summaryrefslogtreecommitdiff
path: root/thirdparty/xatlas/xatlas.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/xatlas/xatlas.cpp')
-rw-r--r--thirdparty/xatlas/xatlas.cpp7384
1 files changed, 7384 insertions, 0 deletions
diff --git a/thirdparty/xatlas/xatlas.cpp b/thirdparty/xatlas/xatlas.cpp
new file mode 100644
index 0000000000..f6a9ce64dc
--- /dev/null
+++ b/thirdparty/xatlas/xatlas.cpp
@@ -0,0 +1,7384 @@
+// This code is in the public domain -- castanyo@yahoo.es
+#include "xatlas.h"
+#include <assert.h>
+#include <float.h>
+#include <math.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <time.h>
+#include <algorithm>
+#include <cmath>
+#include <memory>
+#include <unordered_map>
+#include <vector>
+
+#undef min
+#undef max
+
+#ifndef xaAssert
+#define xaAssert(exp) \
+ if (!(exp)) { \
+ xaPrint("%s %s %s\n", #exp, __FILE__, __LINE__); \
+ }
+#endif
+#ifndef xaDebugAssert
+#define xaDebugAssert(exp) assert(exp)
+#endif
+#ifndef xaPrint
+#define xaPrint(...) \
+ if (xatlas::internal::s_print) { \
+ xatlas::internal::s_print(__VA_ARGS__); \
+ }
+#endif
+
+#ifdef _MSC_VER
+// Ignore gcc attributes.
+#define __attribute__(X)
+#endif
+
+#ifdef _MSC_VER
+#define restrict
+#define NV_FORCEINLINE __forceinline
+#else
+#define restrict __restrict__
+#define NV_FORCEINLINE __attribute__((always_inline)) inline
+#endif
+
+#define NV_UINT32_MAX 0xffffffff
+#define NV_FLOAT_MAX 3.402823466e+38F
+
+#ifndef PI
+#define PI float(3.1415926535897932384626433833)
+#endif
+
+#define NV_EPSILON (0.0001f)
+#define NV_NORMAL_EPSILON (0.001f)
+
+namespace xatlas {
+namespace internal {
+
+static PrintFunc s_print = NULL;
+
+static int align(int x, int a) {
+ return (x + a - 1) & ~(a - 1);
+}
+
+static bool isAligned(int x, int a) {
+ return (x & (a - 1)) == 0;
+}
+
+/// Return the maximum of the three arguments.
+template <typename T>
+static T max3(const T &a, const T &b, const T &c) {
+ return std::max(a, std::max(b, c));
+}
+
+/// Return the maximum of the three arguments.
+template <typename T>
+static T min3(const T &a, const T &b, const T &c) {
+ return std::min(a, std::min(b, c));
+}
+
+/// Clamp between two values.
+template <typename T>
+static T clamp(const T &x, const T &a, const T &b) {
+ return std::min(std::max(x, a), b);
+}
+
+static float saturate(float f) {
+ return clamp(f, 0.0f, 1.0f);
+}
+
+// Robust floating point comparisons:
+// http://realtimecollisiondetection.net/blog/?p=89
+static bool equal(const float f0, const float f1, const float epsilon = NV_EPSILON) {
+ //return fabs(f0-f1) <= epsilon;
+ return fabs(f0 - f1) <= epsilon * max3(1.0f, fabsf(f0), fabsf(f1));
+}
+
+NV_FORCEINLINE static int ftoi_floor(float val) {
+ return (int)val;
+}
+
+NV_FORCEINLINE static int ftoi_ceil(float val) {
+ return (int)ceilf(val);
+}
+
+NV_FORCEINLINE static int ftoi_round(float f) {
+ return int(floorf(f + 0.5f));
+}
+
+static bool isZero(const float f, const float epsilon = NV_EPSILON) {
+ return fabs(f) <= epsilon;
+}
+
+static float lerp(float f0, float f1, float t) {
+ const float s = 1.0f - t;
+ return f0 * s + f1 * t;
+}
+
+static float square(float f) {
+ return f * f;
+}
+
+static int square(int i) {
+ return i * i;
+}
+
+/** Return the next power of two.
+* @see http://graphics.stanford.edu/~seander/bithacks.html
+* @warning Behaviour for 0 is undefined.
+* @note isPowerOfTwo(x) == true -> nextPowerOfTwo(x) == x
+* @note nextPowerOfTwo(x) = 2 << log2(x-1)
+*/
+static uint32_t nextPowerOfTwo(uint32_t x) {
+ xaDebugAssert(x != 0);
+ // On modern CPUs this is supposed to be as fast as using the bsr instruction.
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+ return x + 1;
+}
+
+static uint64_t nextPowerOfTwo(uint64_t x) {
+ xaDebugAssert(x != 0);
+ uint32_t p = 1;
+ while (x > p) {
+ p += p;
+ }
+ return p;
+}
+
+static uint32_t sdbmHash(const void *data_in, uint32_t size, uint32_t h = 5381) {
+ const uint8_t *data = (const uint8_t *)data_in;
+ uint32_t i = 0;
+ while (i < size) {
+ h = (h << 16) + (h << 6) - h + (uint32_t)data[i++];
+ }
+ return h;
+}
+
+// Note that this hash does not handle NaN properly.
+static uint32_t sdbmFloatHash(const float *f, uint32_t count, uint32_t h = 5381) {
+ for (uint32_t i = 0; i < count; i++) {
+ union {
+ float f;
+ uint32_t i;
+ } x = { f[i] };
+ if (x.i == 0x80000000) x.i = 0;
+ h = sdbmHash(&x, 4, h);
+ }
+ return h;
+}
+
+template <typename T>
+static uint32_t hash(const T &t, uint32_t h = 5381) {
+ return sdbmHash(&t, sizeof(T), h);
+}
+
+static uint32_t hash(const float &f, uint32_t h) {
+ return sdbmFloatHash(&f, 1, h);
+}
+
+// Functors for hash table:
+template <typename Key>
+struct Hash {
+ uint32_t operator()(const Key &k) const { return hash(k); }
+};
+
+template <typename Key>
+struct Equal {
+ bool operator()(const Key &k0, const Key &k1) const { return k0 == k1; }
+};
+
+class Vector2 {
+public:
+ typedef Vector2 const &Arg;
+
+ Vector2() {}
+ explicit Vector2(float f) :
+ x(f),
+ y(f) {}
+ Vector2(float x, float y) :
+ x(x),
+ y(y) {}
+ Vector2(Vector2::Arg v) :
+ x(v.x),
+ y(v.y) {}
+
+ const Vector2 &operator=(Vector2::Arg v) {
+ x = v.x;
+ y = v.y;
+ return *this;
+ }
+ const float *ptr() const { return &x; }
+
+ void set(float _x, float _y) {
+ x = _x;
+ y = _y;
+ }
+
+ Vector2 operator-() const {
+ return Vector2(-x, -y);
+ }
+
+ void operator+=(Vector2::Arg v) {
+ x += v.x;
+ y += v.y;
+ }
+
+ void operator-=(Vector2::Arg v) {
+ x -= v.x;
+ y -= v.y;
+ }
+
+ void operator*=(float s) {
+ x *= s;
+ y *= s;
+ }
+
+ void operator*=(Vector2::Arg v) {
+ x *= v.x;
+ y *= v.y;
+ }
+
+ friend bool operator==(Vector2::Arg a, Vector2::Arg b) {
+ return a.x == b.x && a.y == b.y;
+ }
+
+ friend bool operator!=(Vector2::Arg a, Vector2::Arg b) {
+ return a.x != b.x || a.y != b.y;
+ }
+
+ union {
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4201)
+#endif
+ struct
+ {
+ float x, y;
+ };
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+ float component[2];
+ };
+};
+
+Vector2 operator+(Vector2::Arg a, Vector2::Arg b) {
+ return Vector2(a.x + b.x, a.y + b.y);
+}
+
+Vector2 operator-(Vector2::Arg a, Vector2::Arg b) {
+ return Vector2(a.x - b.x, a.y - b.y);
+}
+
+Vector2 operator*(Vector2::Arg v, float s) {
+ return Vector2(v.x * s, v.y * s);
+}
+
+Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2) {
+ return Vector2(v1.x * v2.x, v1.y * v2.y);
+}
+
+Vector2 operator/(Vector2::Arg v, float s) {
+ return Vector2(v.x / s, v.y / s);
+}
+
+Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t) {
+ const float s = 1.0f - t;
+ return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y);
+}
+
+float dot(Vector2::Arg a, Vector2::Arg b) {
+ return a.x * b.x + a.y * b.y;
+}
+
+float lengthSquared(Vector2::Arg v) {
+ return v.x * v.x + v.y * v.y;
+}
+
+float length(Vector2::Arg v) {
+ return sqrtf(lengthSquared(v));
+}
+
+float distance(Vector2::Arg a, Vector2::Arg b) {
+ return length(a - b);
+}
+
+bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON) {
+ return equal(length(v), 1, epsilon);
+}
+
+Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON) {
+ float l = length(v);
+ xaDebugAssert(!isZero(l, epsilon));
+#ifdef NDEBUG
+ epsilon = 0; // silence unused parameter warning
+#endif
+ Vector2 n = v * (1.0f / l);
+ xaDebugAssert(isNormalized(n));
+ return n;
+}
+
+Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON) {
+ float l = length(v);
+ if (isZero(l, epsilon)) {
+ return fallback;
+ }
+ return v * (1.0f / l);
+}
+
+bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON) {
+ return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon);
+}
+
+Vector2 max(Vector2::Arg a, Vector2::Arg b) {
+ return Vector2(std::max(a.x, b.x), std::max(a.y, b.y));
+}
+
+bool isFinite(Vector2::Arg v) {
+ return std::isfinite(v.x) && std::isfinite(v.y);
+}
+
+// Note, this is the area scaled by 2!
+float triangleArea(Vector2::Arg v0, Vector2::Arg v1) {
+ return (v0.x * v1.y - v0.y * v1.x); // * 0.5f;
+}
+float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c) {
+ // IC: While it may be appealing to use the following expression:
+ //return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f;
+ // That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point
+ // numbers and the results becomes very unstable and dependent on the order of the factors.
+ // Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result
+ // in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of
+ // the triangle.
+ //return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f;
+ return triangleArea(a - c, b - c);
+}
+
+float triangleArea2(Vector2::Arg v1, Vector2::Arg v2, Vector2::Arg v3) {
+ return 0.5f * (v3.x * v1.y + v1.x * v2.y + v2.x * v3.y - v2.x * v1.y - v3.x * v2.y - v1.x * v3.y);
+}
+
+static uint32_t hash(const Vector2 &v, uint32_t h) {
+ return sdbmFloatHash(v.component, 2, h);
+}
+
+class Vector3 {
+public:
+ typedef Vector3 const &Arg;
+
+ Vector3() {}
+ explicit Vector3(float f) :
+ x(f),
+ y(f),
+ z(f) {}
+ Vector3(float x, float y, float z) :
+ x(x),
+ y(y),
+ z(z) {}
+ Vector3(Vector2::Arg v, float z) :
+ x(v.x),
+ y(v.y),
+ z(z) {}
+ Vector3(Vector3::Arg v) :
+ x(v.x),
+ y(v.y),
+ z(v.z) {}
+
+ const Vector3 &operator=(Vector3::Arg v) {
+ x = v.x;
+ y = v.y;
+ z = v.z;
+ return *this;
+ }
+
+ Vector2 xy() const {
+ return Vector2(x, y);
+ }
+
+ const float *ptr() const { return &x; }
+
+ void set(float _x, float _y, float _z) {
+ x = _x;
+ y = _y;
+ z = _z;
+ }
+
+ Vector3 operator-() const {
+ return Vector3(-x, -y, -z);
+ }
+
+ void operator+=(Vector3::Arg v) {
+ x += v.x;
+ y += v.y;
+ z += v.z;
+ }
+
+ void operator-=(Vector3::Arg v) {
+ x -= v.x;
+ y -= v.y;
+ z -= v.z;
+ }
+
+ void operator*=(float s) {
+ x *= s;
+ y *= s;
+ z *= s;
+ }
+
+ void operator/=(float s) {
+ float is = 1.0f / s;
+ x *= is;
+ y *= is;
+ z *= is;
+ }
+
+ void operator*=(Vector3::Arg v) {
+ x *= v.x;
+ y *= v.y;
+ z *= v.z;
+ }
+
+ void operator/=(Vector3::Arg v) {
+ x /= v.x;
+ y /= v.y;
+ z /= v.z;
+ }
+
+ friend bool operator==(Vector3::Arg a, Vector3::Arg b) {
+ return a.x == b.x && a.y == b.y && a.z == b.z;
+ }
+
+ friend bool operator!=(Vector3::Arg a, Vector3::Arg b) {
+ return a.x != b.x || a.y != b.y || a.z != b.z;
+ }
+
+ union {
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4201)
+#endif
+ struct
+ {
+ float x, y, z;
+ };
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+ float component[3];
+ };
+};
+
+Vector3 add(Vector3::Arg a, Vector3::Arg b) {
+ return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
+}
+Vector3 add(Vector3::Arg a, float b) {
+ return Vector3(a.x + b, a.y + b, a.z + b);
+}
+Vector3 operator+(Vector3::Arg a, Vector3::Arg b) {
+ return add(a, b);
+}
+Vector3 operator+(Vector3::Arg a, float b) {
+ return add(a, b);
+}
+
+Vector3 sub(Vector3::Arg a, Vector3::Arg b) {
+ return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
+}
+
+Vector3 sub(Vector3::Arg a, float b) {
+ return Vector3(a.x - b, a.y - b, a.z - b);
+}
+
+Vector3 operator-(Vector3::Arg a, Vector3::Arg b) {
+ return sub(a, b);
+}
+
+Vector3 operator-(Vector3::Arg a, float b) {
+ return sub(a, b);
+}
+
+Vector3 cross(Vector3::Arg a, Vector3::Arg b) {
+ return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
+}
+
+Vector3 operator*(Vector3::Arg v, float s) {
+ return Vector3(v.x * s, v.y * s, v.z * s);
+}
+
+Vector3 operator*(float s, Vector3::Arg v) {
+ return Vector3(v.x * s, v.y * s, v.z * s);
+}
+
+Vector3 operator*(Vector3::Arg v, Vector3::Arg s) {
+ return Vector3(v.x * s.x, v.y * s.y, v.z * s.z);
+}
+
+Vector3 operator/(Vector3::Arg v, float s) {
+ return v * (1.0f / s);
+}
+
+Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t) {
+ const float s = 1.0f - t;
+ return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z);
+}
+
+float dot(Vector3::Arg a, Vector3::Arg b) {
+ return a.x * b.x + a.y * b.y + a.z * b.z;
+}
+
+float lengthSquared(Vector3::Arg v) {
+ return v.x * v.x + v.y * v.y + v.z * v.z;
+}
+
+float length(Vector3::Arg v) {
+ return sqrtf(lengthSquared(v));
+}
+
+float distance(Vector3::Arg a, Vector3::Arg b) {
+ return length(a - b);
+}
+
+float distanceSquared(Vector3::Arg a, Vector3::Arg b) {
+ return lengthSquared(a - b);
+}
+
+bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON) {
+ return equal(length(v), 1, epsilon);
+}
+
+Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON) {
+ float l = length(v);
+ xaDebugAssert(!isZero(l, epsilon));
+#ifdef NDEBUG
+ epsilon = 0; // silence unused parameter warning
+#endif
+ Vector3 n = v * (1.0f / l);
+ xaDebugAssert(isNormalized(n));
+ return n;
+}
+
+Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON) {
+ float l = length(v);
+ if (isZero(l, epsilon)) {
+ return fallback;
+ }
+ return v * (1.0f / l);
+}
+
+bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON) {
+ return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon);
+}
+
+Vector3 min(Vector3::Arg a, Vector3::Arg b) {
+ return Vector3(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z));
+}
+
+Vector3 max(Vector3::Arg a, Vector3::Arg b) {
+ return Vector3(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z));
+}
+
+Vector3 clamp(Vector3::Arg v, float min, float max) {
+ return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max));
+}
+
+Vector3 saturate(Vector3::Arg v) {
+ return Vector3(saturate(v.x), saturate(v.y), saturate(v.z));
+}
+
+Vector3 floor(Vector3::Arg v) {
+ return Vector3(floorf(v.x), floorf(v.y), floorf(v.z));
+}
+
+bool isFinite(Vector3::Arg v) {
+ return std::isfinite(v.x) && std::isfinite(v.y) && std::isfinite(v.z);
+}
+
+static uint32_t hash(const Vector3 &v, uint32_t h) {
+ return sdbmFloatHash(v.component, 3, h);
+}
+
+/// Basis class to compute tangent space basis, ortogonalizations and to
+/// transform vectors from one space to another.
+class Basis {
+public:
+ /// Create a null basis.
+ Basis() :
+ tangent(0, 0, 0),
+ bitangent(0, 0, 0),
+ normal(0, 0, 0) {}
+
+ void buildFrameForDirection(Vector3::Arg d, float angle = 0) {
+ xaAssert(isNormalized(d));
+ normal = d;
+ // Choose minimum axis.
+ if (fabsf(normal.x) < fabsf(normal.y) && fabsf(normal.x) < fabsf(normal.z)) {
+ tangent = Vector3(1, 0, 0);
+ } else if (fabsf(normal.y) < fabsf(normal.z)) {
+ tangent = Vector3(0, 1, 0);
+ } else {
+ tangent = Vector3(0, 0, 1);
+ }
+ // Ortogonalize
+ tangent -= normal * dot(normal, tangent);
+ tangent = normalize(tangent);
+ bitangent = cross(normal, tangent);
+ // Rotate frame around normal according to angle.
+ if (angle != 0.0f) {
+ float c = cosf(angle);
+ float s = sinf(angle);
+ Vector3 tmp = c * tangent - s * bitangent;
+ bitangent = s * tangent + c * bitangent;
+ tangent = tmp;
+ }
+ }
+
+ Vector3 tangent;
+ Vector3 bitangent;
+ Vector3 normal;
+};
+
+// Simple bit array.
+class BitArray {
+public:
+ BitArray() :
+ m_size(0) {}
+ BitArray(uint32_t sz) {
+ resize(sz);
+ }
+
+ uint32_t size() const {
+ return m_size;
+ }
+
+ void clear() {
+ resize(0);
+ }
+
+ void resize(uint32_t new_size) {
+ m_size = new_size;
+ m_wordArray.resize((m_size + 31) >> 5);
+ }
+
+ /// Get bit.
+ bool bitAt(uint32_t b) const {
+ xaDebugAssert(b < m_size);
+ return (m_wordArray[b >> 5] & (1 << (b & 31))) != 0;
+ }
+
+ // Set a bit.
+ void setBitAt(uint32_t idx) {
+ xaDebugAssert(idx < m_size);
+ m_wordArray[idx >> 5] |= (1 << (idx & 31));
+ }
+
+ // Toggle a bit.
+ void toggleBitAt(uint32_t idx) {
+ xaDebugAssert(idx < m_size);
+ m_wordArray[idx >> 5] ^= (1 << (idx & 31));
+ }
+
+ // Set a bit to the given value. @@ Rename modifyBitAt?
+ void setBitAt(uint32_t idx, bool b) {
+ xaDebugAssert(idx < m_size);
+ m_wordArray[idx >> 5] = setBits(m_wordArray[idx >> 5], 1 << (idx & 31), b);
+ xaDebugAssert(bitAt(idx) == b);
+ }
+
+ // Clear all the bits.
+ void clearAll() {
+ memset(m_wordArray.data(), 0, m_wordArray.size() * sizeof(uint32_t));
+ }
+
+ // Set all the bits.
+ void setAll() {
+ memset(m_wordArray.data(), 0xFF, m_wordArray.size() * sizeof(uint32_t));
+ }
+
+private:
+ // See "Conditionally set or clear bits without branching" at http://graphics.stanford.edu/~seander/bithacks.html
+ uint32_t setBits(uint32_t w, uint32_t m, bool b) {
+ return (w & ~m) | (-int(b) & m);
+ }
+
+ // Number of bits stored.
+ uint32_t m_size;
+
+ // Array of bits.
+ std::vector<uint32_t> m_wordArray;
+};
+
+/// Bit map. This should probably be called BitImage.
+class BitMap {
+public:
+ BitMap() :
+ m_width(0),
+ m_height(0) {}
+ BitMap(uint32_t w, uint32_t h) :
+ m_width(w),
+ m_height(h),
+ m_bitArray(w * h) {}
+
+ uint32_t width() const {
+ return m_width;
+ }
+ uint32_t height() const {
+ return m_height;
+ }
+
+ void resize(uint32_t w, uint32_t h, bool initValue) {
+ BitArray tmp(w * h);
+ if (initValue)
+ tmp.setAll();
+ else
+ tmp.clearAll();
+ // @@ Copying one bit at a time. This could be much faster.
+ for (uint32_t y = 0; y < m_height; y++) {
+ for (uint32_t x = 0; x < m_width; x++) {
+ //tmp.setBitAt(y*w + x, bitAt(x, y));
+ if (bitAt(x, y) != initValue) tmp.toggleBitAt(y * w + x);
+ }
+ }
+ std::swap(m_bitArray, tmp);
+ m_width = w;
+ m_height = h;
+ }
+
+ bool bitAt(uint32_t x, uint32_t y) const {
+ xaDebugAssert(x < m_width && y < m_height);
+ return m_bitArray.bitAt(y * m_width + x);
+ }
+
+ void setBitAt(uint32_t x, uint32_t y) {
+ xaDebugAssert(x < m_width && y < m_height);
+ m_bitArray.setBitAt(y * m_width + x);
+ }
+
+ void clearAll() {
+ m_bitArray.clearAll();
+ }
+
+private:
+ uint32_t m_width;
+ uint32_t m_height;
+ BitArray m_bitArray;
+};
+
+// Axis Aligned Bounding Box.
+class Box {
+public:
+ Box() {}
+ Box(const Box &b) :
+ minCorner(b.minCorner),
+ maxCorner(b.maxCorner) {}
+ Box(const Vector3 &mins, const Vector3 &maxs) :
+ minCorner(mins),
+ maxCorner(maxs) {}
+
+ operator const float *() const {
+ return reinterpret_cast<const float *>(this);
+ }
+
+ // Clear the bounds.
+ void clearBounds() {
+ minCorner.set(FLT_MAX, FLT_MAX, FLT_MAX);
+ maxCorner.set(-FLT_MAX, -FLT_MAX, -FLT_MAX);
+ }
+
+ // Return extents of the box.
+ Vector3 extents() const {
+ return (maxCorner - minCorner) * 0.5f;
+ }
+
+ // Add a point to this box.
+ void addPointToBounds(const Vector3 &p) {
+ minCorner = min(minCorner, p);
+ maxCorner = max(maxCorner, p);
+ }
+
+ // Get the volume of the box.
+ float volume() const {
+ Vector3 d = extents();
+ return 8.0f * (d.x * d.y * d.z);
+ }
+
+ Vector3 minCorner;
+ Vector3 maxCorner;
+};
+
+class Fit {
+public:
+ static Vector3 computeCentroid(int n, const Vector3 *__restrict points) {
+ Vector3 centroid(0.0f);
+ for (int i = 0; i < n; i++) {
+ centroid += points[i];
+ }
+ centroid /= float(n);
+ return centroid;
+ }
+
+ static Vector3 computeCovariance(int n, const Vector3 *__restrict points, float *__restrict covariance) {
+ // compute the centroid
+ Vector3 centroid = computeCentroid(n, points);
+ // compute covariance matrix
+ for (int i = 0; i < 6; i++) {
+ covariance[i] = 0.0f;
+ }
+ for (int i = 0; i < n; i++) {
+ Vector3 v = points[i] - centroid;
+ covariance[0] += v.x * v.x;
+ covariance[1] += v.x * v.y;
+ covariance[2] += v.x * v.z;
+ covariance[3] += v.y * v.y;
+ covariance[4] += v.y * v.z;
+ covariance[5] += v.z * v.z;
+ }
+ return centroid;
+ }
+
+ static bool isPlanar(int n, const Vector3 *points, float epsilon = NV_EPSILON) {
+ // compute the centroid and covariance
+ float matrix[6];
+ computeCovariance(n, points, matrix);
+ float eigenValues[3];
+ Vector3 eigenVectors[3];
+ if (!eigenSolveSymmetric3(matrix, eigenValues, eigenVectors)) {
+ return false;
+ }
+ return eigenValues[2] < epsilon;
+ }
+
+ // Tridiagonal solver from Charles Bloom.
+ // Householder transforms followed by QL decomposition.
+ // Seems to be based on the code from Numerical Recipes in C.
+ static bool eigenSolveSymmetric3(const float matrix[6], float eigenValues[3], Vector3 eigenVectors[3]) {
+ xaDebugAssert(matrix != NULL && eigenValues != NULL && eigenVectors != NULL);
+ float subd[3];
+ float diag[3];
+ float work[3][3];
+ work[0][0] = matrix[0];
+ work[0][1] = work[1][0] = matrix[1];
+ work[0][2] = work[2][0] = matrix[2];
+ work[1][1] = matrix[3];
+ work[1][2] = work[2][1] = matrix[4];
+ work[2][2] = matrix[5];
+ EigenSolver3_Tridiagonal(work, diag, subd);
+ if (!EigenSolver3_QLAlgorithm(work, diag, subd)) {
+ for (int i = 0; i < 3; i++) {
+ eigenValues[i] = 0;
+ eigenVectors[i] = Vector3(0);
+ }
+ return false;
+ }
+ for (int i = 0; i < 3; i++) {
+ eigenValues[i] = (float)diag[i];
+ }
+ // eigenvectors are the columns; make them the rows :
+ for (int i = 0; i < 3; i++) {
+ for (int j = 0; j < 3; j++) {
+ eigenVectors[j].component[i] = (float)work[i][j];
+ }
+ }
+ // shuffle to sort by singular value :
+ if (eigenValues[2] > eigenValues[0] && eigenValues[2] > eigenValues[1]) {
+ std::swap(eigenValues[0], eigenValues[2]);
+ std::swap(eigenVectors[0], eigenVectors[2]);
+ }
+ if (eigenValues[1] > eigenValues[0]) {
+ std::swap(eigenValues[0], eigenValues[1]);
+ std::swap(eigenVectors[0], eigenVectors[1]);
+ }
+ if (eigenValues[2] > eigenValues[1]) {
+ std::swap(eigenValues[1], eigenValues[2]);
+ std::swap(eigenVectors[1], eigenVectors[2]);
+ }
+ xaDebugAssert(eigenValues[0] >= eigenValues[1] && eigenValues[0] >= eigenValues[2]);
+ xaDebugAssert(eigenValues[1] >= eigenValues[2]);
+ return true;
+ }
+
+private:
+ static void EigenSolver3_Tridiagonal(float mat[3][3], float *diag, float *subd) {
+ // Householder reduction T = Q^t M Q
+ // Input:
+ // mat, symmetric 3x3 matrix M
+ // Output:
+ // mat, orthogonal matrix Q
+ // diag, diagonal entries of T
+ // subd, subdiagonal entries of T (T is symmetric)
+ const float epsilon = 1e-08f;
+ float a = mat[0][0];
+ float b = mat[0][1];
+ float c = mat[0][2];
+ float d = mat[1][1];
+ float e = mat[1][2];
+ float f = mat[2][2];
+ diag[0] = a;
+ subd[2] = 0.f;
+ if (fabsf(c) >= epsilon) {
+ const float ell = sqrtf(b * b + c * c);
+ b /= ell;
+ c /= ell;
+ const float q = 2 * b * e + c * (f - d);
+ diag[1] = d + c * q;
+ diag[2] = f - c * q;
+ subd[0] = ell;
+ subd[1] = e - b * q;
+ mat[0][0] = 1;
+ mat[0][1] = 0;
+ mat[0][2] = 0;
+ mat[1][0] = 0;
+ mat[1][1] = b;
+ mat[1][2] = c;
+ mat[2][0] = 0;
+ mat[2][1] = c;
+ mat[2][2] = -b;
+ } else {
+ diag[1] = d;
+ diag[2] = f;
+ subd[0] = b;
+ subd[1] = e;
+ mat[0][0] = 1;
+ mat[0][1] = 0;
+ mat[0][2] = 0;
+ mat[1][0] = 0;
+ mat[1][1] = 1;
+ mat[1][2] = 0;
+ mat[2][0] = 0;
+ mat[2][1] = 0;
+ mat[2][2] = 1;
+ }
+ }
+
+ static bool EigenSolver3_QLAlgorithm(float mat[3][3], float *diag, float *subd) {
+ // QL iteration with implicit shifting to reduce matrix from tridiagonal
+ // to diagonal
+ const int maxiter = 32;
+ for (int ell = 0; ell < 3; ell++) {
+ int iter;
+ for (iter = 0; iter < maxiter; iter++) {
+ int m;
+ for (m = ell; m <= 1; m++) {
+ float dd = fabsf(diag[m]) + fabsf(diag[m + 1]);
+ if (fabsf(subd[m]) + dd == dd)
+ break;
+ }
+ if (m == ell)
+ break;
+ float g = (diag[ell + 1] - diag[ell]) / (2 * subd[ell]);
+ float r = sqrtf(g * g + 1);
+ if (g < 0)
+ g = diag[m] - diag[ell] + subd[ell] / (g - r);
+ else
+ g = diag[m] - diag[ell] + subd[ell] / (g + r);
+ float s = 1, c = 1, p = 0;
+ for (int i = m - 1; i >= ell; i--) {
+ float f = s * subd[i], b = c * subd[i];
+ if (fabsf(f) >= fabsf(g)) {
+ c = g / f;
+ r = sqrtf(c * c + 1);
+ subd[i + 1] = f * r;
+ c *= (s = 1 / r);
+ } else {
+ s = f / g;
+ r = sqrtf(s * s + 1);
+ subd[i + 1] = g * r;
+ s *= (c = 1 / r);
+ }
+ g = diag[i + 1] - p;
+ r = (diag[i] - g) * s + 2 * b * c;
+ p = s * r;
+ diag[i + 1] = g + p;
+ g = c * r - b;
+ for (int k = 0; k < 3; k++) {
+ f = mat[k][i + 1];
+ mat[k][i + 1] = s * mat[k][i] + c * f;
+ mat[k][i] = c * mat[k][i] - s * f;
+ }
+ }
+ diag[ell] -= p;
+ subd[ell] = g;
+ subd[m] = 0;
+ }
+ if (iter == maxiter)
+ // should not get here under normal circumstances
+ return false;
+ }
+ return true;
+ }
+};
+
+/// Fixed size vector class.
+class FullVector {
+public:
+ FullVector(uint32_t dim) { m_array.resize(dim); }
+ FullVector(const FullVector &v) :
+ m_array(v.m_array) {}
+
+ const FullVector &operator=(const FullVector &v) {
+ xaAssert(dimension() == v.dimension());
+ m_array = v.m_array;
+ return *this;
+ }
+
+ uint32_t dimension() const { return m_array.size(); }
+ const float &operator[](uint32_t index) const { return m_array[index]; }
+ float &operator[](uint32_t index) { return m_array[index]; }
+
+ void fill(float f) {
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] = f;
+ }
+ }
+
+ void operator+=(const FullVector &v) {
+ xaDebugAssert(dimension() == v.dimension());
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] += v.m_array[i];
+ }
+ }
+
+ void operator-=(const FullVector &v) {
+ xaDebugAssert(dimension() == v.dimension());
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] -= v.m_array[i];
+ }
+ }
+
+ void operator*=(const FullVector &v) {
+ xaDebugAssert(dimension() == v.dimension());
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] *= v.m_array[i];
+ }
+ }
+
+ void operator+=(float f) {
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] += f;
+ }
+ }
+
+ void operator-=(float f) {
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] -= f;
+ }
+ }
+
+ void operator*=(float f) {
+ const uint32_t dim = dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ m_array[i] *= f;
+ }
+ }
+
+private:
+ std::vector<float> m_array;
+};
+
+namespace halfedge {
+class Face;
+class Vertex;
+
+class Edge {
+public:
+ uint32_t id;
+ Edge *next;
+ Edge *prev; // This is not strictly half-edge, but makes algorithms easier and faster.
+ Edge *pair;
+ Vertex *vertex;
+ Face *face;
+
+ // Default constructor.
+ Edge(uint32_t id) :
+ id(id),
+ next(NULL),
+ prev(NULL),
+ pair(NULL),
+ vertex(NULL),
+ face(NULL) {}
+
+ // Vertex queries.
+ const Vertex *from() const {
+ return vertex;
+ }
+
+ Vertex *from() {
+ return vertex;
+ }
+
+ const Vertex *to() const {
+ return pair->vertex; // This used to be 'next->vertex', but that changed often when the connectivity of the mesh changes.
+ }
+
+ Vertex *to() {
+ return pair->vertex;
+ }
+
+ // Edge queries.
+ void setNext(Edge *e) {
+ next = e;
+ if (e != NULL) e->prev = this;
+ }
+ void setPrev(Edge *e) {
+ prev = e;
+ if (e != NULL) e->next = this;
+ }
+
+ // @@ It would be more simple to only check m_pair == NULL
+ // Face queries.
+ bool isBoundary() const {
+ return !(face && pair->face);
+ }
+
+ // @@ This is not exactly accurate, we should compare the texture coordinates...
+ bool isSeam() const {
+ return vertex != pair->next->vertex || next->vertex != pair->vertex;
+ }
+
+ bool isNormalSeam() const;
+ bool isTextureSeam() const;
+
+ bool isValid() const {
+ // null face is OK.
+ if (next == NULL || prev == NULL || pair == NULL || vertex == NULL) return false;
+ if (next->prev != this) return false;
+ if (prev->next != this) return false;
+ if (pair->pair != this) return false;
+ return true;
+ }
+
+ float length() const;
+
+ // Return angle between this edge and the previous one.
+ float angle() const;
+};
+
+class Vertex {
+public:
+ uint32_t id;
+ uint32_t original_id;
+ Edge *edge;
+ Vertex *next;
+ Vertex *prev;
+ Vector3 pos;
+ Vector3 nor;
+ Vector2 tex;
+
+ Vertex(uint32_t id) :
+ id(id),
+ original_id(id),
+ edge(NULL),
+ pos(0.0f),
+ nor(0.0f),
+ tex(0.0f) {
+ next = this;
+ prev = this;
+ }
+
+ // Set first edge of all colocals.
+ void setEdge(Edge *e) {
+ for (VertexIterator it(colocals()); !it.isDone(); it.advance()) {
+ it.current()->edge = e;
+ }
+ }
+
+ // Update position of all colocals.
+ void setPos(const Vector3 &p) {
+ for (VertexIterator it(colocals()); !it.isDone(); it.advance()) {
+ it.current()->pos = p;
+ }
+ }
+
+ bool isFirstColocal() const {
+ return firstColocal() == this;
+ }
+
+ const Vertex *firstColocal() const {
+ uint32_t firstId = id;
+ const Vertex *vertex = this;
+ for (ConstVertexIterator it(colocals()); !it.isDone(); it.advance()) {
+ if (it.current()->id < firstId) {
+ firstId = vertex->id;
+ vertex = it.current();
+ }
+ }
+ return vertex;
+ }
+
+ Vertex *firstColocal() {
+ Vertex *vertex = this;
+ uint32_t firstId = id;
+ for (VertexIterator it(colocals()); !it.isDone(); it.advance()) {
+ if (it.current()->id < firstId) {
+ firstId = vertex->id;
+ vertex = it.current();
+ }
+ }
+ return vertex;
+ }
+
+ bool isColocal(const Vertex *v) const {
+ if (this == v) return true;
+ if (pos != v->pos) return false;
+ for (ConstVertexIterator it(colocals()); !it.isDone(); it.advance()) {
+ if (v == it.current()) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ void linkColocal(Vertex *v) {
+ next->prev = v;
+ v->next = next;
+ next = v;
+ v->prev = this;
+ }
+ void unlinkColocal() {
+ next->prev = prev;
+ prev->next = next;
+ next = this;
+ prev = this;
+ }
+
+ // @@ Note: This only works if linkBoundary has been called.
+ bool isBoundary() const {
+ return (edge && !edge->face);
+ }
+
+ // Iterator that visits the edges around this vertex in counterclockwise order.
+ class EdgeIterator //: public Iterator<Edge *>
+ {
+ public:
+ EdgeIterator(Edge *e) :
+ m_end(NULL),
+ m_current(e) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->pair->next;
+ //m_current = m_current->prev->pair;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual Edge *current() const {
+ return m_current;
+ }
+ Vertex *vertex() const {
+ return m_current->vertex;
+ }
+
+ private:
+ Edge *m_end;
+ Edge *m_current;
+ };
+
+ EdgeIterator edges() {
+ return EdgeIterator(edge);
+ }
+ EdgeIterator edges(Edge *e) {
+ return EdgeIterator(e);
+ }
+
+ // Iterator that visits the edges around this vertex in counterclockwise order.
+ class ConstEdgeIterator //: public Iterator<Edge *>
+ {
+ public:
+ ConstEdgeIterator(const Edge *e) :
+ m_end(NULL),
+ m_current(e) {}
+ ConstEdgeIterator(EdgeIterator it) :
+ m_end(NULL),
+ m_current(it.current()) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->pair->next;
+ //m_current = m_current->prev->pair;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual const Edge *current() const {
+ return m_current;
+ }
+ const Vertex *vertex() const {
+ return m_current->to();
+ }
+
+ private:
+ const Edge *m_end;
+ const Edge *m_current;
+ };
+
+ ConstEdgeIterator edges() const {
+ return ConstEdgeIterator(edge);
+ }
+ ConstEdgeIterator edges(const Edge *e) const {
+ return ConstEdgeIterator(e);
+ }
+
+ // Iterator that visits all the colocal vertices.
+ class VertexIterator //: public Iterator<Edge *>
+ {
+ public:
+ VertexIterator(Vertex *v) :
+ m_end(NULL),
+ m_current(v) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->next;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual Vertex *current() const {
+ return m_current;
+ }
+
+ private:
+ Vertex *m_end;
+ Vertex *m_current;
+ };
+
+ VertexIterator colocals() {
+ return VertexIterator(this);
+ }
+
+ // Iterator that visits all the colocal vertices.
+ class ConstVertexIterator //: public Iterator<Edge *>
+ {
+ public:
+ ConstVertexIterator(const Vertex *v) :
+ m_end(NULL),
+ m_current(v) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->next;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual const Vertex *current() const {
+ return m_current;
+ }
+
+ private:
+ const Vertex *m_end;
+ const Vertex *m_current;
+ };
+
+ ConstVertexIterator colocals() const {
+ return ConstVertexIterator(this);
+ }
+};
+
+bool Edge::isNormalSeam() const {
+ return (vertex->nor != pair->next->vertex->nor || next->vertex->nor != pair->vertex->nor);
+}
+
+bool Edge::isTextureSeam() const {
+ return (vertex->tex != pair->next->vertex->tex || next->vertex->tex != pair->vertex->tex);
+}
+
+float Edge::length() const {
+ return internal::length(to()->pos - from()->pos);
+}
+
+float Edge::angle() const {
+ Vector3 p = vertex->pos;
+ Vector3 a = prev->vertex->pos;
+ Vector3 b = next->vertex->pos;
+ Vector3 v0 = a - p;
+ Vector3 v1 = b - p;
+ return acosf(dot(v0, v1) / (internal::length(v0) * internal::length(v1)));
+}
+
+class Face {
+public:
+ uint32_t id;
+ uint16_t group;
+ uint16_t material;
+ Edge *edge;
+
+ Face(uint32_t id) :
+ id(id),
+ group(uint16_t(~0)),
+ material(uint16_t(~0)),
+ edge(NULL) {}
+
+ float area() const {
+ float area = 0;
+ const Vector3 &v0 = edge->from()->pos;
+ for (ConstEdgeIterator it(edges(edge->next)); it.current() != edge->prev; it.advance()) {
+ const Edge *e = it.current();
+ const Vector3 &v1 = e->vertex->pos;
+ const Vector3 &v2 = e->next->vertex->pos;
+ area += length(cross(v1 - v0, v2 - v0));
+ }
+ return area * 0.5f;
+ }
+
+ float parametricArea() const {
+ float area = 0;
+ const Vector2 &v0 = edge->from()->tex;
+ for (ConstEdgeIterator it(edges(edge->next)); it.current() != edge->prev; it.advance()) {
+ const Edge *e = it.current();
+ const Vector2 &v1 = e->vertex->tex;
+ const Vector2 &v2 = e->next->vertex->tex;
+ area += triangleArea(v0, v1, v2);
+ }
+ return area * 0.5f;
+ }
+
+ Vector3 normal() const {
+ Vector3 n(0);
+ const Vertex *vertex0 = NULL;
+ for (ConstEdgeIterator it(edges()); !it.isDone(); it.advance()) {
+ const Edge *e = it.current();
+ xaAssert(e != NULL);
+ if (vertex0 == NULL) {
+ vertex0 = e->vertex;
+ } else if (e->next->vertex != vertex0) {
+ const halfedge::Vertex *vertex1 = e->from();
+ const halfedge::Vertex *vertex2 = e->to();
+ const Vector3 &p0 = vertex0->pos;
+ const Vector3 &p1 = vertex1->pos;
+ const Vector3 &p2 = vertex2->pos;
+ Vector3 v10 = p1 - p0;
+ Vector3 v20 = p2 - p0;
+ n += cross(v10, v20);
+ }
+ }
+ return normalizeSafe(n, Vector3(0, 0, 1), 0.0f);
+ }
+
+ Vector3 centroid() const {
+ Vector3 sum(0.0f);
+ uint32_t count = 0;
+ for (ConstEdgeIterator it(edges()); !it.isDone(); it.advance()) {
+ const Edge *e = it.current();
+ sum += e->from()->pos;
+ count++;
+ }
+ return sum / float(count);
+ }
+
+ // Unnormalized face normal assuming it's a triangle.
+ Vector3 triangleNormal() const {
+ Vector3 p0 = edge->vertex->pos;
+ Vector3 p1 = edge->next->vertex->pos;
+ Vector3 p2 = edge->next->next->vertex->pos;
+ Vector3 e0 = p2 - p0;
+ Vector3 e1 = p1 - p0;
+ return normalizeSafe(cross(e0, e1), Vector3(0), 0.0f);
+ }
+
+ Vector3 triangleNormalAreaScaled() const {
+ Vector3 p0 = edge->vertex->pos;
+ Vector3 p1 = edge->next->vertex->pos;
+ Vector3 p2 = edge->next->next->vertex->pos;
+ Vector3 e0 = p2 - p0;
+ Vector3 e1 = p1 - p0;
+ return cross(e0, e1);
+ }
+
+ // Average of the edge midpoints weighted by the edge length.
+ // I want a point inside the triangle, but closer to the cirumcenter.
+ Vector3 triangleCenter() const {
+ Vector3 p0 = edge->vertex->pos;
+ Vector3 p1 = edge->next->vertex->pos;
+ Vector3 p2 = edge->next->next->vertex->pos;
+ float l0 = length(p1 - p0);
+ float l1 = length(p2 - p1);
+ float l2 = length(p0 - p2);
+ Vector3 m0 = (p0 + p1) * l0 / (l0 + l1 + l2);
+ Vector3 m1 = (p1 + p2) * l1 / (l0 + l1 + l2);
+ Vector3 m2 = (p2 + p0) * l2 / (l0 + l1 + l2);
+ return m0 + m1 + m2;
+ }
+
+ bool isValid() const {
+ uint32_t count = 0;
+ for (ConstEdgeIterator it(edges()); !it.isDone(); it.advance()) {
+ const Edge *e = it.current();
+ if (e->face != this) return false;
+ if (!e->isValid()) return false;
+ if (!e->pair->isValid()) return false;
+ count++;
+ }
+ if (count < 3) return false;
+ return true;
+ }
+
+ bool contains(const Edge *e) const {
+ for (ConstEdgeIterator it(edges()); !it.isDone(); it.advance()) {
+ if (it.current() == e) return true;
+ }
+ return false;
+ }
+
+ uint32_t edgeCount() const {
+ uint32_t count = 0;
+ for (ConstEdgeIterator it(edges()); !it.isDone(); it.advance()) {
+ ++count;
+ }
+ return count;
+ }
+
+ // The iterator that visits the edges of this face in clockwise order.
+ class EdgeIterator //: public Iterator<Edge *>
+ {
+ public:
+ EdgeIterator(Edge *e) :
+ m_end(NULL),
+ m_current(e) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->next;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual Edge *current() const {
+ return m_current;
+ }
+ Vertex *vertex() const {
+ return m_current->vertex;
+ }
+
+ private:
+ Edge *m_end;
+ Edge *m_current;
+ };
+
+ EdgeIterator edges() {
+ return EdgeIterator(edge);
+ }
+ EdgeIterator edges(Edge *e) {
+ xaDebugAssert(contains(e));
+ return EdgeIterator(e);
+ }
+
+ // The iterator that visits the edges of this face in clockwise order.
+ class ConstEdgeIterator //: public Iterator<const Edge *>
+ {
+ public:
+ ConstEdgeIterator(const Edge *e) :
+ m_end(NULL),
+ m_current(e) {}
+ ConstEdgeIterator(const EdgeIterator &it) :
+ m_end(NULL),
+ m_current(it.current()) {}
+
+ virtual void advance() {
+ if (m_end == NULL) m_end = m_current;
+ m_current = m_current->next;
+ }
+
+ virtual bool isDone() const {
+ return m_end == m_current;
+ }
+ virtual const Edge *current() const {
+ return m_current;
+ }
+ const Vertex *vertex() const {
+ return m_current->vertex;
+ }
+
+ private:
+ const Edge *m_end;
+ const Edge *m_current;
+ };
+
+ ConstEdgeIterator edges() const {
+ return ConstEdgeIterator(edge);
+ }
+ ConstEdgeIterator edges(const Edge *e) const {
+ xaDebugAssert(contains(e));
+ return ConstEdgeIterator(e);
+ }
+};
+
+/// Simple half edge mesh designed for dynamic mesh manipulation.
+class Mesh {
+public:
+ Mesh() :
+ m_colocalVertexCount(0) {}
+
+ Mesh(const Mesh *mesh) {
+ // Copy mesh vertices.
+ const uint32_t vertexCount = mesh->vertexCount();
+ m_vertexArray.resize(vertexCount);
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ const Vertex *vertex = mesh->vertexAt(v);
+ xaDebugAssert(vertex->id == v);
+ m_vertexArray[v] = new Vertex(v);
+ m_vertexArray[v]->pos = vertex->pos;
+ m_vertexArray[v]->nor = vertex->nor;
+ m_vertexArray[v]->tex = vertex->tex;
+ }
+ m_colocalVertexCount = vertexCount;
+ // Copy mesh faces.
+ const uint32_t faceCount = mesh->faceCount();
+ std::vector<uint32_t> indexArray;
+ indexArray.reserve(3);
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const Face *face = mesh->faceAt(f);
+ for (Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const Vertex *vertex = it.current()->from();
+ indexArray.push_back(vertex->id);
+ }
+ addFace(indexArray);
+ indexArray.clear();
+ }
+ }
+
+ ~Mesh() {
+ clear();
+ }
+
+ void clear() {
+ for (size_t i = 0; i < m_vertexArray.size(); i++)
+ delete m_vertexArray[i];
+ m_vertexArray.clear();
+ for (auto it = m_edgeMap.begin(); it != m_edgeMap.end(); it++)
+ delete it->second;
+ m_edgeArray.clear();
+ m_edgeMap.clear();
+ for (size_t i = 0; i < m_faceArray.size(); i++)
+ delete m_faceArray[i];
+ m_faceArray.clear();
+ }
+
+ Vertex *addVertex(const Vector3 &pos) {
+ xaDebugAssert(isFinite(pos));
+ Vertex *v = new Vertex(m_vertexArray.size());
+ v->pos = pos;
+ m_vertexArray.push_back(v);
+ return v;
+ }
+
+ /// Link colocal vertices based on geometric location only.
+ void linkColocals() {
+ xaPrint("--- Linking colocals:\n");
+ const uint32_t vertexCount = this->vertexCount();
+ std::unordered_map<Vector3, Vertex *, Hash<Vector3>, Equal<Vector3> > vertexMap;
+ vertexMap.reserve(vertexCount);
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ Vertex *vertex = vertexAt(v);
+ Vertex *colocal = vertexMap[vertex->pos];
+ if (colocal) {
+ colocal->linkColocal(vertex);
+ } else {
+ vertexMap[vertex->pos] = vertex;
+ }
+ }
+ m_colocalVertexCount = vertexMap.size();
+ xaPrint("--- %d vertex positions.\n", m_colocalVertexCount);
+ // @@ Remove duplicated vertices? or just leave them as colocals?
+ }
+
+ void linkColocalsWithCanonicalMap(const std::vector<uint32_t> &canonicalMap) {
+ xaPrint("--- Linking colocals:\n");
+ uint32_t vertexMapSize = 0;
+ for (uint32_t i = 0; i < canonicalMap.size(); i++) {
+ vertexMapSize = std::max(vertexMapSize, canonicalMap[i] + 1);
+ }
+ std::vector<Vertex *> vertexMap;
+ vertexMap.resize(vertexMapSize, NULL);
+ m_colocalVertexCount = 0;
+ const uint32_t vertexCount = this->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ Vertex *vertex = vertexAt(v);
+ Vertex *colocal = vertexMap[canonicalMap[v]];
+ if (colocal != NULL) {
+ xaDebugAssert(vertex->pos == colocal->pos);
+ colocal->linkColocal(vertex);
+ } else {
+ vertexMap[canonicalMap[v]] = vertex;
+ m_colocalVertexCount++;
+ }
+ }
+ xaPrint("--- %d vertex positions.\n", m_colocalVertexCount);
+ }
+
+ Face *addFace() {
+ Face *f = new Face(m_faceArray.size());
+ m_faceArray.push_back(f);
+ return f;
+ }
+
+ Face *addFace(uint32_t v0, uint32_t v1, uint32_t v2) {
+ uint32_t indexArray[3];
+ indexArray[0] = v0;
+ indexArray[1] = v1;
+ indexArray[2] = v2;
+ return addFace(indexArray, 3, 0, 3);
+ }
+
+ Face *addUniqueFace(uint32_t v0, uint32_t v1, uint32_t v2) {
+
+ int base_vertex = m_vertexArray.size();
+
+ uint32_t ids[3] = { v0, v1, v2 };
+
+ Vector3 base[3] = {
+ m_vertexArray[v0]->pos,
+ m_vertexArray[v1]->pos,
+ m_vertexArray[v2]->pos,
+ };
+
+ //make sure its not a degenerate
+ bool degenerate = distanceSquared(base[0], base[1]) < NV_EPSILON || distanceSquared(base[0], base[2]) < NV_EPSILON || distanceSquared(base[1], base[2]) < NV_EPSILON;
+ xaDebugAssert(!degenerate);
+
+ float min_x = 0;
+
+ for (int i = 0; i < 3; i++) {
+ if (i == 0 || m_vertexArray[v0]->pos.x < min_x) {
+ min_x = m_vertexArray[v0]->pos.x;
+ }
+ }
+
+ float max_x = 0;
+
+ for (int j = 0; j < m_vertexArray.size(); j++) {
+ if (j == 0 || m_vertexArray[j]->pos.x > max_x) { //vertex already exists
+ max_x = m_vertexArray[j]->pos.x;
+ }
+ }
+
+ //separate from everything else, in x axis
+ for (int i = 0; i < 3; i++) {
+
+ base[i].x -= min_x;
+ base[i].x += max_x + 10.0;
+ }
+
+ for (int i = 0; i < 3; i++) {
+ Vertex *v = new Vertex(m_vertexArray.size());
+ v->pos = base[i];
+ v->nor = m_vertexArray[ids[i]]->nor,
+ v->tex = m_vertexArray[ids[i]]->tex,
+
+ v->original_id = ids[i];
+ m_vertexArray.push_back(v);
+ }
+
+ uint32_t indexArray[3];
+ indexArray[0] = base_vertex + 0;
+ indexArray[1] = base_vertex + 1;
+ indexArray[2] = base_vertex + 2;
+ return addFace(indexArray, 3, 0, 3);
+ }
+
+ Face *addFace(uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3) {
+ uint32_t indexArray[4];
+ indexArray[0] = v0;
+ indexArray[1] = v1;
+ indexArray[2] = v2;
+ indexArray[3] = v3;
+ return addFace(indexArray, 4, 0, 4);
+ }
+
+ Face *addFace(const std::vector<uint32_t> &indexArray) {
+ return addFace(indexArray, 0, indexArray.size());
+ }
+
+ Face *addFace(const std::vector<uint32_t> &indexArray, uint32_t first, uint32_t num) {
+ return addFace(indexArray.data(), (uint32_t)indexArray.size(), first, num);
+ }
+
+ Face *addFace(const uint32_t *indexArray, uint32_t indexCount, uint32_t first, uint32_t num) {
+ xaDebugAssert(first < indexCount);
+ xaDebugAssert(num <= indexCount - first);
+ xaDebugAssert(num > 2);
+ if (!canAddFace(indexArray, first, num)) {
+ return NULL;
+ }
+ Face *f = new Face(m_faceArray.size());
+ Edge *firstEdge = NULL;
+ Edge *last = NULL;
+ Edge *current = NULL;
+ for (uint32_t i = 0; i < num - 1; i++) {
+ current = addEdge(indexArray[first + i], indexArray[first + i + 1]);
+ xaAssert(current != NULL && current->face == NULL);
+ current->face = f;
+ if (last != NULL)
+ last->setNext(current);
+ else
+ firstEdge = current;
+ last = current;
+ }
+ current = addEdge(indexArray[first + num - 1], indexArray[first]);
+ xaAssert(current != NULL && current->face == NULL);
+ current->face = f;
+ last->setNext(current);
+ current->setNext(firstEdge);
+ f->edge = firstEdge;
+ m_faceArray.push_back(f);
+ return f;
+ }
+
+ // These functions disconnect the given element from the mesh and delete it.
+
+ // @@ We must always disconnect edge pairs simultaneously.
+ void disconnect(Edge *edge) {
+ xaDebugAssert(edge != NULL);
+ // Remove from edge list.
+ if ((edge->id & 1) == 0) {
+ xaDebugAssert(m_edgeArray[edge->id / 2] == edge);
+ m_edgeArray[edge->id / 2] = NULL;
+ }
+ // Remove edge from map. @@ Store map key inside edge?
+ xaDebugAssert(edge->from() != NULL && edge->to() != NULL);
+ size_t removed = m_edgeMap.erase(Key(edge->from()->id, edge->to()->id));
+ xaDebugAssert(removed == 1);
+#ifdef NDEBUG
+ removed = 0; // silence unused parameter warning
+#endif
+ // Disconnect from vertex.
+ if (edge->vertex != NULL) {
+ if (edge->vertex->edge == edge) {
+ if (edge->prev && edge->prev->pair) {
+ edge->vertex->edge = edge->prev->pair;
+ } else if (edge->pair && edge->pair->next) {
+ edge->vertex->edge = edge->pair->next;
+ } else {
+ edge->vertex->edge = NULL;
+ // @@ Remove disconnected vertex?
+ }
+ }
+ }
+ // Disconnect from face.
+ if (edge->face != NULL) {
+ if (edge->face->edge == edge) {
+ if (edge->next != NULL && edge->next != edge) {
+ edge->face->edge = edge->next;
+ } else if (edge->prev != NULL && edge->prev != edge) {
+ edge->face->edge = edge->prev;
+ } else {
+ edge->face->edge = NULL;
+ // @@ Remove disconnected face?
+ }
+ }
+ }
+ // Disconnect from previous.
+ if (edge->prev) {
+ if (edge->prev->next == edge) {
+ edge->prev->setNext(NULL);
+ }
+ //edge->setPrev(NULL);
+ }
+ // Disconnect from next.
+ if (edge->next) {
+ if (edge->next->prev == edge) {
+ edge->next->setPrev(NULL);
+ }
+ //edge->setNext(NULL);
+ }
+ }
+
+ void remove(Edge *edge) {
+ xaDebugAssert(edge != NULL);
+ disconnect(edge);
+ delete edge;
+ }
+
+ void remove(Vertex *vertex) {
+ xaDebugAssert(vertex != NULL);
+ // Remove from vertex list.
+ m_vertexArray[vertex->id] = NULL;
+ // Disconnect from colocals.
+ vertex->unlinkColocal();
+ // Disconnect from edges.
+ if (vertex->edge != NULL) {
+ // @@ Removing a connected vertex is asking for trouble...
+ if (vertex->edge->vertex == vertex) {
+ // @@ Connect edge to a colocal?
+ vertex->edge->vertex = NULL;
+ }
+ vertex->setEdge(NULL);
+ }
+ delete vertex;
+ }
+
+ void remove(Face *face) {
+ xaDebugAssert(face != NULL);
+ // Remove from face list.
+ m_faceArray[face->id] = NULL;
+ // Disconnect from edges.
+ if (face->edge != NULL) {
+ xaDebugAssert(face->edge->face == face);
+ face->edge->face = NULL;
+ face->edge = NULL;
+ }
+ delete face;
+ }
+
+ // Triangulate in place.
+ void triangulate() {
+ bool all_triangles = true;
+ const uint32_t faceCount = m_faceArray.size();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ Face *face = m_faceArray[f];
+ if (face->edgeCount() != 3) {
+ all_triangles = false;
+ break;
+ }
+ }
+ if (all_triangles) {
+ return;
+ }
+ // Do not touch vertices, but rebuild edges and faces.
+ std::vector<Edge *> edgeArray;
+ std::vector<Face *> faceArray;
+ std::swap(edgeArray, m_edgeArray);
+ std::swap(faceArray, m_faceArray);
+ m_edgeMap.clear();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ Face *face = faceArray[f];
+ // Trivial fan-like triangulation.
+ const uint32_t v0 = face->edge->vertex->id;
+ uint32_t v2, v1 = (uint32_t)-1;
+ for (Face::EdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ Edge *edge = it.current();
+ v2 = edge->to()->id;
+ if (v2 == v0) break;
+ if (v1 != -1) addFace(v0, v1, v2);
+ v1 = v2;
+ }
+ }
+ xaDebugAssert(m_faceArray.size() > faceCount); // triangle count > face count
+ linkBoundary();
+ for (size_t i = 0; i < edgeArray.size(); i++)
+ delete edgeArray[i];
+ for (size_t i = 0; i < faceArray.size(); i++)
+ delete faceArray[i];
+ }
+
+ /// Link boundary edges once the mesh has been created.
+ void linkBoundary() {
+ xaPrint("--- Linking boundaries:\n");
+ int num = 0;
+ // Create boundary edges.
+ uint32_t edgeCount = this->edgeCount();
+ for (uint32_t e = 0; e < edgeCount; e++) {
+ Edge *edge = edgeAt(e);
+ if (edge != NULL && edge->pair == NULL) {
+ Edge *pair = new Edge(edge->id + 1);
+ uint32_t i = edge->from()->id;
+ uint32_t j = edge->next->from()->id;
+ Key key(j, i);
+ xaAssert(m_edgeMap.find(key) == m_edgeMap.end());
+ pair->vertex = m_vertexArray[j];
+ m_edgeMap[key] = pair;
+ edge->pair = pair;
+ pair->pair = edge;
+ num++;
+ }
+ }
+ // Link boundary edges.
+ for (uint32_t e = 0; e < edgeCount; e++) {
+ Edge *edge = edgeAt(e);
+ if (edge != NULL && edge->pair->face == NULL) {
+ linkBoundaryEdge(edge->pair);
+ }
+ }
+ xaPrint("--- %d boundary edges.\n", num);
+ }
+
+ /*
+ Fixing T-junctions.
+
+ - Find T-junctions. Find vertices that are on an edge.
+ - This test is approximate.
+ - Insert edges on a spatial index to speedup queries.
+ - Consider only open edges, that is edges that have no pairs.
+ - Consider only vertices on boundaries.
+ - Close T-junction.
+ - Split edge.
+
+ */
+ bool splitBoundaryEdges() // Returns true if any split was made.
+ {
+ std::vector<Vertex *> boundaryVertices;
+ for (uint32_t i = 0; i < m_vertexArray.size(); i++) {
+ Vertex *v = m_vertexArray[i];
+ if (v->isBoundary()) {
+ boundaryVertices.push_back(v);
+ }
+ }
+ xaPrint("Fixing T-junctions:\n");
+ int splitCount = 0;
+ for (uint32_t v = 0; v < boundaryVertices.size(); v++) {
+ Vertex *vertex = boundaryVertices[v];
+ Vector3 x0 = vertex->pos;
+ // Find edges that this vertex overlaps with.
+ for (uint32_t e = 0; e < m_edgeArray.size(); e++) {
+ Edge *edge = m_edgeArray[e];
+ if (edge != NULL && edge->isBoundary()) {
+ if (edge->from() == vertex || edge->to() == vertex) {
+ continue;
+ }
+ Vector3 x1 = edge->from()->pos;
+ Vector3 x2 = edge->to()->pos;
+ Vector3 v01 = x0 - x1;
+ Vector3 v21 = x2 - x1;
+ float l = length(v21);
+ float d = length(cross(v01, v21)) / l;
+ if (isZero(d)) {
+ float t = dot(v01, v21) / (l * l);
+ if (t > 0.0f + NV_EPSILON && t < 1.0f - NV_EPSILON) {
+ xaDebugAssert(equal(lerp(x1, x2, t), x0));
+ Vertex *splitVertex = splitBoundaryEdge(edge, t, x0);
+ vertex->linkColocal(splitVertex); // @@ Should we do this here?
+ splitCount++;
+ }
+ }
+ }
+ }
+ }
+ xaPrint(" - %d edges split.\n", splitCount);
+ xaDebugAssert(isValid());
+ return splitCount != 0;
+ }
+
+ // Vertices
+ uint32_t vertexCount() const {
+ return m_vertexArray.size();
+ }
+ const Vertex *vertexAt(int i) const {
+ return m_vertexArray[i];
+ }
+ Vertex *vertexAt(int i) {
+ return m_vertexArray[i];
+ }
+
+ uint32_t colocalVertexCount() const {
+ return m_colocalVertexCount;
+ }
+
+ // Faces
+ uint32_t faceCount() const {
+ return m_faceArray.size();
+ }
+ const Face *faceAt(int i) const {
+ return m_faceArray[i];
+ }
+ Face *faceAt(int i) {
+ return m_faceArray[i];
+ }
+
+ // Edges
+ uint32_t edgeCount() const {
+ return m_edgeArray.size();
+ }
+ const Edge *edgeAt(int i) const {
+ return m_edgeArray[i];
+ }
+ Edge *edgeAt(int i) {
+ return m_edgeArray[i];
+ }
+
+ class ConstVertexIterator;
+
+ class VertexIterator {
+ friend class ConstVertexIterator;
+
+ public:
+ VertexIterator(Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->vertexCount();
+ }
+ virtual Vertex *current() const {
+ return m_mesh->vertexAt(m_current);
+ }
+
+ private:
+ halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ VertexIterator vertices() {
+ return VertexIterator(this);
+ }
+
+ class ConstVertexIterator {
+ public:
+ ConstVertexIterator(const Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+ ConstVertexIterator(class VertexIterator &it) :
+ m_mesh(it.m_mesh),
+ m_current(it.m_current) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->vertexCount();
+ }
+ virtual const Vertex *current() const {
+ return m_mesh->vertexAt(m_current);
+ }
+
+ private:
+ const halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ ConstVertexIterator vertices() const {
+ return ConstVertexIterator(this);
+ }
+
+ class ConstFaceIterator;
+
+ class FaceIterator {
+ friend class ConstFaceIterator;
+
+ public:
+ FaceIterator(Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->faceCount();
+ }
+ virtual Face *current() const {
+ return m_mesh->faceAt(m_current);
+ }
+
+ private:
+ halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ FaceIterator faces() {
+ return FaceIterator(this);
+ }
+
+ class ConstFaceIterator {
+ public:
+ ConstFaceIterator(const Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+ ConstFaceIterator(const FaceIterator &it) :
+ m_mesh(it.m_mesh),
+ m_current(it.m_current) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->faceCount();
+ }
+ virtual const Face *current() const {
+ return m_mesh->faceAt(m_current);
+ }
+
+ private:
+ const halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ ConstFaceIterator faces() const {
+ return ConstFaceIterator(this);
+ }
+
+ class ConstEdgeIterator;
+
+ class EdgeIterator {
+ friend class ConstEdgeIterator;
+
+ public:
+ EdgeIterator(Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->edgeCount();
+ }
+ virtual Edge *current() const {
+ return m_mesh->edgeAt(m_current);
+ }
+
+ private:
+ halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ EdgeIterator edges() {
+ return EdgeIterator(this);
+ }
+
+ class ConstEdgeIterator {
+ public:
+ ConstEdgeIterator(const Mesh *mesh) :
+ m_mesh(mesh),
+ m_current(0) {}
+ ConstEdgeIterator(const EdgeIterator &it) :
+ m_mesh(it.m_mesh),
+ m_current(it.m_current) {}
+
+ virtual void advance() {
+ m_current++;
+ }
+ virtual bool isDone() const {
+ return m_current == m_mesh->edgeCount();
+ }
+ virtual const Edge *current() const {
+ return m_mesh->edgeAt(m_current);
+ }
+
+ private:
+ const halfedge::Mesh *m_mesh;
+ uint32_t m_current;
+ };
+ ConstEdgeIterator edges() const {
+ return ConstEdgeIterator(this);
+ }
+
+ // @@ Add half-edge iterator.
+
+ bool isValid() const {
+ // Make sure all edges are valid.
+ const uint32_t edgeCount = m_edgeArray.size();
+ for (uint32_t e = 0; e < edgeCount; e++) {
+ Edge *edge = m_edgeArray[e];
+ if (edge != NULL) {
+ if (edge->id != 2 * e) {
+ return false;
+ }
+ if (!edge->isValid()) {
+ return false;
+ }
+ if (edge->pair->id != 2 * e + 1) {
+ return false;
+ }
+ if (!edge->pair->isValid()) {
+ return false;
+ }
+ }
+ }
+ // @@ Make sure all faces are valid.
+ // @@ Make sure all vertices are valid.
+ return true;
+ }
+
+ // Error status:
+
+ struct ErrorCode {
+ enum Enum {
+ AlreadyAddedEdge,
+ DegenerateColocalEdge,
+ DegenerateEdge,
+ DuplicateEdge
+ };
+ };
+
+ mutable ErrorCode::Enum errorCode;
+ mutable uint32_t errorIndex0;
+ mutable uint32_t errorIndex1;
+
+private:
+ // Return true if the face can be added to the manifold mesh.
+ bool canAddFace(const std::vector<uint32_t> &indexArray, uint32_t first, uint32_t num) const {
+ return canAddFace(indexArray.data(), first, num);
+ }
+
+ bool canAddFace(const uint32_t *indexArray, uint32_t first, uint32_t num) const {
+ for (uint32_t j = num - 1, i = 0; i < num; j = i++) {
+ if (!canAddEdge(indexArray[first + j], indexArray[first + i])) {
+ errorIndex0 = indexArray[first + j];
+ errorIndex1 = indexArray[first + i];
+ return false;
+ }
+ }
+ // We also have to make sure the face does not have any duplicate edge!
+ for (uint32_t i = 0; i < num; i++) {
+ int i0 = indexArray[first + i + 0];
+ int i1 = indexArray[first + (i + 1) % num];
+ for (uint32_t j = i + 1; j < num; j++) {
+ int j0 = indexArray[first + j + 0];
+ int j1 = indexArray[first + (j + 1) % num];
+ if (i0 == j0 && i1 == j1) {
+ errorCode = ErrorCode::DuplicateEdge;
+ errorIndex0 = i0;
+ errorIndex1 = i1;
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ // Return true if the edge doesn't exist or doesn't have any adjacent face.
+ bool canAddEdge(uint32_t i, uint32_t j) const {
+ if (i == j) {
+ // Skip degenerate edges.
+ errorCode = ErrorCode::DegenerateEdge;
+ return false;
+ }
+ // Same check, but taking into account colocal vertices.
+ const Vertex *v0 = vertexAt(i);
+ const Vertex *v1 = vertexAt(j);
+ for (Vertex::ConstVertexIterator it(v0->colocals()); !it.isDone(); it.advance()) {
+ if (it.current() == v1) {
+ // Skip degenerate edges.
+ errorCode = ErrorCode::DegenerateColocalEdge;
+ return false;
+ }
+ }
+ // Make sure edge has not been added yet.
+ Edge *edge = findEdge(i, j);
+ // We ignore edges that don't have an adjacent face yet, since this face could become the edge's face.
+ if (!(edge == NULL || edge->face == NULL)) {
+ errorCode = ErrorCode::AlreadyAddedEdge;
+ return false;
+ }
+ return true;
+ }
+
+ Edge *addEdge(uint32_t i, uint32_t j) {
+ xaAssert(i != j);
+ Edge *edge = findEdge(i, j);
+ if (edge != NULL) {
+ // Edge may already exist, but its face must not be set.
+ xaDebugAssert(edge->face == NULL);
+ // Nothing else to do!
+ } else {
+ // Add new edge.
+ // Lookup pair.
+ Edge *pair = findEdge(j, i);
+ if (pair != NULL) {
+ // Create edge with same id.
+ edge = new Edge(pair->id + 1);
+ // Link edge pairs.
+ edge->pair = pair;
+ pair->pair = edge;
+ // @@ I'm not sure this is necessary!
+ pair->vertex->setEdge(pair);
+ } else {
+ // Create edge.
+ edge = new Edge(2 * m_edgeArray.size());
+ // Add only unpaired edges.
+ m_edgeArray.push_back(edge);
+ }
+ edge->vertex = m_vertexArray[i];
+ m_edgeMap[Key(i, j)] = edge;
+ }
+ // Face and Next are set by addFace.
+ return edge;
+ }
+
+ /// Find edge, test all colocals.
+ Edge *findEdge(uint32_t i, uint32_t j) const {
+ Edge *edge = NULL;
+ const Vertex *v0 = vertexAt(i);
+ const Vertex *v1 = vertexAt(j);
+ // Test all colocal pairs.
+ for (Vertex::ConstVertexIterator it0(v0->colocals()); !it0.isDone(); it0.advance()) {
+ for (Vertex::ConstVertexIterator it1(v1->colocals()); !it1.isDone(); it1.advance()) {
+ Key key(it0.current()->id, it1.current()->id);
+ if (edge == NULL) {
+ auto edgeIt = m_edgeMap.find(key);
+ if (edgeIt != m_edgeMap.end())
+ edge = (*edgeIt).second;
+#if !defined(_DEBUG)
+ if (edge != NULL) return edge;
+#endif
+ } else {
+ // Make sure that only one edge is found.
+ xaDebugAssert(m_edgeMap.find(key) == m_edgeMap.end());
+ }
+ }
+ }
+ return edge;
+ }
+
+ /// Link this boundary edge.
+ void linkBoundaryEdge(Edge *edge) {
+ xaAssert(edge->face == NULL);
+ // Make sure next pointer has not been set. @@ We want to be able to relink boundary edges after mesh changes.
+ Edge *next = edge;
+ while (next->pair->face != NULL) {
+ // Get pair prev
+ Edge *e = next->pair->next;
+ while (e->next != next->pair) {
+ e = e->next;
+ }
+ next = e;
+ }
+ edge->setNext(next->pair);
+ // Adjust vertex edge, so that it's the boundary edge. (required for isBoundary())
+ if (edge->vertex->edge != edge) {
+ // Multiple boundaries in the same edge.
+ edge->vertex->edge = edge;
+ }
+ }
+
+ Vertex *splitBoundaryEdge(Edge *edge, float t, const Vector3 &pos) {
+ /*
+ We want to go from this configuration:
+
+ + +
+ | ^
+ edge |<->| pair
+ v |
+ + +
+
+ To this one:
+
+ + +
+ | ^
+ e0 |<->| p0
+ v |
+ vertex + +
+ | ^
+ e1 |<->| p1
+ v |
+ + +
+
+ */
+ Edge *pair = edge->pair;
+ // Make sure boundaries are linked.
+ xaDebugAssert(pair != NULL);
+ // Make sure edge is a boundary edge.
+ xaDebugAssert(pair->face == NULL);
+ // Add new vertex.
+ Vertex *vertex = addVertex(pos);
+ vertex->nor = lerp(edge->from()->nor, edge->to()->nor, t);
+ vertex->tex = lerp(edge->from()->tex, edge->to()->tex, t);
+ disconnect(edge);
+ disconnect(pair);
+ // Add edges.
+ Edge *e0 = addEdge(edge->from()->id, vertex->id);
+ Edge *p0 = addEdge(vertex->id, pair->to()->id);
+ Edge *e1 = addEdge(vertex->id, edge->to()->id);
+ Edge *p1 = addEdge(pair->from()->id, vertex->id);
+ // Link edges.
+ e0->setNext(e1);
+ p1->setNext(p0);
+ e0->setPrev(edge->prev);
+ e1->setNext(edge->next);
+ p1->setPrev(pair->prev);
+ p0->setNext(pair->next);
+ xaDebugAssert(e0->next == e1);
+ xaDebugAssert(e1->prev == e0);
+ xaDebugAssert(p1->next == p0);
+ xaDebugAssert(p0->prev == p1);
+ xaDebugAssert(p0->pair == e0);
+ xaDebugAssert(e0->pair == p0);
+ xaDebugAssert(p1->pair == e1);
+ xaDebugAssert(e1->pair == p1);
+ // Link faces.
+ e0->face = edge->face;
+ e1->face = edge->face;
+ // Link vertices.
+ edge->from()->setEdge(e0);
+ vertex->setEdge(e1);
+ delete edge;
+ delete pair;
+ return vertex;
+ }
+
+private:
+ std::vector<Vertex *> m_vertexArray;
+ std::vector<Edge *> m_edgeArray;
+ std::vector<Face *> m_faceArray;
+
+ struct Key {
+ Key() {}
+ Key(const Key &k) :
+ p0(k.p0),
+ p1(k.p1) {}
+ Key(uint32_t v0, uint32_t v1) :
+ p0(v0),
+ p1(v1) {}
+ void operator=(const Key &k) {
+ p0 = k.p0;
+ p1 = k.p1;
+ }
+ bool operator==(const Key &k) const {
+ return p0 == k.p0 && p1 == k.p1;
+ }
+
+ uint32_t p0;
+ uint32_t p1;
+ };
+
+ friend struct Hash<Mesh::Key>;
+ std::unordered_map<Key, Edge *, Hash<Key>, Equal<Key> > m_edgeMap;
+ uint32_t m_colocalVertexCount;
+};
+
+class MeshTopology {
+public:
+ MeshTopology(const Mesh *mesh) {
+ buildTopologyInfo(mesh);
+ }
+
+ /// Determine if the mesh is connected.
+ bool isConnected() const {
+ return m_connectedCount == 1;
+ }
+
+ /// Determine if the mesh is closed. (Each edge is shared by two faces)
+ bool isClosed() const {
+ return m_boundaryCount == 0;
+ }
+
+ /// Return true if the mesh has the topology of a disk.
+ bool isDisk() const {
+ return isConnected() && m_boundaryCount == 1 /* && m_eulerNumber == 1*/;
+ }
+
+private:
+ void buildTopologyInfo(const Mesh *mesh) {
+ const uint32_t vertexCount = mesh->colocalVertexCount();
+ const uint32_t faceCount = mesh->faceCount();
+ const uint32_t edgeCount = mesh->edgeCount();
+ xaPrint("--- Building mesh topology:\n");
+ std::vector<uint32_t> stack(faceCount);
+ BitArray bitFlags(faceCount);
+ bitFlags.clearAll();
+ // Compute connectivity.
+ xaPrint("--- Computing connectivity.\n");
+ m_connectedCount = 0;
+ for (uint32_t f = 0; f < faceCount; f++) {
+ if (bitFlags.bitAt(f) == false) {
+ m_connectedCount++;
+ stack.push_back(f);
+ while (!stack.empty()) {
+ const uint32_t top = stack.back();
+ xaAssert(top != uint32_t(~0));
+ stack.pop_back();
+ if (bitFlags.bitAt(top) == false) {
+ bitFlags.setBitAt(top);
+ const Face *face = mesh->faceAt(top);
+ const Edge *firstEdge = face->edge;
+ const Edge *edge = firstEdge;
+ do {
+ const Face *neighborFace = edge->pair->face;
+ if (neighborFace != NULL) {
+ stack.push_back(neighborFace->id);
+ }
+ edge = edge->next;
+ } while (edge != firstEdge);
+ }
+ }
+ }
+ }
+ xaAssert(stack.empty());
+ xaPrint("--- %d connected components.\n", m_connectedCount);
+ // Count boundary loops.
+ xaPrint("--- Counting boundary loops.\n");
+ m_boundaryCount = 0;
+ bitFlags.resize(edgeCount);
+ bitFlags.clearAll();
+ // Don't forget to link the boundary otherwise this won't work.
+ for (uint32_t e = 0; e < edgeCount; e++) {
+ const Edge *startEdge = mesh->edgeAt(e);
+ if (startEdge != NULL && startEdge->isBoundary() && bitFlags.bitAt(e) == false) {
+ xaDebugAssert(startEdge->face != NULL);
+ xaDebugAssert(startEdge->pair->face == NULL);
+ startEdge = startEdge->pair;
+ m_boundaryCount++;
+ const Edge *edge = startEdge;
+ do {
+ bitFlags.setBitAt(edge->id / 2);
+ edge = edge->next;
+ } while (startEdge != edge);
+ }
+ }
+ xaPrint("--- %d boundary loops found.\n", m_boundaryCount);
+ // Compute euler number.
+ m_eulerNumber = vertexCount - edgeCount + faceCount;
+ xaPrint("--- Euler number: %d.\n", m_eulerNumber);
+ // Compute genus. (only valid on closed connected surfaces)
+ m_genus = -1;
+ if (isClosed() && isConnected()) {
+ m_genus = (2 - m_eulerNumber) / 2;
+ xaPrint("--- Genus: %d.\n", m_genus);
+ }
+ }
+
+private:
+ ///< Number of boundary loops.
+ int m_boundaryCount;
+
+ ///< Number of connected components.
+ int m_connectedCount;
+
+ ///< Euler number.
+ int m_eulerNumber;
+
+ /// Mesh genus.
+ int m_genus;
+};
+
+float computeSurfaceArea(const halfedge::Mesh *mesh) {
+ float area = 0;
+ for (halfedge::Mesh::ConstFaceIterator it(mesh->faces()); !it.isDone(); it.advance()) {
+ const halfedge::Face *face = it.current();
+ area += face->area();
+ }
+ xaDebugAssert(area >= 0);
+ return area;
+}
+
+float computeParametricArea(const halfedge::Mesh *mesh) {
+ float area = 0;
+ for (halfedge::Mesh::ConstFaceIterator it(mesh->faces()); !it.isDone(); it.advance()) {
+ const halfedge::Face *face = it.current();
+ area += face->parametricArea();
+ }
+ return area;
+}
+
+uint32_t countMeshTriangles(const Mesh *mesh) {
+ const uint32_t faceCount = mesh->faceCount();
+ uint32_t triangleCount = 0;
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const Face *face = mesh->faceAt(f);
+ uint32_t edgeCount = face->edgeCount();
+ xaDebugAssert(edgeCount > 2);
+ triangleCount += edgeCount - 2;
+ }
+ return triangleCount;
+}
+
+Mesh *unifyVertices(const Mesh *inputMesh) {
+ Mesh *mesh = new Mesh;
+ // Only add the first colocal.
+ const uint32_t vertexCount = inputMesh->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ const Vertex *vertex = inputMesh->vertexAt(v);
+ if (vertex->isFirstColocal()) {
+ mesh->addVertex(vertex->pos);
+ }
+ }
+ std::vector<uint32_t> indexArray;
+ // Add new faces pointing to first colocals.
+ uint32_t faceCount = inputMesh->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const Face *face = inputMesh->faceAt(f);
+ indexArray.clear();
+ for (Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const Edge *edge = it.current();
+ const Vertex *vertex = edge->vertex->firstColocal();
+ indexArray.push_back(vertex->id);
+ }
+ mesh->addFace(indexArray);
+ }
+ mesh->linkBoundary();
+ return mesh;
+}
+
+static bool pointInTriangle(const Vector2 &p, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
+ return triangleArea(a, b, p) >= 0.00001f &&
+ triangleArea(b, c, p) >= 0.00001f &&
+ triangleArea(c, a, p) >= 0.00001f;
+}
+
+// This is doing a simple ear-clipping algorithm that skips invalid triangles. Ideally, we should
+// also sort the ears by angle, start with the ones that have the smallest angle and proceed in order.
+Mesh *triangulate(const Mesh *inputMesh) {
+ Mesh *mesh = new Mesh;
+ // Add all vertices.
+ const uint32_t vertexCount = inputMesh->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ const Vertex *vertex = inputMesh->vertexAt(v);
+ mesh->addVertex(vertex->pos);
+ }
+ std::vector<int> polygonVertices;
+ std::vector<float> polygonAngles;
+ std::vector<Vector2> polygonPoints;
+ const uint32_t faceCount = inputMesh->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const Face *face = inputMesh->faceAt(f);
+ xaDebugAssert(face != NULL);
+ const uint32_t edgeCount = face->edgeCount();
+ xaDebugAssert(edgeCount >= 3);
+ polygonVertices.clear();
+ polygonVertices.reserve(edgeCount);
+ if (edgeCount == 3) {
+ // Simple case for triangles.
+ for (Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const Edge *edge = it.current();
+ const Vertex *vertex = edge->vertex;
+ polygonVertices.push_back(vertex->id);
+ }
+ int v0 = polygonVertices[0];
+ int v1 = polygonVertices[1];
+ int v2 = polygonVertices[2];
+ mesh->addFace(v0, v1, v2);
+ } else {
+ // Build 2D polygon projecting vertices onto normal plane.
+ // Faces are not necesarily planar, this is for example the case, when the face comes from filling a hole. In such cases
+ // it's much better to use the best fit plane.
+ const Vector3 fn = face->normal();
+ Basis basis;
+ basis.buildFrameForDirection(fn);
+ polygonPoints.clear();
+ polygonPoints.reserve(edgeCount);
+ polygonAngles.clear();
+ polygonAngles.reserve(edgeCount);
+ for (Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const Edge *edge = it.current();
+ const Vertex *vertex = edge->vertex;
+ polygonVertices.push_back(vertex->id);
+ Vector2 p;
+ p.x = dot(basis.tangent, vertex->pos);
+ p.y = dot(basis.bitangent, vertex->pos);
+ polygonPoints.push_back(p);
+ }
+ polygonAngles.resize(edgeCount);
+ while (polygonVertices.size() > 2) {
+ uint32_t size = polygonVertices.size();
+ // Update polygon angles. @@ Update only those that have changed.
+ float minAngle = 2 * PI;
+ uint32_t bestEar = 0; // Use first one if none of them is valid.
+ bool bestIsValid = false;
+ for (uint32_t i = 0; i < size; i++) {
+ uint32_t i0 = i;
+ uint32_t i1 = (i + 1) % size; // Use Sean's polygon interation trick.
+ uint32_t i2 = (i + 2) % size;
+ Vector2 p0 = polygonPoints[i0];
+ Vector2 p1 = polygonPoints[i1];
+ Vector2 p2 = polygonPoints[i2];
+
+ bool degenerate = distance(p0, p1) < NV_EPSILON || distance(p0, p2) < NV_EPSILON || distance(p1, p2) < NV_EPSILON;
+ if (degenerate) {
+ continue;
+ }
+
+ float d = clamp(dot(p0 - p1, p2 - p1) / (length(p0 - p1) * length(p2 - p1)), -1.0f, 1.0f);
+ float angle = acosf(d);
+ float area = triangleArea(p0, p1, p2);
+ if (area < 0.0f) angle = 2.0f * PI - angle;
+ polygonAngles[i1] = angle;
+ if (angle < minAngle || !bestIsValid) {
+ // Make sure this is a valid ear, if not, skip this point.
+ bool valid = true;
+ for (uint32_t j = 0; j < size; j++) {
+ if (j == i0 || j == i1 || j == i2) continue;
+ Vector2 p = polygonPoints[j];
+ if (pointInTriangle(p, p0, p1, p2)) {
+ valid = false;
+ break;
+ }
+ }
+ if (valid || !bestIsValid) {
+ minAngle = angle;
+ bestEar = i1;
+ bestIsValid = valid;
+ }
+ }
+ }
+ if (!bestIsValid)
+ break;
+
+ xaDebugAssert(minAngle <= 2 * PI);
+ // Clip best ear:
+ uint32_t i0 = (bestEar + size - 1) % size;
+ uint32_t i1 = (bestEar + 0) % size;
+ uint32_t i2 = (bestEar + 1) % size;
+ int v0 = polygonVertices[i0];
+ int v1 = polygonVertices[i1];
+ int v2 = polygonVertices[i2];
+ mesh->addFace(v0, v1, v2);
+ polygonVertices.erase(polygonVertices.begin() + i1);
+ polygonPoints.erase(polygonPoints.begin() + i1);
+ polygonAngles.erase(polygonAngles.begin() + i1);
+ }
+ }
+ }
+ mesh->linkBoundary();
+ return mesh;
+}
+
+} // namespace halfedge
+
+/// Mersenne twister random number generator.
+class MTRand {
+public:
+ enum time_e { Time };
+ enum { N = 624 }; // length of state vector
+ enum { M = 397 };
+
+ /// Constructor that uses the current time as the seed.
+ MTRand(time_e) {
+ seed((uint32_t)time(NULL));
+ }
+
+ /// Constructor that uses the given seed.
+ MTRand(uint32_t s = 0) {
+ seed(s);
+ }
+
+ /// Provide a new seed.
+ void seed(uint32_t s) {
+ initialize(s);
+ reload();
+ }
+
+ /// Get a random number between 0 - 65536.
+ uint32_t get() {
+ // Pull a 32-bit integer from the generator state
+ // Every other access function simply transforms the numbers extracted here
+ if (left == 0) {
+ reload();
+ }
+ left--;
+ uint32_t s1;
+ s1 = *next++;
+ s1 ^= (s1 >> 11);
+ s1 ^= (s1 << 7) & 0x9d2c5680U;
+ s1 ^= (s1 << 15) & 0xefc60000U;
+ return (s1 ^ (s1 >> 18));
+ };
+
+ /// Get a random number on [0, max] interval.
+ uint32_t getRange(uint32_t max) {
+ if (max == 0) return 0;
+ if (max == NV_UINT32_MAX) return get();
+ const uint32_t np2 = nextPowerOfTwo(max + 1); // @@ This fails if max == NV_UINT32_MAX
+ const uint32_t mask = np2 - 1;
+ uint32_t n;
+ do {
+ n = get() & mask;
+ } while (n > max);
+ return n;
+ }
+
+private:
+ void initialize(uint32_t seed) {
+ // Initialize generator state with seed
+ // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
+ // In previous versions, most significant bits (MSBs) of the seed affect
+ // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
+ uint32_t *s = state;
+ uint32_t *r = state;
+ int i = 1;
+ *s++ = seed & 0xffffffffUL;
+ for (; i < N; ++i) {
+ *s++ = (1812433253UL * (*r ^ (*r >> 30)) + i) & 0xffffffffUL;
+ r++;
+ }
+ }
+
+ void reload() {
+ // Generate N new values in state
+ // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
+ uint32_t *p = state;
+ int i;
+ for (i = N - M; i--; ++p)
+ *p = twist(p[M], p[0], p[1]);
+ for (i = M; --i; ++p)
+ *p = twist(p[M - N], p[0], p[1]);
+ *p = twist(p[M - N], p[0], state[0]);
+ left = N, next = state;
+ }
+
+ uint32_t hiBit(uint32_t u) const {
+ return u & 0x80000000U;
+ }
+ uint32_t loBit(uint32_t u) const {
+ return u & 0x00000001U;
+ }
+ uint32_t loBits(uint32_t u) const {
+ return u & 0x7fffffffU;
+ }
+ uint32_t mixBits(uint32_t u, uint32_t v) const {
+ return hiBit(u) | loBits(v);
+ }
+ uint32_t twist(uint32_t m, uint32_t s0, uint32_t s1) const {
+ return m ^ (mixBits(s0, s1) >> 1) ^ ((~loBit(s1) + 1) & 0x9908b0dfU);
+ }
+
+ uint32_t state[N]; // internal state
+ uint32_t *next; // next value to get from state
+ int left; // number of values left before reload needed
+};
+
+namespace morton {
+// Code from ryg:
+// http://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
+
+// Inverse of part1By1 - "delete" all odd-indexed bits
+uint32_t compact1By1(uint32_t x) {
+ x &= 0x55555555; // x = -f-e -d-c -b-a -9-8 -7-6 -5-4 -3-2 -1-0
+ x = (x ^ (x >> 1)) & 0x33333333; // x = --fe --dc --ba --98 --76 --54 --32 --10
+ x = (x ^ (x >> 2)) & 0x0f0f0f0f; // x = ---- fedc ---- ba98 ---- 7654 ---- 3210
+ x = (x ^ (x >> 4)) & 0x00ff00ff; // x = ---- ---- fedc ba98 ---- ---- 7654 3210
+ x = (x ^ (x >> 8)) & 0x0000ffff; // x = ---- ---- ---- ---- fedc ba98 7654 3210
+ return x;
+}
+
+// Inverse of part1By2 - "delete" all bits not at positions divisible by 3
+uint32_t compact1By2(uint32_t x) {
+ x &= 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
+ x = (x ^ (x >> 2)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10
+ x = (x ^ (x >> 4)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210
+ x = (x ^ (x >> 8)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
+ x = (x ^ (x >> 16)) & 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210
+ return x;
+}
+
+uint32_t decodeMorton2X(uint32_t code) {
+ return compact1By1(code >> 0);
+}
+
+uint32_t decodeMorton2Y(uint32_t code) {
+ return compact1By1(code >> 1);
+}
+
+uint32_t decodeMorton3X(uint32_t code) {
+ return compact1By2(code >> 0);
+}
+
+uint32_t decodeMorton3Y(uint32_t code) {
+ return compact1By2(code >> 1);
+}
+
+uint32_t decodeMorton3Z(uint32_t code) {
+ return compact1By2(code >> 2);
+}
+} // namespace morton
+
+// A simple, dynamic proximity grid based on Jon's code.
+// Instead of storing pointers here I store indices.
+struct ProximityGrid {
+ void init(const Box &box, uint32_t count) {
+ cellArray.clear();
+ // Determine grid size.
+ float cellWidth;
+ Vector3 diagonal = box.extents() * 2.f;
+ float volume = box.volume();
+ if (equal(volume, 0)) {
+ // Degenerate box, treat like a quad.
+ Vector2 quad;
+ if (diagonal.x < diagonal.y && diagonal.x < diagonal.z) {
+ quad.x = diagonal.y;
+ quad.y = diagonal.z;
+ } else if (diagonal.y < diagonal.x && diagonal.y < diagonal.z) {
+ quad.x = diagonal.x;
+ quad.y = diagonal.z;
+ } else {
+ quad.x = diagonal.x;
+ quad.y = diagonal.y;
+ }
+ float cellArea = quad.x * quad.y / count;
+ cellWidth = sqrtf(cellArea); // pow(cellArea, 1.0f / 2.0f);
+ } else {
+ // Ideally we want one cell per point.
+ float cellVolume = volume / count;
+ cellWidth = powf(cellVolume, 1.0f / 3.0f);
+ }
+ xaDebugAssert(cellWidth != 0);
+ sx = std::max(1, ftoi_ceil(diagonal.x / cellWidth));
+ sy = std::max(1, ftoi_ceil(diagonal.y / cellWidth));
+ sz = std::max(1, ftoi_ceil(diagonal.z / cellWidth));
+ invCellSize.x = float(sx) / diagonal.x;
+ invCellSize.y = float(sy) / diagonal.y;
+ invCellSize.z = float(sz) / diagonal.z;
+ cellArray.resize(sx * sy * sz);
+ corner = box.minCorner; // @@ Align grid better?
+ }
+
+ int index_x(float x) const {
+ return clamp(ftoi_floor((x - corner.x) * invCellSize.x), 0, sx - 1);
+ }
+
+ int index_y(float y) const {
+ return clamp(ftoi_floor((y - corner.y) * invCellSize.y), 0, sy - 1);
+ }
+
+ int index_z(float z) const {
+ return clamp(ftoi_floor((z - corner.z) * invCellSize.z), 0, sz - 1);
+ }
+
+ int index(int x, int y, int z) const {
+ xaDebugAssert(x >= 0 && x < sx);
+ xaDebugAssert(y >= 0 && y < sy);
+ xaDebugAssert(z >= 0 && z < sz);
+ int idx = (z * sy + y) * sx + x;
+ xaDebugAssert(idx >= 0 && uint32_t(idx) < cellArray.size());
+ return idx;
+ }
+
+ uint32_t mortonCount() const {
+ uint64_t s = uint64_t(max3(sx, sy, sz));
+ s = nextPowerOfTwo(s);
+ if (s > 1024) {
+ return uint32_t(s * s * min3(sx, sy, sz));
+ }
+ return uint32_t(s * s * s);
+ }
+
+ int mortonIndex(uint32_t code) const {
+ uint32_t x, y, z;
+ uint32_t s = uint32_t(max3(sx, sy, sz));
+ if (s > 1024) {
+ // Use layered two-dimensional morton order.
+ s = nextPowerOfTwo(s);
+ uint32_t layer = code / (s * s);
+ code = code % (s * s);
+ uint32_t layer_count = uint32_t(min3(sx, sy, sz));
+ if (sx == (int)layer_count) {
+ x = layer;
+ y = morton::decodeMorton2X(code);
+ z = morton::decodeMorton2Y(code);
+ } else if (sy == (int)layer_count) {
+ x = morton::decodeMorton2Y(code);
+ y = layer;
+ z = morton::decodeMorton2X(code);
+ } else { /*if (sz == layer_count)*/
+ x = morton::decodeMorton2X(code);
+ y = morton::decodeMorton2Y(code);
+ z = layer;
+ }
+ } else {
+ x = morton::decodeMorton3X(code);
+ y = morton::decodeMorton3Y(code);
+ z = morton::decodeMorton3Z(code);
+ }
+ if (x >= uint32_t(sx) || y >= uint32_t(sy) || z >= uint32_t(sz)) {
+ return -1;
+ }
+ return index(x, y, z);
+ }
+
+ void add(const Vector3 &pos, uint32_t key) {
+ int x = index_x(pos.x);
+ int y = index_y(pos.y);
+ int z = index_z(pos.z);
+ uint32_t idx = index(x, y, z);
+ cellArray[idx].indexArray.push_back(key);
+ }
+
+ // Gather all points inside the given sphere.
+ // Radius is assumed to be small, so we don't bother culling the cells.
+ void gather(const Vector3 &position, float radius, std::vector<uint32_t> &indexArray) {
+ int x0 = index_x(position.x - radius);
+ int x1 = index_x(position.x + radius);
+ int y0 = index_y(position.y - radius);
+ int y1 = index_y(position.y + radius);
+ int z0 = index_z(position.z - radius);
+ int z1 = index_z(position.z + radius);
+ for (int z = z0; z <= z1; z++) {
+ for (int y = y0; y <= y1; y++) {
+ for (int x = x0; x <= x1; x++) {
+ int idx = index(x, y, z);
+ indexArray.insert(indexArray.begin(), cellArray[idx].indexArray.begin(), cellArray[idx].indexArray.end());
+ }
+ }
+ }
+ }
+
+ struct Cell {
+ std::vector<uint32_t> indexArray;
+ };
+
+ std::vector<Cell> cellArray;
+
+ Vector3 corner;
+ Vector3 invCellSize;
+ int sx, sy, sz;
+};
+
+// Based on Pierre Terdiman's and Michael Herf's source code.
+// http://www.codercorner.com/RadixSortRevisited.htm
+// http://www.stereopsis.com/radix.html
+class RadixSort {
+public:
+ RadixSort() :
+ m_size(0),
+ m_ranks(NULL),
+ m_ranks2(NULL),
+ m_validRanks(false) {}
+ ~RadixSort() {
+ // Release everything
+ free(m_ranks2);
+ free(m_ranks);
+ }
+
+ RadixSort &sort(const float *input, uint32_t count) {
+ if (input == NULL || count == 0) return *this;
+ // Resize lists if needed
+ if (count != m_size) {
+ if (count > m_size) {
+ m_ranks2 = (uint32_t *)realloc(m_ranks2, sizeof(uint32_t) * count);
+ m_ranks = (uint32_t *)realloc(m_ranks, sizeof(uint32_t) * count);
+ }
+ m_size = count;
+ m_validRanks = false;
+ }
+ if (count < 32) {
+ insertionSort(input, count);
+ } else {
+ // @@ Avoid touching the input multiple times.
+ for (uint32_t i = 0; i < count; i++) {
+ FloatFlip((uint32_t &)input[i]);
+ }
+ radixSort<uint32_t>((const uint32_t *)input, count);
+ for (uint32_t i = 0; i < count; i++) {
+ IFloatFlip((uint32_t &)input[i]);
+ }
+ }
+ return *this;
+ }
+
+ RadixSort &sort(const std::vector<float> &input) {
+ return sort(input.data(), input.size());
+ }
+
+ // Access to results. m_ranks is a list of indices in sorted order, i.e. in the order you may further process your data
+ const uint32_t *ranks() const {
+ xaDebugAssert(m_validRanks);
+ return m_ranks;
+ }
+ uint32_t *ranks() {
+ xaDebugAssert(m_validRanks);
+ return m_ranks;
+ }
+
+private:
+ uint32_t m_size;
+ uint32_t *m_ranks;
+ uint32_t *m_ranks2;
+ bool m_validRanks;
+
+ void FloatFlip(uint32_t &f) {
+ int32_t mask = (int32_t(f) >> 31) | 0x80000000; // Warren Hunt, Manchor Ko.
+ f ^= mask;
+ }
+
+ void IFloatFlip(uint32_t &f) {
+ uint32_t mask = ((f >> 31) - 1) | 0x80000000; // Michael Herf.
+ f ^= mask;
+ }
+
+ template <typename T>
+ void createHistograms(const T *buffer, uint32_t count, uint32_t *histogram) {
+ const uint32_t bucketCount = sizeof(T); // (8 * sizeof(T)) / log2(radix)
+ // Init bucket pointers.
+ uint32_t *h[bucketCount];
+ for (uint32_t i = 0; i < bucketCount; i++) {
+ h[i] = histogram + 256 * i;
+ }
+ // Clear histograms.
+ memset(histogram, 0, 256 * bucketCount * sizeof(uint32_t));
+ // @@ Add support for signed integers.
+ // Build histograms.
+ const uint8_t *p = (const uint8_t *)buffer; // @@ Does this break aliasing rules?
+ const uint8_t *pe = p + count * sizeof(T);
+ while (p != pe) {
+ h[0][*p++]++, h[1][*p++]++, h[2][*p++]++, h[3][*p++]++;
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4127)
+#endif
+ if (bucketCount == 8) h[4][*p++]++, h[5][*p++]++, h[6][*p++]++, h[7][*p++]++;
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+ }
+ }
+
+ template <typename T>
+ void insertionSort(const T *input, uint32_t count) {
+ if (!m_validRanks) {
+ m_ranks[0] = 0;
+ for (uint32_t i = 1; i != count; ++i) {
+ int rank = m_ranks[i] = i;
+ uint32_t j = i;
+ while (j != 0 && input[rank] < input[m_ranks[j - 1]]) {
+ m_ranks[j] = m_ranks[j - 1];
+ --j;
+ }
+ if (i != j) {
+ m_ranks[j] = rank;
+ }
+ }
+ m_validRanks = true;
+ } else {
+ for (uint32_t i = 1; i != count; ++i) {
+ int rank = m_ranks[i];
+ uint32_t j = i;
+ while (j != 0 && input[rank] < input[m_ranks[j - 1]]) {
+ m_ranks[j] = m_ranks[j - 1];
+ --j;
+ }
+ if (i != j) {
+ m_ranks[j] = rank;
+ }
+ }
+ }
+ }
+
+ template <typename T>
+ void radixSort(const T *input, uint32_t count) {
+ const uint32_t P = sizeof(T); // pass count
+ // Allocate histograms & offsets on the stack
+ uint32_t histogram[256 * P];
+ uint32_t *link[256];
+ createHistograms(input, count, histogram);
+ // Radix sort, j is the pass number (0=LSB, P=MSB)
+ for (uint32_t j = 0; j < P; j++) {
+ // Pointer to this bucket.
+ const uint32_t *h = &histogram[j * 256];
+ const uint8_t *inputBytes = (const uint8_t *)input; // @@ Is this aliasing legal?
+ inputBytes += j;
+ if (h[inputBytes[0]] == count) {
+ // Skip this pass, all values are the same.
+ continue;
+ }
+ // Create offsets
+ link[0] = m_ranks2;
+ for (uint32_t i = 1; i < 256; i++)
+ link[i] = link[i - 1] + h[i - 1];
+ // Perform Radix Sort
+ if (!m_validRanks) {
+ for (uint32_t i = 0; i < count; i++) {
+ *link[inputBytes[i * P]]++ = i;
+ }
+ m_validRanks = true;
+ } else {
+ for (uint32_t i = 0; i < count; i++) {
+ const uint32_t idx = m_ranks[i];
+ *link[inputBytes[idx * P]]++ = idx;
+ }
+ }
+ // Swap pointers for next pass. Valid indices - the most recent ones - are in m_ranks after the swap.
+ std::swap(m_ranks, m_ranks2);
+ }
+ // All values were equal, generate linear ranks.
+ if (!m_validRanks) {
+ for (uint32_t i = 0; i < count; i++) {
+ m_ranks[i] = i;
+ }
+ m_validRanks = true;
+ }
+ }
+};
+
+namespace raster {
+class ClippedTriangle {
+public:
+ ClippedTriangle(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c) {
+ m_numVertices = 3;
+ m_activeVertexBuffer = 0;
+ m_verticesA[0] = a;
+ m_verticesA[1] = b;
+ m_verticesA[2] = c;
+ m_vertexBuffers[0] = m_verticesA;
+ m_vertexBuffers[1] = m_verticesB;
+ }
+
+ uint32_t vertexCount() {
+ return m_numVertices;
+ }
+
+ const Vector2 *vertices() {
+ return m_vertexBuffers[m_activeVertexBuffer];
+ }
+
+ void clipHorizontalPlane(float offset, float clipdirection) {
+ Vector2 *v = m_vertexBuffers[m_activeVertexBuffer];
+ m_activeVertexBuffer ^= 1;
+ Vector2 *v2 = m_vertexBuffers[m_activeVertexBuffer];
+ v[m_numVertices] = v[0];
+ float dy2, dy1 = offset - v[0].y;
+ int dy2in, dy1in = clipdirection * dy1 >= 0;
+ uint32_t p = 0;
+ for (uint32_t k = 0; k < m_numVertices; k++) {
+ dy2 = offset - v[k + 1].y;
+ dy2in = clipdirection * dy2 >= 0;
+ if (dy1in) v2[p++] = v[k];
+ if (dy1in + dy2in == 1) { // not both in/out
+ float dx = v[k + 1].x - v[k].x;
+ float dy = v[k + 1].y - v[k].y;
+ v2[p++] = Vector2(v[k].x + dy1 * (dx / dy), offset);
+ }
+ dy1 = dy2;
+ dy1in = dy2in;
+ }
+ m_numVertices = p;
+ //for (uint32_t k=0; k<m_numVertices; k++) printf("(%f, %f)\n", v2[k].x, v2[k].y); printf("\n");
+ }
+
+ void clipVerticalPlane(float offset, float clipdirection) {
+ Vector2 *v = m_vertexBuffers[m_activeVertexBuffer];
+ m_activeVertexBuffer ^= 1;
+ Vector2 *v2 = m_vertexBuffers[m_activeVertexBuffer];
+ v[m_numVertices] = v[0];
+ float dx2, dx1 = offset - v[0].x;
+ int dx2in, dx1in = clipdirection * dx1 >= 0;
+ uint32_t p = 0;
+ for (uint32_t k = 0; k < m_numVertices; k++) {
+ dx2 = offset - v[k + 1].x;
+ dx2in = clipdirection * dx2 >= 0;
+ if (dx1in) v2[p++] = v[k];
+ if (dx1in + dx2in == 1) { // not both in/out
+ float dx = v[k + 1].x - v[k].x;
+ float dy = v[k + 1].y - v[k].y;
+ v2[p++] = Vector2(offset, v[k].y + dx1 * (dy / dx));
+ }
+ dx1 = dx2;
+ dx1in = dx2in;
+ }
+ m_numVertices = p;
+ }
+
+ void computeAreaCentroid() {
+ Vector2 *v = m_vertexBuffers[m_activeVertexBuffer];
+ v[m_numVertices] = v[0];
+ m_area = 0;
+ float centroidx = 0, centroidy = 0;
+ for (uint32_t k = 0; k < m_numVertices; k++) {
+ // http://local.wasp.uwa.edu.au/~pbourke/geometry/polyarea/
+ float f = v[k].x * v[k + 1].y - v[k + 1].x * v[k].y;
+ m_area += f;
+ centroidx += f * (v[k].x + v[k + 1].x);
+ centroidy += f * (v[k].y + v[k + 1].y);
+ }
+ m_area = 0.5f * fabsf(m_area);
+ if (m_area == 0) {
+ m_centroid = Vector2(0.0f);
+ } else {
+ m_centroid = Vector2(centroidx / (6 * m_area), centroidy / (6 * m_area));
+ }
+ }
+
+ void clipAABox(float x0, float y0, float x1, float y1) {
+ clipVerticalPlane(x0, -1);
+ clipHorizontalPlane(y0, -1);
+ clipVerticalPlane(x1, 1);
+ clipHorizontalPlane(y1, 1);
+ computeAreaCentroid();
+ }
+
+ Vector2 centroid() {
+ return m_centroid;
+ }
+
+ float area() {
+ return m_area;
+ }
+
+private:
+ Vector2 m_verticesA[7 + 1];
+ Vector2 m_verticesB[7 + 1];
+ Vector2 *m_vertexBuffers[2];
+ uint32_t m_numVertices;
+ uint32_t m_activeVertexBuffer;
+ float m_area;
+ Vector2 m_centroid;
+};
+
+/// A callback to sample the environment. Return false to terminate rasterization.
+typedef bool (*SamplingCallback)(void *param, int x, int y, Vector3::Arg bar, Vector3::Arg dx, Vector3::Arg dy, float coverage);
+
+/// A triangle for rasterization.
+struct Triangle {
+ Triangle(Vector2::Arg v0, Vector2::Arg v1, Vector2::Arg v2, Vector3::Arg t0, Vector3::Arg t1, Vector3::Arg t2) {
+ // Init vertices.
+ this->v1 = v0;
+ this->v2 = v2;
+ this->v3 = v1;
+ // Set barycentric coordinates.
+ this->t1 = t0;
+ this->t2 = t2;
+ this->t3 = t1;
+ // make sure every triangle is front facing.
+ flipBackface();
+ // Compute deltas.
+ valid = computeDeltas();
+ computeUnitInwardNormals();
+ }
+
+ /// Compute texture space deltas.
+ /// This method takes two edge vectors that form a basis, determines the
+ /// coordinates of the canonic vectors in that basis, and computes the
+ /// texture gradient that corresponds to those vectors.
+ bool computeDeltas() {
+ Vector2 e0 = v3 - v1;
+ Vector2 e1 = v2 - v1;
+ Vector3 de0 = t3 - t1;
+ Vector3 de1 = t2 - t1;
+ float denom = 1.0f / (e0.y * e1.x - e1.y * e0.x);
+ if (!std::isfinite(denom)) {
+ return false;
+ }
+ float lambda1 = -e1.y * denom;
+ float lambda2 = e0.y * denom;
+ float lambda3 = e1.x * denom;
+ float lambda4 = -e0.x * denom;
+ dx = de0 * lambda1 + de1 * lambda2;
+ dy = de0 * lambda3 + de1 * lambda4;
+ return true;
+ }
+
+ bool draw(const Vector2 &extents, bool enableScissors, SamplingCallback cb, void *param) {
+ // 28.4 fixed-point coordinates
+ const int Y1 = ftoi_round(16.0f * v1.y);
+ const int Y2 = ftoi_round(16.0f * v2.y);
+ const int Y3 = ftoi_round(16.0f * v3.y);
+ const int X1 = ftoi_round(16.0f * v1.x);
+ const int X2 = ftoi_round(16.0f * v2.x);
+ const int X3 = ftoi_round(16.0f * v3.x);
+ // Deltas
+ const int DX12 = X1 - X2;
+ const int DX23 = X2 - X3;
+ const int DX31 = X3 - X1;
+ const int DY12 = Y1 - Y2;
+ const int DY23 = Y2 - Y3;
+ const int DY31 = Y3 - Y1;
+ // Fixed-point deltas
+ const int FDX12 = DX12 << 4;
+ const int FDX23 = DX23 << 4;
+ const int FDX31 = DX31 << 4;
+ const int FDY12 = DY12 << 4;
+ const int FDY23 = DY23 << 4;
+ const int FDY31 = DY31 << 4;
+ int minx, miny, maxx, maxy;
+ if (enableScissors) {
+ int frustumX0 = 0 << 4;
+ int frustumY0 = 0 << 4;
+ int frustumX1 = (int)extents.x << 4;
+ int frustumY1 = (int)extents.y << 4;
+ // Bounding rectangle
+ minx = (std::max(min3(X1, X2, X3), frustumX0) + 0xF) >> 4;
+ miny = (std::max(min3(Y1, Y2, Y3), frustumY0) + 0xF) >> 4;
+ maxx = (std::min(max3(X1, X2, X3), frustumX1) + 0xF) >> 4;
+ maxy = (std::min(max3(Y1, Y2, Y3), frustumY1) + 0xF) >> 4;
+ } else {
+ // Bounding rectangle
+ minx = (min3(X1, X2, X3) + 0xF) >> 4;
+ miny = (min3(Y1, Y2, Y3) + 0xF) >> 4;
+ maxx = (max3(X1, X2, X3) + 0xF) >> 4;
+ maxy = (max3(Y1, Y2, Y3) + 0xF) >> 4;
+ }
+ // Block size, standard 8x8 (must be power of two)
+ const int q = 8;
+ // @@ This won't work when minx,miny are negative. This code path is not used. Leaving as is for now.
+ xaAssert(minx >= 0);
+ xaAssert(miny >= 0);
+ // Start in corner of 8x8 block
+ minx &= ~(q - 1);
+ miny &= ~(q - 1);
+ // Half-edge constants
+ int C1 = DY12 * X1 - DX12 * Y1;
+ int C2 = DY23 * X2 - DX23 * Y2;
+ int C3 = DY31 * X3 - DX31 * Y3;
+ // Correct for fill convention
+ if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++;
+ if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++;
+ if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++;
+ // Loop through blocks
+ for (int y = miny; y < maxy; y += q) {
+ for (int x = minx; x < maxx; x += q) {
+ // Corners of block
+ int x0 = x << 4;
+ int x1 = (x + q - 1) << 4;
+ int y0 = y << 4;
+ int y1 = (y + q - 1) << 4;
+ // Evaluate half-space functions
+ bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0;
+ bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0;
+ bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0;
+ bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0;
+ int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3);
+ bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0;
+ bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0;
+ bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0;
+ bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0;
+ int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3);
+ bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0;
+ bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0;
+ bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0;
+ bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0;
+ int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3);
+ // Skip block when outside an edge
+ if (a == 0x0 || b == 0x0 || c == 0x0) continue;
+ // Accept whole block when totally covered
+ if (a == 0xF && b == 0xF && c == 0xF) {
+ Vector3 texRow = t1 + dy * (y0 - v1.y) + dx * (x0 - v1.x);
+ for (int iy = y; iy < y + q; iy++) {
+ Vector3 tex = texRow;
+ for (int ix = x; ix < x + q; ix++) {
+ //Vector3 tex = t1 + dx * (ix - v1.x) + dy * (iy - v1.y);
+ if (!cb(param, ix, iy, tex, dx, dy, 1.0)) {
+ // early out.
+ return false;
+ }
+ tex += dx;
+ }
+ texRow += dy;
+ }
+ } else { // Partially covered block
+ int CY1 = C1 + DX12 * y0 - DY12 * x0;
+ int CY2 = C2 + DX23 * y0 - DY23 * x0;
+ int CY3 = C3 + DX31 * y0 - DY31 * x0;
+ Vector3 texRow = t1 + dy * (y0 - v1.y) + dx * (x0 - v1.x);
+ for (int iy = y; iy < y + q; iy++) {
+ int CX1 = CY1;
+ int CX2 = CY2;
+ int CX3 = CY3;
+ Vector3 tex = texRow;
+ for (int ix = x; ix < x + q; ix++) {
+ if (CX1 > 0 && CX2 > 0 && CX3 > 0) {
+ if (!cb(param, ix, iy, tex, dx, dy, 1.0)) {
+ // early out.
+ return false;
+ }
+ }
+ CX1 -= FDY12;
+ CX2 -= FDY23;
+ CX3 -= FDY31;
+ tex += dx;
+ }
+ CY1 += FDX12;
+ CY2 += FDX23;
+ CY3 += FDX31;
+ texRow += dy;
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ // extents has to be multiple of BK_SIZE!!
+ bool drawAA(const Vector2 &extents, bool enableScissors, SamplingCallback cb, void *param) {
+ const float PX_INSIDE = 1.0f / sqrt(2.0f);
+ const float PX_OUTSIDE = -1.0f / sqrt(2.0f);
+ const float BK_SIZE = 8;
+ const float BK_INSIDE = sqrt(BK_SIZE * BK_SIZE / 2.0f);
+ const float BK_OUTSIDE = -sqrt(BK_SIZE * BK_SIZE / 2.0f);
+
+ float minx, miny, maxx, maxy;
+ if (enableScissors) {
+ // Bounding rectangle
+ minx = floorf(std::max(min3(v1.x, v2.x, v3.x), 0.0f));
+ miny = floorf(std::max(min3(v1.y, v2.y, v3.y), 0.0f));
+ maxx = ceilf(std::min(max3(v1.x, v2.x, v3.x), extents.x - 1.0f));
+ maxy = ceilf(std::min(max3(v1.y, v2.y, v3.y), extents.y - 1.0f));
+ } else {
+ // Bounding rectangle
+ minx = floorf(min3(v1.x, v2.x, v3.x));
+ miny = floorf(min3(v1.y, v2.y, v3.y));
+ maxx = ceilf(max3(v1.x, v2.x, v3.x));
+ maxy = ceilf(max3(v1.y, v2.y, v3.y));
+ }
+ // There's no reason to align the blocks to the viewport, instead we align them to the origin of the triangle bounds.
+ minx = floorf(minx);
+ miny = floorf(miny);
+ //minx = (float)(((int)minx) & (~((int)BK_SIZE - 1))); // align to blocksize (we don't need to worry about blocks partially out of viewport)
+ //miny = (float)(((int)miny) & (~((int)BK_SIZE - 1)));
+ minx += 0.5;
+ miny += 0.5; // sampling at texel centers!
+ maxx += 0.5;
+ maxy += 0.5;
+ // Half-edge constants
+ float C1 = n1.x * (-v1.x) + n1.y * (-v1.y);
+ float C2 = n2.x * (-v2.x) + n2.y * (-v2.y);
+ float C3 = n3.x * (-v3.x) + n3.y * (-v3.y);
+ // Loop through blocks
+ for (float y0 = miny; y0 <= maxy; y0 += BK_SIZE) {
+ for (float x0 = minx; x0 <= maxx; x0 += BK_SIZE) {
+ // Corners of block
+ float xc = (x0 + (BK_SIZE - 1) / 2.0f);
+ float yc = (y0 + (BK_SIZE - 1) / 2.0f);
+ // Evaluate half-space functions
+ float aC = C1 + n1.x * xc + n1.y * yc;
+ float bC = C2 + n2.x * xc + n2.y * yc;
+ float cC = C3 + n3.x * xc + n3.y * yc;
+ // Skip block when outside an edge
+ if ((aC <= BK_OUTSIDE) || (bC <= BK_OUTSIDE) || (cC <= BK_OUTSIDE)) continue;
+ // Accept whole block when totally covered
+ if ((aC >= BK_INSIDE) && (bC >= BK_INSIDE) && (cC >= BK_INSIDE)) {
+ Vector3 texRow = t1 + dy * (y0 - v1.y) + dx * (x0 - v1.x);
+ for (float y = y0; y < y0 + BK_SIZE; y++) {
+ Vector3 tex = texRow;
+ for (float x = x0; x < x0 + BK_SIZE; x++) {
+ if (!cb(param, (int)x, (int)y, tex, dx, dy, 1.0f)) {
+ return false;
+ }
+ tex += dx;
+ }
+ texRow += dy;
+ }
+ } else { // Partially covered block
+ float CY1 = C1 + n1.x * x0 + n1.y * y0;
+ float CY2 = C2 + n2.x * x0 + n2.y * y0;
+ float CY3 = C3 + n3.x * x0 + n3.y * y0;
+ Vector3 texRow = t1 + dy * (y0 - v1.y) + dx * (x0 - v1.x);
+ for (float y = y0; y < y0 + BK_SIZE; y++) { // @@ This is not clipping to scissor rectangle correctly.
+ float CX1 = CY1;
+ float CX2 = CY2;
+ float CX3 = CY3;
+ Vector3 tex = texRow;
+ for (float x = x0; x < x0 + BK_SIZE; x++) { // @@ This is not clipping to scissor rectangle correctly.
+ if (CX1 >= PX_INSIDE && CX2 >= PX_INSIDE && CX3 >= PX_INSIDE) {
+ // pixel completely covered
+ Vector3 tex2 = t1 + dx * (x - v1.x) + dy * (y - v1.y);
+ if (!cb(param, (int)x, (int)y, tex2, dx, dy, 1.0f)) {
+ return false;
+ }
+ } else if ((CX1 >= PX_OUTSIDE) && (CX2 >= PX_OUTSIDE) && (CX3 >= PX_OUTSIDE)) {
+ // triangle partially covers pixel. do clipping.
+ ClippedTriangle ct(v1 - Vector2(x, y), v2 - Vector2(x, y), v3 - Vector2(x, y));
+ ct.clipAABox(-0.5, -0.5, 0.5, 0.5);
+ Vector2 centroid = ct.centroid();
+ float area = ct.area();
+ if (area > 0.0f) {
+ Vector3 texCent = tex - dx * centroid.x - dy * centroid.y;
+ //xaAssert(texCent.x >= -0.1f && texCent.x <= 1.1f); // @@ Centroid is not very exact...
+ //xaAssert(texCent.y >= -0.1f && texCent.y <= 1.1f);
+ //xaAssert(texCent.z >= -0.1f && texCent.z <= 1.1f);
+ //Vector3 texCent2 = t1 + dx * (x - v1.x) + dy * (y - v1.y);
+ if (!cb(param, (int)x, (int)y, texCent, dx, dy, area)) {
+ return false;
+ }
+ }
+ }
+ CX1 += n1.x;
+ CX2 += n2.x;
+ CX3 += n3.x;
+ tex += dx;
+ }
+ CY1 += n1.y;
+ CY2 += n2.y;
+ CY3 += n3.y;
+ texRow += dy;
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ void flipBackface() {
+ // check if triangle is backfacing, if so, swap two vertices
+ if (((v3.x - v1.x) * (v2.y - v1.y) - (v3.y - v1.y) * (v2.x - v1.x)) < 0) {
+ Vector2 hv = v1;
+ v1 = v2;
+ v2 = hv; // swap pos
+ Vector3 ht = t1;
+ t1 = t2;
+ t2 = ht; // swap tex
+ }
+ }
+
+ // compute unit inward normals for each edge.
+ void computeUnitInwardNormals() {
+ n1 = v1 - v2;
+ n1 = Vector2(-n1.y, n1.x);
+ n1 = n1 * (1.0f / sqrtf(n1.x * n1.x + n1.y * n1.y));
+ n2 = v2 - v3;
+ n2 = Vector2(-n2.y, n2.x);
+ n2 = n2 * (1.0f / sqrtf(n2.x * n2.x + n2.y * n2.y));
+ n3 = v3 - v1;
+ n3 = Vector2(-n3.y, n3.x);
+ n3 = n3 * (1.0f / sqrtf(n3.x * n3.x + n3.y * n3.y));
+ }
+
+ // Vertices.
+ Vector2 v1, v2, v3;
+ Vector2 n1, n2, n3; // unit inward normals
+ Vector3 t1, t2, t3;
+
+ // Deltas.
+ Vector3 dx, dy;
+
+ float sign;
+ bool valid;
+};
+
+enum Mode {
+ Mode_Nearest,
+ Mode_Antialiased
+};
+
+// Process the given triangle. Returns false if rasterization was interrupted by the callback.
+static bool drawTriangle(Mode mode, Vector2::Arg extents, bool enableScissors, const Vector2 v[3], SamplingCallback cb, void *param) {
+ Triangle tri(v[0], v[1], v[2], Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1));
+ // @@ It would be nice to have a conservative drawing mode that enlarges the triangle extents by one texel and is able to handle degenerate triangles.
+ // @@ Maybe the simplest thing to do would be raster triangle edges.
+ if (tri.valid) {
+ if (mode == Mode_Antialiased) {
+ return tri.drawAA(extents, enableScissors, cb, param);
+ }
+ if (mode == Mode_Nearest) {
+ return tri.draw(extents, enableScissors, cb, param);
+ }
+ }
+ return true;
+}
+
+// Process the given quad. Returns false if rasterization was interrupted by the callback.
+static bool drawQuad(Mode mode, Vector2::Arg extents, bool enableScissors, const Vector2 v[4], SamplingCallback cb, void *param) {
+ bool sign0 = triangleArea2(v[0], v[1], v[2]) > 0.0f;
+ bool sign1 = triangleArea2(v[0], v[2], v[3]) > 0.0f;
+ // Divide the quad into two non overlapping triangles.
+ if (sign0 == sign1) {
+ Triangle tri0(v[0], v[1], v[2], Vector3(0, 0, 0), Vector3(1, 0, 0), Vector3(1, 1, 0));
+ Triangle tri1(v[0], v[2], v[3], Vector3(0, 0, 0), Vector3(1, 1, 0), Vector3(0, 1, 0));
+ if (tri0.valid && tri1.valid) {
+ if (mode == Mode_Antialiased) {
+ return tri0.drawAA(extents, enableScissors, cb, param) && tri1.drawAA(extents, enableScissors, cb, param);
+ } else {
+ return tri0.draw(extents, enableScissors, cb, param) && tri1.draw(extents, enableScissors, cb, param);
+ }
+ }
+ } else {
+ Triangle tri0(v[0], v[1], v[3], Vector3(0, 0, 0), Vector3(1, 0, 0), Vector3(0, 1, 0));
+ Triangle tri1(v[1], v[2], v[3], Vector3(1, 0, 0), Vector3(1, 1, 0), Vector3(0, 1, 0));
+ if (tri0.valid && tri1.valid) {
+ if (mode == Mode_Antialiased) {
+ return tri0.drawAA(extents, enableScissors, cb, param) && tri1.drawAA(extents, enableScissors, cb, param);
+ } else {
+ return tri0.draw(extents, enableScissors, cb, param) && tri1.draw(extents, enableScissors, cb, param);
+ }
+ }
+ }
+ return true;
+}
+} // namespace raster
+
+// Full and sparse vector and matrix classes. BLAS subset.
+// Pseudo-BLAS interface.
+namespace sparse {
+enum Transpose {
+ NoTransposed = 0,
+ Transposed = 1
+};
+
+/**
+* Sparse matrix class. The matrix is assumed to be sparse and to have
+* very few non-zero elements, for this reason it's stored in indexed
+* format. To multiply column vectors efficiently, the matrix stores
+* the elements in indexed-column order, there is a list of indexed
+* elements for each row of the matrix. As with the FullVector the
+* dimension of the matrix is constant.
+**/
+class Matrix {
+public:
+ // An element of the sparse array.
+ struct Coefficient {
+ uint32_t x; // column
+ float v; // value
+ };
+
+ Matrix(uint32_t d) :
+ m_width(d) { m_array.resize(d); }
+ Matrix(uint32_t w, uint32_t h) :
+ m_width(w) { m_array.resize(h); }
+ Matrix(const Matrix &m) :
+ m_width(m.m_width) { m_array = m.m_array; }
+
+ const Matrix &operator=(const Matrix &m) {
+ xaAssert(width() == m.width());
+ xaAssert(height() == m.height());
+ m_array = m.m_array;
+ return *this;
+ }
+
+ uint32_t width() const { return m_width; }
+ uint32_t height() const { return m_array.size(); }
+ bool isSquare() const { return width() == height(); }
+
+ // x is column, y is row
+ float getCoefficient(uint32_t x, uint32_t y) const {
+ xaDebugAssert(x < width());
+ xaDebugAssert(y < height());
+ const uint32_t count = m_array[y].size();
+ for (uint32_t i = 0; i < count; i++) {
+ if (m_array[y][i].x == x) return m_array[y][i].v;
+ }
+ return 0.0f;
+ }
+
+ void setCoefficient(uint32_t x, uint32_t y, float f) {
+ xaDebugAssert(x < width());
+ xaDebugAssert(y < height());
+ const uint32_t count = m_array[y].size();
+ for (uint32_t i = 0; i < count; i++) {
+ if (m_array[y][i].x == x) {
+ m_array[y][i].v = f;
+ return;
+ }
+ }
+ if (f != 0.0f) {
+ Coefficient c = { x, f };
+ m_array[y].push_back(c);
+ }
+ }
+
+ float dotRow(uint32_t y, const FullVector &v) const {
+ xaDebugAssert(y < height());
+ const uint32_t count = m_array[y].size();
+ float sum = 0;
+ for (uint32_t i = 0; i < count; i++) {
+ sum += m_array[y][i].v * v[m_array[y][i].x];
+ }
+ return sum;
+ }
+
+ void madRow(uint32_t y, float alpha, FullVector &v) const {
+ xaDebugAssert(y < height());
+ const uint32_t count = m_array[y].size();
+ for (uint32_t i = 0; i < count; i++) {
+ v[m_array[y][i].x] += alpha * m_array[y][i].v;
+ }
+ }
+
+ void clearRow(uint32_t y) {
+ xaDebugAssert(y < height());
+ m_array[y].clear();
+ }
+
+ void scaleRow(uint32_t y, float f) {
+ xaDebugAssert(y < height());
+ const uint32_t count = m_array[y].size();
+ for (uint32_t i = 0; i < count; i++) {
+ m_array[y][i].v *= f;
+ }
+ }
+
+ const std::vector<Coefficient> &getRow(uint32_t y) const { return m_array[y]; }
+
+private:
+ /// Number of columns.
+ const uint32_t m_width;
+
+ /// Array of matrix elements.
+ std::vector<std::vector<Coefficient> > m_array;
+};
+
+// y = a * x + y
+static void saxpy(float a, const FullVector &x, FullVector &y) {
+ xaDebugAssert(x.dimension() == y.dimension());
+ const uint32_t dim = x.dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ y[i] += a * x[i];
+ }
+}
+
+static void copy(const FullVector &x, FullVector &y) {
+ xaDebugAssert(x.dimension() == y.dimension());
+ const uint32_t dim = x.dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ y[i] = x[i];
+ }
+}
+
+static void scal(float a, FullVector &x) {
+ const uint32_t dim = x.dimension();
+ for (uint32_t i = 0; i < dim; i++) {
+ x[i] *= a;
+ }
+}
+
+static float dot(const FullVector &x, const FullVector &y) {
+ xaDebugAssert(x.dimension() == y.dimension());
+ const uint32_t dim = x.dimension();
+ float sum = 0;
+ for (uint32_t i = 0; i < dim; i++) {
+ sum += x[i] * y[i];
+ }
+ return sum;
+}
+
+static void mult(Transpose TM, const Matrix &M, const FullVector &x, FullVector &y) {
+ const uint32_t w = M.width();
+ const uint32_t h = M.height();
+ if (TM == Transposed) {
+ xaDebugAssert(h == x.dimension());
+ xaDebugAssert(w == y.dimension());
+ y.fill(0.0f);
+ for (uint32_t i = 0; i < h; i++) {
+ M.madRow(i, x[i], y);
+ }
+ } else {
+ xaDebugAssert(w == x.dimension());
+ xaDebugAssert(h == y.dimension());
+ for (uint32_t i = 0; i < h; i++) {
+ y[i] = M.dotRow(i, x);
+ }
+ }
+}
+
+// y = M * x
+static void mult(const Matrix &M, const FullVector &x, FullVector &y) {
+ mult(NoTransposed, M, x, y);
+}
+
+static void sgemv(float alpha, Transpose TA, const Matrix &A, const FullVector &x, float beta, FullVector &y) {
+ const uint32_t w = A.width();
+ const uint32_t h = A.height();
+ if (TA == Transposed) {
+ xaDebugAssert(h == x.dimension());
+ xaDebugAssert(w == y.dimension());
+ for (uint32_t i = 0; i < h; i++) {
+ A.madRow(i, alpha * x[i], y);
+ }
+ } else {
+ xaDebugAssert(w == x.dimension());
+ xaDebugAssert(h == y.dimension());
+ for (uint32_t i = 0; i < h; i++) {
+ y[i] = alpha * A.dotRow(i, x) + beta * y[i];
+ }
+ }
+}
+
+// y = alpha*A*x + beta*y
+static void sgemv(float alpha, const Matrix &A, const FullVector &x, float beta, FullVector &y) {
+ sgemv(alpha, NoTransposed, A, x, beta, y);
+}
+
+// dot y-row of A by x-column of B
+static float dotRowColumn(int y, const Matrix &A, int x, const Matrix &B) {
+ const std::vector<Matrix::Coefficient> &row = A.getRow(y);
+ const uint32_t count = row.size();
+ float sum = 0.0f;
+ for (uint32_t i = 0; i < count; i++) {
+ const Matrix::Coefficient &c = row[i];
+ sum += c.v * B.getCoefficient(x, c.x);
+ }
+ return sum;
+}
+
+// dot y-row of A by x-row of B
+static float dotRowRow(int y, const Matrix &A, int x, const Matrix &B) {
+ const std::vector<Matrix::Coefficient> &row = A.getRow(y);
+ const uint32_t count = row.size();
+ float sum = 0.0f;
+ for (uint32_t i = 0; i < count; i++) {
+ const Matrix::Coefficient &c = row[i];
+ sum += c.v * B.getCoefficient(c.x, x);
+ }
+ return sum;
+}
+
+// dot y-column of A by x-column of B
+static float dotColumnColumn(int y, const Matrix &A, int x, const Matrix &B) {
+ xaDebugAssert(A.height() == B.height());
+ const uint32_t h = A.height();
+ float sum = 0.0f;
+ for (uint32_t i = 0; i < h; i++) {
+ sum += A.getCoefficient(y, i) * B.getCoefficient(x, i);
+ }
+ return sum;
+}
+
+static void transpose(const Matrix &A, Matrix &B) {
+ xaDebugAssert(A.width() == B.height());
+ xaDebugAssert(B.width() == A.height());
+ const uint32_t w = A.width();
+ for (uint32_t x = 0; x < w; x++) {
+ B.clearRow(x);
+ }
+ const uint32_t h = A.height();
+ for (uint32_t y = 0; y < h; y++) {
+ const std::vector<Matrix::Coefficient> &row = A.getRow(y);
+ const uint32_t count = row.size();
+ for (uint32_t i = 0; i < count; i++) {
+ const Matrix::Coefficient &c = row[i];
+ xaDebugAssert(c.x < w);
+ B.setCoefficient(y, c.x, c.v);
+ }
+ }
+}
+
+static void sgemm(float alpha, Transpose TA, const Matrix &A, Transpose TB, const Matrix &B, float beta, Matrix &C) {
+ const uint32_t w = C.width();
+ const uint32_t h = C.height();
+ uint32_t aw = (TA == NoTransposed) ? A.width() : A.height();
+ uint32_t ah = (TA == NoTransposed) ? A.height() : A.width();
+ uint32_t bw = (TB == NoTransposed) ? B.width() : B.height();
+ uint32_t bh = (TB == NoTransposed) ? B.height() : B.width();
+ xaDebugAssert(aw == bh);
+ xaDebugAssert(bw == ah);
+ xaDebugAssert(w == bw);
+ xaDebugAssert(h == ah);
+#ifdef NDEBUG
+ aw = ah = bw = bh = 0; // silence unused parameter warning
+#endif
+ for (uint32_t y = 0; y < h; y++) {
+ for (uint32_t x = 0; x < w; x++) {
+ float c = beta * C.getCoefficient(x, y);
+ if (TA == NoTransposed && TB == NoTransposed) {
+ // dot y-row of A by x-column of B.
+ c += alpha * dotRowColumn(y, A, x, B);
+ } else if (TA == Transposed && TB == Transposed) {
+ // dot y-column of A by x-row of B.
+ c += alpha * dotRowColumn(x, B, y, A);
+ } else if (TA == Transposed && TB == NoTransposed) {
+ // dot y-column of A by x-column of B.
+ c += alpha * dotColumnColumn(y, A, x, B);
+ } else if (TA == NoTransposed && TB == Transposed) {
+ // dot y-row of A by x-row of B.
+ c += alpha * dotRowRow(y, A, x, B);
+ }
+ C.setCoefficient(x, y, c);
+ }
+ }
+}
+
+static void mult(Transpose TA, const Matrix &A, Transpose TB, const Matrix &B, Matrix &C) {
+ sgemm(1.0f, TA, A, TB, B, 0.0f, C);
+}
+
+// C = A * B
+static void mult(const Matrix &A, const Matrix &B, Matrix &C) {
+ mult(NoTransposed, A, NoTransposed, B, C);
+}
+
+} // namespace sparse
+
+class JacobiPreconditioner {
+public:
+ JacobiPreconditioner(const sparse::Matrix &M, bool symmetric) :
+ m_inverseDiagonal(M.width()) {
+ xaAssert(M.isSquare());
+ for (uint32_t x = 0; x < M.width(); x++) {
+ float elem = M.getCoefficient(x, x);
+ //xaDebugAssert( elem != 0.0f ); // This can be zero in the presence of zero area triangles.
+ if (symmetric) {
+ m_inverseDiagonal[x] = (elem != 0) ? 1.0f / sqrtf(fabsf(elem)) : 1.0f;
+ } else {
+ m_inverseDiagonal[x] = (elem != 0) ? 1.0f / elem : 1.0f;
+ }
+ }
+ }
+
+ void apply(const FullVector &x, FullVector &y) const {
+ xaDebugAssert(x.dimension() == m_inverseDiagonal.dimension());
+ xaDebugAssert(y.dimension() == m_inverseDiagonal.dimension());
+ // @@ Wrap vector component-wise product into a separate function.
+ const uint32_t D = x.dimension();
+ for (uint32_t i = 0; i < D; i++) {
+ y[i] = m_inverseDiagonal[i] * x[i];
+ }
+ }
+
+private:
+ FullVector m_inverseDiagonal;
+};
+
+// Linear solvers.
+class Solver {
+public:
+ // Solve the symmetric system: At·A·x = At·b
+ static bool LeastSquaresSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon = 1e-5f) {
+ xaDebugAssert(A.width() == x.dimension());
+ xaDebugAssert(A.height() == b.dimension());
+ xaDebugAssert(A.height() >= A.width()); // @@ If height == width we could solve it directly...
+ const uint32_t D = A.width();
+ sparse::Matrix At(A.height(), A.width());
+ sparse::transpose(A, At);
+ FullVector Atb(D);
+ sparse::mult(At, b, Atb);
+ sparse::Matrix AtA(D);
+ sparse::mult(At, A, AtA);
+ return SymmetricSolver(AtA, Atb, x, epsilon);
+ }
+
+ // See section 10.4.3 in: Mesh Parameterization: Theory and Practice, Siggraph Course Notes, August 2007
+ static bool LeastSquaresSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, const uint32_t *lockedParameters, uint32_t lockedCount, float epsilon = 1e-5f) {
+ xaDebugAssert(A.width() == x.dimension());
+ xaDebugAssert(A.height() == b.dimension());
+ xaDebugAssert(A.height() >= A.width() - lockedCount);
+ // @@ This is not the most efficient way of building a system with reduced degrees of freedom. It would be faster to do it on the fly.
+ const uint32_t D = A.width() - lockedCount;
+ xaDebugAssert(D > 0);
+ // Compute: b - Al * xl
+ FullVector b_Alxl(b);
+ for (uint32_t y = 0; y < A.height(); y++) {
+ const uint32_t count = A.getRow(y).size();
+ for (uint32_t e = 0; e < count; e++) {
+ uint32_t column = A.getRow(y)[e].x;
+ bool isFree = true;
+ for (uint32_t i = 0; i < lockedCount; i++) {
+ isFree &= (lockedParameters[i] != column);
+ }
+ if (!isFree) {
+ b_Alxl[y] -= x[column] * A.getRow(y)[e].v;
+ }
+ }
+ }
+ // Remove locked columns from A.
+ sparse::Matrix Af(D, A.height());
+ for (uint32_t y = 0; y < A.height(); y++) {
+ const uint32_t count = A.getRow(y).size();
+ for (uint32_t e = 0; e < count; e++) {
+ uint32_t column = A.getRow(y)[e].x;
+ uint32_t ix = column;
+ bool isFree = true;
+ for (uint32_t i = 0; i < lockedCount; i++) {
+ isFree &= (lockedParameters[i] != column);
+ if (column > lockedParameters[i]) ix--; // shift columns
+ }
+ if (isFree) {
+ Af.setCoefficient(ix, y, A.getRow(y)[e].v);
+ }
+ }
+ }
+ // Remove elements from x
+ FullVector xf(D);
+ for (uint32_t i = 0, j = 0; i < A.width(); i++) {
+ bool isFree = true;
+ for (uint32_t l = 0; l < lockedCount; l++) {
+ isFree &= (lockedParameters[l] != i);
+ }
+ if (isFree) {
+ xf[j++] = x[i];
+ }
+ }
+ // Solve reduced system.
+ bool result = LeastSquaresSolver(Af, b_Alxl, xf, epsilon);
+ // Copy results back to x.
+ for (uint32_t i = 0, j = 0; i < A.width(); i++) {
+ bool isFree = true;
+ for (uint32_t l = 0; l < lockedCount; l++) {
+ isFree &= (lockedParameters[l] != i);
+ }
+ if (isFree) {
+ x[i] = xf[j++];
+ }
+ }
+ return result;
+ }
+
+private:
+ /**
+ * Compute the solution of the sparse linear system Ab=x using the Conjugate
+ * Gradient method.
+ *
+ * Solving sparse linear systems:
+ * (1) A·x = b
+ *
+ * The conjugate gradient algorithm solves (1) only in the case that A is
+ * symmetric and positive definite. It is based on the idea of minimizing the
+ * function
+ *
+ * (2) f(x) = 1/2·x·A·x - b·x
+ *
+ * This function is minimized when its gradient
+ *
+ * (3) df = A·x - b
+ *
+ * is zero, which is equivalent to (1). The minimization is carried out by
+ * generating a succession of search directions p.k and improved minimizers x.k.
+ * At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k·p.k),
+ * and x.k+1 is set equal to the new point x.k + alfa.k·p.k. The p.k and x.k are
+ * built up in such a way that x.k+1 is also the minimizer of f over the whole
+ * vector space of directions already taken, {p.1, p.2, . . . , p.k}. After N
+ * iterations you arrive at the minimizer over the entire vector space, i.e., the
+ * solution to (1).
+ *
+ * For a really good explanation of the method see:
+ *
+ * "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain",
+ * Jonhathan Richard Shewchuk.
+ *
+ **/
+ static bool ConjugateGradientSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon) {
+ xaDebugAssert(A.isSquare());
+ xaDebugAssert(A.width() == b.dimension());
+ xaDebugAssert(A.width() == x.dimension());
+ int i = 0;
+ const int D = A.width();
+ const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
+ FullVector r(D); // residual
+ FullVector p(D); // search direction
+ FullVector q(D); //
+ float delta_0;
+ float delta_old;
+ float delta_new;
+ float alpha;
+ float beta;
+ // r = b - A·x;
+ sparse::copy(b, r);
+ sparse::sgemv(-1, A, x, 1, r);
+ // p = r;
+ sparse::copy(r, p);
+ delta_new = sparse::dot(r, r);
+ delta_0 = delta_new;
+ while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
+ i++;
+ // q = A·p
+ mult(A, p, q);
+ // alpha = delta_new / p·q
+ alpha = delta_new / sparse::dot(p, q);
+ // x = alfa·p + x
+ sparse::saxpy(alpha, p, x);
+ if ((i & 31) == 0) { // recompute r after 32 steps
+ // r = b - A·x
+ sparse::copy(b, r);
+ sparse::sgemv(-1, A, x, 1, r);
+ } else {
+ // r = r - alpha·q
+ sparse::saxpy(-alpha, q, r);
+ }
+ delta_old = delta_new;
+ delta_new = sparse::dot(r, r);
+ beta = delta_new / delta_old;
+ // p = beta·p + r
+ sparse::scal(beta, p);
+ sparse::saxpy(1, r, p);
+ }
+ return delta_new <= epsilon * epsilon * delta_0;
+ }
+
+ // Conjugate gradient with preconditioner.
+ static bool ConjugateGradientSolver(const JacobiPreconditioner &preconditioner, const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon) {
+ xaDebugAssert(A.isSquare());
+ xaDebugAssert(A.width() == b.dimension());
+ xaDebugAssert(A.width() == x.dimension());
+ int i = 0;
+ const int D = A.width();
+ const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
+ FullVector r(D); // residual
+ FullVector p(D); // search direction
+ FullVector q(D); //
+ FullVector s(D); // preconditioned
+ float delta_0;
+ float delta_old;
+ float delta_new;
+ float alpha;
+ float beta;
+ // r = b - A·x
+ sparse::copy(b, r);
+ sparse::sgemv(-1, A, x, 1, r);
+ // p = M^-1 · r
+ preconditioner.apply(r, p);
+ delta_new = sparse::dot(r, p);
+ delta_0 = delta_new;
+ while (i < i_max && delta_new > epsilon * epsilon * delta_0) {
+ i++;
+ // q = A·p
+ mult(A, p, q);
+ // alpha = delta_new / p·q
+ alpha = delta_new / sparse::dot(p, q);
+ // x = alfa·p + x
+ sparse::saxpy(alpha, p, x);
+ if ((i & 31) == 0) { // recompute r after 32 steps
+ // r = b - A·x
+ sparse::copy(b, r);
+ sparse::sgemv(-1, A, x, 1, r);
+ } else {
+ // r = r - alfa·q
+ sparse::saxpy(-alpha, q, r);
+ }
+ // s = M^-1 · r
+ preconditioner.apply(r, s);
+ delta_old = delta_new;
+ delta_new = sparse::dot(r, s);
+ beta = delta_new / delta_old;
+ // p = s + beta·p
+ sparse::scal(beta, p);
+ sparse::saxpy(1, s, p);
+ }
+ return delta_new <= epsilon * epsilon * delta_0;
+ }
+
+ static bool SymmetricSolver(const sparse::Matrix &A, const FullVector &b, FullVector &x, float epsilon = 1e-5f) {
+ xaDebugAssert(A.height() == A.width());
+ xaDebugAssert(A.height() == b.dimension());
+ xaDebugAssert(b.dimension() == x.dimension());
+ JacobiPreconditioner jacobi(A, true);
+ return ConjugateGradientSolver(jacobi, A, b, x, epsilon);
+ }
+};
+
+namespace param {
+class Atlas;
+class Chart;
+
+// Fast sweep in 3 directions
+static bool findApproximateDiameterVertices(halfedge::Mesh *mesh, halfedge::Vertex **a, halfedge::Vertex **b) {
+ xaDebugAssert(mesh != NULL);
+ xaDebugAssert(a != NULL);
+ xaDebugAssert(b != NULL);
+ const uint32_t vertexCount = mesh->vertexCount();
+ halfedge::Vertex *minVertex[3];
+ halfedge::Vertex *maxVertex[3];
+ minVertex[0] = minVertex[1] = minVertex[2] = NULL;
+ maxVertex[0] = maxVertex[1] = maxVertex[2] = NULL;
+ for (uint32_t v = 1; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ xaDebugAssert(vertex != NULL);
+ if (vertex->isBoundary()) {
+ minVertex[0] = minVertex[1] = minVertex[2] = vertex;
+ maxVertex[0] = maxVertex[1] = maxVertex[2] = vertex;
+ break;
+ }
+ }
+ if (minVertex[0] == NULL) {
+ // Input mesh has not boundaries.
+ return false;
+ }
+ for (uint32_t v = 1; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ xaDebugAssert(vertex != NULL);
+ if (!vertex->isBoundary()) {
+ // Skip interior vertices.
+ continue;
+ }
+ if (vertex->pos.x < minVertex[0]->pos.x)
+ minVertex[0] = vertex;
+ else if (vertex->pos.x > maxVertex[0]->pos.x)
+ maxVertex[0] = vertex;
+ if (vertex->pos.y < minVertex[1]->pos.y)
+ minVertex[1] = vertex;
+ else if (vertex->pos.y > maxVertex[1]->pos.y)
+ maxVertex[1] = vertex;
+ if (vertex->pos.z < minVertex[2]->pos.z)
+ minVertex[2] = vertex;
+ else if (vertex->pos.z > maxVertex[2]->pos.z)
+ maxVertex[2] = vertex;
+ }
+ float lengths[3];
+ for (int i = 0; i < 3; i++) {
+ lengths[i] = length(minVertex[i]->pos - maxVertex[i]->pos);
+ }
+ if (lengths[0] > lengths[1] && lengths[0] > lengths[2]) {
+ *a = minVertex[0];
+ *b = maxVertex[0];
+ } else if (lengths[1] > lengths[2]) {
+ *a = minVertex[1];
+ *b = maxVertex[1];
+ } else {
+ *a = minVertex[2];
+ *b = maxVertex[2];
+ }
+ return true;
+}
+
+// Conformal relations from Brecht Van Lommel (based on ABF):
+
+static float vec_angle_cos(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3) {
+ Vector3 d1 = v1 - v2;
+ Vector3 d2 = v3 - v2;
+ return clamp(dot(d1, d2) / (length(d1) * length(d2)), -1.0f, 1.0f);
+}
+
+static float vec_angle(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3) {
+ float dot = vec_angle_cos(v1, v2, v3);
+ return acosf(dot);
+}
+
+static void triangle_angles(Vector3::Arg v1, Vector3::Arg v2, Vector3::Arg v3, float *a1, float *a2, float *a3) {
+ *a1 = vec_angle(v3, v1, v2);
+ *a2 = vec_angle(v1, v2, v3);
+ *a3 = PI - *a2 - *a1;
+}
+
+static void setup_abf_relations(sparse::Matrix &A, int row, const halfedge::Vertex *v0, const halfedge::Vertex *v1, const halfedge::Vertex *v2) {
+ int id0 = v0->id;
+ int id1 = v1->id;
+ int id2 = v2->id;
+ Vector3 p0 = v0->pos;
+ Vector3 p1 = v1->pos;
+ Vector3 p2 = v2->pos;
+ // @@ IC: Wouldn't it be more accurate to return cos and compute 1-cos^2?
+ // It does indeed seem to be a little bit more robust.
+ // @@ Need to revisit this more carefully!
+ float a0, a1, a2;
+ triangle_angles(p0, p1, p2, &a0, &a1, &a2);
+ float s0 = sinf(a0);
+ float s1 = sinf(a1);
+ float s2 = sinf(a2);
+ if (s1 > s0 && s1 > s2) {
+ std::swap(s1, s2);
+ std::swap(s0, s1);
+ std::swap(a1, a2);
+ std::swap(a0, a1);
+ std::swap(id1, id2);
+ std::swap(id0, id1);
+ } else if (s0 > s1 && s0 > s2) {
+ std::swap(s0, s2);
+ std::swap(s0, s1);
+ std::swap(a0, a2);
+ std::swap(a0, a1);
+ std::swap(id0, id2);
+ std::swap(id0, id1);
+ }
+ float c0 = cosf(a0);
+ float ratio = (s2 == 0.0f) ? 1.0f : s1 / s2;
+ float cosine = c0 * ratio;
+ float sine = s0 * ratio;
+ // Note : 2*id + 0 --> u
+ // 2*id + 1 --> v
+ int u0_id = 2 * id0 + 0;
+ int v0_id = 2 * id0 + 1;
+ int u1_id = 2 * id1 + 0;
+ int v1_id = 2 * id1 + 1;
+ int u2_id = 2 * id2 + 0;
+ int v2_id = 2 * id2 + 1;
+ // Real part
+ A.setCoefficient(u0_id, 2 * row + 0, cosine - 1.0f);
+ A.setCoefficient(v0_id, 2 * row + 0, -sine);
+ A.setCoefficient(u1_id, 2 * row + 0, -cosine);
+ A.setCoefficient(v1_id, 2 * row + 0, sine);
+ A.setCoefficient(u2_id, 2 * row + 0, 1);
+ // Imaginary part
+ A.setCoefficient(u0_id, 2 * row + 1, sine);
+ A.setCoefficient(v0_id, 2 * row + 1, cosine - 1.0f);
+ A.setCoefficient(u1_id, 2 * row + 1, -sine);
+ A.setCoefficient(v1_id, 2 * row + 1, -cosine);
+ A.setCoefficient(v2_id, 2 * row + 1, 1);
+}
+
+bool computeLeastSquaresConformalMap(halfedge::Mesh *mesh) {
+ xaDebugAssert(mesh != NULL);
+ // For this to work properly, mesh should not have colocals that have the same
+ // attributes, unless you want the vertices to actually have different texcoords.
+ const uint32_t vertexCount = mesh->vertexCount();
+ const uint32_t D = 2 * vertexCount;
+ const uint32_t N = 2 * halfedge::countMeshTriangles(mesh);
+ // N is the number of equations (one per triangle)
+ // D is the number of variables (one per vertex; there are 2 pinned vertices).
+ if (N < D - 4) {
+ return false;
+ }
+ sparse::Matrix A(D, N);
+ FullVector b(N);
+ FullVector x(D);
+ // Fill b:
+ b.fill(0.0f);
+ // Fill x:
+ halfedge::Vertex *v0;
+ halfedge::Vertex *v1;
+ if (!findApproximateDiameterVertices(mesh, &v0, &v1)) {
+ // Mesh has no boundaries.
+ return false;
+ }
+ if (v0->tex == v1->tex) {
+ // LSCM expects an existing parameterization.
+ return false;
+ }
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ xaDebugAssert(vertex != NULL);
+ // Initial solution.
+ x[2 * v + 0] = vertex->tex.x;
+ x[2 * v + 1] = vertex->tex.y;
+ }
+ // Fill A:
+ const uint32_t faceCount = mesh->faceCount();
+ for (uint32_t f = 0, t = 0; f < faceCount; f++) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ xaDebugAssert(face != NULL);
+ xaDebugAssert(face->edgeCount() == 3);
+ const halfedge::Vertex *vertex0 = NULL;
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ xaAssert(edge != NULL);
+ if (vertex0 == NULL) {
+ vertex0 = edge->vertex;
+ } else if (edge->next->vertex != vertex0) {
+ const halfedge::Vertex *vertex1 = edge->from();
+ const halfedge::Vertex *vertex2 = edge->to();
+ setup_abf_relations(A, t, vertex0, vertex1, vertex2);
+ //setup_conformal_map_relations(A, t, vertex0, vertex1, vertex2);
+ t++;
+ }
+ }
+ }
+ const uint32_t lockedParameters[] = {
+ 2 * v0->id + 0,
+ 2 * v0->id + 1,
+ 2 * v1->id + 0,
+ 2 * v1->id + 1
+ };
+ // Solve
+ Solver::LeastSquaresSolver(A, b, x, lockedParameters, 4, 0.000001f);
+ // Map x back to texcoords:
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ xaDebugAssert(vertex != NULL);
+ vertex->tex = Vector2(x[2 * v + 0], x[2 * v + 1]);
+ }
+ return true;
+}
+
+bool computeOrthogonalProjectionMap(halfedge::Mesh *mesh) {
+ Vector3 axis[2];
+ uint32_t vertexCount = mesh->vertexCount();
+ std::vector<Vector3> points(vertexCount);
+ points.resize(vertexCount);
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ points[i] = mesh->vertexAt(i)->pos;
+ }
+ // Avoid redundant computations.
+ float matrix[6];
+ Fit::computeCovariance(vertexCount, points.data(), matrix);
+ if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0) {
+ return false;
+ }
+ float eigenValues[3];
+ Vector3 eigenVectors[3];
+ if (!Fit::eigenSolveSymmetric3(matrix, eigenValues, eigenVectors)) {
+ return false;
+ }
+ axis[0] = normalize(eigenVectors[0]);
+ axis[1] = normalize(eigenVectors[1]);
+ // Project vertices to plane.
+ for (halfedge::Mesh::VertexIterator it(mesh->vertices()); !it.isDone(); it.advance()) {
+ halfedge::Vertex *vertex = it.current();
+ vertex->tex.x = dot(axis[0], vertex->pos);
+ vertex->tex.y = dot(axis[1], vertex->pos);
+ }
+ return true;
+}
+
+void computeSingleFaceMap(halfedge::Mesh *mesh) {
+ xaDebugAssert(mesh != NULL);
+ xaDebugAssert(mesh->faceCount() == 1);
+ halfedge::Face *face = mesh->faceAt(0);
+ xaAssert(face != NULL);
+ Vector3 p0 = face->edge->from()->pos;
+ Vector3 p1 = face->edge->to()->pos;
+ Vector3 X = normalizeSafe(p1 - p0, Vector3(0.0f), 0.0f);
+ Vector3 Z = face->normal();
+ Vector3 Y = normalizeSafe(cross(Z, X), Vector3(0.0f), 0.0f);
+ uint32_t i = 0;
+ for (halfedge::Face::EdgeIterator it(face->edges()); !it.isDone(); it.advance(), i++) {
+ halfedge::Vertex *vertex = it.vertex();
+ xaAssert(vertex != NULL);
+ if (i == 0) {
+ vertex->tex = Vector2(0);
+ } else {
+ Vector3 pn = vertex->pos;
+ float xn = dot((pn - p0), X);
+ float yn = dot((pn - p0), Y);
+ vertex->tex = Vector2(xn, yn);
+ }
+ }
+}
+
+// Dummy implementation of a priority queue using sort at insertion.
+// - Insertion is o(n)
+// - Smallest element goes at the end, so that popping it is o(1).
+// - Resorting is n*log(n)
+// @@ Number of elements in the queue is usually small, and we'd have to rebalance often. I'm not sure it's worth implementing a heap.
+// @@ Searcing at removal would remove the need for sorting when priorities change.
+struct PriorityQueue {
+ PriorityQueue(uint32_t size = UINT_MAX) :
+ maxSize(size) {}
+
+ void push(float priority, uint32_t face) {
+ uint32_t i = 0;
+ const uint32_t count = pairs.size();
+ for (; i < count; i++) {
+ if (pairs[i].priority > priority) break;
+ }
+ Pair p = { priority, face };
+ pairs.insert(pairs.begin() + i, p);
+ if (pairs.size() > maxSize) {
+ pairs.erase(pairs.begin());
+ }
+ }
+
+ // push face out of order, to be sorted later.
+ void push(uint32_t face) {
+ Pair p = { 0.0f, face };
+ pairs.push_back(p);
+ }
+
+ uint32_t pop() {
+ uint32_t f = pairs.back().face;
+ pairs.pop_back();
+ return f;
+ }
+
+ void sort() {
+ //sort(pairs); // @@ My intro sort appears to be much slower than it should!
+ std::sort(pairs.begin(), pairs.end());
+ }
+
+ void clear() {
+ pairs.clear();
+ }
+
+ uint32_t count() const {
+ return pairs.size();
+ }
+
+ float firstPriority() const {
+ return pairs.back().priority;
+ }
+
+ const uint32_t maxSize;
+
+ struct Pair {
+ bool operator<(const Pair &p) const {
+ return priority > p.priority; // !! Sort in inverse priority order!
+ }
+
+ float priority;
+ uint32_t face;
+ };
+
+ std::vector<Pair> pairs;
+};
+
+struct ChartBuildData {
+ ChartBuildData(int p_id) :
+ id(p_id) {
+ planeNormal = Vector3(0);
+ centroid = Vector3(0);
+ coneAxis = Vector3(0);
+ coneAngle = 0;
+ area = 0;
+ boundaryLength = 0;
+ normalSum = Vector3(0);
+ centroidSum = Vector3(0);
+ }
+
+ int id;
+
+ // Proxy info:
+ Vector3 planeNormal;
+ Vector3 centroid;
+ Vector3 coneAxis;
+ float coneAngle;
+
+ float area;
+ float boundaryLength;
+ Vector3 normalSum;
+ Vector3 centroidSum;
+
+ std::vector<uint32_t> seeds; // @@ These could be a pointers to the halfedge faces directly.
+ std::vector<uint32_t> faces;
+ PriorityQueue candidates;
+};
+
+struct AtlasBuilder {
+ AtlasBuilder(const halfedge::Mesh *m) :
+ mesh(m),
+ facesLeft(m->faceCount()) {
+ const uint32_t faceCount = m->faceCount();
+ faceChartArray.resize(faceCount, -1);
+ faceCandidateArray.resize(faceCount, (uint32_t)-1);
+ // @@ Floyd for the whole mesh is too slow. We could compute floyd progressively per patch as the patch grows. We need a better solution to compute most central faces.
+ //computeShortestPaths();
+ // Precompute edge lengths and face areas.
+ uint32_t edgeCount = m->edgeCount();
+ edgeLengths.resize(edgeCount);
+ for (uint32_t i = 0; i < edgeCount; i++) {
+ uint32_t id = m->edgeAt(i)->id;
+ xaDebugAssert(id / 2 == i);
+#ifdef NDEBUG
+ id = 0; // silence unused parameter warning
+#endif
+ edgeLengths[i] = m->edgeAt(i)->length();
+ }
+ faceAreas.resize(faceCount);
+ for (uint32_t i = 0; i < faceCount; i++) {
+ faceAreas[i] = m->faceAt(i)->area();
+ }
+ }
+
+ ~AtlasBuilder() {
+ const uint32_t chartCount = chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ delete chartArray[i];
+ }
+ }
+
+ void markUnchartedFaces(const std::vector<uint32_t> &unchartedFaces) {
+ const uint32_t unchartedFaceCount = unchartedFaces.size();
+ for (uint32_t i = 0; i < unchartedFaceCount; i++) {
+ uint32_t f = unchartedFaces[i];
+ faceChartArray[f] = -2;
+ //faceCandidateArray[f] = -2; // @@ ?
+ removeCandidate(f);
+ }
+ xaDebugAssert(facesLeft >= unchartedFaceCount);
+ facesLeft -= unchartedFaceCount;
+ }
+
+ void computeShortestPaths() {
+ const uint32_t faceCount = mesh->faceCount();
+ shortestPaths.resize(faceCount * faceCount, FLT_MAX);
+ // Fill edges:
+ for (uint32_t i = 0; i < faceCount; i++) {
+ shortestPaths[i * faceCount + i] = 0.0f;
+ const halfedge::Face *face_i = mesh->faceAt(i);
+ Vector3 centroid_i = face_i->centroid();
+ for (halfedge::Face::ConstEdgeIterator it(face_i->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ if (!edge->isBoundary()) {
+ const halfedge::Face *face_j = edge->pair->face;
+ uint32_t j = face_j->id;
+ Vector3 centroid_j = face_j->centroid();
+ shortestPaths[i * faceCount + j] = shortestPaths[j * faceCount + i] = length(centroid_i - centroid_j);
+ }
+ }
+ }
+ // Use Floyd-Warshall algorithm to compute all paths:
+ for (uint32_t k = 0; k < faceCount; k++) {
+ for (uint32_t i = 0; i < faceCount; i++) {
+ for (uint32_t j = 0; j < faceCount; j++) {
+ shortestPaths[i * faceCount + j] = std::min(shortestPaths[i * faceCount + j], shortestPaths[i * faceCount + k] + shortestPaths[k * faceCount + j]);
+ }
+ }
+ }
+ }
+
+ void placeSeeds(float threshold, uint32_t maxSeedCount) {
+ // Instead of using a predefiened number of seeds:
+ // - Add seeds one by one, growing chart until a certain treshold.
+ // - Undo charts and restart growing process.
+ // @@ How can we give preference to faces far from sharp features as in the LSCM paper?
+ // - those points can be found using a simple flood filling algorithm.
+ // - how do we weight the probabilities?
+ for (uint32_t i = 0; i < maxSeedCount; i++) {
+ if (facesLeft == 0) {
+ // No faces left, stop creating seeds.
+ break;
+ }
+ createRandomChart(threshold);
+ }
+ }
+
+ void createRandomChart(float threshold) {
+ ChartBuildData *chart = new ChartBuildData(chartArray.size());
+ chartArray.push_back(chart);
+ // Pick random face that is not used by any chart yet.
+ uint32_t randomFaceIdx = rand.getRange(facesLeft - 1);
+ uint32_t i = 0;
+ for (uint32_t f = 0; f != randomFaceIdx; f++, i++) {
+ while (faceChartArray[i] != -1)
+ i++;
+ }
+ while (faceChartArray[i] != -1)
+ i++;
+ chart->seeds.push_back(i);
+ addFaceToChart(chart, i, true);
+ // Grow the chart as much as possible within the given threshold.
+ growChart(chart, threshold * 0.5f, facesLeft);
+ //growCharts(threshold - threshold * 0.75f / chartCount(), facesLeft);
+ }
+
+ void addFaceToChart(ChartBuildData *chart, uint32_t f, bool recomputeProxy = false) {
+ // Add face to chart.
+ chart->faces.push_back(f);
+ xaDebugAssert(faceChartArray[f] == -1);
+ faceChartArray[f] = chart->id;
+ facesLeft--;
+ // Update area and boundary length.
+ chart->area = evaluateChartArea(chart, f);
+ chart->boundaryLength = evaluateBoundaryLength(chart, f);
+ chart->normalSum = evaluateChartNormalSum(chart, f);
+ chart->centroidSum = evaluateChartCentroidSum(chart, f);
+ if (recomputeProxy) {
+ // Update proxy and candidate's priorities.
+ updateProxy(chart);
+ }
+ // Update candidates.
+ removeCandidate(f);
+ updateCandidates(chart, f);
+ updatePriorities(chart);
+ }
+
+ // Returns true if any of the charts can grow more.
+ bool growCharts(float threshold, uint32_t faceCount) {
+ // Using one global list.
+ faceCount = std::min(faceCount, facesLeft);
+ for (uint32_t i = 0; i < faceCount; i++) {
+ const Candidate &candidate = getBestCandidate();
+ if (candidate.metric > threshold) {
+ return false; // Can't grow more.
+ }
+ addFaceToChart(candidate.chart, candidate.face);
+ }
+ return facesLeft != 0; // Can continue growing.
+ }
+
+ bool growChart(ChartBuildData *chart, float threshold, uint32_t faceCount) {
+ // Try to add faceCount faces within threshold to chart.
+ for (uint32_t i = 0; i < faceCount;) {
+ if (chart->candidates.count() == 0 || chart->candidates.firstPriority() > threshold) {
+ return false;
+ }
+ uint32_t f = chart->candidates.pop();
+ if (faceChartArray[f] == -1) {
+ addFaceToChart(chart, f);
+ i++;
+ }
+ }
+ if (chart->candidates.count() == 0 || chart->candidates.firstPriority() > threshold) {
+ return false;
+ }
+ return true;
+ }
+
+ void resetCharts() {
+ const uint32_t faceCount = mesh->faceCount();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ faceChartArray[i] = -1;
+ faceCandidateArray[i] = (uint32_t)-1;
+ }
+ facesLeft = faceCount;
+ candidateArray.clear();
+ const uint32_t chartCount = chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ ChartBuildData *chart = chartArray[i];
+ const uint32_t seed = chart->seeds.back();
+ chart->area = 0.0f;
+ chart->boundaryLength = 0.0f;
+ chart->normalSum = Vector3(0);
+ chart->centroidSum = Vector3(0);
+ chart->faces.clear();
+ chart->candidates.clear();
+ addFaceToChart(chart, seed);
+ }
+ }
+
+ void updateCandidates(ChartBuildData *chart, uint32_t f) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ // Traverse neighboring faces, add the ones that do not belong to any chart yet.
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current()->pair;
+ if (!edge->isBoundary()) {
+ uint32_t faceId = edge->face->id;
+ if (faceChartArray[faceId] == -1) {
+ chart->candidates.push(faceId);
+ }
+ }
+ }
+ }
+
+ void updateProxies() {
+ const uint32_t chartCount = chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ updateProxy(chartArray[i]);
+ }
+ }
+
+ void updateProxy(ChartBuildData *chart) {
+ //#pragma message(NV_FILE_LINE "TODO: Use best fit plane instead of average normal.")
+ chart->planeNormal = normalizeSafe(chart->normalSum, Vector3(0), 0.0f);
+ chart->centroid = chart->centroidSum / float(chart->faces.size());
+ }
+
+ bool relocateSeeds() {
+ bool anySeedChanged = false;
+ const uint32_t chartCount = chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ if (relocateSeed(chartArray[i])) {
+ anySeedChanged = true;
+ }
+ }
+ return anySeedChanged;
+ }
+
+ bool relocateSeed(ChartBuildData *chart) {
+ Vector3 centroid = computeChartCentroid(chart);
+ const uint32_t N = 10; // @@ Hardcoded to 10?
+ PriorityQueue bestTriangles(N);
+ // Find the first N triangles that fit the proxy best.
+ const uint32_t faceCount = chart->faces.size();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ float priority = evaluateProxyFitMetric(chart, chart->faces[i]);
+ bestTriangles.push(priority, chart->faces[i]);
+ }
+ // Of those, choose the most central triangle.
+ uint32_t mostCentral;
+ float maxDistance = -1;
+ const uint32_t bestCount = bestTriangles.count();
+ for (uint32_t i = 0; i < bestCount; i++) {
+ const halfedge::Face *face = mesh->faceAt(bestTriangles.pairs[i].face);
+ Vector3 faceCentroid = face->triangleCenter();
+ float distance = length(centroid - faceCentroid);
+ if (distance > maxDistance) {
+ maxDistance = distance;
+ mostCentral = bestTriangles.pairs[i].face;
+ }
+ }
+ xaDebugAssert(maxDistance >= 0);
+ // In order to prevent k-means cyles we record all the previously chosen seeds.
+ uint32_t index = std::find(chart->seeds.begin(), chart->seeds.end(), mostCentral) - chart->seeds.begin();
+ if (index < chart->seeds.size()) {
+ // Move new seed to the end of the seed array.
+ uint32_t last = chart->seeds.size() - 1;
+ std::swap(chart->seeds[index], chart->seeds[last]);
+ return false;
+ } else {
+ // Append new seed.
+ chart->seeds.push_back(mostCentral);
+ return true;
+ }
+ }
+
+ void updatePriorities(ChartBuildData *chart) {
+ // Re-evaluate candidate priorities.
+ uint32_t candidateCount = chart->candidates.count();
+ for (uint32_t i = 0; i < candidateCount; i++) {
+ chart->candidates.pairs[i].priority = evaluatePriority(chart, chart->candidates.pairs[i].face);
+ if (faceChartArray[chart->candidates.pairs[i].face] == -1) {
+ updateCandidate(chart, chart->candidates.pairs[i].face, chart->candidates.pairs[i].priority);
+ }
+ }
+ // Sort candidates.
+ chart->candidates.sort();
+ }
+
+ // Evaluate combined metric.
+ float evaluatePriority(ChartBuildData *chart, uint32_t face) {
+ // Estimate boundary length and area:
+ float newBoundaryLength = evaluateBoundaryLength(chart, face);
+ float newChartArea = evaluateChartArea(chart, face);
+ float F = evaluateProxyFitMetric(chart, face);
+ float C = evaluateRoundnessMetric(chart, face, newBoundaryLength, newChartArea);
+ float P = evaluateStraightnessMetric(chart, face);
+ // Penalize faces that cross seams, reward faces that close seams or reach boundaries.
+ float N = evaluateNormalSeamMetric(chart, face);
+ float T = evaluateTextureSeamMetric(chart, face);
+ //float R = evaluateCompletenessMetric(chart, face);
+ //float D = evaluateDihedralAngleMetric(chart, face);
+ // @@ Add a metric based on local dihedral angle.
+ // @@ Tweaking the normal and texture seam metrics.
+ // - Cause more impedance. Never cross 90 degree edges.
+ // -
+ float cost = float(
+ options.proxyFitMetricWeight * F +
+ options.roundnessMetricWeight * C +
+ options.straightnessMetricWeight * P +
+ options.normalSeamMetricWeight * N +
+ options.textureSeamMetricWeight * T);
+ // Enforce limits strictly:
+ if (newChartArea > options.maxChartArea) cost = FLT_MAX;
+ if (newBoundaryLength > options.maxBoundaryLength) cost = FLT_MAX;
+ // Make sure normal seams are fully respected:
+ if (options.normalSeamMetricWeight >= 1000 && N != 0) cost = FLT_MAX;
+ xaAssert(std::isfinite(cost));
+ return cost;
+ }
+
+ // Returns a value in [0-1].
+ float evaluateProxyFitMetric(ChartBuildData *chart, uint32_t f) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ Vector3 faceNormal = face->triangleNormal();
+ // Use plane fitting metric for now:
+ return 1 - dot(faceNormal, chart->planeNormal); // @@ normal deviations should be weighted by face area
+ }
+
+ float evaluateRoundnessMetric(ChartBuildData *chart, uint32_t /*face*/, float newBoundaryLength, float newChartArea) {
+ float roundness = square(chart->boundaryLength) / chart->area;
+ float newRoundness = square(newBoundaryLength) / newChartArea;
+ if (newRoundness > roundness) {
+ return square(newBoundaryLength) / (newChartArea * 4 * PI);
+ } else {
+ // Offer no impedance to faces that improve roundness.
+ return 0;
+ }
+ }
+
+ float evaluateStraightnessMetric(ChartBuildData *chart, uint32_t f) {
+ float l_out = 0.0f;
+ float l_in = 0.0f;
+ const halfedge::Face *face = mesh->faceAt(f);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ float l = edgeLengths[edge->id / 2];
+ if (edge->isBoundary()) {
+ l_out += l;
+ } else {
+ uint32_t neighborFaceId = edge->pair->face->id;
+ if (faceChartArray[neighborFaceId] != chart->id) {
+ l_out += l;
+ } else {
+ l_in += l;
+ }
+ }
+ }
+ xaDebugAssert(l_in != 0.0f); // Candidate face must be adjacent to chart. @@ This is not true if the input mesh has zero-length edges.
+ float ratio = (l_out - l_in) / (l_out + l_in);
+ return std::min(ratio, 0.0f); // Only use the straightness metric to close gaps.
+ }
+
+ float evaluateNormalSeamMetric(ChartBuildData *chart, uint32_t f) {
+ float seamFactor = 0.0f;
+ float totalLength = 0.0f;
+ const halfedge::Face *face = mesh->faceAt(f);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ if (edge->isBoundary()) {
+ continue;
+ }
+ const uint32_t neighborFaceId = edge->pair->face->id;
+ if (faceChartArray[neighborFaceId] != chart->id) {
+ continue;
+ }
+ //float l = edge->length();
+ float l = edgeLengths[edge->id / 2];
+ totalLength += l;
+ if (!edge->isSeam()) {
+ continue;
+ }
+ // Make sure it's a normal seam.
+ if (edge->isNormalSeam()) {
+ float d0 = clamp(dot(edge->vertex->nor, edge->pair->next->vertex->nor), 0.0f, 1.0f);
+ float d1 = clamp(dot(edge->next->vertex->nor, edge->pair->vertex->nor), 0.0f, 1.0f);
+ l *= 1 - (d0 + d1) * 0.5f;
+ seamFactor += l;
+ }
+ }
+ if (seamFactor == 0) return 0.0f;
+ return seamFactor / totalLength;
+ }
+
+ float evaluateTextureSeamMetric(ChartBuildData *chart, uint32_t f) {
+ float seamLength = 0.0f;
+ float totalLength = 0.0f;
+ const halfedge::Face *face = mesh->faceAt(f);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ if (edge->isBoundary()) {
+ continue;
+ }
+ const uint32_t neighborFaceId = edge->pair->face->id;
+ if (faceChartArray[neighborFaceId] != chart->id) {
+ continue;
+ }
+ //float l = edge->length();
+ float l = edgeLengths[edge->id / 2];
+ totalLength += l;
+ if (!edge->isSeam()) {
+ continue;
+ }
+ // Make sure it's a texture seam.
+ if (edge->isTextureSeam()) {
+ seamLength += l;
+ }
+ }
+ if (seamLength == 0.0f) {
+ return 0.0f; // Avoid division by zero.
+ }
+ return seamLength / totalLength;
+ }
+
+ float evaluateChartArea(ChartBuildData *chart, uint32_t f) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ return chart->area + faceAreas[face->id];
+ }
+
+ float evaluateBoundaryLength(ChartBuildData *chart, uint32_t f) {
+ float boundaryLength = chart->boundaryLength;
+ // Add new edges, subtract edges shared with the chart.
+ const halfedge::Face *face = mesh->faceAt(f);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ //float edgeLength = edge->length();
+ float edgeLength = edgeLengths[edge->id / 2];
+ if (edge->isBoundary()) {
+ boundaryLength += edgeLength;
+ } else {
+ uint32_t neighborFaceId = edge->pair->face->id;
+ if (faceChartArray[neighborFaceId] != chart->id) {
+ boundaryLength += edgeLength;
+ } else {
+ boundaryLength -= edgeLength;
+ }
+ }
+ }
+ return std::max(0.0f, boundaryLength); // @@ Hack!
+ }
+
+ Vector3 evaluateChartNormalSum(ChartBuildData *chart, uint32_t f) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ return chart->normalSum + face->triangleNormalAreaScaled();
+ }
+
+ Vector3 evaluateChartCentroidSum(ChartBuildData *chart, uint32_t f) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ return chart->centroidSum + face->centroid();
+ }
+
+ Vector3 computeChartCentroid(const ChartBuildData *chart) {
+ Vector3 centroid(0);
+ const uint32_t faceCount = chart->faces.size();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ const halfedge::Face *face = mesh->faceAt(chart->faces[i]);
+ centroid += face->triangleCenter();
+ }
+ return centroid / float(faceCount);
+ }
+
+ void fillHoles(float threshold) {
+ while (facesLeft > 0)
+ createRandomChart(threshold);
+ }
+
+ void mergeCharts() {
+ std::vector<float> sharedBoundaryLengths;
+ const uint32_t chartCount = chartArray.size();
+ for (int c = chartCount - 1; c >= 0; c--) {
+ sharedBoundaryLengths.clear();
+ sharedBoundaryLengths.resize(chartCount, 0.0f);
+ ChartBuildData *chart = chartArray[c];
+ float externalBoundary = 0.0f;
+ const uint32_t faceCount = chart->faces.size();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ uint32_t f = chart->faces[i];
+ const halfedge::Face *face = mesh->faceAt(f);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ //float l = edge->length();
+ float l = edgeLengths[edge->id / 2];
+ if (edge->isBoundary()) {
+ externalBoundary += l;
+ } else {
+ uint32_t neighborFace = edge->pair->face->id;
+ uint32_t neighborChart = faceChartArray[neighborFace];
+ if (neighborChart != (uint32_t)c) {
+ if ((edge->isSeam() && (edge->isNormalSeam() || edge->isTextureSeam())) || neighborChart == -2) {
+ externalBoundary += l;
+ } else {
+ sharedBoundaryLengths[neighborChart] += l;
+ }
+ }
+ }
+ }
+ }
+ for (int cc = chartCount - 1; cc >= 0; cc--) {
+ if (cc == c)
+ continue;
+ ChartBuildData *chart2 = chartArray[cc];
+ if (chart2 == NULL)
+ continue;
+ if (sharedBoundaryLengths[cc] > 0.8 * std::max(0.0f, chart->boundaryLength - externalBoundary)) {
+ // Try to avoid degenerate configurations.
+ if (chart2->boundaryLength > sharedBoundaryLengths[cc]) {
+ if (dot(chart2->planeNormal, chart->planeNormal) > -0.25) {
+ mergeChart(chart2, chart, sharedBoundaryLengths[cc]);
+ delete chart;
+ chartArray[c] = NULL;
+ break;
+ }
+ }
+ }
+ if (sharedBoundaryLengths[cc] > 0.20 * std::max(0.0f, chart->boundaryLength - externalBoundary)) {
+ // Compare proxies.
+ if (dot(chart2->planeNormal, chart->planeNormal) > 0) {
+ mergeChart(chart2, chart, sharedBoundaryLengths[cc]);
+ delete chart;
+ chartArray[c] = NULL;
+ break;
+ }
+ }
+ }
+ }
+ // Remove deleted charts.
+ for (int c = 0; c < int32_t(chartArray.size()); /*do not increment if removed*/) {
+ if (chartArray[c] == NULL) {
+ chartArray.erase(chartArray.begin() + c);
+ // Update faceChartArray.
+ const uint32_t faceCount = faceChartArray.size();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ xaDebugAssert(faceChartArray[i] != -1);
+ xaDebugAssert(faceChartArray[i] != c);
+ xaDebugAssert(faceChartArray[i] <= int32_t(chartArray.size()));
+ if (faceChartArray[i] > c) {
+ faceChartArray[i]--;
+ }
+ }
+ } else {
+ chartArray[c]->id = c;
+ c++;
+ }
+ }
+ }
+
+ // @@ Cleanup.
+ struct Candidate {
+ uint32_t face;
+ ChartBuildData *chart;
+ float metric;
+ };
+
+ // @@ Get N best candidates in one pass.
+ const Candidate &getBestCandidate() const {
+ uint32_t best = 0;
+ float bestCandidateMetric = FLT_MAX;
+ const uint32_t candidateCount = candidateArray.size();
+ xaAssert(candidateCount > 0);
+ for (uint32_t i = 0; i < candidateCount; i++) {
+ const Candidate &candidate = candidateArray[i];
+ if (candidate.metric < bestCandidateMetric) {
+ bestCandidateMetric = candidate.metric;
+ best = i;
+ }
+ }
+ return candidateArray[best];
+ }
+
+ void removeCandidate(uint32_t f) {
+ int c = faceCandidateArray[f];
+ if (c != -1) {
+ faceCandidateArray[f] = (uint32_t)-1;
+ if (c == int(candidateArray.size() - 1)) {
+ candidateArray.pop_back();
+ } else {
+ // Replace with last.
+ candidateArray[c] = candidateArray[candidateArray.size() - 1];
+ candidateArray.pop_back();
+ faceCandidateArray[candidateArray[c].face] = c;
+ }
+ }
+ }
+
+ void updateCandidate(ChartBuildData *chart, uint32_t f, float metric) {
+ if (faceCandidateArray[f] == -1) {
+ const uint32_t index = candidateArray.size();
+ faceCandidateArray[f] = index;
+ candidateArray.resize(index + 1);
+ candidateArray[index].face = f;
+ candidateArray[index].chart = chart;
+ candidateArray[index].metric = metric;
+ } else {
+ int c = faceCandidateArray[f];
+ xaDebugAssert(c != -1);
+ Candidate &candidate = candidateArray[c];
+ xaDebugAssert(candidate.face == f);
+ if (metric < candidate.metric || chart == candidate.chart) {
+ candidate.metric = metric;
+ candidate.chart = chart;
+ }
+ }
+ }
+
+ void mergeChart(ChartBuildData *owner, ChartBuildData *chart, float sharedBoundaryLength) {
+ const uint32_t faceCount = chart->faces.size();
+ for (uint32_t i = 0; i < faceCount; i++) {
+ uint32_t f = chart->faces[i];
+ xaDebugAssert(faceChartArray[f] == chart->id);
+ faceChartArray[f] = owner->id;
+ owner->faces.push_back(f);
+ }
+ // Update adjacencies?
+ owner->area += chart->area;
+ owner->boundaryLength += chart->boundaryLength - sharedBoundaryLength;
+ owner->normalSum += chart->normalSum;
+ owner->centroidSum += chart->centroidSum;
+ updateProxy(owner);
+ }
+
+ uint32_t chartCount() const { return chartArray.size(); }
+ const std::vector<uint32_t> &chartFaces(uint32_t i) const { return chartArray[i]->faces; }
+
+ const halfedge::Mesh *mesh;
+ uint32_t facesLeft;
+ std::vector<int> faceChartArray;
+ std::vector<ChartBuildData *> chartArray;
+ std::vector<float> shortestPaths;
+ std::vector<float> edgeLengths;
+ std::vector<float> faceAreas;
+ std::vector<Candidate> candidateArray; //
+ std::vector<uint32_t> faceCandidateArray; // Map face index to candidate index.
+ MTRand rand;
+ CharterOptions options;
+};
+
+/// A chart is a connected set of faces with a certain topology (usually a disk).
+class Chart {
+public:
+ Chart() :
+ m_isDisk(false),
+ m_isVertexMapped(false) {}
+
+ void build(const halfedge::Mesh *originalMesh, const std::vector<uint32_t> &faceArray) {
+ // Copy face indices.
+ m_faceArray = faceArray;
+ const uint32_t meshVertexCount = originalMesh->vertexCount();
+ m_chartMesh.reset(new halfedge::Mesh());
+ m_unifiedMesh.reset(new halfedge::Mesh());
+ std::vector<uint32_t> chartMeshIndices(meshVertexCount, (uint32_t)~0);
+ std::vector<uint32_t> unifiedMeshIndices(meshVertexCount, (uint32_t)~0);
+ // Add vertices.
+ const uint32_t faceCount = faceArray.size();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = originalMesh->faceAt(faceArray[f]);
+ xaDebugAssert(face != NULL);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Vertex *vertex = it.current()->vertex;
+ const halfedge::Vertex *unifiedVertex = vertex->firstColocal();
+ if (unifiedMeshIndices[unifiedVertex->id] == ~0) {
+ unifiedMeshIndices[unifiedVertex->id] = m_unifiedMesh->vertexCount();
+ xaDebugAssert(vertex->pos == unifiedVertex->pos);
+ m_unifiedMesh->addVertex(vertex->pos);
+ }
+ if (chartMeshIndices[vertex->id] == ~0) {
+ chartMeshIndices[vertex->id] = m_chartMesh->vertexCount();
+ m_chartToOriginalMap.push_back(vertex->original_id);
+ m_chartToUnifiedMap.push_back(unifiedMeshIndices[unifiedVertex->id]);
+ halfedge::Vertex *v = m_chartMesh->addVertex(vertex->pos);
+ v->nor = vertex->nor;
+ v->tex = vertex->tex;
+ }
+ }
+ }
+ // This is ignoring the canonical map:
+ // - Is it really necessary to link colocals?
+ m_chartMesh->linkColocals();
+ //m_unifiedMesh->linkColocals(); // Not strictly necessary, no colocals in the unified mesh. # Wrong.
+ // This check is not valid anymore, if the original mesh vertices were linked with a canonical map, then it might have
+ // some colocal vertices that were unlinked. So, the unified mesh might have some duplicate vertices, because firstColocal()
+ // is not guaranteed to return the same vertex for two colocal vertices.
+ //xaAssert(m_chartMesh->colocalVertexCount() == m_unifiedMesh->vertexCount());
+ // Is that OK? What happens in meshes were that happens? Does anything break? Apparently not...
+ std::vector<uint32_t> faceIndices;
+ faceIndices.reserve(7);
+ // Add faces.
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = originalMesh->faceAt(faceArray[f]);
+ xaDebugAssert(face != NULL);
+ faceIndices.clear();
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Vertex *vertex = it.current()->vertex;
+ xaDebugAssert(vertex != NULL);
+ faceIndices.push_back(chartMeshIndices[vertex->id]);
+ }
+ m_chartMesh->addFace(faceIndices);
+ faceIndices.clear();
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Vertex *vertex = it.current()->vertex;
+ xaDebugAssert(vertex != NULL);
+ vertex = vertex->firstColocal();
+ faceIndices.push_back(unifiedMeshIndices[vertex->id]);
+ }
+ m_unifiedMesh->addFace(faceIndices);
+ }
+ m_chartMesh->linkBoundary();
+ m_unifiedMesh->linkBoundary();
+ //exportMesh(m_unifiedMesh.ptr(), "debug_input.obj");
+ if (m_unifiedMesh->splitBoundaryEdges()) {
+ m_unifiedMesh.reset(halfedge::unifyVertices(m_unifiedMesh.get()));
+ }
+ //exportMesh(m_unifiedMesh.ptr(), "debug_split.obj");
+ // Closing the holes is not always the best solution and does not fix all the problems.
+ // We need to do some analysis of the holes and the genus to:
+ // - Find cuts that reduce genus.
+ // - Find cuts to connect holes.
+ // - Use minimal spanning trees or seamster.
+ if (!closeHoles()) {
+ /*static int pieceCount = 0;
+ StringBuilder fileName;
+ fileName.format("debug_hole_%d.obj", pieceCount++);
+ exportMesh(m_unifiedMesh.ptr(), fileName.str());*/
+ }
+ m_unifiedMesh.reset(halfedge::triangulate(m_unifiedMesh.get()));
+ //exportMesh(m_unifiedMesh.ptr(), "debug_triangulated.obj");
+ // Analyze chart topology.
+ halfedge::MeshTopology topology(m_unifiedMesh.get());
+ m_isDisk = topology.isDisk();
+ }
+
+ void buildVertexMap(const halfedge::Mesh *originalMesh, const std::vector<uint32_t> &unchartedMaterialArray) {
+ xaAssert(m_chartMesh.get() == NULL && m_unifiedMesh.get() == NULL);
+ m_isVertexMapped = true;
+ // Build face indices.
+ m_faceArray.clear();
+ const uint32_t meshFaceCount = originalMesh->faceCount();
+ for (uint32_t f = 0; f < meshFaceCount; f++) {
+ const halfedge::Face *face = originalMesh->faceAt(f);
+ if (std::find(unchartedMaterialArray.begin(), unchartedMaterialArray.end(), face->material) != unchartedMaterialArray.end()) {
+ m_faceArray.push_back(f);
+ }
+ }
+ const uint32_t faceCount = m_faceArray.size();
+ if (faceCount == 0) {
+ return;
+ }
+ // @@ The chartMesh construction is basically the same as with regular charts, don't duplicate!
+ const uint32_t meshVertexCount = originalMesh->vertexCount();
+ m_chartMesh.reset(new halfedge::Mesh());
+ std::vector<uint32_t> chartMeshIndices(meshVertexCount, (uint32_t)~0);
+ // Vertex map mesh only has disconnected vertices.
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = originalMesh->faceAt(m_faceArray[f]);
+ xaDebugAssert(face != NULL);
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Vertex *vertex = it.current()->vertex;
+ if (chartMeshIndices[vertex->id] == ~0) {
+ chartMeshIndices[vertex->id] = m_chartMesh->vertexCount();
+ m_chartToOriginalMap.push_back(vertex->original_id);
+ halfedge::Vertex *v = m_chartMesh->addVertex(vertex->pos);
+ v->nor = vertex->nor;
+ v->tex = vertex->tex; // @@ Not necessary.
+ }
+ }
+ }
+ // @@ Link colocals using the original mesh canonical map? Build canonical map on the fly? Do we need to link colocals at all for this?
+ //m_chartMesh->linkColocals();
+ std::vector<uint32_t> faceIndices;
+ faceIndices.reserve(7);
+ // Add faces.
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = originalMesh->faceAt(m_faceArray[f]);
+ xaDebugAssert(face != NULL);
+ faceIndices.clear();
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Vertex *vertex = it.current()->vertex;
+ xaDebugAssert(vertex != NULL);
+ xaDebugAssert(chartMeshIndices[vertex->id] != ~0);
+ faceIndices.push_back(chartMeshIndices[vertex->id]);
+ }
+ halfedge::Face *new_face = m_chartMesh->addFace(faceIndices);
+ xaDebugAssert(new_face != NULL);
+#ifdef NDEBUG
+ new_face = NULL; // silence unused parameter warning
+#endif
+ }
+ m_chartMesh->linkBoundary();
+ const uint32_t chartVertexCount = m_chartMesh->vertexCount();
+ Box bounds;
+ bounds.clearBounds();
+ for (uint32_t i = 0; i < chartVertexCount; i++) {
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(i);
+ bounds.addPointToBounds(vertex->pos);
+ }
+ ProximityGrid grid;
+ grid.init(bounds, chartVertexCount);
+ for (uint32_t i = 0; i < chartVertexCount; i++) {
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(i);
+ grid.add(vertex->pos, i);
+ }
+ uint32_t texelCount = 0;
+ const float positionThreshold = 0.01f;
+ const float normalThreshold = 0.01f;
+ uint32_t verticesVisited = 0;
+ uint32_t cellsVisited = 0;
+ std::vector<int> vertexIndexArray(chartVertexCount, -1); // Init all indices to -1.
+ // Traverse vertices in morton order. @@ It may be more interesting to sort them based on orientation.
+ const uint32_t cellCodeCount = grid.mortonCount();
+ for (uint32_t cellCode = 0; cellCode < cellCodeCount; cellCode++) {
+ int cell = grid.mortonIndex(cellCode);
+ if (cell < 0) continue;
+ cellsVisited++;
+ const std::vector<uint32_t> &indexArray = grid.cellArray[cell].indexArray;
+ for (uint32_t i = 0; i < indexArray.size(); i++) {
+ uint32_t idx = indexArray[i];
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(idx);
+ xaDebugAssert(vertexIndexArray[idx] == -1);
+ std::vector<uint32_t> neighbors;
+ grid.gather(vertex->pos, positionThreshold, /*ref*/ neighbors);
+ // Compare against all nearby vertices, cluster greedily.
+ for (uint32_t j = 0; j < neighbors.size(); j++) {
+ uint32_t otherIdx = neighbors[j];
+ if (vertexIndexArray[otherIdx] != -1) {
+ halfedge::Vertex *otherVertex = m_chartMesh->vertexAt(otherIdx);
+ if (distance(vertex->pos, otherVertex->pos) < positionThreshold &&
+ distance(vertex->nor, otherVertex->nor) < normalThreshold) {
+ vertexIndexArray[idx] = vertexIndexArray[otherIdx];
+ break;
+ }
+ }
+ }
+ // If index not assigned, assign new one.
+ if (vertexIndexArray[idx] == -1) {
+ vertexIndexArray[idx] = texelCount++;
+ }
+ verticesVisited++;
+ }
+ }
+ xaDebugAssert(cellsVisited == grid.cellArray.size());
+ xaDebugAssert(verticesVisited == chartVertexCount);
+ vertexMapWidth = ftoi_ceil(sqrtf(float(texelCount)));
+ vertexMapWidth = (vertexMapWidth + 3) & ~3; // Width aligned to 4.
+ vertexMapHeight = vertexMapWidth == 0 ? 0 : (texelCount + vertexMapWidth - 1) / vertexMapWidth;
+ //vertexMapHeight = (vertexMapHeight + 3) & ~3; // Height aligned to 4.
+ xaDebugAssert(vertexMapWidth >= vertexMapHeight);
+ xaPrint("Reduced vertex count from %d to %d.\n", chartVertexCount, texelCount);
+ // Lay down the clustered vertices in morton order.
+ std::vector<uint32_t> texelCodes(texelCount);
+ // For each texel, assign one morton code.
+ uint32_t texelCode = 0;
+ for (uint32_t i = 0; i < texelCount; i++) {
+ uint32_t x, y;
+ do {
+ x = morton::decodeMorton2X(texelCode);
+ y = morton::decodeMorton2Y(texelCode);
+ texelCode++;
+ } while (x >= uint32_t(vertexMapWidth) || y >= uint32_t(vertexMapHeight));
+ texelCodes[i] = texelCode - 1;
+ }
+ for (uint32_t i = 0; i < chartVertexCount; i++) {
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(i);
+ int idx = vertexIndexArray[i];
+ if (idx != -1) {
+ uint32_t tc = texelCodes[idx];
+ uint32_t x = morton::decodeMorton2X(tc);
+ uint32_t y = morton::decodeMorton2Y(tc);
+ vertex->tex.x = float(x);
+ vertex->tex.y = float(y);
+ }
+ }
+ }
+
+ bool closeHoles() {
+ xaDebugAssert(!m_isVertexMapped);
+ std::vector<halfedge::Edge *> boundaryEdges;
+ getBoundaryEdges(m_unifiedMesh.get(), boundaryEdges);
+ uint32_t boundaryCount = boundaryEdges.size();
+ if (boundaryCount <= 1) {
+ // Nothing to close.
+ return true;
+ }
+ // Compute lengths and areas.
+ std::vector<float> boundaryLengths;
+ for (uint32_t i = 0; i < boundaryCount; i++) {
+ const halfedge::Edge *startEdge = boundaryEdges[i];
+ xaAssert(startEdge->face == NULL);
+ //float boundaryEdgeCount = 0;
+ float boundaryLength = 0.0f;
+ //Vector3 boundaryCentroid(zero);
+ const halfedge::Edge *edge = startEdge;
+ do {
+ Vector3 t0 = edge->from()->pos;
+ Vector3 t1 = edge->to()->pos;
+ //boundaryEdgeCount++;
+ boundaryLength += length(t1 - t0);
+ //boundaryCentroid += edge->vertex()->pos;
+ edge = edge->next;
+ } while (edge != startEdge);
+ boundaryLengths.push_back(boundaryLength);
+ //boundaryCentroids.append(boundaryCentroid / boundaryEdgeCount);
+ }
+ // Find disk boundary.
+ uint32_t diskBoundary = 0;
+ float maxLength = boundaryLengths[0];
+ for (uint32_t i = 1; i < boundaryCount; i++) {
+ if (boundaryLengths[i] > maxLength) {
+ maxLength = boundaryLengths[i];
+ diskBoundary = i;
+ }
+ }
+ // Close holes.
+ for (uint32_t i = 0; i < boundaryCount; i++) {
+ if (diskBoundary == i) {
+ // Skip disk boundary.
+ continue;
+ }
+ halfedge::Edge *startEdge = boundaryEdges[i];
+ xaDebugAssert(startEdge != NULL);
+ xaDebugAssert(startEdge->face == NULL);
+ std::vector<halfedge::Vertex *> vertexLoop;
+ std::vector<halfedge::Edge *> edgeLoop;
+ halfedge::Edge *edge = startEdge;
+ do {
+ halfedge::Vertex *vertex = edge->next->vertex; // edge->to()
+ uint32_t j;
+ for (j = 0; j < vertexLoop.size(); j++) {
+ if (vertex->isColocal(vertexLoop[j])) {
+ break;
+ }
+ }
+ bool isCrossing = (j != vertexLoop.size());
+ if (isCrossing) {
+ halfedge::Edge *prev = edgeLoop[j]; // Previous edge before the loop.
+ halfedge::Edge *next = edge->next; // Next edge after the loop.
+ xaDebugAssert(prev->to()->isColocal(next->from()));
+ // Close loop.
+ edgeLoop.push_back(edge);
+ closeLoop(j + 1, edgeLoop);
+ // Link boundary loop.
+ prev->setNext(next);
+ vertex->setEdge(next);
+ // Start over again.
+ vertexLoop.clear();
+ edgeLoop.clear();
+ edge = startEdge;
+ vertex = edge->to();
+ }
+ vertexLoop.push_back(vertex);
+ edgeLoop.push_back(edge);
+ edge = edge->next;
+ } while (edge != startEdge);
+ closeLoop(0, edgeLoop);
+ }
+ getBoundaryEdges(m_unifiedMesh.get(), boundaryEdges);
+ boundaryCount = boundaryEdges.size();
+ xaDebugAssert(boundaryCount == 1);
+ return boundaryCount == 1;
+ }
+
+ bool isDisk() const {
+ return m_isDisk;
+ }
+ bool isVertexMapped() const {
+ return m_isVertexMapped;
+ }
+
+ uint32_t vertexCount() const {
+ return m_chartMesh->vertexCount();
+ }
+ uint32_t colocalVertexCount() const {
+ return m_unifiedMesh->vertexCount();
+ }
+
+ uint32_t faceCount() const {
+ return m_faceArray.size();
+ }
+ uint32_t faceAt(uint32_t i) const {
+ return m_faceArray[i];
+ }
+
+ const halfedge::Mesh *chartMesh() const {
+ return m_chartMesh.get();
+ }
+ halfedge::Mesh *chartMesh() {
+ return m_chartMesh.get();
+ }
+ const halfedge::Mesh *unifiedMesh() const {
+ return m_unifiedMesh.get();
+ }
+ halfedge::Mesh *unifiedMesh() {
+ return m_unifiedMesh.get();
+ }
+
+ //uint32_t vertexIndex(uint32_t i) const { return m_vertexIndexArray[i]; }
+
+ uint32_t mapChartVertexToOriginalVertex(uint32_t i) const {
+ return m_chartToOriginalMap[i];
+ }
+ uint32_t mapChartVertexToUnifiedVertex(uint32_t i) const {
+ return m_chartToUnifiedMap[i];
+ }
+
+ const std::vector<uint32_t> &faceArray() const {
+ return m_faceArray;
+ }
+
+ // Transfer parameterization from unified mesh to chart mesh.
+ void transferParameterization() {
+ xaDebugAssert(!m_isVertexMapped);
+ uint32_t vertexCount = m_chartMesh->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(v);
+ halfedge::Vertex *unifiedVertex = m_unifiedMesh->vertexAt(mapChartVertexToUnifiedVertex(v));
+ vertex->tex = unifiedVertex->tex;
+ }
+ }
+
+ float computeSurfaceArea() const {
+ return halfedge::computeSurfaceArea(m_chartMesh.get()) * scale;
+ }
+
+ float computeParametricArea() const {
+ // This only makes sense in parameterized meshes.
+ xaDebugAssert(m_isDisk);
+ xaDebugAssert(!m_isVertexMapped);
+ return halfedge::computeParametricArea(m_chartMesh.get());
+ }
+
+ Vector2 computeParametricBounds() const {
+ // This only makes sense in parameterized meshes.
+ xaDebugAssert(m_isDisk);
+ xaDebugAssert(!m_isVertexMapped);
+ Box bounds;
+ bounds.clearBounds();
+ uint32_t vertexCount = m_chartMesh->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = m_chartMesh->vertexAt(v);
+ bounds.addPointToBounds(Vector3(vertex->tex, 0));
+ }
+ return bounds.extents().xy();
+ }
+
+ float scale = 1.0f;
+ uint32_t vertexMapWidth;
+ uint32_t vertexMapHeight;
+ bool blockAligned = true;
+
+private:
+ bool closeLoop(uint32_t start, const std::vector<halfedge::Edge *> &loop) {
+ const uint32_t vertexCount = loop.size() - start;
+ xaDebugAssert(vertexCount >= 3);
+ if (vertexCount < 3) return false;
+ xaDebugAssert(loop[start]->vertex->isColocal(loop[start + vertexCount - 1]->to()));
+ // If the hole is planar, then we add a single face that will be properly triangulated later.
+ // If the hole is not planar, we add a triangle fan with a vertex at the hole centroid.
+ // This is still a bit of a hack. There surely are better hole filling algorithms out there.
+ std::vector<Vector3> points(vertexCount);
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ points[i] = loop[start + i]->vertex->pos;
+ }
+ bool isPlanar = Fit::isPlanar(vertexCount, points.data());
+ if (isPlanar) {
+ // Add face and connect edges.
+ halfedge::Face *face = m_unifiedMesh->addFace();
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ halfedge::Edge *edge = loop[start + i];
+ edge->face = face;
+ edge->setNext(loop[start + (i + 1) % vertexCount]);
+ }
+ face->edge = loop[start];
+ xaDebugAssert(face->isValid());
+ } else {
+ // If the polygon is not planar, we just cross our fingers, and hope this will work:
+ // Compute boundary centroid:
+ Vector3 centroidPos(0);
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ centroidPos += points[i];
+ }
+ centroidPos *= (1.0f / vertexCount);
+ halfedge::Vertex *centroid = m_unifiedMesh->addVertex(centroidPos);
+ // Add one pair of edges for each boundary vertex.
+ for (uint32_t j = vertexCount - 1, i = 0; i < vertexCount; j = i++) {
+ halfedge::Face *face = m_unifiedMesh->addFace(centroid->id, loop[start + j]->vertex->id, loop[start + i]->vertex->id);
+ xaDebugAssert(face != NULL);
+#ifdef NDEBUG
+ face = NULL; // silence unused parameter warning
+#endif
+ }
+ }
+ return true;
+ }
+
+ static void getBoundaryEdges(halfedge::Mesh *mesh, std::vector<halfedge::Edge *> &boundaryEdges) {
+ xaDebugAssert(mesh != NULL);
+ const uint32_t edgeCount = mesh->edgeCount();
+ BitArray bitFlags(edgeCount);
+ bitFlags.clearAll();
+ boundaryEdges.clear();
+ // Search for boundary edges. Mark all the edges that belong to the same boundary.
+ for (uint32_t e = 0; e < edgeCount; e++) {
+ halfedge::Edge *startEdge = mesh->edgeAt(e);
+ if (startEdge != NULL && startEdge->isBoundary() && bitFlags.bitAt(e) == false) {
+ xaDebugAssert(startEdge->face != NULL);
+ xaDebugAssert(startEdge->pair->face == NULL);
+ startEdge = startEdge->pair;
+ const halfedge::Edge *edge = startEdge;
+ do {
+ xaDebugAssert(edge->face == NULL);
+ xaDebugAssert(bitFlags.bitAt(edge->id / 2) == false);
+ bitFlags.setBitAt(edge->id / 2);
+ edge = edge->next;
+ } while (startEdge != edge);
+ boundaryEdges.push_back(startEdge);
+ }
+ }
+ }
+
+ // Chart mesh.
+ std::auto_ptr<halfedge::Mesh> m_chartMesh;
+
+ std::auto_ptr<halfedge::Mesh> m_unifiedMesh;
+ bool m_isDisk;
+ bool m_isVertexMapped;
+
+ // List of faces of the original mesh that belong to this chart.
+ std::vector<uint32_t> m_faceArray;
+
+ // Map vertices of the chart mesh to vertices of the original mesh.
+ std::vector<uint32_t> m_chartToOriginalMap;
+
+ std::vector<uint32_t> m_chartToUnifiedMap;
+};
+
+// Estimate quality of existing parameterization.
+class ParameterizationQuality {
+public:
+ ParameterizationQuality() {
+ m_totalTriangleCount = 0;
+ m_flippedTriangleCount = 0;
+ m_zeroAreaTriangleCount = 0;
+ m_parametricArea = 0.0f;
+ m_geometricArea = 0.0f;
+ m_stretchMetric = 0.0f;
+ m_maxStretchMetric = 0.0f;
+ m_conformalMetric = 0.0f;
+ m_authalicMetric = 0.0f;
+ }
+
+ ParameterizationQuality(const halfedge::Mesh *mesh) {
+ xaDebugAssert(mesh != NULL);
+ m_totalTriangleCount = 0;
+ m_flippedTriangleCount = 0;
+ m_zeroAreaTriangleCount = 0;
+ m_parametricArea = 0.0f;
+ m_geometricArea = 0.0f;
+ m_stretchMetric = 0.0f;
+ m_maxStretchMetric = 0.0f;
+ m_conformalMetric = 0.0f;
+ m_authalicMetric = 0.0f;
+ const uint32_t faceCount = mesh->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = mesh->faceAt(f);
+ const halfedge::Vertex *vertex0 = NULL;
+ Vector3 p[3];
+ Vector2 t[3];
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ if (vertex0 == NULL) {
+ vertex0 = edge->vertex;
+ p[0] = vertex0->pos;
+ t[0] = vertex0->tex;
+ } else if (edge->to() != vertex0) {
+ p[1] = edge->from()->pos;
+ p[2] = edge->to()->pos;
+ t[1] = edge->from()->tex;
+ t[2] = edge->to()->tex;
+ processTriangle(p, t);
+ }
+ }
+ }
+ if (m_flippedTriangleCount + m_zeroAreaTriangleCount == faceCount) {
+ // If all triangles are flipped, then none is.
+ m_flippedTriangleCount = 0;
+ }
+ xaDebugAssert(std::isfinite(m_parametricArea) && m_parametricArea >= 0);
+ xaDebugAssert(std::isfinite(m_geometricArea) && m_geometricArea >= 0);
+ xaDebugAssert(std::isfinite(m_stretchMetric));
+ xaDebugAssert(std::isfinite(m_maxStretchMetric));
+ xaDebugAssert(std::isfinite(m_conformalMetric));
+ xaDebugAssert(std::isfinite(m_authalicMetric));
+ }
+
+ bool isValid() const {
+ return m_flippedTriangleCount == 0; // @@ Does not test for self-overlaps.
+ }
+
+ float rmsStretchMetric() const {
+ if (m_geometricArea == 0) return 0.0f;
+ float normFactor = sqrtf(m_parametricArea / m_geometricArea);
+ return sqrtf(m_stretchMetric / m_geometricArea) * normFactor;
+ }
+
+ float maxStretchMetric() const {
+ if (m_geometricArea == 0) return 0.0f;
+ float normFactor = sqrtf(m_parametricArea / m_geometricArea);
+ return m_maxStretchMetric * normFactor;
+ }
+
+ float rmsConformalMetric() const {
+ if (m_geometricArea == 0) return 0.0f;
+ return sqrtf(m_conformalMetric / m_geometricArea);
+ }
+
+ float maxAuthalicMetric() const {
+ if (m_geometricArea == 0) return 0.0f;
+ return sqrtf(m_authalicMetric / m_geometricArea);
+ }
+
+ void operator+=(const ParameterizationQuality &pq) {
+ m_totalTriangleCount += pq.m_totalTriangleCount;
+ m_flippedTriangleCount += pq.m_flippedTriangleCount;
+ m_zeroAreaTriangleCount += pq.m_zeroAreaTriangleCount;
+ m_parametricArea += pq.m_parametricArea;
+ m_geometricArea += pq.m_geometricArea;
+ m_stretchMetric += pq.m_stretchMetric;
+ m_maxStretchMetric = std::max(m_maxStretchMetric, pq.m_maxStretchMetric);
+ m_conformalMetric += pq.m_conformalMetric;
+ m_authalicMetric += pq.m_authalicMetric;
+ }
+
+private:
+ void processTriangle(Vector3 q[3], Vector2 p[3]) {
+ m_totalTriangleCount++;
+ // Evaluate texture stretch metric. See:
+ // - "Texture Mapping Progressive Meshes", Sander, Snyder, Gortler & Hoppe
+ // - "Mesh Parameterization: Theory and Practice", Siggraph'07 Course Notes, Hormann, Levy & Sheffer.
+ float t1 = p[0].x;
+ float s1 = p[0].y;
+ float t2 = p[1].x;
+ float s2 = p[1].y;
+ float t3 = p[2].x;
+ float s3 = p[2].y;
+ float geometricArea = length(cross(q[1] - q[0], q[2] - q[0])) / 2;
+ float parametricArea = ((s2 - s1) * (t3 - t1) - (s3 - s1) * (t2 - t1)) / 2;
+ if (isZero(parametricArea)) {
+ m_zeroAreaTriangleCount++;
+ return;
+ }
+ Vector3 Ss = (q[0] * (t2 - t3) + q[1] * (t3 - t1) + q[2] * (t1 - t2)) / (2 * parametricArea);
+ Vector3 St = (q[0] * (s3 - s2) + q[1] * (s1 - s3) + q[2] * (s2 - s1)) / (2 * parametricArea);
+ float a = dot(Ss, Ss); // E
+ float b = dot(Ss, St); // F
+ float c = dot(St, St); // G
+ // Compute eigen-values of the first fundamental form:
+ float sigma1 = sqrtf(0.5f * std::max(0.0f, a + c - sqrtf(square(a - c) + 4 * square(b)))); // gamma uppercase, min eigenvalue.
+ float sigma2 = sqrtf(0.5f * std::max(0.0f, a + c + sqrtf(square(a - c) + 4 * square(b)))); // gamma lowercase, max eigenvalue.
+ xaAssert(sigma2 >= sigma1);
+ // isometric: sigma1 = sigma2 = 1
+ // conformal: sigma1 / sigma2 = 1
+ // authalic: sigma1 * sigma2 = 1
+ float rmsStretch = sqrtf((a + c) * 0.5f);
+ float rmsStretch2 = sqrtf((square(sigma1) + square(sigma2)) * 0.5f);
+ xaDebugAssert(equal(rmsStretch, rmsStretch2, 0.01f));
+#ifdef NDEBUG
+ rmsStretch2 = 0; // silence unused parameter warning
+#endif
+ if (parametricArea < 0.0f) {
+ // Count flipped triangles.
+ m_flippedTriangleCount++;
+ parametricArea = fabsf(parametricArea);
+ }
+ m_stretchMetric += square(rmsStretch) * geometricArea;
+ m_maxStretchMetric = std::max(m_maxStretchMetric, sigma2);
+ if (!isZero(sigma1, 0.000001f)) {
+ // sigma1 is zero when geometricArea is zero.
+ m_conformalMetric += (sigma2 / sigma1) * geometricArea;
+ }
+ m_authalicMetric += (sigma1 * sigma2) * geometricArea;
+ // Accumulate total areas.
+ m_geometricArea += geometricArea;
+ m_parametricArea += parametricArea;
+ //triangleConformalEnergy(q, p);
+ }
+
+ uint32_t m_totalTriangleCount;
+ uint32_t m_flippedTriangleCount;
+ uint32_t m_zeroAreaTriangleCount;
+ float m_parametricArea;
+ float m_geometricArea;
+ float m_stretchMetric;
+ float m_maxStretchMetric;
+ float m_conformalMetric;
+ float m_authalicMetric;
+};
+
+// Set of charts corresponding to a single mesh.
+class MeshCharts {
+public:
+ MeshCharts(const halfedge::Mesh *mesh) :
+ m_mesh(mesh) {}
+
+ ~MeshCharts() {
+ for (size_t i = 0; i < m_chartArray.size(); i++)
+ delete m_chartArray[i];
+ }
+
+ uint32_t chartCount() const {
+ return m_chartArray.size();
+ }
+ uint32_t vertexCount() const {
+ return m_totalVertexCount;
+ }
+
+ const Chart *chartAt(uint32_t i) const {
+ return m_chartArray[i];
+ }
+ Chart *chartAt(uint32_t i) {
+ return m_chartArray[i];
+ }
+
+ // Extract the charts of the input mesh.
+ void extractCharts() {
+ const uint32_t faceCount = m_mesh->faceCount();
+ int first = 0;
+ std::vector<uint32_t> queue;
+ queue.reserve(faceCount);
+ BitArray bitFlags(faceCount);
+ bitFlags.clearAll();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ if (bitFlags.bitAt(f) == false) {
+ // Start new patch. Reset queue.
+ first = 0;
+ queue.clear();
+ queue.push_back(f);
+ bitFlags.setBitAt(f);
+ while (first != (int)queue.size()) {
+ const halfedge::Face *face = m_mesh->faceAt(queue[first]);
+ // Visit face neighbors of queue[first]
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ const halfedge::Edge *edge = it.current();
+ xaDebugAssert(edge->pair != NULL);
+ if (!edge->isBoundary() && /*!edge->isSeam()*/
+ //!(edge->from()->tex() != edge->pair()->to()->tex() || edge->to()->tex() != edge->pair()->from()->tex()))
+ !(edge->from() != edge->pair->to() || edge->to() != edge->pair->from())) { // Preserve existing seams (not just texture seams).
+ const halfedge::Face *neighborFace = edge->pair->face;
+ xaDebugAssert(neighborFace != NULL);
+ if (bitFlags.bitAt(neighborFace->id) == false) {
+ queue.push_back(neighborFace->id);
+ bitFlags.setBitAt(neighborFace->id);
+ }
+ }
+ }
+ first++;
+ }
+ Chart *chart = new Chart();
+ chart->build(m_mesh, queue);
+ m_chartArray.push_back(chart);
+ }
+ }
+ }
+
+ /*
+ Compute charts using a simple segmentation algorithm.
+
+ LSCM:
+ - identify sharp features using local dihedral angles.
+ - identify seed faces farthest from sharp features.
+ - grow charts from these seeds.
+
+ MCGIM:
+ - phase 1: chart growth
+ - grow all charts simultaneously using dijkstra search on the dual graph of the mesh.
+ - graph edges are weighted based on planarity metric.
+ - metric uses distance to global chart normal.
+ - terminate when all faces have been assigned.
+ - phase 2: seed computation:
+ - place new seed of the chart at the most interior face.
+ - most interior is evaluated using distance metric only.
+
+ - method repeates the two phases, until the location of the seeds does not change.
+ - cycles are detected by recording all the previous seeds and chartification terminates.
+
+ D-Charts:
+
+ - Uniaxial conic metric:
+ - N_c = axis of the generalized cone that best fits the chart. (cone can a be cylinder or a plane).
+ - omega_c = angle between the face normals and the axis.
+ - Fitting error between chart C and tringle t: F(c,t) = (N_c*n_t - cos(omega_c))^2
+
+ - Compactness metrics:
+ - Roundness:
+ - C(c,t) = pi * D(S_c,t)^2 / A_c
+ - S_c = chart seed.
+ - D(S_c,t) = length of the shortest path inside the chart betwen S_c and t.
+ - A_c = chart area.
+ - Straightness:
+ - P(c,t) = l_out(c,t) / l_in(c,t)
+ - l_out(c,t) = lenght of the edges not shared between C and t.
+ - l_in(c,t) = lenght of the edges shared between C and t.
+
+ - Combined metric:
+ - Cost(c,t) = F(c,t)^alpha + C(c,t)^beta + P(c,t)^gamma
+ - alpha = 1, beta = 0.7, gamma = 0.5
+
+ Our basic approach:
+ - Just one iteration of k-means?
+ - Avoid dijkstra by greedily growing charts until a threshold is met. Increase threshold and repeat until no faces left.
+ - If distortion metric is too high, split chart, add two seeds.
+ - If chart size is low, try removing chart.
+
+ Postprocess:
+ - If topology is not disk:
+ - Fill holes, if new faces fit proxy.
+ - Find best cut, otherwise.
+ - After parameterization:
+ - If boundary self-intersects:
+ - cut chart along the closest two diametral boundary vertices, repeat parametrization.
+ - what if the overlap is on an appendix? How do we find that out and cut appropiately?
+ - emphasize roundness metrics to prevent those cases.
+ - If interior self-overlaps: preserve boundary parameterization and use mean-value map.
+ */
+ void computeCharts(const CharterOptions &options, const std::vector<uint32_t> &unchartedMaterialArray) {
+ Chart *vertexMap = NULL;
+ if (unchartedMaterialArray.size() != 0) {
+ vertexMap = new Chart();
+ vertexMap->buildVertexMap(m_mesh, unchartedMaterialArray);
+ if (vertexMap->faceCount() == 0) {
+ delete vertexMap;
+ vertexMap = NULL;
+ }
+ }
+ AtlasBuilder builder(m_mesh);
+ if (vertexMap != NULL) {
+ // Mark faces that do not need to be charted.
+ builder.markUnchartedFaces(vertexMap->faceArray());
+ m_chartArray.push_back(vertexMap);
+ }
+ if (builder.facesLeft != 0) {
+ // Tweak these values:
+ const float maxThreshold = 2;
+ const uint32_t growFaceCount = 32;
+ const uint32_t maxIterations = 4;
+ builder.options = options;
+ //builder.options.proxyFitMetricWeight *= 0.75; // relax proxy fit weight during initial seed placement.
+ //builder.options.roundnessMetricWeight = 0;
+ //builder.options.straightnessMetricWeight = 0;
+ // This seems a reasonable estimate.
+ uint32_t maxSeedCount = std::max(6U, builder.facesLeft);
+ // Create initial charts greedely.
+ xaPrint("### Placing seeds\n");
+ builder.placeSeeds(maxThreshold, maxSeedCount);
+ xaPrint("### Placed %d seeds (max = %d)\n", builder.chartCount(), maxSeedCount);
+ builder.updateProxies();
+ builder.mergeCharts();
+#if 1
+ xaPrint("### Relocating seeds\n");
+ builder.relocateSeeds();
+ xaPrint("### Reset charts\n");
+ builder.resetCharts();
+ if (vertexMap != NULL) {
+ builder.markUnchartedFaces(vertexMap->faceArray());
+ }
+ builder.options = options;
+ xaPrint("### Growing charts\n");
+ // Restart process growing charts in parallel.
+ uint32_t iteration = 0;
+ while (true) {
+ if (!builder.growCharts(maxThreshold, growFaceCount)) {
+ xaPrint("### Can't grow anymore\n");
+ // If charts cannot grow more: fill holes, merge charts, relocate seeds and start new iteration.
+ xaPrint("### Filling holes\n");
+ builder.fillHoles(maxThreshold);
+ xaPrint("### Using %d charts now\n", builder.chartCount());
+ builder.updateProxies();
+ xaPrint("### Merging charts\n");
+ builder.mergeCharts();
+ xaPrint("### Using %d charts now\n", builder.chartCount());
+ xaPrint("### Reseeding\n");
+ if (!builder.relocateSeeds()) {
+ xaPrint("### Cannot relocate seeds anymore\n");
+ // Done!
+ break;
+ }
+ if (iteration == maxIterations) {
+ xaPrint("### Reached iteration limit\n");
+ break;
+ }
+ iteration++;
+ xaPrint("### Reset charts\n");
+ builder.resetCharts();
+ if (vertexMap != NULL) {
+ builder.markUnchartedFaces(vertexMap->faceArray());
+ }
+ xaPrint("### Growing charts\n");
+ }
+ };
+#endif
+ // Make sure no holes are left!
+ xaDebugAssert(builder.facesLeft == 0);
+ const uint32_t chartCount = builder.chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ Chart *chart = new Chart();
+ m_chartArray.push_back(chart);
+ chart->build(m_mesh, builder.chartFaces(i));
+ }
+ }
+ const uint32_t chartCount = m_chartArray.size();
+ // Build face indices.
+ m_faceChart.resize(m_mesh->faceCount());
+ m_faceIndex.resize(m_mesh->faceCount());
+ for (uint32_t i = 0; i < chartCount; i++) {
+ const Chart *chart = m_chartArray[i];
+ const uint32_t faceCount = chart->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ uint32_t idx = chart->faceAt(f);
+ m_faceChart[idx] = i;
+ m_faceIndex[idx] = f;
+ }
+ }
+ // Build an exclusive prefix sum of the chart vertex counts.
+ m_chartVertexCountPrefixSum.resize(chartCount);
+ if (chartCount > 0) {
+ m_chartVertexCountPrefixSum[0] = 0;
+ for (uint32_t i = 1; i < chartCount; i++) {
+ const Chart *chart = m_chartArray[i - 1];
+ m_chartVertexCountPrefixSum[i] = m_chartVertexCountPrefixSum[i - 1] + chart->vertexCount();
+ }
+ m_totalVertexCount = m_chartVertexCountPrefixSum[chartCount - 1] + m_chartArray[chartCount - 1]->vertexCount();
+ } else {
+ m_totalVertexCount = 0;
+ }
+ }
+
+ void parameterizeCharts() {
+ ParameterizationQuality globalParameterizationQuality;
+ // Parameterize the charts.
+ uint32_t diskCount = 0;
+ const uint32_t chartCount = m_chartArray.size();
+ for (uint32_t i = 0; i < chartCount; i++) {
+ Chart *chart = m_chartArray[i];
+
+ bool isValid = false;
+
+ if (chart->isVertexMapped()) {
+ continue;
+ }
+
+ if (chart->isDisk()) {
+ diskCount++;
+ ParameterizationQuality chartParameterizationQuality;
+ if (chart->faceCount() == 1) {
+ computeSingleFaceMap(chart->unifiedMesh());
+ chartParameterizationQuality = ParameterizationQuality(chart->unifiedMesh());
+ } else {
+ computeOrthogonalProjectionMap(chart->unifiedMesh());
+ ParameterizationQuality orthogonalQuality(chart->unifiedMesh());
+ computeLeastSquaresConformalMap(chart->unifiedMesh());
+ ParameterizationQuality lscmQuality(chart->unifiedMesh());
+ chartParameterizationQuality = lscmQuality;
+ }
+ isValid = chartParameterizationQuality.isValid();
+ if (!isValid) {
+ xaPrint("*** Invalid parameterization.\n");
+ }
+ // @@ Check that parameterization quality is above a certain threshold.
+ // @@ Detect boundary self-intersections.
+ globalParameterizationQuality += chartParameterizationQuality;
+ }
+
+ // Transfer parameterization from unified mesh to chart mesh.
+ chart->transferParameterization();
+ }
+ xaPrint(" Parameterized %d/%d charts.\n", diskCount, chartCount);
+ xaPrint(" RMS stretch metric: %f\n", globalParameterizationQuality.rmsStretchMetric());
+ xaPrint(" MAX stretch metric: %f\n", globalParameterizationQuality.maxStretchMetric());
+ xaPrint(" RMS conformal metric: %f\n", globalParameterizationQuality.rmsConformalMetric());
+ xaPrint(" RMS authalic metric: %f\n", globalParameterizationQuality.maxAuthalicMetric());
+ }
+
+ uint32_t faceChartAt(uint32_t i) const {
+ return m_faceChart[i];
+ }
+ uint32_t faceIndexWithinChartAt(uint32_t i) const {
+ return m_faceIndex[i];
+ }
+
+ uint32_t vertexCountBeforeChartAt(uint32_t i) const {
+ return m_chartVertexCountPrefixSum[i];
+ }
+
+private:
+ const halfedge::Mesh *m_mesh;
+
+ std::vector<Chart *> m_chartArray;
+
+ std::vector<uint32_t> m_chartVertexCountPrefixSum;
+ uint32_t m_totalVertexCount;
+
+ std::vector<uint32_t> m_faceChart; // the chart of every face of the input mesh.
+ std::vector<uint32_t> m_faceIndex; // the index within the chart for every face of the input mesh.
+};
+
+/// An atlas is a set of charts.
+class Atlas {
+public:
+ ~Atlas() {
+ for (size_t i = 0; i < m_meshChartsArray.size(); i++)
+ delete m_meshChartsArray[i];
+ }
+
+ uint32_t meshCount() const {
+ return m_meshChartsArray.size();
+ }
+
+ const MeshCharts *meshAt(uint32_t i) const {
+ return m_meshChartsArray[i];
+ }
+
+ MeshCharts *meshAt(uint32_t i) {
+ return m_meshChartsArray[i];
+ }
+
+ uint32_t chartCount() const {
+ uint32_t count = 0;
+ for (uint32_t c = 0; c < m_meshChartsArray.size(); c++) {
+ count += m_meshChartsArray[c]->chartCount();
+ }
+ return count;
+ }
+
+ const Chart *chartAt(uint32_t i) const {
+ for (uint32_t c = 0; c < m_meshChartsArray.size(); c++) {
+ uint32_t count = m_meshChartsArray[c]->chartCount();
+ if (i < count) {
+ return m_meshChartsArray[c]->chartAt(i);
+ }
+ i -= count;
+ }
+ return NULL;
+ }
+
+ Chart *chartAt(uint32_t i) {
+ for (uint32_t c = 0; c < m_meshChartsArray.size(); c++) {
+ uint32_t count = m_meshChartsArray[c]->chartCount();
+ if (i < count) {
+ return m_meshChartsArray[c]->chartAt(i);
+ }
+ i -= count;
+ }
+ return NULL;
+ }
+
+ // Add mesh charts and takes ownership.
+ // Extract the charts and add to this atlas.
+ void addMeshCharts(MeshCharts *meshCharts) {
+ m_meshChartsArray.push_back(meshCharts);
+ }
+
+ void extractCharts(const halfedge::Mesh *mesh) {
+ MeshCharts *meshCharts = new MeshCharts(mesh);
+ meshCharts->extractCharts();
+ addMeshCharts(meshCharts);
+ }
+
+ void computeCharts(const halfedge::Mesh *mesh, const CharterOptions &options, const std::vector<uint32_t> &unchartedMaterialArray) {
+ MeshCharts *meshCharts = new MeshCharts(mesh);
+ meshCharts->computeCharts(options, unchartedMaterialArray);
+ addMeshCharts(meshCharts);
+ }
+
+ void parameterizeCharts() {
+ for (uint32_t i = 0; i < m_meshChartsArray.size(); i++) {
+ m_meshChartsArray[i]->parameterizeCharts();
+ }
+ }
+
+private:
+ std::vector<MeshCharts *> m_meshChartsArray;
+};
+
+struct AtlasPacker {
+ AtlasPacker(Atlas *atlas) :
+ m_atlas(atlas),
+ m_width(0),
+ m_height(0) {
+ // Save the original uvs.
+ m_originalChartUvs.resize(m_atlas->chartCount());
+ for (uint32_t i = 0; i < m_atlas->chartCount(); i++) {
+ const halfedge::Mesh *mesh = atlas->chartAt(i)->chartMesh();
+ m_originalChartUvs[i].resize(mesh->vertexCount());
+ for (uint32_t j = 0; j < mesh->vertexCount(); j++)
+ m_originalChartUvs[i][j] = mesh->vertexAt(j)->tex;
+ }
+ }
+
+ uint32_t getWidth() const { return m_width; }
+ uint32_t getHeight() const { return m_height; }
+
+ // Pack charts in the smallest possible rectangle.
+ void packCharts(const PackerOptions &options) {
+ const uint32_t chartCount = m_atlas->chartCount();
+ if (chartCount == 0) return;
+ float texelsPerUnit = 1;
+ if (options.method == PackMethod::TexelArea)
+ texelsPerUnit = options.texelArea;
+ for (int iteration = 0;; iteration++) {
+ m_rand = MTRand();
+ std::vector<float> chartOrderArray(chartCount);
+ std::vector<Vector2> chartExtents(chartCount);
+ float meshArea = 0;
+ for (uint32_t c = 0; c < chartCount; c++) {
+ Chart *chart = m_atlas->chartAt(c);
+ if (!chart->isVertexMapped() && !chart->isDisk()) {
+ chartOrderArray[c] = 0;
+ // Skip non-disks.
+ continue;
+ }
+ Vector2 extents(0.0f);
+ if (chart->isVertexMapped()) {
+ // Arrange vertices in a rectangle.
+ extents.x = float(chart->vertexMapWidth);
+ extents.y = float(chart->vertexMapHeight);
+ } else {
+ // Compute surface area to sort charts.
+ float chartArea = chart->computeSurfaceArea();
+ meshArea += chartArea;
+ //chartOrderArray[c] = chartArea;
+ // Compute chart scale
+ float parametricArea = fabsf(chart->computeParametricArea()); // @@ There doesn't seem to be anything preventing parametric area to be negative.
+ if (parametricArea < NV_EPSILON) {
+ // When the parametric area is too small we use a rough approximation to prevent divisions by very small numbers.
+ Vector2 bounds = chart->computeParametricBounds();
+ parametricArea = bounds.x * bounds.y;
+ }
+ float scale = (chartArea / parametricArea) * texelsPerUnit;
+ if (parametricArea == 0) { // < NV_EPSILON)
+ scale = 0;
+ }
+ xaAssert(std::isfinite(scale));
+ // Compute bounding box of chart.
+ Vector2 majorAxis, minorAxis, origin, end;
+ computeBoundingBox(chart, &majorAxis, &minorAxis, &origin, &end);
+ xaAssert(isFinite(majorAxis) && isFinite(minorAxis) && isFinite(origin));
+ // Sort charts by perimeter. @@ This is sometimes producing somewhat unexpected results. Is this right?
+ //chartOrderArray[c] = ((end.x - origin.x) + (end.y - origin.y)) * scale;
+ // Translate, rotate and scale vertices. Compute extents.
+ halfedge::Mesh *mesh = chart->chartMesh();
+ const uint32_t vertexCount = mesh->vertexCount();
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(i);
+ //Vector2 t = vertex->tex - origin;
+ Vector2 tmp;
+ tmp.x = dot(vertex->tex, majorAxis);
+ tmp.y = dot(vertex->tex, minorAxis);
+ tmp -= origin;
+ tmp *= scale;
+ if (tmp.x < 0 || tmp.y < 0) {
+ xaPrint("tmp: %f %f\n", tmp.x, tmp.y);
+ xaPrint("scale: %f\n", scale);
+ xaPrint("origin: %f %f\n", origin.x, origin.y);
+ xaPrint("majorAxis: %f %f\n", majorAxis.x, majorAxis.y);
+ xaPrint("minorAxis: %f %f\n", minorAxis.x, minorAxis.y);
+ xaDebugAssert(false);
+ }
+ //xaAssert(tmp.x >= 0 && tmp.y >= 0);
+ vertex->tex = tmp;
+ xaAssert(std::isfinite(vertex->tex.x) && std::isfinite(vertex->tex.y));
+ extents = max(extents, tmp);
+ }
+ xaDebugAssert(extents.x >= 0 && extents.y >= 0);
+ // Limit chart size.
+ if (extents.x > 1024 || extents.y > 1024) {
+ float limit = std::max(extents.x, extents.y);
+ scale = 1024 / (limit + 1);
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(i);
+ vertex->tex *= scale;
+ }
+ extents *= scale;
+ xaDebugAssert(extents.x <= 1024 && extents.y <= 1024);
+ }
+ // Scale the charts to use the entire texel area available. So, if the width is 0.1 we could scale it to 1 without increasing the lightmap usage and making a better
+ // use of it. In many cases this also improves the look of the seams, since vertices on the chart boundaries have more chances of being aligned with the texel centers.
+ float scale_x = 1.0f;
+ float scale_y = 1.0f;
+ float divide_x = 1.0f;
+ float divide_y = 1.0f;
+ if (extents.x > 0) {
+ int cw = ftoi_ceil(extents.x);
+ if (options.blockAlign && chart->blockAligned) {
+ // Align all chart extents to 4x4 blocks, but taking padding into account.
+ if (options.conservative) {
+ cw = align(cw + 2, 4) - 2;
+ } else {
+ cw = align(cw + 1, 4) - 1;
+ }
+ }
+ scale_x = (float(cw) - NV_EPSILON);
+ divide_x = extents.x;
+ extents.x = float(cw);
+ }
+ if (extents.y > 0) {
+ int ch = ftoi_ceil(extents.y);
+ if (options.blockAlign && chart->blockAligned) {
+ // Align all chart extents to 4x4 blocks, but taking padding into account.
+ if (options.conservative) {
+ ch = align(ch + 2, 4) - 2;
+ } else {
+ ch = align(ch + 1, 4) - 1;
+ }
+ }
+ scale_y = (float(ch) - NV_EPSILON);
+ divide_y = extents.y;
+ extents.y = float(ch);
+ }
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ vertex->tex.x /= divide_x;
+ vertex->tex.y /= divide_y;
+ vertex->tex.x *= scale_x;
+ vertex->tex.y *= scale_y;
+ xaAssert(std::isfinite(vertex->tex.x) && std::isfinite(vertex->tex.y));
+ }
+ }
+ chartExtents[c] = extents;
+ // Sort charts by perimeter.
+ chartOrderArray[c] = extents.x + extents.y;
+ }
+ // @@ We can try to improve compression of small charts by sorting them by proximity like we do with vertex samples.
+ // @@ How to do that? One idea: compute chart centroid, insert into grid, compute morton index of the cell, sort based on morton index.
+ // @@ We would sort by morton index, first, then quantize the chart sizes, so that all small charts have the same size, and sort by size preserving the morton order.
+ //xaPrint("Sorting charts.\n");
+ // Sort charts by area.
+ m_radix = RadixSort();
+ m_radix.sort(chartOrderArray);
+ const uint32_t *ranks = m_radix.ranks();
+ // First iteration - guess texelsPerUnit.
+ if (options.method != PackMethod::TexelArea && iteration == 0) {
+ // Estimate size of the map based on the mesh surface area and given texel scale.
+ const float texelCount = std::max(1.0f, meshArea * square(texelsPerUnit) / 0.75f); // Assume 75% utilization.
+ texelsPerUnit = sqrt((options.resolution * options.resolution) / texelCount);
+ resetUvs();
+ continue;
+ }
+ // Init bit map.
+ m_bitmap.clearAll();
+ m_bitmap.resize(options.resolution, options.resolution, false);
+ int w = 0;
+ int h = 0;
+ // Add sorted charts to bitmap.
+ for (uint32_t i = 0; i < chartCount; i++) {
+ uint32_t c = ranks[chartCount - i - 1]; // largest chart first
+ Chart *chart = m_atlas->chartAt(c);
+ if (!chart->isVertexMapped() && !chart->isDisk()) continue;
+ //float scale_x = 1;
+ //float scale_y = 1;
+ BitMap chart_bitmap;
+ if (chart->isVertexMapped()) {
+ chart->blockAligned = false;
+ // Init all bits to 1.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x), ftoi_ceil(chartExtents[c].y), /*initValue=*/true);
+ // @@ Another alternative would be to try to map each vertex to a different texel trying to fill all the available unused texels.
+ } else {
+ // @@ Add special cases for dot and line charts. @@ Lightmap rasterizer also needs to handle these special cases.
+ // @@ We could also have a special case for chart quads. If the quad surface <= 4 texels, align vertices with texel centers and do not add padding. May be very useful for foliage.
+ // @@ In general we could reduce the padding of all charts by one texel by using a rasterizer that takes into account the 2-texel footprint of the tent bilinear filter. For example,
+ // if we have a chart that is less than 1 texel wide currently we add one texel to the left and one texel to the right creating a 3-texel-wide bitmap. However, if we know that the
+ // chart is only 1 texel wide we could align it so that it only touches the footprint of two texels:
+ // | | <- Touches texels 0, 1 and 2.
+ // | | <- Only touches texels 0 and 1.
+ // \ \ / \ / /
+ // \ X X /
+ // \ / \ / \ /
+ // V V V
+ // 0 1 2
+ if (options.conservative) {
+ // Init all bits to 0.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x) + 1 + options.padding, ftoi_ceil(chartExtents[c].y) + 1 + options.padding, /*initValue=*/false); // + 2 to add padding on both sides.
+ // Rasterize chart and dilate.
+ drawChartBitmapDilate(chart, &chart_bitmap, options.padding);
+ } else {
+ // Init all bits to 0.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x) + 1, ftoi_ceil(chartExtents[c].y) + 1, /*initValue=*/false); // Add half a texels on each side.
+ // Rasterize chart and dilate.
+ drawChartBitmap(chart, &chart_bitmap, Vector2(1), Vector2(0.5));
+ }
+ }
+ int best_x, best_y;
+ int best_cw, best_ch; // Includes padding now.
+ int best_r;
+ findChartLocation(options.quality, &chart_bitmap, chartExtents[c], w, h, &best_x, &best_y, &best_cw, &best_ch, &best_r, chart->blockAligned);
+ /*if (w < best_x + best_cw || h < best_y + best_ch)
+ {
+ xaPrint("Resize extents to (%d, %d).\n", best_x + best_cw, best_y + best_ch);
+ }*/
+ // Update parametric extents.
+ w = std::max(w, best_x + best_cw);
+ h = std::max(h, best_y + best_ch);
+ w = align(w, 4);
+ h = align(h, 4);
+ // Resize bitmap if necessary.
+ if (uint32_t(w) > m_bitmap.width() || uint32_t(h) > m_bitmap.height()) {
+ //xaPrint("Resize bitmap (%d, %d).\n", nextPowerOfTwo(w), nextPowerOfTwo(h));
+ m_bitmap.resize(nextPowerOfTwo(uint32_t(w)), nextPowerOfTwo(uint32_t(h)), false);
+ }
+ //xaPrint("Add chart at (%d, %d).\n", best_x, best_y);
+ addChart(&chart_bitmap, w, h, best_x, best_y, best_r);
+ //float best_angle = 2 * PI * best_r;
+ // Translate and rotate chart texture coordinates.
+ halfedge::Mesh *mesh = chart->chartMesh();
+ const uint32_t vertexCount = mesh->vertexCount();
+ for (uint32_t v = 0; v < vertexCount; v++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(v);
+ Vector2 t = vertex->tex;
+ if (best_r) std::swap(t.x, t.y);
+ //vertex->tex.x = best_x + t.x * cosf(best_angle) - t.y * sinf(best_angle);
+ //vertex->tex.y = best_y + t.x * sinf(best_angle) + t.y * cosf(best_angle);
+ vertex->tex.x = best_x + t.x + 0.5f;
+ vertex->tex.y = best_y + t.y + 0.5f;
+ xaAssert(vertex->tex.x >= 0 && vertex->tex.y >= 0);
+ xaAssert(std::isfinite(vertex->tex.x) && std::isfinite(vertex->tex.y));
+ }
+ }
+ //w -= padding - 1; // Leave one pixel border!
+ //h -= padding - 1;
+ m_width = std::max(0, w);
+ m_height = std::max(0, h);
+ xaAssert(isAligned(m_width, 4));
+ xaAssert(isAligned(m_height, 4));
+ if (options.method == PackMethod::ExactResolution) {
+ texelsPerUnit *= sqrt((options.resolution * options.resolution) / (float)(m_width * m_height));
+ if (iteration > 1 && m_width <= options.resolution && m_height <= options.resolution) {
+ m_width = m_height = options.resolution;
+ return;
+ }
+ resetUvs();
+ } else {
+ return;
+ }
+ }
+ }
+
+ float computeAtlasUtilization() const {
+ const uint32_t w = m_width;
+ const uint32_t h = m_height;
+ xaDebugAssert(w <= m_bitmap.width());
+ xaDebugAssert(h <= m_bitmap.height());
+ uint32_t count = 0;
+ for (uint32_t y = 0; y < h; y++) {
+ for (uint32_t x = 0; x < w; x++) {
+ count += m_bitmap.bitAt(x, y);
+ }
+ }
+ return float(count) / (w * h);
+ }
+
+private:
+ void resetUvs() {
+ for (uint32_t i = 0; i < m_atlas->chartCount(); i++) {
+ halfedge::Mesh *mesh = m_atlas->chartAt(i)->chartMesh();
+ for (uint32_t j = 0; j < mesh->vertexCount(); j++)
+ mesh->vertexAt(j)->tex = m_originalChartUvs[i][j];
+ }
+ }
+
+ // IC: Brute force is slow, and random may take too much time to converge. We start inserting large charts in a small atlas. Using brute force is lame, because most of the space
+ // is occupied at this point. At the end we have many small charts and a large atlas with sparse holes. Finding those holes randomly is slow. A better approach would be to
+ // start stacking large charts as if they were tetris pieces. Once charts get small try to place them randomly. It may be interesting to try a intermediate strategy, first try
+ // along one axis and then try exhaustively along that axis.
+ void findChartLocation(int quality, const BitMap *bitmap, Vector2::Arg extents, int w, int h, int *best_x, int *best_y, int *best_w, int *best_h, int *best_r, bool blockAligned) {
+ int attempts = 256;
+ if (quality == 1) attempts = 4096;
+ if (quality == 2) attempts = 2048;
+ if (quality == 3) attempts = 1024;
+ if (quality == 4) attempts = 512;
+ if (quality == 0 || w * h < attempts) {
+ findChartLocation_bruteForce(bitmap, extents, w, h, best_x, best_y, best_w, best_h, best_r, blockAligned);
+ } else {
+ findChartLocation_random(bitmap, extents, w, h, best_x, best_y, best_w, best_h, best_r, attempts, blockAligned);
+ }
+ }
+
+ void findChartLocation_bruteForce(const BitMap *bitmap, Vector2::Arg /*extents*/, int w, int h, int *best_x, int *best_y, int *best_w, int *best_h, int *best_r, bool blockAligned) {
+ const int BLOCK_SIZE = 4;
+ int best_metric = INT_MAX;
+ int step_size = blockAligned ? BLOCK_SIZE : 1;
+ // Try two different orientations.
+ for (int r = 0; r < 2; r++) {
+ int cw = bitmap->width();
+ int ch = bitmap->height();
+ if (r & 1) std::swap(cw, ch);
+ for (int y = 0; y <= h + 1; y += step_size) { // + 1 to extend atlas in case atlas full.
+ for (int x = 0; x <= w + 1; x += step_size) { // + 1 not really necessary here.
+ // Early out.
+ int area = std::max(w, x + cw) * std::max(h, y + ch);
+ //int perimeter = max(w, x+cw) + max(h, y+ch);
+ int extents = std::max(std::max(w, x + cw), std::max(h, y + ch));
+ int metric = extents * extents + area;
+ if (metric > best_metric) {
+ continue;
+ }
+ if (metric == best_metric && std::max(x, y) >= std::max(*best_x, *best_y)) {
+ // If metric is the same, pick the one closest to the origin.
+ continue;
+ }
+ if (canAddChart(bitmap, w, h, x, y, r)) {
+ best_metric = metric;
+ *best_x = x;
+ *best_y = y;
+ *best_w = cw;
+ *best_h = ch;
+ *best_r = r;
+ if (area == w * h) {
+ // Chart is completely inside, do not look at any other location.
+ goto done;
+ }
+ }
+ }
+ }
+ }
+ done:
+ xaDebugAssert(best_metric != INT_MAX);
+ }
+
+ void findChartLocation_random(const BitMap *bitmap, Vector2::Arg /*extents*/, int w, int h, int *best_x, int *best_y, int *best_w, int *best_h, int *best_r, int minTrialCount, bool blockAligned) {
+ const int BLOCK_SIZE = 4;
+ int best_metric = INT_MAX;
+ for (int i = 0; i < minTrialCount || best_metric == INT_MAX; i++) {
+ int r = m_rand.getRange(1);
+ int x = m_rand.getRange(w + 1); // + 1 to extend atlas in case atlas full. We may want to use a higher number to increase probability of extending atlas.
+ int y = m_rand.getRange(h + 1); // + 1 to extend atlas in case atlas full.
+ if (blockAligned) {
+ x = align(x, BLOCK_SIZE);
+ y = align(y, BLOCK_SIZE);
+ }
+ int cw = bitmap->width();
+ int ch = bitmap->height();
+ if (r & 1) std::swap(cw, ch);
+ // Early out.
+ int area = std::max(w, x + cw) * std::max(h, y + ch);
+ //int perimeter = max(w, x+cw) + max(h, y+ch);
+ int extents = std::max(std::max(w, x + cw), std::max(h, y + ch));
+ int metric = extents * extents + area;
+ if (metric > best_metric) {
+ continue;
+ }
+ if (metric == best_metric && std::min(x, y) > std::min(*best_x, *best_y)) {
+ // If metric is the same, pick the one closest to the origin.
+ continue;
+ }
+ if (canAddChart(bitmap, w, h, x, y, r)) {
+ best_metric = metric;
+ *best_x = x;
+ *best_y = y;
+ *best_w = cw;
+ *best_h = ch;
+ *best_r = r;
+ if (area == w * h) {
+ // Chart is completely inside, do not look at any other location.
+ break;
+ }
+ }
+ }
+ }
+
+ void drawChartBitmapDilate(const Chart *chart, BitMap *bitmap, int padding) {
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ const Vector2 extents = Vector2(float(w), float(h));
+ // Rasterize chart faces, check that all bits are not set.
+ const uint32_t faceCount = chart->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = chart->chartMesh()->faceAt(f);
+ Vector2 vertices[4];
+ uint32_t edgeCount = 0;
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ if (edgeCount < 4) {
+ vertices[edgeCount] = it.vertex()->tex + Vector2(0.5) + Vector2(float(padding), float(padding));
+ }
+ edgeCount++;
+ }
+ if (edgeCount == 3) {
+ raster::drawTriangle(raster::Mode_Antialiased, extents, true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ } else {
+ raster::drawQuad(raster::Mode_Antialiased, extents, true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ }
+ // Expand chart by padding pixels. (dilation)
+ BitMap tmp(w, h);
+ for (int i = 0; i < padding; i++) {
+ tmp.clearAll();
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ bool b = bitmap->bitAt(x, y);
+ if (!b) {
+ if (x > 0) {
+ b |= bitmap->bitAt(x - 1, y);
+ if (y > 0) b |= bitmap->bitAt(x - 1, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x - 1, y + 1);
+ }
+ if (y > 0) b |= bitmap->bitAt(x, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x, y + 1);
+ if (x < w - 1) {
+ b |= bitmap->bitAt(x + 1, y);
+ if (y > 0) b |= bitmap->bitAt(x + 1, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x + 1, y + 1);
+ }
+ }
+ if (b) tmp.setBitAt(x, y);
+ }
+ }
+ std::swap(tmp, *bitmap);
+ }
+ }
+
+ void drawChartBitmap(const Chart *chart, BitMap *bitmap, const Vector2 &scale, const Vector2 &offset) {
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ const Vector2 extents = Vector2(float(w), float(h));
+ static const Vector2 pad[4] = {
+ Vector2(-0.5, -0.5),
+ Vector2(0.5, -0.5),
+ Vector2(-0.5, 0.5),
+ Vector2(0.5, 0.5)
+ };
+ // Rasterize 4 times to add proper padding.
+ for (int i = 0; i < 4; i++) {
+ // Rasterize chart faces, check that all bits are not set.
+ const uint32_t faceCount = chart->chartMesh()->faceCount();
+ for (uint32_t f = 0; f < faceCount; f++) {
+ const halfedge::Face *face = chart->chartMesh()->faceAt(f);
+ Vector2 vertices[4];
+ uint32_t edgeCount = 0;
+ for (halfedge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
+ if (edgeCount < 4) {
+ vertices[edgeCount] = it.vertex()->tex * scale + offset + pad[i];
+ xaAssert(ftoi_ceil(vertices[edgeCount].x) >= 0);
+ xaAssert(ftoi_ceil(vertices[edgeCount].y) >= 0);
+ xaAssert(ftoi_ceil(vertices[edgeCount].x) <= w);
+ xaAssert(ftoi_ceil(vertices[edgeCount].y) <= h);
+ }
+ edgeCount++;
+ }
+ if (edgeCount == 3) {
+ raster::drawTriangle(raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ } else {
+ raster::drawQuad(raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ }
+ }
+ // Expand chart by padding pixels. (dilation)
+ BitMap tmp(w, h);
+ tmp.clearAll();
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ bool b = bitmap->bitAt(x, y);
+ if (!b) {
+ if (x > 0) {
+ b |= bitmap->bitAt(x - 1, y);
+ if (y > 0) b |= bitmap->bitAt(x - 1, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x - 1, y + 1);
+ }
+ if (y > 0) b |= bitmap->bitAt(x, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x, y + 1);
+ if (x < w - 1) {
+ b |= bitmap->bitAt(x + 1, y);
+ if (y > 0) b |= bitmap->bitAt(x + 1, y - 1);
+ if (y < h - 1) b |= bitmap->bitAt(x + 1, y + 1);
+ }
+ }
+ if (b) tmp.setBitAt(x, y);
+ }
+ }
+ std::swap(tmp, *bitmap);
+ }
+
+ bool canAddChart(const BitMap *bitmap, int atlas_w, int atlas_h, int offset_x, int offset_y, int r) {
+ xaDebugAssert(r == 0 || r == 1);
+ // Check whether the two bitmaps overlap.
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ if (r == 0) {
+ for (int y = 0; y < h; y++) {
+ int yy = y + offset_y;
+ if (yy >= 0) {
+ for (int x = 0; x < w; x++) {
+ int xx = x + offset_x;
+ if (xx >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (m_bitmap.bitAt(xx, yy)) return false;
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (r == 1) {
+ for (int y = 0; y < h; y++) {
+ int xx = y + offset_x;
+ if (xx >= 0) {
+ for (int x = 0; x < w; x++) {
+ int yy = x + offset_y;
+ if (yy >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (m_bitmap.bitAt(xx, yy)) return false;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ void addChart(const BitMap *bitmap, int atlas_w, int atlas_h, int offset_x, int offset_y, int r) {
+ xaDebugAssert(r == 0 || r == 1);
+ // Check whether the two bitmaps overlap.
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ if (r == 0) {
+ for (int y = 0; y < h; y++) {
+ int yy = y + offset_y;
+ if (yy >= 0) {
+ for (int x = 0; x < w; x++) {
+ int xx = x + offset_x;
+ if (xx >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ xaDebugAssert(m_bitmap.bitAt(xx, yy) == false);
+ m_bitmap.setBitAt(xx, yy);
+ }
+ }
+ }
+ }
+ }
+ }
+ } else if (r == 1) {
+ for (int y = 0; y < h; y++) {
+ int xx = y + offset_x;
+ if (xx >= 0) {
+ for (int x = 0; x < w; x++) {
+ int yy = x + offset_y;
+ if (yy >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ xaDebugAssert(m_bitmap.bitAt(xx, yy) == false);
+ m_bitmap.setBitAt(xx, yy);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ static bool setBitsCallback(void *param, int x, int y, Vector3::Arg, Vector3::Arg, Vector3::Arg, float area) {
+ BitMap *bitmap = (BitMap *)param;
+ if (area > 0.0) {
+ bitmap->setBitAt(x, y);
+ }
+ return true;
+ }
+
+ // Compute the convex hull using Graham Scan.
+ static void convexHull(const std::vector<Vector2> &input, std::vector<Vector2> &output, float epsilon) {
+ const uint32_t inputCount = input.size();
+ std::vector<float> coords(inputCount);
+ for (uint32_t i = 0; i < inputCount; i++) {
+ coords[i] = input[i].x;
+ }
+ RadixSort radix;
+ radix.sort(coords);
+ const uint32_t *ranks = radix.ranks();
+ std::vector<Vector2> top;
+ top.reserve(inputCount);
+ std::vector<Vector2> bottom;
+ bottom.reserve(inputCount);
+ Vector2 P = input[ranks[0]];
+ Vector2 Q = input[ranks[inputCount - 1]];
+ float topy = std::max(P.y, Q.y);
+ float boty = std::min(P.y, Q.y);
+ for (uint32_t i = 0; i < inputCount; i++) {
+ Vector2 p = input[ranks[i]];
+ if (p.y >= boty) top.push_back(p);
+ }
+ for (uint32_t i = 0; i < inputCount; i++) {
+ Vector2 p = input[ranks[inputCount - 1 - i]];
+ if (p.y <= topy) bottom.push_back(p);
+ }
+ // Filter top list.
+ output.clear();
+ output.push_back(top[0]);
+ output.push_back(top[1]);
+ for (uint32_t i = 2; i < top.size();) {
+ Vector2 a = output[output.size() - 2];
+ Vector2 b = output[output.size() - 1];
+ Vector2 c = top[i];
+ float area = triangleArea(a, b, c);
+ if (area >= -epsilon) {
+ output.pop_back();
+ }
+ if (area < -epsilon || output.size() == 1) {
+ output.push_back(c);
+ i++;
+ }
+ }
+ uint32_t top_count = output.size();
+ output.push_back(bottom[1]);
+ // Filter bottom list.
+ for (uint32_t i = 2; i < bottom.size();) {
+ Vector2 a = output[output.size() - 2];
+ Vector2 b = output[output.size() - 1];
+ Vector2 c = bottom[i];
+ float area = triangleArea(a, b, c);
+ if (area >= -epsilon) {
+ output.pop_back();
+ }
+ if (area < -epsilon || output.size() == top_count) {
+ output.push_back(c);
+ i++;
+ }
+ }
+ // Remove duplicate element.
+ xaDebugAssert(output.front() == output.back());
+ output.pop_back();
+ }
+
+ // This should compute convex hull and use rotating calipers to find the best box. Currently it uses a brute force method.
+ static void computeBoundingBox(Chart *chart, Vector2 *majorAxis, Vector2 *minorAxis, Vector2 *minCorner, Vector2 *maxCorner) {
+ // Compute list of boundary points.
+ std::vector<Vector2> points;
+ points.reserve(16);
+ halfedge::Mesh *mesh = chart->chartMesh();
+ const uint32_t vertexCount = mesh->vertexCount();
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(i);
+ if (vertex->isBoundary()) {
+ points.push_back(vertex->tex);
+ }
+ }
+ xaDebugAssert(points.size() > 0);
+ std::vector<Vector2> hull;
+ convexHull(points, hull, 0.00001f);
+ // @@ Ideally I should use rotating calipers to find the best box. Using brute force for now.
+ float best_area = FLT_MAX;
+ Vector2 best_min;
+ Vector2 best_max;
+ Vector2 best_axis;
+ const uint32_t hullCount = hull.size();
+ for (uint32_t i = 0, j = hullCount - 1; i < hullCount; j = i, i++) {
+ if (equal(hull[i], hull[j])) {
+ continue;
+ }
+ Vector2 axis = normalize(hull[i] - hull[j], 0.0f);
+ xaDebugAssert(isFinite(axis));
+ // Compute bounding box.
+ Vector2 box_min(FLT_MAX, FLT_MAX);
+ Vector2 box_max(-FLT_MAX, -FLT_MAX);
+ for (uint32_t v = 0; v < hullCount; v++) {
+ Vector2 point = hull[v];
+ float x = dot(axis, point);
+ if (x < box_min.x) box_min.x = x;
+ if (x > box_max.x) box_max.x = x;
+ float y = dot(Vector2(-axis.y, axis.x), point);
+ if (y < box_min.y) box_min.y = y;
+ if (y > box_max.y) box_max.y = y;
+ }
+ // Compute box area.
+ float area = (box_max.x - box_min.x) * (box_max.y - box_min.y);
+ if (area < best_area) {
+ best_area = area;
+ best_min = box_min;
+ best_max = box_max;
+ best_axis = axis;
+ }
+ }
+ // Consider all points, not only boundary points, in case the input chart is malformed.
+ for (uint32_t i = 0; i < vertexCount; i++) {
+ halfedge::Vertex *vertex = mesh->vertexAt(i);
+ Vector2 point = vertex->tex;
+ float x = dot(best_axis, point);
+ if (x < best_min.x) best_min.x = x;
+ if (x > best_max.x) best_max.x = x;
+ float y = dot(Vector2(-best_axis.y, best_axis.x), point);
+ if (y < best_min.y) best_min.y = y;
+ if (y > best_max.y) best_max.y = y;
+ }
+ *majorAxis = best_axis;
+ *minorAxis = Vector2(-best_axis.y, best_axis.x);
+ *minCorner = best_min;
+ *maxCorner = best_max;
+ }
+
+ Atlas *m_atlas;
+ BitMap m_bitmap;
+ RadixSort m_radix;
+ uint32_t m_width;
+ uint32_t m_height;
+ MTRand m_rand;
+ std::vector<std::vector<Vector2> > m_originalChartUvs;
+};
+
+} // namespace param
+} // namespace internal
+
+struct Atlas {
+ internal::param::Atlas atlas;
+ std::vector<internal::halfedge::Mesh *> heMeshes;
+ uint32_t width = 0;
+ uint32_t height = 0;
+ OutputMesh **outputMeshes = NULL;
+};
+
+void SetPrint(PrintFunc print) {
+ internal::s_print = print;
+}
+
+Atlas *Create() {
+ Atlas *atlas = new Atlas();
+ return atlas;
+}
+
+void Destroy(Atlas *atlas) {
+ xaAssert(atlas);
+ for (int i = 0; i < (int)atlas->heMeshes.size(); i++) {
+ delete atlas->heMeshes[i];
+ if (atlas->outputMeshes) {
+ OutputMesh *outputMesh = atlas->outputMeshes[i];
+ for (uint32_t j = 0; j < outputMesh->chartCount; j++)
+ delete[] outputMesh->chartArray[j].indexArray;
+ delete[] outputMesh->chartArray;
+ delete[] outputMesh->vertexArray;
+ delete[] outputMesh->indexArray;
+ delete outputMesh;
+ }
+ }
+ delete[] atlas->outputMeshes;
+ delete atlas;
+}
+
+static internal::Vector3 DecodePosition(const InputMesh &mesh, uint32_t index) {
+ xaAssert(mesh.vertexPositionData);
+ return *((const internal::Vector3 *)&((const uint8_t *)mesh.vertexPositionData)[mesh.vertexPositionStride * index]);
+}
+
+static internal::Vector3 DecodeNormal(const InputMesh &mesh, uint32_t index) {
+ xaAssert(mesh.vertexNormalData);
+ return *((const internal::Vector3 *)&((const uint8_t *)mesh.vertexNormalData)[mesh.vertexNormalStride * index]);
+}
+
+static internal::Vector2 DecodeUv(const InputMesh &mesh, uint32_t index) {
+ xaAssert(mesh.vertexUvData);
+ return *((const internal::Vector2 *)&((const uint8_t *)mesh.vertexUvData)[mesh.vertexUvStride * index]);
+}
+
+static uint32_t DecodeIndex(IndexFormat::Enum format, const void *indexData, uint32_t i) {
+ if (format == IndexFormat::HalfFloat)
+ return (uint32_t)((const uint16_t *)indexData)[i];
+ return ((const uint32_t *)indexData)[i];
+}
+
+static float EdgeLength(internal::Vector3 pos1, internal::Vector3 pos2) {
+ return internal::length(pos2 - pos1);
+}
+
+AddMeshError AddMesh(Atlas *atlas, const InputMesh &mesh, bool useColocalVertices) {
+ xaAssert(atlas);
+ AddMeshError error;
+ error.code = AddMeshErrorCode::Success;
+ error.face = error.index0 = error.index1 = UINT32_MAX;
+ // Expecting triangle faces.
+ if ((mesh.indexCount % 3) != 0) {
+ error.code = AddMeshErrorCode::InvalidIndexCount;
+ return error;
+ }
+ // Check if any index is out of range.
+ for (uint32_t j = 0; j < mesh.indexCount; j++) {
+ const uint32_t index = DecodeIndex(mesh.indexFormat, mesh.indexData, j);
+ if (index < 0 || index >= mesh.vertexCount) {
+ error.code = AddMeshErrorCode::IndexOutOfRange;
+ error.index0 = index;
+ return error;
+ }
+ }
+ // Build half edge mesh.
+ internal::halfedge::Mesh *heMesh = new internal::halfedge::Mesh;
+ std::vector<uint32_t> canonicalMap;
+ canonicalMap.reserve(mesh.vertexCount);
+ for (uint32_t i = 0; i < mesh.vertexCount; i++) {
+ internal::halfedge::Vertex *vertex = heMesh->addVertex(DecodePosition(mesh, i));
+ if (mesh.vertexNormalData)
+ vertex->nor = DecodeNormal(mesh, i);
+ if (mesh.vertexUvData)
+ vertex->tex = DecodeUv(mesh, i);
+ // Link colocals. You probably want to do this more efficiently! Sort by one axis or use a hash or grid.
+ uint32_t firstColocal = i;
+ if (useColocalVertices) {
+ for (uint32_t j = 0; j < i; j++) {
+ if (vertex->pos != DecodePosition(mesh, j))
+ continue;
+#if 0
+ if (mesh.vertexNormalData && vertex->nor != DecodeNormal(mesh, j))
+ continue;
+#endif
+ if (mesh.vertexUvData && vertex->tex != DecodeUv(mesh, j))
+ continue;
+ firstColocal = j;
+ break;
+ }
+ }
+ canonicalMap.push_back(firstColocal);
+ }
+ heMesh->linkColocalsWithCanonicalMap(canonicalMap);
+ for (uint32_t i = 0; i < mesh.indexCount / 3; i++) {
+ uint32_t tri[3];
+ for (int j = 0; j < 3; j++)
+ tri[j] = DecodeIndex(mesh.indexFormat, mesh.indexData, i * 3 + j);
+ // Check for zero length edges.
+ for (int j = 0; j < 3; j++) {
+ const uint32_t edges[6] = { 0, 1, 1, 2, 2, 0 };
+ const uint32_t index1 = tri[edges[j * 2 + 0]];
+ const uint32_t index2 = tri[edges[j * 2 + 1]];
+ const internal::Vector3 pos1 = DecodePosition(mesh, index1);
+ const internal::Vector3 pos2 = DecodePosition(mesh, index2);
+ if (EdgeLength(pos1, pos2) <= 0.0f) {
+ delete heMesh;
+ error.code = AddMeshErrorCode::ZeroLengthEdge;
+ error.face = i;
+ error.index0 = index1;
+ error.index1 = index2;
+ return error;
+ }
+ }
+ // Check for zero area faces.
+ {
+ const internal::Vector3 a = DecodePosition(mesh, tri[0]);
+ const internal::Vector3 b = DecodePosition(mesh, tri[1]);
+ const internal::Vector3 c = DecodePosition(mesh, tri[2]);
+ const float area = internal::length(internal::cross(b - a, c - a)) * 0.5f;
+ if (area <= 0.0f) {
+ delete heMesh;
+ error.code = AddMeshErrorCode::ZeroAreaFace;
+ error.face = i;
+ return error;
+ }
+ }
+ internal::halfedge::Face *face = heMesh->addFace(tri[0], tri[1], tri[2]);
+
+ if (!face && heMesh->errorCode == internal::halfedge::Mesh::ErrorCode::AlreadyAddedEdge) {
+ //there is still hope for this, no reason to not add, at least add as separate
+ face = heMesh->addUniqueFace(tri[0], tri[1], tri[2]);
+ }
+
+ if (!face) {
+ //continue;
+
+ if (heMesh->errorCode == internal::halfedge::Mesh::ErrorCode::AlreadyAddedEdge) {
+ error.code = AddMeshErrorCode::AlreadyAddedEdge;
+ } else if (heMesh->errorCode == internal::halfedge::Mesh::ErrorCode::DegenerateColocalEdge) {
+ error.code = AddMeshErrorCode::DegenerateColocalEdge;
+ } else if (heMesh->errorCode == internal::halfedge::Mesh::ErrorCode::DegenerateEdge) {
+ error.code = AddMeshErrorCode::DegenerateEdge;
+ } else if (heMesh->errorCode == internal::halfedge::Mesh::ErrorCode::DuplicateEdge) {
+ error.code = AddMeshErrorCode::DuplicateEdge;
+ }
+ error.face = i;
+ error.index0 = heMesh->errorIndex0;
+ error.index1 = heMesh->errorIndex1;
+ delete heMesh;
+ return error;
+ }
+ if (mesh.faceMaterialData)
+ face->material = mesh.faceMaterialData[i];
+ }
+ heMesh->linkBoundary();
+ atlas->heMeshes.push_back(heMesh);
+ return error;
+}
+
+void Generate(Atlas *atlas, CharterOptions charterOptions, PackerOptions packerOptions) {
+ xaAssert(atlas);
+ xaAssert(packerOptions.texelArea > 0);
+ // Chart meshes.
+ for (int i = 0; i < (int)atlas->heMeshes.size(); i++) {
+ std::vector<uint32_t> uncharted_materials;
+ atlas->atlas.computeCharts(atlas->heMeshes[i], charterOptions, uncharted_materials);
+ }
+ atlas->atlas.parameterizeCharts();
+ internal::param::AtlasPacker packer(&atlas->atlas);
+ packer.packCharts(packerOptions);
+ //float utilization = return packer.computeAtlasUtilization();
+ atlas->width = packer.getWidth();
+ atlas->height = packer.getHeight();
+ // Build output meshes.
+ atlas->outputMeshes = new OutputMesh *[atlas->heMeshes.size()];
+ for (int i = 0; i < (int)atlas->heMeshes.size(); i++) {
+ const internal::halfedge::Mesh *heMesh = atlas->heMeshes[i];
+ OutputMesh *outputMesh = atlas->outputMeshes[i] = new OutputMesh;
+ const internal::param::MeshCharts *charts = atlas->atlas.meshAt(i);
+ // Vertices.
+ outputMesh->vertexCount = charts->vertexCount();
+ outputMesh->vertexArray = new OutputVertex[outputMesh->vertexCount];
+ for (uint32_t i = 0; i < charts->chartCount(); i++) {
+ const internal::param::Chart *chart = charts->chartAt(i);
+ const uint32_t vertexOffset = charts->vertexCountBeforeChartAt(i);
+ for (uint32_t v = 0; v < chart->vertexCount(); v++) {
+ OutputVertex &output_vertex = outputMesh->vertexArray[vertexOffset + v];
+ output_vertex.xref = chart->mapChartVertexToOriginalVertex(v);
+ internal::Vector2 uv = chart->chartMesh()->vertexAt(v)->tex;
+ output_vertex.uv[0] = uv.x;
+ output_vertex.uv[1] = uv.y;
+ }
+ }
+ // Indices.
+ outputMesh->indexCount = heMesh->faceCount() * 3;
+ outputMesh->indexArray = new uint32_t[outputMesh->indexCount];
+ for (uint32_t f = 0; f < heMesh->faceCount(); f++) {
+ const uint32_t c = charts->faceChartAt(f);
+ const uint32_t i = charts->faceIndexWithinChartAt(f);
+ const uint32_t vertexOffset = charts->vertexCountBeforeChartAt(c);
+ const internal::param::Chart *chart = charts->chartAt(c);
+ xaDebugAssert(i < chart->chartMesh()->faceCount());
+ xaDebugAssert(chart->faceAt(i) == f);
+ const internal::halfedge::Face *face = chart->chartMesh()->faceAt(i);
+ const internal::halfedge::Edge *edge = face->edge;
+ outputMesh->indexArray[3 * f + 0] = vertexOffset + edge->vertex->id;
+ outputMesh->indexArray[3 * f + 1] = vertexOffset + edge->next->vertex->id;
+ outputMesh->indexArray[3 * f + 2] = vertexOffset + edge->next->next->vertex->id;
+ }
+ // Charts.
+ outputMesh->chartCount = charts->chartCount();
+ outputMesh->chartArray = new OutputChart[outputMesh->chartCount];
+ for (uint32_t i = 0; i < charts->chartCount(); i++) {
+ OutputChart *outputChart = &outputMesh->chartArray[i];
+ const internal::param::Chart *chart = charts->chartAt(i);
+ const uint32_t vertexOffset = charts->vertexCountBeforeChartAt(i);
+ const internal::halfedge::Mesh *mesh = chart->chartMesh();
+ outputChart->indexCount = mesh->faceCount() * 3;
+ outputChart->indexArray = new uint32_t[outputChart->indexCount];
+ for (uint32_t j = 0; j < mesh->faceCount(); j++) {
+ const internal::halfedge::Face *face = mesh->faceAt(j);
+ const internal::halfedge::Edge *edge = face->edge;
+ outputChart->indexArray[3 * j + 0] = vertexOffset + edge->vertex->id;
+ outputChart->indexArray[3 * j + 1] = vertexOffset + edge->next->vertex->id;
+ outputChart->indexArray[3 * j + 2] = vertexOffset + edge->next->next->vertex->id;
+ }
+ }
+ }
+}
+
+uint32_t GetWidth(const Atlas *atlas) {
+ xaAssert(atlas);
+ return atlas->width;
+}
+
+uint32_t GetHeight(const Atlas *atlas) {
+ xaAssert(atlas);
+ return atlas->height;
+}
+
+uint32_t GetNumCharts(const Atlas *atlas) {
+ xaAssert(atlas);
+ return atlas->atlas.chartCount();
+}
+
+const OutputMesh *const *GetOutputMeshes(const Atlas *atlas) {
+ xaAssert(atlas);
+ return atlas->outputMeshes;
+}
+
+const char *StringForEnum(AddMeshErrorCode::Enum error) {
+ if (error == AddMeshErrorCode::AlreadyAddedEdge)
+ return "already added edge";
+ if (error == AddMeshErrorCode::DegenerateColocalEdge)
+ return "degenerate colocal edge";
+ if (error == AddMeshErrorCode::DegenerateEdge)
+ return "degenerate edge";
+ if (error == AddMeshErrorCode::DuplicateEdge)
+ return "duplicate edge";
+ if (error == AddMeshErrorCode::IndexOutOfRange)
+ return "index out of range";
+ if (error == AddMeshErrorCode::InvalidIndexCount)
+ return "invalid index count";
+ if (error == AddMeshErrorCode::ZeroAreaFace)
+ return "zero area face";
+ if (error == AddMeshErrorCode::ZeroLengthEdge)
+ return "zero length edge";
+ return "success";
+}
+
+} // namespace xatlas