#ifdef use_lines
+ if (!Closed && PolyTyp == ptClip)
+ throw clipperException("AddPath: Open paths must be subject.");
+#else
+ if (!Closed)
+ throw clipperException("AddPath: Open paths have been disabled.");
+#endif
+
+ int highI = (int)pg.size() -1;
+ if (Closed) while (highI > 0 && (pg[highI] == pg[0])) --highI;
+ while (highI > 0 && (pg[highI] == pg[highI -1])) --highI;
+ if ((Closed && highI < 2) || (!Closed && highI < 1)) return false;
+
+ //create a new edge array ...
+ TEdge *edges = new TEdge [highI +1];
+
+ bool IsFlat = true;
+ //1. Basic (first) edge initialization ...
+ try
+ {
+ edges[1].Curr = pg[1];
+ RangeTest(pg[0], m_UseFullRange);
+ RangeTest(pg[highI], m_UseFullRange);
+ InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]);
+ InitEdge(&edges[highI], &edges[0], &edges[highI-1], pg[highI]);
+ for (int i = highI - 1; i >= 1; --i)
+ {
+ RangeTest(pg[i], m_UseFullRange);
+ InitEdge(&edges[i], &edges[i+1], &edges[i-1], pg[i]);
+ }
+ }
+ catch(...)
+ {
+ delete [] edges;
+ throw; //range test fails
+ }
+ TEdge *eStart = &edges[0];
+
+ //2. Remove duplicate vertices, and (when closed) collinear edges ...
+ TEdge *E = eStart, *eLoopStop = eStart;
+ for (;;)
+ {
+ //nb: allows matching start and end points when not Closed ...
+ if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart))
+ {
+ if (E == E->Next) break;
+ if (E == eStart) eStart = E->Next;
+ E = RemoveEdge(E);
+ eLoopStop = E;
+ continue;
+ }
+ if (E->Prev == E->Next)
+ break; //only two vertices
+ else if (Closed &&
+ SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange) &&
+ (!m_PreserveCollinear ||
+ !Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr)))
+ {
+ //Collinear edges are allowed for open paths but in closed paths
+ //the default is to merge adjacent collinear edges into a single edge.
+ //However, if the PreserveCollinear property is enabled, only overlapping
+ //collinear edges (ie spikes) will be removed from closed paths.
+ if (E == eStart) eStart = E->Next;
+ E = RemoveEdge(E);
+ E = E->Prev;
+ eLoopStop = E;
+ continue;
+ }
+ E = E->Next;
+ if ((E == eLoopStop) || (!Closed && E->Next == eStart)) break;
+ }
+
+ if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next)))
+ {
+ delete [] edges;
+ return false;
+ }
+
+ if (!Closed)
+ {
+ m_HasOpenPaths = true;
+ eStart->Prev->OutIdx = Skip;
+ }
+
+ //3. Do second stage of edge initialization ...
+ E = eStart;
+ do
+ {
+ InitEdge2(*E, PolyTyp);
+ E = E->Next;
+ if (IsFlat && E->Curr.Y != eStart->Curr.Y) IsFlat = false;
+ }
+ while (E != eStart);
+
+ //4. Finally, add edge bounds to LocalMinima list ...
+
+ //Totally flat paths must be handled differently when adding them
+ //to LocalMinima list to avoid endless loops etc ...
+ if (IsFlat)
+ {
+ if (Closed)
+ {
+ delete [] edges;
+ return false;
+ }
+ E->Prev->OutIdx = Skip;
+ MinimaList::value_type locMin;
+ locMin.Y = E->Bot.Y;
+ locMin.LeftBound = 0;
+ locMin.RightBound = E;
+ locMin.RightBound->Side = esRight;
+ locMin.RightBound->WindDelta = 0;
+ for (;;)
+ {
+ if (E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E);
+ if (E->Next->OutIdx == Skip) break;
+ E->NextInLML = E->Next;
+ E = E->Next;
+ }
+ m_MinimaList.push_back(locMin);
+ m_edges.push_back(edges);
+ return true;
+ }
+
+ m_edges.push_back(edges);
+ bool leftBoundIsForward;
+ TEdge* EMin = 0;
+
+ //workaround to avoid an endless loop in the while loop below when
+ //open paths have matching start and end points ...
+ if (E->Prev->Bot == E->Prev->Top) E = E->Next;
+
+ for (;;)
+ {
+ E = FindNextLocMin(E);
+ if (E == EMin) break;
+ else if (!EMin) EMin = E;
+
+ //E and E.Prev now share a local minima (left aligned if horizontal).
+ //Compare their slopes to find which starts which bound ...
+ MinimaList::value_type locMin;
+ locMin.Y = E->Bot.Y;
+ if (E->Dx < E->Prev->Dx)
+ {
+ locMin.LeftBound = E->Prev;
+ locMin.RightBound = E;
+ leftBoundIsForward = false; //Q.nextInLML = Q.prev
+ } else
+ {
+ locMin.LeftBound = E;
+ locMin.RightBound = E->Prev;
+ leftBoundIsForward = true; //Q.nextInLML = Q.next
+ }
+
+ if (!Closed) locMin.LeftBound->WindDelta = 0;
+ else if (locMin.LeftBound->Next == locMin.RightBound)
+ locMin.LeftBound->WindDelta = -1;
+ else locMin.LeftBound->WindDelta = 1;
+ locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta;
+
+ E = ProcessBound(locMin.LeftBound, leftBoundIsForward);
+ if (E->OutIdx == Skip) E = ProcessBound(E, leftBoundIsForward);
+
+ TEdge* E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward);
+ if (E2->OutIdx == Skip) E2 = ProcessBound(E2, !leftBoundIsForward);
+
+ if (locMin.LeftBound->OutIdx == Skip)
+ locMin.LeftBound = 0;
+ else if (locMin.RightBound->OutIdx == Skip)
+ locMin.RightBound = 0;
+ m_MinimaList.push_back(locMin);
+ if (!leftBoundIsForward) E = E2;
+ }
+ return true;
+}
+//------------------------------------------------------------------------------
+
+bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed)
+{
+ bool result = false;
+ for (Paths::size_type i = 0; i < ppg.size(); ++i)
+ if (AddPath(ppg[i], PolyTyp, Closed)) result = true;
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::Clear()
+{
+ DisposeLocalMinimaList();
+ for (EdgeList::size_type i = 0; i < m_edges.size(); ++i)
+ {
+ TEdge* edges = m_edges[i];
+ delete [] edges;
+ }
+ m_edges.clear();
+ m_UseFullRange = false;
+ m_HasOpenPaths = false;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::Reset()
+{
+ m_CurrentLM = m_MinimaList.begin();
+ if (m_CurrentLM == m_MinimaList.end()) return; //ie nothing to process
+ std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter());
+
+ m_Scanbeam = ScanbeamList(); //clears/resets priority_queue
+ //reset all edges ...
+ for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm)
+ {
+ InsertScanbeam(lm->Y);
+ TEdge* e = lm->LeftBound;
+ if (e)
+ {
+ e->Curr = e->Bot;
+ e->Side = esLeft;
+ e->OutIdx = Unassigned;
+ }
+
+ e = lm->RightBound;
+ if (e)
+ {
+ e->Curr = e->Bot;
+ e->Side = esRight;
+ e->OutIdx = Unassigned;
+ }
+ }
+ m_ActiveEdges = 0;
+ m_CurrentLM = m_MinimaList.begin();
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::DisposeLocalMinimaList()
+{
+ m_MinimaList.clear();
+ m_CurrentLM = m_MinimaList.begin();
+}
+//------------------------------------------------------------------------------
+
+bool ClipperBase::PopLocalMinima(cInt Y, const LocalMinimum *&locMin)
+{
+ if (m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y) return false;
+ locMin = &(*m_CurrentLM);
+ ++m_CurrentLM;
+ return true;
+}
+//------------------------------------------------------------------------------
+
+IntRect ClipperBase::GetBounds()
+{
+ IntRect result;
+ MinimaList::iterator lm = m_MinimaList.begin();
+ if (lm == m_MinimaList.end())
+ {
+ result.left = result.top = result.right = result.bottom = 0;
+ return result;
+ }
+ result.left = lm->LeftBound->Bot.X;
+ result.top = lm->LeftBound->Bot.Y;
+ result.right = lm->LeftBound->Bot.X;
+ result.bottom = lm->LeftBound->Bot.Y;
+ while (lm != m_MinimaList.end())
+ {
+ //todo - needs fixing for open paths
+ result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y);
+ TEdge* e = lm->LeftBound;
+ for (;;) {
+ TEdge* bottomE = e;
+ while (e->NextInLML)
+ {
+ if (e->Bot.X < result.left) result.left = e->Bot.X;
+ if (e->Bot.X > result.right) result.right = e->Bot.X;
+ e = e->NextInLML;
+ }
+ result.left = std::min(result.left, e->Bot.X);
+ result.right = std::max(result.right, e->Bot.X);
+ result.left = std::min(result.left, e->Top.X);
+ result.right = std::max(result.right, e->Top.X);
+ result.top = std::min(result.top, e->Top.Y);
+ if (bottomE == lm->LeftBound) e = lm->RightBound;
+ else break;
+ }
+ ++lm;
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::InsertScanbeam(const cInt Y)
+{
+ m_Scanbeam.push(Y);
+}
+//------------------------------------------------------------------------------
+
+bool ClipperBase::PopScanbeam(cInt &Y)
+{
+ if (m_Scanbeam.empty()) return false;
+ Y = m_Scanbeam.top();
+ m_Scanbeam.pop();
+ while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) { m_Scanbeam.pop(); } // Pop duplicates.
+ return true;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::DisposeAllOutRecs(){
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ DisposeOutRec(i);
+ m_PolyOuts.clear();
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::DisposeOutRec(PolyOutList::size_type index)
+{
+ OutRec *outRec = m_PolyOuts[index];
+ if (outRec->Pts) DisposeOutPts(outRec->Pts);
+ delete outRec;
+ m_PolyOuts[index] = 0;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::DeleteFromAEL(TEdge *e)
+{
+ TEdge* AelPrev = e->PrevInAEL;
+ TEdge* AelNext = e->NextInAEL;
+ if (!AelPrev && !AelNext && (e != m_ActiveEdges)) return; //already deleted
+ if (AelPrev) AelPrev->NextInAEL = AelNext;
+ else m_ActiveEdges = AelNext;
+ if (AelNext) AelNext->PrevInAEL = AelPrev;
+ e->NextInAEL = 0;
+ e->PrevInAEL = 0;
+}
+//------------------------------------------------------------------------------
+
+OutRec* ClipperBase::CreateOutRec()
+{
+ OutRec* result = new OutRec;
+ result->IsHole = false;
+ result->IsOpen = false;
+ result->FirstLeft = 0;
+ result->Pts = 0;
+ result->BottomPt = 0;
+ result->PolyNd = 0;
+ m_PolyOuts.push_back(result);
+ result->Idx = (int)m_PolyOuts.size() - 1;
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2)
+{
+ //check that one or other edge hasn't already been removed from AEL ...
+ if (Edge1->NextInAEL == Edge1->PrevInAEL ||
+ Edge2->NextInAEL == Edge2->PrevInAEL) return;
+
+ if (Edge1->NextInAEL == Edge2)
+ {
+ TEdge* Next = Edge2->NextInAEL;
+ if (Next) Next->PrevInAEL = Edge1;
+ TEdge* Prev = Edge1->PrevInAEL;
+ if (Prev) Prev->NextInAEL = Edge2;
+ Edge2->PrevInAEL = Prev;
+ Edge2->NextInAEL = Edge1;
+ Edge1->PrevInAEL = Edge2;
+ Edge1->NextInAEL = Next;
+ }
+ else if (Edge2->NextInAEL == Edge1)
+ {
+ TEdge* Next = Edge1->NextInAEL;
+ if (Next) Next->PrevInAEL = Edge2;
+ TEdge* Prev = Edge2->PrevInAEL;
+ if (Prev) Prev->NextInAEL = Edge1;
+ Edge1->PrevInAEL = Prev;
+ Edge1->NextInAEL = Edge2;
+ Edge2->PrevInAEL = Edge1;
+ Edge2->NextInAEL = Next;
+ }
+ else
+ {
+ TEdge* Next = Edge1->NextInAEL;
+ TEdge* Prev = Edge1->PrevInAEL;
+ Edge1->NextInAEL = Edge2->NextInAEL;
+ if (Edge1->NextInAEL) Edge1->NextInAEL->PrevInAEL = Edge1;
+ Edge1->PrevInAEL = Edge2->PrevInAEL;
+ if (Edge1->PrevInAEL) Edge1->PrevInAEL->NextInAEL = Edge1;
+ Edge2->NextInAEL = Next;
+ if (Edge2->NextInAEL) Edge2->NextInAEL->PrevInAEL = Edge2;
+ Edge2->PrevInAEL = Prev;
+ if (Edge2->PrevInAEL) Edge2->PrevInAEL->NextInAEL = Edge2;
+ }
+
+ if (!Edge1->PrevInAEL) m_ActiveEdges = Edge1;
+ else if (!Edge2->PrevInAEL) m_ActiveEdges = Edge2;
+}
+//------------------------------------------------------------------------------
+
+void ClipperBase::UpdateEdgeIntoAEL(TEdge *&e)
+{
+ if (!e->NextInLML)
+ throw clipperException("UpdateEdgeIntoAEL: invalid call");
+
+ e->NextInLML->OutIdx = e->OutIdx;
+ TEdge* AelPrev = e->PrevInAEL;
+ TEdge* AelNext = e->NextInAEL;
+ if (AelPrev) AelPrev->NextInAEL = e->NextInLML;
+ else m_ActiveEdges = e->NextInLML;
+ if (AelNext) AelNext->PrevInAEL = e->NextInLML;
+ e->NextInLML->Side = e->Side;
+ e->NextInLML->WindDelta = e->WindDelta;
+ e->NextInLML->WindCnt = e->WindCnt;
+ e->NextInLML->WindCnt2 = e->WindCnt2;
+ e = e->NextInLML;
+ e->Curr = e->Bot;
+ e->PrevInAEL = AelPrev;
+ e->NextInAEL = AelNext;
+ if (!IsHorizontal(*e)) InsertScanbeam(e->Top.Y);
+}
+//------------------------------------------------------------------------------
+
+bool ClipperBase::LocalMinimaPending()
+{
+ return (m_CurrentLM != m_MinimaList.end());
+}
+
+//------------------------------------------------------------------------------
+// TClipper methods ...
+//------------------------------------------------------------------------------
+
+Clipper::Clipper(int initOptions) : ClipperBase() //constructor
+{
+ m_ExecuteLocked = false;
+ m_UseFullRange = false;
+ m_ReverseOutput = ((initOptions & ioReverseSolution) != 0);
+ m_StrictSimple = ((initOptions & ioStrictlySimple) != 0);
+ m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0);
+ m_HasOpenPaths = false;
+#ifdef use_xyz
+ m_ZFill = 0;
+#endif
+}
+//------------------------------------------------------------------------------
+
+#ifdef use_xyz
+void Clipper::ZFillFunction(ZFillCallback zFillFunc)
+{
+ m_ZFill = zFillFunc;
+}
+//------------------------------------------------------------------------------
+#endif
+
+bool Clipper::Execute(ClipType clipType, Paths &solution, PolyFillType fillType)
+{
+ return Execute(clipType, solution, fillType, fillType);
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::Execute(ClipType clipType, PolyTree &polytree, PolyFillType fillType)
+{
+ return Execute(clipType, polytree, fillType, fillType);
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::Execute(ClipType clipType, Paths &solution,
+ PolyFillType subjFillType, PolyFillType clipFillType)
+{
+ if( m_ExecuteLocked ) return false;
+ if (m_HasOpenPaths)
+ throw clipperException("Error: PolyTree struct is needed for open path clipping.");
+ m_ExecuteLocked = true;
+ solution.resize(0);
+ m_SubjFillType = subjFillType;
+ m_ClipFillType = clipFillType;
+ m_ClipType = clipType;
+ m_UsingPolyTree = false;
+ bool succeeded = ExecuteInternal();
+ if (succeeded) BuildResult(solution);
+ DisposeAllOutRecs();
+ m_ExecuteLocked = false;
+ return succeeded;
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::Execute(ClipType clipType, PolyTree& polytree,
+ PolyFillType subjFillType, PolyFillType clipFillType)
+{
+ if( m_ExecuteLocked ) return false;
+ m_ExecuteLocked = true;
+ m_SubjFillType = subjFillType;
+ m_ClipFillType = clipFillType;
+ m_ClipType = clipType;
+ m_UsingPolyTree = true;
+ bool succeeded = ExecuteInternal();
+ if (succeeded) BuildResult2(polytree);
+ DisposeAllOutRecs();
+ m_ExecuteLocked = false;
+ return succeeded;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::FixHoleLinkage(OutRec &outrec)
+{
+ //skip OutRecs that (a) contain outermost polygons or
+ //(b) already have the correct owner/child linkage ...
+ if (!outrec.FirstLeft ||
+ (outrec.IsHole != outrec.FirstLeft->IsHole &&
+ outrec.FirstLeft->Pts)) return;
+
+ OutRec* orfl = outrec.FirstLeft;
+ while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts))
+ orfl = orfl->FirstLeft;
+ outrec.FirstLeft = orfl;
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::ExecuteInternal()
+{
+ bool succeeded = true;
+ try {
+ Reset();
+ m_Maxima = MaximaList();
+ m_SortedEdges = 0;
+
+ succeeded = true;
+ cInt botY, topY;
+ if (!PopScanbeam(botY)) return false;
+ InsertLocalMinimaIntoAEL(botY);
+ while (PopScanbeam(topY) || LocalMinimaPending())
+ {
+ ProcessHorizontals();
+ ClearGhostJoins();
+ if (!ProcessIntersections(topY))
+ {
+ succeeded = false;
+ break;
+ }
+ ProcessEdgesAtTopOfScanbeam(topY);
+ botY = topY;
+ InsertLocalMinimaIntoAEL(botY);
+ }
+ }
+ catch(...)
+ {
+ succeeded = false;
+ }
+
+ if (succeeded)
+ {
+ //fix orientations ...
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ OutRec *outRec = m_PolyOuts[i];
+ if (!outRec->Pts || outRec->IsOpen) continue;
+ if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0))
+ ReversePolyPtLinks(outRec->Pts);
+ }
+
+ if (!m_Joins.empty()) JoinCommonEdges();
+
+ //unfortunately FixupOutPolygon() must be done after JoinCommonEdges()
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ OutRec *outRec = m_PolyOuts[i];
+ if (!outRec->Pts) continue;
+ if (outRec->IsOpen)
+ FixupOutPolyline(*outRec);
+ else
+ FixupOutPolygon(*outRec);
+ }
+
+ if (m_StrictSimple) DoSimplePolygons();
+ }
+
+ ClearJoins();
+ ClearGhostJoins();
+ return succeeded;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::SetWindingCount(TEdge &edge)
+{
+ TEdge *e = edge.PrevInAEL;
+ //find the edge of the same polytype that immediately preceeds 'edge' in AEL
+ while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0))) e = e->PrevInAEL;
+ if (!e)
+ {
+ if (edge.WindDelta == 0)
+ {
+ PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType);
+ edge.WindCnt = (pft == pftNegative ? -1 : 1);
+ }
+ else
+ edge.WindCnt = edge.WindDelta;
+ edge.WindCnt2 = 0;
+ e = m_ActiveEdges; //ie get ready to calc WindCnt2
+ }
+ else if (edge.WindDelta == 0 && m_ClipType != ctUnion)
+ {
+ edge.WindCnt = 1;
+ edge.WindCnt2 = e->WindCnt2;
+ e = e->NextInAEL; //ie get ready to calc WindCnt2
+ }
+ else if (IsEvenOddFillType(edge))
+ {
+ //EvenOdd filling ...
+ if (edge.WindDelta == 0)
+ {
+ //are we inside a subj polygon ...
+ bool Inside = true;
+ TEdge *e2 = e->PrevInAEL;
+ while (e2)
+ {
+ if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0)
+ Inside = !Inside;
+ e2 = e2->PrevInAEL;
+ }
+ edge.WindCnt = (Inside ? 0 : 1);
+ }
+ else
+ {
+ edge.WindCnt = edge.WindDelta;
+ }
+ edge.WindCnt2 = e->WindCnt2;
+ e = e->NextInAEL; //ie get ready to calc WindCnt2
+ }
+ else
+ {
+ //nonZero, Positive or Negative filling ...
+ if (e->WindCnt * e->WindDelta < 0)
+ {
+ //prev edge is 'decreasing' WindCount (WC) toward zero
+ //so we're outside the previous polygon ...
+ if (Abs(e->WindCnt) > 1)
+ {
+ //outside prev poly but still inside another.
+ //when reversing direction of prev poly use the same WC
+ if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt;
+ //otherwise continue to 'decrease' WC ...
+ else edge.WindCnt = e->WindCnt + edge.WindDelta;
+ }
+ else
+ //now outside all polys of same polytype so set own WC ...
+ edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta);
+ } else
+ {
+ //prev edge is 'increasing' WindCount (WC) away from zero
+ //so we're inside the previous polygon ...
+ if (edge.WindDelta == 0)
+ edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1);
+ //if wind direction is reversing prev then use same WC
+ else if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt;
+ //otherwise add to WC ...
+ else edge.WindCnt = e->WindCnt + edge.WindDelta;
+ }
+ edge.WindCnt2 = e->WindCnt2;
+ e = e->NextInAEL; //ie get ready to calc WindCnt2
+ }
+
+ //update WindCnt2 ...
+ if (IsEvenOddAltFillType(edge))
+ {
+ //EvenOdd filling ...
+ while (e != &edge)
+ {
+ if (e->WindDelta != 0)
+ edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0);
+ e = e->NextInAEL;
+ }
+ } else
+ {
+ //nonZero, Positive or Negative filling ...
+ while ( e != &edge )
+ {
+ edge.WindCnt2 += e->WindDelta;
+ e = e->NextInAEL;
+ }
+ }
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::IsEvenOddFillType(const TEdge& edge) const
+{
+ if (edge.PolyTyp == ptSubject)
+ return m_SubjFillType == pftEvenOdd; else
+ return m_ClipFillType == pftEvenOdd;
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::IsEvenOddAltFillType(const TEdge& edge) const
+{
+ if (edge.PolyTyp == ptSubject)
+ return m_ClipFillType == pftEvenOdd; else
+ return m_SubjFillType == pftEvenOdd;
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::IsContributing(const TEdge& edge) const
+{
+ PolyFillType pft, pft2;
+ if (edge.PolyTyp == ptSubject)
+ {
+ pft = m_SubjFillType;
+ pft2 = m_ClipFillType;
+ } else
+ {
+ pft = m_ClipFillType;
+ pft2 = m_SubjFillType;
+ }
+
+ switch(pft)
+ {
+ case pftEvenOdd:
+ //return false if a subj line has been flagged as inside a subj polygon
+ if (edge.WindDelta == 0 && edge.WindCnt != 1) return false;
+ break;
+ case pftNonZero:
+ if (Abs(edge.WindCnt) != 1) return false;
+ break;
+ case pftPositive:
+ if (edge.WindCnt != 1) return false;
+ break;
+ default: //pftNegative
+ if (edge.WindCnt != -1) return false;
+ }
+
+ switch(m_ClipType)
+ {
+ case ctIntersection:
+ switch(pft2)
+ {
+ case pftEvenOdd:
+ case pftNonZero:
+ return (edge.WindCnt2 != 0);
+ case pftPositive:
+ return (edge.WindCnt2 > 0);
+ default:
+ return (edge.WindCnt2 < 0);
+ }
+ break;
+ case ctUnion:
+ switch(pft2)
+ {
+ case pftEvenOdd:
+ case pftNonZero:
+ return (edge.WindCnt2 == 0);
+ case pftPositive:
+ return (edge.WindCnt2 <= 0);
+ default:
+ return (edge.WindCnt2 >= 0);
+ }
+ break;
+ case ctDifference:
+ if (edge.PolyTyp == ptSubject)
+ switch(pft2)
+ {
+ case pftEvenOdd:
+ case pftNonZero:
+ return (edge.WindCnt2 == 0);
+ case pftPositive:
+ return (edge.WindCnt2 <= 0);
+ default:
+ return (edge.WindCnt2 >= 0);
+ }
+ else
+ switch(pft2)
+ {
+ case pftEvenOdd:
+ case pftNonZero:
+ return (edge.WindCnt2 != 0);
+ case pftPositive:
+ return (edge.WindCnt2 > 0);
+ default:
+ return (edge.WindCnt2 < 0);
+ }
+ break;
+ case ctXor:
+ if (edge.WindDelta == 0) //XOr always contributing unless open
+ switch(pft2)
+ {
+ case pftEvenOdd:
+ case pftNonZero:
+ return (edge.WindCnt2 == 0);
+ case pftPositive:
+ return (edge.WindCnt2 <= 0);
+ default:
+ return (edge.WindCnt2 >= 0);
+ }
+ else
+ return true;
+ break;
+ default:
+ return true;
+ }
+}
+//------------------------------------------------------------------------------
+
+OutPt* Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt)
+{
+ OutPt* result;
+ TEdge *e, *prevE;
+ if (IsHorizontal(*e2) || ( e1->Dx > e2->Dx ))
+ {
+ result = AddOutPt(e1, Pt);
+ e2->OutIdx = e1->OutIdx;
+ e1->Side = esLeft;
+ e2->Side = esRight;
+ e = e1;
+ if (e->PrevInAEL == e2)
+ prevE = e2->PrevInAEL;
+ else
+ prevE = e->PrevInAEL;
+ } else
+ {
+ result = AddOutPt(e2, Pt);
+ e1->OutIdx = e2->OutIdx;
+ e1->Side = esRight;
+ e2->Side = esLeft;
+ e = e2;
+ if (e->PrevInAEL == e1)
+ prevE = e1->PrevInAEL;
+ else
+ prevE = e->PrevInAEL;
+ }
+
+ if (prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y)
+ {
+ cInt xPrev = TopX(*prevE, Pt.Y);
+ cInt xE = TopX(*e, Pt.Y);
+ if (xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) &&
+ SlopesEqual(IntPoint(xPrev, Pt.Y), prevE->Top, IntPoint(xE, Pt.Y), e->Top, m_UseFullRange))
+ {
+ OutPt* outPt = AddOutPt(prevE, Pt);
+ AddJoin(result, outPt, e->Top);
+ }
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt)
+{
+ AddOutPt( e1, Pt );
+ if (e2->WindDelta == 0) AddOutPt(e2, Pt);
+ if( e1->OutIdx == e2->OutIdx )
+ {
+ e1->OutIdx = Unassigned;
+ e2->OutIdx = Unassigned;
+ }
+ else if (e1->OutIdx < e2->OutIdx)
+ AppendPolygon(e1, e2);
+ else
+ AppendPolygon(e2, e1);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::AddEdgeToSEL(TEdge *edge)
+{
+ //SEL pointers in PEdge are reused to build a list of horizontal edges.
+ //However, we don't need to worry about order with horizontal edge processing.
+ if( !m_SortedEdges )
+ {
+ m_SortedEdges = edge;
+ edge->PrevInSEL = 0;
+ edge->NextInSEL = 0;
+ }
+ else
+ {
+ edge->NextInSEL = m_SortedEdges;
+ edge->PrevInSEL = 0;
+ m_SortedEdges->PrevInSEL = edge;
+ m_SortedEdges = edge;
+ }
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::PopEdgeFromSEL(TEdge *&edge)
+{
+ if (!m_SortedEdges) return false;
+ edge = m_SortedEdges;
+ DeleteFromSEL(m_SortedEdges);
+ return true;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::CopyAELToSEL()
+{
+ TEdge* e = m_ActiveEdges;
+ m_SortedEdges = e;
+ while ( e )
+ {
+ e->PrevInSEL = e->PrevInAEL;
+ e->NextInSEL = e->NextInAEL;
+ e = e->NextInAEL;
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt)
+{
+ Join* j = new Join;
+ j->OutPt1 = op1;
+ j->OutPt2 = op2;
+ j->OffPt = OffPt;
+ m_Joins.push_back(j);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::ClearJoins()
+{
+ for (JoinList::size_type i = 0; i < m_Joins.size(); i++)
+ delete m_Joins[i];
+ m_Joins.resize(0);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::ClearGhostJoins()
+{
+ for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++)
+ delete m_GhostJoins[i];
+ m_GhostJoins.resize(0);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt)
+{
+ Join* j = new Join;
+ j->OutPt1 = op;
+ j->OutPt2 = 0;
+ j->OffPt = OffPt;
+ m_GhostJoins.push_back(j);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::InsertLocalMinimaIntoAEL(const cInt botY)
+{
+ const LocalMinimum *lm;
+ while (PopLocalMinima(botY, lm))
+ {
+ TEdge* lb = lm->LeftBound;
+ TEdge* rb = lm->RightBound;
+
+ OutPt *Op1 = 0;
+ if (!lb)
+ {
+ //nb: don't insert LB into either AEL or SEL
+ InsertEdgeIntoAEL(rb, 0);
+ SetWindingCount(*rb);
+ if (IsContributing(*rb))
+ Op1 = AddOutPt(rb, rb->Bot);
+ }
+ else if (!rb)
+ {
+ InsertEdgeIntoAEL(lb, 0);
+ SetWindingCount(*lb);
+ if (IsContributing(*lb))
+ Op1 = AddOutPt(lb, lb->Bot);
+ InsertScanbeam(lb->Top.Y);
+ }
+ else
+ {
+ InsertEdgeIntoAEL(lb, 0);
+ InsertEdgeIntoAEL(rb, lb);
+ SetWindingCount( *lb );
+ rb->WindCnt = lb->WindCnt;
+ rb->WindCnt2 = lb->WindCnt2;
+ if (IsContributing(*lb))
+ Op1 = AddLocalMinPoly(lb, rb, lb->Bot);
+ InsertScanbeam(lb->Top.Y);
+ }
+
+ if (rb)
+ {
+ if (IsHorizontal(*rb))
+ {
+ AddEdgeToSEL(rb);
+ if (rb->NextInLML)
+ InsertScanbeam(rb->NextInLML->Top.Y);
+ }
+ else InsertScanbeam( rb->Top.Y );
+ }
+
+ if (!lb || !rb) continue;
+
+ //if any output polygons share an edge, they'll need joining later ...
+ if (Op1 && IsHorizontal(*rb) &&
+ m_GhostJoins.size() > 0 && (rb->WindDelta != 0))
+ {
+ for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i)
+ {
+ Join* jr = m_GhostJoins[i];
+ //if the horizontal Rb and a 'ghost' horizontal overlap, then convert
+ //the 'ghost' join to a real join ready for later ...
+ if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X))
+ AddJoin(jr->OutPt1, Op1, jr->OffPt);
+ }
+ }
+
+ if (lb->OutIdx >= 0 && lb->PrevInAEL &&
+ lb->PrevInAEL->Curr.X == lb->Bot.X &&
+ lb->PrevInAEL->OutIdx >= 0 &&
+ SlopesEqual(lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, m_UseFullRange) &&
+ (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0))
+ {
+ OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot);
+ AddJoin(Op1, Op2, lb->Top);
+ }
+
+ if(lb->NextInAEL != rb)
+ {
+
+ if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 &&
+ SlopesEqual(rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, m_UseFullRange) &&
+ (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0))
+ {
+ OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot);
+ AddJoin(Op1, Op2, rb->Top);
+ }
+
+ TEdge* e = lb->NextInAEL;
+ if (e)
+ {
+ while( e != rb )
+ {
+ //nb: For calculating winding counts etc, IntersectEdges() assumes
+ //that param1 will be to the Right of param2 ABOVE the intersection ...
+ IntersectEdges(rb , e , lb->Curr); //order important here
+ e = e->NextInAEL;
+ }
+ }
+ }
+
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::DeleteFromSEL(TEdge *e)
+{
+ TEdge* SelPrev = e->PrevInSEL;
+ TEdge* SelNext = e->NextInSEL;
+ if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; //already deleted
+ if( SelPrev ) SelPrev->NextInSEL = SelNext;
+ else m_SortedEdges = SelNext;
+ if( SelNext ) SelNext->PrevInSEL = SelPrev;
+ e->NextInSEL = 0;
+ e->PrevInSEL = 0;
+}
+//------------------------------------------------------------------------------
+
+#ifdef use_xyz
+void Clipper::SetZ(IntPoint& pt, TEdge& e1, TEdge& e2)
+{
+ if (pt.Z != 0 || !m_ZFill) return;
+ else if (pt == e1.Bot) pt.Z = e1.Bot.Z;
+ else if (pt == e1.Top) pt.Z = e1.Top.Z;
+ else if (pt == e2.Bot) pt.Z = e2.Bot.Z;
+ else if (pt == e2.Top) pt.Z = e2.Top.Z;
+ else (*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt);
+}
+//------------------------------------------------------------------------------
+#endif
+
+void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt)
+{
+ bool e1Contributing = ( e1->OutIdx >= 0 );
+ bool e2Contributing = ( e2->OutIdx >= 0 );
+
+#ifdef use_xyz
+ SetZ(Pt, *e1, *e2);
+#endif
+
+#ifdef use_lines
+ //if either edge is on an OPEN path ...
+ if (e1->WindDelta == 0 || e2->WindDelta == 0)
+ {
+ //ignore subject-subject open path intersections UNLESS they
+ //are both open paths, AND they are both 'contributing maximas' ...
+ if (e1->WindDelta == 0 && e2->WindDelta == 0) return;
+
+ //if intersecting a subj line with a subj poly ...
+ else if (e1->PolyTyp == e2->PolyTyp &&
+ e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion)
+ {
+ if (e1->WindDelta == 0)
+ {
+ if (e2Contributing)
+ {
+ AddOutPt(e1, Pt);
+ if (e1Contributing) e1->OutIdx = Unassigned;
+ }
+ }
+ else
+ {
+ if (e1Contributing)
+ {
+ AddOutPt(e2, Pt);
+ if (e2Contributing) e2->OutIdx = Unassigned;
+ }
+ }
+ }
+ else if (e1->PolyTyp != e2->PolyTyp)
+ {
+ //toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ...
+ if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 &&
+ (m_ClipType != ctUnion || e2->WindCnt2 == 0))
+ {
+ AddOutPt(e1, Pt);
+ if (e1Contributing) e1->OutIdx = Unassigned;
+ }
+ else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) &&
+ (m_ClipType != ctUnion || e1->WindCnt2 == 0))
+ {
+ AddOutPt(e2, Pt);
+ if (e2Contributing) e2->OutIdx = Unassigned;
+ }
+ }
+ return;
+ }
+#endif
+
+ //update winding counts...
+ //assumes that e1 will be to the Right of e2 ABOVE the intersection
+ if ( e1->PolyTyp == e2->PolyTyp )
+ {
+ if ( IsEvenOddFillType( *e1) )
+ {
+ int oldE1WindCnt = e1->WindCnt;
+ e1->WindCnt = e2->WindCnt;
+ e2->WindCnt = oldE1WindCnt;
+ } else
+ {
+ if (e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt;
+ else e1->WindCnt += e2->WindDelta;
+ if ( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt;
+ else e2->WindCnt -= e1->WindDelta;
+ }
+ } else
+ {
+ if (!IsEvenOddFillType(*e2)) e1->WindCnt2 += e2->WindDelta;
+ else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0;
+ if (!IsEvenOddFillType(*e1)) e2->WindCnt2 -= e1->WindDelta;
+ else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0;
+ }
+
+ PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2;
+ if (e1->PolyTyp == ptSubject)
+ {
+ e1FillType = m_SubjFillType;
+ e1FillType2 = m_ClipFillType;
+ } else
+ {
+ e1FillType = m_ClipFillType;
+ e1FillType2 = m_SubjFillType;
+ }
+ if (e2->PolyTyp == ptSubject)
+ {
+ e2FillType = m_SubjFillType;
+ e2FillType2 = m_ClipFillType;
+ } else
+ {
+ e2FillType = m_ClipFillType;
+ e2FillType2 = m_SubjFillType;
+ }
+
+ cInt e1Wc, e2Wc;
+ switch (e1FillType)
+ {
+ case pftPositive: e1Wc = e1->WindCnt; break;
+ case pftNegative: e1Wc = -e1->WindCnt; break;
+ default: e1Wc = Abs(e1->WindCnt);
+ }
+ switch(e2FillType)
+ {
+ case pftPositive: e2Wc = e2->WindCnt; break;
+ case pftNegative: e2Wc = -e2->WindCnt; break;
+ default: e2Wc = Abs(e2->WindCnt);
+ }
+
+ if ( e1Contributing && e2Contributing )
+ {
+ if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) ||
+ (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) )
+ {
+ AddLocalMaxPoly(e1, e2, Pt);
+ }
+ else
+ {
+ AddOutPt(e1, Pt);
+ AddOutPt(e2, Pt);
+ SwapSides( *e1 , *e2 );
+ SwapPolyIndexes( *e1 , *e2 );
+ }
+ }
+ else if ( e1Contributing )
+ {
+ if (e2Wc == 0 || e2Wc == 1)
+ {
+ AddOutPt(e1, Pt);
+ SwapSides(*e1, *e2);
+ SwapPolyIndexes(*e1, *e2);
+ }
+ }
+ else if ( e2Contributing )
+ {
+ if (e1Wc == 0 || e1Wc == 1)
+ {
+ AddOutPt(e2, Pt);
+ SwapSides(*e1, *e2);
+ SwapPolyIndexes(*e1, *e2);
+ }
+ }
+ else if ( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1))
+ {
+ //neither edge is currently contributing ...
+
+ cInt e1Wc2, e2Wc2;
+ switch (e1FillType2)
+ {
+ case pftPositive: e1Wc2 = e1->WindCnt2; break;
+ case pftNegative : e1Wc2 = -e1->WindCnt2; break;
+ default: e1Wc2 = Abs(e1->WindCnt2);
+ }
+ switch (e2FillType2)
+ {
+ case pftPositive: e2Wc2 = e2->WindCnt2; break;
+ case pftNegative: e2Wc2 = -e2->WindCnt2; break;
+ default: e2Wc2 = Abs(e2->WindCnt2);
+ }
+
+ if (e1->PolyTyp != e2->PolyTyp)
+ {
+ AddLocalMinPoly(e1, e2, Pt);
+ }
+ else if (e1Wc == 1 && e2Wc == 1)
+ switch( m_ClipType ) {
+ case ctIntersection:
+ if (e1Wc2 > 0 && e2Wc2 > 0)
+ AddLocalMinPoly(e1, e2, Pt);
+ break;
+ case ctUnion:
+ if ( e1Wc2 <= 0 && e2Wc2 <= 0 )
+ AddLocalMinPoly(e1, e2, Pt);
+ break;
+ case ctDifference:
+ if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
+ ((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
+ AddLocalMinPoly(e1, e2, Pt);
+ break;
+ case ctXor:
+ AddLocalMinPoly(e1, e2, Pt);
+ }
+ else
+ SwapSides( *e1, *e2 );
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::SetHoleState(TEdge *e, OutRec *outrec)
+{
+ TEdge *e2 = e->PrevInAEL;
+ TEdge *eTmp = 0;
+ while (e2)
+ {
+ if (e2->OutIdx >= 0 && e2->WindDelta != 0)
+ {
+ if (!eTmp) eTmp = e2;
+ else if (eTmp->OutIdx == e2->OutIdx) eTmp = 0;
+ }
+ e2 = e2->PrevInAEL;
+ }
+ if (!eTmp)
+ {
+ outrec->FirstLeft = 0;
+ outrec->IsHole = false;
+ }
+ else
+ {
+ outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx];
+ outrec->IsHole = !outrec->FirstLeft->IsHole;
+ }
+}
+//------------------------------------------------------------------------------
+
+OutRec* GetLowermostRec(OutRec *outRec1, OutRec *outRec2)
+{
+ //work out which polygon fragment has the correct hole state ...
+ if (!outRec1->BottomPt)
+ outRec1->BottomPt = GetBottomPt(outRec1->Pts);
+ if (!outRec2->BottomPt)
+ outRec2->BottomPt = GetBottomPt(outRec2->Pts);
+ OutPt *OutPt1 = outRec1->BottomPt;
+ OutPt *OutPt2 = outRec2->BottomPt;
+ if (OutPt1->Pt.Y > OutPt2->Pt.Y) return outRec1;
+ else if (OutPt1->Pt.Y < OutPt2->Pt.Y) return outRec2;
+ else if (OutPt1->Pt.X < OutPt2->Pt.X) return outRec1;
+ else if (OutPt1->Pt.X > OutPt2->Pt.X) return outRec2;
+ else if (OutPt1->Next == OutPt1) return outRec2;
+ else if (OutPt2->Next == OutPt2) return outRec1;
+ else if (FirstIsBottomPt(OutPt1, OutPt2)) return outRec1;
+ else return outRec2;
+}
+//------------------------------------------------------------------------------
+
+bool OutRec1RightOfOutRec2(OutRec* outRec1, OutRec* outRec2)
+{
+ do
+ {
+ outRec1 = outRec1->FirstLeft;
+ if (outRec1 == outRec2) return true;
+ } while (outRec1);
+ return false;
+}
+//------------------------------------------------------------------------------
+
+OutRec* Clipper::GetOutRec(int Idx)
+{
+ OutRec* outrec = m_PolyOuts[Idx];
+ while (outrec != m_PolyOuts[outrec->Idx])
+ outrec = m_PolyOuts[outrec->Idx];
+ return outrec;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::AppendPolygon(TEdge *e1, TEdge *e2)
+{
+ //get the start and ends of both output polygons ...
+ OutRec *outRec1 = m_PolyOuts[e1->OutIdx];
+ OutRec *outRec2 = m_PolyOuts[e2->OutIdx];
+
+ OutRec *holeStateRec;
+ if (OutRec1RightOfOutRec2(outRec1, outRec2))
+ holeStateRec = outRec2;
+ else if (OutRec1RightOfOutRec2(outRec2, outRec1))
+ holeStateRec = outRec1;
+ else
+ holeStateRec = GetLowermostRec(outRec1, outRec2);
+
+ //get the start and ends of both output polygons and
+ //join e2 poly onto e1 poly and delete pointers to e2 ...
+
+ OutPt* p1_lft = outRec1->Pts;
+ OutPt* p1_rt = p1_lft->Prev;
+ OutPt* p2_lft = outRec2->Pts;
+ OutPt* p2_rt = p2_lft->Prev;
+
+ //join e2 poly onto e1 poly and delete pointers to e2 ...
+ if( e1->Side == esLeft )
+ {
+ if( e2->Side == esLeft )
+ {
+ //z y x a b c
+ ReversePolyPtLinks(p2_lft);
+ p2_lft->Next = p1_lft;
+ p1_lft->Prev = p2_lft;
+ p1_rt->Next = p2_rt;
+ p2_rt->Prev = p1_rt;
+ outRec1->Pts = p2_rt;
+ } else
+ {
+ //x y z a b c
+ p2_rt->Next = p1_lft;
+ p1_lft->Prev = p2_rt;
+ p2_lft->Prev = p1_rt;
+ p1_rt->Next = p2_lft;
+ outRec1->Pts = p2_lft;
+ }
+ } else
+ {
+ if( e2->Side == esRight )
+ {
+ //a b c z y x
+ ReversePolyPtLinks(p2_lft);
+ p1_rt->Next = p2_rt;
+ p2_rt->Prev = p1_rt;
+ p2_lft->Next = p1_lft;
+ p1_lft->Prev = p2_lft;
+ } else
+ {
+ //a b c x y z
+ p1_rt->Next = p2_lft;
+ p2_lft->Prev = p1_rt;
+ p1_lft->Prev = p2_rt;
+ p2_rt->Next = p1_lft;
+ }
+ }
+
+ outRec1->BottomPt = 0;
+ if (holeStateRec == outRec2)
+ {
+ if (outRec2->FirstLeft != outRec1)
+ outRec1->FirstLeft = outRec2->FirstLeft;
+ outRec1->IsHole = outRec2->IsHole;
+ }
+ outRec2->Pts = 0;
+ outRec2->BottomPt = 0;
+ outRec2->FirstLeft = outRec1;
+
+ int OKIdx = e1->OutIdx;
+ int ObsoleteIdx = e2->OutIdx;
+
+ e1->OutIdx = Unassigned; //nb: safe because we only get here via AddLocalMaxPoly
+ e2->OutIdx = Unassigned;
+
+ TEdge* e = m_ActiveEdges;
+ while( e )
+ {
+ if( e->OutIdx == ObsoleteIdx )
+ {
+ e->OutIdx = OKIdx;
+ e->Side = e1->Side;
+ break;
+ }
+ e = e->NextInAEL;
+ }
+
+ outRec2->Idx = outRec1->Idx;
+}
+//------------------------------------------------------------------------------
+
+OutPt* Clipper::AddOutPt(TEdge *e, const IntPoint &pt)
+{
+ if( e->OutIdx < 0 )
+ {
+ OutRec *outRec = CreateOutRec();
+ outRec->IsOpen = (e->WindDelta == 0);
+ OutPt* newOp = new OutPt;
+ outRec->Pts = newOp;
+ newOp->Idx = outRec->Idx;
+ newOp->Pt = pt;
+ newOp->Next = newOp;
+ newOp->Prev = newOp;
+ if (!outRec->IsOpen)
+ SetHoleState(e, outRec);
+ e->OutIdx = outRec->Idx;
+ return newOp;
+ } else
+ {
+ OutRec *outRec = m_PolyOuts[e->OutIdx];
+ //OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
+ OutPt* op = outRec->Pts;
+
+ bool ToFront = (e->Side == esLeft);
+ if (ToFront && (pt == op->Pt)) return op;
+ else if (!ToFront && (pt == op->Prev->Pt)) return op->Prev;
+
+ OutPt* newOp = new OutPt;
+ newOp->Idx = outRec->Idx;
+ newOp->Pt = pt;
+ newOp->Next = op;
+ newOp->Prev = op->Prev;
+ newOp->Prev->Next = newOp;
+ op->Prev = newOp;
+ if (ToFront) outRec->Pts = newOp;
+ return newOp;
+ }
+}
+//------------------------------------------------------------------------------
+
+OutPt* Clipper::GetLastOutPt(TEdge *e)
+{
+ OutRec *outRec = m_PolyOuts[e->OutIdx];
+ if (e->Side == esLeft)
+ return outRec->Pts;
+ else
+ return outRec->Pts->Prev;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::ProcessHorizontals()
+{
+ TEdge* horzEdge;
+ while (PopEdgeFromSEL(horzEdge))
+ ProcessHorizontal(horzEdge);
+}
+//------------------------------------------------------------------------------
+
+inline bool IsMinima(TEdge *e)
+{
+ return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e);
+}
+//------------------------------------------------------------------------------
+
+inline bool IsMaxima(TEdge *e, const cInt Y)
+{
+ return e && e->Top.Y == Y && !e->NextInLML;
+}
+//------------------------------------------------------------------------------
+
+inline bool IsIntermediate(TEdge *e, const cInt Y)
+{
+ return e->Top.Y == Y && e->NextInLML;
+}
+//------------------------------------------------------------------------------
+
+TEdge *GetMaximaPair(TEdge *e)
+{
+ if ((e->Next->Top == e->Top) && !e->Next->NextInLML)
+ return e->Next;
+ else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML)
+ return e->Prev;
+ else return 0;
+}
+//------------------------------------------------------------------------------
+
+TEdge *GetMaximaPairEx(TEdge *e)
+{
+ //as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal)
+ TEdge* result = GetMaximaPair(e);
+ if (result && (result->OutIdx == Skip ||
+ (result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result)))) return 0;
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2)
+{
+ if( !( Edge1->NextInSEL ) && !( Edge1->PrevInSEL ) ) return;
+ if( !( Edge2->NextInSEL ) && !( Edge2->PrevInSEL ) ) return;
+
+ if( Edge1->NextInSEL == Edge2 )
+ {
+ TEdge* Next = Edge2->NextInSEL;
+ if( Next ) Next->PrevInSEL = Edge1;
+ TEdge* Prev = Edge1->PrevInSEL;
+ if( Prev ) Prev->NextInSEL = Edge2;
+ Edge2->PrevInSEL = Prev;
+ Edge2->NextInSEL = Edge1;
+ Edge1->PrevInSEL = Edge2;
+ Edge1->NextInSEL = Next;
+ }
+ else if( Edge2->NextInSEL == Edge1 )
+ {
+ TEdge* Next = Edge1->NextInSEL;
+ if( Next ) Next->PrevInSEL = Edge2;
+ TEdge* Prev = Edge2->PrevInSEL;
+ if( Prev ) Prev->NextInSEL = Edge1;
+ Edge1->PrevInSEL = Prev;
+ Edge1->NextInSEL = Edge2;
+ Edge2->PrevInSEL = Edge1;
+ Edge2->NextInSEL = Next;
+ }
+ else
+ {
+ TEdge* Next = Edge1->NextInSEL;
+ TEdge* Prev = Edge1->PrevInSEL;
+ Edge1->NextInSEL = Edge2->NextInSEL;
+ if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1;
+ Edge1->PrevInSEL = Edge2->PrevInSEL;
+ if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1;
+ Edge2->NextInSEL = Next;
+ if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2;
+ Edge2->PrevInSEL = Prev;
+ if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2;
+ }
+
+ if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1;
+ else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2;
+}
+//------------------------------------------------------------------------------
+
+TEdge* GetNextInAEL(TEdge *e, Direction dir)
+{
+ return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL;
+}
+//------------------------------------------------------------------------------
+
+void GetHorzDirection(TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right)
+{
+ if (HorzEdge.Bot.X < HorzEdge.Top.X)
+ {
+ Left = HorzEdge.Bot.X;
+ Right = HorzEdge.Top.X;
+ Dir = dLeftToRight;
+ } else
+ {
+ Left = HorzEdge.Top.X;
+ Right = HorzEdge.Bot.X;
+ Dir = dRightToLeft;
+ }
+}
+//------------------------------------------------------------------------
+
+/*******************************************************************************
+* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or *
+* Bottom of a scanbeam) are processed as if layered. The order in which HEs *
+* are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] *
+* (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), *
+* and with other non-horizontal edges [*]. Once these intersections are *
+* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into *
+* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. *
+*******************************************************************************/
+
+void Clipper::ProcessHorizontal(TEdge *horzEdge)
+{
+ Direction dir;
+ cInt horzLeft, horzRight;
+ bool IsOpen = (horzEdge->WindDelta == 0);
+
+ GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
+
+ TEdge* eLastHorz = horzEdge, *eMaxPair = 0;
+ while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML))
+ eLastHorz = eLastHorz->NextInLML;
+ if (!eLastHorz->NextInLML)
+ eMaxPair = GetMaximaPair(eLastHorz);
+
+ MaximaList::const_iterator maxIt;
+ MaximaList::const_reverse_iterator maxRit;
+ if (m_Maxima.size() > 0)
+ {
+ //get the first maxima in range (X) ...
+ if (dir == dLeftToRight)
+ {
+ maxIt = m_Maxima.begin();
+ while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X) maxIt++;
+ if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X)
+ maxIt = m_Maxima.end();
+ }
+ else
+ {
+ maxRit = m_Maxima.rbegin();
+ while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X) maxRit++;
+ if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X)
+ maxRit = m_Maxima.rend();
+ }
+ }
+
+ OutPt* op1 = 0;
+
+ for (;;) //loop through consec. horizontal edges
+ {
+
+ bool IsLastHorz = (horzEdge == eLastHorz);
+ TEdge* e = GetNextInAEL(horzEdge, dir);
+ while(e)
+ {
+
+ //this code block inserts extra coords into horizontal edges (in output
+ //polygons) whereever maxima touch these horizontal edges. This helps
+ //'simplifying' polygons (ie if the Simplify property is set).
+ if (m_Maxima.size() > 0)
+ {
+ if (dir == dLeftToRight)
+ {
+ while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X)
+ {
+ if (horzEdge->OutIdx >= 0 && !IsOpen)
+ AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y));
+ maxIt++;
+ }
+ }
+ else
+ {
+ while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X)
+ {
+ if (horzEdge->OutIdx >= 0 && !IsOpen)
+ AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y));
+ maxRit++;
+ }
+ }
+ };
+
+ if ((dir == dLeftToRight && e->Curr.X > horzRight) ||
+ (dir == dRightToLeft && e->Curr.X < horzLeft)) break;
+
+ //Also break if we've got to the end of an intermediate horizontal edge ...
+ //nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
+ if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML &&
+ e->Dx < horzEdge->NextInLML->Dx) break;
+
+ if (horzEdge->OutIdx >= 0 && !IsOpen) //note: may be done multiple times
+ {
+#ifdef use_xyz
+ if (dir == dLeftToRight) SetZ(e->Curr, *horzEdge, *e);
+ else SetZ(e->Curr, *e, *horzEdge);
+#endif
+ op1 = AddOutPt(horzEdge, e->Curr);
+ TEdge* eNextHorz = m_SortedEdges;
+ while (eNextHorz)
+ {
+ if (eNextHorz->OutIdx >= 0 &&
+ HorzSegmentsOverlap(horzEdge->Bot.X,
+ horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X))
+ {
+ OutPt* op2 = GetLastOutPt(eNextHorz);
+ AddJoin(op2, op1, eNextHorz->Top);
+ }
+ eNextHorz = eNextHorz->NextInSEL;
+ }
+ AddGhostJoin(op1, horzEdge->Bot);
+ }
+
+ //OK, so far we're still in range of the horizontal Edge but make sure
+ //we're at the last of consec. horizontals when matching with eMaxPair
+ if(e == eMaxPair && IsLastHorz)
+ {
+ if (horzEdge->OutIdx >= 0)
+ AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top);
+ DeleteFromAEL(horzEdge);
+ DeleteFromAEL(eMaxPair);
+ return;
+ }
+
+ if(dir == dLeftToRight)
+ {
+ IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
+ IntersectEdges(horzEdge, e, Pt);
+ }
+ else
+ {
+ IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y);
+ IntersectEdges( e, horzEdge, Pt);
+ }
+ TEdge* eNext = GetNextInAEL(e, dir);
+ SwapPositionsInAEL( horzEdge, e );
+ e = eNext;
+ } //end while(e)
+
+ //Break out of loop if HorzEdge.NextInLML is not also horizontal ...
+ if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML)) break;
+
+ UpdateEdgeIntoAEL(horzEdge);
+ if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Bot);
+ GetHorzDirection(*horzEdge, dir, horzLeft, horzRight);
+
+ } //end for (;;)
+
+ if (horzEdge->OutIdx >= 0 && !op1)
+ {
+ op1 = GetLastOutPt(horzEdge);
+ TEdge* eNextHorz = m_SortedEdges;
+ while (eNextHorz)
+ {
+ if (eNextHorz->OutIdx >= 0 &&
+ HorzSegmentsOverlap(horzEdge->Bot.X,
+ horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X))
+ {
+ OutPt* op2 = GetLastOutPt(eNextHorz);
+ AddJoin(op2, op1, eNextHorz->Top);
+ }
+ eNextHorz = eNextHorz->NextInSEL;
+ }
+ AddGhostJoin(op1, horzEdge->Top);
+ }
+
+ if (horzEdge->NextInLML)
+ {
+ if(horzEdge->OutIdx >= 0)
+ {
+ op1 = AddOutPt( horzEdge, horzEdge->Top);
+ UpdateEdgeIntoAEL(horzEdge);
+ if (horzEdge->WindDelta == 0) return;
+ //nb: HorzEdge is no longer horizontal here
+ TEdge* ePrev = horzEdge->PrevInAEL;
+ TEdge* eNext = horzEdge->NextInAEL;
+ if (ePrev && ePrev->Curr.X == horzEdge->Bot.X &&
+ ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 &&
+ (ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
+ SlopesEqual(*horzEdge, *ePrev, m_UseFullRange)))
+ {
+ OutPt* op2 = AddOutPt(ePrev, horzEdge->Bot);
+ AddJoin(op1, op2, horzEdge->Top);
+ }
+ else if (eNext && eNext->Curr.X == horzEdge->Bot.X &&
+ eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 &&
+ eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y &&
+ SlopesEqual(*horzEdge, *eNext, m_UseFullRange))
+ {
+ OutPt* op2 = AddOutPt(eNext, horzEdge->Bot);
+ AddJoin(op1, op2, horzEdge->Top);
+ }
+ }
+ else
+ UpdateEdgeIntoAEL(horzEdge);
+ }
+ else
+ {
+ if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Top);
+ DeleteFromAEL(horzEdge);
+ }
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::ProcessIntersections(const cInt topY)
+{
+ if( !m_ActiveEdges ) return true;
+ try {
+ BuildIntersectList(topY);
+ size_t IlSize = m_IntersectList.size();
+ if (IlSize == 0) return true;
+ if (IlSize == 1 || FixupIntersectionOrder()) ProcessIntersectList();
+ else return false;
+ }
+ catch(...)
+ {
+ m_SortedEdges = 0;
+ DisposeIntersectNodes();
+ throw clipperException("ProcessIntersections error");
+ }
+ m_SortedEdges = 0;
+ return true;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::DisposeIntersectNodes()
+{
+ for (size_t i = 0; i < m_IntersectList.size(); ++i )
+ delete m_IntersectList[i];
+ m_IntersectList.clear();
+}
+//------------------------------------------------------------------------------
+
+void Clipper::BuildIntersectList(const cInt topY)
+{
+ if ( !m_ActiveEdges ) return;
+
+ //prepare for sorting ...
+ TEdge* e = m_ActiveEdges;
+ m_SortedEdges = e;
+ while( e )
+ {
+ e->PrevInSEL = e->PrevInAEL;
+ e->NextInSEL = e->NextInAEL;
+ e->Curr.X = TopX( *e, topY );
+ e = e->NextInAEL;
+ }
+
+ //bubblesort ...
+ bool isModified;
+ do
+ {
+ isModified = false;
+ e = m_SortedEdges;
+ while( e->NextInSEL )
+ {
+ TEdge *eNext = e->NextInSEL;
+ IntPoint Pt;
+ if(e->Curr.X > eNext->Curr.X)
+ {
+ IntersectPoint(*e, *eNext, Pt);
+ if (Pt.Y < topY) Pt = IntPoint(TopX(*e, topY), topY);
+ IntersectNode * newNode = new IntersectNode;
+ newNode->Edge1 = e;
+ newNode->Edge2 = eNext;
+ newNode->Pt = Pt;
+ m_IntersectList.push_back(newNode);
+
+ SwapPositionsInSEL(e, eNext);
+ isModified = true;
+ }
+ else
+ e = eNext;
+ }
+ if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0;
+ else break;
+ }
+ while ( isModified );
+ m_SortedEdges = 0; //important
+}
+//------------------------------------------------------------------------------
+
+
+void Clipper::ProcessIntersectList()
+{
+ for (size_t i = 0; i < m_IntersectList.size(); ++i)
+ {
+ IntersectNode* iNode = m_IntersectList[i];
+ {
+ IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt);
+ SwapPositionsInAEL( iNode->Edge1 , iNode->Edge2 );
+ }
+ delete iNode;
+ }
+ m_IntersectList.clear();
+}
+//------------------------------------------------------------------------------
+
+bool IntersectListSort(IntersectNode* node1, IntersectNode* node2)
+{
+ return node2->Pt.Y < node1->Pt.Y;
+}
+//------------------------------------------------------------------------------
+
+inline bool EdgesAdjacent(const IntersectNode &inode)
+{
+ return (inode.Edge1->NextInSEL == inode.Edge2) ||
+ (inode.Edge1->PrevInSEL == inode.Edge2);
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::FixupIntersectionOrder()
+{
+ //pre-condition: intersections are sorted Bottom-most first.
+ //Now it's crucial that intersections are made only between adjacent edges,
+ //so to ensure this the order of intersections may need adjusting ...
+ CopyAELToSEL();
+ std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort);
+ size_t cnt = m_IntersectList.size();
+ for (size_t i = 0; i < cnt; ++i)
+ {
+ if (!EdgesAdjacent(*m_IntersectList[i]))
+ {
+ size_t j = i + 1;
+ while (j < cnt && !EdgesAdjacent(*m_IntersectList[j])) j++;
+ if (j == cnt) return false;
+ std::swap(m_IntersectList[i], m_IntersectList[j]);
+ }
+ SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2);
+ }
+ return true;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::DoMaxima(TEdge *e)
+{
+ TEdge* eMaxPair = GetMaximaPairEx(e);
+ if (!eMaxPair)
+ {
+ if (e->OutIdx >= 0)
+ AddOutPt(e, e->Top);
+ DeleteFromAEL(e);
+ return;
+ }
+
+ TEdge* eNext = e->NextInAEL;
+ while(eNext && eNext != eMaxPair)
+ {
+ IntersectEdges(e, eNext, e->Top);
+ SwapPositionsInAEL(e, eNext);
+ eNext = e->NextInAEL;
+ }
+
+ if(e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned)
+ {
+ DeleteFromAEL(e);
+ DeleteFromAEL(eMaxPair);
+ }
+ else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 )
+ {
+ if (e->OutIdx >= 0) AddLocalMaxPoly(e, eMaxPair, e->Top);
+ DeleteFromAEL(e);
+ DeleteFromAEL(eMaxPair);
+ }
+#ifdef use_lines
+ else if (e->WindDelta == 0)
+ {
+ if (e->OutIdx >= 0)
+ {
+ AddOutPt(e, e->Top);
+ e->OutIdx = Unassigned;
+ }
+ DeleteFromAEL(e);
+
+ if (eMaxPair->OutIdx >= 0)
+ {
+ AddOutPt(eMaxPair, e->Top);
+ eMaxPair->OutIdx = Unassigned;
+ }
+ DeleteFromAEL(eMaxPair);
+ }
+#endif
+ else throw clipperException("DoMaxima error");
+}
+//------------------------------------------------------------------------------
+
+void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY)
+{
+ TEdge* e = m_ActiveEdges;
+ while( e )
+ {
+ //1. process maxima, treating them as if they're 'bent' horizontal edges,
+ // but exclude maxima with horizontal edges. nb: e can't be a horizontal.
+ bool IsMaximaEdge = IsMaxima(e, topY);
+
+ if(IsMaximaEdge)
+ {
+ TEdge* eMaxPair = GetMaximaPairEx(e);
+ IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair));
+ }
+
+ if(IsMaximaEdge)
+ {
+ if (m_StrictSimple) m_Maxima.push_back(e->Top.X);
+ TEdge* ePrev = e->PrevInAEL;
+ DoMaxima(e);
+ if( !ePrev ) e = m_ActiveEdges;
+ else e = ePrev->NextInAEL;
+ }
+ else
+ {
+ //2. promote horizontal edges, otherwise update Curr.X and Curr.Y ...
+ if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML))
+ {
+ UpdateEdgeIntoAEL(e);
+ if (e->OutIdx >= 0)
+ AddOutPt(e, e->Bot);
+ AddEdgeToSEL(e);
+ }
+ else
+ {
+ e->Curr.X = TopX( *e, topY );
+ e->Curr.Y = topY;
+#ifdef use_xyz
+ e->Curr.Z = topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0);
+#endif
+ }
+
+ //When StrictlySimple and 'e' is being touched by another edge, then
+ //make sure both edges have a vertex here ...
+ if (m_StrictSimple)
+ {
+ TEdge* ePrev = e->PrevInAEL;
+ if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) &&
+ (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0))
+ {
+ IntPoint pt = e->Curr;
+#ifdef use_xyz
+ SetZ(pt, *ePrev, *e);
+#endif
+ OutPt* op = AddOutPt(ePrev, pt);
+ OutPt* op2 = AddOutPt(e, pt);
+ AddJoin(op, op2, pt); //StrictlySimple (type-3) join
+ }
+ }
+
+ e = e->NextInAEL;
+ }
+ }
+
+ //3. Process horizontals at the Top of the scanbeam ...
+ m_Maxima.sort();
+ ProcessHorizontals();
+ m_Maxima.clear();
+
+ //4. Promote intermediate vertices ...
+ e = m_ActiveEdges;
+ while(e)
+ {
+ if(IsIntermediate(e, topY))
+ {
+ OutPt* op = 0;
+ if( e->OutIdx >= 0 )
+ op = AddOutPt(e, e->Top);
+ UpdateEdgeIntoAEL(e);
+
+ //if output polygons share an edge, they'll need joining later ...
+ TEdge* ePrev = e->PrevInAEL;
+ TEdge* eNext = e->NextInAEL;
+ if (ePrev && ePrev->Curr.X == e->Bot.X &&
+ ePrev->Curr.Y == e->Bot.Y && op &&
+ ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y &&
+ SlopesEqual(e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange) &&
+ (e->WindDelta != 0) && (ePrev->WindDelta != 0))
+ {
+ OutPt* op2 = AddOutPt(ePrev, e->Bot);
+ AddJoin(op, op2, e->Top);
+ }
+ else if (eNext && eNext->Curr.X == e->Bot.X &&
+ eNext->Curr.Y == e->Bot.Y && op &&
+ eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y &&
+ SlopesEqual(e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange) &&
+ (e->WindDelta != 0) && (eNext->WindDelta != 0))
+ {
+ OutPt* op2 = AddOutPt(eNext, e->Bot);
+ AddJoin(op, op2, e->Top);
+ }
+ }
+ e = e->NextInAEL;
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::FixupOutPolyline(OutRec &outrec)
+{
+ OutPt *pp = outrec.Pts;
+ OutPt *lastPP = pp->Prev;
+ while (pp != lastPP)
+ {
+ pp = pp->Next;
+ if (pp->Pt == pp->Prev->Pt)
+ {
+ if (pp == lastPP) lastPP = pp->Prev;
+ OutPt *tmpPP = pp->Prev;
+ tmpPP->Next = pp->Next;
+ pp->Next->Prev = tmpPP;
+ delete pp;
+ pp = tmpPP;
+ }
+ }
+
+ if (pp == pp->Prev)
+ {
+ DisposeOutPts(pp);
+ outrec.Pts = 0;
+ return;
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::FixupOutPolygon(OutRec &outrec)
+{
+ //FixupOutPolygon() - removes duplicate points and simplifies consecutive
+ //parallel edges by removing the middle vertex.
+ OutPt *lastOK = 0;
+ outrec.BottomPt = 0;
+ OutPt *pp = outrec.Pts;
+ bool preserveCol = m_PreserveCollinear || m_StrictSimple;
+
+ for (;;)
+ {
+ if (pp->Prev == pp || pp->Prev == pp->Next)
+ {
+ DisposeOutPts(pp);
+ outrec.Pts = 0;
+ return;
+ }
+
+ //test for duplicate points and collinear edges ...
+ if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) ||
+ (SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) &&
+ (!preserveCol || !Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt))))
+ {
+ lastOK = 0;
+ OutPt *tmp = pp;
+ pp->Prev->Next = pp->Next;
+ pp->Next->Prev = pp->Prev;
+ pp = pp->Prev;
+ delete tmp;
+ }
+ else if (pp == lastOK) break;
+ else
+ {
+ if (!lastOK) lastOK = pp;
+ pp = pp->Next;
+ }
+ }
+ outrec.Pts = pp;
+}
+//------------------------------------------------------------------------------
+
+int PointCount(OutPt *Pts)
+{
+ if (!Pts) return 0;
+ int result = 0;
+ OutPt* p = Pts;
+ do
+ {
+ result++;
+ p = p->Next;
+ }
+ while (p != Pts);
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::BuildResult(Paths &polys)
+{
+ polys.reserve(m_PolyOuts.size());
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ if (!m_PolyOuts[i]->Pts) continue;
+ Path pg;
+ OutPt* p = m_PolyOuts[i]->Pts->Prev;
+ int cnt = PointCount(p);
+ if (cnt < 2) continue;
+ pg.reserve(cnt);
+ for (int i = 0; i < cnt; ++i)
+ {
+ pg.push_back(p->Pt);
+ p = p->Prev;
+ }
+ polys.push_back(pg);
+ }
+}
+//------------------------------------------------------------------------------
+
+void Clipper::BuildResult2(PolyTree& polytree)
+{
+ polytree.Clear();
+ polytree.AllNodes.reserve(m_PolyOuts.size());
+ //add each output polygon/contour to polytree ...
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++)
+ {
+ OutRec* outRec = m_PolyOuts[i];
+ int cnt = PointCount(outRec->Pts);
+ if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3)) continue;
+ FixHoleLinkage(*outRec);
+ PolyNode* pn = new PolyNode();
+ //nb: polytree takes ownership of all the PolyNodes
+ polytree.AllNodes.push_back(pn);
+ outRec->PolyNd = pn;
+ pn->Parent = 0;
+ pn->Index = 0;
+ pn->Contour.reserve(cnt);
+ OutPt *op = outRec->Pts->Prev;
+ for (int j = 0; j < cnt; j++)
+ {
+ pn->Contour.push_back(op->Pt);
+ op = op->Prev;
+ }
+ }
+
+ //fixup PolyNode links etc ...
+ polytree.Childs.reserve(m_PolyOuts.size());
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++)
+ {
+ OutRec* outRec = m_PolyOuts[i];
+ if (!outRec->PolyNd) continue;
+ if (outRec->IsOpen)
+ {
+ outRec->PolyNd->m_IsOpen = true;
+ polytree.AddChild(*outRec->PolyNd);
+ }
+ else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd)
+ outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd);
+ else
+ polytree.AddChild(*outRec->PolyNd);
+ }
+}
+//------------------------------------------------------------------------------
+
+void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2)
+{
+ //just swap the contents (because fIntersectNodes is a single-linked-list)
+ IntersectNode inode = int1; //gets a copy of Int1
+ int1.Edge1 = int2.Edge1;
+ int1.Edge2 = int2.Edge2;
+ int1.Pt = int2.Pt;
+ int2.Edge1 = inode.Edge1;
+ int2.Edge2 = inode.Edge2;
+ int2.Pt = inode.Pt;
+}
+//------------------------------------------------------------------------------
+
+inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2)
+{
+ if (e2.Curr.X == e1.Curr.X)
+ {
+ if (e2.Top.Y > e1.Top.Y)
+ return e2.Top.X < TopX(e1, e2.Top.Y);
+ else return e1.Top.X > TopX(e2, e1.Top.Y);
+ }
+ else return e2.Curr.X < e1.Curr.X;
+}
+//------------------------------------------------------------------------------
+
+bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2,
+ cInt& Left, cInt& Right)
+{
+ if (a1 < a2)
+ {
+ if (b1 < b2) {Left = std::max(a1,b1); Right = std::min(a2,b2);}
+ else {Left = std::max(a1,b2); Right = std::min(a2,b1);}
+ }
+ else
+ {
+ if (b1 < b2) {Left = std::max(a2,b1); Right = std::min(a1,b2);}
+ else {Left = std::max(a2,b2); Right = std::min(a1,b1);}
+ }
+ return Left < Right;
+}
+//------------------------------------------------------------------------------
+
+inline void UpdateOutPtIdxs(OutRec& outrec)
+{
+ OutPt* op = outrec.Pts;
+ do
+ {
+ op->Idx = outrec.Idx;
+ op = op->Prev;
+ }
+ while(op != outrec.Pts);
+}
+//------------------------------------------------------------------------------
+
+void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge)
+{
+ if(!m_ActiveEdges)
+ {
+ edge->PrevInAEL = 0;
+ edge->NextInAEL = 0;
+ m_ActiveEdges = edge;
+ }
+ else if(!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge))
+ {
+ edge->PrevInAEL = 0;
+ edge->NextInAEL = m_ActiveEdges;
+ m_ActiveEdges->PrevInAEL = edge;
+ m_ActiveEdges = edge;
+ }
+ else
+ {
+ if(!startEdge) startEdge = m_ActiveEdges;
+ while(startEdge->NextInAEL &&
+ !E2InsertsBeforeE1(*startEdge->NextInAEL , *edge))
+ startEdge = startEdge->NextInAEL;
+ edge->NextInAEL = startEdge->NextInAEL;
+ if(startEdge->NextInAEL) startEdge->NextInAEL->PrevInAEL = edge;
+ edge->PrevInAEL = startEdge;
+ startEdge->NextInAEL = edge;
+ }
+}
+//----------------------------------------------------------------------
+
+OutPt* DupOutPt(OutPt* outPt, bool InsertAfter)
+{
+ OutPt* result = new OutPt;
+ result->Pt = outPt->Pt;
+ result->Idx = outPt->Idx;
+ if (InsertAfter)
+ {
+ result->Next = outPt->Next;
+ result->Prev = outPt;
+ outPt->Next->Prev = result;
+ outPt->Next = result;
+ }
+ else
+ {
+ result->Prev = outPt->Prev;
+ result->Next = outPt;
+ outPt->Prev->Next = result;
+ outPt->Prev = result;
+ }
+ return result;
+}
+//------------------------------------------------------------------------------
+
+bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b,
+ const IntPoint Pt, bool DiscardLeft)
+{
+ Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight);
+ Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight);
+ if (Dir1 == Dir2) return false;
+
+ //When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
+ //want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
+ //So, to facilitate this while inserting Op1b and Op2b ...
+ //when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
+ //otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
+ if (Dir1 == dLeftToRight)
+ {
+ while (op1->Next->Pt.X <= Pt.X &&
+ op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y)
+ op1 = op1->Next;
+ if (DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next;
+ op1b = DupOutPt(op1, !DiscardLeft);
+ if (op1b->Pt != Pt)
+ {
+ op1 = op1b;
+ op1->Pt = Pt;
+ op1b = DupOutPt(op1, !DiscardLeft);
+ }
+ }
+ else
+ {
+ while (op1->Next->Pt.X >= Pt.X &&
+ op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y)
+ op1 = op1->Next;
+ if (!DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next;
+ op1b = DupOutPt(op1, DiscardLeft);
+ if (op1b->Pt != Pt)
+ {
+ op1 = op1b;
+ op1->Pt = Pt;
+ op1b = DupOutPt(op1, DiscardLeft);
+ }
+ }
+
+ if (Dir2 == dLeftToRight)
+ {
+ while (op2->Next->Pt.X <= Pt.X &&
+ op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y)
+ op2 = op2->Next;
+ if (DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next;
+ op2b = DupOutPt(op2, !DiscardLeft);
+ if (op2b->Pt != Pt)
+ {
+ op2 = op2b;
+ op2->Pt = Pt;
+ op2b = DupOutPt(op2, !DiscardLeft);
+ };
+ } else
+ {
+ while (op2->Next->Pt.X >= Pt.X &&
+ op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y)
+ op2 = op2->Next;
+ if (!DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next;
+ op2b = DupOutPt(op2, DiscardLeft);
+ if (op2b->Pt != Pt)
+ {
+ op2 = op2b;
+ op2->Pt = Pt;
+ op2b = DupOutPt(op2, DiscardLeft);
+ };
+ };
+
+ if ((Dir1 == dLeftToRight) == DiscardLeft)
+ {
+ op1->Prev = op2;
+ op2->Next = op1;
+ op1b->Next = op2b;
+ op2b->Prev = op1b;
+ }
+ else
+ {
+ op1->Next = op2;
+ op2->Prev = op1;
+ op1b->Prev = op2b;
+ op2b->Next = op1b;
+ }
+ return true;
+}
+//------------------------------------------------------------------------------
+
+bool Clipper::JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2)
+{
+ OutPt *op1 = j->OutPt1, *op1b;
+ OutPt *op2 = j->OutPt2, *op2b;
+
+ //There are 3 kinds of joins for output polygons ...
+ //1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
+ //along (horizontal) collinear edges (& Join.OffPt is on the same horizontal).
+ //2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
+ //location at the Bottom of the overlapping segment (& Join.OffPt is above).
+ //3. StrictSimple joins where edges touch but are not collinear and where
+ //Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
+ bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y);
+
+ if (isHorizontal && (j->OffPt == j->OutPt1->Pt) &&
+ (j->OffPt == j->OutPt2->Pt))
+ {
+ //Strictly Simple join ...
+ if (outRec1 != outRec2) return false;
+ op1b = j->OutPt1->Next;
+ while (op1b != op1 && (op1b->Pt == j->OffPt))
+ op1b = op1b->Next;
+ bool reverse1 = (op1b->Pt.Y > j->OffPt.Y);
+ op2b = j->OutPt2->Next;
+ while (op2b != op2 && (op2b->Pt == j->OffPt))
+ op2b = op2b->Next;
+ bool reverse2 = (op2b->Pt.Y > j->OffPt.Y);
+ if (reverse1 == reverse2) return false;
+ if (reverse1)
+ {
+ op1b = DupOutPt(op1, false);
+ op2b = DupOutPt(op2, true);
+ op1->Prev = op2;
+ op2->Next = op1;
+ op1b->Next = op2b;
+ op2b->Prev = op1b;
+ j->OutPt1 = op1;
+ j->OutPt2 = op1b;
+ return true;
+ } else
+ {
+ op1b = DupOutPt(op1, true);
+ op2b = DupOutPt(op2, false);
+ op1->Next = op2;
+ op2->Prev = op1;
+ op1b->Prev = op2b;
+ op2b->Next = op1b;
+ j->OutPt1 = op1;
+ j->OutPt2 = op1b;
+ return true;
+ }
+ }
+ else if (isHorizontal)
+ {
+ //treat horizontal joins differently to non-horizontal joins since with
+ //them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
+ //may be anywhere along the horizontal edge.
+ op1b = op1;
+ while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2)
+ op1 = op1->Prev;
+ while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2)
+ op1b = op1b->Next;
+ if (op1b->Next == op1 || op1b->Next == op2) return false; //a flat 'polygon'
+
+ op2b = op2;
+ while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b)
+ op2 = op2->Prev;
+ while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1)
+ op2b = op2b->Next;
+ if (op2b->Next == op2 || op2b->Next == op1) return false; //a flat 'polygon'
+
+ cInt Left, Right;
+ //Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges
+ if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right))
+ return false;
+
+ //DiscardLeftSide: when overlapping edges are joined, a spike will created
+ //which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
+ //on the discard Side as either may still be needed for other joins ...
+ IntPoint Pt;
+ bool DiscardLeftSide;
+ if (op1->Pt.X >= Left && op1->Pt.X <= Right)
+ {
+ Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X);
+ }
+ else if (op2->Pt.X >= Left&& op2->Pt.X <= Right)
+ {
+ Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X);
+ }
+ else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right)
+ {
+ Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X;
+ }
+ else
+ {
+ Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X);
+ }
+ j->OutPt1 = op1; j->OutPt2 = op2;
+ return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide);
+ } else
+ {
+ //nb: For non-horizontal joins ...
+ // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y
+ // 2. Jr.OutPt1.Pt > Jr.OffPt.Y
+
+ //make sure the polygons are correctly oriented ...
+ op1b = op1->Next;
+ while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Next;
+ bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) ||
+ !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange));
+ if (Reverse1)
+ {
+ op1b = op1->Prev;
+ while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Prev;
+ if ((op1b->Pt.Y > op1->Pt.Y) ||
+ !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)) return false;
+ };
+ op2b = op2->Next;
+ while ((op2b->Pt == op2->Pt) && (op2b != op2))op2b = op2b->Next;
+ bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) ||
+ !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange));
+ if (Reverse2)
+ {
+ op2b = op2->Prev;
+ while ((op2b->Pt == op2->Pt) && (op2b != op2)) op2b = op2b->Prev;
+ if ((op2b->Pt.Y > op2->Pt.Y) ||
+ !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)) return false;
+ }
+
+ if ((op1b == op1) || (op2b == op2) || (op1b == op2b) ||
+ ((outRec1 == outRec2) && (Reverse1 == Reverse2))) return false;
+
+ if (Reverse1)
+ {
+ op1b = DupOutPt(op1, false);
+ op2b = DupOutPt(op2, true);
+ op1->Prev = op2;
+ op2->Next = op1;
+ op1b->Next = op2b;
+ op2b->Prev = op1b;
+ j->OutPt1 = op1;
+ j->OutPt2 = op1b;
+ return true;
+ } else
+ {
+ op1b = DupOutPt(op1, true);
+ op2b = DupOutPt(op2, false);
+ op1->Next = op2;
+ op2->Prev = op1;
+ op1b->Prev = op2b;
+ op2b->Next = op1b;
+ j->OutPt1 = op1;
+ j->OutPt2 = op1b;
+ return true;
+ }
+ }
+}
+//----------------------------------------------------------------------
+
+static OutRec* ParseFirstLeft(OutRec* FirstLeft)
+{
+ while (FirstLeft && !FirstLeft->Pts)
+ FirstLeft = FirstLeft->FirstLeft;
+ return FirstLeft;
+}
+//------------------------------------------------------------------------------
+
+void Clipper::FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec)
+{
+ //tests if NewOutRec contains the polygon before reassigning FirstLeft
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ OutRec* outRec = m_PolyOuts[i];
+ OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft);
+ if (outRec->Pts && firstLeft == OldOutRec)
+ {
+ if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts))
+ outRec->FirstLeft = NewOutRec;
+ }
+ }
+}
+//----------------------------------------------------------------------
+
+void Clipper::FixupFirstLefts2(OutRec* InnerOutRec, OutRec* OuterOutRec)
+{
+ //A polygon has split into two such that one is now the inner of the other.
+ //It's possible that these polygons now wrap around other polygons, so check
+ //every polygon that's also contained by OuterOutRec's FirstLeft container
+ //(including 0) to see if they've become inner to the new inner polygon ...
+ OutRec* orfl = OuterOutRec->FirstLeft;
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ OutRec* outRec = m_PolyOuts[i];
+
+ if (!outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec)
+ continue;
+ OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft);
+ if (firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec)
+ continue;
+ if (Poly2ContainsPoly1(outRec->Pts, InnerOutRec->Pts))
+ outRec->FirstLeft = InnerOutRec;
+ else if (Poly2ContainsPoly1(outRec->Pts, OuterOutRec->Pts))
+ outRec->FirstLeft = OuterOutRec;
+ else if (outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec)
+ outRec->FirstLeft = orfl;
+ }
+}
+//----------------------------------------------------------------------
+void Clipper::FixupFirstLefts3(OutRec* OldOutRec, OutRec* NewOutRec)
+{
+ //reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon
+ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i)
+ {
+ OutRec* outRec = m_PolyOuts[i];
+ OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft);
+ if (outRec->Pts && firstLeft == OldOutRec)
+ outRec->FirstLeft = NewOutRec;
+ }
+}
+//----------------------------------------------------------------------
+
+void Clipper::JoinCommonEdges()
+{
+ for (JoinList::size_type i = 0; i < m_Joins.size(); i++)
+ {
+ Join* join = m_Joins[i];
+
+ OutRec *outRec1 = GetOutRec(join->OutPt1->Idx);
+ OutRec *outRec2 = GetOutRec(join->OutPt2->Idx);
+
+ if (!outRec1->Pts || !outRec2->Pts) continue;
+ if (outRec1->IsOpen || outRec2->IsOpen) continue;
+
+ //get the polygon fragment with the correct hole state (FirstLeft)
+ //before calling JoinPoints() ...
+ OutRec *holeStateRec;
+ if (outRec1 == outRec2) holeStateRec = outRec1;
+ else if (OutRec1RightOfOutRec2(outRec1, outRec2)) holeStateRec = outRec2;
+ else if (OutRec1RightOfOutRec2(outRec2, outRec1)) holeStateRec = outRec1;
+ else holeStateRec = GetLowermostRec(outRec1, outRec2);
+
+ if (!JoinPoints(join, outRec1, outRec2)) continue;
+
+ if (outRec1 == outRec2)
+ {
+ //instead of joining two polygons, we've just created a new one by
+ //splitting one polygon into two.
+ outRec1->Pts = join->OutPt1;
+ outRec1->BottomPt = 0;
+ outRec2 = CreateOutRec();
+ outRec2->Pts = join->OutPt2;
+
+ //update all OutRec2.Pts Idx's ...
+ UpdateOutPtIdxs(*outRec2);
+
+ if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts))
+ {
+ //outRec1 contains outRec2 ...
+ outRec2->IsHole = !outRec1->IsHole;
+ outRec2->FirstLeft = outRec1;
+
+ if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1);
+
+ if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0))
+ ReversePolyPtLinks(outRec2->Pts);
+
+ } else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts))
+ {
+ //outRec2 contains outRec1 ...
+ outRec2->IsHole = outRec1->IsHole;
+ outRec1->IsHole = !outRec2->IsHole;
+ outRec2->FirstLeft = outRec1->FirstLeft;
+ outRec1->FirstLeft = outRec2;
+
+ if (m_UsingPolyTree) FixupFirstLefts2(outRec1, outRec2);
+
+ if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0))
+ ReversePolyPtLinks(outRec1->Pts);
+ }
+ else
+ {
+ //the 2 polygons are completely separate ...
+ outRec2->IsHole = outRec1->IsHole;
+ outRec2->FirstLeft = outRec1->FirstLeft;
+
+ //fixup FirstLeft pointers that may need reassigning to OutRec2
+ if (m_UsingPolyTree) FixupFirstLefts1(outRec1, outRec2);
+ }
+
+ } else
+ {
+ //joined 2 polygons together ...
+
+ outRec2->Pts = 0;
+ outRec2->BottomPt = 0;
+ outRec2->Idx = outRec1->Idx;
+
+ outRec1->IsHole = holeStateRec->IsHole;
+ if (holeStateRec == outRec2)
+ outRec1->FirstLeft = outRec2->FirstLeft;
+ outRec2->FirstLeft = outRec1;
+
+ if (m_UsingPolyTree) FixupFirstLefts3(outRec2, outRec1);
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// ClipperOffset support functions ...
+//------------------------------------------------------------------------------
+
+DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2)
+{
+ if(pt2.X == pt1.X && pt2.Y == pt1.Y)
+ return DoublePoint(0, 0);
+
+ double Dx = (double)(pt2.X - pt1.X);
+ double dy = (double)(pt2.Y - pt1.Y);
+ double f = 1 *1.0/ std::sqrt( Dx*Dx + dy*dy );
+ Dx *= f;
+ dy *= f;
+ return DoublePoint(dy, -Dx);
+}
+
+//------------------------------------------------------------------------------
+// ClipperOffset class
+//------------------------------------------------------------------------------
+
+ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance)
+{
+ this->MiterLimit = miterLimit;
+ this->ArcTolerance = arcTolerance;
+ m_lowest.X = -1;
+}
+//------------------------------------------------------------------------------
+
+ClipperOffset::~ClipperOffset()
+{
+ Clear();
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::Clear()
+{
+ for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
+ delete m_polyNodes.Childs[i];
+ m_polyNodes.Childs.clear();
+ m_lowest.X = -1;
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::AddPath(const Path& path, JoinType joinType, EndType endType)
+{
+ int highI = (int)path.size() - 1;
+ if (highI < 0) return;
+ PolyNode* newNode = new PolyNode();
+ newNode->m_jointype = joinType;
+ newNode->m_endtype = endType;
+
+ //strip duplicate points from path and also get index to the lowest point ...
+ if (endType == etClosedLine || endType == etClosedPolygon)
+ while (highI > 0 && path[0] == path[highI]) highI--;
+ newNode->Contour.reserve(highI + 1);
+ newNode->Contour.push_back(path[0]);
+ int j = 0, k = 0;
+ for (int i = 1; i <= highI; i++)
+ if (newNode->Contour[j] != path[i])
+ {
+ j++;
+ newNode->Contour.push_back(path[i]);
+ if (path[i].Y > newNode->Contour[k].Y ||
+ (path[i].Y == newNode->Contour[k].Y &&
+ path[i].X < newNode->Contour[k].X)) k = j;
+ }
+ if (endType == etClosedPolygon && j < 2)
+ {
+ delete newNode;
+ return;
+ }
+ m_polyNodes.AddChild(*newNode);
+
+ //if this path's lowest pt is lower than all the others then update m_lowest
+ if (endType != etClosedPolygon) return;
+ if (m_lowest.X < 0)
+ m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
+ else
+ {
+ IntPoint ip = m_polyNodes.Childs[(int)m_lowest.X]->Contour[(int)m_lowest.Y];
+ if (newNode->Contour[k].Y > ip.Y ||
+ (newNode->Contour[k].Y == ip.Y &&
+ newNode->Contour[k].X < ip.X))
+ m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k);
+ }
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::AddPaths(const Paths& paths, JoinType joinType, EndType endType)
+{
+ for (Paths::size_type i = 0; i < paths.size(); ++i)
+ AddPath(paths[i], joinType, endType);
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::FixOrientations()
+{
+ //fixup orientations of all closed paths if the orientation of the
+ //closed path with the lowermost vertex is wrong ...
+ if (m_lowest.X >= 0 &&
+ !Orientation(m_polyNodes.Childs[(int)m_lowest.X]->Contour))
+ {
+ for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
+ {
+ PolyNode& node = *m_polyNodes.Childs[i];
+ if (node.m_endtype == etClosedPolygon ||
+ (node.m_endtype == etClosedLine && Orientation(node.Contour)))
+ ReversePath(node.Contour);
+ }
+ } else
+ {
+ for (int i = 0; i < m_polyNodes.ChildCount(); ++i)
+ {
+ PolyNode& node = *m_polyNodes.Childs[i];
+ if (node.m_endtype == etClosedLine && !Orientation(node.Contour))
+ ReversePath(node.Contour);
+ }
+ }
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::Execute(Paths& solution, double delta)
+{
+ solution.clear();
+ FixOrientations();
+ DoOffset(delta);
+
+ //now clean up 'corners' ...
+ Clipper clpr;
+ clpr.AddPaths(m_destPolys, ptSubject, true);
+ if (delta > 0)
+ {
+ clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
+ }
+ else
+ {
+ IntRect r = clpr.GetBounds();
+ Path outer(4);
+ outer[0] = IntPoint(r.left - 10, r.bottom + 10);
+ outer[1] = IntPoint(r.right + 10, r.bottom + 10);
+ outer[2] = IntPoint(r.right + 10, r.top - 10);
+ outer[3] = IntPoint(r.left - 10, r.top - 10);
+
+ clpr.AddPath(outer, ptSubject, true);
+ clpr.ReverseSolution(true);
+ clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
+ if (solution.size() > 0) solution.erase(solution.begin());
+ }
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::Execute(PolyTree& solution, double delta)
+{
+ solution.Clear();
+ FixOrientations();
+ DoOffset(delta);
+
+ //now clean up 'corners' ...
+ Clipper clpr;
+ clpr.AddPaths(m_destPolys, ptSubject, true);
+ if (delta > 0)
+ {
+ clpr.Execute(ctUnion, solution, pftPositive, pftPositive);
+ }
+ else
+ {
+ IntRect r = clpr.GetBounds();
+ Path outer(4);
+ outer[0] = IntPoint(r.left - 10, r.bottom + 10);
+ outer[1] = IntPoint(r.right + 10, r.bottom + 10);
+ outer[2] = IntPoint(r.right + 10, r.top - 10);
+ outer[3] = IntPoint(r.left - 10, r.top - 10);
+
+ clpr.AddPath(outer, ptSubject, true);
+ clpr.ReverseSolution(true);
+ clpr.Execute(ctUnion, solution, pftNegative, pftNegative);
+ //remove the outer PolyNode rectangle ...
+ if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0)
+ {
+ PolyNode* outerNode = solution.Childs[0];
+ solution.Childs.reserve(outerNode->ChildCount());
+ solution.Childs[0] = outerNode->Childs[0];
+ solution.Childs[0]->Parent = outerNode->Parent;
+ for (int i = 1; i < outerNode->ChildCount(); ++i)
+ solution.AddChild(*outerNode->Childs[i]);
+ }
+ else
+ solution.Clear();
+ }
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::DoOffset(double delta)
+{
+ m_destPolys.clear();
+ m_delta = delta;
+
+ //if Zero offset, just copy any CLOSED polygons to m_p and return ...
+ if (NEAR_ZERO(delta))
+ {
+ m_destPolys.reserve(m_polyNodes.ChildCount());
+ for (int i = 0; i < m_polyNodes.ChildCount(); i++)
+ {
+ PolyNode& node = *m_polyNodes.Childs[i];
+ if (node.m_endtype == etClosedPolygon)
+ m_destPolys.push_back(node.Contour);
+ }
+ return;
+ }
+
+ //see offset_triginometry3.svg in the documentation folder ...
+ if (MiterLimit > 2) m_miterLim = 2/(MiterLimit * MiterLimit);
+ else m_miterLim = 0.5;
+
+ double y;
+ if (ArcTolerance <= 0.0) y = def_arc_tolerance;
+ else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance)
+ y = std::fabs(delta) * def_arc_tolerance;
+ else y = ArcTolerance;
+ //see offset_triginometry2.svg in the documentation folder ...
+ double steps = pi / std::acos(1 - y / std::fabs(delta));
+ if (steps > std::fabs(delta) * pi)
+ steps = std::fabs(delta) * pi; //ie excessive precision check
+ m_sin = std::sin(two_pi / steps);
+ m_cos = std::cos(two_pi / steps);
+ m_StepsPerRad = steps / two_pi;
+ if (delta < 0.0) m_sin = -m_sin;
+
+ m_destPolys.reserve(m_polyNodes.ChildCount() * 2);
+ for (int i = 0; i < m_polyNodes.ChildCount(); i++)
+ {
+ PolyNode& node = *m_polyNodes.Childs[i];
+ m_srcPoly = node.Contour;
+
+ int len = (int)m_srcPoly.size();
+ if (len == 0 || (delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon)))
+ continue;
+
+ m_destPoly.clear();
+ if (len == 1)
+ {
+ if (node.m_jointype == jtRound)
+ {
+ double X = 1.0, Y = 0.0;
+ for (cInt j = 1; j <= steps; j++)
+ {
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[0].X + X * delta),
+ Round(m_srcPoly[0].Y + Y * delta)));
+ double X2 = X;
+ X = X * m_cos - m_sin * Y;
+ Y = X2 * m_sin + Y * m_cos;
+ }
+ }
+ else
+ {
+ double X = -1.0, Y = -1.0;
+ for (int j = 0; j < 4; ++j)
+ {
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[0].X + X * delta),
+ Round(m_srcPoly[0].Y + Y * delta)));
+ if (X < 0) X = 1;
+ else if (Y < 0) Y = 1;
+ else X = -1;
+ }
+ }
+ m_destPolys.push_back(m_destPoly);
+ continue;
+ }
+ //build m_normals ...
+ m_normals.clear();
+ m_normals.reserve(len);
+ for (int j = 0; j < len - 1; ++j)
+ m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1]));
+ if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon)
+ m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0]));
+ else
+ m_normals.push_back(DoublePoint(m_normals[len - 2]));
+
+ if (node.m_endtype == etClosedPolygon)
+ {
+ int k = len - 1;
+ for (int j = 0; j < len; ++j)
+ OffsetPoint(j, k, node.m_jointype);
+ m_destPolys.push_back(m_destPoly);
+ }
+ else if (node.m_endtype == etClosedLine)
+ {
+ int k = len - 1;
+ for (int j = 0; j < len; ++j)
+ OffsetPoint(j, k, node.m_jointype);
+ m_destPolys.push_back(m_destPoly);
+ m_destPoly.clear();
+ //re-build m_normals ...
+ DoublePoint n = m_normals[len -1];
+ for (int j = len - 1; j > 0; j--)
+ m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
+ m_normals[0] = DoublePoint(-n.X, -n.Y);
+ k = 0;
+ for (int j = len - 1; j >= 0; j--)
+ OffsetPoint(j, k, node.m_jointype);
+ m_destPolys.push_back(m_destPoly);
+ }
+ else
+ {
+ int k = 0;
+ for (int j = 1; j < len - 1; ++j)
+ OffsetPoint(j, k, node.m_jointype);
+
+ IntPoint pt1;
+ if (node.m_endtype == etOpenButt)
+ {
+ int j = len - 1;
+ pt1 = IntPoint((cInt)Round(m_srcPoly[j].X + m_normals[j].X *
+ delta), (cInt)Round(m_srcPoly[j].Y + m_normals[j].Y * delta));
+ m_destPoly.push_back(pt1);
+ pt1 = IntPoint((cInt)Round(m_srcPoly[j].X - m_normals[j].X *
+ delta), (cInt)Round(m_srcPoly[j].Y - m_normals[j].Y * delta));
+ m_destPoly.push_back(pt1);
+ }
+ else
+ {
+ int j = len - 1;
+ k = len - 2;
+ m_sinA = 0;
+ m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y);
+ if (node.m_endtype == etOpenSquare)
+ DoSquare(j, k);
+ else
+ DoRound(j, k);
+ }
+
+ //re-build m_normals ...
+ for (int j = len - 1; j > 0; j--)
+ m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y);
+ m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y);
+
+ k = len - 1;
+ for (int j = k - 1; j > 0; --j) OffsetPoint(j, k, node.m_jointype);
+
+ if (node.m_endtype == etOpenButt)
+ {
+ pt1 = IntPoint((cInt)Round(m_srcPoly[0].X - m_normals[0].X * delta),
+ (cInt)Round(m_srcPoly[0].Y - m_normals[0].Y * delta));
+ m_destPoly.push_back(pt1);
+ pt1 = IntPoint((cInt)Round(m_srcPoly[0].X + m_normals[0].X * delta),
+ (cInt)Round(m_srcPoly[0].Y + m_normals[0].Y * delta));
+ m_destPoly.push_back(pt1);
+ }
+ else
+ {
+ k = 1;
+ m_sinA = 0;
+ if (node.m_endtype == etOpenSquare)
+ DoSquare(0, 1);
+ else
+ DoRound(0, 1);
+ }
+ m_destPolys.push_back(m_destPoly);
+ }
+ }
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::OffsetPoint(int j, int& k, JoinType jointype)
+{
+ //cross product ...
+ m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y);
+ if (std::fabs(m_sinA * m_delta) < 1.0)
+ {
+ //dot product ...
+ double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y );
+ if (cosA > 0) // angle => 0 degrees
+ {
+ m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
+ Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
+ return;
+ }
+ //else angle => 180 degrees
+ }
+ else if (m_sinA > 1.0) m_sinA = 1.0;
+ else if (m_sinA < -1.0) m_sinA = -1.0;
+
+ if (m_sinA * m_delta < 0)
+ {
+ m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta),
+ Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta)));
+ m_destPoly.push_back(m_srcPoly[j]);
+ m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
+ Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
+ }
+ else
+ switch (jointype)
+ {
+ case jtMiter:
+ {
+ double r = 1 + (m_normals[j].X * m_normals[k].X +
+ m_normals[j].Y * m_normals[k].Y);
+ if (r >= m_miterLim) DoMiter(j, k, r); else DoSquare(j, k);
+ break;
+ }
+ case jtSquare: DoSquare(j, k); break;
+ case jtRound: DoRound(j, k); break;
+ }
+ k = j;
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::DoSquare(int j, int k)
+{
+ double dx = std::tan(std::atan2(m_sinA,
+ m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y) / 4);
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)),
+ Round(m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx))));
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)),
+ Round(m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx))));
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::DoMiter(int j, int k, double r)
+{
+ double q = m_delta / r;
+ m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q),
+ Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q)));
+}
+//------------------------------------------------------------------------------
+
+void ClipperOffset::DoRound(int j, int k)
+{
+ double a = std::atan2(m_sinA,
+ m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y);
+ int steps = std::max((int)Round(m_StepsPerRad * std::fabs(a)), 1);
+
+ double X = m_normals[k].X, Y = m_normals[k].Y, X2;
+ for (int i = 0; i < steps; ++i)
+ {
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[j].X + X * m_delta),
+ Round(m_srcPoly[j].Y + Y * m_delta)));
+ X2 = X;
+ X = X * m_cos - m_sin * Y;
+ Y = X2 * m_sin + Y * m_cos;
+ }
+ m_destPoly.push_back(IntPoint(
+ Round(m_srcPoly[j].X + m_normals[j].X * m_delta),
+ Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta)));
+}
+
+//------------------------------------------------------------------------------
+// Miscellaneous public functions
+//------------------------------------------------------------------------------
+
+void Clipper::DoSimplePolygons()
+{
+ PolyOutList::size_type i = 0;
+ while (i < m_PolyOuts.size())
+ {
+ OutRec* outrec = m_PolyOuts[i++];
+ OutPt* op = outrec->Pts;
+ if (!op || outrec->IsOpen) continue;
+ do //for each Pt in Polygon until duplicate found do ...
+ {
+ OutPt* op2 = op->Next;
+ while (op2 != outrec->Pts)
+ {
+ if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op)
+ {
+ //split the polygon into two ...
+ OutPt* op3 = op->Prev;
+ OutPt* op4 = op2->Prev;
+ op->Prev = op4;
+ op4->Next = op;
+ op2->Prev = op3;
+ op3->Next = op2;
+
+ outrec->Pts = op;
+ OutRec* outrec2 = CreateOutRec();
+ outrec2->Pts = op2;
+ UpdateOutPtIdxs(*outrec2);
+ if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts))
+ {
+ //OutRec2 is contained by OutRec1 ...
+ outrec2->IsHole = !outrec->IsHole;
+ outrec2->FirstLeft = outrec;
+ if (m_UsingPolyTree) FixupFirstLefts2(outrec2, outrec);
+ }
+ else
+ if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts))
+ {
+ //OutRec1 is contained by OutRec2 ...
+ outrec2->IsHole = outrec->IsHole;
+ outrec->IsHole = !outrec2->IsHole;
+ outrec2->FirstLeft = outrec->FirstLeft;
+ outrec->FirstLeft = outrec2;
+ if (m_UsingPolyTree) FixupFirstLefts2(outrec, outrec2);
+ }
+ else
+ {
+ //the 2 polygons are separate ...
+ outrec2->IsHole = outrec->IsHole;
+ outrec2->FirstLeft = outrec->FirstLeft;
+ if (m_UsingPolyTree) FixupFirstLefts1(outrec, outrec2);
+ }
+ op2 = op; //ie get ready for the Next iteration
+ }
+ op2 = op2->Next;
+ }
+ op = op->Next;
+ }
+ while (op != outrec->Pts);
+ }
+}
+//------------------------------------------------------------------------------
+
+void ReversePath(Path& p)
+{
+ std::reverse(p.begin(), p.end());
+}
+//------------------------------------------------------------------------------
+
+void ReversePaths(Paths& p)
+{
+ for (Paths::size_type i = 0; i < p.size(); ++i)
+ ReversePath(p[i]);
+}
+//------------------------------------------------------------------------------
+
+void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType)
+{
+ Clipper c;
+ c.StrictlySimple(true);
+ c.AddPath(in_poly, ptSubject, true);
+ c.Execute(ctUnion, out_polys, fillType, fillType);
+}
+//------------------------------------------------------------------------------
+
+void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType)
+{
+ Clipper c;
+ c.StrictlySimple(true);
+ c.AddPaths(in_polys, ptSubject, true);
+ c.Execute(ctUnion, out_polys, fillType, fillType);
+}
+//------------------------------------------------------------------------------
+
+void SimplifyPolygons(Paths &polys, PolyFillType fillType)
+{
+ SimplifyPolygons(polys, polys, fillType);
+}
+//------------------------------------------------------------------------------
+
+inline double DistanceSqrd(const IntPoint& pt1, const IntPoint& pt2)
+{
+ double Dx = ((double)pt1.X - pt2.X);
+ double dy = ((double)pt1.Y - pt2.Y);
+ return (Dx*Dx + dy*dy);
+}
+//------------------------------------------------------------------------------
+
+double DistanceFromLineSqrd(
+ const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2)
+{
+ //The equation of a line in general form (Ax + By + C = 0)
+ //given 2 points (x¹,y¹) & (x²,y²) is ...
+ //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
+ //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
+ //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
+ //see http://en.wikipedia.org/wiki/Perpendicular_distance
+ double A = double(ln1.Y - ln2.Y);
+ double B = double(ln2.X - ln1.X);
+ double C = A * ln1.X + B * ln1.Y;
+ C = A * pt.X + B * pt.Y - C;
+ return (C * C) / (A * A + B * B);
+}
+//---------------------------------------------------------------------------
+
+bool SlopesNearCollinear(const IntPoint& pt1,
+ const IntPoint& pt2, const IntPoint& pt3, double distSqrd)
+{
+ //this function is more accurate when the point that's geometrically
+ //between the other 2 points is the one that's tested for distance.
+ //ie makes it more likely to pick up 'spikes' ...
+ if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y))
+ {
+ if ((pt1.X > pt2.X) == (pt1.X < pt3.X))
+ return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
+ else if ((pt2.X > pt1.X) == (pt2.X < pt3.X))
+ return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
+ else
+ return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
+ }
+ else
+ {
+ if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y))
+ return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
+ else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y))
+ return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
+ else
+ return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
+ }
+}
+//------------------------------------------------------------------------------
+
+bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd)
+{
+ double Dx = (double)pt1.X - pt2.X;
+ double dy = (double)pt1.Y - pt2.Y;
+ return ((Dx * Dx) + (dy * dy) <= distSqrd);
+}
+//------------------------------------------------------------------------------
+
+OutPt* ExcludeOp(OutPt* op)
+{
+ OutPt* result = op->Prev;
+ result->Next = op->Next;
+ op->Next->Prev = result;
+ result->Idx = 0;
+ return result;
+}
+//------------------------------------------------------------------------------
+
+void CleanPolygon(const Path& in_poly, Path& out_poly, double distance)
+{
+ //distance = proximity in units/pixels below which vertices
+ //will be stripped. Default ~= sqrt(2).
+
+ size_t size = in_poly.size();
+
+ if (size == 0)
+ {
+ out_poly.clear();
+ return;
+ }
+
+ OutPt* outPts = new OutPt[size];
+ for (size_t i = 0; i < size; ++i)
+ {
+ outPts[i].Pt = in_poly[i];
+ outPts[i].Next = &outPts[(i + 1) % size];
+ outPts[i].Next->Prev = &outPts[i];
+ outPts[i].Idx = 0;
+ }
+
+ double distSqrd = distance * distance;
+ OutPt* op = &outPts[0];
+ while (op->Idx == 0 && op->Next != op->Prev)
+ {
+ if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd))
+ {
+ op = ExcludeOp(op);
+ size--;
+ }
+ else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd))
+ {
+ ExcludeOp(op->Next);
+ op = ExcludeOp(op);
+ size -= 2;
+ }
+ else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd))
+ {
+ op = ExcludeOp(op);
+ size--;
+ }
+ else
+ {
+ op->Idx = 1;
+ op = op->Next;
+ }
+ }
+
+ if (size < 3) size = 0;
+ out_poly.resize(size);
+ for (size_t i = 0; i < size; ++i)
+ {
+ out_poly[i] = op->Pt;
+ op = op->Next;
+ }
+ delete [] outPts;
+}
+//------------------------------------------------------------------------------
+
+void CleanPolygon(Path& poly, double distance)
+{
+ CleanPolygon(poly, poly, distance);
+}
+//------------------------------------------------------------------------------
+
+void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance)
+{
+ out_polys.resize(in_polys.size());
+ for (Paths::size_type i = 0; i < in_polys.size(); ++i)
+ CleanPolygon(in_polys[i], out_polys[i], distance);
+}
+//------------------------------------------------------------------------------
+
+void CleanPolygons(Paths& polys, double distance)
+{
+ CleanPolygons(polys, polys, distance);
+}
+//------------------------------------------------------------------------------
+
+void Minkowski(const Path& poly, const Path& path,
+ Paths& solution, bool isSum, bool isClosed)
+{
+ int delta = (isClosed ? 1 : 0);
+ size_t polyCnt = poly.size();
+ size_t pathCnt = path.size();
+ Paths pp;
+ pp.reserve(pathCnt);
+ if (isSum)
+ for (size_t i = 0; i < pathCnt; ++i)
+ {
+ Path p;
+ p.reserve(polyCnt);
+ for (size_t j = 0; j < poly.size(); ++j)
+ p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y));
+ pp.push_back(p);
+ }
+ else
+ for (size_t i = 0; i < pathCnt; ++i)
+ {
+ Path p;
+ p.reserve(polyCnt);
+ for (size_t j = 0; j < poly.size(); ++j)
+ p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y));
+ pp.push_back(p);
+ }
+
+ solution.clear();
+ solution.reserve((pathCnt + delta) * (polyCnt + 1));
+ for (size_t i = 0; i < pathCnt - 1 + delta; ++i)
+ for (size_t j = 0; j < polyCnt; ++j)
+ {
+ Path quad;
+ quad.reserve(4);
+ quad.push_back(pp[i % pathCnt][j % polyCnt]);
+ quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]);
+ quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]);
+ quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]);
+ if (!Orientation(quad)) ReversePath(quad);
+ solution.push_back(quad);
+ }
+}
+//------------------------------------------------------------------------------
+
+void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed)
+{
+ Minkowski(pattern, path, solution, true, pathIsClosed);
+ Clipper c;
+ c.AddPaths(solution, ptSubject, true);
+ c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
+}
+//------------------------------------------------------------------------------
+
+void TranslatePath(const Path& input, Path& output, const IntPoint delta)
+{
+ //precondition: input != output
+ output.resize(input.size());
+ for (size_t i = 0; i < input.size(); ++i)
+ output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y);
+}
+//------------------------------------------------------------------------------
+
+void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed)
+{
+ Clipper c;
+ for (size_t i = 0; i < paths.size(); ++i)
+ {
+ Paths tmp;
+ Minkowski(pattern, paths[i], tmp, true, pathIsClosed);
+ c.AddPaths(tmp, ptSubject, true);
+ if (pathIsClosed)
+ {
+ Path tmp2;
+ TranslatePath(paths[i], tmp2, pattern[0]);
+ c.AddPath(tmp2, ptClip, true);
+ }
+ }
+ c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
+}
+//------------------------------------------------------------------------------
+
+void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution)
+{
+ Minkowski(poly1, poly2, solution, false, true);
+ Clipper c;
+ c.AddPaths(solution, ptSubject, true);
+ c.Execute(ctUnion, solution, pftNonZero, pftNonZero);
+}
+//------------------------------------------------------------------------------
+
+enum NodeType {ntAny, ntOpen, ntClosed};
+
+void AddPolyNodeToPaths(const PolyNode& polynode, NodeType nodetype, Paths& paths)
+{
+ bool match = true;
+ if (nodetype == ntClosed) match = !polynode.IsOpen();
+ else if (nodetype == ntOpen) return;
+
+ if (!polynode.Contour.empty() && match)
+ paths.push_back(polynode.Contour);
+ for (int i = 0; i < polynode.ChildCount(); ++i)
+ AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths);
+}
+//------------------------------------------------------------------------------
+
+void PolyTreeToPaths(const PolyTree& polytree, Paths& paths)
+{
+ paths.resize(0);
+ paths.reserve(polytree.Total());
+ AddPolyNodeToPaths(polytree, ntAny, paths);
+}
+//------------------------------------------------------------------------------
+
+void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths)
+{
+ paths.resize(0);
+ paths.reserve(polytree.Total());
+ AddPolyNodeToPaths(polytree, ntClosed, paths);
+}
+//------------------------------------------------------------------------------
+
+void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths)
+{
+ paths.resize(0);
+ paths.reserve(polytree.Total());
+ //Open paths are top level only, so ...
+ for (int i = 0; i < polytree.ChildCount(); ++i)
+ if (polytree.Childs[i]->IsOpen())
+ paths.push_back(polytree.Childs[i]->Contour);
+}
+//------------------------------------------------------------------------------
+
+std::ostream& operator <<(std::ostream &s, const IntPoint &p)
+{
+ s << "(" << p.X << "," << p.Y << ")";
+ return s;
+}
+//------------------------------------------------------------------------------
+
+std::ostream& operator <<(std::ostream &s, const Path &p)
+{
+ if (p.empty()) return s;
+ Path::size_type last = p.size() -1;
+ for (Path::size_type i = 0; i < last; i++)
+ s << "(" << p[i].X << "," << p[i].Y << "), ";
+ s << "(" << p[last].X << "," << p[last].Y << ")\n";
+ return s;
+}
+//------------------------------------------------------------------------------
+
+std::ostream& operator <<(std::ostream &s, const Paths &p)
+{
+ for (Paths::size_type i = 0; i < p.size(); i++)
+ s << p[i];
+ s << "\n";
+ return s;
+}
+//------------------------------------------------------------------------------
+
+} //ClipperLib namespace
diff --git a/thirdparty/misc/clipper.hpp b/thirdparty/misc/clipper.hpp
new file mode 100644
index 0000000000..5a19617bb4
--- /dev/null
+++ b/thirdparty/misc/clipper.hpp
@@ -0,0 +1,406 @@
+/*******************************************************************************
+* *
+* Author : Angus Johnson *
+* Version : 6.4.2 *
+* Date : 27 February 2017 *
+* Website : http://www.angusj.com *
+* Copyright : Angus Johnson 2010-2017 *
+* *
+* License: *
+* Use, modification & distribution is subject to Boost Software License Ver 1. *
+* http://www.boost.org/LICENSE_1_0.txt *
+* *
+* Attributions: *
+* The code in this library is an extension of Bala Vatti's clipping algorithm: *
+* "A generic solution to polygon clipping" *
+* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
+* http://portal.acm.org/citation.cfm?id=129906 *
+* *
+* Computer graphics and geometric modeling: implementation and algorithms *
+* By Max K. Agoston *
+* Springer; 1 edition (January 4, 2005) *
+* http://books.google.com/books?q=vatti+clipping+agoston *
+* *
+* See also: *
+* "Polygon Offsetting by Computing Winding Numbers" *
+* Paper no. DETC2005-85513 pp. 565-575 *
+* ASME 2005 International Design Engineering Technical Conferences *
+* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
+* September 24-28, 2005 , Long Beach, California, USA *
+* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
+* *
+*******************************************************************************/
+
+#ifndef clipper_hpp
+#define clipper_hpp
+
+#define CLIPPER_VERSION "6.4.2"
+
+//use_int32: When enabled 32bit ints are used instead of 64bit ints. This
+//improve performance but coordinate values are limited to the range +/- 46340
+//#define use_int32
+
+//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
+//#define use_xyz
+
+//use_lines: Enables line clipping. Adds a very minor cost to performance.
+#define use_lines
+
+//use_deprecated: Enables temporary support for the obsolete functions
+//#define use_deprecated
+
+#include <vector>
+#include <list>
+#include <set>
+#include <stdexcept>
+#include <cstring>
+#include <cstdlib>
+#include <ostream>
+#include <functional>
+#include <queue>
+
+namespace ClipperLib {
+
+enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
+enum PolyType { ptSubject, ptClip };
+//By far the most widely used winding rules for polygon filling are
+//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
+//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
+//see http://glprogramming.com/red/chapter11.html
+enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
+
+#ifdef use_int32
+ typedef int cInt;
+ static cInt const loRange = 0x7FFF;
+ static cInt const hiRange = 0x7FFF;
+#else
+ typedef signed long long cInt;
+ static cInt const loRange = 0x3FFFFFFF;
+ static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
+ typedef signed long long long64; //used by Int128 class
+ typedef unsigned long long ulong64;
+
+#endif
+
+struct IntPoint {
+ cInt X;
+ cInt Y;
+#ifdef use_xyz
+ cInt Z;
+ IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {};
+#else
+ IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {};
+#endif
+
+ friend inline bool operator== (const IntPoint& a, const IntPoint& b)
+ {
+ return a.X == b.X && a.Y == b.Y;
+ }
+ friend inline bool operator!= (const IntPoint& a, const IntPoint& b)
+ {
+ return a.X != b.X || a.Y != b.Y;
+ }
+};
+//------------------------------------------------------------------------------
+
+typedef std::vector< IntPoint > Path;
+typedef std::vector< Path > Paths;
+
+inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;}
+inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;}
+
+std::ostream& operator <<(std::ostream &s, const IntPoint &p);
+std::ostream& operator <<(std::ostream &s, const Path &p);
+std::ostream& operator <<(std::ostream &s, const Paths &p);
+
+struct DoublePoint
+{
+ double X;
+ double Y;
+ DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
+ DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
+};
+//------------------------------------------------------------------------------
+
+#ifdef use_xyz
+typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt);
+#endif
+
+enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4};
+enum JoinType {jtSquare, jtRound, jtMiter};
+enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound};
+
+class PolyNode;
+typedef std::vector< PolyNode* > PolyNodes;
+
+class PolyNode
+{
+public:
+ PolyNode();
+ virtual ~PolyNode(){};
+ Path Contour;
+ PolyNodes Childs;
+ PolyNode* Parent;
+ PolyNode* GetNext() const;
+ bool IsHole() const;
+ bool IsOpen() const;
+ int ChildCount() const;
+private:
+ //PolyNode& operator =(PolyNode& other);
+ unsigned Index; //node index in Parent.Childs
+ bool m_IsOpen;
+ JoinType m_jointype;
+ EndType m_endtype;
+ PolyNode* GetNextSiblingUp() const;
+ void AddChild(PolyNode& child);
+ friend class Clipper; //to access Index
+ friend class ClipperOffset;
+};
+
+class PolyTree: public PolyNode
+{
+public:
+ ~PolyTree(){ Clear(); };
+ PolyNode* GetFirst() const;
+ void Clear();
+ int Total() const;
+private:
+ //PolyTree& operator =(PolyTree& other);
+ PolyNodes AllNodes;
+ friend class Clipper; //to access AllNodes
+};
+
+bool Orientation(const Path &poly);
+double Area(const Path &poly);
+int PointInPolygon(const IntPoint &pt, const Path &path);
+
+void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
+void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
+void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
+
+void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415);
+void CleanPolygon(Path& poly, double distance = 1.415);
+void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415);
+void CleanPolygons(Paths& polys, double distance = 1.415);
+
+void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed);
+void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed);
+void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution);
+
+void PolyTreeToPaths(const PolyTree& polytree, Paths& paths);
+void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths);
+void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths);
+
+void ReversePath(Path& p);
+void ReversePaths(Paths& p);
+
+struct IntRect { cInt left; cInt top; cInt right; cInt bottom; };
+
+//enums that are used internally ...
+enum EdgeSide { esLeft = 1, esRight = 2};
+
+//forward declarations (for stuff used internally) ...
+struct TEdge;
+struct IntersectNode;
+struct LocalMinimum;
+struct OutPt;
+struct OutRec;
+struct Join;
+
+typedef std::vector < OutRec* > PolyOutList;
+typedef std::vector < TEdge* > EdgeList;
+typedef std::vector < Join* > JoinList;
+typedef std::vector < IntersectNode* > IntersectList;
+
+//------------------------------------------------------------------------------
+
+//ClipperBase is the ancestor to the Clipper class. It should not be
+//instantiated directly. This class simply abstracts the conversion of sets of
+//polygon coordinates into edge objects that are stored in a LocalMinima list.
+class ClipperBase
+{
+public:
+ ClipperBase();
+ virtual ~ClipperBase();
+ virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
+ bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
+ virtual void Clear();
+ IntRect GetBounds();
+ bool PreserveCollinear() {return m_PreserveCollinear;};
+ void PreserveCollinear(bool value) {m_PreserveCollinear = value;};
+protected:
+ void DisposeLocalMinimaList();
+ TEdge* AddBoundsToLML(TEdge *e, bool IsClosed);
+ virtual void Reset();
+ TEdge* ProcessBound(TEdge* E, bool IsClockwise);
+ void InsertScanbeam(const cInt Y);
+ bool PopScanbeam(cInt &Y);
+ bool LocalMinimaPending();
+ bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin);
+ OutRec* CreateOutRec();
+ void DisposeAllOutRecs();
+ void DisposeOutRec(PolyOutList::size_type index);
+ void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
+ void DeleteFromAEL(TEdge *e);
+ void UpdateEdgeIntoAEL(TEdge *&e);
+
+ typedef std::vector<LocalMinimum> MinimaList;
+ MinimaList::iterator m_CurrentLM;
+ MinimaList m_MinimaList;
+
+ bool m_UseFullRange;
+ EdgeList m_edges;
+ bool m_PreserveCollinear;
+ bool m_HasOpenPaths;
+ PolyOutList m_PolyOuts;
+ TEdge *m_ActiveEdges;
+
+ typedef std::priority_queue<cInt> ScanbeamList;
+ ScanbeamList m_Scanbeam;
+};
+//------------------------------------------------------------------------------
+
+class Clipper : public virtual ClipperBase
+{
+public:
+ Clipper(int initOptions = 0);
+ bool Execute(ClipType clipType,
+ Paths &solution,
+ PolyFillType fillType = pftEvenOdd);
+ bool Execute(ClipType clipType,
+ Paths &solution,
+ PolyFillType subjFillType,
+ PolyFillType clipFillType);
+ bool Execute(ClipType clipType,
+ PolyTree &polytree,
+ PolyFillType fillType = pftEvenOdd);
+ bool Execute(ClipType clipType,
+ PolyTree &polytree,
+ PolyFillType subjFillType,
+ PolyFillType clipFillType);
+ bool ReverseSolution() { return m_ReverseOutput; };
+ void ReverseSolution(bool value) {m_ReverseOutput = value;};
+ bool StrictlySimple() {return m_StrictSimple;};
+ void StrictlySimple(bool value) {m_StrictSimple = value;};
+ //set the callback function for z value filling on intersections (otherwise Z is 0)
+#ifdef use_xyz
+ void ZFillFunction(ZFillCallback zFillFunc);
+#endif
+protected:
+ virtual bool ExecuteInternal();
+private:
+ JoinList m_Joins;
+ JoinList m_GhostJoins;
+ IntersectList m_IntersectList;
+ ClipType m_ClipType;
+ typedef std::list<cInt> MaximaList;
+ MaximaList m_Maxima;
+ TEdge *m_SortedEdges;
+ bool m_ExecuteLocked;
+ PolyFillType m_ClipFillType;
+ PolyFillType m_SubjFillType;
+ bool m_ReverseOutput;
+ bool m_UsingPolyTree;
+ bool m_StrictSimple;
+#ifdef use_xyz
+ ZFillCallback m_ZFill; //custom callback
+#endif
+ void SetWindingCount(TEdge& edge);
+ bool IsEvenOddFillType(const TEdge& edge) const;
+ bool IsEvenOddAltFillType(const TEdge& edge) const;
+ void InsertLocalMinimaIntoAEL(const cInt botY);
+ void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge);
+ void AddEdgeToSEL(TEdge *edge);
+ bool PopEdgeFromSEL(TEdge *&edge);
+ void CopyAELToSEL();
+ void DeleteFromSEL(TEdge *e);
+ void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
+ bool IsContributing(const TEdge& edge) const;
+ bool IsTopHorz(const cInt XPos);
+ void DoMaxima(TEdge *e);
+ void ProcessHorizontals();
+ void ProcessHorizontal(TEdge *horzEdge);
+ void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
+ OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
+ OutRec* GetOutRec(int idx);
+ void AppendPolygon(TEdge *e1, TEdge *e2);
+ void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
+ OutPt* AddOutPt(TEdge *e, const IntPoint &pt);
+ OutPt* GetLastOutPt(TEdge *e);
+ bool ProcessIntersections(const cInt topY);
+ void BuildIntersectList(const cInt topY);
+ void ProcessIntersectList();
+ void ProcessEdgesAtTopOfScanbeam(const cInt topY);
+ void BuildResult(Paths& polys);
+ void BuildResult2(PolyTree& polytree);
+ void SetHoleState(TEdge *e, OutRec *outrec);
+ void DisposeIntersectNodes();
+ bool FixupIntersectionOrder();
+ void FixupOutPolygon(OutRec &outrec);
+ void FixupOutPolyline(OutRec &outrec);
+ bool IsHole(TEdge *e);
+ bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
+ void FixHoleLinkage(OutRec &outrec);
+ void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt);
+ void ClearJoins();
+ void ClearGhostJoins();
+ void AddGhostJoin(OutPt *op, const IntPoint offPt);
+ bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2);
+ void JoinCommonEdges();
+ void DoSimplePolygons();
+ void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec);
+ void FixupFirstLefts2(OutRec* InnerOutRec, OutRec* OuterOutRec);
+ void FixupFirstLefts3(OutRec* OldOutRec, OutRec* NewOutRec);
+#ifdef use_xyz
+ void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2);
+#endif
+};
+//------------------------------------------------------------------------------
+
+class ClipperOffset
+{
+public:
+ ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25);
+ ~ClipperOffset();
+ void AddPath(const Path& path, JoinType joinType, EndType endType);
+ void AddPaths(const Paths& paths, JoinType joinType, EndType endType);
+ void Execute(Paths& solution, double delta);
+ void Execute(PolyTree& solution, double delta);
+ void Clear();
+ double MiterLimit;
+ double ArcTolerance;
+private:
+ Paths m_destPolys;
+ Path m_srcPoly;
+ Path m_destPoly;
+ std::vector<DoublePoint> m_normals;
+ double m_delta, m_sinA, m_sin, m_cos;
+ double m_miterLim, m_StepsPerRad;
+ IntPoint m_lowest;
+ PolyNode m_polyNodes;
+
+ void FixOrientations();
+ void DoOffset(double delta);
+ void OffsetPoint(int j, int& k, JoinType jointype);
+ void DoSquare(int j, int k);
+ void DoMiter(int j, int k, double r);
+ void DoRound(int j, int k);
+};
+//------------------------------------------------------------------------------
+
+class clipperException : public std::exception
+{
+ public:
+ clipperException(const char* description): m_descr(description) {}
+ virtual ~clipperException() throw() {}
+ virtual const char* what() const throw() {return m_descr.c_str();}
+ private:
+ std::string m_descr;
+};
+//------------------------------------------------------------------------------
+
+} //ClipperLib namespace
+
+#endif //clipper_hpp
+
+