summaryrefslogtreecommitdiff
path: root/thirdparty
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty')
-rw-r--r--thirdparty/README.md9
-rw-r--r--thirdparty/misc/ok_color.h688
-rw-r--r--thirdparty/misc/ok_color_shader.h663
3 files changed, 1360 insertions, 0 deletions
diff --git a/thirdparty/README.md b/thirdparty/README.md
index 31b19451b3..97ba4bdca4 100644
--- a/thirdparty/README.md
+++ b/thirdparty/README.md
@@ -432,6 +432,15 @@ Collection of single-file libraries used in Godot components.
* Upstream: https://github.com/Auburn/FastNoiseLite
* Version: git (6be3d6bf7fb408de341285f9ee8a29b67fd953f1, 2022) + custom changes
* License: MIT
+- `ok_color.h`
+ * Upstream: https://github.com/bottosson/bottosson.github.io/blob/master/misc/ok_color.h
+ * Version: git (d69831edb90ffdcd08b7e64da3c5405acd48ad2c, 2022)
+ * License: MIT
+ * Modifications: License included in header.
+- `ok_color_shader.h`
+ * https://www.shadertoy.com/view/7sK3D1
+ * Version: 2021-09-13
+ * License: MIT
- `pcg.{cpp,h}`
* Upstream: http://www.pcg-random.org
* Version: minimal C implementation, http://www.pcg-random.org/download.html
diff --git a/thirdparty/misc/ok_color.h b/thirdparty/misc/ok_color.h
new file mode 100644
index 0000000000..dbc7dafc36
--- /dev/null
+++ b/thirdparty/misc/ok_color.h
@@ -0,0 +1,688 @@
+// Copyright(c) 2021 Björn Ottosson
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files(the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
+// of the Software, and to permit persons to whom the Software is furnished to do
+// so, subject to the following conditions :
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef OK_COLOR_H
+#define OK_COLOR_H
+
+#include <cmath>
+#include <cfloat>
+
+class ok_color
+{
+public:
+
+struct Lab { float L; float a; float b; };
+struct RGB { float r; float g; float b; };
+struct HSV { float h; float s; float v; };
+struct HSL { float h; float s; float l; };
+struct LC { float L; float C; };
+
+// Alternative representation of (L_cusp, C_cusp)
+// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp)
+// The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
+struct ST { float S; float T; };
+
+static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
+
+float clamp(float x, float min, float max)
+{
+ if (x < min)
+ return min;
+ if (x > max)
+ return max;
+
+ return x;
+}
+
+float sgn(float x)
+{
+ return (float)(0.f < x) - (float)(x < 0.f);
+}
+
+float srgb_transfer_function(float a)
+{
+ return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
+}
+
+float srgb_transfer_function_inv(float a)
+{
+ return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
+}
+
+Lab linear_srgb_to_oklab(RGB c)
+{
+ float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
+ float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
+ float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
+
+ float l_ = cbrtf(l);
+ float m_ = cbrtf(m);
+ float s_ = cbrtf(s);
+
+ return {
+ 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
+ 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
+ 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_,
+ };
+}
+
+RGB oklab_to_linear_srgb(Lab c)
+{
+ float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
+ float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
+ float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ return {
+ +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
+ -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
+ -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s,
+ };
+}
+
+// Finds the maximum saturation possible for a given hue that fits in sRGB
+// Saturation here is defined as S = C/L
+// a and b must be normalized so a^2 + b^2 == 1
+float compute_max_saturation(float a, float b)
+{
+ // Max saturation will be when one of r, g or b goes below zero.
+
+ // Select different coefficients depending on which component goes below zero first
+ float k0, k1, k2, k3, k4, wl, wm, ws;
+
+ if (-1.88170328f * a - 0.80936493f * b > 1)
+ {
+ // Red component
+ k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
+ wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
+ }
+ else if (1.81444104f * a - 1.19445276f * b > 1)
+ {
+ // Green component
+ k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
+ wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
+ }
+ else
+ {
+ // Blue component
+ k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
+ wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
+ }
+
+ // Approximate max saturation using a polynomial:
+ float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
+
+ // Do one step Halley's method to get closer
+ // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
+ // this should be sufficient for most applications, otherwise do two/three steps
+
+ float k_l = +0.3963377774f * a + 0.2158037573f * b;
+ float k_m = -0.1055613458f * a - 0.0638541728f * b;
+ float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+ {
+ float l_ = 1.f + S * k_l;
+ float m_ = 1.f + S * k_m;
+ float s_ = 1.f + S * k_s;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ float l_dS = 3.f * k_l * l_ * l_;
+ float m_dS = 3.f * k_m * m_ * m_;
+ float s_dS = 3.f * k_s * s_ * s_;
+
+ float l_dS2 = 6.f * k_l * k_l * l_;
+ float m_dS2 = 6.f * k_m * k_m * m_;
+ float s_dS2 = 6.f * k_s * k_s * s_;
+
+ float f = wl * l + wm * m + ws * s;
+ float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
+ float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
+
+ S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
+ }
+
+ return S;
+}
+
+// finds L_cusp and C_cusp for a given hue
+// a and b must be normalized so a^2 + b^2 == 1
+LC find_cusp(float a, float b)
+{
+ // First, find the maximum saturation (saturation S = C/L)
+ float S_cusp = compute_max_saturation(a, b);
+
+ // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
+ RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b });
+ float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
+ float C_cusp = L_cusp * S_cusp;
+
+ return { L_cusp , C_cusp };
+}
+
+// Finds intersection of the line defined by
+// L = L0 * (1 - t) + t * L1;
+// C = t * C1;
+// a and b must be normalized so a^2 + b^2 == 1
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
+{
+ // Find the intersection for upper and lower half seprately
+ float t;
+ if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f)
+ {
+ // Lower half
+
+ t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1));
+ }
+ else
+ {
+ // Upper half
+
+ // First intersect with triangle
+ t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1));
+
+ // Then one step Halley's method
+ {
+ float dL = L1 - L0;
+ float dC = C1;
+
+ float k_l = +0.3963377774f * a + 0.2158037573f * b;
+ float k_m = -0.1055613458f * a - 0.0638541728f * b;
+ float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+ float l_dt = dL + dC * k_l;
+ float m_dt = dL + dC * k_m;
+ float s_dt = dL + dC * k_s;
+
+
+ // If higher accuracy is required, 2 or 3 iterations of the following block can be used:
+ {
+ float L = L0 * (1.f - t) + t * L1;
+ float C = t * C1;
+
+ float l_ = L + C * k_l;
+ float m_ = L + C * k_m;
+ float s_ = L + C * k_s;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ float ldt = 3 * l_dt * l_ * l_;
+ float mdt = 3 * m_dt * m_ * m_;
+ float sdt = 3 * s_dt * s_ * s_;
+
+ float ldt2 = 6 * l_dt * l_dt * l_;
+ float mdt2 = 6 * m_dt * m_dt * m_;
+ float sdt2 = 6 * s_dt * s_dt * s_;
+
+ float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1;
+ float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
+ float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
+
+ float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
+ float t_r = -r * u_r;
+
+ float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1;
+ float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
+ float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
+
+ float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
+ float t_g = -g * u_g;
+
+ b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1;
+ float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
+ float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
+
+ float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
+ float t_b = -b * u_b;
+
+ t_r = u_r >= 0.f ? t_r : FLT_MAX;
+ t_g = u_g >= 0.f ? t_g : FLT_MAX;
+ t_b = u_b >= 0.f ? t_b : FLT_MAX;
+
+ t += fmin(t_r, fmin(t_g, t_b));
+ }
+ }
+ }
+
+ return t;
+}
+
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
+{
+ // Find the cusp of the gamut triangle
+ LC cusp = find_cusp(a, b);
+
+ return find_gamut_intersection(a, b, L1, C1, L0, cusp);
+}
+
+RGB gamut_clip_preserve_chroma(RGB rgb)
+{
+ if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+ return rgb;
+
+ Lab lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.L;
+ float eps = 0.00001f;
+ float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ float L0 = clamp(L, 0, 1);
+
+ float t = find_gamut_intersection(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1 - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_project_to_0_5(RGB rgb)
+{
+ if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+ return rgb;
+
+ Lab lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.L;
+ float eps = 0.00001f;
+ float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ float L0 = 0.5;
+
+ float t = find_gamut_intersection(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1 - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_project_to_L_cusp(RGB rgb)
+{
+ if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+ return rgb;
+
+ Lab lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.L;
+ float eps = 0.00001f;
+ float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+ LC cusp = find_cusp(a_, b_);
+
+ float L0 = cusp.L;
+
+ float t = find_gamut_intersection(a_, b_, L, C, L0);
+
+ float L_clipped = L0 * (1 - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
+{
+ if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+ return rgb;
+
+ Lab lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.L;
+ float eps = 0.00001f;
+ float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ float Ld = L - 0.5f;
+ float e1 = 0.5f + fabs(Ld) + alpha * C;
+ float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld))));
+
+ float t = find_gamut_intersection(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
+{
+ if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+ return rgb;
+
+ Lab lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.L;
+ float eps = 0.00001f;
+ float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+ LC cusp = find_cusp(a_, b_);
+
+ float Ld = L - cusp.L;
+ float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L);
+
+ float e1 = 0.5f * k + fabs(Ld) + alpha * C / k;
+ float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld))));
+
+ float t = find_gamut_intersection(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+float toe(float x)
+{
+ constexpr float k_1 = 0.206f;
+ constexpr float k_2 = 0.03f;
+ constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
+ return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
+}
+
+float toe_inv(float x)
+{
+ constexpr float k_1 = 0.206f;
+ constexpr float k_2 = 0.03f;
+ constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
+ return (x * x + k_1 * x) / (k_3 * (x + k_2));
+}
+
+ST to_ST(LC cusp)
+{
+ float L = cusp.L;
+ float C = cusp.C;
+ return { C / L, C / (1 - L) };
+}
+
+// Returns a smooth approximation of the location of the cusp
+// This polynomial was created by an optimization process
+// It has been designed so that S_mid < S_max and T_mid < T_max
+ST get_ST_mid(float a_, float b_)
+{
+ float S = 0.11516993f + 1.f / (
+ +7.44778970f + 4.15901240f * b_
+ + a_ * (-2.19557347f + 1.75198401f * b_
+ + a_ * (-2.13704948f - 10.02301043f * b_
+ + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
+ )))
+ );
+
+ float T = 0.11239642f + 1.f / (
+ +1.61320320f - 0.68124379f * b_
+ + a_ * (+0.40370612f + 0.90148123f * b_
+ + a_ * (-0.27087943f + 0.61223990f * b_
+ + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
+ )))
+ );
+
+ return { S, T };
+}
+
+struct Cs { float C_0; float C_mid; float C_max; };
+Cs get_Cs(float L, float a_, float b_)
+{
+ LC cusp = find_cusp(a_, b_);
+
+ float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
+ ST ST_max = to_ST(cusp);
+
+ // Scale factor to compensate for the curved part of gamut shape:
+ float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
+
+ float C_mid;
+ {
+ ST ST_mid = get_ST_mid(a_, b_);
+
+ // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+ float C_a = L * ST_mid.S;
+ float C_b = (1.f - L) * ST_mid.T;
+ C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
+ }
+
+ float C_0;
+ {
+ // for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.
+ float C_a = L * 0.4f;
+ float C_b = (1.f - L) * 0.8f;
+
+ // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+ C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
+ }
+
+ return { C_0, C_mid, C_max };
+}
+
+RGB okhsl_to_srgb(HSL hsl)
+{
+ float h = hsl.h;
+ float s = hsl.s;
+ float l = hsl.l;
+
+ if (l == 1.0f)
+ {
+ return { 1.f, 1.f, 1.f };
+ }
+
+ else if (l == 0.f)
+ {
+ return { 0.f, 0.f, 0.f };
+ }
+
+ float a_ = cosf(2.f * pi * h);
+ float b_ = sinf(2.f * pi * h);
+ float L = toe_inv(l);
+
+ Cs cs = get_Cs(L, a_, b_);
+ float C_0 = cs.C_0;
+ float C_mid = cs.C_mid;
+ float C_max = cs.C_max;
+
+ float mid = 0.8f;
+ float mid_inv = 1.25f;
+
+ float C, t, k_0, k_1, k_2;
+
+ if (s < mid)
+ {
+ t = mid_inv * s;
+
+ k_1 = mid * C_0;
+ k_2 = (1.f - k_1 / C_mid);
+
+ C = t * k_1 / (1.f - k_2 * t);
+ }
+ else
+ {
+ t = (s - mid)/ (1 - mid);
+
+ k_0 = C_mid;
+ k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+ k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+ C = k_0 + t * k_1 / (1.f - k_2 * t);
+ }
+
+ RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
+ return {
+ srgb_transfer_function(rgb.r),
+ srgb_transfer_function(rgb.g),
+ srgb_transfer_function(rgb.b),
+ };
+}
+
+HSL srgb_to_okhsl(RGB rgb)
+{
+ Lab lab = linear_srgb_to_oklab({
+ srgb_transfer_function_inv(rgb.r),
+ srgb_transfer_function_inv(rgb.g),
+ srgb_transfer_function_inv(rgb.b)
+ });
+
+ float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ float L = lab.L;
+ float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
+
+ Cs cs = get_Cs(L, a_, b_);
+ float C_0 = cs.C_0;
+ float C_mid = cs.C_mid;
+ float C_max = cs.C_max;
+
+ // Inverse of the interpolation in okhsl_to_srgb:
+
+ float mid = 0.8f;
+ float mid_inv = 1.25f;
+
+ float s;
+ if (C < C_mid)
+ {
+ float k_1 = mid * C_0;
+ float k_2 = (1.f - k_1 / C_mid);
+
+ float t = C / (k_1 + k_2 * C);
+ s = t * mid;
+ }
+ else
+ {
+ float k_0 = C_mid;
+ float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+ float k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+ float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
+ s = mid + (1.f - mid) * t;
+ }
+
+ float l = toe(L);
+ return { h, s, l };
+}
+
+
+RGB okhsv_to_srgb(HSV hsv)
+{
+ float h = hsv.h;
+ float s = hsv.s;
+ float v = hsv.v;
+
+ float a_ = cosf(2.f * pi * h);
+ float b_ = sinf(2.f * pi * h);
+
+ LC cusp = find_cusp(a_, b_);
+ ST ST_max = to_ST(cusp);
+ float S_max = ST_max.S;
+ float T_max = ST_max.T;
+ float S_0 = 0.5f;
+ float k = 1 - S_0 / S_max;
+
+ // first we compute L and V as if the gamut is a perfect triangle:
+
+ // L, C when v==1:
+ float L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s);
+ float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
+
+ float L = v * L_v;
+ float C = v * C_v;
+
+ // then we compensate for both toe and the curved top part of the triangle:
+ float L_vt = toe_inv(L_v);
+ float C_vt = C_v * L_vt / L_v;
+
+ float L_new = toe_inv(L);
+ C = C * L_new / L;
+ L = L_new;
+
+ RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
+ float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
+
+ L = L * scale_L;
+ C = C * scale_L;
+
+ RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
+ return {
+ srgb_transfer_function(rgb.r),
+ srgb_transfer_function(rgb.g),
+ srgb_transfer_function(rgb.b),
+ };
+}
+
+HSV srgb_to_okhsv(RGB rgb)
+{
+ Lab lab = linear_srgb_to_oklab({
+ srgb_transfer_function_inv(rgb.r),
+ srgb_transfer_function_inv(rgb.g),
+ srgb_transfer_function_inv(rgb.b)
+ });
+
+ float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
+ float a_ = lab.a / C;
+ float b_ = lab.b / C;
+
+ float L = lab.L;
+ float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
+
+ LC cusp = find_cusp(a_, b_);
+ ST ST_max = to_ST(cusp);
+ float S_max = ST_max.S;
+ float T_max = ST_max.T;
+ float S_0 = 0.5f;
+ float k = 1 - S_0 / S_max;
+
+ // first we find L_v, C_v, L_vt and C_vt
+
+ float t = T_max / (C + L * T_max);
+ float L_v = t * L;
+ float C_v = t * C;
+
+ float L_vt = toe_inv(L_v);
+ float C_vt = C_v * L_vt / L_v;
+
+ // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
+ RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
+ float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
+
+ L = L / scale_L;
+ C = C / scale_L;
+
+ C = C * toe(L) / L;
+ L = toe(L);
+
+ // we can now compute v and s:
+
+ float v = L / L_v;
+ float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
+
+ return { h, s, v };
+}
+
+};
+#endif // OK_COLOR_H
diff --git a/thirdparty/misc/ok_color_shader.h b/thirdparty/misc/ok_color_shader.h
new file mode 100644
index 0000000000..40d83366ee
--- /dev/null
+++ b/thirdparty/misc/ok_color_shader.h
@@ -0,0 +1,663 @@
+// Copyright(c) 2021 Björn Ottosson
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files(the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
+// of the Software, and to permit persons to whom the Software is furnished to do
+// so, subject to the following conditions :
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef OK_COLOR_SHADER_H
+#define OK_COLOR_SHADER_H
+
+#include "core/string/ustring.h"
+
+static String OK_COLOR_SHADER = R"(shader_type canvas_item;
+
+const float M_PI = 3.1415926535897932384626433832795;
+
+float cbrt( float x )
+{
+ return sign(x)*pow(abs(x),1.0f/3.0f);
+}
+
+float srgb_transfer_function(float a)
+{
+ return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
+}
+
+float srgb_transfer_function_inv(float a)
+{
+ return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
+}
+
+vec3 linear_srgb_to_oklab(vec3 c)
+{
+ float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
+ float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
+ float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
+
+ float l_ = cbrt(l);
+ float m_ = cbrt(m);
+ float s_ = cbrt(s);
+
+ return vec3(
+ 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
+ 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
+ 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
+ );
+}
+
+vec3 oklab_to_linear_srgb(vec3 c)
+{
+ float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
+ float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
+ float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ return vec3(
+ +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
+ -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
+ -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
+ );
+}
+
+// Finds the maximum saturation possible for a given hue that fits in sRGB
+// Saturation here is defined as S = C/L
+// a and b must be normalized so a^2 + b^2 == 1
+float compute_max_saturation(float a, float b)
+{
+ // Max saturation will be when one of r, g or b goes below zero.
+
+ // Select different coefficients depending on which component goes below zero first
+ float k0, k1, k2, k3, k4, wl, wm, ws;
+
+ if (-1.88170328f * a - 0.80936493f * b > 1.f)
+ {
+ // Red component
+ k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
+ wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
+ }
+ else if (1.81444104f * a - 1.19445276f * b > 1.f)
+ {
+ // Green component
+ k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
+ wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
+ }
+ else
+ {
+ // Blue component
+ k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
+ wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
+ }
+
+ // Approximate max saturation using a polynomial:
+ float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
+
+ // Do one step Halley's method to get closer
+ // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
+ // this should be sufficient for most applications, otherwise do two/three steps
+
+ float k_l = +0.3963377774f * a + 0.2158037573f * b;
+ float k_m = -0.1055613458f * a - 0.0638541728f * b;
+ float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+ {
+ float l_ = 1.f + S * k_l;
+ float m_ = 1.f + S * k_m;
+ float s_ = 1.f + S * k_s;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ float l_dS = 3.f * k_l * l_ * l_;
+ float m_dS = 3.f * k_m * m_ * m_;
+ float s_dS = 3.f * k_s * s_ * s_;
+
+ float l_dS2 = 6.f * k_l * k_l * l_;
+ float m_dS2 = 6.f * k_m * k_m * m_;
+ float s_dS2 = 6.f * k_s * k_s * s_;
+
+ float f = wl * l + wm * m + ws * s;
+ float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
+ float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
+
+ S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
+ }
+
+ return S;
+}
+
+// finds L_cusp and C_cusp for a given hue
+// a and b must be normalized so a^2 + b^2 == 1
+vec2 find_cusp(float a, float b)
+{
+ // First, find the maximum saturation (saturation S = C/L)
+ float S_cusp = compute_max_saturation(a, b);
+
+ // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
+ vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
+ float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
+ float C_cusp = L_cusp * S_cusp;
+
+ return vec2( L_cusp , C_cusp );
+} )"
+R"(// Finds intersection of the line defined by
+// L = L0 * (1 - t) + t * L1;
+// C = t * C1;
+// a and b must be normalized so a^2 + b^2 == 1
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp)
+{
+ // Find the intersection for upper and lower half seprately
+ float t;
+ if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f)
+ {
+ // Lower half
+
+ t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
+ }
+ else
+ {
+ // Upper half
+
+ // First intersect with triangle
+ t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1));
+
+ // Then one step Halley's method
+ {
+ float dL = L1 - L0;
+ float dC = C1;
+
+ float k_l = +0.3963377774f * a + 0.2158037573f * b;
+ float k_m = -0.1055613458f * a - 0.0638541728f * b;
+ float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+ float l_dt = dL + dC * k_l;
+ float m_dt = dL + dC * k_m;
+ float s_dt = dL + dC * k_s;
+
+
+ // If higher accuracy is required, 2 or 3 iterations of the following block can be used:
+ {
+ float L = L0 * (1.f - t) + t * L1;
+ float C = t * C1;
+
+ float l_ = L + C * k_l;
+ float m_ = L + C * k_m;
+ float s_ = L + C * k_s;
+
+ float l = l_ * l_ * l_;
+ float m = m_ * m_ * m_;
+ float s = s_ * s_ * s_;
+
+ float ldt = 3.f * l_dt * l_ * l_;
+ float mdt = 3.f * m_dt * m_ * m_;
+ float sdt = 3.f * s_dt * s_ * s_;
+
+ float ldt2 = 6.f * l_dt * l_dt * l_;
+ float mdt2 = 6.f * m_dt * m_dt * m_;
+ float sdt2 = 6.f * s_dt * s_dt * s_;
+
+ float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
+ float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
+ float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
+
+ float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
+ float t_r = -r * u_r;
+
+ float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
+ float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
+ float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
+
+ float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
+ float t_g = -g * u_g;
+
+ float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
+ float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
+ float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
+
+ float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
+ float t_b = -b * u_b;
+
+ t_r = u_r >= 0.f ? t_r : 10000.f;
+ t_g = u_g >= 0.f ? t_g : 10000.f;
+ t_b = u_b >= 0.f ? t_b : 10000.f;
+
+ t += min(t_r, min(t_g, t_b));
+ }
+ }
+ }
+
+ return t;
+}
+
+float find_gamut_intersection_5(float a, float b, float L1, float C1, float L0)
+{
+ // Find the cusp of the gamut triangle
+ vec2 cusp = find_cusp(a, b);
+
+ return find_gamut_intersection(a, b, L1, C1, L0, cusp);
+})"
+R"(
+
+vec3 gamut_clip_preserve_chroma(vec3 rgb)
+{
+ if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+ return rgb;
+
+ vec3 lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.x;
+ float eps = 0.00001f;
+ float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ float L0 = clamp(L, 0.f, 1.f);
+
+ float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_project_to_0_5(vec3 rgb)
+{
+ if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+ return rgb;
+
+ vec3 lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.x;
+ float eps = 0.00001f;
+ float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ float L0 = 0.5;
+
+ float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_project_to_L_cusp(vec3 rgb)
+{
+ if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+ return rgb;
+
+ vec3 lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.x;
+ float eps = 0.00001f;
+ float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+ vec2 cusp = find_cusp(a_, b_);
+
+ float L0 = cusp.x;
+
+ float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha)
+{
+ if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+ return rgb;
+
+ vec3 lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.x;
+ float eps = 0.00001f;
+ float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ float Ld = L - 0.5f;
+ float e1 = 0.5f + abs(Ld) + alpha * C;
+ float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
+
+ float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha)
+{
+ if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+ return rgb;
+
+ vec3 lab = linear_srgb_to_oklab(rgb);
+
+ float L = lab.x;
+ float eps = 0.00001f;
+ float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+ vec2 cusp = find_cusp(a_, b_);
+
+ float Ld = L - cusp.x;
+ float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
+
+ float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
+ float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
+
+ float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+ float L_clipped = L0 * (1.f - t) + t * L;
+ float C_clipped = t * C;
+
+ return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+float toe(float x)
+{
+ float k_1 = 0.206f;
+ float k_2 = 0.03f;
+ float k_3 = (1.f + k_1) / (1.f + k_2);
+ return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
+}
+
+float toe_inv(float x)
+{
+ float k_1 = 0.206f;
+ float k_2 = 0.03f;
+ float k_3 = (1.f + k_1) / (1.f + k_2);
+ return (x * x + k_1 * x) / (k_3 * (x + k_2));
+}
+)"
+R"(vec2 to_ST(vec2 cusp)
+{
+ float L = cusp.x;
+ float C = cusp.y;
+ return vec2( C / L, C / (1.f - L) );
+}
+
+// Returns a smooth approximation of the location of the cusp
+// This polynomial was created by an optimization process
+// It has been designed so that S_mid < S_max and T_mid < T_max
+vec2 get_ST_mid(float a_, float b_)
+{
+ float S = 0.11516993f + 1.f / (
+ +7.44778970f + 4.15901240f * b_
+ + a_ * (-2.19557347f + 1.75198401f * b_
+ + a_ * (-2.13704948f - 10.02301043f * b_
+ + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
+ )))
+ );
+
+ float T = 0.11239642f + 1.f / (
+ +1.61320320f - 0.68124379f * b_
+ + a_ * (+0.40370612f + 0.90148123f * b_
+ + a_ * (-0.27087943f + 0.61223990f * b_
+ + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
+ )))
+ );
+
+ return vec2( S, T );
+}
+
+vec3 get_Cs(float L, float a_, float b_)
+{
+ vec2 cusp = find_cusp(a_, b_);
+
+ float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
+ vec2 ST_max = to_ST(cusp);
+
+ // Scale factor to compensate for the curved part of gamut shape:
+ float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
+
+ float C_mid;
+ {
+ vec2 ST_mid = get_ST_mid(a_, b_);
+
+ // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+ float C_a = L * ST_mid.x;
+ float C_b = (1.f - L) * ST_mid.y;
+ C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
+ }
+
+ float C_0;
+ {
+ // for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2.
+ float C_a = L * 0.4f;
+ float C_b = (1.f - L) * 0.8f;
+
+ // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+ C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
+ }
+
+ return vec3( C_0, C_mid, C_max );
+}
+
+vec3 okhsl_to_srgb(vec3 hsl)
+{
+ float h = hsl.x;
+ float s = hsl.y;
+ float l = hsl.z;
+
+ if (l == 1.0f)
+ {
+ return vec3( 1.f, 1.f, 1.f );
+ }
+
+ else if (l == 0.f)
+ {
+ return vec3( 0.f, 0.f, 0.f );
+ }
+
+ float a_ = cos(2.f * M_PI * h);
+ float b_ = sin(2.f * M_PI * h);
+ float L = toe_inv(l);
+
+ vec3 cs = get_Cs(L, a_, b_);
+ float C_0 = cs.x;
+ float C_mid = cs.y;
+ float C_max = cs.z;
+
+ float mid = 0.8f;
+ float mid_inv = 1.25f;
+
+ float C, t, k_0, k_1, k_2;
+
+ if (s < mid)
+ {
+ t = mid_inv * s;
+
+ k_1 = mid * C_0;
+ k_2 = (1.f - k_1 / C_mid);
+
+ C = t * k_1 / (1.f - k_2 * t);
+ }
+ else
+ {
+ t = (s - mid)/ (1.f - mid);
+
+ k_0 = C_mid;
+ k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+ k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+ C = k_0 + t * k_1 / (1.f - k_2 * t);
+ }
+
+ vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
+ return vec3(
+ srgb_transfer_function(rgb.r),
+ srgb_transfer_function(rgb.g),
+ srgb_transfer_function(rgb.b)
+ );
+}
+
+vec3 srgb_to_okhsl(vec3 rgb)
+{
+ vec3 lab = linear_srgb_to_oklab(vec3(
+ srgb_transfer_function_inv(rgb.r),
+ srgb_transfer_function_inv(rgb.g),
+ srgb_transfer_function_inv(rgb.b)
+ ));
+
+ float C = sqrt(lab.y * lab.y + lab.z * lab.z);
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ float L = lab.x;
+ float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
+
+ vec3 cs = get_Cs(L, a_, b_);
+ float C_0 = cs.x;
+ float C_mid = cs.y;
+ float C_max = cs.z;
+
+ // Inverse of the interpolation in okhsl_to_srgb:
+
+ float mid = 0.8f;
+ float mid_inv = 1.25f;
+
+ float s;
+ if (C < C_mid)
+ {
+ float k_1 = mid * C_0;
+ float k_2 = (1.f - k_1 / C_mid);
+
+ float t = C / (k_1 + k_2 * C);
+ s = t * mid;
+ }
+ else
+ {
+ float k_0 = C_mid;
+ float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+ float k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+ float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
+ s = mid + (1.f - mid) * t;
+ }
+
+ float l = toe(L);
+ return vec3( h, s, l );
+}
+
+
+vec3 okhsv_to_srgb(vec3 hsv)
+{
+ float h = hsv.x;
+ float s = hsv.y;
+ float v = hsv.z;
+
+ float a_ = cos(2.f * M_PI * h);
+ float b_ = sin(2.f * M_PI * h);
+
+ vec2 cusp = find_cusp(a_, b_);
+ vec2 ST_max = to_ST(cusp);
+ float S_max = ST_max.x;
+ float T_max = ST_max.y;
+ float S_0 = 0.5f;
+ float k = 1.f- S_0 / S_max;
+
+ // first we compute L and V as if the gamut is a perfect triangle:
+
+ // L, C when v==1:
+ float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
+ float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
+
+ float L = v * L_v;
+ float C = v * C_v;
+
+ // then we compensate for both toe and the curved top part of the triangle:
+ float L_vt = toe_inv(L_v);
+ float C_vt = C_v * L_vt / L_v;
+
+ float L_new = toe_inv(L);
+ C = C * L_new / L;
+ L = L_new;
+
+ vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
+ float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
+
+ L = L * scale_L;
+ C = C * scale_L;
+
+ vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
+ return vec3(
+ srgb_transfer_function(rgb.r),
+ srgb_transfer_function(rgb.g),
+ srgb_transfer_function(rgb.b)
+ );
+}
+)"
+R"(
+vec3 srgb_to_okhsv(vec3 rgb)
+{
+ vec3 lab = linear_srgb_to_oklab(vec3(
+ srgb_transfer_function_inv(rgb.r),
+ srgb_transfer_function_inv(rgb.g),
+ srgb_transfer_function_inv(rgb.b)
+ ));
+
+ float C = sqrt(lab.y * lab.y + lab.z * lab.z);
+ float a_ = lab.y / C;
+ float b_ = lab.z / C;
+
+ float L = lab.x;
+ float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
+
+ vec2 cusp = find_cusp(a_, b_);
+ vec2 ST_max = to_ST(cusp);
+ float S_max = ST_max.x;
+ float T_max = ST_max.y;
+ float S_0 = 0.5f;
+ float k = 1.f - S_0 / S_max;
+
+ // first we find L_v, C_v, L_vt and C_vt
+
+ float t = T_max / (C + L * T_max);
+ float L_v = t * L;
+ float C_v = t * C;
+
+ float L_vt = toe_inv(L_v);
+ float C_vt = C_v * L_vt / L_v;
+
+ // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
+ vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
+ float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
+
+ L = L / scale_L;
+ C = C / scale_L;
+
+ C = C * toe(L) / L;
+ L = toe(L);
+
+ // we can now compute v and s:
+
+ float v = L / L_v;
+ float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
+
+ return vec3 (h, s, v );
+})";
+
+#endif