summaryrefslogtreecommitdiff
path: root/thirdparty
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/README.md5
-rw-r--r--thirdparty/recastnavigation/License.txt18
-rw-r--r--thirdparty/recastnavigation/Recast/Include/Recast.h1200
-rw-r--r--thirdparty/recastnavigation/Recast/Include/RecastAlloc.h146
-rw-r--r--thirdparty/recastnavigation/Recast/Include/RecastAssert.h56
-rw-r--r--thirdparty/recastnavigation/Recast/Source/Recast.cpp504
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastAlloc.cpp86
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastArea.cpp591
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastAssert.cpp35
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastContour.cpp1105
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastFilter.cpp202
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastLayers.cpp644
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastMesh.cpp1552
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp1462
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastRasterization.cpp454
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp1824
16 files changed, 9884 insertions, 0 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index 76d51d7066..6eb2422f36 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -359,6 +359,11 @@ Files extracted from upstream source:
- all .cpp and .h files apart from `main.cpp`
- LICENSE.TXT
+## recastnavigation
+
+- Upstream: https://github.com/recastnavigation/recastnavigation
+- version: git commit ef3ea40f - 2016-02-06
+- License: zlib
## rtaudio
diff --git a/thirdparty/recastnavigation/License.txt b/thirdparty/recastnavigation/License.txt
new file mode 100644
index 0000000000..95f4bfc965
--- /dev/null
+++ b/thirdparty/recastnavigation/License.txt
@@ -0,0 +1,18 @@
+Copyright (c) 2009 Mikko Mononen memon@inside.org
+
+This software is provided 'as-is', without any express or implied
+warranty. In no event will the authors be held liable for any damages
+arising from the use of this software.
+
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it
+freely, subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not
+claim that you wrote the original software. If you use this software
+in a product, an acknowledgment in the product documentation would be
+appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be
+misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+
diff --git a/thirdparty/recastnavigation/Recast/Include/Recast.h b/thirdparty/recastnavigation/Recast/Include/Recast.h
new file mode 100644
index 0000000000..e85c0d2e29
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Include/Recast.h
@@ -0,0 +1,1200 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#ifndef RECAST_H
+#define RECAST_H
+
+/// The value of PI used by Recast.
+static const float RC_PI = 3.14159265f;
+
+/// Recast log categories.
+/// @see rcContext
+enum rcLogCategory
+{
+ RC_LOG_PROGRESS = 1, ///< A progress log entry.
+ RC_LOG_WARNING, ///< A warning log entry.
+ RC_LOG_ERROR, ///< An error log entry.
+};
+
+/// Recast performance timer categories.
+/// @see rcContext
+enum rcTimerLabel
+{
+ /// The user defined total time of the build.
+ RC_TIMER_TOTAL,
+ /// A user defined build time.
+ RC_TIMER_TEMP,
+ /// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
+ RC_TIMER_RASTERIZE_TRIANGLES,
+ /// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
+ RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
+ /// The total time to build the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS,
+ /// The time to trace the boundaries of the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS_TRACE,
+ /// The time to simplify the contours. (See: #rcBuildContours)
+ RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
+ /// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
+ RC_TIMER_FILTER_BORDER,
+ /// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
+ RC_TIMER_FILTER_WALKABLE,
+ /// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
+ RC_TIMER_MEDIAN_AREA,
+ /// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
+ RC_TIMER_FILTER_LOW_OBSTACLES,
+ /// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
+ RC_TIMER_BUILD_POLYMESH,
+ /// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
+ RC_TIMER_MERGE_POLYMESH,
+ /// The time to erode the walkable area. (See: #rcErodeWalkableArea)
+ RC_TIMER_ERODE_AREA,
+ /// The time to mark a box area. (See: #rcMarkBoxArea)
+ RC_TIMER_MARK_BOX_AREA,
+ /// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
+ RC_TIMER_MARK_CYLINDER_AREA,
+ /// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
+ RC_TIMER_MARK_CONVEXPOLY_AREA,
+ /// The total time to build the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD,
+ /// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD_DIST,
+ /// The time to blur the distance field. (See: #rcBuildDistanceField)
+ RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
+ /// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
+ RC_TIMER_BUILD_REGIONS,
+ /// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_WATERSHED,
+ /// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_EXPAND,
+ /// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
+ RC_TIMER_BUILD_REGIONS_FLOOD,
+ /// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
+ RC_TIMER_BUILD_REGIONS_FILTER,
+ /// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
+ RC_TIMER_BUILD_LAYERS,
+ /// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
+ RC_TIMER_BUILD_POLYMESHDETAIL,
+ /// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
+ RC_TIMER_MERGE_POLYMESHDETAIL,
+ /// The maximum number of timers. (Used for iterating timers.)
+ RC_MAX_TIMERS
+};
+
+/// Provides an interface for optional logging and performance tracking of the Recast
+/// build process.
+/// @ingroup recast
+class rcContext
+{
+public:
+
+ /// Contructor.
+ /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
+ inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
+ virtual ~rcContext() {}
+
+ /// Enables or disables logging.
+ /// @param[in] state TRUE if logging should be enabled.
+ inline void enableLog(bool state) { m_logEnabled = state; }
+
+ /// Clears all log entries.
+ inline void resetLog() { if (m_logEnabled) doResetLog(); }
+
+ /// Logs a message.
+ /// @param[in] category The category of the message.
+ /// @param[in] format The message.
+ void log(const rcLogCategory category, const char* format, ...);
+
+ /// Enables or disables the performance timers.
+ /// @param[in] state TRUE if timers should be enabled.
+ inline void enableTimer(bool state) { m_timerEnabled = state; }
+
+ /// Clears all peformance timers. (Resets all to unused.)
+ inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
+
+ /// Starts the specified performance timer.
+ /// @param label The category of the timer.
+ inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
+
+ /// Stops the specified performance timer.
+ /// @param label The category of the timer.
+ inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
+
+ /// Returns the total accumulated time of the specified performance timer.
+ /// @param label The category of the timer.
+ /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
+ inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
+
+protected:
+
+ /// Clears all log entries.
+ virtual void doResetLog() {}
+
+ /// Logs a message.
+ /// @param[in] category The category of the message.
+ /// @param[in] msg The formatted message.
+ /// @param[in] len The length of the formatted message.
+ virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
+
+ /// Clears all timers. (Resets all to unused.)
+ virtual void doResetTimers() {}
+
+ /// Starts the specified performance timer.
+ /// @param[in] label The category of timer.
+ virtual void doStartTimer(const rcTimerLabel /*label*/) {}
+
+ /// Stops the specified performance timer.
+ /// @param[in] label The category of the timer.
+ virtual void doStopTimer(const rcTimerLabel /*label*/) {}
+
+ /// Returns the total accumulated time of the specified performance timer.
+ /// @param[in] label The category of the timer.
+ /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
+ virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
+
+ /// True if logging is enabled.
+ bool m_logEnabled;
+
+ /// True if the performance timers are enabled.
+ bool m_timerEnabled;
+};
+
+/// A helper to first start a timer and then stop it when this helper goes out of scope.
+/// @see rcContext
+class rcScopedTimer
+{
+public:
+ /// Constructs an instance and starts the timer.
+ /// @param[in] ctx The context to use.
+ /// @param[in] label The category of the timer.
+ inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
+ inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }
+
+private:
+ // Explicitly disabled copy constructor and copy assignment operator.
+ rcScopedTimer(const rcScopedTimer&);
+ rcScopedTimer& operator=(const rcScopedTimer&);
+
+ rcContext* const m_ctx;
+ const rcTimerLabel m_label;
+};
+
+/// Specifies a configuration to use when performing Recast builds.
+/// @ingroup recast
+struct rcConfig
+{
+ /// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
+ int width;
+
+ /// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
+ int height;
+
+ /// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
+ int tileSize;
+
+ /// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
+ int borderSize;
+
+ /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
+ float cs;
+
+ /// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
+ float ch;
+
+ /// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+ float bmin[3];
+
+ /// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+ float bmax[3];
+
+ /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
+ float walkableSlopeAngle;
+
+ /// Minimum floor to 'ceiling' height that will still allow the floor area to
+ /// be considered walkable. [Limit: >= 3] [Units: vx]
+ int walkableHeight;
+
+ /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
+ int walkableClimb;
+
+ /// The distance to erode/shrink the walkable area of the heightfield away from
+ /// obstructions. [Limit: >=0] [Units: vx]
+ int walkableRadius;
+
+ /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
+ int maxEdgeLen;
+
+ /// The maximum distance a simplfied contour's border edges should deviate
+ /// the original raw contour. [Limit: >=0] [Units: vx]
+ float maxSimplificationError;
+
+ /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
+ int minRegionArea;
+
+ /// Any regions with a span count smaller than this value will, if possible,
+ /// be merged with larger regions. [Limit: >=0] [Units: vx]
+ int mergeRegionArea;
+
+ /// The maximum number of vertices allowed for polygons generated during the
+ /// contour to polygon conversion process. [Limit: >= 3]
+ int maxVertsPerPoly;
+
+ /// Sets the sampling distance to use when generating the detail mesh.
+ /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
+ float detailSampleDist;
+
+ /// The maximum distance the detail mesh surface should deviate from heightfield
+ /// data. (For height detail only.) [Limit: >=0] [Units: wu]
+ float detailSampleMaxError;
+};
+
+/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
+static const int RC_SPAN_HEIGHT_BITS = 13;
+/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
+static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;
+
+/// The number of spans allocated per span spool.
+/// @see rcSpanPool
+static const int RC_SPANS_PER_POOL = 2048;
+
+/// Represents a span in a heightfield.
+/// @see rcHeightfield
+struct rcSpan
+{
+ unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
+ unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
+ unsigned int area : 6; ///< The area id assigned to the span.
+ rcSpan* next; ///< The next span higher up in column.
+};
+
+/// A memory pool used for quick allocation of spans within a heightfield.
+/// @see rcHeightfield
+struct rcSpanPool
+{
+ rcSpanPool* next; ///< The next span pool.
+ rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
+};
+
+/// A dynamic heightfield representing obstructed space.
+/// @ingroup recast
+struct rcHeightfield
+{
+ rcHeightfield();
+ ~rcHeightfield();
+
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ rcSpan** spans; ///< Heightfield of spans (width*height).
+ rcSpanPool* pools; ///< Linked list of span pools.
+ rcSpan* freelist; ///< The next free span.
+
+private:
+ // Explicitly-disabled copy constructor and copy assignment operator.
+ rcHeightfield(const rcHeightfield&);
+ rcHeightfield& operator=(const rcHeightfield&);
+};
+
+/// Provides information on the content of a cell column in a compact heightfield.
+struct rcCompactCell
+{
+ unsigned int index : 24; ///< Index to the first span in the column.
+ unsigned int count : 8; ///< Number of spans in the column.
+};
+
+/// Represents a span of unobstructed space within a compact heightfield.
+struct rcCompactSpan
+{
+ unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
+ unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
+ unsigned int con : 24; ///< Packed neighbor connection data.
+ unsigned int h : 8; ///< The height of the span. (Measured from #y.)
+};
+
+/// A compact, static heightfield representing unobstructed space.
+/// @ingroup recast
+struct rcCompactHeightfield
+{
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ int spanCount; ///< The number of spans in the heightfield.
+ int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
+ int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
+ int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
+ unsigned short maxDistance; ///< The maximum distance value of any span within the field.
+ unsigned short maxRegions; ///< The maximum region id of any span within the field.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
+ rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
+ unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
+ unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
+};
+
+/// Represents a heightfield layer within a layer set.
+/// @see rcHeightfieldLayerSet
+struct rcHeightfieldLayer
+{
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
+ int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
+ int minx; ///< The minimum x-bounds of usable data.
+ int maxx; ///< The maximum x-bounds of usable data.
+ int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
+ int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
+ int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
+ int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
+ unsigned char* heights; ///< The heightfield. [Size: width * height]
+ unsigned char* areas; ///< Area ids. [Size: Same as #heights]
+ unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
+};
+
+/// Represents a set of heightfield layers.
+/// @ingroup recast
+/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
+struct rcHeightfieldLayerSet
+{
+ rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
+ int nlayers; ///< The number of layers in the set.
+};
+
+/// Represents a simple, non-overlapping contour in field space.
+struct rcContour
+{
+ int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
+ int nverts; ///< The number of vertices in the simplified contour.
+ int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
+ int nrverts; ///< The number of vertices in the raw contour.
+ unsigned short reg; ///< The region id of the contour.
+ unsigned char area; ///< The area id of the contour.
+};
+
+/// Represents a group of related contours.
+/// @ingroup recast
+struct rcContourSet
+{
+ rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
+ int nconts; ///< The number of contours in the set.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int width; ///< The width of the set. (Along the x-axis in cell units.)
+ int height; ///< The height of the set. (Along the z-axis in cell units.)
+ int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
+ float maxError; ///< The max edge error that this contour set was simplified with.
+};
+
+/// Represents a polygon mesh suitable for use in building a navigation mesh.
+/// @ingroup recast
+struct rcPolyMesh
+{
+ unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
+ unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
+ unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
+ unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
+ unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
+ int nverts; ///< The number of vertices.
+ int npolys; ///< The number of polygons.
+ int maxpolys; ///< The number of allocated polygons.
+ int nvp; ///< The maximum number of vertices per polygon.
+ float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
+ float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
+ float cs; ///< The size of each cell. (On the xz-plane.)
+ float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
+ int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
+ float maxEdgeError; ///< The max error of the polygon edges in the mesh.
+};
+
+/// Contains triangle meshes that represent detailed height data associated
+/// with the polygons in its associated polygon mesh object.
+/// @ingroup recast
+struct rcPolyMeshDetail
+{
+ unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
+ float* verts; ///< The mesh vertices. [Size: 3*#nverts]
+ unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
+ int nmeshes; ///< The number of sub-meshes defined by #meshes.
+ int nverts; ///< The number of vertices in #verts.
+ int ntris; ///< The number of triangles in #tris.
+};
+
+/// @name Allocation Functions
+/// Functions used to allocate and de-allocate Recast objects.
+/// @see rcAllocSetCustom
+/// @{
+
+/// Allocates a heightfield object using the Recast allocator.
+/// @return A heightfield that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcCreateHeightfield, rcFreeHeightField
+rcHeightfield* rcAllocHeightfield();
+
+/// Frees the specified heightfield object using the Recast allocator.
+/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
+/// @ingroup recast
+/// @see rcAllocHeightfield
+void rcFreeHeightField(rcHeightfield* hf);
+
+/// Allocates a compact heightfield object using the Recast allocator.
+/// @return A compact heightfield that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
+rcCompactHeightfield* rcAllocCompactHeightfield();
+
+/// Frees the specified compact heightfield object using the Recast allocator.
+/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
+/// @ingroup recast
+/// @see rcAllocCompactHeightfield
+void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
+
+/// Allocates a heightfield layer set using the Recast allocator.
+/// @return A heightfield layer set that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
+rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
+
+/// Frees the specified heightfield layer set using the Recast allocator.
+/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
+/// @ingroup recast
+/// @see rcAllocHeightfieldLayerSet
+void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
+
+/// Allocates a contour set object using the Recast allocator.
+/// @return A contour set that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildContours, rcFreeContourSet
+rcContourSet* rcAllocContourSet();
+
+/// Frees the specified contour set using the Recast allocator.
+/// @param[in] cset A contour set allocated using #rcAllocContourSet
+/// @ingroup recast
+/// @see rcAllocContourSet
+void rcFreeContourSet(rcContourSet* cset);
+
+/// Allocates a polygon mesh object using the Recast allocator.
+/// @return A polygon mesh that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildPolyMesh, rcFreePolyMesh
+rcPolyMesh* rcAllocPolyMesh();
+
+/// Frees the specified polygon mesh using the Recast allocator.
+/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
+/// @ingroup recast
+/// @see rcAllocPolyMesh
+void rcFreePolyMesh(rcPolyMesh* pmesh);
+
+/// Allocates a detail mesh object using the Recast allocator.
+/// @return A detail mesh that is ready for initialization, or null on failure.
+/// @ingroup recast
+/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
+rcPolyMeshDetail* rcAllocPolyMeshDetail();
+
+/// Frees the specified detail mesh using the Recast allocator.
+/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail
+/// @ingroup recast
+/// @see rcAllocPolyMeshDetail
+void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
+
+/// @}
+
+/// Heighfield border flag.
+/// If a heightfield region ID has this bit set, then the region is a border
+/// region and its spans are considered unwalkable.
+/// (Used during the region and contour build process.)
+/// @see rcCompactSpan::reg
+static const unsigned short RC_BORDER_REG = 0x8000;
+
+/// Polygon touches multiple regions.
+/// If a polygon has this region ID it was merged with or created
+/// from polygons of different regions during the polymesh
+/// build step that removes redundant border vertices.
+/// (Used during the polymesh and detail polymesh build processes)
+/// @see rcPolyMesh::regs
+static const unsigned short RC_MULTIPLE_REGS = 0;
+
+/// Border vertex flag.
+/// If a region ID has this bit set, then the associated element lies on
+/// a tile border. If a contour vertex's region ID has this bit set, the
+/// vertex will later be removed in order to match the segments and vertices
+/// at tile boundaries.
+/// (Used during the build process.)
+/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
+static const int RC_BORDER_VERTEX = 0x10000;
+
+/// Area border flag.
+/// If a region ID has this bit set, then the associated element lies on
+/// the border of an area.
+/// (Used during the region and contour build process.)
+/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
+static const int RC_AREA_BORDER = 0x20000;
+
+/// Contour build flags.
+/// @see rcBuildContours
+enum rcBuildContoursFlags
+{
+ RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification.
+ RC_CONTOUR_TESS_AREA_EDGES = 0x02, ///< Tessellate edges between areas during contour simplification.
+};
+
+/// Applied to the region id field of contour vertices in order to extract the region id.
+/// The region id field of a vertex may have several flags applied to it. So the
+/// fields value can't be used directly.
+/// @see rcContour::verts, rcContour::rverts
+static const int RC_CONTOUR_REG_MASK = 0xffff;
+
+/// An value which indicates an invalid index within a mesh.
+/// @note This does not necessarily indicate an error.
+/// @see rcPolyMesh::polys
+static const unsigned short RC_MESH_NULL_IDX = 0xffff;
+
+/// Represents the null area.
+/// When a data element is given this value it is considered to no longer be
+/// assigned to a usable area. (E.g. It is unwalkable.)
+static const unsigned char RC_NULL_AREA = 0;
+
+/// The default area id used to indicate a walkable polygon.
+/// This is also the maximum allowed area id, and the only non-null area id
+/// recognized by some steps in the build process.
+static const unsigned char RC_WALKABLE_AREA = 63;
+
+/// The value returned by #rcGetCon if the specified direction is not connected
+/// to another span. (Has no neighbor.)
+static const int RC_NOT_CONNECTED = 0x3f;
+
+/// @name General helper functions
+/// @{
+
+/// Used to ignore a function parameter. VS complains about unused parameters
+/// and this silences the warning.
+/// @param [in] _ Unused parameter
+template<class T> void rcIgnoreUnused(const T&) { }
+
+/// Swaps the values of the two parameters.
+/// @param[in,out] a Value A
+/// @param[in,out] b Value B
+template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
+
+/// Returns the minimum of two values.
+/// @param[in] a Value A
+/// @param[in] b Value B
+/// @return The minimum of the two values.
+template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
+
+/// Returns the maximum of two values.
+/// @param[in] a Value A
+/// @param[in] b Value B
+/// @return The maximum of the two values.
+template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
+
+/// Returns the absolute value.
+/// @param[in] a The value.
+/// @return The absolute value of the specified value.
+template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
+
+/// Returns the square of the value.
+/// @param[in] a The value.
+/// @return The square of the value.
+template<class T> inline T rcSqr(T a) { return a*a; }
+
+/// Clamps the value to the specified range.
+/// @param[in] v The value to clamp.
+/// @param[in] mn The minimum permitted return value.
+/// @param[in] mx The maximum permitted return value.
+/// @return The value, clamped to the specified range.
+template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
+
+/// Returns the square root of the value.
+/// @param[in] x The value.
+/// @return The square root of the vlaue.
+float rcSqrt(float x);
+
+/// @}
+/// @name Vector helper functions.
+/// @{
+
+/// Derives the cross product of two vectors. (@p v1 x @p v2)
+/// @param[out] dest The cross product. [(x, y, z)]
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
+inline void rcVcross(float* dest, const float* v1, const float* v2)
+{
+ dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
+ dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
+ dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
+}
+
+/// Derives the dot product of two vectors. (@p v1 . @p v2)
+/// @param[in] v1 A Vector [(x, y, z)]
+/// @param[in] v2 A vector [(x, y, z)]
+/// @return The dot product.
+inline float rcVdot(const float* v1, const float* v2)
+{
+ return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
+}
+
+/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
+/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
+inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
+{
+ dest[0] = v1[0]+v2[0]*s;
+ dest[1] = v1[1]+v2[1]*s;
+ dest[2] = v1[2]+v2[2]*s;
+}
+
+/// Performs a vector addition. (@p v1 + @p v2)
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
+inline void rcVadd(float* dest, const float* v1, const float* v2)
+{
+ dest[0] = v1[0]+v2[0];
+ dest[1] = v1[1]+v2[1];
+ dest[2] = v1[2]+v2[2];
+}
+
+/// Performs a vector subtraction. (@p v1 - @p v2)
+/// @param[out] dest The result vector. [(x, y, z)]
+/// @param[in] v1 The base vector. [(x, y, z)]
+/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
+inline void rcVsub(float* dest, const float* v1, const float* v2)
+{
+ dest[0] = v1[0]-v2[0];
+ dest[1] = v1[1]-v2[1];
+ dest[2] = v1[2]-v2[2];
+}
+
+/// Selects the minimum value of each element from the specified vectors.
+/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
+inline void rcVmin(float* mn, const float* v)
+{
+ mn[0] = rcMin(mn[0], v[0]);
+ mn[1] = rcMin(mn[1], v[1]);
+ mn[2] = rcMin(mn[2], v[2]);
+}
+
+/// Selects the maximum value of each element from the specified vectors.
+/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
+/// @param[in] v A vector. [(x, y, z)]
+inline void rcVmax(float* mx, const float* v)
+{
+ mx[0] = rcMax(mx[0], v[0]);
+ mx[1] = rcMax(mx[1], v[1]);
+ mx[2] = rcMax(mx[2], v[2]);
+}
+
+/// Performs a vector copy.
+/// @param[out] dest The result. [(x, y, z)]
+/// @param[in] v The vector to copy. [(x, y, z)]
+inline void rcVcopy(float* dest, const float* v)
+{
+ dest[0] = v[0];
+ dest[1] = v[1];
+ dest[2] = v[2];
+}
+
+/// Returns the distance between two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The distance between the two points.
+inline float rcVdist(const float* v1, const float* v2)
+{
+ float dx = v2[0] - v1[0];
+ float dy = v2[1] - v1[1];
+ float dz = v2[2] - v1[2];
+ return rcSqrt(dx*dx + dy*dy + dz*dz);
+}
+
+/// Returns the square of the distance between two points.
+/// @param[in] v1 A point. [(x, y, z)]
+/// @param[in] v2 A point. [(x, y, z)]
+/// @return The square of the distance between the two points.
+inline float rcVdistSqr(const float* v1, const float* v2)
+{
+ float dx = v2[0] - v1[0];
+ float dy = v2[1] - v1[1];
+ float dz = v2[2] - v1[2];
+ return dx*dx + dy*dy + dz*dz;
+}
+
+/// Normalizes the vector.
+/// @param[in,out] v The vector to normalize. [(x, y, z)]
+inline void rcVnormalize(float* v)
+{
+ float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
+ v[0] *= d;
+ v[1] *= d;
+ v[2] *= d;
+}
+
+/// @}
+/// @name Heightfield Functions
+/// @see rcHeightfield
+/// @{
+
+/// Calculates the bounding box of an array of vertices.
+/// @ingroup recast
+/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices in the @p verts array.
+/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
+void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
+
+/// Calculates the grid size based on the bounding box and grid cell size.
+/// @ingroup recast
+/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu]
+/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx]
+void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
+
+/// Initializes a new heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf The allocated heightfield to initialize.
+/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
+/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
+/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
+/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
+/// @returns True if the operation completed successfully.
+bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
+ const float* bmin, const float* bmax,
+ float cs, float ch);
+
+/// Sets the area id of all triangles with a slope below the specified value
+/// to #RC_WALKABLE_AREA.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
+/// [Limits: 0 <= value < 90] [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
+ const int* tris, int nt, unsigned char* areas);
+
+/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
+/// [Limits: 0 <= value < 90] [Units: Degrees]
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[out] areas The triangle area ids. [Length: >= @p nt]
+void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
+ const int* tris, int nt, unsigned char* areas);
+
+/// Adds a span to the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] hf An initialized heightfield.
+/// @param[in] x The width index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::width]
+/// @param[in] y The height index where the span is to be added.
+/// [Limits: 0 <= value < rcHeightfield::height]
+/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx]
+/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
+/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
+/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
+ const unsigned short smin, const unsigned short smax,
+ const unsigned char area, const int flagMergeThr);
+
+/// Rasterizes a triangle into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
+/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
+/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
+/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
+ const unsigned char area, rcHeightfield& solid,
+ const int flagMergeThr = 1);
+
+/// Rasterizes an indexed triangle mesh into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+ const int* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Rasterizes an indexed triangle mesh into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices. [(x, y, z) * @p nv]
+/// @param[in] nv The number of vertices.
+/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
+ const unsigned short* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Rasterizes triangles into the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
+/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
+/// @param[in] nt The number of triangles.
+/// @param[in,out] solid An initialized heightfield.
+/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
+/// [Limit: >= 0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr = 1);
+
+/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neighbor.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
+
+/// Marks spans that are ledges as not-walkable.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
+ const int walkableClimb, rcHeightfield& solid);
+
+/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
+/// be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
+void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
+
+/// Returns the number of spans contained in the specified heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] hf An initialized heightfield.
+/// @returns The number of spans in the heightfield.
+int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
+
+/// @}
+/// @name Compact Heightfield Functions
+/// @see rcCompactHeightfield
+/// @{
+
+/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] hf The heightfield to be compacted.
+/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
+ rcHeightfield& hf, rcCompactHeightfield& chf);
+
+/// Erodes the walkable area within the heightfield by the specified radius.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
+/// @param[in,out] chf The populated compact heightfield to erode.
+/// @returns True if the operation completed successfully.
+bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
+
+/// Applies a median filter to walkable area types (based on area id), removing noise.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @returns True if the operation completed successfully.
+bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
+
+/// Applies an area id to all spans within the specified bounding box. (AABB)
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
+/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Applies the area id to the all spans within the specified convex polygon.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
+/// @param[in] nverts The number of vertices in the polygon.
+/// @param[in] hmin The height of the base of the polygon.
+/// @param[in] hmax The height of the top of the polygon.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
+ const float hmin, const float hmax, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
+/// @ingroup recast
+/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts]
+/// @param[in] nverts The number of vertices in the polygon.
+/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
+/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts.
+/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
+int rcOffsetPoly(const float* verts, const int nverts, const float offset,
+ float* outVerts, const int maxOutVerts);
+
+/// Applies the area id to all spans within the specified cylinder.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
+/// @param[in] r The radius of the cylinder.
+/// @param[in] h The height of the cylinder.
+/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
+/// @param[in,out] chf A populated compact heightfield.
+void rcMarkCylinderArea(rcContext* ctx, const float* pos,
+ const float r, const float h, unsigned char areaId,
+ rcCompactHeightfield& chf);
+
+/// Builds the distance field for the specified compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @returns True if the operation completed successfully.
+bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
+
+/// Builds region data for the heightfield using watershed partitioning.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea);
+
+/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @returns True if the operation completed successfully.
+bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea);
+
+/// Builds region data for the heightfield using simple monotone partitioning.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in,out] chf A populated compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield.
+/// [Limit: >=0] [Units: vx]
+/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
+/// [Limit: >=0] [Units: vx].
+/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
+/// be merged with larger regions. [Limit: >=0] [Units: vx]
+/// @returns True if the operation completed successfully.
+bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea);
+
+/// Sets the neighbor connection data for the specified direction.
+/// @param[in] s The span to update.
+/// @param[in] dir The direction to set. [Limits: 0 <= value < 4]
+/// @param[in] i The index of the neighbor span.
+inline void rcSetCon(rcCompactSpan& s, int dir, int i)
+{
+ const unsigned int shift = (unsigned int)dir*6;
+ unsigned int con = s.con;
+ s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
+}
+
+/// Gets neighbor connection data for the specified direction.
+/// @param[in] s The span to check.
+/// @param[in] dir The direction to check. [Limits: 0 <= value < 4]
+/// @return The neighbor connection data for the specified direction,
+/// or #RC_NOT_CONNECTED if there is no connection.
+inline int rcGetCon(const rcCompactSpan& s, int dir)
+{
+ const unsigned int shift = (unsigned int)dir*6;
+ return (s.con >> shift) & 0x3f;
+}
+
+/// Gets the standard width (x-axis) offset for the specified direction.
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @return The width offset to apply to the current cell position to move
+/// in the direction.
+inline int rcGetDirOffsetX(int dir)
+{
+ static const int offset[4] = { -1, 0, 1, 0, };
+ return offset[dir&0x03];
+}
+
+/// Gets the standard height (z-axis) offset for the specified direction.
+/// @param[in] dir The direction. [Limits: 0 <= value < 4]
+/// @return The height offset to apply to the current cell position to move
+/// in the direction.
+inline int rcGetDirOffsetY(int dir)
+{
+ static const int offset[4] = { 0, 1, 0, -1 };
+ return offset[dir&0x03];
+}
+
+/// Gets the direction for the specified offset. One of x and y should be 0.
+/// @param[in] x The x offset. [Limits: -1 <= value <= 1]
+/// @param[in] y The y offset. [Limits: -1 <= value <= 1]
+/// @return The direction that represents the offset.
+inline int rcGetDirForOffset(int x, int y)
+{
+ static const int dirs[5] = { 3, 0, -1, 2, 1 };
+ return dirs[((y+1)<<1)+x];
+}
+
+/// @}
+/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
+/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
+/// @{
+
+/// Builds a layer set from the specified compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
+/// [Units: vx]
+/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
+/// to be considered walkable. [Limit: >= 3] [Units: vx]
+/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int walkableHeight,
+ rcHeightfieldLayerSet& lset);
+
+/// Builds a contour set from the region outlines in the provided compact heightfield.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] chf A fully built compact heightfield.
+/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate
+/// the original raw contour. [Limit: >=0] [Units: wu]
+/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
+/// [Limit: >=0] [Units: vx]
+/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
+/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
+/// @returns True if the operation completed successfully.
+bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
+ const float maxError, const int maxEdgeLen,
+ rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);
+
+/// Builds a polygon mesh from the provided contours.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] cset A fully built contour set.
+/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
+/// contour to polygon conversion process. [Limit: >= 3]
+/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
+
+/// Merges multiple polygon meshes into a single mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of polygon meshes in the meshes array.
+/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
+
+/// Builds a detail mesh from the provided polygon mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] mesh A fully built polygon mesh.
+/// @param[in] chf The compact heightfield used to build the polygon mesh.
+/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
+/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
+/// heightfield data. [Limit: >=0] [Units: wu]
+/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
+ const float sampleDist, const float sampleMaxError,
+ rcPolyMeshDetail& dmesh);
+
+/// Copies the poly mesh data from src to dst.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] src The source mesh to copy from.
+/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
+/// @returns True if the operation completed successfully.
+bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);
+
+/// Merges multiple detail meshes into a single detail mesh.
+/// @ingroup recast
+/// @param[in,out] ctx The build context to use during the operation.
+/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
+/// @param[in] nmeshes The number of detail meshes in the meshes array.
+/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
+/// @returns True if the operation completed successfully.
+bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
+
+/// @}
+
+#endif // RECAST_H
+
+///////////////////////////////////////////////////////////////////////////
+
+// Due to the large amount of detail documentation for this file,
+// the content normally located at the end of the header file has been separated
+// out to a file in /Docs/Extern.
diff --git a/thirdparty/recastnavigation/Recast/Include/RecastAlloc.h b/thirdparty/recastnavigation/Recast/Include/RecastAlloc.h
new file mode 100644
index 0000000000..3cdd450d42
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Include/RecastAlloc.h
@@ -0,0 +1,146 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#ifndef RECASTALLOC_H
+#define RECASTALLOC_H
+
+#include <stddef.h>
+
+/// Provides hint values to the memory allocator on how long the
+/// memory is expected to be used.
+enum rcAllocHint
+{
+ RC_ALLOC_PERM, ///< Memory will persist after a function call.
+ RC_ALLOC_TEMP ///< Memory used temporarily within a function.
+};
+
+/// A memory allocation function.
+// @param[in] size The size, in bytes of memory, to allocate.
+// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
+// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
+/// @see rcAllocSetCustom
+typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint);
+
+/// A memory deallocation function.
+/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc.
+/// @see rcAllocSetCustom
+typedef void (rcFreeFunc)(void* ptr);
+
+/// Sets the base custom allocation functions to be used by Recast.
+/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
+/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
+void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
+
+/// Allocates a memory block.
+/// @param[in] size The size, in bytes of memory, to allocate.
+/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
+/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
+/// @see rcFree
+void* rcAlloc(size_t size, rcAllocHint hint);
+
+/// Deallocates a memory block.
+/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
+/// @see rcAlloc
+void rcFree(void* ptr);
+
+
+/// A simple dynamic array of integers.
+class rcIntArray
+{
+ int* m_data;
+ int m_size, m_cap;
+
+ void doResize(int n);
+
+ // Explicitly disabled copy constructor and copy assignment operator.
+ rcIntArray(const rcIntArray&);
+ rcIntArray& operator=(const rcIntArray&);
+
+public:
+ /// Constructs an instance with an initial array size of zero.
+ rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
+
+ /// Constructs an instance initialized to the specified size.
+ /// @param[in] n The initial size of the integer array.
+ rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
+ ~rcIntArray() { rcFree(m_data); }
+
+ /// Specifies the new size of the integer array.
+ /// @param[in] n The new size of the integer array.
+ void resize(int n)
+ {
+ if (n > m_cap)
+ doResize(n);
+
+ m_size = n;
+ }
+
+ /// Push the specified integer onto the end of the array and increases the size by one.
+ /// @param[in] item The new value.
+ void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
+
+ /// Returns the value at the end of the array and reduces the size by one.
+ /// @return The value at the end of the array.
+ int pop()
+ {
+ if (m_size > 0)
+ m_size--;
+
+ return m_data[m_size];
+ }
+
+ /// The value at the specified array index.
+ /// @warning Does not provide overflow protection.
+ /// @param[in] i The index of the value.
+ const int& operator[](int i) const { return m_data[i]; }
+
+ /// The value at the specified array index.
+ /// @warning Does not provide overflow protection.
+ /// @param[in] i The index of the value.
+ int& operator[](int i) { return m_data[i]; }
+
+ /// The current size of the integer array.
+ int size() const { return m_size; }
+};
+
+/// A simple helper class used to delete an array when it goes out of scope.
+/// @note This class is rarely if ever used by the end user.
+template<class T> class rcScopedDelete
+{
+ T* ptr;
+public:
+
+ /// Constructs an instance with a null pointer.
+ inline rcScopedDelete() : ptr(0) {}
+
+ /// Constructs an instance with the specified pointer.
+ /// @param[in] p An pointer to an allocated array.
+ inline rcScopedDelete(T* p) : ptr(p) {}
+ inline ~rcScopedDelete() { rcFree(ptr); }
+
+ /// The root array pointer.
+ /// @return The root array pointer.
+ inline operator T*() { return ptr; }
+
+private:
+ // Explicitly disabled copy constructor and copy assignment operator.
+ rcScopedDelete(const rcScopedDelete&);
+ rcScopedDelete& operator=(const rcScopedDelete&);
+};
+
+#endif
diff --git a/thirdparty/recastnavigation/Recast/Include/RecastAssert.h b/thirdparty/recastnavigation/Recast/Include/RecastAssert.h
new file mode 100644
index 0000000000..e7cc10e496
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Include/RecastAssert.h
@@ -0,0 +1,56 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#ifndef RECASTASSERT_H
+#define RECASTASSERT_H
+
+// Note: This header file's only purpose is to include define assert.
+// Feel free to change the file and include your own implementation instead.
+
+#ifdef NDEBUG
+
+// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
+# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
+
+#else
+
+/// An assertion failure function.
+// @param[in] expression asserted expression.
+// @param[in] file Filename of the failed assertion.
+// @param[in] line Line number of the failed assertion.
+/// @see rcAssertFailSetCustom
+typedef void (rcAssertFailFunc)(const char* expression, const char* file, int line);
+
+/// Sets the base custom assertion failure function to be used by Recast.
+/// @param[in] assertFailFunc The function to be used in case of failure of #dtAssert
+void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc);
+
+/// Gets the base custom assertion failure function to be used by Recast.
+rcAssertFailFunc* rcAssertFailGetCustom();
+
+# include <assert.h>
+# define rcAssert(expression) \
+ { \
+ rcAssertFailFunc* failFunc = rcAssertFailGetCustom(); \
+ if(failFunc == NULL) { assert(expression); } \
+ else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
+ }
+
+#endif
+
+#endif // RECASTASSERT_H
diff --git a/thirdparty/recastnavigation/Recast/Source/Recast.cpp b/thirdparty/recastnavigation/Recast/Source/Recast.cpp
new file mode 100644
index 0000000000..8308d1973e
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/Recast.cpp
@@ -0,0 +1,504 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <new>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+float rcSqrt(float x)
+{
+ return sqrtf(x);
+}
+
+/// @class rcContext
+/// @par
+///
+/// This class does not provide logging or timer functionality on its
+/// own. Both must be provided by a concrete implementation
+/// by overriding the protected member functions. Also, this class does not
+/// provide an interface for extracting log messages. (Only adding them.)
+/// So concrete implementations must provide one.
+///
+/// If no logging or timers are required, just pass an instance of this
+/// class through the Recast build process.
+///
+
+/// @par
+///
+/// Example:
+/// @code
+/// // Where ctx is an instance of rcContext and filepath is a char array.
+/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
+/// @endcode
+void rcContext::log(const rcLogCategory category, const char* format, ...)
+{
+ if (!m_logEnabled)
+ return;
+ static const int MSG_SIZE = 512;
+ char msg[MSG_SIZE];
+ va_list ap;
+ va_start(ap, format);
+ int len = vsnprintf(msg, MSG_SIZE, format, ap);
+ if (len >= MSG_SIZE)
+ {
+ len = MSG_SIZE-1;
+ msg[MSG_SIZE-1] = '\0';
+ }
+ va_end(ap);
+ doLog(category, msg, len);
+}
+
+rcHeightfield* rcAllocHeightfield()
+{
+ return new (rcAlloc(sizeof(rcHeightfield), RC_ALLOC_PERM)) rcHeightfield;
+}
+
+rcHeightfield::rcHeightfield()
+ : width()
+ , height()
+ , bmin()
+ , bmax()
+ , cs()
+ , ch()
+ , spans()
+ , pools()
+ , freelist()
+{
+}
+
+rcHeightfield::~rcHeightfield()
+{
+ // Delete span array.
+ rcFree(spans);
+ // Delete span pools.
+ while (pools)
+ {
+ rcSpanPool* next = pools->next;
+ rcFree(pools);
+ pools = next;
+ }
+}
+
+void rcFreeHeightField(rcHeightfield* hf)
+{
+ if (!hf) return;
+ hf->~rcHeightfield();
+ rcFree(hf);
+}
+
+rcCompactHeightfield* rcAllocCompactHeightfield()
+{
+ rcCompactHeightfield* chf = (rcCompactHeightfield*)rcAlloc(sizeof(rcCompactHeightfield), RC_ALLOC_PERM);
+ memset(chf, 0, sizeof(rcCompactHeightfield));
+ return chf;
+}
+
+void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
+{
+ if (!chf) return;
+ rcFree(chf->cells);
+ rcFree(chf->spans);
+ rcFree(chf->dist);
+ rcFree(chf->areas);
+ rcFree(chf);
+}
+
+rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
+{
+ rcHeightfieldLayerSet* lset = (rcHeightfieldLayerSet*)rcAlloc(sizeof(rcHeightfieldLayerSet), RC_ALLOC_PERM);
+ memset(lset, 0, sizeof(rcHeightfieldLayerSet));
+ return lset;
+}
+
+void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
+{
+ if (!lset) return;
+ for (int i = 0; i < lset->nlayers; ++i)
+ {
+ rcFree(lset->layers[i].heights);
+ rcFree(lset->layers[i].areas);
+ rcFree(lset->layers[i].cons);
+ }
+ rcFree(lset->layers);
+ rcFree(lset);
+}
+
+
+rcContourSet* rcAllocContourSet()
+{
+ rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
+ memset(cset, 0, sizeof(rcContourSet));
+ return cset;
+}
+
+void rcFreeContourSet(rcContourSet* cset)
+{
+ if (!cset) return;
+ for (int i = 0; i < cset->nconts; ++i)
+ {
+ rcFree(cset->conts[i].verts);
+ rcFree(cset->conts[i].rverts);
+ }
+ rcFree(cset->conts);
+ rcFree(cset);
+}
+
+rcPolyMesh* rcAllocPolyMesh()
+{
+ rcPolyMesh* pmesh = (rcPolyMesh*)rcAlloc(sizeof(rcPolyMesh), RC_ALLOC_PERM);
+ memset(pmesh, 0, sizeof(rcPolyMesh));
+ return pmesh;
+}
+
+void rcFreePolyMesh(rcPolyMesh* pmesh)
+{
+ if (!pmesh) return;
+ rcFree(pmesh->verts);
+ rcFree(pmesh->polys);
+ rcFree(pmesh->regs);
+ rcFree(pmesh->flags);
+ rcFree(pmesh->areas);
+ rcFree(pmesh);
+}
+
+rcPolyMeshDetail* rcAllocPolyMeshDetail()
+{
+ rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
+ memset(dmesh, 0, sizeof(rcPolyMeshDetail));
+ return dmesh;
+}
+
+void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
+{
+ if (!dmesh) return;
+ rcFree(dmesh->meshes);
+ rcFree(dmesh->verts);
+ rcFree(dmesh->tris);
+ rcFree(dmesh);
+}
+
+void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
+{
+ // Calculate bounding box.
+ rcVcopy(bmin, verts);
+ rcVcopy(bmax, verts);
+ for (int i = 1; i < nv; ++i)
+ {
+ const float* v = &verts[i*3];
+ rcVmin(bmin, v);
+ rcVmax(bmax, v);
+ }
+}
+
+void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
+{
+ *w = (int)((bmax[0] - bmin[0])/cs+0.5f);
+ *h = (int)((bmax[2] - bmin[2])/cs+0.5f);
+}
+
+/// @par
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocHeightfield, rcHeightfield
+bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
+ const float* bmin, const float* bmax,
+ float cs, float ch)
+{
+ rcIgnoreUnused(ctx);
+
+ hf.width = width;
+ hf.height = height;
+ rcVcopy(hf.bmin, bmin);
+ rcVcopy(hf.bmax, bmax);
+ hf.cs = cs;
+ hf.ch = ch;
+ hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
+ if (!hf.spans)
+ return false;
+ memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
+ return true;
+}
+
+static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
+{
+ float e0[3], e1[3];
+ rcVsub(e0, v1, v0);
+ rcVsub(e1, v2, v0);
+ rcVcross(norm, e0, e1);
+ rcVnormalize(norm);
+}
+
+/// @par
+///
+/// Only sets the area id's for the walkable triangles. Does not alter the
+/// area id's for unwalkable triangles.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
+void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
+ const float* verts, int nv,
+ const int* tris, int nt,
+ unsigned char* areas)
+{
+ rcIgnoreUnused(ctx);
+ rcIgnoreUnused(nv);
+
+ const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
+
+ float norm[3];
+
+ for (int i = 0; i < nt; ++i)
+ {
+ const int* tri = &tris[i*3];
+ calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
+ // Check if the face is walkable.
+ if (norm[1] > walkableThr)
+ areas[i] = RC_WALKABLE_AREA;
+ }
+}
+
+/// @par
+///
+/// Only sets the area id's for the unwalkable triangles. Does not alter the
+/// area id's for walkable triangles.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
+void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
+ const float* verts, int /*nv*/,
+ const int* tris, int nt,
+ unsigned char* areas)
+{
+ rcIgnoreUnused(ctx);
+
+ const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
+
+ float norm[3];
+
+ for (int i = 0; i < nt; ++i)
+ {
+ const int* tri = &tris[i*3];
+ calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
+ // Check if the face is walkable.
+ if (norm[1] <= walkableThr)
+ areas[i] = RC_NULL_AREA;
+ }
+}
+
+int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
+{
+ rcIgnoreUnused(ctx);
+
+ const int w = hf.width;
+ const int h = hf.height;
+ int spanCount = 0;
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
+ {
+ if (s->area != RC_NULL_AREA)
+ spanCount++;
+ }
+ }
+ }
+ return spanCount;
+}
+
+/// @par
+///
+/// This is just the beginning of the process of fully building a compact heightfield.
+/// Various filters may be applied, then the distance field and regions built.
+/// E.g: #rcBuildDistanceField and #rcBuildRegions
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
+bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
+ rcHeightfield& hf, rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
+
+ const int w = hf.width;
+ const int h = hf.height;
+ const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);
+
+ // Fill in header.
+ chf.width = w;
+ chf.height = h;
+ chf.spanCount = spanCount;
+ chf.walkableHeight = walkableHeight;
+ chf.walkableClimb = walkableClimb;
+ chf.maxRegions = 0;
+ rcVcopy(chf.bmin, hf.bmin);
+ rcVcopy(chf.bmax, hf.bmax);
+ chf.bmax[1] += walkableHeight*hf.ch;
+ chf.cs = hf.cs;
+ chf.ch = hf.ch;
+ chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
+ if (!chf.cells)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
+ return false;
+ }
+ memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
+ chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
+ if (!chf.spans)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
+ return false;
+ }
+ memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
+ chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
+ if (!chf.areas)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
+ return false;
+ }
+ memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
+
+ const int MAX_HEIGHT = 0xffff;
+
+ // Fill in cells and spans.
+ int idx = 0;
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcSpan* s = hf.spans[x + y*w];
+ // If there are no spans at this cell, just leave the data to index=0, count=0.
+ if (!s) continue;
+ rcCompactCell& c = chf.cells[x+y*w];
+ c.index = idx;
+ c.count = 0;
+ while (s)
+ {
+ if (s->area != RC_NULL_AREA)
+ {
+ const int bot = (int)s->smax;
+ const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
+ chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
+ chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
+ chf.areas[idx] = s->area;
+ idx++;
+ c.count++;
+ }
+ s = s->next;
+ }
+ }
+ }
+
+ // Find neighbour connections.
+ const int MAX_LAYERS = RC_NOT_CONNECTED-1;
+ int tooHighNeighbour = 0;
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ rcCompactSpan& s = chf.spans[i];
+
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ rcSetCon(s, dir, RC_NOT_CONNECTED);
+ const int nx = x + rcGetDirOffsetX(dir);
+ const int ny = y + rcGetDirOffsetY(dir);
+ // First check that the neighbour cell is in bounds.
+ if (nx < 0 || ny < 0 || nx >= w || ny >= h)
+ continue;
+
+ // Iterate over all neighbour spans and check if any of the is
+ // accessible from current cell.
+ const rcCompactCell& nc = chf.cells[nx+ny*w];
+ for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
+ {
+ const rcCompactSpan& ns = chf.spans[k];
+ const int bot = rcMax(s.y, ns.y);
+ const int top = rcMin(s.y+s.h, ns.y+ns.h);
+
+ // Check that the gap between the spans is walkable,
+ // and that the climb height between the gaps is not too high.
+ if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
+ {
+ // Mark direction as walkable.
+ const int lidx = k - (int)nc.index;
+ if (lidx < 0 || lidx > MAX_LAYERS)
+ {
+ tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
+ continue;
+ }
+ rcSetCon(s, dir, lidx);
+ break;
+ }
+ }
+
+ }
+ }
+ }
+ }
+
+ if (tooHighNeighbour > MAX_LAYERS)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
+ tooHighNeighbour, MAX_LAYERS);
+ }
+
+ return true;
+}
+
+/*
+static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
+{
+ int size = 0;
+ size += sizeof(hf);
+ size += hf.width * hf.height * sizeof(rcSpan*);
+
+ rcSpanPool* pool = hf.pools;
+ while (pool)
+ {
+ size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
+ pool = pool->next;
+ }
+ return size;
+}
+
+static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
+{
+ int size = 0;
+ size += sizeof(rcCompactHeightfield);
+ size += sizeof(rcCompactSpan) * chf.spanCount;
+ size += sizeof(rcCompactCell) * chf.width * chf.height;
+ return size;
+}
+*/
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastAlloc.cpp b/thirdparty/recastnavigation/Recast/Source/RecastAlloc.cpp
new file mode 100644
index 0000000000..453b5fa6a6
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastAlloc.cpp
@@ -0,0 +1,86 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <stdlib.h>
+#include <string.h>
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+static void *rcAllocDefault(size_t size, rcAllocHint)
+{
+ return malloc(size);
+}
+
+static void rcFreeDefault(void *ptr)
+{
+ free(ptr);
+}
+
+static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
+static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
+
+/// @see rcAlloc, rcFree
+void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
+{
+ sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
+ sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
+}
+
+/// @see rcAllocSetCustom
+void* rcAlloc(size_t size, rcAllocHint hint)
+{
+ return sRecastAllocFunc(size, hint);
+}
+
+/// @par
+///
+/// @warning This function leaves the value of @p ptr unchanged. So it still
+/// points to the same (now invalid) location, and not to null.
+///
+/// @see rcAllocSetCustom
+void rcFree(void* ptr)
+{
+ if (ptr)
+ sRecastFreeFunc(ptr);
+}
+
+/// @class rcIntArray
+///
+/// While it is possible to pre-allocate a specific array size during
+/// construction or by using the #resize method, certain methods will
+/// automatically resize the array as needed.
+///
+/// @warning The array memory is not initialized to zero when the size is
+/// manually set during construction or when using #resize.
+
+/// @par
+///
+/// Using this method ensures the array is at least large enough to hold
+/// the specified number of elements. This can improve performance by
+/// avoiding auto-resizing during use.
+void rcIntArray::doResize(int n)
+{
+ if (!m_cap) m_cap = n;
+ while (m_cap < n) m_cap *= 2;
+ int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
+ rcAssert(newData);
+ if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
+ rcFree(m_data);
+ m_data = newData;
+}
+
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp b/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp
new file mode 100644
index 0000000000..97139cf996
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp
@@ -0,0 +1,591 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+/// @par
+///
+/// Basically, any spans that are closer to a boundary or obstruction than the specified radius
+/// are marked as unwalkable.
+///
+/// This method is usually called immediately after the heightfield has been built.
+///
+/// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius
+bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ const int w = chf.width;
+ const int h = chf.height;
+
+ rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA);
+
+ unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
+ if (!dist)
+ {
+ ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", chf.spanCount);
+ return false;
+ }
+
+ // Init distance.
+ memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount);
+
+ // Mark boundary cells.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (chf.areas[i] == RC_NULL_AREA)
+ {
+ dist[i] = 0;
+ }
+ else
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ int nc = 0;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int nx = x + rcGetDirOffsetX(dir);
+ const int ny = y + rcGetDirOffsetY(dir);
+ const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir);
+ if (chf.areas[nidx] != RC_NULL_AREA)
+ {
+ nc++;
+ }
+ }
+ }
+ // At least one missing neighbour.
+ if (nc != 4)
+ dist[i] = 0;
+ }
+ }
+ }
+ }
+
+ unsigned char nd;
+
+ // Pass 1
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ // (-1,0)
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ const rcCompactSpan& as = chf.spans[ai];
+ nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+
+ // (-1,-1)
+ if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(3);
+ const int aay = ay + rcGetDirOffsetY(3);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
+ nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+ }
+ }
+ if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
+ {
+ // (0,-1)
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ const rcCompactSpan& as = chf.spans[ai];
+ nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+
+ // (1,-1)
+ if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(2);
+ const int aay = ay + rcGetDirOffsetY(2);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
+ nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+ }
+ }
+ }
+ }
+ }
+
+ // Pass 2
+ for (int y = h-1; y >= 0; --y)
+ {
+ for (int x = w-1; x >= 0; --x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+
+ if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
+ {
+ // (1,0)
+ const int ax = x + rcGetDirOffsetX(2);
+ const int ay = y + rcGetDirOffsetY(2);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
+ const rcCompactSpan& as = chf.spans[ai];
+ nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+
+ // (1,1)
+ if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(1);
+ const int aay = ay + rcGetDirOffsetY(1);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
+ nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+ }
+ }
+ if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
+ {
+ // (0,1)
+ const int ax = x + rcGetDirOffsetX(1);
+ const int ay = y + rcGetDirOffsetY(1);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
+ const rcCompactSpan& as = chf.spans[ai];
+ nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+
+ // (-1,1)
+ if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(0);
+ const int aay = ay + rcGetDirOffsetY(0);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
+ nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
+ if (nd < dist[i])
+ dist[i] = nd;
+ }
+ }
+ }
+ }
+ }
+
+ const unsigned char thr = (unsigned char)(radius*2);
+ for (int i = 0; i < chf.spanCount; ++i)
+ if (dist[i] < thr)
+ chf.areas[i] = RC_NULL_AREA;
+
+ rcFree(dist);
+
+ return true;
+}
+
+static void insertSort(unsigned char* a, const int n)
+{
+ int i, j;
+ for (i = 1; i < n; i++)
+ {
+ const unsigned char value = a[i];
+ for (j = i - 1; j >= 0 && a[j] > value; j--)
+ a[j+1] = a[j];
+ a[j+1] = value;
+ }
+}
+
+/// @par
+///
+/// This filter is usually applied after applying area id's using functions
+/// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea.
+///
+/// @see rcCompactHeightfield
+bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ const int w = chf.width;
+ const int h = chf.height;
+
+ rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA);
+
+ unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
+ if (!areas)
+ {
+ ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).", chf.spanCount);
+ return false;
+ }
+
+ // Init distance.
+ memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount);
+
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA)
+ {
+ areas[i] = chf.areas[i];
+ continue;
+ }
+
+ unsigned char nei[9];
+ for (int j = 0; j < 9; ++j)
+ nei[j] = chf.areas[i];
+
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ if (chf.areas[ai] != RC_NULL_AREA)
+ nei[dir*2+0] = chf.areas[ai];
+
+ const rcCompactSpan& as = chf.spans[ai];
+ const int dir2 = (dir+1) & 0x3;
+ if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dir2);
+ const int ay2 = ay + rcGetDirOffsetY(dir2);
+ const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
+ if (chf.areas[ai2] != RC_NULL_AREA)
+ nei[dir*2+1] = chf.areas[ai2];
+ }
+ }
+ }
+ insertSort(nei, 9);
+ areas[i] = nei[4];
+ }
+ }
+ }
+
+ memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount);
+
+ rcFree(areas);
+
+ return true;
+}
+
+/// @par
+///
+/// The value of spacial parameters are in world units.
+///
+/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
+void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
+ rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA);
+
+ int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
+ int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
+ int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
+ int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
+ int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
+ int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
+
+ if (maxx < 0) return;
+ if (minx >= chf.width) return;
+ if (maxz < 0) return;
+ if (minz >= chf.height) return;
+
+ if (minx < 0) minx = 0;
+ if (maxx >= chf.width) maxx = chf.width-1;
+ if (minz < 0) minz = 0;
+ if (maxz >= chf.height) maxz = chf.height-1;
+
+ for (int z = minz; z <= maxz; ++z)
+ {
+ for (int x = minx; x <= maxx; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+z*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ rcCompactSpan& s = chf.spans[i];
+ if ((int)s.y >= miny && (int)s.y <= maxy)
+ {
+ if (chf.areas[i] != RC_NULL_AREA)
+ chf.areas[i] = areaId;
+ }
+ }
+ }
+ }
+}
+
+
+static int pointInPoly(int nvert, const float* verts, const float* p)
+{
+ int i, j, c = 0;
+ for (i = 0, j = nvert-1; i < nvert; j = i++)
+ {
+ const float* vi = &verts[i*3];
+ const float* vj = &verts[j*3];
+ if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
+ (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
+ c = !c;
+ }
+ return c;
+}
+
+/// @par
+///
+/// The value of spacial parameters are in world units.
+///
+/// The y-values of the polygon vertices are ignored. So the polygon is effectively
+/// projected onto the xz-plane at @p hmin, then extruded to @p hmax.
+///
+/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
+void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
+ const float hmin, const float hmax, unsigned char areaId,
+ rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA);
+
+ float bmin[3], bmax[3];
+ rcVcopy(bmin, verts);
+ rcVcopy(bmax, verts);
+ for (int i = 1; i < nverts; ++i)
+ {
+ rcVmin(bmin, &verts[i*3]);
+ rcVmax(bmax, &verts[i*3]);
+ }
+ bmin[1] = hmin;
+ bmax[1] = hmax;
+
+ int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
+ int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
+ int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
+ int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
+ int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
+ int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
+
+ if (maxx < 0) return;
+ if (minx >= chf.width) return;
+ if (maxz < 0) return;
+ if (minz >= chf.height) return;
+
+ if (minx < 0) minx = 0;
+ if (maxx >= chf.width) maxx = chf.width-1;
+ if (minz < 0) minz = 0;
+ if (maxz >= chf.height) maxz = chf.height-1;
+
+
+ // TODO: Optimize.
+ for (int z = minz; z <= maxz; ++z)
+ {
+ for (int x = minx; x <= maxx; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+z*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA)
+ continue;
+ if ((int)s.y >= miny && (int)s.y <= maxy)
+ {
+ float p[3];
+ p[0] = chf.bmin[0] + (x+0.5f)*chf.cs;
+ p[1] = 0;
+ p[2] = chf.bmin[2] + (z+0.5f)*chf.cs;
+
+ if (pointInPoly(nverts, verts, p))
+ {
+ chf.areas[i] = areaId;
+ }
+ }
+ }
+ }
+ }
+}
+
+int rcOffsetPoly(const float* verts, const int nverts, const float offset,
+ float* outVerts, const int maxOutVerts)
+{
+ const float MITER_LIMIT = 1.20f;
+
+ int n = 0;
+
+ for (int i = 0; i < nverts; i++)
+ {
+ const int a = (i+nverts-1) % nverts;
+ const int b = i;
+ const int c = (i+1) % nverts;
+ const float* va = &verts[a*3];
+ const float* vb = &verts[b*3];
+ const float* vc = &verts[c*3];
+ float dx0 = vb[0] - va[0];
+ float dy0 = vb[2] - va[2];
+ float d0 = dx0*dx0 + dy0*dy0;
+ if (d0 > 1e-6f)
+ {
+ d0 = 1.0f/rcSqrt(d0);
+ dx0 *= d0;
+ dy0 *= d0;
+ }
+ float dx1 = vc[0] - vb[0];
+ float dy1 = vc[2] - vb[2];
+ float d1 = dx1*dx1 + dy1*dy1;
+ if (d1 > 1e-6f)
+ {
+ d1 = 1.0f/rcSqrt(d1);
+ dx1 *= d1;
+ dy1 *= d1;
+ }
+ const float dlx0 = -dy0;
+ const float dly0 = dx0;
+ const float dlx1 = -dy1;
+ const float dly1 = dx1;
+ float cross = dx1*dy0 - dx0*dy1;
+ float dmx = (dlx0 + dlx1) * 0.5f;
+ float dmy = (dly0 + dly1) * 0.5f;
+ float dmr2 = dmx*dmx + dmy*dmy;
+ bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f;
+ if (dmr2 > 1e-6f)
+ {
+ const float scale = 1.0f / dmr2;
+ dmx *= scale;
+ dmy *= scale;
+ }
+
+ if (bevel && cross < 0.0f)
+ {
+ if (n+2 >= maxOutVerts)
+ return 0;
+ float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f;
+ outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset;
+ outVerts[n*3+1] = vb[1];
+ outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset;
+ n++;
+ outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset;
+ outVerts[n*3+1] = vb[1];
+ outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset;
+ n++;
+ }
+ else
+ {
+ if (n+1 >= maxOutVerts)
+ return 0;
+ outVerts[n*3+0] = vb[0] - dmx*offset;
+ outVerts[n*3+1] = vb[1];
+ outVerts[n*3+2] = vb[2] - dmy*offset;
+ n++;
+ }
+ }
+
+ return n;
+}
+
+
+/// @par
+///
+/// The value of spacial parameters are in world units.
+///
+/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
+void rcMarkCylinderArea(rcContext* ctx, const float* pos,
+ const float r, const float h, unsigned char areaId,
+ rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA);
+
+ float bmin[3], bmax[3];
+ bmin[0] = pos[0] - r;
+ bmin[1] = pos[1];
+ bmin[2] = pos[2] - r;
+ bmax[0] = pos[0] + r;
+ bmax[1] = pos[1] + h;
+ bmax[2] = pos[2] + r;
+ const float r2 = r*r;
+
+ int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
+ int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
+ int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
+ int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
+ int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
+ int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
+
+ if (maxx < 0) return;
+ if (minx >= chf.width) return;
+ if (maxz < 0) return;
+ if (minz >= chf.height) return;
+
+ if (minx < 0) minx = 0;
+ if (maxx >= chf.width) maxx = chf.width-1;
+ if (minz < 0) minz = 0;
+ if (maxz >= chf.height) maxz = chf.height-1;
+
+
+ for (int z = minz; z <= maxz; ++z)
+ {
+ for (int x = minx; x <= maxx; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+z*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ rcCompactSpan& s = chf.spans[i];
+
+ if (chf.areas[i] == RC_NULL_AREA)
+ continue;
+
+ if ((int)s.y >= miny && (int)s.y <= maxy)
+ {
+ const float sx = chf.bmin[0] + (x+0.5f)*chf.cs;
+ const float sz = chf.bmin[2] + (z+0.5f)*chf.cs;
+ const float dx = sx - pos[0];
+ const float dz = sz - pos[2];
+
+ if (dx*dx + dz*dz < r2)
+ {
+ chf.areas[i] = areaId;
+ }
+ }
+ }
+ }
+ }
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastAssert.cpp b/thirdparty/recastnavigation/Recast/Source/RecastAssert.cpp
new file mode 100644
index 0000000000..6297d42023
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastAssert.cpp
@@ -0,0 +1,35 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include "RecastAssert.h"
+
+#ifndef NDEBUG
+
+static rcAssertFailFunc* sRecastAssertFailFunc = 0;
+
+void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc)
+{
+ sRecastAssertFailFunc = assertFailFunc;
+}
+
+rcAssertFailFunc* rcAssertFailGetCustom()
+{
+ return sRecastAssertFailFunc;
+}
+
+#endif
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
new file mode 100644
index 0000000000..277ab01501
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
@@ -0,0 +1,1105 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+
+static int getCornerHeight(int x, int y, int i, int dir,
+ const rcCompactHeightfield& chf,
+ bool& isBorderVertex)
+{
+ const rcCompactSpan& s = chf.spans[i];
+ int ch = (int)s.y;
+ int dirp = (dir+1) & 0x3;
+
+ unsigned int regs[4] = {0,0,0,0};
+
+ // Combine region and area codes in order to prevent
+ // border vertices which are in between two areas to be removed.
+ regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
+
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+ ch = rcMax(ch, (int)as.y);
+ regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
+ if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dirp);
+ const int ay2 = ay + rcGetDirOffsetY(dirp);
+ const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
+ const rcCompactSpan& as2 = chf.spans[ai2];
+ ch = rcMax(ch, (int)as2.y);
+ regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
+ }
+ }
+ if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dirp);
+ const int ay = y + rcGetDirOffsetY(dirp);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
+ const rcCompactSpan& as = chf.spans[ai];
+ ch = rcMax(ch, (int)as.y);
+ regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
+ if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dir);
+ const int ay2 = ay + rcGetDirOffsetY(dir);
+ const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
+ const rcCompactSpan& as2 = chf.spans[ai2];
+ ch = rcMax(ch, (int)as2.y);
+ regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
+ }
+ }
+
+ // Check if the vertex is special edge vertex, these vertices will be removed later.
+ for (int j = 0; j < 4; ++j)
+ {
+ const int a = j;
+ const int b = (j+1) & 0x3;
+ const int c = (j+2) & 0x3;
+ const int d = (j+3) & 0x3;
+
+ // The vertex is a border vertex there are two same exterior cells in a row,
+ // followed by two interior cells and none of the regions are out of bounds.
+ const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
+ const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
+ const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
+ const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
+ if (twoSameExts && twoInts && intsSameArea && noZeros)
+ {
+ isBorderVertex = true;
+ break;
+ }
+ }
+
+ return ch;
+}
+
+static void walkContour(int x, int y, int i,
+ rcCompactHeightfield& chf,
+ unsigned char* flags, rcIntArray& points)
+{
+ // Choose the first non-connected edge
+ unsigned char dir = 0;
+ while ((flags[i] & (1 << dir)) == 0)
+ dir++;
+
+ unsigned char startDir = dir;
+ int starti = i;
+
+ const unsigned char area = chf.areas[i];
+
+ int iter = 0;
+ while (++iter < 40000)
+ {
+ if (flags[i] & (1 << dir))
+ {
+ // Choose the edge corner
+ bool isBorderVertex = false;
+ bool isAreaBorder = false;
+ int px = x;
+ int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
+ int pz = y;
+ switch(dir)
+ {
+ case 0: pz++; break;
+ case 1: px++; pz++; break;
+ case 2: px++; break;
+ }
+ int r = 0;
+ const rcCompactSpan& s = chf.spans[i];
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ r = (int)chf.spans[ai].reg;
+ if (area != chf.areas[ai])
+ isAreaBorder = true;
+ }
+ if (isBorderVertex)
+ r |= RC_BORDER_VERTEX;
+ if (isAreaBorder)
+ r |= RC_AREA_BORDER;
+ points.push(px);
+ points.push(py);
+ points.push(pz);
+ points.push(r);
+
+ flags[i] &= ~(1 << dir); // Remove visited edges
+ dir = (dir+1) & 0x3; // Rotate CW
+ }
+ else
+ {
+ int ni = -1;
+ const int nx = x + rcGetDirOffsetX(dir);
+ const int ny = y + rcGetDirOffsetY(dir);
+ const rcCompactSpan& s = chf.spans[i];
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
+ ni = (int)nc.index + rcGetCon(s, dir);
+ }
+ if (ni == -1)
+ {
+ // Should not happen.
+ return;
+ }
+ x = nx;
+ y = ny;
+ i = ni;
+ dir = (dir+3) & 0x3; // Rotate CCW
+ }
+
+ if (starti == i && startDir == dir)
+ {
+ break;
+ }
+ }
+}
+
+static float distancePtSeg(const int x, const int z,
+ const int px, const int pz,
+ const int qx, const int qz)
+{
+ float pqx = (float)(qx - px);
+ float pqz = (float)(qz - pz);
+ float dx = (float)(x - px);
+ float dz = (float)(z - pz);
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = px + t*pqx - x;
+ dz = pz + t*pqz - z;
+
+ return dx*dx + dz*dz;
+}
+
+static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
+ const float maxError, const int maxEdgeLen, const int buildFlags)
+{
+ // Add initial points.
+ bool hasConnections = false;
+ for (int i = 0; i < points.size(); i += 4)
+ {
+ if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
+ {
+ hasConnections = true;
+ break;
+ }
+ }
+
+ if (hasConnections)
+ {
+ // The contour has some portals to other regions.
+ // Add a new point to every location where the region changes.
+ for (int i = 0, ni = points.size()/4; i < ni; ++i)
+ {
+ int ii = (i+1) % ni;
+ const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
+ const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
+ if (differentRegs || areaBorders)
+ {
+ simplified.push(points[i*4+0]);
+ simplified.push(points[i*4+1]);
+ simplified.push(points[i*4+2]);
+ simplified.push(i);
+ }
+ }
+ }
+
+ if (simplified.size() == 0)
+ {
+ // If there is no connections at all,
+ // create some initial points for the simplification process.
+ // Find lower-left and upper-right vertices of the contour.
+ int llx = points[0];
+ int lly = points[1];
+ int llz = points[2];
+ int lli = 0;
+ int urx = points[0];
+ int ury = points[1];
+ int urz = points[2];
+ int uri = 0;
+ for (int i = 0; i < points.size(); i += 4)
+ {
+ int x = points[i+0];
+ int y = points[i+1];
+ int z = points[i+2];
+ if (x < llx || (x == llx && z < llz))
+ {
+ llx = x;
+ lly = y;
+ llz = z;
+ lli = i/4;
+ }
+ if (x > urx || (x == urx && z > urz))
+ {
+ urx = x;
+ ury = y;
+ urz = z;
+ uri = i/4;
+ }
+ }
+ simplified.push(llx);
+ simplified.push(lly);
+ simplified.push(llz);
+ simplified.push(lli);
+
+ simplified.push(urx);
+ simplified.push(ury);
+ simplified.push(urz);
+ simplified.push(uri);
+ }
+
+ // Add points until all raw points are within
+ // error tolerance to the simplified shape.
+ const int pn = points.size()/4;
+ for (int i = 0; i < simplified.size()/4; )
+ {
+ int ii = (i+1) % (simplified.size()/4);
+
+ int ax = simplified[i*4+0];
+ int az = simplified[i*4+2];
+ int ai = simplified[i*4+3];
+
+ int bx = simplified[ii*4+0];
+ int bz = simplified[ii*4+2];
+ int bi = simplified[ii*4+3];
+
+ // Find maximum deviation from the segment.
+ float maxd = 0;
+ int maxi = -1;
+ int ci, cinc, endi;
+
+ // Traverse the segment in lexilogical order so that the
+ // max deviation is calculated similarly when traversing
+ // opposite segments.
+ if (bx > ax || (bx == ax && bz > az))
+ {
+ cinc = 1;
+ ci = (ai+cinc) % pn;
+ endi = bi;
+ }
+ else
+ {
+ cinc = pn-1;
+ ci = (bi+cinc) % pn;
+ endi = ai;
+ rcSwap(ax, bx);
+ rcSwap(az, bz);
+ }
+
+ // Tessellate only outer edges or edges between areas.
+ if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
+ (points[ci*4+3] & RC_AREA_BORDER))
+ {
+ while (ci != endi)
+ {
+ float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
+ if (d > maxd)
+ {
+ maxd = d;
+ maxi = ci;
+ }
+ ci = (ci+cinc) % pn;
+ }
+ }
+
+
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1 && maxd > (maxError*maxError))
+ {
+ // Add space for the new point.
+ simplified.resize(simplified.size()+4);
+ const int n = simplified.size()/4;
+ for (int j = n-1; j > i; --j)
+ {
+ simplified[j*4+0] = simplified[(j-1)*4+0];
+ simplified[j*4+1] = simplified[(j-1)*4+1];
+ simplified[j*4+2] = simplified[(j-1)*4+2];
+ simplified[j*4+3] = simplified[(j-1)*4+3];
+ }
+ // Add the point.
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
+ }
+ else
+ {
+ ++i;
+ }
+ }
+
+ // Split too long edges.
+ if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
+ {
+ for (int i = 0; i < simplified.size()/4; )
+ {
+ const int ii = (i+1) % (simplified.size()/4);
+
+ const int ax = simplified[i*4+0];
+ const int az = simplified[i*4+2];
+ const int ai = simplified[i*4+3];
+
+ const int bx = simplified[ii*4+0];
+ const int bz = simplified[ii*4+2];
+ const int bi = simplified[ii*4+3];
+
+ // Find maximum deviation from the segment.
+ int maxi = -1;
+ int ci = (ai+1) % pn;
+
+ // Tessellate only outer edges or edges between areas.
+ bool tess = false;
+ // Wall edges.
+ if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
+ tess = true;
+ // Edges between areas.
+ if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
+ tess = true;
+
+ if (tess)
+ {
+ int dx = bx - ax;
+ int dz = bz - az;
+ if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
+ {
+ // Round based on the segments in lexilogical order so that the
+ // max tesselation is consistent regardles in which direction
+ // segments are traversed.
+ const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
+ if (n > 1)
+ {
+ if (bx > ax || (bx == ax && bz > az))
+ maxi = (ai + n/2) % pn;
+ else
+ maxi = (ai + (n+1)/2) % pn;
+ }
+ }
+ }
+
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1)
+ {
+ // Add space for the new point.
+ simplified.resize(simplified.size()+4);
+ const int n = simplified.size()/4;
+ for (int j = n-1; j > i; --j)
+ {
+ simplified[j*4+0] = simplified[(j-1)*4+0];
+ simplified[j*4+1] = simplified[(j-1)*4+1];
+ simplified[j*4+2] = simplified[(j-1)*4+2];
+ simplified[j*4+3] = simplified[(j-1)*4+3];
+ }
+ // Add the point.
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
+ }
+ else
+ {
+ ++i;
+ }
+ }
+ }
+
+ for (int i = 0; i < simplified.size()/4; ++i)
+ {
+ // The edge vertex flag is take from the current raw point,
+ // and the neighbour region is take from the next raw point.
+ const int ai = (simplified[i*4+3]+1) % pn;
+ const int bi = simplified[i*4+3];
+ simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
+ }
+
+}
+
+static int calcAreaOfPolygon2D(const int* verts, const int nverts)
+{
+ int area = 0;
+ for (int i = 0, j = nverts-1; i < nverts; j=i++)
+ {
+ const int* vi = &verts[i*4];
+ const int* vj = &verts[j*4];
+ area += vi[0] * vj[2] - vj[0] * vi[2];
+ }
+ return (area+1) / 2;
+}
+
+// TODO: these are the same as in RecastMesh.cpp, consider using the same.
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
+{
+ return !x ^ !y;
+}
+
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
+{
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i.
+ if (i == k || i == k1)
+ continue;
+ const int* p0 = &verts[k * 4];
+ const int* p1 = &verts[k1 * 4];
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return true;
+ }
+ return false;
+}
+
+static bool inCone(int i, int n, const int* verts, const int* pj)
+{
+ const int* pi = &verts[i * 4];
+ const int* pi1 = &verts[next(i, n) * 4];
+ const int* pin1 = &verts[prev(i, n) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+
+static void removeDegenerateSegments(rcIntArray& simplified)
+{
+ // Remove adjacent vertices which are equal on xz-plane,
+ // or else the triangulator will get confused.
+ int npts = simplified.size()/4;
+ for (int i = 0; i < npts; ++i)
+ {
+ int ni = next(i, npts);
+
+ if (vequal(&simplified[i*4], &simplified[ni*4]))
+ {
+ // Degenerate segment, remove.
+ for (int j = i; j < simplified.size()/4-1; ++j)
+ {
+ simplified[j*4+0] = simplified[(j+1)*4+0];
+ simplified[j*4+1] = simplified[(j+1)*4+1];
+ simplified[j*4+2] = simplified[(j+1)*4+2];
+ simplified[j*4+3] = simplified[(j+1)*4+3];
+ }
+ simplified.resize(simplified.size()-4);
+ npts--;
+ }
+ }
+}
+
+
+static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
+{
+ const int maxVerts = ca.nverts + cb.nverts + 2;
+ int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
+ if (!verts)
+ return false;
+
+ int nv = 0;
+
+ // Copy contour A.
+ for (int i = 0; i <= ca.nverts; ++i)
+ {
+ int* dst = &verts[nv*4];
+ const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
+ dst[0] = src[0];
+ dst[1] = src[1];
+ dst[2] = src[2];
+ dst[3] = src[3];
+ nv++;
+ }
+
+ // Copy contour B
+ for (int i = 0; i <= cb.nverts; ++i)
+ {
+ int* dst = &verts[nv*4];
+ const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
+ dst[0] = src[0];
+ dst[1] = src[1];
+ dst[2] = src[2];
+ dst[3] = src[3];
+ nv++;
+ }
+
+ rcFree(ca.verts);
+ ca.verts = verts;
+ ca.nverts = nv;
+
+ rcFree(cb.verts);
+ cb.verts = 0;
+ cb.nverts = 0;
+
+ return true;
+}
+
+struct rcContourHole
+{
+ rcContour* contour;
+ int minx, minz, leftmost;
+};
+
+struct rcContourRegion
+{
+ rcContour* outline;
+ rcContourHole* holes;
+ int nholes;
+};
+
+struct rcPotentialDiagonal
+{
+ int vert;
+ int dist;
+};
+
+// Finds the lowest leftmost vertex of a contour.
+static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
+{
+ *minx = contour->verts[0];
+ *minz = contour->verts[2];
+ *leftmost = 0;
+ for (int i = 1; i < contour->nverts; i++)
+ {
+ const int x = contour->verts[i*4+0];
+ const int z = contour->verts[i*4+2];
+ if (x < *minx || (x == *minx && z < *minz))
+ {
+ *minx = x;
+ *minz = z;
+ *leftmost = i;
+ }
+ }
+}
+
+static int compareHoles(const void* va, const void* vb)
+{
+ const rcContourHole* a = (const rcContourHole*)va;
+ const rcContourHole* b = (const rcContourHole*)vb;
+ if (a->minx == b->minx)
+ {
+ if (a->minz < b->minz)
+ return -1;
+ if (a->minz > b->minz)
+ return 1;
+ }
+ else
+ {
+ if (a->minx < b->minx)
+ return -1;
+ if (a->minx > b->minx)
+ return 1;
+ }
+ return 0;
+}
+
+
+static int compareDiagDist(const void* va, const void* vb)
+{
+ const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
+ const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
+ if (a->dist < b->dist)
+ return -1;
+ if (a->dist > b->dist)
+ return 1;
+ return 0;
+}
+
+
+static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
+{
+ // Sort holes from left to right.
+ for (int i = 0; i < region.nholes; i++)
+ findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
+
+ qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
+
+ int maxVerts = region.outline->nverts;
+ for (int i = 0; i < region.nholes; i++)
+ maxVerts += region.holes[i].contour->nverts;
+
+ rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
+ if (!diags)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
+ return;
+ }
+
+ rcContour* outline = region.outline;
+
+ // Merge holes into the outline one by one.
+ for (int i = 0; i < region.nholes; i++)
+ {
+ rcContour* hole = region.holes[i].contour;
+
+ int index = -1;
+ int bestVertex = region.holes[i].leftmost;
+ for (int iter = 0; iter < hole->nverts; iter++)
+ {
+ // Find potential diagonals.
+ // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
+ // ..o j-1
+ // |
+ // | * best
+ // |
+ // j o-----o j+1
+ // :
+ int ndiags = 0;
+ const int* corner = &hole->verts[bestVertex*4];
+ for (int j = 0; j < outline->nverts; j++)
+ {
+ if (inCone(j, outline->nverts, outline->verts, corner))
+ {
+ int dx = outline->verts[j*4+0] - corner[0];
+ int dz = outline->verts[j*4+2] - corner[2];
+ diags[ndiags].vert = j;
+ diags[ndiags].dist = dx*dx + dz*dz;
+ ndiags++;
+ }
+ }
+ // Sort potential diagonals by distance, we want to make the connection as short as possible.
+ qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
+
+ // Find a diagonal that is not intersecting the outline not the remaining holes.
+ index = -1;
+ for (int j = 0; j < ndiags; j++)
+ {
+ const int* pt = &outline->verts[diags[j].vert*4];
+ bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
+ for (int k = i; k < region.nholes && !intersect; k++)
+ intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
+ if (!intersect)
+ {
+ index = diags[j].vert;
+ break;
+ }
+ }
+ // If found non-intersecting diagonal, stop looking.
+ if (index != -1)
+ break;
+ // All the potential diagonals for the current vertex were intersecting, try next vertex.
+ bestVertex = (bestVertex + 1) % hole->nverts;
+ }
+
+ if (index == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
+ continue;
+ }
+ if (!mergeContours(*region.outline, *hole, index, bestVertex))
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
+ continue;
+ }
+ }
+}
+
+
+/// @par
+///
+/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
+/// parameters control how closely the simplified contours will match the raw contours.
+///
+/// Simplified contours are generated such that the vertices for portals between areas match up.
+/// (They are considered mandatory vertices.)
+///
+/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
+bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
+ const float maxError, const int maxEdgeLen,
+ rcContourSet& cset, const int buildFlags)
+{
+ rcAssert(ctx);
+
+ const int w = chf.width;
+ const int h = chf.height;
+ const int borderSize = chf.borderSize;
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
+
+ rcVcopy(cset.bmin, chf.bmin);
+ rcVcopy(cset.bmax, chf.bmax);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ const float pad = borderSize*chf.cs;
+ cset.bmin[0] += pad;
+ cset.bmin[2] += pad;
+ cset.bmax[0] -= pad;
+ cset.bmax[2] -= pad;
+ }
+ cset.cs = chf.cs;
+ cset.ch = chf.ch;
+ cset.width = chf.width - chf.borderSize*2;
+ cset.height = chf.height - chf.borderSize*2;
+ cset.borderSize = chf.borderSize;
+ cset.maxError = maxError;
+
+ int maxContours = rcMax((int)chf.maxRegions, 8);
+ cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
+ if (!cset.conts)
+ return false;
+ cset.nconts = 0;
+
+ rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
+ if (!flags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
+ return false;
+ }
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ // Mark boundaries.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ unsigned char res = 0;
+ const rcCompactSpan& s = chf.spans[i];
+ if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
+ {
+ flags[i] = 0;
+ continue;
+ }
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ unsigned short r = 0;
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ r = chf.spans[ai].reg;
+ }
+ if (r == chf.spans[i].reg)
+ res |= (1 << dir);
+ }
+ flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
+ }
+ }
+ }
+
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ rcIntArray verts(256);
+ rcIntArray simplified(64);
+
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (flags[i] == 0 || flags[i] == 0xf)
+ {
+ flags[i] = 0;
+ continue;
+ }
+ const unsigned short reg = chf.spans[i].reg;
+ if (!reg || (reg & RC_BORDER_REG))
+ continue;
+ const unsigned char area = chf.areas[i];
+
+ verts.resize(0);
+ simplified.resize(0);
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+ walkContour(x, y, i, chf, flags, verts);
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
+ simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
+ removeDegenerateSegments(simplified);
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
+
+
+ // Store region->contour remap info.
+ // Create contour.
+ if (simplified.size()/4 >= 3)
+ {
+ if (cset.nconts >= maxContours)
+ {
+ // Allocate more contours.
+ // This happens when a region has holes.
+ const int oldMax = maxContours;
+ maxContours *= 2;
+ rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
+ for (int j = 0; j < cset.nconts; ++j)
+ {
+ newConts[j] = cset.conts[j];
+ // Reset source pointers to prevent data deletion.
+ cset.conts[j].verts = 0;
+ cset.conts[j].rverts = 0;
+ }
+ rcFree(cset.conts);
+ cset.conts = newConts;
+
+ ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
+ }
+
+ rcContour* cont = &cset.conts[cset.nconts++];
+
+ cont->nverts = simplified.size()/4;
+ cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
+ if (!cont->verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
+ return false;
+ }
+ memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ for (int j = 0; j < cont->nverts; ++j)
+ {
+ int* v = &cont->verts[j*4];
+ v[0] -= borderSize;
+ v[2] -= borderSize;
+ }
+ }
+
+ cont->nrverts = verts.size()/4;
+ cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
+ if (!cont->rverts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
+ return false;
+ }
+ memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ for (int j = 0; j < cont->nrverts; ++j)
+ {
+ int* v = &cont->rverts[j*4];
+ v[0] -= borderSize;
+ v[2] -= borderSize;
+ }
+ }
+
+ cont->reg = reg;
+ cont->area = area;
+ }
+ }
+ }
+ }
+
+ // Merge holes if needed.
+ if (cset.nconts > 0)
+ {
+ // Calculate winding of all polygons.
+ rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
+ if (!winding)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
+ return false;
+ }
+ int nholes = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // If the contour is wound backwards, it is a hole.
+ winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
+ if (winding[i] < 0)
+ nholes++;
+ }
+
+ if (nholes > 0)
+ {
+ // Collect outline contour and holes contours per region.
+ // We assume that there is one outline and multiple holes.
+ const int nregions = chf.maxRegions+1;
+ rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
+ return false;
+ }
+ memset(regions, 0, sizeof(rcContourRegion)*nregions);
+
+ rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
+ if (!holes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
+ return false;
+ }
+ memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
+
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // Positively would contours are outlines, negative holes.
+ if (winding[i] > 0)
+ {
+ if (regions[cont.reg].outline)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
+ regions[cont.reg].outline = &cont;
+ }
+ else
+ {
+ regions[cont.reg].nholes++;
+ }
+ }
+ int index = 0;
+ for (int i = 0; i < nregions; i++)
+ {
+ if (regions[i].nholes > 0)
+ {
+ regions[i].holes = &holes[index];
+ index += regions[i].nholes;
+ regions[i].nholes = 0;
+ }
+ }
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ rcContourRegion& reg = regions[cont.reg];
+ if (winding[i] < 0)
+ reg.holes[reg.nholes++].contour = &cont;
+ }
+
+ // Finally merge each regions holes into the outline.
+ for (int i = 0; i < nregions; i++)
+ {
+ rcContourRegion& reg = regions[i];
+ if (!reg.nholes) continue;
+
+ if (reg.outline)
+ {
+ mergeRegionHoles(ctx, reg);
+ }
+ else
+ {
+ // The region does not have an outline.
+ // This can happen if the contour becaomes selfoverlapping because of
+ // too aggressive simplification settings.
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
+ }
+ }
+ }
+
+ }
+
+ return true;
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastFilter.cpp b/thirdparty/recastnavigation/Recast/Source/RecastFilter.cpp
new file mode 100644
index 0000000000..9d3e63c482
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastFilter.cpp
@@ -0,0 +1,202 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAssert.h"
+
+/// @par
+///
+/// Allows the formation of walkable regions that will flow over low lying
+/// objects such as curbs, and up structures such as stairways.
+///
+/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
+///
+/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
+/// #rcFilterLedgeSpans after calling this filter.
+///
+/// @see rcHeightfield, rcConfig
+void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES);
+
+ const int w = solid.width;
+ const int h = solid.height;
+
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ rcSpan* ps = 0;
+ bool previousWalkable = false;
+ unsigned char previousArea = RC_NULL_AREA;
+
+ for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
+ {
+ const bool walkable = s->area != RC_NULL_AREA;
+ // If current span is not walkable, but there is walkable
+ // span just below it, mark the span above it walkable too.
+ if (!walkable && previousWalkable)
+ {
+ if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
+ s->area = previousArea;
+ }
+ // Copy walkable flag so that it cannot propagate
+ // past multiple non-walkable objects.
+ previousWalkable = walkable;
+ previousArea = s->area;
+ }
+ }
+ }
+}
+
+/// @par
+///
+/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
+/// from the current span's maximum.
+/// This method removes the impact of the overestimation of conservative voxelization
+/// so the resulting mesh will not have regions hanging in the air over ledges.
+///
+/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
+///
+/// @see rcHeightfield, rcConfig
+void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
+ rcHeightfield& solid)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER);
+
+ const int w = solid.width;
+ const int h = solid.height;
+ const int MAX_HEIGHT = 0xffff;
+
+ // Mark border spans.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
+ {
+ // Skip non walkable spans.
+ if (s->area == RC_NULL_AREA)
+ continue;
+
+ const int bot = (int)(s->smax);
+ const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
+
+ // Find neighbours minimum height.
+ int minh = MAX_HEIGHT;
+
+ // Min and max height of accessible neighbours.
+ int asmin = s->smax;
+ int asmax = s->smax;
+
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ int dx = x + rcGetDirOffsetX(dir);
+ int dy = y + rcGetDirOffsetY(dir);
+ // Skip neighbours which are out of bounds.
+ if (dx < 0 || dy < 0 || dx >= w || dy >= h)
+ {
+ minh = rcMin(minh, -walkableClimb - bot);
+ continue;
+ }
+
+ // From minus infinity to the first span.
+ rcSpan* ns = solid.spans[dx + dy*w];
+ int nbot = -walkableClimb;
+ int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
+ // Skip neightbour if the gap between the spans is too small.
+ if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
+ minh = rcMin(minh, nbot - bot);
+
+ // Rest of the spans.
+ for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
+ {
+ nbot = (int)ns->smax;
+ ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
+ // Skip neightbour if the gap between the spans is too small.
+ if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
+ {
+ minh = rcMin(minh, nbot - bot);
+
+ // Find min/max accessible neighbour height.
+ if (rcAbs(nbot - bot) <= walkableClimb)
+ {
+ if (nbot < asmin) asmin = nbot;
+ if (nbot > asmax) asmax = nbot;
+ }
+
+ }
+ }
+ }
+
+ // The current span is close to a ledge if the drop to any
+ // neighbour span is less than the walkableClimb.
+ if (minh < -walkableClimb)
+ {
+ s->area = RC_NULL_AREA;
+ }
+ // If the difference between all neighbours is too large,
+ // we are at steep slope, mark the span as ledge.
+ else if ((asmax - asmin) > walkableClimb)
+ {
+ s->area = RC_NULL_AREA;
+ }
+ }
+ }
+ }
+}
+
+/// @par
+///
+/// For this filter, the clearance above the span is the distance from the span's
+/// maximum to the next higher span's minimum. (Same grid column.)
+///
+/// @see rcHeightfield, rcConfig
+void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE);
+
+ const int w = solid.width;
+ const int h = solid.height;
+ const int MAX_HEIGHT = 0xffff;
+
+ // Remove walkable flag from spans which do not have enough
+ // space above them for the agent to stand there.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
+ {
+ const int bot = (int)(s->smax);
+ const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
+ if ((top - bot) <= walkableHeight)
+ s->area = RC_NULL_AREA;
+ }
+ }
+ }
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastLayers.cpp b/thirdparty/recastnavigation/Recast/Source/RecastLayers.cpp
new file mode 100644
index 0000000000..acc97e44f0
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastLayers.cpp
@@ -0,0 +1,644 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+
+// Must be 255 or smaller (not 256) because layer IDs are stored as
+// a byte where 255 is a special value.
+static const int RC_MAX_LAYERS = 63;
+static const int RC_MAX_NEIS = 16;
+
+struct rcLayerRegion
+{
+ unsigned char layers[RC_MAX_LAYERS];
+ unsigned char neis[RC_MAX_NEIS];
+ unsigned short ymin, ymax;
+ unsigned char layerId; // Layer ID
+ unsigned char nlayers; // Layer count
+ unsigned char nneis; // Neighbour count
+ unsigned char base; // Flag indicating if the region is the base of merged regions.
+};
+
+
+static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v)
+{
+ const int n = (int)an;
+ for (int i = 0; i < n; ++i)
+ {
+ if (a[i] == v)
+ return true;
+ }
+ return false;
+}
+
+static bool addUnique(unsigned char* a, unsigned char& an, int anMax, unsigned char v)
+{
+ if (contains(a, an, v))
+ return true;
+
+ if ((int)an >= anMax)
+ return false;
+
+ a[an] = v;
+ an++;
+ return true;
+}
+
+
+inline bool overlapRange(const unsigned short amin, const unsigned short amax,
+ const unsigned short bmin, const unsigned short bmax)
+{
+ return (amin > bmax || amax < bmin) ? false : true;
+}
+
+
+
+struct rcLayerSweepSpan
+{
+ unsigned short ns; // number samples
+ unsigned char id; // region id
+ unsigned char nei; // neighbour id
+};
+
+/// @par
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
+bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int walkableHeight,
+ rcHeightfieldLayerSet& lset)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
+
+ const int w = chf.width;
+ const int h = chf.height;
+
+ rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
+ if (!srcReg)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
+ return false;
+ }
+ memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
+
+ const int nsweeps = chf.width;
+ rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
+ if (!sweeps)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
+ return false;
+ }
+
+
+ // Partition walkable area into monotone regions.
+ int prevCount[256];
+ unsigned char regId = 0;
+
+ for (int y = borderSize; y < h-borderSize; ++y)
+ {
+ memset(prevCount,0,sizeof(int)*regId);
+ unsigned char sweepId = 0;
+
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA) continue;
+
+ unsigned char sid = 0xff;
+
+ // -x
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
+ sid = srcReg[ai];
+ }
+
+ if (sid == 0xff)
+ {
+ sid = sweepId++;
+ sweeps[sid].nei = 0xff;
+ sweeps[sid].ns = 0;
+ }
+
+ // -y
+ if (rcGetCon(s,3) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ const unsigned char nr = srcReg[ai];
+ if (nr != 0xff)
+ {
+ // Set neighbour when first valid neighbour is encoutered.
+ if (sweeps[sid].ns == 0)
+ sweeps[sid].nei = nr;
+
+ if (sweeps[sid].nei == nr)
+ {
+ // Update existing neighbour
+ sweeps[sid].ns++;
+ prevCount[nr]++;
+ }
+ else
+ {
+ // This is hit if there is nore than one neighbour.
+ // Invalidate the neighbour.
+ sweeps[sid].nei = 0xff;
+ }
+ }
+ }
+
+ srcReg[i] = sid;
+ }
+ }
+
+ // Create unique ID.
+ for (int i = 0; i < sweepId; ++i)
+ {
+ // If the neighbour is set and there is only one continuous connection to it,
+ // the sweep will be merged with the previous one, else new region is created.
+ if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
+ {
+ sweeps[i].id = sweeps[i].nei;
+ }
+ else
+ {
+ if (regId == 255)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
+ return false;
+ }
+ sweeps[i].id = regId++;
+ }
+ }
+
+ // Remap local sweep ids to region ids.
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (srcReg[i] != 0xff)
+ srcReg[i] = sweeps[srcReg[i]].id;
+ }
+ }
+ }
+
+ // Allocate and init layer regions.
+ const int nregs = (int)regId;
+ rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
+ if (!regs)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
+ return false;
+ }
+ memset(regs, 0, sizeof(rcLayerRegion)*nregs);
+ for (int i = 0; i < nregs; ++i)
+ {
+ regs[i].layerId = 0xff;
+ regs[i].ymin = 0xffff;
+ regs[i].ymax = 0;
+ }
+
+ // Find region neighbours and overlapping regions.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ unsigned char lregs[RC_MAX_LAYERS];
+ int nlregs = 0;
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ const unsigned char ri = srcReg[i];
+ if (ri == 0xff) continue;
+
+ regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
+ regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
+
+ // Collect all region layers.
+ if (nlregs < RC_MAX_LAYERS)
+ lregs[nlregs++] = ri;
+
+ // Update neighbours
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ const unsigned char rai = srcReg[ai];
+ if (rai != 0xff && rai != ri)
+ {
+ // Don't check return value -- if we cannot add the neighbor
+ // it will just cause a few more regions to be created, which
+ // is fine.
+ addUnique(regs[ri].neis, regs[ri].nneis, RC_MAX_NEIS, rai);
+ }
+ }
+ }
+
+ }
+
+ // Update overlapping regions.
+ for (int i = 0; i < nlregs-1; ++i)
+ {
+ for (int j = i+1; j < nlregs; ++j)
+ {
+ if (lregs[i] != lregs[j])
+ {
+ rcLayerRegion& ri = regs[lregs[i]];
+ rcLayerRegion& rj = regs[lregs[j]];
+
+ if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, lregs[j]) ||
+ !addUnique(rj.layers, rj.nlayers, RC_MAX_LAYERS, lregs[i]))
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
+ return false;
+ }
+ }
+ }
+ }
+
+ }
+ }
+
+ // Create 2D layers from regions.
+ unsigned char layerId = 0;
+
+ static const int MAX_STACK = 64;
+ unsigned char stack[MAX_STACK];
+ int nstack = 0;
+
+ for (int i = 0; i < nregs; ++i)
+ {
+ rcLayerRegion& root = regs[i];
+ // Skip already visited.
+ if (root.layerId != 0xff)
+ continue;
+
+ // Start search.
+ root.layerId = layerId;
+ root.base = 1;
+
+ nstack = 0;
+ stack[nstack++] = (unsigned char)i;
+
+ while (nstack)
+ {
+ // Pop front
+ rcLayerRegion& reg = regs[stack[0]];
+ nstack--;
+ for (int j = 0; j < nstack; ++j)
+ stack[j] = stack[j+1];
+
+ const int nneis = (int)reg.nneis;
+ for (int j = 0; j < nneis; ++j)
+ {
+ const unsigned char nei = reg.neis[j];
+ rcLayerRegion& regn = regs[nei];
+ // Skip already visited.
+ if (regn.layerId != 0xff)
+ continue;
+ // Skip if the neighbour is overlapping root region.
+ if (contains(root.layers, root.nlayers, nei))
+ continue;
+ // Skip if the height range would become too large.
+ const int ymin = rcMin(root.ymin, regn.ymin);
+ const int ymax = rcMax(root.ymax, regn.ymax);
+ if ((ymax - ymin) >= 255)
+ continue;
+
+ if (nstack < MAX_STACK)
+ {
+ // Deepen
+ stack[nstack++] = (unsigned char)nei;
+
+ // Mark layer id
+ regn.layerId = layerId;
+ // Merge current layers to root.
+ for (int k = 0; k < regn.nlayers; ++k)
+ {
+ if (!addUnique(root.layers, root.nlayers, RC_MAX_LAYERS, regn.layers[k]))
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
+ return false;
+ }
+ }
+ root.ymin = rcMin(root.ymin, regn.ymin);
+ root.ymax = rcMax(root.ymax, regn.ymax);
+ }
+ }
+ }
+
+ layerId++;
+ }
+
+ // Merge non-overlapping regions that are close in height.
+ const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
+
+ for (int i = 0; i < nregs; ++i)
+ {
+ rcLayerRegion& ri = regs[i];
+ if (!ri.base) continue;
+
+ unsigned char newId = ri.layerId;
+
+ for (;;)
+ {
+ unsigned char oldId = 0xff;
+
+ for (int j = 0; j < nregs; ++j)
+ {
+ if (i == j) continue;
+ rcLayerRegion& rj = regs[j];
+ if (!rj.base) continue;
+
+ // Skip if the regions are not close to each other.
+ if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
+ continue;
+ // Skip if the height range would become too large.
+ const int ymin = rcMin(ri.ymin, rj.ymin);
+ const int ymax = rcMax(ri.ymax, rj.ymax);
+ if ((ymax - ymin) >= 255)
+ continue;
+
+ // Make sure that there is no overlap when merging 'ri' and 'rj'.
+ bool overlap = false;
+ // Iterate over all regions which have the same layerId as 'rj'
+ for (int k = 0; k < nregs; ++k)
+ {
+ if (regs[k].layerId != rj.layerId)
+ continue;
+ // Check if region 'k' is overlapping region 'ri'
+ // Index to 'regs' is the same as region id.
+ if (contains(ri.layers,ri.nlayers, (unsigned char)k))
+ {
+ overlap = true;
+ break;
+ }
+ }
+ // Cannot merge of regions overlap.
+ if (overlap)
+ continue;
+
+ // Can merge i and j.
+ oldId = rj.layerId;
+ break;
+ }
+
+ // Could not find anything to merge with, stop.
+ if (oldId == 0xff)
+ break;
+
+ // Merge
+ for (int j = 0; j < nregs; ++j)
+ {
+ rcLayerRegion& rj = regs[j];
+ if (rj.layerId == oldId)
+ {
+ rj.base = 0;
+ // Remap layerIds.
+ rj.layerId = newId;
+ // Add overlaid layers from 'rj' to 'ri'.
+ for (int k = 0; k < rj.nlayers; ++k)
+ {
+ if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, rj.layers[k]))
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
+ return false;
+ }
+ }
+
+ // Update height bounds.
+ ri.ymin = rcMin(ri.ymin, rj.ymin);
+ ri.ymax = rcMax(ri.ymax, rj.ymax);
+ }
+ }
+ }
+ }
+
+ // Compact layerIds
+ unsigned char remap[256];
+ memset(remap, 0, 256);
+
+ // Find number of unique layers.
+ layerId = 0;
+ for (int i = 0; i < nregs; ++i)
+ remap[regs[i].layerId] = 1;
+ for (int i = 0; i < 256; ++i)
+ {
+ if (remap[i])
+ remap[i] = layerId++;
+ else
+ remap[i] = 0xff;
+ }
+ // Remap ids.
+ for (int i = 0; i < nregs; ++i)
+ regs[i].layerId = remap[regs[i].layerId];
+
+ // No layers, return empty.
+ if (layerId == 0)
+ return true;
+
+ // Create layers.
+ rcAssert(lset.layers == 0);
+
+ const int lw = w - borderSize*2;
+ const int lh = h - borderSize*2;
+
+ // Build contracted bbox for layers.
+ float bmin[3], bmax[3];
+ rcVcopy(bmin, chf.bmin);
+ rcVcopy(bmax, chf.bmax);
+ bmin[0] += borderSize*chf.cs;
+ bmin[2] += borderSize*chf.cs;
+ bmax[0] -= borderSize*chf.cs;
+ bmax[2] -= borderSize*chf.cs;
+
+ lset.nlayers = (int)layerId;
+
+ lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
+ if (!lset.layers)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
+ return false;
+ }
+ memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
+
+
+ // Store layers.
+ for (int i = 0; i < lset.nlayers; ++i)
+ {
+ unsigned char curId = (unsigned char)i;
+
+ rcHeightfieldLayer* layer = &lset.layers[i];
+
+ const int gridSize = sizeof(unsigned char)*lw*lh;
+
+ layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
+ if (!layer->heights)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
+ return false;
+ }
+ memset(layer->heights, 0xff, gridSize);
+
+ layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
+ if (!layer->areas)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
+ return false;
+ }
+ memset(layer->areas, 0, gridSize);
+
+ layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
+ if (!layer->cons)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
+ return false;
+ }
+ memset(layer->cons, 0, gridSize);
+
+ // Find layer height bounds.
+ int hmin = 0, hmax = 0;
+ for (int j = 0; j < nregs; ++j)
+ {
+ if (regs[j].base && regs[j].layerId == curId)
+ {
+ hmin = (int)regs[j].ymin;
+ hmax = (int)regs[j].ymax;
+ }
+ }
+
+ layer->width = lw;
+ layer->height = lh;
+ layer->cs = chf.cs;
+ layer->ch = chf.ch;
+
+ // Adjust the bbox to fit the heightfield.
+ rcVcopy(layer->bmin, bmin);
+ rcVcopy(layer->bmax, bmax);
+ layer->bmin[1] = bmin[1] + hmin*chf.ch;
+ layer->bmax[1] = bmin[1] + hmax*chf.ch;
+ layer->hmin = hmin;
+ layer->hmax = hmax;
+
+ // Update usable data region.
+ layer->minx = layer->width;
+ layer->maxx = 0;
+ layer->miny = layer->height;
+ layer->maxy = 0;
+
+ // Copy height and area from compact heightfield.
+ for (int y = 0; y < lh; ++y)
+ {
+ for (int x = 0; x < lw; ++x)
+ {
+ const int cx = borderSize+x;
+ const int cy = borderSize+y;
+ const rcCompactCell& c = chf.cells[cx+cy*w];
+ for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
+ {
+ const rcCompactSpan& s = chf.spans[j];
+ // Skip unassigned regions.
+ if (srcReg[j] == 0xff)
+ continue;
+ // Skip of does nto belong to current layer.
+ unsigned char lid = regs[srcReg[j]].layerId;
+ if (lid != curId)
+ continue;
+
+ // Update data bounds.
+ layer->minx = rcMin(layer->minx, x);
+ layer->maxx = rcMax(layer->maxx, x);
+ layer->miny = rcMin(layer->miny, y);
+ layer->maxy = rcMax(layer->maxy, y);
+
+ // Store height and area type.
+ const int idx = x+y*lw;
+ layer->heights[idx] = (unsigned char)(s.y - hmin);
+ layer->areas[idx] = chf.areas[j];
+
+ // Check connection.
+ unsigned char portal = 0;
+ unsigned char con = 0;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = cx + rcGetDirOffsetX(dir);
+ const int ay = cy + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
+ // Portal mask
+ if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
+ {
+ portal |= (unsigned char)(1<<dir);
+ // Update height so that it matches on both sides of the portal.
+ const rcCompactSpan& as = chf.spans[ai];
+ if (as.y > hmin)
+ layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
+ }
+ // Valid connection mask
+ if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
+ {
+ const int nx = ax - borderSize;
+ const int ny = ay - borderSize;
+ if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
+ con |= (unsigned char)(1<<dir);
+ }
+ }
+ }
+
+ layer->cons[idx] = (portal << 4) | con;
+ }
+ }
+ }
+
+ if (layer->minx > layer->maxx)
+ layer->minx = layer->maxx = 0;
+ if (layer->miny > layer->maxy)
+ layer->miny = layer->maxy = 0;
+ }
+
+ return true;
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastMesh.cpp b/thirdparty/recastnavigation/Recast/Source/RecastMesh.cpp
new file mode 100644
index 0000000000..e99eaebb79
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastMesh.cpp
@@ -0,0 +1,1552 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+struct rcEdge
+{
+ unsigned short vert[2];
+ unsigned short polyEdge[2];
+ unsigned short poly[2];
+};
+
+static bool buildMeshAdjacency(unsigned short* polys, const int npolys,
+ const int nverts, const int vertsPerPoly)
+{
+ // Based on code by Eric Lengyel from:
+ // http://www.terathon.com/code/edges.php
+
+ int maxEdgeCount = npolys*vertsPerPoly;
+ unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP);
+ if (!firstEdge)
+ return false;
+ unsigned short* nextEdge = firstEdge + nverts;
+ int edgeCount = 0;
+
+ rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP);
+ if (!edges)
+ {
+ rcFree(firstEdge);
+ return false;
+ }
+
+ for (int i = 0; i < nverts; i++)
+ firstEdge[i] = RC_MESH_NULL_IDX;
+
+ for (int i = 0; i < npolys; ++i)
+ {
+ unsigned short* t = &polys[i*vertsPerPoly*2];
+ for (int j = 0; j < vertsPerPoly; ++j)
+ {
+ if (t[j] == RC_MESH_NULL_IDX) break;
+ unsigned short v0 = t[j];
+ unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
+ if (v0 < v1)
+ {
+ rcEdge& edge = edges[edgeCount];
+ edge.vert[0] = v0;
+ edge.vert[1] = v1;
+ edge.poly[0] = (unsigned short)i;
+ edge.polyEdge[0] = (unsigned short)j;
+ edge.poly[1] = (unsigned short)i;
+ edge.polyEdge[1] = 0;
+ // Insert edge
+ nextEdge[edgeCount] = firstEdge[v0];
+ firstEdge[v0] = (unsigned short)edgeCount;
+ edgeCount++;
+ }
+ }
+ }
+
+ for (int i = 0; i < npolys; ++i)
+ {
+ unsigned short* t = &polys[i*vertsPerPoly*2];
+ for (int j = 0; j < vertsPerPoly; ++j)
+ {
+ if (t[j] == RC_MESH_NULL_IDX) break;
+ unsigned short v0 = t[j];
+ unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1];
+ if (v0 > v1)
+ {
+ for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e])
+ {
+ rcEdge& edge = edges[e];
+ if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1])
+ {
+ edge.poly[1] = (unsigned short)i;
+ edge.polyEdge[1] = (unsigned short)j;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Store adjacency
+ for (int i = 0; i < edgeCount; ++i)
+ {
+ const rcEdge& e = edges[i];
+ if (e.poly[0] != e.poly[1])
+ {
+ unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2];
+ unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2];
+ p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1];
+ p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0];
+ }
+ }
+
+ rcFree(firstEdge);
+ rcFree(edges);
+
+ return true;
+}
+
+
+static const int VERTEX_BUCKET_COUNT = (1<<12);
+
+inline int computeVertexHash(int x, int y, int z)
+{
+ const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
+ const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
+ const unsigned int h3 = 0xcb1ab31f;
+ unsigned int n = h1 * x + h2 * y + h3 * z;
+ return (int)(n & (VERTEX_BUCKET_COUNT-1));
+}
+
+static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z,
+ unsigned short* verts, int* firstVert, int* nextVert, int& nv)
+{
+ int bucket = computeVertexHash(x, 0, z);
+ int i = firstVert[bucket];
+
+ while (i != -1)
+ {
+ const unsigned short* v = &verts[i*3];
+ if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z)
+ return (unsigned short)i;
+ i = nextVert[i]; // next
+ }
+
+ // Could not find, create new.
+ i = nv; nv++;
+ unsigned short* v = &verts[i*3];
+ v[0] = x;
+ v[1] = y;
+ v[2] = z;
+ nextVert[i] = firstVert[bucket];
+ firstVert[bucket] = i;
+
+ return (unsigned short)i;
+}
+
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
+{
+ return !x ^ !y;
+}
+
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+// Returns T iff (v_i, v_j) is a proper internal *or* external
+// diagonal of P, *ignoring edges incident to v_i and v_j*.
+static bool diagonalie(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
+
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i or j
+ if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
+ {
+ const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
+ const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
+
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Returns true iff the diagonal (i,j) is strictly internal to the
+// polygon P in the neighborhood of the i endpoint.
+static bool inCone(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
+ const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
+ const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+// Returns T iff (v_i, v_j) is a proper internal
+// diagonal of P.
+static bool diagonal(int i, int j, int n, const int* verts, int* indices)
+{
+ return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
+}
+
+
+static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
+
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i or j
+ if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
+ {
+ const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
+ const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
+
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersectProp(d0, d1, p0, p1))
+ return false;
+ }
+ }
+ return true;
+}
+
+static bool inConeLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
+ const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
+ const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices)
+{
+ return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices);
+}
+
+
+static int triangulate(int n, const int* verts, int* indices, int* tris)
+{
+ int ntris = 0;
+ int* dst = tris;
+
+ // The last bit of the index is used to indicate if the vertex can be removed.
+ for (int i = 0; i < n; i++)
+ {
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+ if (diagonal(i, i2, n, verts, indices))
+ indices[i1] |= 0x80000000;
+ }
+
+ while (n > 3)
+ {
+ int minLen = -1;
+ int mini = -1;
+ for (int i = 0; i < n; i++)
+ {
+ int i1 = next(i, n);
+ if (indices[i1] & 0x80000000)
+ {
+ const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4];
+
+ int dx = p2[0] - p0[0];
+ int dy = p2[2] - p0[2];
+ int len = dx*dx + dy*dy;
+
+ if (minLen < 0 || len < minLen)
+ {
+ minLen = len;
+ mini = i;
+ }
+ }
+ }
+
+ if (mini == -1)
+ {
+ // We might get here because the contour has overlapping segments, like this:
+ //
+ // A o-o=====o---o B
+ // / |C D| \.
+ // o o o o
+ // : : : :
+ // We'll try to recover by loosing up the inCone test a bit so that a diagonal
+ // like A-B or C-D can be found and we can continue.
+ minLen = -1;
+ mini = -1;
+ for (int i = 0; i < n; i++)
+ {
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+ if (diagonalLoose(i, i2, n, verts, indices))
+ {
+ const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
+ const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4];
+ int dx = p2[0] - p0[0];
+ int dy = p2[2] - p0[2];
+ int len = dx*dx + dy*dy;
+
+ if (minLen < 0 || len < minLen)
+ {
+ minLen = len;
+ mini = i;
+ }
+ }
+ }
+ if (mini == -1)
+ {
+ // The contour is messed up. This sometimes happens
+ // if the contour simplification is too aggressive.
+ return -ntris;
+ }
+ }
+
+ int i = mini;
+ int i1 = next(i, n);
+ int i2 = next(i1, n);
+
+ *dst++ = indices[i] & 0x0fffffff;
+ *dst++ = indices[i1] & 0x0fffffff;
+ *dst++ = indices[i2] & 0x0fffffff;
+ ntris++;
+
+ // Removes P[i1] by copying P[i+1]...P[n-1] left one index.
+ n--;
+ for (int k = i1; k < n; k++)
+ indices[k] = indices[k+1];
+
+ if (i1 >= n) i1 = 0;
+ i = prev(i1,n);
+ // Update diagonal flags.
+ if (diagonal(prev(i, n), i1, n, verts, indices))
+ indices[i] |= 0x80000000;
+ else
+ indices[i] &= 0x0fffffff;
+
+ if (diagonal(i, next(i1, n), n, verts, indices))
+ indices[i1] |= 0x80000000;
+ else
+ indices[i1] &= 0x0fffffff;
+ }
+
+ // Append the remaining triangle.
+ *dst++ = indices[0] & 0x0fffffff;
+ *dst++ = indices[1] & 0x0fffffff;
+ *dst++ = indices[2] & 0x0fffffff;
+ ntris++;
+
+ return ntris;
+}
+
+static int countPolyVerts(const unsigned short* p, const int nvp)
+{
+ for (int i = 0; i < nvp; ++i)
+ if (p[i] == RC_MESH_NULL_IDX)
+ return i;
+ return nvp;
+}
+
+inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c)
+{
+ return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) -
+ ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0;
+}
+
+static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
+ const unsigned short* verts, int& ea, int& eb,
+ const int nvp)
+{
+ const int na = countPolyVerts(pa, nvp);
+ const int nb = countPolyVerts(pb, nvp);
+
+ // If the merged polygon would be too big, do not merge.
+ if (na+nb-2 > nvp)
+ return -1;
+
+ // Check if the polygons share an edge.
+ ea = -1;
+ eb = -1;
+
+ for (int i = 0; i < na; ++i)
+ {
+ unsigned short va0 = pa[i];
+ unsigned short va1 = pa[(i+1) % na];
+ if (va0 > va1)
+ rcSwap(va0, va1);
+ for (int j = 0; j < nb; ++j)
+ {
+ unsigned short vb0 = pb[j];
+ unsigned short vb1 = pb[(j+1) % nb];
+ if (vb0 > vb1)
+ rcSwap(vb0, vb1);
+ if (va0 == vb0 && va1 == vb1)
+ {
+ ea = i;
+ eb = j;
+ break;
+ }
+ }
+ }
+
+ // No common edge, cannot merge.
+ if (ea == -1 || eb == -1)
+ return -1;
+
+ // Check to see if the merged polygon would be convex.
+ unsigned short va, vb, vc;
+
+ va = pa[(ea+na-1) % na];
+ vb = pa[ea];
+ vc = pb[(eb+2) % nb];
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
+ return -1;
+
+ va = pb[(eb+nb-1) % nb];
+ vb = pb[eb];
+ vc = pa[(ea+2) % na];
+ if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3]))
+ return -1;
+
+ va = pa[ea];
+ vb = pa[(ea+1)%na];
+
+ int dx = (int)verts[va*3+0] - (int)verts[vb*3+0];
+ int dy = (int)verts[va*3+2] - (int)verts[vb*3+2];
+
+ return dx*dx + dy*dy;
+}
+
+static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb,
+ unsigned short* tmp, const int nvp)
+{
+ const int na = countPolyVerts(pa, nvp);
+ const int nb = countPolyVerts(pb, nvp);
+
+ // Merge polygons.
+ memset(tmp, 0xff, sizeof(unsigned short)*nvp);
+ int n = 0;
+ // Add pa
+ for (int i = 0; i < na-1; ++i)
+ tmp[n++] = pa[(ea+1+i) % na];
+ // Add pb
+ for (int i = 0; i < nb-1; ++i)
+ tmp[n++] = pb[(eb+1+i) % nb];
+
+ memcpy(pa, tmp, sizeof(unsigned short)*nvp);
+}
+
+
+static void pushFront(int v, int* arr, int& an)
+{
+ an++;
+ for (int i = an-1; i > 0; --i) arr[i] = arr[i-1];
+ arr[0] = v;
+}
+
+static void pushBack(int v, int* arr, int& an)
+{
+ arr[an] = v;
+ an++;
+}
+
+static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem)
+{
+ const int nvp = mesh.nvp;
+
+ // Count number of polygons to remove.
+ int numRemovedVerts = 0;
+ int numTouchedVerts = 0;
+ int numRemainingEdges = 0;
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ int numRemoved = 0;
+ int numVerts = 0;
+ for (int j = 0; j < nv; ++j)
+ {
+ if (p[j] == rem)
+ {
+ numTouchedVerts++;
+ numRemoved++;
+ }
+ numVerts++;
+ }
+ if (numRemoved)
+ {
+ numRemovedVerts += numRemoved;
+ numRemainingEdges += numVerts-(numRemoved+1);
+ }
+ }
+
+ // There would be too few edges remaining to create a polygon.
+ // This can happen for example when a tip of a triangle is marked
+ // as deletion, but there are no other polys that share the vertex.
+ // In this case, the vertex should not be removed.
+ if (numRemainingEdges <= 2)
+ return false;
+
+ // Find edges which share the removed vertex.
+ const int maxEdges = numTouchedVerts*2;
+ int nedges = 0;
+ rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP));
+ if (!edges)
+ {
+ ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3);
+ return false;
+ }
+
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+
+ // Collect edges which touches the removed vertex.
+ for (int j = 0, k = nv-1; j < nv; k = j++)
+ {
+ if (p[j] == rem || p[k] == rem)
+ {
+ // Arrange edge so that a=rem.
+ int a = p[j], b = p[k];
+ if (b == rem)
+ rcSwap(a,b);
+
+ // Check if the edge exists
+ bool exists = false;
+ for (int m = 0; m < nedges; ++m)
+ {
+ int* e = &edges[m*3];
+ if (e[1] == b)
+ {
+ // Exists, increment vertex share count.
+ e[2]++;
+ exists = true;
+ }
+ }
+ // Add new edge.
+ if (!exists)
+ {
+ int* e = &edges[nedges*3];
+ e[0] = a;
+ e[1] = b;
+ e[2] = 1;
+ nedges++;
+ }
+ }
+ }
+ }
+
+ // There should be no more than 2 open edges.
+ // This catches the case that two non-adjacent polygons
+ // share the removed vertex. In that case, do not remove the vertex.
+ int numOpenEdges = 0;
+ for (int i = 0; i < nedges; ++i)
+ {
+ if (edges[i*3+2] < 2)
+ numOpenEdges++;
+ }
+ if (numOpenEdges > 2)
+ return false;
+
+ return true;
+}
+
+static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris)
+{
+ const int nvp = mesh.nvp;
+
+ // Count number of polygons to remove.
+ int numRemovedVerts = 0;
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ for (int j = 0; j < nv; ++j)
+ {
+ if (p[j] == rem)
+ numRemovedVerts++;
+ }
+ }
+
+ int nedges = 0;
+ rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP));
+ if (!edges)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4);
+ return false;
+ }
+
+ int nhole = 0;
+ rcScopedDelete<int> hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
+ if (!hole)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp);
+ return false;
+ }
+
+ int nhreg = 0;
+ rcScopedDelete<int> hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
+ if (!hreg)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp);
+ return false;
+ }
+
+ int nharea = 0;
+ rcScopedDelete<int> harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
+ if (!harea)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp);
+ return false;
+ }
+
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ bool hasRem = false;
+ for (int j = 0; j < nv; ++j)
+ if (p[j] == rem) hasRem = true;
+ if (hasRem)
+ {
+ // Collect edges which does not touch the removed vertex.
+ for (int j = 0, k = nv-1; j < nv; k = j++)
+ {
+ if (p[j] != rem && p[k] != rem)
+ {
+ int* e = &edges[nedges*4];
+ e[0] = p[k];
+ e[1] = p[j];
+ e[2] = mesh.regs[i];
+ e[3] = mesh.areas[i];
+ nedges++;
+ }
+ }
+ // Remove the polygon.
+ unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
+ if (p != p2)
+ memcpy(p,p2,sizeof(unsigned short)*nvp);
+ memset(p+nvp,0xff,sizeof(unsigned short)*nvp);
+ mesh.regs[i] = mesh.regs[mesh.npolys-1];
+ mesh.areas[i] = mesh.areas[mesh.npolys-1];
+ mesh.npolys--;
+ --i;
+ }
+ }
+
+ // Remove vertex.
+ for (int i = (int)rem; i < mesh.nverts - 1; ++i)
+ {
+ mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
+ mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
+ mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2];
+ }
+ mesh.nverts--;
+
+ // Adjust indices to match the removed vertex layout.
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*nvp*2];
+ const int nv = countPolyVerts(p, nvp);
+ for (int j = 0; j < nv; ++j)
+ if (p[j] > rem) p[j]--;
+ }
+ for (int i = 0; i < nedges; ++i)
+ {
+ if (edges[i*4+0] > rem) edges[i*4+0]--;
+ if (edges[i*4+1] > rem) edges[i*4+1]--;
+ }
+
+ if (nedges == 0)
+ return true;
+
+ // Start with one vertex, keep appending connected
+ // segments to the start and end of the hole.
+ pushBack(edges[0], hole, nhole);
+ pushBack(edges[2], hreg, nhreg);
+ pushBack(edges[3], harea, nharea);
+
+ while (nedges)
+ {
+ bool match = false;
+
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int ea = edges[i*4+0];
+ const int eb = edges[i*4+1];
+ const int r = edges[i*4+2];
+ const int a = edges[i*4+3];
+ bool add = false;
+ if (hole[0] == eb)
+ {
+ // The segment matches the beginning of the hole boundary.
+ pushFront(ea, hole, nhole);
+ pushFront(r, hreg, nhreg);
+ pushFront(a, harea, nharea);
+ add = true;
+ }
+ else if (hole[nhole-1] == ea)
+ {
+ // The segment matches the end of the hole boundary.
+ pushBack(eb, hole, nhole);
+ pushBack(r, hreg, nhreg);
+ pushBack(a, harea, nharea);
+ add = true;
+ }
+ if (add)
+ {
+ // The edge segment was added, remove it.
+ edges[i*4+0] = edges[(nedges-1)*4+0];
+ edges[i*4+1] = edges[(nedges-1)*4+1];
+ edges[i*4+2] = edges[(nedges-1)*4+2];
+ edges[i*4+3] = edges[(nedges-1)*4+3];
+ --nedges;
+ match = true;
+ --i;
+ }
+ }
+
+ if (!match)
+ break;
+ }
+
+ rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP));
+ if (!tris)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
+ return false;
+ }
+
+ rcScopedDelete<int> tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP));
+ if (!tverts)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
+ return false;
+ }
+
+ rcScopedDelete<int> thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP));
+ if (!thole)
+ {
+ ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
+ return false;
+ }
+
+ // Generate temp vertex array for triangulation.
+ for (int i = 0; i < nhole; ++i)
+ {
+ const int pi = hole[i];
+ tverts[i*4+0] = mesh.verts[pi*3+0];
+ tverts[i*4+1] = mesh.verts[pi*3+1];
+ tverts[i*4+2] = mesh.verts[pi*3+2];
+ tverts[i*4+3] = 0;
+ thole[i] = i;
+ }
+
+ // Triangulate the hole.
+ int ntris = triangulate(nhole, &tverts[0], &thole[0], tris);
+ if (ntris < 0)
+ {
+ ntris = -ntris;
+ ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results.");
+ }
+
+ // Merge the hole triangles back to polygons.
+ rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP));
+ if (!polys)
+ {
+ ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
+ return false;
+ }
+ rcScopedDelete<unsigned short> pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP));
+ if (!pregs)
+ {
+ ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris);
+ return false;
+ }
+ rcScopedDelete<unsigned char> pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP));
+ if (!pareas)
+ {
+ ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris);
+ return false;
+ }
+
+ unsigned short* tmpPoly = &polys[ntris*nvp];
+
+ // Build initial polygons.
+ int npolys = 0;
+ memset(polys, 0xff, ntris*nvp*sizeof(unsigned short));
+ for (int j = 0; j < ntris; ++j)
+ {
+ int* t = &tris[j*3];
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
+ {
+ polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
+ polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
+ polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
+
+ // If this polygon covers multiple region types then
+ // mark it as such
+ if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]])
+ pregs[npolys] = RC_MULTIPLE_REGS;
+ else
+ pregs[npolys] = (unsigned short)hreg[t[0]];
+
+ pareas[npolys] = (unsigned char)harea[t[0]];
+ npolys++;
+ }
+ }
+ if (!npolys)
+ return true;
+
+ // Merge polygons.
+ if (nvp > 3)
+ {
+ for (;;)
+ {
+ // Find best polygons to merge.
+ int bestMergeVal = 0;
+ int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
+
+ for (int j = 0; j < npolys-1; ++j)
+ {
+ unsigned short* pj = &polys[j*nvp];
+ for (int k = j+1; k < npolys; ++k)
+ {
+ unsigned short* pk = &polys[k*nvp];
+ int ea, eb;
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
+ if (v > bestMergeVal)
+ {
+ bestMergeVal = v;
+ bestPa = j;
+ bestPb = k;
+ bestEa = ea;
+ bestEb = eb;
+ }
+ }
+ }
+
+ if (bestMergeVal > 0)
+ {
+ // Found best, merge.
+ unsigned short* pa = &polys[bestPa*nvp];
+ unsigned short* pb = &polys[bestPb*nvp];
+ mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
+ if (pregs[bestPa] != pregs[bestPb])
+ pregs[bestPa] = RC_MULTIPLE_REGS;
+
+ unsigned short* last = &polys[(npolys-1)*nvp];
+ if (pb != last)
+ memcpy(pb, last, sizeof(unsigned short)*nvp);
+ pregs[bestPb] = pregs[npolys-1];
+ pareas[bestPb] = pareas[npolys-1];
+ npolys--;
+ }
+ else
+ {
+ // Could not merge any polygons, stop.
+ break;
+ }
+ }
+ }
+
+ // Store polygons.
+ for (int i = 0; i < npolys; ++i)
+ {
+ if (mesh.npolys >= maxTris) break;
+ unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
+ memset(p,0xff,sizeof(unsigned short)*nvp*2);
+ for (int j = 0; j < nvp; ++j)
+ p[j] = polys[i*nvp+j];
+ mesh.regs[mesh.npolys] = pregs[i];
+ mesh.areas[mesh.npolys] = pareas[i];
+ mesh.npolys++;
+ if (mesh.npolys > maxTris)
+ {
+ ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper
+/// limit must be retricted to <= #DT_VERTS_PER_POLYGON.
+///
+/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig
+bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH);
+
+ rcVcopy(mesh.bmin, cset.bmin);
+ rcVcopy(mesh.bmax, cset.bmax);
+ mesh.cs = cset.cs;
+ mesh.ch = cset.ch;
+ mesh.borderSize = cset.borderSize;
+ mesh.maxEdgeError = cset.maxError;
+
+ int maxVertices = 0;
+ int maxTris = 0;
+ int maxVertsPerCont = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ // Skip null contours.
+ if (cset.conts[i].nverts < 3) continue;
+ maxVertices += cset.conts[i].nverts;
+ maxTris += cset.conts[i].nverts - 2;
+ maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts);
+ }
+
+ if (maxVertices >= 0xfffe)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices);
+ return false;
+ }
+
+ rcScopedDelete<unsigned char> vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP));
+ if (!vflags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices);
+ return false;
+ }
+ memset(vflags, 0, maxVertices);
+
+ mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM);
+ if (!mesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
+ return false;
+ }
+ mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM);
+ if (!mesh.polys)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2);
+ return false;
+ }
+ mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM);
+ if (!mesh.regs)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris);
+ return false;
+ }
+ mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM);
+ if (!mesh.areas)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris);
+ return false;
+ }
+
+ mesh.nverts = 0;
+ mesh.npolys = 0;
+ mesh.nvp = nvp;
+ mesh.maxpolys = maxTris;
+
+ memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3);
+ memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2);
+ memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
+ memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
+
+ rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP));
+ if (!nextVert)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
+ return false;
+ }
+ memset(nextVert, 0, sizeof(int)*maxVertices);
+
+ rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
+ if (!firstVert)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
+ return false;
+ }
+ for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
+ firstVert[i] = -1;
+
+ rcScopedDelete<int> indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP));
+ if (!indices)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
+ return false;
+ }
+ rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP));
+ if (!tris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
+ return false;
+ }
+ rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP));
+ if (!polys)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
+ return false;
+ }
+ unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp];
+
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+
+ // Skip null contours.
+ if (cont.nverts < 3)
+ continue;
+
+ // Triangulate contour
+ for (int j = 0; j < cont.nverts; ++j)
+ indices[j] = j;
+
+ int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]);
+ if (ntris <= 0)
+ {
+ // Bad triangulation, should not happen.
+/* printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]);
+ printf("\tconst float cs = %ff;\n", cset.cs);
+ printf("\tconst float ch = %ff;\n", cset.ch);
+ printf("\tconst int verts[] = {\n");
+ for (int k = 0; k < cont.nverts; ++k)
+ {
+ const int* v = &cont.verts[k*4];
+ printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]);
+ }
+ printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/
+ ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i);
+ ntris = -ntris;
+ }
+
+ // Add and merge vertices.
+ for (int j = 0; j < cont.nverts; ++j)
+ {
+ const int* v = &cont.verts[j*4];
+ indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2],
+ mesh.verts, firstVert, nextVert, mesh.nverts);
+ if (v[3] & RC_BORDER_VERTEX)
+ {
+ // This vertex should be removed.
+ vflags[indices[j]] = 1;
+ }
+ }
+
+ // Build initial polygons.
+ int npolys = 0;
+ memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
+ for (int j = 0; j < ntris; ++j)
+ {
+ int* t = &tris[j*3];
+ if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2])
+ {
+ polys[npolys*nvp+0] = (unsigned short)indices[t[0]];
+ polys[npolys*nvp+1] = (unsigned short)indices[t[1]];
+ polys[npolys*nvp+2] = (unsigned short)indices[t[2]];
+ npolys++;
+ }
+ }
+ if (!npolys)
+ continue;
+
+ // Merge polygons.
+ if (nvp > 3)
+ {
+ for(;;)
+ {
+ // Find best polygons to merge.
+ int bestMergeVal = 0;
+ int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0;
+
+ for (int j = 0; j < npolys-1; ++j)
+ {
+ unsigned short* pj = &polys[j*nvp];
+ for (int k = j+1; k < npolys; ++k)
+ {
+ unsigned short* pk = &polys[k*nvp];
+ int ea, eb;
+ int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp);
+ if (v > bestMergeVal)
+ {
+ bestMergeVal = v;
+ bestPa = j;
+ bestPb = k;
+ bestEa = ea;
+ bestEb = eb;
+ }
+ }
+ }
+
+ if (bestMergeVal > 0)
+ {
+ // Found best, merge.
+ unsigned short* pa = &polys[bestPa*nvp];
+ unsigned short* pb = &polys[bestPb*nvp];
+ mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
+ unsigned short* lastPoly = &polys[(npolys-1)*nvp];
+ if (pb != lastPoly)
+ memcpy(pb, lastPoly, sizeof(unsigned short)*nvp);
+ npolys--;
+ }
+ else
+ {
+ // Could not merge any polygons, stop.
+ break;
+ }
+ }
+ }
+
+ // Store polygons.
+ for (int j = 0; j < npolys; ++j)
+ {
+ unsigned short* p = &mesh.polys[mesh.npolys*nvp*2];
+ unsigned short* q = &polys[j*nvp];
+ for (int k = 0; k < nvp; ++k)
+ p[k] = q[k];
+ mesh.regs[mesh.npolys] = cont.reg;
+ mesh.areas[mesh.npolys] = cont.area;
+ mesh.npolys++;
+ if (mesh.npolys > maxTris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris);
+ return false;
+ }
+ }
+ }
+
+
+ // Remove edge vertices.
+ for (int i = 0; i < mesh.nverts; ++i)
+ {
+ if (vflags[i])
+ {
+ if (!canRemoveVertex(ctx, mesh, (unsigned short)i))
+ continue;
+ if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris))
+ {
+ // Failed to remove vertex
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i);
+ return false;
+ }
+ // Remove vertex
+ // Note: mesh.nverts is already decremented inside removeVertex()!
+ // Fixup vertex flags
+ for (int j = i; j < mesh.nverts; ++j)
+ vflags[j] = vflags[j+1];
+ --i;
+ }
+ }
+
+ // Calculate adjacency.
+ if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp))
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed.");
+ return false;
+ }
+
+ // Find portal edges
+ if (mesh.borderSize > 0)
+ {
+ const int w = cset.width;
+ const int h = cset.height;
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ unsigned short* p = &mesh.polys[i*2*nvp];
+ for (int j = 0; j < nvp; ++j)
+ {
+ if (p[j] == RC_MESH_NULL_IDX) break;
+ // Skip connected edges.
+ if (p[nvp+j] != RC_MESH_NULL_IDX)
+ continue;
+ int nj = j+1;
+ if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0;
+ const unsigned short* va = &mesh.verts[p[j]*3];
+ const unsigned short* vb = &mesh.verts[p[nj]*3];
+
+ if ((int)va[0] == 0 && (int)vb[0] == 0)
+ p[nvp+j] = 0x8000 | 0;
+ else if ((int)va[2] == h && (int)vb[2] == h)
+ p[nvp+j] = 0x8000 | 1;
+ else if ((int)va[0] == w && (int)vb[0] == w)
+ p[nvp+j] = 0x8000 | 2;
+ else if ((int)va[2] == 0 && (int)vb[2] == 0)
+ p[nvp+j] = 0x8000 | 3;
+ }
+ }
+ }
+
+ // Just allocate the mesh flags array. The user is resposible to fill it.
+ mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM);
+ if (!mesh.flags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys);
+ return false;
+ }
+ memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys);
+
+ if (mesh.nverts > 0xffff)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
+ }
+ if (mesh.npolys > 0xffff)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
+ }
+
+ return true;
+}
+
+/// @see rcAllocPolyMesh, rcPolyMesh
+bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh)
+{
+ rcAssert(ctx);
+
+ if (!nmeshes || !meshes)
+ return true;
+
+ rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH);
+
+ mesh.nvp = meshes[0]->nvp;
+ mesh.cs = meshes[0]->cs;
+ mesh.ch = meshes[0]->ch;
+ rcVcopy(mesh.bmin, meshes[0]->bmin);
+ rcVcopy(mesh.bmax, meshes[0]->bmax);
+
+ int maxVerts = 0;
+ int maxPolys = 0;
+ int maxVertsPerMesh = 0;
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ rcVmin(mesh.bmin, meshes[i]->bmin);
+ rcVmax(mesh.bmax, meshes[i]->bmax);
+ maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts);
+ maxVerts += meshes[i]->nverts;
+ maxPolys += meshes[i]->npolys;
+ }
+
+ mesh.nverts = 0;
+ mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM);
+ if (!mesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3);
+ return false;
+ }
+
+ mesh.npolys = 0;
+ mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM);
+ if (!mesh.polys)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp);
+ return false;
+ }
+ memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp);
+
+ mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
+ if (!mesh.regs)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys);
+ return false;
+ }
+ memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys);
+
+ mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM);
+ if (!mesh.areas)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys);
+ return false;
+ }
+ memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys);
+
+ mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM);
+ if (!mesh.flags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys);
+ return false;
+ }
+ memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys);
+
+ rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP));
+ if (!nextVert)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
+ return false;
+ }
+ memset(nextVert, 0, sizeof(int)*maxVerts);
+
+ rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
+ if (!firstVert)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
+ return false;
+ }
+ for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
+ firstVert[i] = -1;
+
+ rcScopedDelete<unsigned short> vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM));
+ if (!vremap)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
+ return false;
+ }
+ memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh);
+
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ const rcPolyMesh* pmesh = meshes[i];
+
+ const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
+ const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
+
+ bool isMinX = (ox == 0);
+ bool isMinZ = (oz == 0);
+ bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0;
+ bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0;
+ bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ);
+
+ for (int j = 0; j < pmesh->nverts; ++j)
+ {
+ unsigned short* v = &pmesh->verts[j*3];
+ vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz,
+ mesh.verts, firstVert, nextVert, mesh.nverts);
+ }
+
+ for (int j = 0; j < pmesh->npolys; ++j)
+ {
+ unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp];
+ unsigned short* src = &pmesh->polys[j*2*mesh.nvp];
+ mesh.regs[mesh.npolys] = pmesh->regs[j];
+ mesh.areas[mesh.npolys] = pmesh->areas[j];
+ mesh.flags[mesh.npolys] = pmesh->flags[j];
+ mesh.npolys++;
+ for (int k = 0; k < mesh.nvp; ++k)
+ {
+ if (src[k] == RC_MESH_NULL_IDX) break;
+ tgt[k] = vremap[src[k]];
+ }
+
+ if (isOnBorder)
+ {
+ for (int k = mesh.nvp; k < mesh.nvp * 2; ++k)
+ {
+ if (src[k] & 0x8000 && src[k] != 0xffff)
+ {
+ unsigned short dir = src[k] & 0xf;
+ switch (dir)
+ {
+ case 0: // Portal x-
+ if (isMinX)
+ tgt[k] = src[k];
+ break;
+ case 1: // Portal z+
+ if (isMaxZ)
+ tgt[k] = src[k];
+ break;
+ case 2: // Portal x+
+ if (isMaxX)
+ tgt[k] = src[k];
+ break;
+ case 3: // Portal z-
+ if (isMinZ)
+ tgt[k] = src[k];
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Calculate adjacency.
+ if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp))
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed.");
+ return false;
+ }
+
+ if (mesh.nverts > 0xffff)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff);
+ }
+ if (mesh.npolys > 0xffff)
+ {
+ ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
+ }
+
+ return true;
+}
+
+bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
+{
+ rcAssert(ctx);
+
+ // Destination must be empty.
+ rcAssert(dst.verts == 0);
+ rcAssert(dst.polys == 0);
+ rcAssert(dst.regs == 0);
+ rcAssert(dst.areas == 0);
+ rcAssert(dst.flags == 0);
+
+ dst.nverts = src.nverts;
+ dst.npolys = src.npolys;
+ dst.maxpolys = src.npolys;
+ dst.nvp = src.nvp;
+ rcVcopy(dst.bmin, src.bmin);
+ rcVcopy(dst.bmax, src.bmax);
+ dst.cs = src.cs;
+ dst.ch = src.ch;
+ dst.borderSize = src.borderSize;
+ dst.maxEdgeError = src.maxEdgeError;
+
+ dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM);
+ if (!dst.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3);
+ return false;
+ }
+ memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3);
+
+ dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM);
+ if (!dst.polys)
+ {
+ ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp);
+ return false;
+ }
+ memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp);
+
+ dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
+ if (!dst.regs)
+ {
+ ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys);
+ return false;
+ }
+ memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys);
+
+ dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM);
+ if (!dst.areas)
+ {
+ ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys);
+ return false;
+ }
+ memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys);
+
+ dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
+ if (!dst.flags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
+ return false;
+ }
+ memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
+
+ return true;
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
new file mode 100644
index 0000000000..f953132f74
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
@@ -0,0 +1,1462 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+
+static const unsigned RC_UNSET_HEIGHT = 0xffff;
+
+struct rcHeightPatch
+{
+ inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
+ inline ~rcHeightPatch() { rcFree(data); }
+ unsigned short* data;
+ int xmin, ymin, width, height;
+};
+
+
+inline float vdot2(const float* a, const float* b)
+{
+ return a[0]*b[0] + a[2]*b[2];
+}
+
+inline float vdistSq2(const float* p, const float* q)
+{
+ const float dx = q[0] - p[0];
+ const float dy = q[2] - p[2];
+ return dx*dx + dy*dy;
+}
+
+inline float vdist2(const float* p, const float* q)
+{
+ return sqrtf(vdistSq2(p,q));
+}
+
+inline float vcross2(const float* p1, const float* p2, const float* p3)
+{
+ const float u1 = p2[0] - p1[0];
+ const float v1 = p2[2] - p1[2];
+ const float u2 = p3[0] - p1[0];
+ const float v2 = p3[2] - p1[2];
+ return u1 * v2 - v1 * u2;
+}
+
+static bool circumCircle(const float* p1, const float* p2, const float* p3,
+ float* c, float& r)
+{
+ static const float EPS = 1e-6f;
+ // Calculate the circle relative to p1, to avoid some precision issues.
+ const float v1[3] = {0,0,0};
+ float v2[3], v3[3];
+ rcVsub(v2, p2,p1);
+ rcVsub(v3, p3,p1);
+
+ const float cp = vcross2(v1, v2, v3);
+ if (fabsf(cp) > EPS)
+ {
+ const float v1Sq = vdot2(v1,v1);
+ const float v2Sq = vdot2(v2,v2);
+ const float v3Sq = vdot2(v3,v3);
+ c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
+ c[1] = 0;
+ c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
+ r = vdist2(c, v1);
+ rcVadd(c, c, p1);
+ return true;
+ }
+
+ rcVcopy(c, p1);
+ r = 0;
+ return false;
+}
+
+static float distPtTri(const float* p, const float* a, const float* b, const float* c)
+{
+ float v0[3], v1[3], v2[3];
+ rcVsub(v0, c,a);
+ rcVsub(v1, b,a);
+ rcVsub(v2, p,a);
+
+ const float dot00 = vdot2(v0, v0);
+ const float dot01 = vdot2(v0, v1);
+ const float dot02 = vdot2(v0, v2);
+ const float dot11 = vdot2(v1, v1);
+ const float dot12 = vdot2(v1, v2);
+
+ // Compute barycentric coordinates
+ const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
+ const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
+
+ // If point lies inside the triangle, return interpolated y-coord.
+ static const float EPS = 1e-4f;
+ if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
+ {
+ const float y = a[1] + v0[1]*u + v1[1]*v;
+ return fabsf(y-p[1]);
+ }
+ return FLT_MAX;
+}
+
+static float distancePtSeg(const float* pt, const float* p, const float* q)
+{
+ float pqx = q[0] - p[0];
+ float pqy = q[1] - p[1];
+ float pqz = q[2] - p[2];
+ float dx = pt[0] - p[0];
+ float dy = pt[1] - p[1];
+ float dz = pt[2] - p[2];
+ float d = pqx*pqx + pqy*pqy + pqz*pqz;
+ float t = pqx*dx + pqy*dy + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = p[0] + t*pqx - pt[0];
+ dy = p[1] + t*pqy - pt[1];
+ dz = p[2] + t*pqz - pt[2];
+
+ return dx*dx + dy*dy + dz*dz;
+}
+
+static float distancePtSeg2d(const float* pt, const float* p, const float* q)
+{
+ float pqx = q[0] - p[0];
+ float pqz = q[2] - p[2];
+ float dx = pt[0] - p[0];
+ float dz = pt[2] - p[2];
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = p[0] + t*pqx - pt[0];
+ dz = p[2] + t*pqz - pt[2];
+
+ return dx*dx + dz*dz;
+}
+
+static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
+{
+ float dmin = FLT_MAX;
+ for (int i = 0; i < ntris; ++i)
+ {
+ const float* va = &verts[tris[i*4+0]*3];
+ const float* vb = &verts[tris[i*4+1]*3];
+ const float* vc = &verts[tris[i*4+2]*3];
+ float d = distPtTri(p, va,vb,vc);
+ if (d < dmin)
+ dmin = d;
+ }
+ if (dmin == FLT_MAX) return -1;
+ return dmin;
+}
+
+static float distToPoly(int nvert, const float* verts, const float* p)
+{
+
+ float dmin = FLT_MAX;
+ int i, j, c = 0;
+ for (i = 0, j = nvert-1; i < nvert; j = i++)
+ {
+ const float* vi = &verts[i*3];
+ const float* vj = &verts[j*3];
+ if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
+ (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
+ c = !c;
+ dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
+ }
+ return c ? -dmin : dmin;
+}
+
+
+static unsigned short getHeight(const float fx, const float fy, const float fz,
+ const float /*cs*/, const float ics, const float ch,
+ const int radius, const rcHeightPatch& hp)
+{
+ int ix = (int)floorf(fx*ics + 0.01f);
+ int iz = (int)floorf(fz*ics + 0.01f);
+ ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
+ iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
+ unsigned short h = hp.data[ix+iz*hp.width];
+ if (h == RC_UNSET_HEIGHT)
+ {
+ // Special case when data might be bad.
+ // Walk adjacent cells in a spiral up to 'radius', and look
+ // for a pixel which has a valid height.
+ int x = 1, z = 0, dx = 1, dz = 0;
+ int maxSize = radius * 2 + 1;
+ int maxIter = maxSize * maxSize - 1;
+
+ int nextRingIterStart = 8;
+ int nextRingIters = 16;
+
+ float dmin = FLT_MAX;
+ for (int i = 0; i < maxIter; i++)
+ {
+ const int nx = ix + x;
+ const int nz = iz + z;
+
+ if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
+ {
+ const unsigned short nh = hp.data[nx + nz*hp.width];
+ if (nh != RC_UNSET_HEIGHT)
+ {
+ const float d = fabsf(nh*ch - fy);
+ if (d < dmin)
+ {
+ h = nh;
+ dmin = d;
+ }
+ }
+ }
+
+ // We are searching in a grid which looks approximately like this:
+ // __________
+ // |2 ______ 2|
+ // | |1 __ 1| |
+ // | | |__| | |
+ // | |______| |
+ // |__________|
+ // We want to find the best height as close to the center cell as possible. This means that
+ // if we find a height in one of the neighbor cells to the center, we don't want to
+ // expand further out than the 8 neighbors - we want to limit our search to the closest
+ // of these "rings", but the best height in the ring.
+ // For example, the center is just 1 cell. We checked that at the entrance to the function.
+ // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
+ // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
+ // can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
+ // Here we detect if we are about to enter the next ring, and if we are and we have found
+ // a height, we abort the search.
+ if (i + 1 == nextRingIterStart)
+ {
+ if (h != RC_UNSET_HEIGHT)
+ break;
+
+ nextRingIterStart += nextRingIters;
+ nextRingIters += 8;
+ }
+
+ if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
+ {
+ int tmp = dx;
+ dx = -dz;
+ dz = tmp;
+ }
+ x += dx;
+ z += dz;
+ }
+ }
+ return h;
+}
+
+
+enum EdgeValues
+{
+ EV_UNDEF = -1,
+ EV_HULL = -2,
+};
+
+static int findEdge(const int* edges, int nedges, int s, int t)
+{
+ for (int i = 0; i < nedges; i++)
+ {
+ const int* e = &edges[i*4];
+ if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
+ return i;
+ }
+ return EV_UNDEF;
+}
+
+static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
+{
+ if (nedges >= maxEdges)
+ {
+ ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
+ return EV_UNDEF;
+ }
+
+ // Add edge if not already in the triangulation.
+ int e = findEdge(edges, nedges, s, t);
+ if (e == EV_UNDEF)
+ {
+ int* edge = &edges[nedges*4];
+ edge[0] = s;
+ edge[1] = t;
+ edge[2] = l;
+ edge[3] = r;
+ return nedges++;
+ }
+ else
+ {
+ return EV_UNDEF;
+ }
+}
+
+static void updateLeftFace(int* e, int s, int t, int f)
+{
+ if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
+ e[2] = f;
+ else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
+ e[3] = f;
+}
+
+static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
+{
+ const float a1 = vcross2(a, b, d);
+ const float a2 = vcross2(a, b, c);
+ if (a1*a2 < 0.0f)
+ {
+ float a3 = vcross2(c, d, a);
+ float a4 = a3 + a2 - a1;
+ if (a3 * a4 < 0.0f)
+ return 1;
+ }
+ return 0;
+}
+
+static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
+{
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int s0 = edges[i*4+0];
+ const int t0 = edges[i*4+1];
+ // Same or connected edges do not overlap.
+ if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
+ continue;
+ if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
+ return true;
+ }
+ return false;
+}
+
+static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
+{
+ static const float EPS = 1e-5f;
+
+ int* edge = &edges[e*4];
+
+ // Cache s and t.
+ int s,t;
+ if (edge[2] == EV_UNDEF)
+ {
+ s = edge[0];
+ t = edge[1];
+ }
+ else if (edge[3] == EV_UNDEF)
+ {
+ s = edge[1];
+ t = edge[0];
+ }
+ else
+ {
+ // Edge already completed.
+ return;
+ }
+
+ // Find best point on left of edge.
+ int pt = npts;
+ float c[3] = {0,0,0};
+ float r = -1;
+ for (int u = 0; u < npts; ++u)
+ {
+ if (u == s || u == t) continue;
+ if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
+ {
+ if (r < 0)
+ {
+ // The circle is not updated yet, do it now.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ continue;
+ }
+ const float d = vdist2(c, &pts[u*3]);
+ const float tol = 0.001f;
+ if (d > r*(1+tol))
+ {
+ // Outside current circumcircle, skip.
+ continue;
+ }
+ else if (d < r*(1-tol))
+ {
+ // Inside safe circumcircle, update circle.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ }
+ else
+ {
+ // Inside epsilon circum circle, do extra tests to make sure the edge is valid.
+ // s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
+ if (overlapEdges(pts, edges, nedges, s,u))
+ continue;
+ if (overlapEdges(pts, edges, nedges, t,u))
+ continue;
+ // Edge is valid.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ }
+ }
+ }
+
+ // Add new triangle or update edge info if s-t is on hull.
+ if (pt < npts)
+ {
+ // Update face information of edge being completed.
+ updateLeftFace(&edges[e*4], s, t, nfaces);
+
+ // Add new edge or update face info of old edge.
+ e = findEdge(edges, nedges, pt, s);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
+ else
+ updateLeftFace(&edges[e*4], pt, s, nfaces);
+
+ // Add new edge or update face info of old edge.
+ e = findEdge(edges, nedges, t, pt);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
+ else
+ updateLeftFace(&edges[e*4], t, pt, nfaces);
+
+ nfaces++;
+ }
+ else
+ {
+ updateLeftFace(&edges[e*4], s, t, EV_HULL);
+ }
+}
+
+static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
+ const int nhull, const int* hull,
+ rcIntArray& tris, rcIntArray& edges)
+{
+ int nfaces = 0;
+ int nedges = 0;
+ const int maxEdges = npts*10;
+ edges.resize(maxEdges*4);
+
+ for (int i = 0, j = nhull-1; i < nhull; j=i++)
+ addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
+
+ int currentEdge = 0;
+ while (currentEdge < nedges)
+ {
+ if (edges[currentEdge*4+2] == EV_UNDEF)
+ completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
+ if (edges[currentEdge*4+3] == EV_UNDEF)
+ completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
+ currentEdge++;
+ }
+
+ // Create tris
+ tris.resize(nfaces*4);
+ for (int i = 0; i < nfaces*4; ++i)
+ tris[i] = -1;
+
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int* e = &edges[i*4];
+ if (e[3] >= 0)
+ {
+ // Left face
+ int* t = &tris[e[3]*4];
+ if (t[0] == -1)
+ {
+ t[0] = e[0];
+ t[1] = e[1];
+ }
+ else if (t[0] == e[1])
+ t[2] = e[0];
+ else if (t[1] == e[0])
+ t[2] = e[1];
+ }
+ if (e[2] >= 0)
+ {
+ // Right
+ int* t = &tris[e[2]*4];
+ if (t[0] == -1)
+ {
+ t[0] = e[1];
+ t[1] = e[0];
+ }
+ else if (t[0] == e[0])
+ t[2] = e[1];
+ else if (t[1] == e[1])
+ t[2] = e[0];
+ }
+ }
+
+ for (int i = 0; i < tris.size()/4; ++i)
+ {
+ int* t = &tris[i*4];
+ if (t[0] == -1 || t[1] == -1 || t[2] == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
+ t[0] = tris[tris.size()-4];
+ t[1] = tris[tris.size()-3];
+ t[2] = tris[tris.size()-2];
+ t[3] = tris[tris.size()-1];
+ tris.resize(tris.size()-4);
+ --i;
+ }
+ }
+}
+
+// Calculate minimum extend of the polygon.
+static float polyMinExtent(const float* verts, const int nverts)
+{
+ float minDist = FLT_MAX;
+ for (int i = 0; i < nverts; i++)
+ {
+ const int ni = (i+1) % nverts;
+ const float* p1 = &verts[i*3];
+ const float* p2 = &verts[ni*3];
+ float maxEdgeDist = 0;
+ for (int j = 0; j < nverts; j++)
+ {
+ if (j == i || j == ni) continue;
+ float d = distancePtSeg2d(&verts[j*3], p1,p2);
+ maxEdgeDist = rcMax(maxEdgeDist, d);
+ }
+ minDist = rcMin(minDist, maxEdgeDist);
+ }
+ return rcSqrt(minDist);
+}
+
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
+{
+ int start = 0, left = 1, right = nhull-1;
+
+ // Start from an ear with shortest perimeter.
+ // This tends to favor well formed triangles as starting point.
+ float dmin = 0;
+ for (int i = 0; i < nhull; i++)
+ {
+ int pi = prev(i, nhull);
+ int ni = next(i, nhull);
+ const float* pv = &verts[hull[pi]*3];
+ const float* cv = &verts[hull[i]*3];
+ const float* nv = &verts[hull[ni]*3];
+ const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
+ if (d < dmin)
+ {
+ start = i;
+ left = ni;
+ right = pi;
+ dmin = d;
+ }
+ }
+
+ // Add first triangle
+ tris.push(hull[start]);
+ tris.push(hull[left]);
+ tris.push(hull[right]);
+ tris.push(0);
+
+ // Triangulate the polygon by moving left or right,
+ // depending on which triangle has shorter perimeter.
+ // This heuristic was chose emprically, since it seems
+ // handle tesselated straight edges well.
+ while (next(left, nhull) != right)
+ {
+ // Check to see if se should advance left or right.
+ int nleft = next(left, nhull);
+ int nright = prev(right, nhull);
+
+ const float* cvleft = &verts[hull[left]*3];
+ const float* nvleft = &verts[hull[nleft]*3];
+ const float* cvright = &verts[hull[right]*3];
+ const float* nvright = &verts[hull[nright]*3];
+ const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
+ const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
+
+ if (dleft < dright)
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nleft]);
+ tris.push(hull[right]);
+ tris.push(0);
+ left = nleft;
+ }
+ else
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nright]);
+ tris.push(hull[right]);
+ tris.push(0);
+ right = nright;
+ }
+ }
+}
+
+
+inline float getJitterX(const int i)
+{
+ return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
+}
+
+inline float getJitterY(const int i)
+{
+ return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
+}
+
+static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
+ const float sampleDist, const float sampleMaxError,
+ const int heightSearchRadius, const rcCompactHeightfield& chf,
+ const rcHeightPatch& hp, float* verts, int& nverts,
+ rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
+{
+ static const int MAX_VERTS = 127;
+ static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
+ static const int MAX_VERTS_PER_EDGE = 32;
+ float edge[(MAX_VERTS_PER_EDGE+1)*3];
+ int hull[MAX_VERTS];
+ int nhull = 0;
+
+ nverts = nin;
+
+ for (int i = 0; i < nin; ++i)
+ rcVcopy(&verts[i*3], &in[i*3]);
+
+ edges.resize(0);
+ tris.resize(0);
+
+ const float cs = chf.cs;
+ const float ics = 1.0f/cs;
+
+ // Calculate minimum extents of the polygon based on input data.
+ float minExtent = polyMinExtent(verts, nverts);
+
+ // Tessellate outlines.
+ // This is done in separate pass in order to ensure
+ // seamless height values across the ply boundaries.
+ if (sampleDist > 0)
+ {
+ for (int i = 0, j = nin-1; i < nin; j=i++)
+ {
+ const float* vj = &in[j*3];
+ const float* vi = &in[i*3];
+ bool swapped = false;
+ // Make sure the segments are always handled in same order
+ // using lexological sort or else there will be seams.
+ if (fabsf(vj[0]-vi[0]) < 1e-6f)
+ {
+ if (vj[2] > vi[2])
+ {
+ rcSwap(vj,vi);
+ swapped = true;
+ }
+ }
+ else
+ {
+ if (vj[0] > vi[0])
+ {
+ rcSwap(vj,vi);
+ swapped = true;
+ }
+ }
+ // Create samples along the edge.
+ float dx = vi[0] - vj[0];
+ float dy = vi[1] - vj[1];
+ float dz = vi[2] - vj[2];
+ float d = sqrtf(dx*dx + dz*dz);
+ int nn = 1 + (int)floorf(d/sampleDist);
+ if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
+ if (nverts+nn >= MAX_VERTS)
+ nn = MAX_VERTS-1-nverts;
+
+ for (int k = 0; k <= nn; ++k)
+ {
+ float u = (float)k/(float)nn;
+ float* pos = &edge[k*3];
+ pos[0] = vj[0] + dx*u;
+ pos[1] = vj[1] + dy*u;
+ pos[2] = vj[2] + dz*u;
+ pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
+ }
+ // Simplify samples.
+ int idx[MAX_VERTS_PER_EDGE] = {0,nn};
+ int nidx = 2;
+ for (int k = 0; k < nidx-1; )
+ {
+ const int a = idx[k];
+ const int b = idx[k+1];
+ const float* va = &edge[a*3];
+ const float* vb = &edge[b*3];
+ // Find maximum deviation along the segment.
+ float maxd = 0;
+ int maxi = -1;
+ for (int m = a+1; m < b; ++m)
+ {
+ float dev = distancePtSeg(&edge[m*3],va,vb);
+ if (dev > maxd)
+ {
+ maxd = dev;
+ maxi = m;
+ }
+ }
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1 && maxd > rcSqr(sampleMaxError))
+ {
+ for (int m = nidx; m > k; --m)
+ idx[m] = idx[m-1];
+ idx[k+1] = maxi;
+ nidx++;
+ }
+ else
+ {
+ ++k;
+ }
+ }
+
+ hull[nhull++] = j;
+ // Add new vertices.
+ if (swapped)
+ {
+ for (int k = nidx-2; k > 0; --k)
+ {
+ rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
+ hull[nhull++] = nverts;
+ nverts++;
+ }
+ }
+ else
+ {
+ for (int k = 1; k < nidx-1; ++k)
+ {
+ rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
+ hull[nhull++] = nverts;
+ nverts++;
+ }
+ }
+ }
+ }
+
+ // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
+ if (minExtent < sampleDist*2)
+ {
+ triangulateHull(nverts, verts, nhull, hull, tris);
+ return true;
+ }
+
+ // Tessellate the base mesh.
+ // We're using the triangulateHull instead of delaunayHull as it tends to
+ // create a bit better triangulation for long thin triangles when there
+ // are no internal points.
+ triangulateHull(nverts, verts, nhull, hull, tris);
+
+ if (tris.size() == 0)
+ {
+ // Could not triangulate the poly, make sure there is some valid data there.
+ ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
+ return true;
+ }
+
+ if (sampleDist > 0)
+ {
+ // Create sample locations in a grid.
+ float bmin[3], bmax[3];
+ rcVcopy(bmin, in);
+ rcVcopy(bmax, in);
+ for (int i = 1; i < nin; ++i)
+ {
+ rcVmin(bmin, &in[i*3]);
+ rcVmax(bmax, &in[i*3]);
+ }
+ int x0 = (int)floorf(bmin[0]/sampleDist);
+ int x1 = (int)ceilf(bmax[0]/sampleDist);
+ int z0 = (int)floorf(bmin[2]/sampleDist);
+ int z1 = (int)ceilf(bmax[2]/sampleDist);
+ samples.resize(0);
+ for (int z = z0; z < z1; ++z)
+ {
+ for (int x = x0; x < x1; ++x)
+ {
+ float pt[3];
+ pt[0] = x*sampleDist;
+ pt[1] = (bmax[1]+bmin[1])*0.5f;
+ pt[2] = z*sampleDist;
+ // Make sure the samples are not too close to the edges.
+ if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
+ samples.push(x);
+ samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
+ samples.push(z);
+ samples.push(0); // Not added
+ }
+ }
+
+ // Add the samples starting from the one that has the most
+ // error. The procedure stops when all samples are added
+ // or when the max error is within treshold.
+ const int nsamples = samples.size()/4;
+ for (int iter = 0; iter < nsamples; ++iter)
+ {
+ if (nverts >= MAX_VERTS)
+ break;
+
+ // Find sample with most error.
+ float bestpt[3] = {0,0,0};
+ float bestd = 0;
+ int besti = -1;
+ for (int i = 0; i < nsamples; ++i)
+ {
+ const int* s = &samples[i*4];
+ if (s[3]) continue; // skip added.
+ float pt[3];
+ // The sample location is jittered to get rid of some bad triangulations
+ // which are cause by symmetrical data from the grid structure.
+ pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
+ pt[1] = s[1]*chf.ch;
+ pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
+ float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
+ if (d < 0) continue; // did not hit the mesh.
+ if (d > bestd)
+ {
+ bestd = d;
+ besti = i;
+ rcVcopy(bestpt,pt);
+ }
+ }
+ // If the max error is within accepted threshold, stop tesselating.
+ if (bestd <= sampleMaxError || besti == -1)
+ break;
+ // Mark sample as added.
+ samples[besti*4+3] = 1;
+ // Add the new sample point.
+ rcVcopy(&verts[nverts*3],bestpt);
+ nverts++;
+
+ // Create new triangulation.
+ // TODO: Incremental add instead of full rebuild.
+ edges.resize(0);
+ tris.resize(0);
+ delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
+ }
+ }
+
+ const int ntris = tris.size()/4;
+ if (ntris > MAX_TRIS)
+ {
+ tris.resize(MAX_TRIS*4);
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
+ }
+
+ return true;
+}
+
+static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& array)
+{
+ // Note: Reads to the compact heightfield are offset by border size (bs)
+ // since border size offset is already removed from the polymesh vertices.
+
+ static const int offset[9*2] =
+ {
+ 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
+ };
+
+ // Find cell closest to a poly vertex
+ int startCellX = 0, startCellY = 0, startSpanIndex = -1;
+ int dmin = RC_UNSET_HEIGHT;
+ for (int j = 0; j < npoly && dmin > 0; ++j)
+ {
+ for (int k = 0; k < 9 && dmin > 0; ++k)
+ {
+ const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
+ const int ay = (int)verts[poly[j]*3+1];
+ const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
+ if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
+ az < hp.ymin || az >= hp.ymin+hp.height)
+ continue;
+
+ const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ int d = rcAbs(ay - (int)s.y);
+ if (d < dmin)
+ {
+ startCellX = ax;
+ startCellY = az;
+ startSpanIndex = i;
+ dmin = d;
+ }
+ }
+ }
+ }
+
+ rcAssert(startSpanIndex != -1);
+ // Find center of the polygon
+ int pcx = 0, pcy = 0;
+ for (int j = 0; j < npoly; ++j)
+ {
+ pcx += (int)verts[poly[j]*3+0];
+ pcy += (int)verts[poly[j]*3+2];
+ }
+ pcx /= npoly;
+ pcy /= npoly;
+
+ // Use seeds array as a stack for DFS
+ array.resize(0);
+ array.push(startCellX);
+ array.push(startCellY);
+ array.push(startSpanIndex);
+
+ int dirs[] = { 0, 1, 2, 3 };
+ memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
+ // DFS to move to the center. Note that we need a DFS here and can not just move
+ // directly towards the center without recording intermediate nodes, even though the polygons
+ // are convex. In very rare we can get stuck due to contour simplification if we do not
+ // record nodes.
+ int cx = -1, cy = -1, ci = -1;
+ while (true)
+ {
+ if (array.size() < 3)
+ {
+ ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
+ break;
+ }
+
+ ci = array.pop();
+ cy = array.pop();
+ cx = array.pop();
+
+ if (cx == pcx && cy == pcy)
+ break;
+
+ // If we are already at the correct X-position, prefer direction
+ // directly towards the center in the Y-axis; otherwise prefer
+ // direction in the X-axis
+ int directDir;
+ if (cx == pcx)
+ directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
+ else
+ directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
+
+ // Push the direct dir last so we start with this on next iteration
+ rcSwap(dirs[directDir], dirs[3]);
+
+ const rcCompactSpan& cs = chf.spans[ci];
+ for (int i = 0; i < 4; i++)
+ {
+ int dir = dirs[i];
+ if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
+ continue;
+
+ int newX = cx + rcGetDirOffsetX(dir);
+ int newY = cy + rcGetDirOffsetY(dir);
+
+ int hpx = newX - hp.xmin;
+ int hpy = newY - hp.ymin;
+ if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
+ continue;
+
+ if (hp.data[hpx+hpy*hp.width] != 0)
+ continue;
+
+ hp.data[hpx+hpy*hp.width] = 1;
+ array.push(newX);
+ array.push(newY);
+ array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
+ }
+
+ rcSwap(dirs[directDir], dirs[3]);
+ }
+
+ array.resize(0);
+ // getHeightData seeds are given in coordinates with borders
+ array.push(cx+bs);
+ array.push(cy+bs);
+ array.push(ci);
+
+ memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+ const rcCompactSpan& cs = chf.spans[ci];
+ hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
+}
+
+
+static void push3(rcIntArray& queue, int v1, int v2, int v3)
+{
+ queue.resize(queue.size() + 3);
+ queue[queue.size() - 3] = v1;
+ queue[queue.size() - 2] = v2;
+ queue[queue.size() - 1] = v3;
+}
+
+static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& queue,
+ int region)
+{
+ // Note: Reads to the compact heightfield are offset by border size (bs)
+ // since border size offset is already removed from the polymesh vertices.
+
+ queue.resize(0);
+ // Set all heights to RC_UNSET_HEIGHT.
+ memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+
+ bool empty = true;
+
+ // We cannot sample from this poly if it was created from polys
+ // of different regions. If it was then it could potentially be overlapping
+ // with polys of that region and the heights sampled here could be wrong.
+ if (region != RC_MULTIPLE_REGS)
+ {
+ // Copy the height from the same region, and mark region borders
+ // as seed points to fill the rest.
+ for (int hy = 0; hy < hp.height; hy++)
+ {
+ int y = hp.ymin + hy + bs;
+ for (int hx = 0; hx < hp.width; hx++)
+ {
+ int x = hp.xmin + hx + bs;
+ const rcCompactCell& c = chf.cells[x + y*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (s.reg == region)
+ {
+ // Store height
+ hp.data[hx + hy*hp.width] = s.y;
+ empty = false;
+
+ // If any of the neighbours is not in same region,
+ // add the current location as flood fill start
+ bool border = false;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (as.reg != region)
+ {
+ border = true;
+ break;
+ }
+ }
+ }
+ if (border)
+ push3(queue, x, y, i);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // if the polygon does not contain any points from the current region (rare, but happens)
+ // or if it could potentially be overlapping polygons of the same region,
+ // then use the center as the seed point.
+ if (empty)
+ seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
+
+ static const int RETRACT_SIZE = 256;
+ int head = 0;
+
+ // We assume the seed is centered in the polygon, so a BFS to collect
+ // height data will ensure we do not move onto overlapping polygons and
+ // sample wrong heights.
+ while (head*3 < queue.size())
+ {
+ int cx = queue[head*3+0];
+ int cy = queue[head*3+1];
+ int ci = queue[head*3+2];
+ head++;
+ if (head >= RETRACT_SIZE)
+ {
+ head = 0;
+ if (queue.size() > RETRACT_SIZE*3)
+ memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
+ queue.resize(queue.size()-RETRACT_SIZE*3);
+ }
+
+ const rcCompactSpan& cs = chf.spans[ci];
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
+
+ const int ax = cx + rcGetDirOffsetX(dir);
+ const int ay = cy + rcGetDirOffsetY(dir);
+ const int hx = ax - hp.xmin - bs;
+ const int hy = ay - hp.ymin - bs;
+
+ if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
+ continue;
+
+ if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
+ continue;
+
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+
+ hp.data[hx + hy*hp.width] = as.y;
+
+ push3(queue, ax, ay, ai);
+ }
+ }
+}
+
+static unsigned char getEdgeFlags(const float* va, const float* vb,
+ const float* vpoly, const int npoly)
+{
+ // Return true if edge (va,vb) is part of the polygon.
+ static const float thrSqr = rcSqr(0.001f);
+ for (int i = 0, j = npoly-1; i < npoly; j=i++)
+ {
+ if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
+ distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
+ return 1;
+ }
+ return 0;
+}
+
+static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
+ const float* vpoly, const int npoly)
+{
+ unsigned char flags = 0;
+ flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
+ flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
+ flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
+ return flags;
+}
+
+/// @par
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
+bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
+ const float sampleDist, const float sampleMaxError,
+ rcPolyMeshDetail& dmesh)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
+
+ if (mesh.nverts == 0 || mesh.npolys == 0)
+ return true;
+
+ const int nvp = mesh.nvp;
+ const float cs = mesh.cs;
+ const float ch = mesh.ch;
+ const float* orig = mesh.bmin;
+ const int borderSize = mesh.borderSize;
+ const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
+
+ rcIntArray edges(64);
+ rcIntArray tris(512);
+ rcIntArray arr(512);
+ rcIntArray samples(512);
+ float verts[256*3];
+ rcHeightPatch hp;
+ int nPolyVerts = 0;
+ int maxhw = 0, maxhh = 0;
+
+ rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
+ if (!bounds)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
+ return false;
+ }
+ rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
+ if (!poly)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
+ return false;
+ }
+
+ // Find max size for a polygon area.
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ const unsigned short* p = &mesh.polys[i*nvp*2];
+ int& xmin = bounds[i*4+0];
+ int& xmax = bounds[i*4+1];
+ int& ymin = bounds[i*4+2];
+ int& ymax = bounds[i*4+3];
+ xmin = chf.width;
+ xmax = 0;
+ ymin = chf.height;
+ ymax = 0;
+ for (int j = 0; j < nvp; ++j)
+ {
+ if(p[j] == RC_MESH_NULL_IDX) break;
+ const unsigned short* v = &mesh.verts[p[j]*3];
+ xmin = rcMin(xmin, (int)v[0]);
+ xmax = rcMax(xmax, (int)v[0]);
+ ymin = rcMin(ymin, (int)v[2]);
+ ymax = rcMax(ymax, (int)v[2]);
+ nPolyVerts++;
+ }
+ xmin = rcMax(0,xmin-1);
+ xmax = rcMin(chf.width,xmax+1);
+ ymin = rcMax(0,ymin-1);
+ ymax = rcMin(chf.height,ymax+1);
+ if (xmin >= xmax || ymin >= ymax) continue;
+ maxhw = rcMax(maxhw, xmax-xmin);
+ maxhh = rcMax(maxhh, ymax-ymin);
+ }
+
+ hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
+ if (!hp.data)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
+ return false;
+ }
+
+ dmesh.nmeshes = mesh.npolys;
+ dmesh.nverts = 0;
+ dmesh.ntris = 0;
+ dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
+ if (!dmesh.meshes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
+ return false;
+ }
+
+ int vcap = nPolyVerts+nPolyVerts/2;
+ int tcap = vcap*2;
+
+ dmesh.nverts = 0;
+ dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
+ if (!dmesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
+ return false;
+ }
+ dmesh.ntris = 0;
+ dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
+ if (!dmesh.tris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
+ return false;
+ }
+
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ const unsigned short* p = &mesh.polys[i*nvp*2];
+
+ // Store polygon vertices for processing.
+ int npoly = 0;
+ for (int j = 0; j < nvp; ++j)
+ {
+ if(p[j] == RC_MESH_NULL_IDX) break;
+ const unsigned short* v = &mesh.verts[p[j]*3];
+ poly[j*3+0] = v[0]*cs;
+ poly[j*3+1] = v[1]*ch;
+ poly[j*3+2] = v[2]*cs;
+ npoly++;
+ }
+
+ // Get the height data from the area of the polygon.
+ hp.xmin = bounds[i*4+0];
+ hp.ymin = bounds[i*4+2];
+ hp.width = bounds[i*4+1]-bounds[i*4+0];
+ hp.height = bounds[i*4+3]-bounds[i*4+2];
+ getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
+
+ // Build detail mesh.
+ int nverts = 0;
+ if (!buildPolyDetail(ctx, poly, npoly,
+ sampleDist, sampleMaxError,
+ heightSearchRadius, chf, hp,
+ verts, nverts, tris,
+ edges, samples))
+ {
+ return false;
+ }
+
+ // Move detail verts to world space.
+ for (int j = 0; j < nverts; ++j)
+ {
+ verts[j*3+0] += orig[0];
+ verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
+ verts[j*3+2] += orig[2];
+ }
+ // Offset poly too, will be used to flag checking.
+ for (int j = 0; j < npoly; ++j)
+ {
+ poly[j*3+0] += orig[0];
+ poly[j*3+1] += orig[1];
+ poly[j*3+2] += orig[2];
+ }
+
+ // Store detail submesh.
+ const int ntris = tris.size()/4;
+
+ dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
+ dmesh.meshes[i*4+1] = (unsigned int)nverts;
+ dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
+ dmesh.meshes[i*4+3] = (unsigned int)ntris;
+
+ // Store vertices, allocate more memory if necessary.
+ if (dmesh.nverts+nverts > vcap)
+ {
+ while (dmesh.nverts+nverts > vcap)
+ vcap += 256;
+
+ float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
+ if (!newv)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
+ return false;
+ }
+ if (dmesh.nverts)
+ memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
+ rcFree(dmesh.verts);
+ dmesh.verts = newv;
+ }
+ for (int j = 0; j < nverts; ++j)
+ {
+ dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
+ dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
+ dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
+ dmesh.nverts++;
+ }
+
+ // Store triangles, allocate more memory if necessary.
+ if (dmesh.ntris+ntris > tcap)
+ {
+ while (dmesh.ntris+ntris > tcap)
+ tcap += 256;
+ unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
+ if (!newt)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
+ return false;
+ }
+ if (dmesh.ntris)
+ memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
+ rcFree(dmesh.tris);
+ dmesh.tris = newt;
+ }
+ for (int j = 0; j < ntris; ++j)
+ {
+ const int* t = &tris[j*4];
+ dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
+ dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
+ dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
+ dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
+ dmesh.ntris++;
+ }
+ }
+
+ return true;
+}
+
+/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
+bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
+
+ int maxVerts = 0;
+ int maxTris = 0;
+ int maxMeshes = 0;
+
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ if (!meshes[i]) continue;
+ maxVerts += meshes[i]->nverts;
+ maxTris += meshes[i]->ntris;
+ maxMeshes += meshes[i]->nmeshes;
+ }
+
+ mesh.nmeshes = 0;
+ mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
+ if (!mesh.meshes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
+ return false;
+ }
+
+ mesh.ntris = 0;
+ mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
+ if (!mesh.tris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
+ return false;
+ }
+
+ mesh.nverts = 0;
+ mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
+ if (!mesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
+ return false;
+ }
+
+ // Merge datas.
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ rcPolyMeshDetail* dm = meshes[i];
+ if (!dm) continue;
+ for (int j = 0; j < dm->nmeshes; ++j)
+ {
+ unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
+ unsigned int* src = &dm->meshes[j*4];
+ dst[0] = (unsigned int)mesh.nverts+src[0];
+ dst[1] = src[1];
+ dst[2] = (unsigned int)mesh.ntris+src[2];
+ dst[3] = src[3];
+ mesh.nmeshes++;
+ }
+
+ for (int k = 0; k < dm->nverts; ++k)
+ {
+ rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
+ mesh.nverts++;
+ }
+ for (int k = 0; k < dm->ntris; ++k)
+ {
+ mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
+ mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
+ mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
+ mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
+ mesh.ntris++;
+ }
+ }
+
+ return true;
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastRasterization.cpp b/thirdparty/recastnavigation/Recast/Source/RecastRasterization.cpp
new file mode 100644
index 0000000000..a4cef74909
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastRasterization.cpp
@@ -0,0 +1,454 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
+{
+ bool overlap = true;
+ overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
+ overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
+ overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
+ return overlap;
+}
+
+inline bool overlapInterval(unsigned short amin, unsigned short amax,
+ unsigned short bmin, unsigned short bmax)
+{
+ if (amax < bmin) return false;
+ if (amin > bmax) return false;
+ return true;
+}
+
+
+static rcSpan* allocSpan(rcHeightfield& hf)
+{
+ // If running out of memory, allocate new page and update the freelist.
+ if (!hf.freelist || !hf.freelist->next)
+ {
+ // Create new page.
+ // Allocate memory for the new pool.
+ rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
+ if (!pool) return 0;
+
+ // Add the pool into the list of pools.
+ pool->next = hf.pools;
+ hf.pools = pool;
+ // Add new items to the free list.
+ rcSpan* freelist = hf.freelist;
+ rcSpan* head = &pool->items[0];
+ rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
+ do
+ {
+ --it;
+ it->next = freelist;
+ freelist = it;
+ }
+ while (it != head);
+ hf.freelist = it;
+ }
+
+ // Pop item from in front of the free list.
+ rcSpan* it = hf.freelist;
+ hf.freelist = hf.freelist->next;
+ return it;
+}
+
+static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
+{
+ if (!ptr) return;
+ // Add the node in front of the free list.
+ ptr->next = hf.freelist;
+ hf.freelist = ptr;
+}
+
+static bool addSpan(rcHeightfield& hf, const int x, const int y,
+ const unsigned short smin, const unsigned short smax,
+ const unsigned char area, const int flagMergeThr)
+{
+
+ int idx = x + y*hf.width;
+
+ rcSpan* s = allocSpan(hf);
+ if (!s)
+ return false;
+ s->smin = smin;
+ s->smax = smax;
+ s->area = area;
+ s->next = 0;
+
+ // Empty cell, add the first span.
+ if (!hf.spans[idx])
+ {
+ hf.spans[idx] = s;
+ return true;
+ }
+ rcSpan* prev = 0;
+ rcSpan* cur = hf.spans[idx];
+
+ // Insert and merge spans.
+ while (cur)
+ {
+ if (cur->smin > s->smax)
+ {
+ // Current span is further than the new span, break.
+ break;
+ }
+ else if (cur->smax < s->smin)
+ {
+ // Current span is before the new span advance.
+ prev = cur;
+ cur = cur->next;
+ }
+ else
+ {
+ // Merge spans.
+ if (cur->smin < s->smin)
+ s->smin = cur->smin;
+ if (cur->smax > s->smax)
+ s->smax = cur->smax;
+
+ // Merge flags.
+ if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
+ s->area = rcMax(s->area, cur->area);
+
+ // Remove current span.
+ rcSpan* next = cur->next;
+ freeSpan(hf, cur);
+ if (prev)
+ prev->next = next;
+ else
+ hf.spans[idx] = next;
+ cur = next;
+ }
+ }
+
+ // Insert new span.
+ if (prev)
+ {
+ s->next = prev->next;
+ prev->next = s;
+ }
+ else
+ {
+ s->next = hf.spans[idx];
+ hf.spans[idx] = s;
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// The span addition can be set to favor flags. If the span is merged to
+/// another span and the new @p smax is within @p flagMergeThr units
+/// from the existing span, the span flags are merged.
+///
+/// @see rcHeightfield, rcSpan.
+bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
+ const unsigned short smin, const unsigned short smax,
+ const unsigned char area, const int flagMergeThr)
+{
+ rcAssert(ctx);
+
+ if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr))
+ {
+ ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
+ return false;
+ }
+
+ return true;
+}
+
+// divides a convex polygons into two convex polygons on both sides of a line
+static void dividePoly(const float* in, int nin,
+ float* out1, int* nout1,
+ float* out2, int* nout2,
+ float x, int axis)
+{
+ float d[12];
+ for (int i = 0; i < nin; ++i)
+ d[i] = x - in[i*3+axis];
+
+ int m = 0, n = 0;
+ for (int i = 0, j = nin-1; i < nin; j=i, ++i)
+ {
+ bool ina = d[j] >= 0;
+ bool inb = d[i] >= 0;
+ if (ina != inb)
+ {
+ float s = d[j] / (d[j] - d[i]);
+ out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
+ out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
+ out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
+ rcVcopy(out2 + n*3, out1 + m*3);
+ m++;
+ n++;
+ // add the i'th point to the right polygon. Do NOT add points that are on the dividing line
+ // since these were already added above
+ if (d[i] > 0)
+ {
+ rcVcopy(out1 + m*3, in + i*3);
+ m++;
+ }
+ else if (d[i] < 0)
+ {
+ rcVcopy(out2 + n*3, in + i*3);
+ n++;
+ }
+ }
+ else // same side
+ {
+ // add the i'th point to the right polygon. Addition is done even for points on the dividing line
+ if (d[i] >= 0)
+ {
+ rcVcopy(out1 + m*3, in + i*3);
+ m++;
+ if (d[i] != 0)
+ continue;
+ }
+ rcVcopy(out2 + n*3, in + i*3);
+ n++;
+ }
+ }
+
+ *nout1 = m;
+ *nout2 = n;
+}
+
+
+
+static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
+ const unsigned char area, rcHeightfield& hf,
+ const float* bmin, const float* bmax,
+ const float cs, const float ics, const float ich,
+ const int flagMergeThr)
+{
+ const int w = hf.width;
+ const int h = hf.height;
+ float tmin[3], tmax[3];
+ const float by = bmax[1] - bmin[1];
+
+ // Calculate the bounding box of the triangle.
+ rcVcopy(tmin, v0);
+ rcVcopy(tmax, v0);
+ rcVmin(tmin, v1);
+ rcVmin(tmin, v2);
+ rcVmax(tmax, v1);
+ rcVmax(tmax, v2);
+
+ // If the triangle does not touch the bbox of the heightfield, skip the triagle.
+ if (!overlapBounds(bmin, bmax, tmin, tmax))
+ return true;
+
+ // Calculate the footprint of the triangle on the grid's y-axis
+ int y0 = (int)((tmin[2] - bmin[2])*ics);
+ int y1 = (int)((tmax[2] - bmin[2])*ics);
+ y0 = rcClamp(y0, 0, h-1);
+ y1 = rcClamp(y1, 0, h-1);
+
+ // Clip the triangle into all grid cells it touches.
+ float buf[7*3*4];
+ float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;
+
+ rcVcopy(&in[0], v0);
+ rcVcopy(&in[1*3], v1);
+ rcVcopy(&in[2*3], v2);
+ int nvrow, nvIn = 3;
+
+ for (int y = y0; y <= y1; ++y)
+ {
+ // Clip polygon to row. Store the remaining polygon as well
+ const float cz = bmin[2] + y*cs;
+ dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
+ rcSwap(in, p1);
+ if (nvrow < 3) continue;
+
+ // find the horizontal bounds in the row
+ float minX = inrow[0], maxX = inrow[0];
+ for (int i=1; i<nvrow; ++i)
+ {
+ if (minX > inrow[i*3]) minX = inrow[i*3];
+ if (maxX < inrow[i*3]) maxX = inrow[i*3];
+ }
+ int x0 = (int)((minX - bmin[0])*ics);
+ int x1 = (int)((maxX - bmin[0])*ics);
+ x0 = rcClamp(x0, 0, w-1);
+ x1 = rcClamp(x1, 0, w-1);
+
+ int nv, nv2 = nvrow;
+
+ for (int x = x0; x <= x1; ++x)
+ {
+ // Clip polygon to column. store the remaining polygon as well
+ const float cx = bmin[0] + x*cs;
+ dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
+ rcSwap(inrow, p2);
+ if (nv < 3) continue;
+
+ // Calculate min and max of the span.
+ float smin = p1[1], smax = p1[1];
+ for (int i = 1; i < nv; ++i)
+ {
+ smin = rcMin(smin, p1[i*3+1]);
+ smax = rcMax(smax, p1[i*3+1]);
+ }
+ smin -= bmin[1];
+ smax -= bmin[1];
+ // Skip the span if it is outside the heightfield bbox
+ if (smax < 0.0f) continue;
+ if (smin > by) continue;
+ // Clamp the span to the heightfield bbox.
+ if (smin < 0.0f) smin = 0;
+ if (smax > by) smax = by;
+
+ // Snap the span to the heightfield height grid.
+ unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
+ unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
+
+ if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// No spans will be added if the triangle does not overlap the heightfield grid.
+///
+/// @see rcHeightfield
+bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
+ const unsigned char area, rcHeightfield& solid,
+ const int flagMergeThr)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
+
+ const float ics = 1.0f/solid.cs;
+ const float ich = 1.0f/solid.ch;
+ if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
+ {
+ ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
+ return false;
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// Spans will only be added for triangles that overlap the heightfield grid.
+///
+/// @see rcHeightfield
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
+ const int* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
+
+ const float ics = 1.0f/solid.cs;
+ const float ich = 1.0f/solid.ch;
+ // Rasterize triangles.
+ for (int i = 0; i < nt; ++i)
+ {
+ const float* v0 = &verts[tris[i*3+0]*3];
+ const float* v1 = &verts[tris[i*3+1]*3];
+ const float* v2 = &verts[tris[i*3+2]*3];
+ // Rasterize.
+ if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
+ {
+ ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// Spans will only be added for triangles that overlap the heightfield grid.
+///
+/// @see rcHeightfield
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
+ const unsigned short* tris, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
+
+ const float ics = 1.0f/solid.cs;
+ const float ich = 1.0f/solid.ch;
+ // Rasterize triangles.
+ for (int i = 0; i < nt; ++i)
+ {
+ const float* v0 = &verts[tris[i*3+0]*3];
+ const float* v1 = &verts[tris[i*3+1]*3];
+ const float* v2 = &verts[tris[i*3+2]*3];
+ // Rasterize.
+ if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
+ {
+ ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// @par
+///
+/// Spans will only be added for triangles that overlap the heightfield grid.
+///
+/// @see rcHeightfield
+bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
+ rcHeightfield& solid, const int flagMergeThr)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
+
+ const float ics = 1.0f/solid.cs;
+ const float ich = 1.0f/solid.ch;
+ // Rasterize triangles.
+ for (int i = 0; i < nt; ++i)
+ {
+ const float* v0 = &verts[(i*3+0)*3];
+ const float* v1 = &verts[(i*3+1)*3];
+ const float* v2 = &verts[(i*3+2)*3];
+ // Rasterize.
+ if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
+ {
+ ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
+ return false;
+ }
+ }
+
+ return true;
+}
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp b/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp
new file mode 100644
index 0000000000..38a2bd6bfa
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastRegion.cpp
@@ -0,0 +1,1824 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+#include <new>
+
+
+static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ // Init distance and points.
+ for (int i = 0; i < chf.spanCount; ++i)
+ src[i] = 0xffff;
+
+ // Mark boundary cells.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ const unsigned char area = chf.areas[i];
+
+ int nc = 0;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ if (area == chf.areas[ai])
+ nc++;
+ }
+ }
+ if (nc != 4)
+ src[i] = 0;
+ }
+ }
+ }
+
+
+ // Pass 1
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ // (-1,0)
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (src[ai]+2 < src[i])
+ src[i] = src[ai]+2;
+
+ // (-1,-1)
+ if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(3);
+ const int aay = ay + rcGetDirOffsetY(3);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
+ if (src[aai]+3 < src[i])
+ src[i] = src[aai]+3;
+ }
+ }
+ if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
+ {
+ // (0,-1)
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (src[ai]+2 < src[i])
+ src[i] = src[ai]+2;
+
+ // (1,-1)
+ if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(2);
+ const int aay = ay + rcGetDirOffsetY(2);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
+ if (src[aai]+3 < src[i])
+ src[i] = src[aai]+3;
+ }
+ }
+ }
+ }
+ }
+
+ // Pass 2
+ for (int y = h-1; y >= 0; --y)
+ {
+ for (int x = w-1; x >= 0; --x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+
+ if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
+ {
+ // (1,0)
+ const int ax = x + rcGetDirOffsetX(2);
+ const int ay = y + rcGetDirOffsetY(2);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (src[ai]+2 < src[i])
+ src[i] = src[ai]+2;
+
+ // (1,1)
+ if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(1);
+ const int aay = ay + rcGetDirOffsetY(1);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
+ if (src[aai]+3 < src[i])
+ src[i] = src[aai]+3;
+ }
+ }
+ if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
+ {
+ // (0,1)
+ const int ax = x + rcGetDirOffsetX(1);
+ const int ay = y + rcGetDirOffsetY(1);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (src[ai]+2 < src[i])
+ src[i] = src[ai]+2;
+
+ // (-1,1)
+ if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
+ {
+ const int aax = ax + rcGetDirOffsetX(0);
+ const int aay = ay + rcGetDirOffsetY(0);
+ const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
+ if (src[aai]+3 < src[i])
+ src[i] = src[aai]+3;
+ }
+ }
+ }
+ }
+ }
+
+ maxDist = 0;
+ for (int i = 0; i < chf.spanCount; ++i)
+ maxDist = rcMax(src[i], maxDist);
+
+}
+
+static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr,
+ unsigned short* src, unsigned short* dst)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ thr *= 2;
+
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ const unsigned short cd = src[i];
+ if (cd <= thr)
+ {
+ dst[i] = cd;
+ continue;
+ }
+
+ int d = (int)cd;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ d += (int)src[ai];
+
+ const rcCompactSpan& as = chf.spans[ai];
+ const int dir2 = (dir+1) & 0x3;
+ if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dir2);
+ const int ay2 = ay + rcGetDirOffsetY(dir2);
+ const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
+ d += (int)src[ai2];
+ }
+ else
+ {
+ d += cd;
+ }
+ }
+ else
+ {
+ d += cd*2;
+ }
+ }
+ dst[i] = (unsigned short)((d+5)/9);
+ }
+ }
+ }
+ return dst;
+}
+
+
+static bool floodRegion(int x, int y, int i,
+ unsigned short level, unsigned short r,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, unsigned short* srcDist,
+ rcIntArray& stack)
+{
+ const int w = chf.width;
+
+ const unsigned char area = chf.areas[i];
+
+ // Flood fill mark region.
+ stack.resize(0);
+ stack.push((int)x);
+ stack.push((int)y);
+ stack.push((int)i);
+ srcReg[i] = r;
+ srcDist[i] = 0;
+
+ unsigned short lev = level >= 2 ? level-2 : 0;
+ int count = 0;
+
+ while (stack.size() > 0)
+ {
+ int ci = stack.pop();
+ int cy = stack.pop();
+ int cx = stack.pop();
+
+ const rcCompactSpan& cs = chf.spans[ci];
+
+ // Check if any of the neighbours already have a valid region set.
+ unsigned short ar = 0;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ // 8 connected
+ if (rcGetCon(cs, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = cx + rcGetDirOffsetX(dir);
+ const int ay = cy + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
+ if (chf.areas[ai] != area)
+ continue;
+ unsigned short nr = srcReg[ai];
+ if (nr & RC_BORDER_REG) // Do not take borders into account.
+ continue;
+ if (nr != 0 && nr != r)
+ {
+ ar = nr;
+ break;
+ }
+
+ const rcCompactSpan& as = chf.spans[ai];
+
+ const int dir2 = (dir+1) & 0x3;
+ if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dir2);
+ const int ay2 = ay + rcGetDirOffsetY(dir2);
+ const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
+ if (chf.areas[ai2] != area)
+ continue;
+ unsigned short nr2 = srcReg[ai2];
+ if (nr2 != 0 && nr2 != r)
+ {
+ ar = nr2;
+ break;
+ }
+ }
+ }
+ }
+ if (ar != 0)
+ {
+ srcReg[ci] = 0;
+ continue;
+ }
+
+ count++;
+
+ // Expand neighbours.
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(cs, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = cx + rcGetDirOffsetX(dir);
+ const int ay = cy + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
+ if (chf.areas[ai] != area)
+ continue;
+ if (chf.dist[ai] >= lev && srcReg[ai] == 0)
+ {
+ srcReg[ai] = r;
+ srcDist[ai] = 0;
+ stack.push(ax);
+ stack.push(ay);
+ stack.push(ai);
+ }
+ }
+ }
+ }
+
+ return count > 0;
+}
+
+static unsigned short* expandRegions(int maxIter, unsigned short level,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, unsigned short* srcDist,
+ unsigned short* dstReg, unsigned short* dstDist,
+ rcIntArray& stack,
+ bool fillStack)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ if (fillStack)
+ {
+ // Find cells revealed by the raised level.
+ stack.resize(0);
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
+ {
+ stack.push(x);
+ stack.push(y);
+ stack.push(i);
+ }
+ }
+ }
+ }
+ }
+ else // use cells in the input stack
+ {
+ // mark all cells which already have a region
+ for (int j=0; j<stack.size(); j+=3)
+ {
+ int i = stack[j+2];
+ if (srcReg[i] != 0)
+ stack[j+2] = -1;
+ }
+ }
+
+ int iter = 0;
+ while (stack.size() > 0)
+ {
+ int failed = 0;
+
+ memcpy(dstReg, srcReg, sizeof(unsigned short)*chf.spanCount);
+ memcpy(dstDist, srcDist, sizeof(unsigned short)*chf.spanCount);
+
+ for (int j = 0; j < stack.size(); j += 3)
+ {
+ int x = stack[j+0];
+ int y = stack[j+1];
+ int i = stack[j+2];
+ if (i < 0)
+ {
+ failed++;
+ continue;
+ }
+
+ unsigned short r = srcReg[i];
+ unsigned short d2 = 0xffff;
+ const unsigned char area = chf.areas[i];
+ const rcCompactSpan& s = chf.spans[i];
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) == RC_NOT_CONNECTED) continue;
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ if (chf.areas[ai] != area) continue;
+ if (srcReg[ai] > 0 && (srcReg[ai] & RC_BORDER_REG) == 0)
+ {
+ if ((int)srcDist[ai]+2 < (int)d2)
+ {
+ r = srcReg[ai];
+ d2 = srcDist[ai]+2;
+ }
+ }
+ }
+ if (r)
+ {
+ stack[j+2] = -1; // mark as used
+ dstReg[i] = r;
+ dstDist[i] = d2;
+ }
+ else
+ {
+ failed++;
+ }
+ }
+
+ // rcSwap source and dest.
+ rcSwap(srcReg, dstReg);
+ rcSwap(srcDist, dstDist);
+
+ if (failed*3 == stack.size())
+ break;
+
+ if (level > 0)
+ {
+ ++iter;
+ if (iter >= maxIter)
+ break;
+ }
+ }
+
+ return srcReg;
+}
+
+
+
+static void sortCellsByLevel(unsigned short startLevel,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg,
+ unsigned int nbStacks, rcIntArray* stacks,
+ unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift
+{
+ const int w = chf.width;
+ const int h = chf.height;
+ startLevel = startLevel >> loglevelsPerStack;
+
+ for (unsigned int j=0; j<nbStacks; ++j)
+ stacks[j].resize(0);
+
+ // put all cells in the level range into the appropriate stacks
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (chf.areas[i] == RC_NULL_AREA || srcReg[i] != 0)
+ continue;
+
+ int level = chf.dist[i] >> loglevelsPerStack;
+ int sId = startLevel - level;
+ if (sId >= (int)nbStacks)
+ continue;
+ if (sId < 0)
+ sId = 0;
+
+ stacks[sId].push(x);
+ stacks[sId].push(y);
+ stacks[sId].push(i);
+ }
+ }
+ }
+}
+
+
+static void appendStacks(rcIntArray& srcStack, rcIntArray& dstStack,
+ unsigned short* srcReg)
+{
+ for (int j=0; j<srcStack.size(); j+=3)
+ {
+ int i = srcStack[j+2];
+ if ((i < 0) || (srcReg[i] != 0))
+ continue;
+ dstStack.push(srcStack[j]);
+ dstStack.push(srcStack[j+1]);
+ dstStack.push(srcStack[j+2]);
+ }
+}
+
+struct rcRegion
+{
+ inline rcRegion(unsigned short i) :
+ spanCount(0),
+ id(i),
+ areaType(0),
+ remap(false),
+ visited(false),
+ overlap(false),
+ connectsToBorder(false),
+ ymin(0xffff),
+ ymax(0)
+ {}
+
+ int spanCount; // Number of spans belonging to this region
+ unsigned short id; // ID of the region
+ unsigned char areaType; // Are type.
+ bool remap;
+ bool visited;
+ bool overlap;
+ bool connectsToBorder;
+ unsigned short ymin, ymax;
+ rcIntArray connections;
+ rcIntArray floors;
+};
+
+static void removeAdjacentNeighbours(rcRegion& reg)
+{
+ // Remove adjacent duplicates.
+ for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; )
+ {
+ int ni = (i+1) % reg.connections.size();
+ if (reg.connections[i] == reg.connections[ni])
+ {
+ // Remove duplicate
+ for (int j = i; j < reg.connections.size()-1; ++j)
+ reg.connections[j] = reg.connections[j+1];
+ reg.connections.pop();
+ }
+ else
+ ++i;
+ }
+}
+
+static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId)
+{
+ bool neiChanged = false;
+ for (int i = 0; i < reg.connections.size(); ++i)
+ {
+ if (reg.connections[i] == oldId)
+ {
+ reg.connections[i] = newId;
+ neiChanged = true;
+ }
+ }
+ for (int i = 0; i < reg.floors.size(); ++i)
+ {
+ if (reg.floors[i] == oldId)
+ reg.floors[i] = newId;
+ }
+ if (neiChanged)
+ removeAdjacentNeighbours(reg);
+}
+
+static bool canMergeWithRegion(const rcRegion& rega, const rcRegion& regb)
+{
+ if (rega.areaType != regb.areaType)
+ return false;
+ int n = 0;
+ for (int i = 0; i < rega.connections.size(); ++i)
+ {
+ if (rega.connections[i] == regb.id)
+ n++;
+ }
+ if (n > 1)
+ return false;
+ for (int i = 0; i < rega.floors.size(); ++i)
+ {
+ if (rega.floors[i] == regb.id)
+ return false;
+ }
+ return true;
+}
+
+static void addUniqueFloorRegion(rcRegion& reg, int n)
+{
+ for (int i = 0; i < reg.floors.size(); ++i)
+ if (reg.floors[i] == n)
+ return;
+ reg.floors.push(n);
+}
+
+static bool mergeRegions(rcRegion& rega, rcRegion& regb)
+{
+ unsigned short aid = rega.id;
+ unsigned short bid = regb.id;
+
+ // Duplicate current neighbourhood.
+ rcIntArray acon;
+ acon.resize(rega.connections.size());
+ for (int i = 0; i < rega.connections.size(); ++i)
+ acon[i] = rega.connections[i];
+ rcIntArray& bcon = regb.connections;
+
+ // Find insertion point on A.
+ int insa = -1;
+ for (int i = 0; i < acon.size(); ++i)
+ {
+ if (acon[i] == bid)
+ {
+ insa = i;
+ break;
+ }
+ }
+ if (insa == -1)
+ return false;
+
+ // Find insertion point on B.
+ int insb = -1;
+ for (int i = 0; i < bcon.size(); ++i)
+ {
+ if (bcon[i] == aid)
+ {
+ insb = i;
+ break;
+ }
+ }
+ if (insb == -1)
+ return false;
+
+ // Merge neighbours.
+ rega.connections.resize(0);
+ for (int i = 0, ni = acon.size(); i < ni-1; ++i)
+ rega.connections.push(acon[(insa+1+i) % ni]);
+
+ for (int i = 0, ni = bcon.size(); i < ni-1; ++i)
+ rega.connections.push(bcon[(insb+1+i) % ni]);
+
+ removeAdjacentNeighbours(rega);
+
+ for (int j = 0; j < regb.floors.size(); ++j)
+ addUniqueFloorRegion(rega, regb.floors[j]);
+ rega.spanCount += regb.spanCount;
+ regb.spanCount = 0;
+ regb.connections.resize(0);
+
+ return true;
+}
+
+static bool isRegionConnectedToBorder(const rcRegion& reg)
+{
+ // Region is connected to border if
+ // one of the neighbours is null id.
+ for (int i = 0; i < reg.connections.size(); ++i)
+ {
+ if (reg.connections[i] == 0)
+ return true;
+ }
+ return false;
+}
+
+static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* srcReg,
+ int x, int y, int i, int dir)
+{
+ const rcCompactSpan& s = chf.spans[i];
+ unsigned short r = 0;
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ r = srcReg[ai];
+ }
+ if (r == srcReg[i])
+ return false;
+ return true;
+}
+
+static void walkContour(int x, int y, int i, int dir,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg,
+ rcIntArray& cont)
+{
+ int startDir = dir;
+ int starti = i;
+
+ const rcCompactSpan& ss = chf.spans[i];
+ unsigned short curReg = 0;
+ if (rcGetCon(ss, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir);
+ curReg = srcReg[ai];
+ }
+ cont.push(curReg);
+
+ int iter = 0;
+ while (++iter < 40000)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+
+ if (isSolidEdge(chf, srcReg, x, y, i, dir))
+ {
+ // Choose the edge corner
+ unsigned short r = 0;
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ r = srcReg[ai];
+ }
+ if (r != curReg)
+ {
+ curReg = r;
+ cont.push(curReg);
+ }
+
+ dir = (dir+1) & 0x3; // Rotate CW
+ }
+ else
+ {
+ int ni = -1;
+ const int nx = x + rcGetDirOffsetX(dir);
+ const int ny = y + rcGetDirOffsetY(dir);
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
+ ni = (int)nc.index + rcGetCon(s, dir);
+ }
+ if (ni == -1)
+ {
+ // Should not happen.
+ return;
+ }
+ x = nx;
+ y = ny;
+ i = ni;
+ dir = (dir+3) & 0x3; // Rotate CCW
+ }
+
+ if (starti == i && startDir == dir)
+ {
+ break;
+ }
+ }
+
+ // Remove adjacent duplicates.
+ if (cont.size() > 1)
+ {
+ for (int j = 0; j < cont.size(); )
+ {
+ int nj = (j+1) % cont.size();
+ if (cont[j] == cont[nj])
+ {
+ for (int k = j; k < cont.size()-1; ++k)
+ cont[k] = cont[k+1];
+ cont.pop();
+ }
+ else
+ ++j;
+ }
+ }
+}
+
+
+static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
+ unsigned short& maxRegionId,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, rcIntArray& overlaps)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ const int nreg = maxRegionId+1;
+ rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
+ return false;
+ }
+
+ // Construct regions
+ for (int i = 0; i < nreg; ++i)
+ new(&regions[i]) rcRegion((unsigned short)i);
+
+ // Find edge of a region and find connections around the contour.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ unsigned short r = srcReg[i];
+ if (r == 0 || r >= nreg)
+ continue;
+
+ rcRegion& reg = regions[r];
+ reg.spanCount++;
+
+ // Update floors.
+ for (int j = (int)c.index; j < ni; ++j)
+ {
+ if (i == j) continue;
+ unsigned short floorId = srcReg[j];
+ if (floorId == 0 || floorId >= nreg)
+ continue;
+ if (floorId == r)
+ reg.overlap = true;
+ addUniqueFloorRegion(reg, floorId);
+ }
+
+ // Have found contour
+ if (reg.connections.size() > 0)
+ continue;
+
+ reg.areaType = chf.areas[i];
+
+ // Check if this cell is next to a border.
+ int ndir = -1;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (isSolidEdge(chf, srcReg, x, y, i, dir))
+ {
+ ndir = dir;
+ break;
+ }
+ }
+
+ if (ndir != -1)
+ {
+ // The cell is at border.
+ // Walk around the contour to find all the neighbours.
+ walkContour(x, y, i, ndir, chf, srcReg, reg.connections);
+ }
+ }
+ }
+ }
+
+ // Remove too small regions.
+ rcIntArray stack(32);
+ rcIntArray trace(32);
+ for (int i = 0; i < nreg; ++i)
+ {
+ rcRegion& reg = regions[i];
+ if (reg.id == 0 || (reg.id & RC_BORDER_REG))
+ continue;
+ if (reg.spanCount == 0)
+ continue;
+ if (reg.visited)
+ continue;
+
+ // Count the total size of all the connected regions.
+ // Also keep track of the regions connects to a tile border.
+ bool connectsToBorder = false;
+ int spanCount = 0;
+ stack.resize(0);
+ trace.resize(0);
+
+ reg.visited = true;
+ stack.push(i);
+
+ while (stack.size())
+ {
+ // Pop
+ int ri = stack.pop();
+
+ rcRegion& creg = regions[ri];
+
+ spanCount += creg.spanCount;
+ trace.push(ri);
+
+ for (int j = 0; j < creg.connections.size(); ++j)
+ {
+ if (creg.connections[j] & RC_BORDER_REG)
+ {
+ connectsToBorder = true;
+ continue;
+ }
+ rcRegion& neireg = regions[creg.connections[j]];
+ if (neireg.visited)
+ continue;
+ if (neireg.id == 0 || (neireg.id & RC_BORDER_REG))
+ continue;
+ // Visit
+ stack.push(neireg.id);
+ neireg.visited = true;
+ }
+ }
+
+ // If the accumulated regions size is too small, remove it.
+ // Do not remove areas which connect to tile borders
+ // as their size cannot be estimated correctly and removing them
+ // can potentially remove necessary areas.
+ if (spanCount < minRegionArea && !connectsToBorder)
+ {
+ // Kill all visited regions.
+ for (int j = 0; j < trace.size(); ++j)
+ {
+ regions[trace[j]].spanCount = 0;
+ regions[trace[j]].id = 0;
+ }
+ }
+ }
+
+ // Merge too small regions to neighbour regions.
+ int mergeCount = 0 ;
+ do
+ {
+ mergeCount = 0;
+ for (int i = 0; i < nreg; ++i)
+ {
+ rcRegion& reg = regions[i];
+ if (reg.id == 0 || (reg.id & RC_BORDER_REG))
+ continue;
+ if (reg.overlap)
+ continue;
+ if (reg.spanCount == 0)
+ continue;
+
+ // Check to see if the region should be merged.
+ if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg))
+ continue;
+
+ // Small region with more than 1 connection.
+ // Or region which is not connected to a border at all.
+ // Find smallest neighbour region that connects to this one.
+ int smallest = 0xfffffff;
+ unsigned short mergeId = reg.id;
+ for (int j = 0; j < reg.connections.size(); ++j)
+ {
+ if (reg.connections[j] & RC_BORDER_REG) continue;
+ rcRegion& mreg = regions[reg.connections[j]];
+ if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue;
+ if (mreg.spanCount < smallest &&
+ canMergeWithRegion(reg, mreg) &&
+ canMergeWithRegion(mreg, reg))
+ {
+ smallest = mreg.spanCount;
+ mergeId = mreg.id;
+ }
+ }
+ // Found new id.
+ if (mergeId != reg.id)
+ {
+ unsigned short oldId = reg.id;
+ rcRegion& target = regions[mergeId];
+
+ // Merge neighbours.
+ if (mergeRegions(target, reg))
+ {
+ // Fixup regions pointing to current region.
+ for (int j = 0; j < nreg; ++j)
+ {
+ if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue;
+ // If another region was already merged into current region
+ // change the nid of the previous region too.
+ if (regions[j].id == oldId)
+ regions[j].id = mergeId;
+ // Replace the current region with the new one if the
+ // current regions is neighbour.
+ replaceNeighbour(regions[j], oldId, mergeId);
+ }
+ mergeCount++;
+ }
+ }
+ }
+ }
+ while (mergeCount > 0);
+
+ // Compress region Ids.
+ for (int i = 0; i < nreg; ++i)
+ {
+ regions[i].remap = false;
+ if (regions[i].id == 0) continue; // Skip nil regions.
+ if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
+ regions[i].remap = true;
+ }
+
+ unsigned short regIdGen = 0;
+ for (int i = 0; i < nreg; ++i)
+ {
+ if (!regions[i].remap)
+ continue;
+ unsigned short oldId = regions[i].id;
+ unsigned short newId = ++regIdGen;
+ for (int j = i; j < nreg; ++j)
+ {
+ if (regions[j].id == oldId)
+ {
+ regions[j].id = newId;
+ regions[j].remap = false;
+ }
+ }
+ }
+ maxRegionId = regIdGen;
+
+ // Remap regions.
+ for (int i = 0; i < chf.spanCount; ++i)
+ {
+ if ((srcReg[i] & RC_BORDER_REG) == 0)
+ srcReg[i] = regions[srcReg[i]].id;
+ }
+
+ // Return regions that we found to be overlapping.
+ for (int i = 0; i < nreg; ++i)
+ if (regions[i].overlap)
+ overlaps.push(regions[i].id);
+
+ for (int i = 0; i < nreg; ++i)
+ regions[i].~rcRegion();
+ rcFree(regions);
+
+
+ return true;
+}
+
+
+static void addUniqueConnection(rcRegion& reg, int n)
+{
+ for (int i = 0; i < reg.connections.size(); ++i)
+ if (reg.connections[i] == n)
+ return;
+ reg.connections.push(n);
+}
+
+static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
+ unsigned short& maxRegionId,
+ rcCompactHeightfield& chf,
+ unsigned short* srcReg, rcIntArray& /*overlaps*/)
+{
+ const int w = chf.width;
+ const int h = chf.height;
+
+ const int nreg = maxRegionId+1;
+ rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
+ return false;
+ }
+
+ // Construct regions
+ for (int i = 0; i < nreg; ++i)
+ new(&regions[i]) rcRegion((unsigned short)i);
+
+ // Find region neighbours and overlapping regions.
+ rcIntArray lregs(32);
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ lregs.resize(0);
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ const unsigned short ri = srcReg[i];
+ if (ri == 0 || ri >= nreg) continue;
+ rcRegion& reg = regions[ri];
+
+ reg.spanCount++;
+
+ reg.ymin = rcMin(reg.ymin, s.y);
+ reg.ymax = rcMax(reg.ymax, s.y);
+
+ // Collect all region layers.
+ lregs.push(ri);
+
+ // Update neighbours
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ const unsigned short rai = srcReg[ai];
+ if (rai > 0 && rai < nreg && rai != ri)
+ addUniqueConnection(reg, rai);
+ if (rai & RC_BORDER_REG)
+ reg.connectsToBorder = true;
+ }
+ }
+
+ }
+
+ // Update overlapping regions.
+ for (int i = 0; i < lregs.size()-1; ++i)
+ {
+ for (int j = i+1; j < lregs.size(); ++j)
+ {
+ if (lregs[i] != lregs[j])
+ {
+ rcRegion& ri = regions[lregs[i]];
+ rcRegion& rj = regions[lregs[j]];
+ addUniqueFloorRegion(ri, lregs[j]);
+ addUniqueFloorRegion(rj, lregs[i]);
+ }
+ }
+ }
+
+ }
+ }
+
+ // Create 2D layers from regions.
+ unsigned short layerId = 1;
+
+ for (int i = 0; i < nreg; ++i)
+ regions[i].id = 0;
+
+ // Merge montone regions to create non-overlapping areas.
+ rcIntArray stack(32);
+ for (int i = 1; i < nreg; ++i)
+ {
+ rcRegion& root = regions[i];
+ // Skip already visited.
+ if (root.id != 0)
+ continue;
+
+ // Start search.
+ root.id = layerId;
+
+ stack.resize(0);
+ stack.push(i);
+
+ while (stack.size() > 0)
+ {
+ // Pop front
+ rcRegion& reg = regions[stack[0]];
+ for (int j = 0; j < stack.size()-1; ++j)
+ stack[j] = stack[j+1];
+ stack.resize(stack.size()-1);
+
+ const int ncons = (int)reg.connections.size();
+ for (int j = 0; j < ncons; ++j)
+ {
+ const int nei = reg.connections[j];
+ rcRegion& regn = regions[nei];
+ // Skip already visited.
+ if (regn.id != 0)
+ continue;
+ // Skip if the neighbour is overlapping root region.
+ bool overlap = false;
+ for (int k = 0; k < root.floors.size(); k++)
+ {
+ if (root.floors[k] == nei)
+ {
+ overlap = true;
+ break;
+ }
+ }
+ if (overlap)
+ continue;
+
+ // Deepen
+ stack.push(nei);
+
+ // Mark layer id
+ regn.id = layerId;
+ // Merge current layers to root.
+ for (int k = 0; k < regn.floors.size(); ++k)
+ addUniqueFloorRegion(root, regn.floors[k]);
+ root.ymin = rcMin(root.ymin, regn.ymin);
+ root.ymax = rcMax(root.ymax, regn.ymax);
+ root.spanCount += regn.spanCount;
+ regn.spanCount = 0;
+ root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder;
+ }
+ }
+
+ layerId++;
+ }
+
+ // Remove small regions
+ for (int i = 0; i < nreg; ++i)
+ {
+ if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder)
+ {
+ unsigned short reg = regions[i].id;
+ for (int j = 0; j < nreg; ++j)
+ if (regions[j].id == reg)
+ regions[j].id = 0;
+ }
+ }
+
+ // Compress region Ids.
+ for (int i = 0; i < nreg; ++i)
+ {
+ regions[i].remap = false;
+ if (regions[i].id == 0) continue; // Skip nil regions.
+ if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
+ regions[i].remap = true;
+ }
+
+ unsigned short regIdGen = 0;
+ for (int i = 0; i < nreg; ++i)
+ {
+ if (!regions[i].remap)
+ continue;
+ unsigned short oldId = regions[i].id;
+ unsigned short newId = ++regIdGen;
+ for (int j = i; j < nreg; ++j)
+ {
+ if (regions[j].id == oldId)
+ {
+ regions[j].id = newId;
+ regions[j].remap = false;
+ }
+ }
+ }
+ maxRegionId = regIdGen;
+
+ // Remap regions.
+ for (int i = 0; i < chf.spanCount; ++i)
+ {
+ if ((srcReg[i] & RC_BORDER_REG) == 0)
+ srcReg[i] = regions[srcReg[i]].id;
+ }
+
+ for (int i = 0; i < nreg; ++i)
+ regions[i].~rcRegion();
+ rcFree(regions);
+
+ return true;
+}
+
+
+
+/// @par
+///
+/// This is usually the second to the last step in creating a fully built
+/// compact heightfield. This step is required before regions are built
+/// using #rcBuildRegions or #rcBuildRegionsMonotone.
+///
+/// After this step, the distance data is available via the rcCompactHeightfield::maxDistance
+/// and rcCompactHeightfield::dist fields.
+///
+/// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone
+bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD);
+
+ if (chf.dist)
+ {
+ rcFree(chf.dist);
+ chf.dist = 0;
+ }
+
+ unsigned short* src = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
+ if (!src)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'src' (%d).", chf.spanCount);
+ return false;
+ }
+ unsigned short* dst = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
+ if (!dst)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dst' (%d).", chf.spanCount);
+ rcFree(src);
+ return false;
+ }
+
+ unsigned short maxDist = 0;
+
+ {
+ rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST);
+
+ calculateDistanceField(chf, src, maxDist);
+ chf.maxDistance = maxDist;
+ }
+
+ {
+ rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR);
+
+ // Blur
+ if (boxBlur(chf, 1, src, dst) != src)
+ rcSwap(src, dst);
+
+ // Store distance.
+ chf.dist = src;
+ }
+
+ rcFree(dst);
+
+ return true;
+}
+
+static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId,
+ rcCompactHeightfield& chf, unsigned short* srcReg)
+{
+ const int w = chf.width;
+ for (int y = miny; y < maxy; ++y)
+ {
+ for (int x = minx; x < maxx; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (chf.areas[i] != RC_NULL_AREA)
+ srcReg[i] = regId;
+ }
+ }
+ }
+}
+
+
+static const unsigned short RC_NULL_NEI = 0xffff;
+
+struct rcSweepSpan
+{
+ unsigned short rid; // row id
+ unsigned short id; // region id
+ unsigned short ns; // number samples
+ unsigned short nei; // neighbour id
+};
+
+/// @par
+///
+/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
+/// Contours will form simple polygons.
+///
+/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
+/// re-assigned to the zero (null) region.
+///
+/// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps
+/// reduce unecessarily small regions.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// The region data will be available via the rcCompactHeightfield::maxRegions
+/// and rcCompactSpan::reg fields.
+///
+/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
+///
+/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
+bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
+
+ const int w = chf.width;
+ const int h = chf.height;
+ unsigned short id = 1;
+
+ rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
+ if (!srcReg)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
+ return false;
+ }
+ memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
+
+ const int nsweeps = rcMax(chf.width,chf.height);
+ rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
+ if (!sweeps)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
+ return false;
+ }
+
+
+ // Mark border regions.
+ if (borderSize > 0)
+ {
+ // Make sure border will not overflow.
+ const int bw = rcMin(w, borderSize);
+ const int bh = rcMin(h, borderSize);
+ // Paint regions
+ paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
+
+ chf.borderSize = borderSize;
+ }
+
+ rcIntArray prev(256);
+
+ // Sweep one line at a time.
+ for (int y = borderSize; y < h-borderSize; ++y)
+ {
+ // Collect spans from this row.
+ prev.resize(id+1);
+ memset(&prev[0],0,sizeof(int)*id);
+ unsigned short rid = 1;
+
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA) continue;
+
+ // -x
+ unsigned short previd = 0;
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ previd = srcReg[ai];
+ }
+
+ if (!previd)
+ {
+ previd = rid++;
+ sweeps[previd].rid = previd;
+ sweeps[previd].ns = 0;
+ sweeps[previd].nei = 0;
+ }
+
+ // -y
+ if (rcGetCon(s,3) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ {
+ unsigned short nr = srcReg[ai];
+ if (!sweeps[previd].nei || sweeps[previd].nei == nr)
+ {
+ sweeps[previd].nei = nr;
+ sweeps[previd].ns++;
+ prev[nr]++;
+ }
+ else
+ {
+ sweeps[previd].nei = RC_NULL_NEI;
+ }
+ }
+ }
+
+ srcReg[i] = previd;
+ }
+ }
+
+ // Create unique ID.
+ for (int i = 1; i < rid; ++i)
+ {
+ if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
+ prev[sweeps[i].nei] == (int)sweeps[i].ns)
+ {
+ sweeps[i].id = sweeps[i].nei;
+ }
+ else
+ {
+ sweeps[i].id = id++;
+ }
+ }
+
+ // Remap IDs
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (srcReg[i] > 0 && srcReg[i] < rid)
+ srcReg[i] = sweeps[srcReg[i]].id;
+ }
+ }
+ }
+
+
+ {
+ rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
+
+ // Merge regions and filter out small regions.
+ rcIntArray overlaps;
+ chf.maxRegions = id;
+ if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
+ return false;
+
+ // Monotone partitioning does not generate overlapping regions.
+ }
+
+ // Store the result out.
+ for (int i = 0; i < chf.spanCount; ++i)
+ chf.spans[i].reg = srcReg[i];
+
+ return true;
+}
+
+/// @par
+///
+/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour.
+/// Contours will form simple polygons.
+///
+/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be
+/// re-assigned to the zero (null) region.
+///
+/// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors.
+/// @p mergeRegionArea helps reduce unecessarily small regions.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// The region data will be available via the rcCompactHeightfield::maxRegions
+/// and rcCompactSpan::reg fields.
+///
+/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions.
+///
+/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig
+bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea, const int mergeRegionArea)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
+
+ const int w = chf.width;
+ const int h = chf.height;
+
+ rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP));
+ if (!buf)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4);
+ return false;
+ }
+
+ ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
+
+ const int LOG_NB_STACKS = 3;
+ const int NB_STACKS = 1 << LOG_NB_STACKS;
+ rcIntArray lvlStacks[NB_STACKS];
+ for (int i=0; i<NB_STACKS; ++i)
+ lvlStacks[i].resize(1024);
+
+ rcIntArray stack(1024);
+ rcIntArray visited(1024);
+
+ unsigned short* srcReg = buf;
+ unsigned short* srcDist = buf+chf.spanCount;
+ unsigned short* dstReg = buf+chf.spanCount*2;
+ unsigned short* dstDist = buf+chf.spanCount*3;
+
+ memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount);
+ memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount);
+
+ unsigned short regionId = 1;
+ unsigned short level = (chf.maxDistance+1) & ~1;
+
+ // TODO: Figure better formula, expandIters defines how much the
+ // watershed "overflows" and simplifies the regions. Tying it to
+ // agent radius was usually good indication how greedy it could be.
+// const int expandIters = 4 + walkableRadius * 2;
+ const int expandIters = 8;
+
+ if (borderSize > 0)
+ {
+ // Make sure border will not overflow.
+ const int bw = rcMin(w, borderSize);
+ const int bh = rcMin(h, borderSize);
+
+ // Paint regions
+ paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
+ paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
+ paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
+ paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
+
+ chf.borderSize = borderSize;
+ }
+
+ int sId = -1;
+ while (level > 0)
+ {
+ level = level >= 2 ? level-2 : 0;
+ sId = (sId+1) & (NB_STACKS-1);
+
+// ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS);
+
+ if (sId == 0)
+ sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1);
+ else
+ appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level
+
+// ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS);
+
+ {
+ rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND);
+
+ // Expand current regions until no empty connected cells found.
+ if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, lvlStacks[sId], false) != srcReg)
+ {
+ rcSwap(srcReg, dstReg);
+ rcSwap(srcDist, dstDist);
+ }
+ }
+
+ {
+ rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD);
+
+ // Mark new regions with IDs.
+ for (int j = 0; j<lvlStacks[sId].size(); j += 3)
+ {
+ int x = lvlStacks[sId][j];
+ int y = lvlStacks[sId][j+1];
+ int i = lvlStacks[sId][j+2];
+ if (i >= 0 && srcReg[i] == 0)
+ {
+ if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
+ {
+ if (regionId == 0xFFFF)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow");
+ return false;
+ }
+
+ regionId++;
+ }
+ }
+ }
+ }
+ }
+
+ // Expand current regions until no empty connected cells found.
+ if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack, true) != srcReg)
+ {
+ rcSwap(srcReg, dstReg);
+ rcSwap(srcDist, dstDist);
+ }
+
+ ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
+
+ {
+ rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
+
+ // Merge regions and filter out smalle regions.
+ rcIntArray overlaps;
+ chf.maxRegions = regionId;
+ if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
+ return false;
+
+ // If overlapping regions were found during merging, split those regions.
+ if (overlaps.size() > 0)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size());
+ }
+ }
+
+ // Write the result out.
+ for (int i = 0; i < chf.spanCount; ++i)
+ chf.spans[i].reg = srcReg[i];
+
+ return true;
+}
+
+
+bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
+ const int borderSize, const int minRegionArea)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
+
+ const int w = chf.width;
+ const int h = chf.height;
+ unsigned short id = 1;
+
+ rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
+ if (!srcReg)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'src' (%d).", chf.spanCount);
+ return false;
+ }
+ memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
+
+ const int nsweeps = rcMax(chf.width,chf.height);
+ rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
+ if (!sweeps)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'sweeps' (%d).", nsweeps);
+ return false;
+ }
+
+
+ // Mark border regions.
+ if (borderSize > 0)
+ {
+ // Make sure border will not overflow.
+ const int bw = rcMin(w, borderSize);
+ const int bh = rcMin(h, borderSize);
+ // Paint regions
+ paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
+ paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
+
+ chf.borderSize = borderSize;
+ }
+
+ rcIntArray prev(256);
+
+ // Sweep one line at a time.
+ for (int y = borderSize; y < h-borderSize; ++y)
+ {
+ // Collect spans from this row.
+ prev.resize(id+1);
+ memset(&prev[0],0,sizeof(int)*id);
+ unsigned short rid = 1;
+
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (chf.areas[i] == RC_NULL_AREA) continue;
+
+ // -x
+ unsigned short previd = 0;
+ if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(0);
+ const int ay = y + rcGetDirOffsetY(0);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
+ if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ previd = srcReg[ai];
+ }
+
+ if (!previd)
+ {
+ previd = rid++;
+ sweeps[previd].rid = previd;
+ sweeps[previd].ns = 0;
+ sweeps[previd].nei = 0;
+ }
+
+ // -y
+ if (rcGetCon(s,3) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(3);
+ const int ay = y + rcGetDirOffsetY(3);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
+ if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
+ {
+ unsigned short nr = srcReg[ai];
+ if (!sweeps[previd].nei || sweeps[previd].nei == nr)
+ {
+ sweeps[previd].nei = nr;
+ sweeps[previd].ns++;
+ prev[nr]++;
+ }
+ else
+ {
+ sweeps[previd].nei = RC_NULL_NEI;
+ }
+ }
+ }
+
+ srcReg[i] = previd;
+ }
+ }
+
+ // Create unique ID.
+ for (int i = 1; i < rid; ++i)
+ {
+ if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
+ prev[sweeps[i].nei] == (int)sweeps[i].ns)
+ {
+ sweeps[i].id = sweeps[i].nei;
+ }
+ else
+ {
+ sweeps[i].id = id++;
+ }
+ }
+
+ // Remap IDs
+ for (int x = borderSize; x < w-borderSize; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (srcReg[i] > 0 && srcReg[i] < rid)
+ srcReg[i] = sweeps[srcReg[i]].id;
+ }
+ }
+ }
+
+
+ {
+ rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
+
+ // Merge monotone regions to layers and remove small regions.
+ rcIntArray overlaps;
+ chf.maxRegions = id;
+ if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps))
+ return false;
+ }
+
+
+ // Store the result out.
+ for (int i = 0; i < chf.spanCount; ++i)
+ chf.spans[i].reg = srcReg[i];
+
+ return true;
+}