diff options
Diffstat (limited to 'thirdparty/vhacd/src/FloatMath.inl')
-rw-r--r-- | thirdparty/vhacd/src/FloatMath.inl | 5276 |
1 files changed, 5276 insertions, 0 deletions
diff --git a/thirdparty/vhacd/src/FloatMath.inl b/thirdparty/vhacd/src/FloatMath.inl new file mode 100644 index 0000000000..ce529e6f71 --- /dev/null +++ b/thirdparty/vhacd/src/FloatMath.inl @@ -0,0 +1,5276 @@ +// a set of routines that let you do common 3d math +// operations without any vector, matrix, or quaternion +// classes or templates. +// +// a vector (or point) is a 'float *' to 3 floating point numbers. +// a matrix is a 'float *' to an array of 16 floating point numbers representing a 4x4 transformation matrix compatible with D3D or OGL +// a quaternion is a 'float *' to 4 floats representing a quaternion x,y,z,w +// + +namespace FLOAT_MATH +{ + +void fm_inverseRT(const REAL matrix[16],const REAL pos[3],REAL t[3]) // inverse rotate translate the point. +{ + + REAL _x = pos[0] - matrix[3*4+0]; + REAL _y = pos[1] - matrix[3*4+1]; + REAL _z = pos[2] - matrix[3*4+2]; + + // Multiply inverse-translated source vector by inverted rotation transform + + t[0] = (matrix[0*4+0] * _x) + (matrix[0*4+1] * _y) + (matrix[0*4+2] * _z); + t[1] = (matrix[1*4+0] * _x) + (matrix[1*4+1] * _y) + (matrix[1*4+2] * _z); + t[2] = (matrix[2*4+0] * _x) + (matrix[2*4+1] * _y) + (matrix[2*4+2] * _z); + +} + +REAL fm_getDeterminant(const REAL matrix[16]) +{ + REAL tempv[3]; + REAL p0[3]; + REAL p1[3]; + REAL p2[3]; + + + p0[0] = matrix[0*4+0]; + p0[1] = matrix[0*4+1]; + p0[2] = matrix[0*4+2]; + + p1[0] = matrix[1*4+0]; + p1[1] = matrix[1*4+1]; + p1[2] = matrix[1*4+2]; + + p2[0] = matrix[2*4+0]; + p2[1] = matrix[2*4+1]; + p2[2] = matrix[2*4+2]; + + fm_cross(tempv,p1,p2); + + return fm_dot(p0,tempv); + +} + +REAL fm_squared(REAL x) { return x*x; }; + +void fm_decomposeTransform(const REAL local_transform[16],REAL trans[3],REAL rot[4],REAL scale[3]) +{ + + trans[0] = local_transform[12]; + trans[1] = local_transform[13]; + trans[2] = local_transform[14]; + + scale[0] = (REAL)sqrt(fm_squared(local_transform[0*4+0]) + fm_squared(local_transform[0*4+1]) + fm_squared(local_transform[0*4+2])); + scale[1] = (REAL)sqrt(fm_squared(local_transform[1*4+0]) + fm_squared(local_transform[1*4+1]) + fm_squared(local_transform[1*4+2])); + scale[2] = (REAL)sqrt(fm_squared(local_transform[2*4+0]) + fm_squared(local_transform[2*4+1]) + fm_squared(local_transform[2*4+2])); + + REAL m[16]; + memcpy(m,local_transform,sizeof(REAL)*16); + + REAL sx = 1.0f / scale[0]; + REAL sy = 1.0f / scale[1]; + REAL sz = 1.0f / scale[2]; + + m[0*4+0]*=sx; + m[0*4+1]*=sx; + m[0*4+2]*=sx; + + m[1*4+0]*=sy; + m[1*4+1]*=sy; + m[1*4+2]*=sy; + + m[2*4+0]*=sz; + m[2*4+1]*=sz; + m[2*4+2]*=sz; + + fm_matrixToQuat(m,rot); + +} + +void fm_getSubMatrix(int32_t ki,int32_t kj,REAL pDst[16],const REAL matrix[16]) +{ + int32_t row, col; + int32_t dstCol = 0, dstRow = 0; + + for ( col = 0; col < 4; col++ ) + { + if ( col == kj ) + { + continue; + } + for ( dstRow = 0, row = 0; row < 4; row++ ) + { + if ( row == ki ) + { + continue; + } + pDst[dstCol*4+dstRow] = matrix[col*4+row]; + dstRow++; + } + dstCol++; + } +} + +void fm_inverseTransform(const REAL matrix[16],REAL inverse_matrix[16]) +{ + REAL determinant = fm_getDeterminant(matrix); + determinant = 1.0f / determinant; + for (int32_t i = 0; i < 4; i++ ) + { + for (int32_t j = 0; j < 4; j++ ) + { + int32_t sign = 1 - ( ( i + j ) % 2 ) * 2; + REAL subMat[16]; + fm_identity(subMat); + fm_getSubMatrix( i, j, subMat, matrix ); + REAL subDeterminant = fm_getDeterminant(subMat); + inverse_matrix[i*4+j] = ( subDeterminant * sign ) * determinant; + } + } +} + +void fm_identity(REAL matrix[16]) // set 4x4 matrix to identity. +{ + matrix[0*4+0] = 1; + matrix[1*4+1] = 1; + matrix[2*4+2] = 1; + matrix[3*4+3] = 1; + + matrix[1*4+0] = 0; + matrix[2*4+0] = 0; + matrix[3*4+0] = 0; + + matrix[0*4+1] = 0; + matrix[2*4+1] = 0; + matrix[3*4+1] = 0; + + matrix[0*4+2] = 0; + matrix[1*4+2] = 0; + matrix[3*4+2] = 0; + + matrix[0*4+3] = 0; + matrix[1*4+3] = 0; + matrix[2*4+3] = 0; + +} + +void fm_quatToEuler(const REAL quat[4],REAL &ax,REAL &ay,REAL &az) +{ + REAL x = quat[0]; + REAL y = quat[1]; + REAL z = quat[2]; + REAL w = quat[3]; + + REAL sint = (2.0f * w * y) - (2.0f * x * z); + REAL cost_temp = 1.0f - (sint * sint); + REAL cost = 0; + + if ( (REAL)fabs(cost_temp) > 0.001f ) + { + cost = (REAL)sqrt( cost_temp ); + } + + REAL sinv, cosv, sinf, cosf; + if ( (REAL)fabs(cost) > 0.001f ) + { + cost = 1.0f / cost; + sinv = ((2.0f * y * z) + (2.0f * w * x)) * cost; + cosv = (1.0f - (2.0f * x * x) - (2.0f * y * y)) * cost; + sinf = ((2.0f * x * y) + (2.0f * w * z)) * cost; + cosf = (1.0f - (2.0f * y * y) - (2.0f * z * z)) * cost; + } + else + { + sinv = (2.0f * w * x) - (2.0f * y * z); + cosv = 1.0f - (2.0f * x * x) - (2.0f * z * z); + sinf = 0; + cosf = 1.0f; + } + + // compute output rotations + ax = (REAL)atan2( sinv, cosv ); + ay = (REAL)atan2( sint, cost ); + az = (REAL)atan2( sinf, cosf ); + +} + +void fm_eulerToMatrix(REAL ax,REAL ay,REAL az,REAL *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) +{ + REAL quat[4]; + fm_eulerToQuat(ax,ay,az,quat); + fm_quatToMatrix(quat,matrix); +} + +void fm_getAABB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *bmin,REAL *bmax) +{ + + const uint8_t *source = (const uint8_t *) points; + + bmin[0] = points[0]; + bmin[1] = points[1]; + bmin[2] = points[2]; + + bmax[0] = points[0]; + bmax[1] = points[1]; + bmax[2] = points[2]; + + + for (uint32_t i=1; i<vcount; i++) + { + source+=pstride; + const REAL *p = (const REAL *) source; + + if ( p[0] < bmin[0] ) bmin[0] = p[0]; + if ( p[1] < bmin[1] ) bmin[1] = p[1]; + if ( p[2] < bmin[2] ) bmin[2] = p[2]; + + if ( p[0] > bmax[0] ) bmax[0] = p[0]; + if ( p[1] > bmax[1] ) bmax[1] = p[1]; + if ( p[2] > bmax[2] ) bmax[2] = p[2]; + + } +} + +void fm_eulerToQuat(const REAL *euler,REAL *quat) // convert euler angles to quaternion. +{ + fm_eulerToQuat(euler[0],euler[1],euler[2],quat); +} + +void fm_eulerToQuat(REAL roll,REAL pitch,REAL yaw,REAL *quat) // convert euler angles to quaternion. +{ + roll *= 0.5f; + pitch *= 0.5f; + yaw *= 0.5f; + + REAL cr = (REAL)cos(roll); + REAL cp = (REAL)cos(pitch); + REAL cy = (REAL)cos(yaw); + + REAL sr = (REAL)sin(roll); + REAL sp = (REAL)sin(pitch); + REAL sy = (REAL)sin(yaw); + + REAL cpcy = cp * cy; + REAL spsy = sp * sy; + REAL spcy = sp * cy; + REAL cpsy = cp * sy; + + quat[0] = ( sr * cpcy - cr * spsy); + quat[1] = ( cr * spcy + sr * cpsy); + quat[2] = ( cr * cpsy - sr * spcy); + quat[3] = cr * cpcy + sr * spsy; +} + +void fm_quatToMatrix(const REAL *quat,REAL *matrix) // convert quaterinion rotation to matrix, zeros out the translation component. +{ + + REAL xx = quat[0]*quat[0]; + REAL yy = quat[1]*quat[1]; + REAL zz = quat[2]*quat[2]; + REAL xy = quat[0]*quat[1]; + REAL xz = quat[0]*quat[2]; + REAL yz = quat[1]*quat[2]; + REAL wx = quat[3]*quat[0]; + REAL wy = quat[3]*quat[1]; + REAL wz = quat[3]*quat[2]; + + matrix[0*4+0] = 1 - 2 * ( yy + zz ); + matrix[1*4+0] = 2 * ( xy - wz ); + matrix[2*4+0] = 2 * ( xz + wy ); + + matrix[0*4+1] = 2 * ( xy + wz ); + matrix[1*4+1] = 1 - 2 * ( xx + zz ); + matrix[2*4+1] = 2 * ( yz - wx ); + + matrix[0*4+2] = 2 * ( xz - wy ); + matrix[1*4+2] = 2 * ( yz + wx ); + matrix[2*4+2] = 1 - 2 * ( xx + yy ); + + matrix[3*4+0] = matrix[3*4+1] = matrix[3*4+2] = (REAL) 0.0f; + matrix[0*4+3] = matrix[1*4+3] = matrix[2*4+3] = (REAL) 0.0f; + matrix[3*4+3] =(REAL) 1.0f; + +} + + +void fm_quatRotate(const REAL *quat,const REAL *v,REAL *r) // rotate a vector directly by a quaternion. +{ + REAL left[4]; + + left[0] = quat[3]*v[0] + quat[1]*v[2] - v[1]*quat[2]; + left[1] = quat[3]*v[1] + quat[2]*v[0] - v[2]*quat[0]; + left[2] = quat[3]*v[2] + quat[0]*v[1] - v[0]*quat[1]; + left[3] = - quat[0]*v[0] - quat[1]*v[1] - quat[2]*v[2]; + + r[0] = (left[3]*-quat[0]) + (quat[3]*left[0]) + (left[1]*-quat[2]) - (-quat[1]*left[2]); + r[1] = (left[3]*-quat[1]) + (quat[3]*left[1]) + (left[2]*-quat[0]) - (-quat[2]*left[0]); + r[2] = (left[3]*-quat[2]) + (quat[3]*left[2]) + (left[0]*-quat[1]) - (-quat[0]*left[1]); + +} + + +void fm_getTranslation(const REAL *matrix,REAL *t) +{ + t[0] = matrix[3*4+0]; + t[1] = matrix[3*4+1]; + t[2] = matrix[3*4+2]; +} + +void fm_matrixToQuat(const REAL *matrix,REAL *quat) // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w +{ + + REAL tr = matrix[0*4+0] + matrix[1*4+1] + matrix[2*4+2]; + + // check the diagonal + + if (tr > 0.0f ) + { + REAL s = (REAL) sqrt ( (double) (tr + 1.0f) ); + quat[3] = s * 0.5f; + s = 0.5f / s; + quat[0] = (matrix[1*4+2] - matrix[2*4+1]) * s; + quat[1] = (matrix[2*4+0] - matrix[0*4+2]) * s; + quat[2] = (matrix[0*4+1] - matrix[1*4+0]) * s; + + } + else + { + // diagonal is negative + int32_t nxt[3] = {1, 2, 0}; + REAL qa[4]; + + int32_t i = 0; + + if (matrix[1*4+1] > matrix[0*4+0]) i = 1; + if (matrix[2*4+2] > matrix[i*4+i]) i = 2; + + int32_t j = nxt[i]; + int32_t k = nxt[j]; + + REAL s = (REAL)sqrt ( ((matrix[i*4+i] - (matrix[j*4+j] + matrix[k*4+k])) + 1.0f) ); + + qa[i] = s * 0.5f; + + if (s != 0.0f ) s = 0.5f / s; + + qa[3] = (matrix[j*4+k] - matrix[k*4+j]) * s; + qa[j] = (matrix[i*4+j] + matrix[j*4+i]) * s; + qa[k] = (matrix[i*4+k] + matrix[k*4+i]) * s; + + quat[0] = qa[0]; + quat[1] = qa[1]; + quat[2] = qa[2]; + quat[3] = qa[3]; + } +// fm_normalizeQuat(quat); +} + + +REAL fm_sphereVolume(REAL radius) // return's the volume of a sphere of this radius (4/3 PI * R cubed ) +{ + return (4.0f / 3.0f ) * FM_PI * radius * radius * radius; +} + + +REAL fm_cylinderVolume(REAL radius,REAL h) +{ + return FM_PI * radius * radius *h; +} + +REAL fm_capsuleVolume(REAL radius,REAL h) +{ + REAL volume = fm_sphereVolume(radius); // volume of the sphere portion. + REAL ch = h-radius*2; // this is the cylinder length + if ( ch > 0 ) + { + volume+=fm_cylinderVolume(radius,ch); + } + return volume; +} + +void fm_transform(const REAL matrix[16],const REAL v[3],REAL t[3]) // rotate and translate this point +{ + if ( matrix ) + { + REAL tx = (matrix[0*4+0] * v[0]) + (matrix[1*4+0] * v[1]) + (matrix[2*4+0] * v[2]) + matrix[3*4+0]; + REAL ty = (matrix[0*4+1] * v[0]) + (matrix[1*4+1] * v[1]) + (matrix[2*4+1] * v[2]) + matrix[3*4+1]; + REAL tz = (matrix[0*4+2] * v[0]) + (matrix[1*4+2] * v[1]) + (matrix[2*4+2] * v[2]) + matrix[3*4+2]; + t[0] = tx; + t[1] = ty; + t[2] = tz; + } + else + { + t[0] = v[0]; + t[1] = v[1]; + t[2] = v[2]; + } +} + +void fm_rotate(const REAL matrix[16],const REAL v[3],REAL t[3]) // rotate and translate this point +{ + if ( matrix ) + { + REAL tx = (matrix[0*4+0] * v[0]) + (matrix[1*4+0] * v[1]) + (matrix[2*4+0] * v[2]); + REAL ty = (matrix[0*4+1] * v[0]) + (matrix[1*4+1] * v[1]) + (matrix[2*4+1] * v[2]); + REAL tz = (matrix[0*4+2] * v[0]) + (matrix[1*4+2] * v[1]) + (matrix[2*4+2] * v[2]); + t[0] = tx; + t[1] = ty; + t[2] = tz; + } + else + { + t[0] = v[0]; + t[1] = v[1]; + t[2] = v[2]; + } +} + + +REAL fm_distance(const REAL *p1,const REAL *p2) +{ + REAL dx = p1[0] - p2[0]; + REAL dy = p1[1] - p2[1]; + REAL dz = p1[2] - p2[2]; + + return (REAL)sqrt( dx*dx + dy*dy + dz *dz ); +} + +REAL fm_distanceSquared(const REAL *p1,const REAL *p2) +{ + REAL dx = p1[0] - p2[0]; + REAL dy = p1[1] - p2[1]; + REAL dz = p1[2] - p2[2]; + + return dx*dx + dy*dy + dz *dz; +} + + +REAL fm_distanceSquaredXZ(const REAL *p1,const REAL *p2) +{ + REAL dx = p1[0] - p2[0]; + REAL dz = p1[2] - p2[2]; + + return dx*dx + dz *dz; +} + + +REAL fm_computePlane(const REAL *A,const REAL *B,const REAL *C,REAL *n) // returns D +{ + REAL vx = (B[0] - C[0]); + REAL vy = (B[1] - C[1]); + REAL vz = (B[2] - C[2]); + + REAL wx = (A[0] - B[0]); + REAL wy = (A[1] - B[1]); + REAL wz = (A[2] - B[2]); + + REAL vw_x = vy * wz - vz * wy; + REAL vw_y = vz * wx - vx * wz; + REAL vw_z = vx * wy - vy * wx; + + REAL mag = (REAL)sqrt((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z)); + + if ( mag < 0.000001f ) + { + mag = 0; + } + else + { + mag = 1.0f/mag; + } + + REAL x = vw_x * mag; + REAL y = vw_y * mag; + REAL z = vw_z * mag; + + + REAL D = 0.0f - ((x*A[0])+(y*A[1])+(z*A[2])); + + n[0] = x; + n[1] = y; + n[2] = z; + + return D; +} + +REAL fm_distToPlane(const REAL *plane,const REAL *p) // computes the distance of this point from the plane. +{ + return p[0]*plane[0]+p[1]*plane[1]+p[2]*plane[2]+plane[3]; +} + +REAL fm_dot(const REAL *p1,const REAL *p2) +{ + return p1[0]*p2[0]+p1[1]*p2[1]+p1[2]*p2[2]; +} + +void fm_cross(REAL *cross,const REAL *a,const REAL *b) +{ + cross[0] = a[1]*b[2] - a[2]*b[1]; + cross[1] = a[2]*b[0] - a[0]*b[2]; + cross[2] = a[0]*b[1] - a[1]*b[0]; +} + +REAL fm_computeNormalVector(REAL *n,const REAL *p1,const REAL *p2) +{ + n[0] = p2[0] - p1[0]; + n[1] = p2[1] - p1[1]; + n[2] = p2[2] - p1[2]; + return fm_normalize(n); +} + +bool fm_computeWindingOrder(const REAL *p1,const REAL *p2,const REAL *p3) // returns true if the triangle is clockwise. +{ + bool ret = false; + + REAL v1[3]; + REAL v2[3]; + + fm_computeNormalVector(v1,p1,p2); // p2-p1 (as vector) and then normalized + fm_computeNormalVector(v2,p1,p3); // p3-p1 (as vector) and then normalized + + REAL cross[3]; + + fm_cross(cross, v1, v2 ); + REAL ref[3] = { 1, 0, 0 }; + + REAL d = fm_dot( cross, ref ); + + + if ( d <= 0 ) + ret = false; + else + ret = true; + + return ret; +} + +REAL fm_normalize(REAL *n) // normalize this vector +{ + REAL dist = (REAL)sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]); + if ( dist > 0.0000001f ) + { + REAL mag = 1.0f / dist; + n[0]*=mag; + n[1]*=mag; + n[2]*=mag; + } + else + { + n[0] = 1; + n[1] = 0; + n[2] = 0; + } + + return dist; +} + + +void fm_matrixMultiply(const REAL *pA,const REAL *pB,REAL *pM) +{ +#if 1 + + REAL a = pA[0*4+0] * pB[0*4+0] + pA[0*4+1] * pB[1*4+0] + pA[0*4+2] * pB[2*4+0] + pA[0*4+3] * pB[3*4+0]; + REAL b = pA[0*4+0] * pB[0*4+1] + pA[0*4+1] * pB[1*4+1] + pA[0*4+2] * pB[2*4+1] + pA[0*4+3] * pB[3*4+1]; + REAL c = pA[0*4+0] * pB[0*4+2] + pA[0*4+1] * pB[1*4+2] + pA[0*4+2] * pB[2*4+2] + pA[0*4+3] * pB[3*4+2]; + REAL d = pA[0*4+0] * pB[0*4+3] + pA[0*4+1] * pB[1*4+3] + pA[0*4+2] * pB[2*4+3] + pA[0*4+3] * pB[3*4+3]; + + REAL e = pA[1*4+0] * pB[0*4+0] + pA[1*4+1] * pB[1*4+0] + pA[1*4+2] * pB[2*4+0] + pA[1*4+3] * pB[3*4+0]; + REAL f = pA[1*4+0] * pB[0*4+1] + pA[1*4+1] * pB[1*4+1] + pA[1*4+2] * pB[2*4+1] + pA[1*4+3] * pB[3*4+1]; + REAL g = pA[1*4+0] * pB[0*4+2] + pA[1*4+1] * pB[1*4+2] + pA[1*4+2] * pB[2*4+2] + pA[1*4+3] * pB[3*4+2]; + REAL h = pA[1*4+0] * pB[0*4+3] + pA[1*4+1] * pB[1*4+3] + pA[1*4+2] * pB[2*4+3] + pA[1*4+3] * pB[3*4+3]; + + REAL i = pA[2*4+0] * pB[0*4+0] + pA[2*4+1] * pB[1*4+0] + pA[2*4+2] * pB[2*4+0] + pA[2*4+3] * pB[3*4+0]; + REAL j = pA[2*4+0] * pB[0*4+1] + pA[2*4+1] * pB[1*4+1] + pA[2*4+2] * pB[2*4+1] + pA[2*4+3] * pB[3*4+1]; + REAL k = pA[2*4+0] * pB[0*4+2] + pA[2*4+1] * pB[1*4+2] + pA[2*4+2] * pB[2*4+2] + pA[2*4+3] * pB[3*4+2]; + REAL l = pA[2*4+0] * pB[0*4+3] + pA[2*4+1] * pB[1*4+3] + pA[2*4+2] * pB[2*4+3] + pA[2*4+3] * pB[3*4+3]; + + REAL m = pA[3*4+0] * pB[0*4+0] + pA[3*4+1] * pB[1*4+0] + pA[3*4+2] * pB[2*4+0] + pA[3*4+3] * pB[3*4+0]; + REAL n = pA[3*4+0] * pB[0*4+1] + pA[3*4+1] * pB[1*4+1] + pA[3*4+2] * pB[2*4+1] + pA[3*4+3] * pB[3*4+1]; + REAL o = pA[3*4+0] * pB[0*4+2] + pA[3*4+1] * pB[1*4+2] + pA[3*4+2] * pB[2*4+2] + pA[3*4+3] * pB[3*4+2]; + REAL p = pA[3*4+0] * pB[0*4+3] + pA[3*4+1] * pB[1*4+3] + pA[3*4+2] * pB[2*4+3] + pA[3*4+3] * pB[3*4+3]; + + pM[0] = a; + pM[1] = b; + pM[2] = c; + pM[3] = d; + + pM[4] = e; + pM[5] = f; + pM[6] = g; + pM[7] = h; + + pM[8] = i; + pM[9] = j; + pM[10] = k; + pM[11] = l; + + pM[12] = m; + pM[13] = n; + pM[14] = o; + pM[15] = p; + + +#else + memset(pM, 0, sizeof(REAL)*16); + for(int32_t i=0; i<4; i++ ) + for(int32_t j=0; j<4; j++ ) + for(int32_t k=0; k<4; k++ ) + pM[4*i+j] += pA[4*i+k] * pB[4*k+j]; +#endif +} + + +void fm_eulerToQuatDX(REAL x,REAL y,REAL z,REAL *quat) // convert euler angles to quaternion using the fucked up DirectX method +{ + REAL matrix[16]; + fm_eulerToMatrix(x,y,z,matrix); + fm_matrixToQuat(matrix,quat); +} + +// implementation copied from: http://blogs.msdn.com/mikepelton/archive/2004/10/29/249501.aspx +void fm_eulerToMatrixDX(REAL x,REAL y,REAL z,REAL *matrix) // convert euler angles to quaternion using the fucked up DirectX method. +{ + fm_identity(matrix); + matrix[0*4+0] = (REAL)(cos(z)*cos(y) + sin(z)*sin(x)*sin(y)); + matrix[0*4+1] = (REAL)(sin(z)*cos(x)); + matrix[0*4+2] = (REAL)(cos(z)*-sin(y) + sin(z)*sin(x)*cos(y)); + + matrix[1*4+0] = (REAL)(-sin(z)*cos(y)+cos(z)*sin(x)*sin(y)); + matrix[1*4+1] = (REAL)(cos(z)*cos(x)); + matrix[1*4+2] = (REAL)(sin(z)*sin(y) +cos(z)*sin(x)*cos(y)); + + matrix[2*4+0] = (REAL)(cos(x)*sin(y)); + matrix[2*4+1] = (REAL)(-sin(x)); + matrix[2*4+2] = (REAL)(cos(x)*cos(y)); +} + + +void fm_scale(REAL x,REAL y,REAL z,REAL *fscale) // apply scale to the matrix. +{ + fscale[0*4+0] = x; + fscale[1*4+1] = y; + fscale[2*4+2] = z; +} + + +void fm_composeTransform(const REAL *position,const REAL *quat,const REAL *scale,REAL *matrix) +{ + fm_identity(matrix); + fm_quatToMatrix(quat,matrix); + + if ( scale && ( scale[0] != 1 || scale[1] != 1 || scale[2] != 1 ) ) + { + REAL work[16]; + memcpy(work,matrix,sizeof(REAL)*16); + REAL mscale[16]; + fm_identity(mscale); + fm_scale(scale[0],scale[1],scale[2],mscale); + fm_matrixMultiply(work,mscale,matrix); + } + + matrix[12] = position[0]; + matrix[13] = position[1]; + matrix[14] = position[2]; +} + + +void fm_setTranslation(const REAL *translation,REAL *matrix) +{ + matrix[12] = translation[0]; + matrix[13] = translation[1]; + matrix[14] = translation[2]; +} + +static REAL enorm0_3d ( REAL x0, REAL y0, REAL z0, REAL x1, REAL y1, REAL z1 ) + +/**********************************************************************/ + +/* +Purpose: + +ENORM0_3D computes the Euclidean norm of (P1-P0) in 3D. + +Modified: + +18 April 1999 + +Author: + +John Burkardt + +Parameters: + +Input, REAL X0, Y0, Z0, X1, Y1, Z1, the coordinates of the points +P0 and P1. + +Output, REAL ENORM0_3D, the Euclidean norm of (P1-P0). +*/ +{ + REAL value; + + value = (REAL)sqrt ( + ( x1 - x0 ) * ( x1 - x0 ) + + ( y1 - y0 ) * ( y1 - y0 ) + + ( z1 - z0 ) * ( z1 - z0 ) ); + + return value; +} + + +static REAL triangle_area_3d ( REAL x1, REAL y1, REAL z1, REAL x2,REAL y2, REAL z2, REAL x3, REAL y3, REAL z3 ) + + /**********************************************************************/ + + /* + Purpose: + + TRIANGLE_AREA_3D computes the area of a triangle in 3D. + + Modified: + + 22 April 1999 + + Author: + + John Burkardt + + Parameters: + + Input, REAL X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, the (X,Y,Z) + coordinates of the corners of the triangle. + + Output, REAL TRIANGLE_AREA_3D, the area of the triangle. + */ +{ + REAL a; + REAL alpha; + REAL area; + REAL b; + REAL base; + REAL c; + REAL dot; + REAL height; + /* + Find the projection of (P3-P1) onto (P2-P1). + */ + dot = + ( x2 - x1 ) * ( x3 - x1 ) + + ( y2 - y1 ) * ( y3 - y1 ) + + ( z2 - z1 ) * ( z3 - z1 ); + + base = enorm0_3d ( x1, y1, z1, x2, y2, z2 ); + /* + The height of the triangle is the length of (P3-P1) after its + projection onto (P2-P1) has been subtracted. + */ + if ( base == 0.0 ) { + + height = 0.0; + + } + else { + + alpha = dot / ( base * base ); + + a = x3 - x1 - alpha * ( x2 - x1 ); + b = y3 - y1 - alpha * ( y2 - y1 ); + c = z3 - z1 - alpha * ( z2 - z1 ); + + height = (REAL)sqrt ( a * a + b * b + c * c ); + + } + + area = 0.5f * base * height; + + return area; +} + + +REAL fm_computeArea(const REAL *p1,const REAL *p2,const REAL *p3) +{ + REAL ret = 0; + + ret = triangle_area_3d(p1[0],p1[1],p1[2],p2[0],p2[1],p2[2],p3[0],p3[1],p3[2]); + + return ret; +} + + +void fm_lerp(const REAL *p1,const REAL *p2,REAL *dest,REAL lerpValue) +{ + dest[0] = ((p2[0] - p1[0])*lerpValue) + p1[0]; + dest[1] = ((p2[1] - p1[1])*lerpValue) + p1[1]; + dest[2] = ((p2[2] - p1[2])*lerpValue) + p1[2]; +} + +bool fm_pointTestXZ(const REAL *p,const REAL *i,const REAL *j) +{ + bool ret = false; + + if (((( i[2] <= p[2] ) && ( p[2] < j[2] )) || (( j[2] <= p[2] ) && ( p[2] < i[2] ))) && ( p[0] < (j[0] - i[0]) * (p[2] - i[2]) / (j[2] - i[2]) + i[0])) + ret = true; + + return ret; +}; + + +bool fm_insideTriangleXZ(const REAL *p,const REAL *p1,const REAL *p2,const REAL *p3) +{ + bool ret = false; + + int32_t c = 0; + if ( fm_pointTestXZ(p,p1,p2) ) c = !c; + if ( fm_pointTestXZ(p,p2,p3) ) c = !c; + if ( fm_pointTestXZ(p,p3,p1) ) c = !c; + if ( c ) ret = true; + + return ret; +} + +bool fm_insideAABB(const REAL *pos,const REAL *bmin,const REAL *bmax) +{ + bool ret = false; + + if ( pos[0] >= bmin[0] && pos[0] <= bmax[0] && + pos[1] >= bmin[1] && pos[1] <= bmax[1] && + pos[2] >= bmin[2] && pos[2] <= bmax[2] ) + ret = true; + + return ret; +} + + +uint32_t fm_clipTestPoint(const REAL *bmin,const REAL *bmax,const REAL *pos) +{ + uint32_t ret = 0; + + if ( pos[0] < bmin[0] ) + ret|=FMCS_XMIN; + else if ( pos[0] > bmax[0] ) + ret|=FMCS_XMAX; + + if ( pos[1] < bmin[1] ) + ret|=FMCS_YMIN; + else if ( pos[1] > bmax[1] ) + ret|=FMCS_YMAX; + + if ( pos[2] < bmin[2] ) + ret|=FMCS_ZMIN; + else if ( pos[2] > bmax[2] ) + ret|=FMCS_ZMAX; + + return ret; +} + +uint32_t fm_clipTestPointXZ(const REAL *bmin,const REAL *bmax,const REAL *pos) // only tests X and Z, not Y +{ + uint32_t ret = 0; + + if ( pos[0] < bmin[0] ) + ret|=FMCS_XMIN; + else if ( pos[0] > bmax[0] ) + ret|=FMCS_XMAX; + + if ( pos[2] < bmin[2] ) + ret|=FMCS_ZMIN; + else if ( pos[2] > bmax[2] ) + ret|=FMCS_ZMAX; + + return ret; +} + +uint32_t fm_clipTestAABB(const REAL *bmin,const REAL *bmax,const REAL *p1,const REAL *p2,const REAL *p3,uint32_t &andCode) +{ + uint32_t orCode = 0; + + andCode = FMCS_XMIN | FMCS_XMAX | FMCS_YMIN | FMCS_YMAX | FMCS_ZMIN | FMCS_ZMAX; + + uint32_t c = fm_clipTestPoint(bmin,bmax,p1); + orCode|=c; + andCode&=c; + + c = fm_clipTestPoint(bmin,bmax,p2); + orCode|=c; + andCode&=c; + + c = fm_clipTestPoint(bmin,bmax,p3); + orCode|=c; + andCode&=c; + + return orCode; +} + +bool intersect(const REAL *si,const REAL *ei,const REAL *bmin,const REAL *bmax,REAL *time) +{ + REAL st,et,fst = 0,fet = 1; + + for (int32_t i = 0; i < 3; i++) + { + if (*si < *ei) + { + if (*si > *bmax || *ei < *bmin) + return false; + REAL di = *ei - *si; + st = (*si < *bmin)? (*bmin - *si) / di: 0; + et = (*ei > *bmax)? (*bmax - *si) / di: 1; + } + else + { + if (*ei > *bmax || *si < *bmin) + return false; + REAL di = *ei - *si; + st = (*si > *bmax)? (*bmax - *si) / di: 0; + et = (*ei < *bmin)? (*bmin - *si) / di: 1; + } + + if (st > fst) fst = st; + if (et < fet) fet = et; + if (fet < fst) + return false; + bmin++; bmax++; + si++; ei++; + } + + *time = fst; + return true; +} + + + +bool fm_lineTestAABB(const REAL *p1,const REAL *p2,const REAL *bmin,const REAL *bmax,REAL &time) +{ + bool sect = intersect(p1,p2,bmin,bmax,&time); + return sect; +} + + +bool fm_lineTestAABBXZ(const REAL *p1,const REAL *p2,const REAL *bmin,const REAL *bmax,REAL &time) +{ + REAL _bmin[3]; + REAL _bmax[3]; + + _bmin[0] = bmin[0]; + _bmin[1] = -1e9; + _bmin[2] = bmin[2]; + + _bmax[0] = bmax[0]; + _bmax[1] = 1e9; + _bmax[2] = bmax[2]; + + bool sect = intersect(p1,p2,_bmin,_bmax,&time); + + return sect; +} + +void fm_minmax(const REAL *p,REAL *bmin,REAL *bmax) // accmulate to a min-max value +{ + + if ( p[0] < bmin[0] ) bmin[0] = p[0]; + if ( p[1] < bmin[1] ) bmin[1] = p[1]; + if ( p[2] < bmin[2] ) bmin[2] = p[2]; + + if ( p[0] > bmax[0] ) bmax[0] = p[0]; + if ( p[1] > bmax[1] ) bmax[1] = p[1]; + if ( p[2] > bmax[2] ) bmax[2] = p[2]; + +} + +REAL fm_solveX(const REAL *plane,REAL y,REAL z) // solve for X given this plane equation and the other two components. +{ + REAL x = (y*plane[1]+z*plane[2]+plane[3]) / -plane[0]; + return x; +} + +REAL fm_solveY(const REAL *plane,REAL x,REAL z) // solve for Y given this plane equation and the other two components. +{ + REAL y = (x*plane[0]+z*plane[2]+plane[3]) / -plane[1]; + return y; +} + + +REAL fm_solveZ(const REAL *plane,REAL x,REAL y) // solve for Y given this plane equation and the other two components. +{ + REAL z = (x*plane[0]+y*plane[1]+plane[3]) / -plane[2]; + return z; +} + + +void fm_getAABBCenter(const REAL *bmin,const REAL *bmax,REAL *center) +{ + center[0] = (bmax[0]-bmin[0])*0.5f+bmin[0]; + center[1] = (bmax[1]-bmin[1])*0.5f+bmin[1]; + center[2] = (bmax[2]-bmin[2])*0.5f+bmin[2]; +} + +FM_Axis fm_getDominantAxis(const REAL normal[3]) +{ + FM_Axis ret = FM_XAXIS; + + REAL x = (REAL)fabs(normal[0]); + REAL y = (REAL)fabs(normal[1]); + REAL z = (REAL)fabs(normal[2]); + + if ( y > x && y > z ) + ret = FM_YAXIS; + else if ( z > x && z > y ) + ret = FM_ZAXIS; + + return ret; +} + + +bool fm_lineSphereIntersect(const REAL *center,REAL radius,const REAL *p1,const REAL *p2,REAL *intersect) +{ + bool ret = false; + + REAL dir[3]; + + dir[0] = p2[0]-p1[0]; + dir[1] = p2[1]-p1[1]; + dir[2] = p2[2]-p1[2]; + + REAL distance = (REAL)sqrt( dir[0]*dir[0]+dir[1]*dir[1]+dir[2]*dir[2]); + + if ( distance > 0 ) + { + REAL recip = 1.0f / distance; + dir[0]*=recip; + dir[1]*=recip; + dir[2]*=recip; + ret = fm_raySphereIntersect(center,radius,p1,dir,distance,intersect); + } + else + { + dir[0] = center[0]-p1[0]; + dir[1] = center[1]-p1[1]; + dir[2] = center[2]-p1[2]; + REAL d2 = dir[0]*dir[0]+dir[1]*dir[1]+dir[2]*dir[2]; + REAL r2 = radius*radius; + if ( d2 < r2 ) + { + ret = true; + if ( intersect ) + { + intersect[0] = p1[0]; + intersect[1] = p1[1]; + intersect[2] = p1[2]; + } + } + } + return ret; +} + +#define DOT(p1,p2) (p1[0]*p2[0]+p1[1]*p2[1]+p1[2]*p2[2]) + +bool fm_raySphereIntersect(const REAL *center,REAL radius,const REAL *pos,const REAL *dir,REAL distance,REAL *intersect) +{ + bool ret = false; + + REAL E0[3]; + + E0[0] = center[0] - pos[0]; + E0[1] = center[1] - pos[1]; + E0[2] = center[2] - pos[2]; + + REAL V[3]; + + V[0] = dir[0]; + V[1] = dir[1]; + V[2] = dir[2]; + + + REAL dist2 = E0[0]*E0[0] + E0[1]*E0[1] + E0[2] * E0[2]; + REAL radius2 = radius*radius; // radius squared.. + + // Bug Fix For Gem, if origin is *inside* the sphere, invert the + // direction vector so that we get a valid intersection location. + if ( dist2 < radius2 ) + { + V[0]*=-1; + V[1]*=-1; + V[2]*=-1; + } + + + REAL v = DOT(E0,V); + + REAL disc = radius2 - (dist2 - v*v); + + if (disc > 0.0f) + { + if ( intersect ) + { + REAL d = (REAL)sqrt(disc); + REAL diff = v-d; + if ( diff < distance ) + { + intersect[0] = pos[0]+V[0]*diff; + intersect[1] = pos[1]+V[1]*diff; + intersect[2] = pos[2]+V[2]*diff; + ret = true; + } + } + } + + return ret; +} + + +void fm_catmullRom(REAL *out_vector,const REAL *p1,const REAL *p2,const REAL *p3,const REAL *p4, const REAL s) +{ + REAL s_squared = s * s; + REAL s_cubed = s_squared * s; + + REAL coefficient_p1 = -s_cubed + 2*s_squared - s; + REAL coefficient_p2 = 3 * s_cubed - 5 * s_squared + 2; + REAL coefficient_p3 = -3 * s_cubed +4 * s_squared + s; + REAL coefficient_p4 = s_cubed - s_squared; + + out_vector[0] = (coefficient_p1 * p1[0] + coefficient_p2 * p2[0] + coefficient_p3 * p3[0] + coefficient_p4 * p4[0])*0.5f; + out_vector[1] = (coefficient_p1 * p1[1] + coefficient_p2 * p2[1] + coefficient_p3 * p3[1] + coefficient_p4 * p4[1])*0.5f; + out_vector[2] = (coefficient_p1 * p1[2] + coefficient_p2 * p2[2] + coefficient_p3 * p3[2] + coefficient_p4 * p4[2])*0.5f; +} + +bool fm_intersectAABB(const REAL *bmin1,const REAL *bmax1,const REAL *bmin2,const REAL *bmax2) +{ + if ((bmin1[0] > bmax2[0]) || (bmin2[0] > bmax1[0])) return false; + if ((bmin1[1] > bmax2[1]) || (bmin2[1] > bmax1[1])) return false; + if ((bmin1[2] > bmax2[2]) || (bmin2[2] > bmax1[2])) return false; + return true; + +} + +bool fm_insideAABB(const REAL *obmin,const REAL *obmax,const REAL *tbmin,const REAL *tbmax) // test if bounding box tbmin/tmbax is fully inside obmin/obmax +{ + bool ret = false; + + if ( tbmax[0] <= obmax[0] && + tbmax[1] <= obmax[1] && + tbmax[2] <= obmax[2] && + tbmin[0] >= obmin[0] && + tbmin[1] >= obmin[1] && + tbmin[2] >= obmin[2] ) ret = true; + + return ret; +} + + +// Reference, from Stan Melax in Game Gems I +// Quaternion q; +// vector3 c = CrossProduct(v0,v1); +// REAL d = DotProduct(v0,v1); +// REAL s = (REAL)sqrt((1+d)*2); +// q.x = c.x / s; +// q.y = c.y / s; +// q.z = c.z / s; +// q.w = s /2.0f; +// return q; +void fm_rotationArc(const REAL *v0,const REAL *v1,REAL *quat) +{ + REAL cross[3]; + + fm_cross(cross,v0,v1); + REAL d = fm_dot(v0,v1); + + if( d<= -0.99999f ) // 180 about x axis + { + if ( fabsf((float)v0[0]) < 0.1f ) + { + quat[0] = 0; + quat[1] = v0[2]; + quat[2] = -v0[1]; + quat[3] = 0; + } + else + { + quat[0] = v0[1]; + quat[1] = -v0[0]; + quat[2] = 0; + quat[3] = 0; + } + REAL magnitudeSquared = quat[0]*quat[0] + quat[1]*quat[1] + quat[2]*quat[2] + quat[3]*quat[3]; + REAL magnitude = sqrtf((float)magnitudeSquared); + REAL recip = 1.0f / magnitude; + quat[0]*=recip; + quat[1]*=recip; + quat[2]*=recip; + quat[3]*=recip; + } + else + { + REAL s = (REAL)sqrt((1+d)*2); + REAL recip = 1.0f / s; + + quat[0] = cross[0] * recip; + quat[1] = cross[1] * recip; + quat[2] = cross[2] * recip; + quat[3] = s * 0.5f; + } +} + + +REAL fm_distancePointLineSegment(const REAL *Point,const REAL *LineStart,const REAL *LineEnd,REAL *intersection,LineSegmentType &type,REAL epsilon) +{ + REAL ret; + + REAL LineMag = fm_distance( LineEnd, LineStart ); + + if ( LineMag > 0 ) + { + REAL U = ( ( ( Point[0] - LineStart[0] ) * ( LineEnd[0] - LineStart[0] ) ) + ( ( Point[1] - LineStart[1] ) * ( LineEnd[1] - LineStart[1] ) ) + ( ( Point[2] - LineStart[2] ) * ( LineEnd[2] - LineStart[2] ) ) ) / ( LineMag * LineMag ); + if( U < 0.0f || U > 1.0f ) + { + REAL d1 = fm_distanceSquared(Point,LineStart); + REAL d2 = fm_distanceSquared(Point,LineEnd); + if ( d1 <= d2 ) + { + ret = (REAL)sqrt(d1); + intersection[0] = LineStart[0]; + intersection[1] = LineStart[1]; + intersection[2] = LineStart[2]; + type = LS_START; + } + else + { + ret = (REAL)sqrt(d2); + intersection[0] = LineEnd[0]; + intersection[1] = LineEnd[1]; + intersection[2] = LineEnd[2]; + type = LS_END; + } + } + else + { + intersection[0] = LineStart[0] + U * ( LineEnd[0] - LineStart[0] ); + intersection[1] = LineStart[1] + U * ( LineEnd[1] - LineStart[1] ); + intersection[2] = LineStart[2] + U * ( LineEnd[2] - LineStart[2] ); + + ret = fm_distance(Point,intersection); + + REAL d1 = fm_distanceSquared(intersection,LineStart); + REAL d2 = fm_distanceSquared(intersection,LineEnd); + REAL mag = (epsilon*2)*(epsilon*2); + + if ( d1 < mag ) // if less than 1/100th the total distance, treat is as the 'start' + { + type = LS_START; + } + else if ( d2 < mag ) + { + type = LS_END; + } + else + { + type = LS_MIDDLE; + } + + } + } + else + { + ret = LineMag; + intersection[0] = LineEnd[0]; + intersection[1] = LineEnd[1]; + intersection[2] = LineEnd[2]; + type = LS_END; + } + + return ret; +} + + +#ifndef BEST_FIT_PLANE_H + +#define BEST_FIT_PLANE_H + +template <class Type> class Eigen +{ +public: + + + void DecrSortEigenStuff(void) + { + Tridiagonal(); //diagonalize the matrix. + QLAlgorithm(); // + DecreasingSort(); + GuaranteeRotation(); + } + + void Tridiagonal(void) + { + Type fM00 = mElement[0][0]; + Type fM01 = mElement[0][1]; + Type fM02 = mElement[0][2]; + Type fM11 = mElement[1][1]; + Type fM12 = mElement[1][2]; + Type fM22 = mElement[2][2]; + + m_afDiag[0] = fM00; + m_afSubd[2] = 0; + if (fM02 != (Type)0.0) + { + Type fLength = (REAL)sqrt(fM01*fM01+fM02*fM02); + Type fInvLength = ((Type)1.0)/fLength; + fM01 *= fInvLength; + fM02 *= fInvLength; + Type fQ = ((Type)2.0)*fM01*fM12+fM02*(fM22-fM11); + m_afDiag[1] = fM11+fM02*fQ; + m_afDiag[2] = fM22-fM02*fQ; + m_afSubd[0] = fLength; + m_afSubd[1] = fM12-fM01*fQ; + mElement[0][0] = (Type)1.0; + mElement[0][1] = (Type)0.0; + mElement[0][2] = (Type)0.0; + mElement[1][0] = (Type)0.0; + mElement[1][1] = fM01; + mElement[1][2] = fM02; + mElement[2][0] = (Type)0.0; + mElement[2][1] = fM02; + mElement[2][2] = -fM01; + m_bIsRotation = false; + } + else + { + m_afDiag[1] = fM11; + m_afDiag[2] = fM22; + m_afSubd[0] = fM01; + m_afSubd[1] = fM12; + mElement[0][0] = (Type)1.0; + mElement[0][1] = (Type)0.0; + mElement[0][2] = (Type)0.0; + mElement[1][0] = (Type)0.0; + mElement[1][1] = (Type)1.0; + mElement[1][2] = (Type)0.0; + mElement[2][0] = (Type)0.0; + mElement[2][1] = (Type)0.0; + mElement[2][2] = (Type)1.0; + m_bIsRotation = true; + } + } + + bool QLAlgorithm(void) + { + const int32_t iMaxIter = 32; + + for (int32_t i0 = 0; i0 <3; i0++) + { + int32_t i1; + for (i1 = 0; i1 < iMaxIter; i1++) + { + int32_t i2; + for (i2 = i0; i2 <= (3-2); i2++) + { + Type fTmp = fabs(m_afDiag[i2]) + fabs(m_afDiag[i2+1]); + if ( fabs(m_afSubd[i2]) + fTmp == fTmp ) + break; + } + if (i2 == i0) + { + break; + } + + Type fG = (m_afDiag[i0+1] - m_afDiag[i0])/(((Type)2.0) * m_afSubd[i0]); + Type fR = (REAL)sqrt(fG*fG+(Type)1.0); + if (fG < (Type)0.0) + { + fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG-fR); + } + else + { + fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG+fR); + } + Type fSin = (Type)1.0, fCos = (Type)1.0, fP = (Type)0.0; + for (int32_t i3 = i2-1; i3 >= i0; i3--) + { + Type fF = fSin*m_afSubd[i3]; + Type fB = fCos*m_afSubd[i3]; + if (fabs(fF) >= fabs(fG)) + { + fCos = fG/fF; + fR = (REAL)sqrt(fCos*fCos+(Type)1.0); + m_afSubd[i3+1] = fF*fR; + fSin = ((Type)1.0)/fR; + fCos *= fSin; + } + else + { + fSin = fF/fG; + fR = (REAL)sqrt(fSin*fSin+(Type)1.0); + m_afSubd[i3+1] = fG*fR; + fCos = ((Type)1.0)/fR; + fSin *= fCos; + } + fG = m_afDiag[i3+1]-fP; + fR = (m_afDiag[i3]-fG)*fSin+((Type)2.0)*fB*fCos; + fP = fSin*fR; + m_afDiag[i3+1] = fG+fP; + fG = fCos*fR-fB; + for (int32_t i4 = 0; i4 < 3; i4++) + { + fF = mElement[i4][i3+1]; + mElement[i4][i3+1] = fSin*mElement[i4][i3]+fCos*fF; + mElement[i4][i3] = fCos*mElement[i4][i3]-fSin*fF; + } + } + m_afDiag[i0] -= fP; + m_afSubd[i0] = fG; + m_afSubd[i2] = (Type)0.0; + } + if (i1 == iMaxIter) + { + return false; + } + } + return true; + } + + void DecreasingSort(void) + { + //sort eigenvalues in decreasing order, e[0] >= ... >= e[iSize-1] + for (int32_t i0 = 0, i1; i0 <= 3-2; i0++) + { + // locate maximum eigenvalue + i1 = i0; + Type fMax = m_afDiag[i1]; + int32_t i2; + for (i2 = i0+1; i2 < 3; i2++) + { + if (m_afDiag[i2] > fMax) + { + i1 = i2; + fMax = m_afDiag[i1]; + } + } + + if (i1 != i0) + { + // swap eigenvalues + m_afDiag[i1] = m_afDiag[i0]; + m_afDiag[i0] = fMax; + // swap eigenvectors + for (i2 = 0; i2 < 3; i2++) + { + Type fTmp = mElement[i2][i0]; + mElement[i2][i0] = mElement[i2][i1]; + mElement[i2][i1] = fTmp; + m_bIsRotation = !m_bIsRotation; + } + } + } + } + + + void GuaranteeRotation(void) + { + if (!m_bIsRotation) + { + // change sign on the first column + for (int32_t iRow = 0; iRow <3; iRow++) + { + mElement[iRow][0] = -mElement[iRow][0]; + } + } + } + + Type mElement[3][3]; + Type m_afDiag[3]; + Type m_afSubd[3]; + bool m_bIsRotation; +}; + +#endif + +bool fm_computeBestFitPlane(uint32_t vcount, + const REAL *points, + uint32_t vstride, + const REAL *weights, + uint32_t wstride, + REAL *plane, + REAL *center) +{ + bool ret = false; + + REAL kOrigin[3] = { 0, 0, 0 }; + + REAL wtotal = 0; + + { + const char *source = (const char *) points; + const char *wsource = (const char *) weights; + + for (uint32_t i=0; i<vcount; i++) + { + + const REAL *p = (const REAL *) source; + + REAL w = 1; + + if ( wsource ) + { + const REAL *ws = (const REAL *) wsource; + w = *ws; // + wsource+=wstride; + } + + kOrigin[0]+=p[0]*w; + kOrigin[1]+=p[1]*w; + kOrigin[2]+=p[2]*w; + + wtotal+=w; + + source+=vstride; + } + } + + REAL recip = 1.0f / wtotal; // reciprocol of total weighting + + kOrigin[0]*=recip; + kOrigin[1]*=recip; + kOrigin[2]*=recip; + + center[0] = kOrigin[0]; + center[1] = kOrigin[1]; + center[2] = kOrigin[2]; + + + REAL fSumXX=0; + REAL fSumXY=0; + REAL fSumXZ=0; + + REAL fSumYY=0; + REAL fSumYZ=0; + REAL fSumZZ=0; + + + { + const char *source = (const char *) points; + const char *wsource = (const char *) weights; + + for (uint32_t i=0; i<vcount; i++) + { + + const REAL *p = (const REAL *) source; + + REAL w = 1; + + if ( wsource ) + { + const REAL *ws = (const REAL *) wsource; + w = *ws; // + wsource+=wstride; + } + + REAL kDiff[3]; + + kDiff[0] = w*(p[0] - kOrigin[0]); // apply vertex weighting! + kDiff[1] = w*(p[1] - kOrigin[1]); + kDiff[2] = w*(p[2] - kOrigin[2]); + + fSumXX+= kDiff[0] * kDiff[0]; // sume of the squares of the differences. + fSumXY+= kDiff[0] * kDiff[1]; // sume of the squares of the differences. + fSumXZ+= kDiff[0] * kDiff[2]; // sume of the squares of the differences. + + fSumYY+= kDiff[1] * kDiff[1]; + fSumYZ+= kDiff[1] * kDiff[2]; + fSumZZ+= kDiff[2] * kDiff[2]; + + + source+=vstride; + } + } + + fSumXX *= recip; + fSumXY *= recip; + fSumXZ *= recip; + fSumYY *= recip; + fSumYZ *= recip; + fSumZZ *= recip; + + // setup the eigensolver + Eigen<REAL> kES; + + kES.mElement[0][0] = fSumXX; + kES.mElement[0][1] = fSumXY; + kES.mElement[0][2] = fSumXZ; + + kES.mElement[1][0] = fSumXY; + kES.mElement[1][1] = fSumYY; + kES.mElement[1][2] = fSumYZ; + + kES.mElement[2][0] = fSumXZ; + kES.mElement[2][1] = fSumYZ; + kES.mElement[2][2] = fSumZZ; + + // compute eigenstuff, smallest eigenvalue is in last position + kES.DecrSortEigenStuff(); + + REAL kNormal[3]; + + kNormal[0] = kES.mElement[0][2]; + kNormal[1] = kES.mElement[1][2]; + kNormal[2] = kES.mElement[2][2]; + + // the minimum energy + plane[0] = kNormal[0]; + plane[1] = kNormal[1]; + plane[2] = kNormal[2]; + + plane[3] = 0 - fm_dot(kNormal,kOrigin); + + ret = true; + + return ret; +} + + +bool fm_colinear(const REAL a1[3],const REAL a2[3],const REAL b1[3],const REAL b2[3],REAL epsilon) // true if these two line segments are co-linear. +{ + bool ret = false; + + REAL dir1[3]; + REAL dir2[3]; + + dir1[0] = (a2[0] - a1[0]); + dir1[1] = (a2[1] - a1[1]); + dir1[2] = (a2[2] - a1[2]); + + dir2[0] = (b2[0]-a1[0]) - (b1[0]-a1[0]); + dir2[1] = (b2[1]-a1[1]) - (b1[1]-a1[1]); + dir2[2] = (b2[2]-a2[2]) - (b1[2]-a2[2]); + + fm_normalize(dir1); + fm_normalize(dir2); + + REAL dot = fm_dot(dir1,dir2); + + if ( dot >= epsilon ) + { + ret = true; + } + + + return ret; +} + +bool fm_colinear(const REAL *p1,const REAL *p2,const REAL *p3,REAL epsilon) +{ + bool ret = false; + + REAL dir1[3]; + REAL dir2[3]; + + dir1[0] = p2[0] - p1[0]; + dir1[1] = p2[1] - p1[1]; + dir1[2] = p2[2] - p1[2]; + + dir2[0] = p3[0] - p2[0]; + dir2[1] = p3[1] - p2[1]; + dir2[2] = p3[2] - p2[2]; + + fm_normalize(dir1); + fm_normalize(dir2); + + REAL dot = fm_dot(dir1,dir2); + + if ( dot >= epsilon ) + { + ret = true; + } + + + return ret; +} + +void fm_initMinMax(const REAL *p,REAL *bmin,REAL *bmax) +{ + bmax[0] = bmin[0] = p[0]; + bmax[1] = bmin[1] = p[1]; + bmax[2] = bmin[2] = p[2]; +} + +IntersectResult fm_intersectLineSegments2d(const REAL *a1,const REAL *a2,const REAL *b1,const REAL *b2,REAL *intersection) +{ + IntersectResult ret; + + REAL denom = ((b2[1] - b1[1])*(a2[0] - a1[0])) - ((b2[0] - b1[0])*(a2[1] - a1[1])); + REAL nume_a = ((b2[0] - b1[0])*(a1[1] - b1[1])) - ((b2[1] - b1[1])*(a1[0] - b1[0])); + REAL nume_b = ((a2[0] - a1[0])*(a1[1] - b1[1])) - ((a2[1] - a1[1])*(a1[0] - b1[0])); + if (denom == 0 ) + { + if(nume_a == 0 && nume_b == 0) + { + ret = IR_COINCIDENT; + } + else + { + ret = IR_PARALLEL; + } + } + else + { + + REAL recip = 1 / denom; + REAL ua = nume_a * recip; + REAL ub = nume_b * recip; + + if(ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1 ) + { + // Get the intersection point. + intersection[0] = a1[0] + ua*(a2[0] - a1[0]); + intersection[1] = a1[1] + ua*(a2[1] - a1[1]); + ret = IR_DO_INTERSECT; + } + else + { + ret = IR_DONT_INTERSECT; + } + } + return ret; +} + +IntersectResult fm_intersectLineSegments2dTime(const REAL *a1,const REAL *a2,const REAL *b1,const REAL *b2,REAL &t1,REAL &t2) +{ + IntersectResult ret; + + REAL denom = ((b2[1] - b1[1])*(a2[0] - a1[0])) - ((b2[0] - b1[0])*(a2[1] - a1[1])); + REAL nume_a = ((b2[0] - b1[0])*(a1[1] - b1[1])) - ((b2[1] - b1[1])*(a1[0] - b1[0])); + REAL nume_b = ((a2[0] - a1[0])*(a1[1] - b1[1])) - ((a2[1] - a1[1])*(a1[0] - b1[0])); + if (denom == 0 ) + { + if(nume_a == 0 && nume_b == 0) + { + ret = IR_COINCIDENT; + } + else + { + ret = IR_PARALLEL; + } + } + else + { + + REAL recip = 1 / denom; + REAL ua = nume_a * recip; + REAL ub = nume_b * recip; + + if(ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1 ) + { + t1 = ua; + t2 = ub; + ret = IR_DO_INTERSECT; + } + else + { + ret = IR_DONT_INTERSECT; + } + } + return ret; +} + +//**** Plane Triangle Intersection + + + + + +// assumes that the points are on opposite sides of the plane! +bool fm_intersectPointPlane(const REAL *p1,const REAL *p2,REAL *split,const REAL *plane) +{ + + REAL dp1 = fm_distToPlane(plane,p1); + REAL dp2 = fm_distToPlane(plane, p2); + if (dp1 <= 0 && dp2 <= 0) + { + return false; + } + if (dp1 >= 0 && dp2 >= 0) + { + return false; + } + + REAL dir[3]; + + dir[0] = p2[0] - p1[0]; + dir[1] = p2[1] - p1[1]; + dir[2] = p2[2] - p1[2]; + + REAL dot1 = dir[0]*plane[0] + dir[1]*plane[1] + dir[2]*plane[2]; + REAL dot2 = dp1 - plane[3]; + + REAL t = -(plane[3] + dot2 ) / dot1; + + split[0] = (dir[0]*t)+p1[0]; + split[1] = (dir[1]*t)+p1[1]; + split[2] = (dir[2]*t)+p1[2]; + + return true; +} + +PlaneTriResult fm_getSidePlane(const REAL *p,const REAL *plane,REAL epsilon) +{ + PlaneTriResult ret = PTR_ON_PLANE; + + REAL d = fm_distToPlane(plane,p); + + if ( d < -epsilon || d > epsilon ) + { + if ( d > 0 ) + ret = PTR_FRONT; // it is 'in front' within the provided epsilon value. + else + ret = PTR_BACK; + } + + return ret; +} + + + +#ifndef PLANE_TRIANGLE_INTERSECTION_H + +#define PLANE_TRIANGLE_INTERSECTION_H + +#define MAXPTS 256 + +template <class Type> class point +{ +public: + + void set(const Type *p) + { + x = p[0]; + y = p[1]; + z = p[2]; + } + + Type x; + Type y; + Type z; +}; + +template <class Type> class plane +{ +public: + plane(const Type *p) + { + normal.x = p[0]; + normal.y = p[1]; + normal.z = p[2]; + D = p[3]; + } + + Type Classify_Point(const point<Type> &p) + { + return p.x*normal.x + p.y*normal.y + p.z*normal.z + D; + } + + point<Type> normal; + Type D; +}; + +template <class Type> class polygon +{ +public: + polygon(void) + { + mVcount = 0; + } + + polygon(const Type *p1,const Type *p2,const Type *p3) + { + mVcount = 3; + mVertices[0].set(p1); + mVertices[1].set(p2); + mVertices[2].set(p3); + } + + + int32_t NumVertices(void) const { return mVcount; }; + + const point<Type>& Vertex(int32_t index) + { + if ( index < 0 ) index+=mVcount; + return mVertices[index]; + }; + + + void set(const point<Type> *pts,int32_t count) + { + for (int32_t i=0; i<count; i++) + { + mVertices[i] = pts[i]; + } + mVcount = count; + } + + + void Split_Polygon(polygon<Type> *poly,plane<Type> *part, polygon<Type> &front, polygon<Type> &back) + { + int32_t count = poly->NumVertices (); + int32_t out_c = 0, in_c = 0; + point<Type> ptA, ptB,outpts[MAXPTS],inpts[MAXPTS]; + Type sideA, sideB; + ptA = poly->Vertex (count - 1); + sideA = part->Classify_Point (ptA); + for (int32_t i = -1; ++i < count;) + { + ptB = poly->Vertex(i); + sideB = part->Classify_Point(ptB); + if (sideB > 0) + { + if (sideA < 0) + { + point<Type> v; + fm_intersectPointPlane(&ptB.x, &ptA.x, &v.x, &part->normal.x ); + outpts[out_c++] = inpts[in_c++] = v; + } + outpts[out_c++] = ptB; + } + else if (sideB < 0) + { + if (sideA > 0) + { + point<Type> v; + fm_intersectPointPlane(&ptB.x, &ptA.x, &v.x, &part->normal.x ); + outpts[out_c++] = inpts[in_c++] = v; + } + inpts[in_c++] = ptB; + } + else + outpts[out_c++] = inpts[in_c++] = ptB; + ptA = ptB; + sideA = sideB; + } + + front.set(&outpts[0], out_c); + back.set(&inpts[0], in_c); + } + + int32_t mVcount; + point<Type> mVertices[MAXPTS]; +}; + + + +#endif + +static inline void add(const REAL *p,REAL *dest,uint32_t tstride,uint32_t &pcount) +{ + char *d = (char *) dest; + d = d + pcount*tstride; + dest = (REAL *) d; + dest[0] = p[0]; + dest[1] = p[1]; + dest[2] = p[2]; + pcount++; + assert( pcount <= 4 ); +} + + +PlaneTriResult fm_planeTriIntersection(const REAL *_plane, // the plane equation in Ax+By+Cz+D format + const REAL *triangle, // the source triangle. + uint32_t tstride, // stride in bytes of the input and output *vertices* + REAL epsilon, // the co-planar epsilon value. + REAL *front, // the triangle in front of the + uint32_t &fcount, // number of vertices in the 'front' triangle + REAL *back, // the triangle in back of the plane + uint32_t &bcount) // the number of vertices in the 'back' triangle. +{ + + fcount = 0; + bcount = 0; + + const char *tsource = (const char *) triangle; + + // get the three vertices of the triangle. + const REAL *p1 = (const REAL *) (tsource); + const REAL *p2 = (const REAL *) (tsource+tstride); + const REAL *p3 = (const REAL *) (tsource+tstride*2); + + + PlaneTriResult r1 = fm_getSidePlane(p1,_plane,epsilon); // compute the side of the plane each vertex is on + PlaneTriResult r2 = fm_getSidePlane(p2,_plane,epsilon); + PlaneTriResult r3 = fm_getSidePlane(p3,_plane,epsilon); + + // If any of the points lay right *on* the plane.... + if ( r1 == PTR_ON_PLANE || r2 == PTR_ON_PLANE || r3 == PTR_ON_PLANE ) + { + // If the triangle is completely co-planar, then just treat it as 'front' and return! + if ( r1 == PTR_ON_PLANE && r2 == PTR_ON_PLANE && r3 == PTR_ON_PLANE ) + { + add(p1,front,tstride,fcount); + add(p2,front,tstride,fcount); + add(p3,front,tstride,fcount); + return PTR_FRONT; + } + // Decide to place the co-planar points on the same side as the co-planar point. + PlaneTriResult r= PTR_ON_PLANE; + if ( r1 != PTR_ON_PLANE ) + r = r1; + else if ( r2 != PTR_ON_PLANE ) + r = r2; + else if ( r3 != PTR_ON_PLANE ) + r = r3; + + if ( r1 == PTR_ON_PLANE ) r1 = r; + if ( r2 == PTR_ON_PLANE ) r2 = r; + if ( r3 == PTR_ON_PLANE ) r3 = r; + + } + + if ( r1 == r2 && r1 == r3 ) // if all three vertices are on the same side of the plane. + { + if ( r1 == PTR_FRONT ) // if all three are in front of the plane, then copy to the 'front' output triangle. + { + add(p1,front,tstride,fcount); + add(p2,front,tstride,fcount); + add(p3,front,tstride,fcount); + } + else + { + add(p1,back,tstride,bcount); // if all three are in 'back' then copy to the 'back' output triangle. + add(p2,back,tstride,bcount); + add(p3,back,tstride,bcount); + } + return r1; // if all three points are on the same side of the plane return result + } + + + polygon<REAL> pi(p1,p2,p3); + polygon<REAL> pfront,pback; + + plane<REAL> part(_plane); + + pi.Split_Polygon(&pi,&part,pfront,pback); + + for (int32_t i=0; i<pfront.mVcount; i++) + { + add( &pfront.mVertices[i].x, front, tstride, fcount ); + } + + for (int32_t i=0; i<pback.mVcount; i++) + { + add( &pback.mVertices[i].x, back, tstride, bcount ); + } + + PlaneTriResult ret = PTR_SPLIT; + + if ( fcount < 3 ) fcount = 0; + if ( bcount < 3 ) bcount = 0; + + if ( fcount == 0 && bcount ) + ret = PTR_BACK; + + if ( bcount == 0 && fcount ) + ret = PTR_FRONT; + + + return ret; +} + +// computes the OBB for this set of points relative to this transform matrix. +void computeOBB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *sides,REAL *matrix) +{ + const char *src = (const char *) points; + + REAL bmin[3] = { 1e9, 1e9, 1e9 }; + REAL bmax[3] = { -1e9, -1e9, -1e9 }; + + for (uint32_t i=0; i<vcount; i++) + { + const REAL *p = (const REAL *) src; + REAL t[3]; + + fm_inverseRT(matrix, p, t ); // inverse rotate translate + + if ( t[0] < bmin[0] ) bmin[0] = t[0]; + if ( t[1] < bmin[1] ) bmin[1] = t[1]; + if ( t[2] < bmin[2] ) bmin[2] = t[2]; + + if ( t[0] > bmax[0] ) bmax[0] = t[0]; + if ( t[1] > bmax[1] ) bmax[1] = t[1]; + if ( t[2] > bmax[2] ) bmax[2] = t[2]; + + src+=pstride; + } + + REAL center[3]; + + sides[0] = bmax[0]-bmin[0]; + sides[1] = bmax[1]-bmin[1]; + sides[2] = bmax[2]-bmin[2]; + + center[0] = sides[0]*0.5f+bmin[0]; + center[1] = sides[1]*0.5f+bmin[1]; + center[2] = sides[2]*0.5f+bmin[2]; + + REAL ocenter[3]; + + fm_rotate(matrix,center,ocenter); + + matrix[12]+=ocenter[0]; + matrix[13]+=ocenter[1]; + matrix[14]+=ocenter[2]; + +} + +void fm_computeBestFitOBB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *sides,REAL *matrix,bool bruteForce) +{ + REAL plane[4]; + REAL center[3]; + fm_computeBestFitPlane(vcount,points,pstride,0,0,plane,center); + fm_planeToMatrix(plane,matrix); + computeOBB( vcount, points, pstride, sides, matrix ); + + REAL refmatrix[16]; + memcpy(refmatrix,matrix,16*sizeof(REAL)); + + REAL volume = sides[0]*sides[1]*sides[2]; + if ( bruteForce ) + { + for (REAL a=10; a<180; a+=10) + { + REAL quat[4]; + fm_eulerToQuat(0,a*FM_DEG_TO_RAD,0,quat); + REAL temp[16]; + REAL pmatrix[16]; + fm_quatToMatrix(quat,temp); + fm_matrixMultiply(temp,refmatrix,pmatrix); + REAL psides[3]; + computeOBB( vcount, points, pstride, psides, pmatrix ); + REAL v = psides[0]*psides[1]*psides[2]; + if ( v < volume ) + { + volume = v; + memcpy(matrix,pmatrix,sizeof(REAL)*16); + sides[0] = psides[0]; + sides[1] = psides[1]; + sides[2] = psides[2]; + } + } + } +} + +void fm_computeBestFitOBB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *sides,REAL *pos,REAL *quat,bool bruteForce) +{ + REAL matrix[16]; + fm_computeBestFitOBB(vcount,points,pstride,sides,matrix,bruteForce); + fm_getTranslation(matrix,pos); + fm_matrixToQuat(matrix,quat); +} + +void fm_computeBestFitABB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *sides,REAL *pos) +{ + REAL bmin[3]; + REAL bmax[3]; + + bmin[0] = points[0]; + bmin[1] = points[1]; + bmin[2] = points[2]; + + bmax[0] = points[0]; + bmax[1] = points[1]; + bmax[2] = points[2]; + + const char *cp = (const char *) points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *p = (const REAL *) cp; + + if ( p[0] < bmin[0] ) bmin[0] = p[0]; + if ( p[1] < bmin[1] ) bmin[1] = p[1]; + if ( p[2] < bmin[2] ) bmin[2] = p[2]; + + if ( p[0] > bmax[0] ) bmax[0] = p[0]; + if ( p[1] > bmax[1] ) bmax[1] = p[1]; + if ( p[2] > bmax[2] ) bmax[2] = p[2]; + + cp+=pstride; + } + + + sides[0] = bmax[0] - bmin[0]; + sides[1] = bmax[1] - bmin[1]; + sides[2] = bmax[2] - bmin[2]; + + pos[0] = bmin[0]+sides[0]*0.5f; + pos[1] = bmin[1]+sides[1]*0.5f; + pos[2] = bmin[2]+sides[2]*0.5f; + +} + + +void fm_planeToMatrix(const REAL *plane,REAL *matrix) // convert a plane equation to a 4x4 rotation matrix +{ + REAL ref[3] = { 0, 1, 0 }; + REAL quat[4]; + fm_rotationArc(ref,plane,quat); + fm_quatToMatrix(quat,matrix); + REAL origin[3] = { 0, -plane[3], 0 }; + REAL center[3]; + fm_transform(matrix,origin,center); + fm_setTranslation(center,matrix); +} + +void fm_planeToQuat(const REAL *plane,REAL *quat,REAL *pos) // convert a plane equation to a quaternion and translation +{ + REAL ref[3] = { 0, 1, 0 }; + REAL matrix[16]; + fm_rotationArc(ref,plane,quat); + fm_quatToMatrix(quat,matrix); + REAL origin[3] = { 0, plane[3], 0 }; + fm_transform(matrix,origin,pos); +} + +void fm_eulerMatrix(REAL ax,REAL ay,REAL az,REAL *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) +{ + REAL quat[4]; + fm_eulerToQuat(ax,ay,az,quat); + fm_quatToMatrix(quat,matrix); +} + + +//********************************************************** +//********************************************************** +//**** Vertex Welding +//********************************************************** +//********************************************************** + +#ifndef VERTEX_INDEX_H + +#define VERTEX_INDEX_H + +namespace VERTEX_INDEX +{ + +class KdTreeNode; + +typedef std::vector< KdTreeNode * > KdTreeNodeVector; + +enum Axes +{ + X_AXIS = 0, + Y_AXIS = 1, + Z_AXIS = 2 +}; + +class KdTreeFindNode +{ +public: + KdTreeFindNode(void) + { + mNode = 0; + mDistance = 0; + } + KdTreeNode *mNode; + double mDistance; +}; + +class KdTreeInterface +{ +public: + virtual const double * getPositionDouble(uint32_t index) const = 0; + virtual const float * getPositionFloat(uint32_t index) const = 0; +}; + +class KdTreeNode +{ +public: + KdTreeNode(void) + { + mIndex = 0; + mLeft = 0; + mRight = 0; + } + + KdTreeNode(uint32_t index) + { + mIndex = index; + mLeft = 0; + mRight = 0; + }; + + ~KdTreeNode(void) + { + } + + + void addDouble(KdTreeNode *node,Axes dim,const KdTreeInterface *iface) + { + const double *nodePosition = iface->getPositionDouble( node->mIndex ); + const double *position = iface->getPositionDouble( mIndex ); + switch ( dim ) + { + case X_AXIS: + if ( nodePosition[0] <= position[0] ) + { + if ( mLeft ) + mLeft->addDouble(node,Y_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addDouble(node,Y_AXIS,iface); + else + mRight = node; + } + break; + case Y_AXIS: + if ( nodePosition[1] <= position[1] ) + { + if ( mLeft ) + mLeft->addDouble(node,Z_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addDouble(node,Z_AXIS,iface); + else + mRight = node; + } + break; + case Z_AXIS: + if ( nodePosition[2] <= position[2] ) + { + if ( mLeft ) + mLeft->addDouble(node,X_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addDouble(node,X_AXIS,iface); + else + mRight = node; + } + break; + } + + } + + + void addFloat(KdTreeNode *node,Axes dim,const KdTreeInterface *iface) + { + const float *nodePosition = iface->getPositionFloat( node->mIndex ); + const float *position = iface->getPositionFloat( mIndex ); + switch ( dim ) + { + case X_AXIS: + if ( nodePosition[0] <= position[0] ) + { + if ( mLeft ) + mLeft->addFloat(node,Y_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addFloat(node,Y_AXIS,iface); + else + mRight = node; + } + break; + case Y_AXIS: + if ( nodePosition[1] <= position[1] ) + { + if ( mLeft ) + mLeft->addFloat(node,Z_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addFloat(node,Z_AXIS,iface); + else + mRight = node; + } + break; + case Z_AXIS: + if ( nodePosition[2] <= position[2] ) + { + if ( mLeft ) + mLeft->addFloat(node,X_AXIS,iface); + else + mLeft = node; + } + else + { + if ( mRight ) + mRight->addFloat(node,X_AXIS,iface); + else + mRight = node; + } + break; + } + + } + + + uint32_t getIndex(void) const { return mIndex; }; + + void search(Axes axis,const double *pos,double radius,uint32_t &count,uint32_t maxObjects,KdTreeFindNode *found,const KdTreeInterface *iface) + { + + const double *position = iface->getPositionDouble(mIndex); + + double dx = pos[0] - position[0]; + double dy = pos[1] - position[1]; + double dz = pos[2] - position[2]; + + KdTreeNode *search1 = 0; + KdTreeNode *search2 = 0; + + switch ( axis ) + { + case X_AXIS: + if ( dx <= 0 ) // JWR if we are to the left + { + search1 = mLeft; // JWR then search to the left + if ( -dx < radius ) // JWR if distance to the right is less than our search radius, continue on the right as well. + search2 = mRight; + } + else + { + search1 = mRight; // JWR ok, we go down the left tree + if ( dx < radius ) // JWR if the distance from the right is less than our search radius + search2 = mLeft; + } + axis = Y_AXIS; + break; + case Y_AXIS: + if ( dy <= 0 ) + { + search1 = mLeft; + if ( -dy < radius ) + search2 = mRight; + } + else + { + search1 = mRight; + if ( dy < radius ) + search2 = mLeft; + } + axis = Z_AXIS; + break; + case Z_AXIS: + if ( dz <= 0 ) + { + search1 = mLeft; + if ( -dz < radius ) + search2 = mRight; + } + else + { + search1 = mRight; + if ( dz < radius ) + search2 = mLeft; + } + axis = X_AXIS; + break; + } + + double r2 = radius*radius; + double m = dx*dx+dy*dy+dz*dz; + + if ( m < r2 ) + { + switch ( count ) + { + case 0: + found[count].mNode = this; + found[count].mDistance = m; + break; + case 1: + if ( m < found[0].mDistance ) + { + if ( maxObjects == 1 ) + { + found[0].mNode = this; + found[0].mDistance = m; + } + else + { + found[1] = found[0]; + found[0].mNode = this; + found[0].mDistance = m; + } + } + else if ( maxObjects > 1) + { + found[1].mNode = this; + found[1].mDistance = m; + } + break; + default: + { + bool inserted = false; + + for (uint32_t i=0; i<count; i++) + { + if ( m < found[i].mDistance ) // if this one is closer than a pre-existing one... + { + // insertion sort... + uint32_t scan = count; + if ( scan >= maxObjects ) scan=maxObjects-1; + for (uint32_t j=scan; j>i; j--) + { + found[j] = found[j-1]; + } + found[i].mNode = this; + found[i].mDistance = m; + inserted = true; + break; + } + } + + if ( !inserted && count < maxObjects ) + { + found[count].mNode = this; + found[count].mDistance = m; + } + } + break; + } + count++; + if ( count > maxObjects ) + { + count = maxObjects; + } + } + + + if ( search1 ) + search1->search( axis, pos,radius, count, maxObjects, found, iface); + + if ( search2 ) + search2->search( axis, pos,radius, count, maxObjects, found, iface); + + } + + void search(Axes axis,const float *pos,float radius,uint32_t &count,uint32_t maxObjects,KdTreeFindNode *found,const KdTreeInterface *iface) + { + + const float *position = iface->getPositionFloat(mIndex); + + float dx = pos[0] - position[0]; + float dy = pos[1] - position[1]; + float dz = pos[2] - position[2]; + + KdTreeNode *search1 = 0; + KdTreeNode *search2 = 0; + + switch ( axis ) + { + case X_AXIS: + if ( dx <= 0 ) // JWR if we are to the left + { + search1 = mLeft; // JWR then search to the left + if ( -dx < radius ) // JWR if distance to the right is less than our search radius, continue on the right as well. + search2 = mRight; + } + else + { + search1 = mRight; // JWR ok, we go down the left tree + if ( dx < radius ) // JWR if the distance from the right is less than our search radius + search2 = mLeft; + } + axis = Y_AXIS; + break; + case Y_AXIS: + if ( dy <= 0 ) + { + search1 = mLeft; + if ( -dy < radius ) + search2 = mRight; + } + else + { + search1 = mRight; + if ( dy < radius ) + search2 = mLeft; + } + axis = Z_AXIS; + break; + case Z_AXIS: + if ( dz <= 0 ) + { + search1 = mLeft; + if ( -dz < radius ) + search2 = mRight; + } + else + { + search1 = mRight; + if ( dz < radius ) + search2 = mLeft; + } + axis = X_AXIS; + break; + } + + float r2 = radius*radius; + float m = dx*dx+dy*dy+dz*dz; + + if ( m < r2 ) + { + switch ( count ) + { + case 0: + found[count].mNode = this; + found[count].mDistance = m; + break; + case 1: + if ( m < found[0].mDistance ) + { + if ( maxObjects == 1 ) + { + found[0].mNode = this; + found[0].mDistance = m; + } + else + { + found[1] = found[0]; + found[0].mNode = this; + found[0].mDistance = m; + } + } + else if ( maxObjects > 1) + { + found[1].mNode = this; + found[1].mDistance = m; + } + break; + default: + { + bool inserted = false; + + for (uint32_t i=0; i<count; i++) + { + if ( m < found[i].mDistance ) // if this one is closer than a pre-existing one... + { + // insertion sort... + uint32_t scan = count; + if ( scan >= maxObjects ) scan=maxObjects-1; + for (uint32_t j=scan; j>i; j--) + { + found[j] = found[j-1]; + } + found[i].mNode = this; + found[i].mDistance = m; + inserted = true; + break; + } + } + + if ( !inserted && count < maxObjects ) + { + found[count].mNode = this; + found[count].mDistance = m; + } + } + break; + } + count++; + if ( count > maxObjects ) + { + count = maxObjects; + } + } + + + if ( search1 ) + search1->search( axis, pos,radius, count, maxObjects, found, iface); + + if ( search2 ) + search2->search( axis, pos,radius, count, maxObjects, found, iface); + + } + +private: + + void setLeft(KdTreeNode *left) { mLeft = left; }; + void setRight(KdTreeNode *right) { mRight = right; }; + + KdTreeNode *getLeft(void) { return mLeft; } + KdTreeNode *getRight(void) { return mRight; } + + uint32_t mIndex; + KdTreeNode *mLeft; + KdTreeNode *mRight; +}; + + +#define MAX_BUNDLE_SIZE 1024 // 1024 nodes at a time, to minimize memory allocation and guarantee that pointers are persistent. + +class KdTreeNodeBundle +{ +public: + + KdTreeNodeBundle(void) + { + mNext = 0; + mIndex = 0; + } + + bool isFull(void) const + { + return (bool)( mIndex == MAX_BUNDLE_SIZE ); + } + + KdTreeNode * getNextNode(void) + { + assert(mIndex<MAX_BUNDLE_SIZE); + KdTreeNode *ret = &mNodes[mIndex]; + mIndex++; + return ret; + } + + KdTreeNodeBundle *mNext; + uint32_t mIndex; + KdTreeNode mNodes[MAX_BUNDLE_SIZE]; +}; + + +typedef std::vector< double > DoubleVector; +typedef std::vector< float > FloatVector; + +class KdTree : public KdTreeInterface +{ +public: + KdTree(void) + { + mRoot = 0; + mBundle = 0; + mVcount = 0; + mUseDouble = false; + } + + virtual ~KdTree(void) + { + reset(); + } + + const double * getPositionDouble(uint32_t index) const + { + assert( mUseDouble ); + assert ( index < mVcount ); + return &mVerticesDouble[index*3]; + } + + const float * getPositionFloat(uint32_t index) const + { + assert( !mUseDouble ); + assert ( index < mVcount ); + return &mVerticesFloat[index*3]; + } + + uint32_t search(const double *pos,double radius,uint32_t maxObjects,KdTreeFindNode *found) const + { + assert( mUseDouble ); + if ( !mRoot ) return 0; + uint32_t count = 0; + mRoot->search(X_AXIS,pos,radius,count,maxObjects,found,this); + return count; + } + + uint32_t search(const float *pos,float radius,uint32_t maxObjects,KdTreeFindNode *found) const + { + assert( !mUseDouble ); + if ( !mRoot ) return 0; + uint32_t count = 0; + mRoot->search(X_AXIS,pos,radius,count,maxObjects,found,this); + return count; + } + + void reset(void) + { + mRoot = 0; + mVerticesDouble.clear(); + mVerticesFloat.clear(); + KdTreeNodeBundle *bundle = mBundle; + while ( bundle ) + { + KdTreeNodeBundle *next = bundle->mNext; + delete bundle; + bundle = next; + } + mBundle = 0; + mVcount = 0; + } + + uint32_t add(double x,double y,double z) + { + assert(mUseDouble); + uint32_t ret = mVcount; + mVerticesDouble.push_back(x); + mVerticesDouble.push_back(y); + mVerticesDouble.push_back(z); + mVcount++; + KdTreeNode *node = getNewNode(ret); + if ( mRoot ) + { + mRoot->addDouble(node,X_AXIS,this); + } + else + { + mRoot = node; + } + return ret; + } + + uint32_t add(float x,float y,float z) + { + assert(!mUseDouble); + uint32_t ret = mVcount; + mVerticesFloat.push_back(x); + mVerticesFloat.push_back(y); + mVerticesFloat.push_back(z); + mVcount++; + KdTreeNode *node = getNewNode(ret); + if ( mRoot ) + { + mRoot->addFloat(node,X_AXIS,this); + } + else + { + mRoot = node; + } + return ret; + } + + KdTreeNode * getNewNode(uint32_t index) + { + if ( mBundle == 0 ) + { + mBundle = new KdTreeNodeBundle; + } + if ( mBundle->isFull() ) + { + KdTreeNodeBundle *bundle = new KdTreeNodeBundle; + mBundle->mNext = bundle; + mBundle = bundle; + } + KdTreeNode *node = mBundle->getNextNode(); + new ( node ) KdTreeNode(index); + return node; + } + + uint32_t getNearest(const double *pos,double radius,bool &_found) const // returns the nearest possible neighbor's index. + { + assert( mUseDouble ); + uint32_t ret = 0; + + _found = false; + KdTreeFindNode found[1]; + uint32_t count = search(pos,radius,1,found); + if ( count ) + { + KdTreeNode *node = found[0].mNode; + ret = node->getIndex(); + _found = true; + } + return ret; + } + + uint32_t getNearest(const float *pos,float radius,bool &_found) const // returns the nearest possible neighbor's index. + { + assert( !mUseDouble ); + uint32_t ret = 0; + + _found = false; + KdTreeFindNode found[1]; + uint32_t count = search(pos,radius,1,found); + if ( count ) + { + KdTreeNode *node = found[0].mNode; + ret = node->getIndex(); + _found = true; + } + return ret; + } + + const double * getVerticesDouble(void) const + { + assert( mUseDouble ); + const double *ret = 0; + if ( !mVerticesDouble.empty() ) + { + ret = &mVerticesDouble[0]; + } + return ret; + } + + const float * getVerticesFloat(void) const + { + assert( !mUseDouble ); + const float * ret = 0; + if ( !mVerticesFloat.empty() ) + { + ret = &mVerticesFloat[0]; + } + return ret; + } + + uint32_t getVcount(void) const { return mVcount; }; + + void setUseDouble(bool useDouble) + { + mUseDouble = useDouble; + } + +private: + bool mUseDouble; + KdTreeNode *mRoot; + KdTreeNodeBundle *mBundle; + uint32_t mVcount; + DoubleVector mVerticesDouble; + FloatVector mVerticesFloat; +}; + +}; // end of namespace VERTEX_INDEX + +class MyVertexIndex : public fm_VertexIndex +{ +public: + MyVertexIndex(double granularity,bool snapToGrid) + { + mDoubleGranularity = granularity; + mFloatGranularity = (float)granularity; + mSnapToGrid = snapToGrid; + mUseDouble = true; + mKdTree.setUseDouble(true); + } + + MyVertexIndex(float granularity,bool snapToGrid) + { + mDoubleGranularity = granularity; + mFloatGranularity = (float)granularity; + mSnapToGrid = snapToGrid; + mUseDouble = false; + mKdTree.setUseDouble(false); + } + + virtual ~MyVertexIndex(void) + { + + } + + + double snapToGrid(double p) + { + double m = fmod(p,mDoubleGranularity); + p-=m; + return p; + } + + float snapToGrid(float p) + { + float m = fmodf(p,mFloatGranularity); + p-=m; + return p; + } + + uint32_t getIndex(const float *_p,bool &newPos) // get index for a vector float + { + uint32_t ret; + + if ( mUseDouble ) + { + double p[3]; + p[0] = _p[0]; + p[1] = _p[1]; + p[2] = _p[2]; + return getIndex(p,newPos); + } + + newPos = false; + + float p[3]; + + if ( mSnapToGrid ) + { + p[0] = snapToGrid(_p[0]); + p[1] = snapToGrid(_p[1]); + p[2] = snapToGrid(_p[2]); + } + else + { + p[0] = _p[0]; + p[1] = _p[1]; + p[2] = _p[2]; + } + + bool found; + ret = mKdTree.getNearest(p,mFloatGranularity,found); + if ( !found ) + { + newPos = true; + ret = mKdTree.add(p[0],p[1],p[2]); + } + + + return ret; + } + + uint32_t getIndex(const double *_p,bool &newPos) // get index for a vector double + { + uint32_t ret; + + if ( !mUseDouble ) + { + float p[3]; + p[0] = (float)_p[0]; + p[1] = (float)_p[1]; + p[2] = (float)_p[2]; + return getIndex(p,newPos); + } + + newPos = false; + + double p[3]; + + if ( mSnapToGrid ) + { + p[0] = snapToGrid(_p[0]); + p[1] = snapToGrid(_p[1]); + p[2] = snapToGrid(_p[2]); + } + else + { + p[0] = _p[0]; + p[1] = _p[1]; + p[2] = _p[2]; + } + + bool found; + ret = mKdTree.getNearest(p,mDoubleGranularity,found); + if ( !found ) + { + newPos = true; + ret = mKdTree.add(p[0],p[1],p[2]); + } + + + return ret; + } + + const float * getVerticesFloat(void) const + { + const float * ret = 0; + + assert( !mUseDouble ); + + ret = mKdTree.getVerticesFloat(); + + return ret; + } + + const double * getVerticesDouble(void) const + { + const double * ret = 0; + + assert( mUseDouble ); + + ret = mKdTree.getVerticesDouble(); + + return ret; + } + + const float * getVertexFloat(uint32_t index) const + { + const float * ret = 0; + assert( !mUseDouble ); +#ifdef _DEBUG + uint32_t vcount = mKdTree.getVcount(); + assert( index < vcount ); +#endif + ret = mKdTree.getVerticesFloat(); + ret = &ret[index*3]; + return ret; + } + + const double * getVertexDouble(uint32_t index) const + { + const double * ret = 0; + assert( mUseDouble ); +#ifdef _DEBUG + uint32_t vcount = mKdTree.getVcount(); + assert( index < vcount ); +#endif + ret = mKdTree.getVerticesDouble(); + ret = &ret[index*3]; + + return ret; + } + + uint32_t getVcount(void) const + { + return mKdTree.getVcount(); + } + + bool isDouble(void) const + { + return mUseDouble; + } + + + bool saveAsObj(const char *fname,uint32_t tcount,uint32_t *indices) + { + bool ret = false; + + + FILE *fph = fopen(fname,"wb"); + if ( fph ) + { + ret = true; + + uint32_t vcount = getVcount(); + if ( mUseDouble ) + { + const double *v = getVerticesDouble(); + for (uint32_t i=0; i<vcount; i++) + { + fprintf(fph,"v %0.9f %0.9f %0.9f\r\n", (float)v[0], (float)v[1], (float)v[2] ); + v+=3; + } + } + else + { + const float *v = getVerticesFloat(); + for (uint32_t i=0; i<vcount; i++) + { + fprintf(fph,"v %0.9f %0.9f %0.9f\r\n", v[0], v[1], v[2] ); + v+=3; + } + } + + for (uint32_t i=0; i<tcount; i++) + { + uint32_t i1 = *indices++; + uint32_t i2 = *indices++; + uint32_t i3 = *indices++; + fprintf(fph,"f %d %d %d\r\n", i1+1, i2+1, i3+1 ); + } + fclose(fph); + } + + return ret; + } + +private: + bool mUseDouble:1; + bool mSnapToGrid:1; + double mDoubleGranularity; + float mFloatGranularity; + VERTEX_INDEX::KdTree mKdTree; +}; + +fm_VertexIndex * fm_createVertexIndex(double granularity,bool snapToGrid) // create an indexed vertex system for doubles +{ + MyVertexIndex *ret = new MyVertexIndex(granularity,snapToGrid); + return static_cast< fm_VertexIndex *>(ret); +} + +fm_VertexIndex * fm_createVertexIndex(float granularity,bool snapToGrid) // create an indexed vertext system for floats +{ + MyVertexIndex *ret = new MyVertexIndex(granularity,snapToGrid); + return static_cast< fm_VertexIndex *>(ret); +} + +void fm_releaseVertexIndex(fm_VertexIndex *vindex) +{ + MyVertexIndex *m = static_cast< MyVertexIndex *>(vindex); + delete m; +} + +#endif // END OF VERTEX WELDING CODE + + +REAL fm_computeBestFitAABB(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *bmin,REAL *bmax) // returns the diagonal distance +{ + + const uint8_t *source = (const uint8_t *) points; + + bmin[0] = points[0]; + bmin[1] = points[1]; + bmin[2] = points[2]; + + bmax[0] = points[0]; + bmax[1] = points[1]; + bmax[2] = points[2]; + + + for (uint32_t i=1; i<vcount; i++) + { + source+=pstride; + const REAL *p = (const REAL *) source; + + if ( p[0] < bmin[0] ) bmin[0] = p[0]; + if ( p[1] < bmin[1] ) bmin[1] = p[1]; + if ( p[2] < bmin[2] ) bmin[2] = p[2]; + + if ( p[0] > bmax[0] ) bmax[0] = p[0]; + if ( p[1] > bmax[1] ) bmax[1] = p[1]; + if ( p[2] > bmax[2] ) bmax[2] = p[2]; + + } + + REAL dx = bmax[0] - bmin[0]; + REAL dy = bmax[1] - bmin[1]; + REAL dz = bmax[2] - bmin[2]; + + return (REAL) sqrt( dx*dx + dy*dy + dz*dz ); + +} + + + +/* a = b - c */ +#define vector(a,b,c) \ + (a)[0] = (b)[0] - (c)[0]; \ + (a)[1] = (b)[1] - (c)[1]; \ + (a)[2] = (b)[2] - (c)[2]; + + + +#define innerProduct(v,q) \ + ((v)[0] * (q)[0] + \ + (v)[1] * (q)[1] + \ + (v)[2] * (q)[2]) + +#define crossProduct(a,b,c) \ + (a)[0] = (b)[1] * (c)[2] - (c)[1] * (b)[2]; \ + (a)[1] = (b)[2] * (c)[0] - (c)[2] * (b)[0]; \ + (a)[2] = (b)[0] * (c)[1] - (c)[0] * (b)[1]; + + +bool fm_lineIntersectsTriangle(const REAL *rayStart,const REAL *rayEnd,const REAL *p1,const REAL *p2,const REAL *p3,REAL *sect) +{ + REAL dir[3]; + + dir[0] = rayEnd[0] - rayStart[0]; + dir[1] = rayEnd[1] - rayStart[1]; + dir[2] = rayEnd[2] - rayStart[2]; + + REAL d = (REAL)sqrt(dir[0]*dir[0] + dir[1]*dir[1] + dir[2]*dir[2]); + REAL r = 1.0f / d; + + dir[0]*=r; + dir[1]*=r; + dir[2]*=r; + + + REAL t; + + bool ret = fm_rayIntersectsTriangle(rayStart, dir, p1, p2, p3, t ); + + if ( ret ) + { + if ( t > d ) + { + sect[0] = rayStart[0] + dir[0]*t; + sect[1] = rayStart[1] + dir[1]*t; + sect[2] = rayStart[2] + dir[2]*t; + } + else + { + ret = false; + } + } + + return ret; +} + + + +bool fm_rayIntersectsTriangle(const REAL *p,const REAL *d,const REAL *v0,const REAL *v1,const REAL *v2,REAL &t) +{ + REAL e1[3],e2[3],h[3],s[3],q[3]; + REAL a,f,u,v; + + vector(e1,v1,v0); + vector(e2,v2,v0); + crossProduct(h,d,e2); + a = innerProduct(e1,h); + + if (a > -0.00001 && a < 0.00001) + return(false); + + f = 1/a; + vector(s,p,v0); + u = f * (innerProduct(s,h)); + + if (u < 0.0 || u > 1.0) + return(false); + + crossProduct(q,s,e1); + v = f * innerProduct(d,q); + if (v < 0.0 || u + v > 1.0) + return(false); + // at this stage we can compute t to find out where + // the intersection point is on the line + t = f * innerProduct(e2,q); + if (t > 0) // ray intersection + return(true); + else // this means that there is a line intersection + // but not a ray intersection + return (false); +} + + +inline REAL det(const REAL *p1,const REAL *p2,const REAL *p3) +{ + return p1[0]*p2[1]*p3[2] + p2[0]*p3[1]*p1[2] + p3[0]*p1[1]*p2[2] -p1[0]*p3[1]*p2[2] - p2[0]*p1[1]*p3[2] - p3[0]*p2[1]*p1[2]; +} + + +REAL fm_computeMeshVolume(const REAL *vertices,uint32_t tcount,const uint32_t *indices) +{ + REAL volume = 0; + + for (uint32_t i=0; i<tcount; i++,indices+=3) + { + const REAL *p1 = &vertices[ indices[0]*3 ]; + const REAL *p2 = &vertices[ indices[1]*3 ]; + const REAL *p3 = &vertices[ indices[2]*3 ]; + volume+=det(p1,p2,p3); // compute the volume of the tetrahedran relative to the origin. + } + + volume*=(1.0f/6.0f); + if ( volume < 0 ) + volume*=-1; + return volume; +} + + +const REAL * fm_getPoint(const REAL *points,uint32_t pstride,uint32_t index) +{ + const uint8_t *scan = (const uint8_t *)points; + scan+=(index*pstride); + return (REAL *)scan; +} + + +bool fm_insideTriangle(REAL Ax, REAL Ay, + REAL Bx, REAL By, + REAL Cx, REAL Cy, + REAL Px, REAL Py) + +{ + REAL ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; + REAL cCROSSap, bCROSScp, aCROSSbp; + + ax = Cx - Bx; ay = Cy - By; + bx = Ax - Cx; by = Ay - Cy; + cx = Bx - Ax; cy = By - Ay; + apx= Px - Ax; apy= Py - Ay; + bpx= Px - Bx; bpy= Py - By; + cpx= Px - Cx; cpy= Py - Cy; + + aCROSSbp = ax*bpy - ay*bpx; + cCROSSap = cx*apy - cy*apx; + bCROSScp = bx*cpy - by*cpx; + + return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f)); +} + + +REAL fm_areaPolygon2d(uint32_t pcount,const REAL *points,uint32_t pstride) +{ + int32_t n = (int32_t)pcount; + + REAL A=0.0f; + for(int32_t p=n-1,q=0; q<n; p=q++) + { + const REAL *p1 = fm_getPoint(points,pstride,p); + const REAL *p2 = fm_getPoint(points,pstride,q); + A+= p1[0]*p2[1] - p2[0]*p1[1]; + } + return A*0.5f; +} + + +bool fm_pointInsidePolygon2d(uint32_t pcount,const REAL *points,uint32_t pstride,const REAL *point,uint32_t xindex,uint32_t yindex) +{ + uint32_t j = pcount-1; + int32_t oddNodes = 0; + + REAL x = point[xindex]; + REAL y = point[yindex]; + + for (uint32_t i=0; i<pcount; i++) + { + const REAL *p1 = fm_getPoint(points,pstride,i); + const REAL *p2 = fm_getPoint(points,pstride,j); + + REAL x1 = p1[xindex]; + REAL y1 = p1[yindex]; + + REAL x2 = p2[xindex]; + REAL y2 = p2[yindex]; + + if ( (y1 < y && y2 >= y) || (y2 < y && y1 >= y) ) + { + if (x1+(y-y1)/(y2-y1)*(x2-x1)<x) + { + oddNodes = 1-oddNodes; + } + } + j = i; + } + + return oddNodes ? true : false; +} + + +uint32_t fm_consolidatePolygon(uint32_t pcount,const REAL *points,uint32_t pstride,REAL *_dest,REAL epsilon) // collapses co-linear edges. +{ + uint32_t ret = 0; + + + if ( pcount >= 3 ) + { + const REAL *prev = fm_getPoint(points,pstride,pcount-1); + const REAL *current = points; + const REAL *next = fm_getPoint(points,pstride,1); + REAL *dest = _dest; + + for (uint32_t i=0; i<pcount; i++) + { + + next = (i+1)==pcount ? points : next; + + if ( !fm_colinear(prev,current,next,epsilon) ) + { + dest[0] = current[0]; + dest[1] = current[1]; + dest[2] = current[2]; + + dest+=3; + ret++; + } + + prev = current; + current+=3; + next+=3; + + } + } + + return ret; +} + + +#ifndef RECT3D_TEMPLATE + +#define RECT3D_TEMPLATE + +template <class T> class Rect3d +{ +public: + Rect3d(void) { }; + + Rect3d(const T *bmin,const T *bmax) + { + + mMin[0] = bmin[0]; + mMin[1] = bmin[1]; + mMin[2] = bmin[2]; + + mMax[0] = bmax[0]; + mMax[1] = bmax[1]; + mMax[2] = bmax[2]; + + } + + void SetMin(const T *bmin) + { + mMin[0] = bmin[0]; + mMin[1] = bmin[1]; + mMin[2] = bmin[2]; + } + + void SetMax(const T *bmax) + { + mMax[0] = bmax[0]; + mMax[1] = bmax[1]; + mMax[2] = bmax[2]; + } + + void SetMin(T x,T y,T z) + { + mMin[0] = x; + mMin[1] = y; + mMin[2] = z; + } + + void SetMax(T x,T y,T z) + { + mMax[0] = x; + mMax[1] = y; + mMax[2] = z; + } + + T mMin[3]; + T mMax[3]; +}; + +#endif + +void splitRect(uint32_t axis, + const Rect3d<REAL> &source, + Rect3d<REAL> &b1, + Rect3d<REAL> &b2, + const REAL *midpoint) +{ + switch ( axis ) + { + case 0: + b1.SetMin(source.mMin); + b1.SetMax( midpoint[0], source.mMax[1], source.mMax[2] ); + + b2.SetMin( midpoint[0], source.mMin[1], source.mMin[2] ); + b2.SetMax(source.mMax); + + break; + case 1: + b1.SetMin(source.mMin); + b1.SetMax( source.mMax[0], midpoint[1], source.mMax[2] ); + + b2.SetMin( source.mMin[0], midpoint[1], source.mMin[2] ); + b2.SetMax(source.mMax); + + break; + case 2: + b1.SetMin(source.mMin); + b1.SetMax( source.mMax[0], source.mMax[1], midpoint[2] ); + + b2.SetMin( source.mMin[0], source.mMin[1], midpoint[2] ); + b2.SetMax(source.mMax); + + break; + } +} + +bool fm_computeSplitPlane(uint32_t vcount, + const REAL *vertices, + uint32_t /* tcount */, + const uint32_t * /* indices */, + REAL *plane) +{ + + REAL sides[3]; + REAL matrix[16]; + + fm_computeBestFitOBB( vcount, vertices, sizeof(REAL)*3, sides, matrix ); + + REAL bmax[3]; + REAL bmin[3]; + + bmax[0] = sides[0]*0.5f; + bmax[1] = sides[1]*0.5f; + bmax[2] = sides[2]*0.5f; + + bmin[0] = -bmax[0]; + bmin[1] = -bmax[1]; + bmin[2] = -bmax[2]; + + + REAL dx = sides[0]; + REAL dy = sides[1]; + REAL dz = sides[2]; + + + uint32_t axis = 0; + + if ( dy > dx ) + { + axis = 1; + } + + if ( dz > dx && dz > dy ) + { + axis = 2; + } + + REAL p1[3]; + REAL p2[3]; + REAL p3[3]; + + p3[0] = p2[0] = p1[0] = bmin[0] + dx*0.5f; + p3[1] = p2[1] = p1[1] = bmin[1] + dy*0.5f; + p3[2] = p2[2] = p1[2] = bmin[2] + dz*0.5f; + + Rect3d<REAL> b(bmin,bmax); + + Rect3d<REAL> b1,b2; + + splitRect(axis,b,b1,b2,p1); + + + switch ( axis ) + { + case 0: + p2[1] = bmin[1]; + p2[2] = bmin[2]; + + if ( dz > dy ) + { + p3[1] = bmax[1]; + p3[2] = bmin[2]; + } + else + { + p3[1] = bmin[1]; + p3[2] = bmax[2]; + } + + break; + case 1: + p2[0] = bmin[0]; + p2[2] = bmin[2]; + + if ( dx > dz ) + { + p3[0] = bmax[0]; + p3[2] = bmin[2]; + } + else + { + p3[0] = bmin[0]; + p3[2] = bmax[2]; + } + + break; + case 2: + p2[0] = bmin[0]; + p2[1] = bmin[1]; + + if ( dx > dy ) + { + p3[0] = bmax[0]; + p3[1] = bmin[1]; + } + else + { + p3[0] = bmin[0]; + p3[1] = bmax[1]; + } + + break; + } + + REAL tp1[3]; + REAL tp2[3]; + REAL tp3[3]; + + fm_transform(matrix,p1,tp1); + fm_transform(matrix,p2,tp2); + fm_transform(matrix,p3,tp3); + + plane[3] = fm_computePlane(tp1,tp2,tp3,plane); + + return true; + +} + +#pragma warning(disable:4100) + +void fm_nearestPointInTriangle(const REAL * /*nearestPoint*/,const REAL * /*p1*/,const REAL * /*p2*/,const REAL * /*p3*/,REAL * /*nearest*/) +{ + +} + +static REAL Partial(const REAL *a,const REAL *p) +{ + return (a[0]*p[1]) - (p[0]*a[1]); +} + +REAL fm_areaTriangle(const REAL *p0,const REAL *p1,const REAL *p2) +{ + REAL A = Partial(p0,p1); + A+= Partial(p1,p2); + A+= Partial(p2,p0); + return A*0.5f; +} + +void fm_subtract(const REAL *A,const REAL *B,REAL *diff) // compute A-B and store the result in 'diff' +{ + diff[0] = A[0]-B[0]; + diff[1] = A[1]-B[1]; + diff[2] = A[2]-B[2]; +} + + +void fm_multiplyTransform(const REAL *pA,const REAL *pB,REAL *pM) +{ + + REAL a = pA[0*4+0] * pB[0*4+0] + pA[0*4+1] * pB[1*4+0] + pA[0*4+2] * pB[2*4+0] + pA[0*4+3] * pB[3*4+0]; + REAL b = pA[0*4+0] * pB[0*4+1] + pA[0*4+1] * pB[1*4+1] + pA[0*4+2] * pB[2*4+1] + pA[0*4+3] * pB[3*4+1]; + REAL c = pA[0*4+0] * pB[0*4+2] + pA[0*4+1] * pB[1*4+2] + pA[0*4+2] * pB[2*4+2] + pA[0*4+3] * pB[3*4+2]; + REAL d = pA[0*4+0] * pB[0*4+3] + pA[0*4+1] * pB[1*4+3] + pA[0*4+2] * pB[2*4+3] + pA[0*4+3] * pB[3*4+3]; + + REAL e = pA[1*4+0] * pB[0*4+0] + pA[1*4+1] * pB[1*4+0] + pA[1*4+2] * pB[2*4+0] + pA[1*4+3] * pB[3*4+0]; + REAL f = pA[1*4+0] * pB[0*4+1] + pA[1*4+1] * pB[1*4+1] + pA[1*4+2] * pB[2*4+1] + pA[1*4+3] * pB[3*4+1]; + REAL g = pA[1*4+0] * pB[0*4+2] + pA[1*4+1] * pB[1*4+2] + pA[1*4+2] * pB[2*4+2] + pA[1*4+3] * pB[3*4+2]; + REAL h = pA[1*4+0] * pB[0*4+3] + pA[1*4+1] * pB[1*4+3] + pA[1*4+2] * pB[2*4+3] + pA[1*4+3] * pB[3*4+3]; + + REAL i = pA[2*4+0] * pB[0*4+0] + pA[2*4+1] * pB[1*4+0] + pA[2*4+2] * pB[2*4+0] + pA[2*4+3] * pB[3*4+0]; + REAL j = pA[2*4+0] * pB[0*4+1] + pA[2*4+1] * pB[1*4+1] + pA[2*4+2] * pB[2*4+1] + pA[2*4+3] * pB[3*4+1]; + REAL k = pA[2*4+0] * pB[0*4+2] + pA[2*4+1] * pB[1*4+2] + pA[2*4+2] * pB[2*4+2] + pA[2*4+3] * pB[3*4+2]; + REAL l = pA[2*4+0] * pB[0*4+3] + pA[2*4+1] * pB[1*4+3] + pA[2*4+2] * pB[2*4+3] + pA[2*4+3] * pB[3*4+3]; + + REAL m = pA[3*4+0] * pB[0*4+0] + pA[3*4+1] * pB[1*4+0] + pA[3*4+2] * pB[2*4+0] + pA[3*4+3] * pB[3*4+0]; + REAL n = pA[3*4+0] * pB[0*4+1] + pA[3*4+1] * pB[1*4+1] + pA[3*4+2] * pB[2*4+1] + pA[3*4+3] * pB[3*4+1]; + REAL o = pA[3*4+0] * pB[0*4+2] + pA[3*4+1] * pB[1*4+2] + pA[3*4+2] * pB[2*4+2] + pA[3*4+3] * pB[3*4+2]; + REAL p = pA[3*4+0] * pB[0*4+3] + pA[3*4+1] * pB[1*4+3] + pA[3*4+2] * pB[2*4+3] + pA[3*4+3] * pB[3*4+3]; + + pM[0] = a; pM[1] = b; pM[2] = c; pM[3] = d; + + pM[4] = e; pM[5] = f; pM[6] = g; pM[7] = h; + + pM[8] = i; pM[9] = j; pM[10] = k; pM[11] = l; + + pM[12] = m; pM[13] = n; pM[14] = o; pM[15] = p; +} + +void fm_multiply(REAL *A,REAL scaler) +{ + A[0]*=scaler; + A[1]*=scaler; + A[2]*=scaler; +} + +void fm_add(const REAL *A,const REAL *B,REAL *sum) +{ + sum[0] = A[0]+B[0]; + sum[1] = A[1]+B[1]; + sum[2] = A[2]+B[2]; +} + +void fm_copy3(const REAL *source,REAL *dest) +{ + dest[0] = source[0]; + dest[1] = source[1]; + dest[2] = source[2]; +} + + +uint32_t fm_copyUniqueVertices(uint32_t vcount,const REAL *input_vertices,REAL *output_vertices,uint32_t tcount,const uint32_t *input_indices,uint32_t *output_indices) +{ + uint32_t ret = 0; + + REAL *vertices = (REAL *)malloc(sizeof(REAL)*vcount*3); + memcpy(vertices,input_vertices,sizeof(REAL)*vcount*3); + REAL *dest = output_vertices; + + uint32_t *reindex = (uint32_t *)malloc(sizeof(uint32_t)*vcount); + memset(reindex,0xFF,sizeof(uint32_t)*vcount); + + uint32_t icount = tcount*3; + + for (uint32_t i=0; i<icount; i++) + { + uint32_t index = *input_indices++; + + assert( index < vcount ); + + if ( reindex[index] == 0xFFFFFFFF ) + { + *output_indices++ = ret; + reindex[index] = ret; + const REAL *pos = &vertices[index*3]; + dest[0] = pos[0]; + dest[1] = pos[1]; + dest[2] = pos[2]; + dest+=3; + ret++; + } + else + { + *output_indices++ = reindex[index]; + } + } + free(vertices); + free(reindex); + return ret; +} + +bool fm_isMeshCoplanar(uint32_t tcount,const uint32_t *indices,const REAL *vertices,bool doubleSided) // returns true if this collection of indexed triangles are co-planar! +{ + bool ret = true; + + if ( tcount > 0 ) + { + uint32_t i1 = indices[0]; + uint32_t i2 = indices[1]; + uint32_t i3 = indices[2]; + const REAL *p1 = &vertices[i1*3]; + const REAL *p2 = &vertices[i2*3]; + const REAL *p3 = &vertices[i3*3]; + REAL plane[4]; + plane[3] = fm_computePlane(p1,p2,p3,plane); + const uint32_t *scan = &indices[3]; + for (uint32_t i=1; i<tcount; i++) + { + i1 = *scan++; + i2 = *scan++; + i3 = *scan++; + p1 = &vertices[i1*3]; + p2 = &vertices[i2*3]; + p3 = &vertices[i3*3]; + REAL _plane[4]; + _plane[3] = fm_computePlane(p1,p2,p3,_plane); + if ( !fm_samePlane(plane,_plane,0.01f,0.001f,doubleSided) ) + { + ret = false; + break; + } + } + } + return ret; +} + + +bool fm_samePlane(const REAL p1[4],const REAL p2[4],REAL normalEpsilon,REAL dEpsilon,bool doubleSided) +{ + bool ret = false; + +#if 0 + if (p1[0] == p2[0] && + p1[1] == p2[1] && + p1[2] == p2[2] && + p1[3] == p2[3]) + { + ret = true; + } +#else + REAL diff = (REAL) fabs(p1[3]-p2[3]); + if ( diff < dEpsilon ) // if the plane -d co-efficient is within our epsilon + { + REAL dot = fm_dot(p1,p2); // compute the dot-product of the vector normals. + if ( doubleSided ) dot = (REAL)fabs(dot); + REAL dmin = 1 - normalEpsilon; + REAL dmax = 1 + normalEpsilon; + if ( dot >= dmin && dot <= dmax ) + { + ret = true; // then the plane equation is for practical purposes identical. + } + } +#endif + return ret; +} + + +void fm_initMinMax(REAL bmin[3],REAL bmax[3]) +{ + bmin[0] = FLT_MAX; + bmin[1] = FLT_MAX; + bmin[2] = FLT_MAX; + + bmax[0] = -FLT_MAX; + bmax[1] = -FLT_MAX; + bmax[2] = -FLT_MAX; +} + +void fm_inflateMinMax(REAL bmin[3], REAL bmax[3], REAL ratio) +{ + REAL inflate = fm_distance(bmin, bmax)*0.5f*ratio; + + bmin[0] -= inflate; + bmin[1] -= inflate; + bmin[2] -= inflate; + + bmax[0] += inflate; + bmax[1] += inflate; + bmax[2] += inflate; +} + +#ifndef TESSELATE_H + +#define TESSELATE_H + +typedef std::vector< uint32_t > UintVector; + +class Myfm_Tesselate : public fm_Tesselate +{ +public: + virtual ~Myfm_Tesselate(void) + { + + } + + const uint32_t * tesselate(fm_VertexIndex *vindex,uint32_t tcount,const uint32_t *indices,float longEdge,uint32_t maxDepth,uint32_t &outcount) + { + const uint32_t *ret = 0; + + mMaxDepth = maxDepth; + mLongEdge = longEdge*longEdge; + mLongEdgeD = mLongEdge; + mVertices = vindex; + + if ( mVertices->isDouble() ) + { + uint32_t vcount = mVertices->getVcount(); + double *vertices = (double *)malloc(sizeof(double)*vcount*3); + memcpy(vertices,mVertices->getVerticesDouble(),sizeof(double)*vcount*3); + + for (uint32_t i=0; i<tcount; i++) + { + uint32_t i1 = *indices++; + uint32_t i2 = *indices++; + uint32_t i3 = *indices++; + + const double *p1 = &vertices[i1*3]; + const double *p2 = &vertices[i2*3]; + const double *p3 = &vertices[i3*3]; + + tesselate(p1,p2,p3,0); + + } + free(vertices); + } + else + { + uint32_t vcount = mVertices->getVcount(); + float *vertices = (float *)malloc(sizeof(float)*vcount*3); + memcpy(vertices,mVertices->getVerticesFloat(),sizeof(float)*vcount*3); + + + for (uint32_t i=0; i<tcount; i++) + { + uint32_t i1 = *indices++; + uint32_t i2 = *indices++; + uint32_t i3 = *indices++; + + const float *p1 = &vertices[i1*3]; + const float *p2 = &vertices[i2*3]; + const float *p3 = &vertices[i3*3]; + + tesselate(p1,p2,p3,0); + + } + free(vertices); + } + + outcount = (uint32_t)(mIndices.size()/3); + ret = &mIndices[0]; + + + return ret; + } + + void tesselate(const float *p1,const float *p2,const float *p3,uint32_t recurse) + { + bool split = false; + float l1,l2,l3; + + l1 = l2 = l3 = 0; + + if ( recurse < mMaxDepth ) + { + l1 = fm_distanceSquared(p1,p2); + l2 = fm_distanceSquared(p2,p3); + l3 = fm_distanceSquared(p3,p1); + + if ( l1 > mLongEdge || l2 > mLongEdge || l3 > mLongEdge ) + split = true; + + } + + if ( split ) + { + uint32_t edge; + + if ( l1 >= l2 && l1 >= l3 ) + edge = 0; + else if ( l2 >= l1 && l2 >= l3 ) + edge = 1; + else + edge = 2; + + float splits[3]; + + switch ( edge ) + { + case 0: + { + fm_lerp(p1,p2,splits,0.5f); + tesselate(p1,splits,p3, recurse+1 ); + tesselate(splits,p2,p3, recurse+1 ); + } + break; + case 1: + { + fm_lerp(p2,p3,splits,0.5f); + tesselate(p1,p2,splits, recurse+1 ); + tesselate(p1,splits,p3, recurse+1 ); + } + break; + case 2: + { + fm_lerp(p3,p1,splits,0.5f); + tesselate(p1,p2,splits, recurse+1 ); + tesselate(splits,p2,p3, recurse+1 ); + } + break; + } + } + else + { + bool newp; + + uint32_t i1 = mVertices->getIndex(p1,newp); + uint32_t i2 = mVertices->getIndex(p2,newp); + uint32_t i3 = mVertices->getIndex(p3,newp); + + mIndices.push_back(i1); + mIndices.push_back(i2); + mIndices.push_back(i3); + } + + } + + void tesselate(const double *p1,const double *p2,const double *p3,uint32_t recurse) + { + bool split = false; + double l1,l2,l3; + + l1 = l2 = l3 = 0; + + if ( recurse < mMaxDepth ) + { + l1 = fm_distanceSquared(p1,p2); + l2 = fm_distanceSquared(p2,p3); + l3 = fm_distanceSquared(p3,p1); + + if ( l1 > mLongEdgeD || l2 > mLongEdgeD || l3 > mLongEdgeD ) + split = true; + + } + + if ( split ) + { + uint32_t edge; + + if ( l1 >= l2 && l1 >= l3 ) + edge = 0; + else if ( l2 >= l1 && l2 >= l3 ) + edge = 1; + else + edge = 2; + + double splits[3]; + + switch ( edge ) + { + case 0: + { + fm_lerp(p1,p2,splits,0.5); + tesselate(p1,splits,p3, recurse+1 ); + tesselate(splits,p2,p3, recurse+1 ); + } + break; + case 1: + { + fm_lerp(p2,p3,splits,0.5); + tesselate(p1,p2,splits, recurse+1 ); + tesselate(p1,splits,p3, recurse+1 ); + } + break; + case 2: + { + fm_lerp(p3,p1,splits,0.5); + tesselate(p1,p2,splits, recurse+1 ); + tesselate(splits,p2,p3, recurse+1 ); + } + break; + } + } + else + { + bool newp; + + uint32_t i1 = mVertices->getIndex(p1,newp); + uint32_t i2 = mVertices->getIndex(p2,newp); + uint32_t i3 = mVertices->getIndex(p3,newp); + + mIndices.push_back(i1); + mIndices.push_back(i2); + mIndices.push_back(i3); + } + + } + +private: + float mLongEdge; + double mLongEdgeD; + fm_VertexIndex *mVertices; + UintVector mIndices; + uint32_t mMaxDepth; +}; + +fm_Tesselate * fm_createTesselate(void) +{ + Myfm_Tesselate *m = new Myfm_Tesselate; + return static_cast< fm_Tesselate * >(m); +} + +void fm_releaseTesselate(fm_Tesselate *t) +{ + Myfm_Tesselate *m = static_cast< Myfm_Tesselate *>(t); + delete m; +} + +#endif + + +#ifndef RAY_ABB_INTERSECT + +#define RAY_ABB_INTERSECT + +//! Integer representation of a floating-point value. +#define IR(x) ((uint32_t&)x) + +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +/** +* A method to compute a ray-AABB intersection. +* Original code by Andrew Woo, from "Graphics Gems", Academic Press, 1990 +* Optimized code by Pierre Terdiman, 2000 (~20-30% faster on my Celeron 500) +* Epsilon value added by Klaus Hartmann. (discarding it saves a few cycles only) +* +* Hence this version is faster as well as more robust than the original one. +* +* Should work provided: +* 1) the integer representation of 0.0f is 0x00000000 +* 2) the sign bit of the float is the most significant one +* +* Report bugs: p.terdiman@codercorner.com +* +* \param aabb [in] the axis-aligned bounding box +* \param origin [in] ray origin +* \param dir [in] ray direction +* \param coord [out] impact coordinates +* \return true if ray intersects AABB +*/ +/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +#define RAYAABB_EPSILON 0.00001f +bool fm_intersectRayAABB(const float MinB[3],const float MaxB[3],const float origin[3],const float dir[3],float coord[3]) +{ + bool Inside = true; + float MaxT[3]; + MaxT[0]=MaxT[1]=MaxT[2]=-1.0f; + + // Find candidate planes. + for(uint32_t i=0;i<3;i++) + { + if(origin[i] < MinB[i]) + { + coord[i] = MinB[i]; + Inside = false; + + // Calculate T distances to candidate planes + if(IR(dir[i])) MaxT[i] = (MinB[i] - origin[i]) / dir[i]; + } + else if(origin[i] > MaxB[i]) + { + coord[i] = MaxB[i]; + Inside = false; + + // Calculate T distances to candidate planes + if(IR(dir[i])) MaxT[i] = (MaxB[i] - origin[i]) / dir[i]; + } + } + + // Ray origin inside bounding box + if(Inside) + { + coord[0] = origin[0]; + coord[1] = origin[1]; + coord[2] = origin[2]; + return true; + } + + // Get largest of the maxT's for final choice of intersection + uint32_t WhichPlane = 0; + if(MaxT[1] > MaxT[WhichPlane]) WhichPlane = 1; + if(MaxT[2] > MaxT[WhichPlane]) WhichPlane = 2; + + // Check final candidate actually inside box + if(IR(MaxT[WhichPlane])&0x80000000) return false; + + for(uint32_t i=0;i<3;i++) + { + if(i!=WhichPlane) + { + coord[i] = origin[i] + MaxT[WhichPlane] * dir[i]; +#ifdef RAYAABB_EPSILON + if(coord[i] < MinB[i] - RAYAABB_EPSILON || coord[i] > MaxB[i] + RAYAABB_EPSILON) return false; +#else + if(coord[i] < MinB[i] || coord[i] > MaxB[i]) return false; +#endif + } + } + return true; // ray hits box +} + +bool fm_intersectLineSegmentAABB(const float bmin[3],const float bmax[3],const float p1[3],const float p2[3],float intersect[3]) +{ + bool ret = false; + + float dir[3]; + dir[0] = p2[0] - p1[0]; + dir[1] = p2[1] - p1[1]; + dir[2] = p2[2] - p1[2]; + float dist = fm_normalize(dir); + if ( dist > RAYAABB_EPSILON ) + { + ret = fm_intersectRayAABB(bmin,bmax,p1,dir,intersect); + if ( ret ) + { + float d = fm_distanceSquared(p1,intersect); + if ( d > (dist*dist) ) + { + ret = false; + } + } + } + return ret; +} + +#endif + +#ifndef OBB_TO_AABB + +#define OBB_TO_AABB + +#pragma warning(disable:4100) + +void fm_OBBtoAABB(const float /*obmin*/[3],const float /*obmax*/[3],const float /*matrix*/[16],float /*abmin*/[3],float /*abmax*/[3]) +{ + assert(0); // not yet implemented. +} + + +const REAL * computePos(uint32_t index,const REAL *vertices,uint32_t vstride) +{ + const char *tmp = (const char *)vertices; + tmp+=(index*vstride); + return (const REAL*)tmp; +} + +void computeNormal(uint32_t index,REAL *normals,uint32_t nstride,const REAL *normal) +{ + char *tmp = (char *)normals; + tmp+=(index*nstride); + REAL *dest = (REAL *)tmp; + dest[0]+=normal[0]; + dest[1]+=normal[1]; + dest[2]+=normal[2]; +} + +void fm_computeMeanNormals(uint32_t vcount, // the number of vertices + const REAL *vertices, // the base address of the vertex position data. + uint32_t vstride, // the stride between position data. + REAL *normals, // the base address of the destination for mean vector normals + uint32_t nstride, // the stride between normals + uint32_t tcount, // the number of triangles + const uint32_t *indices) // the triangle indices +{ + + // Step #1 : Zero out the vertex normals + char *dest = (char *)normals; + for (uint32_t i=0; i<vcount; i++) + { + REAL *n = (REAL *)dest; + n[0] = 0; + n[1] = 0; + n[2] = 0; + dest+=nstride; + } + + // Step #2 : Compute the face normals and accumulate them + const uint32_t *scan = indices; + for (uint32_t i=0; i<tcount; i++) + { + + uint32_t i1 = *scan++; + uint32_t i2 = *scan++; + uint32_t i3 = *scan++; + + const REAL *p1 = computePos(i1,vertices,vstride); + const REAL *p2 = computePos(i2,vertices,vstride); + const REAL *p3 = computePos(i3,vertices,vstride); + + REAL normal[3]; + fm_computePlane(p3,p2,p1,normal); + + computeNormal(i1,normals,nstride,normal); + computeNormal(i2,normals,nstride,normal); + computeNormal(i3,normals,nstride,normal); + } + + + // Normalize the accumulated normals + dest = (char *)normals; + for (uint32_t i=0; i<vcount; i++) + { + REAL *n = (REAL *)dest; + fm_normalize(n); + dest+=nstride; + } + +} + +#endif + + +#define BIGNUMBER 100000000.0 /* hundred million */ + +static inline void Set(REAL *n,REAL x,REAL y,REAL z) +{ + n[0] = x; + n[1] = y; + n[2] = z; +}; + +static inline void Copy(REAL *dest,const REAL *source) +{ + dest[0] = source[0]; + dest[1] = source[1]; + dest[2] = source[2]; +} + + +REAL fm_computeBestFitSphere(uint32_t vcount,const REAL *points,uint32_t pstride,REAL *center) +{ + REAL radius; + REAL radius2; + + REAL xmin[3]; + REAL xmax[3]; + REAL ymin[3]; + REAL ymax[3]; + REAL zmin[3]; + REAL zmax[3]; + REAL dia1[3]; + REAL dia2[3]; + + /* FIRST PASS: find 6 minima/maxima points */ + Set(xmin,BIGNUMBER,BIGNUMBER,BIGNUMBER); + Set(xmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER); + Set(ymin,BIGNUMBER,BIGNUMBER,BIGNUMBER); + Set(ymax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER); + Set(zmin,BIGNUMBER,BIGNUMBER,BIGNUMBER); + Set(zmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER); + + { + const char *scan = (const char *)points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *caller_p = (const REAL *)scan; + if (caller_p[0]<xmin[0]) + Copy(xmin,caller_p); /* New xminimum point */ + if (caller_p[0]>xmax[0]) + Copy(xmax,caller_p); + if (caller_p[1]<ymin[1]) + Copy(ymin,caller_p); + if (caller_p[1]>ymax[1]) + Copy(ymax,caller_p); + if (caller_p[2]<zmin[2]) + Copy(zmin,caller_p); + if (caller_p[2]>zmax[2]) + Copy(zmax,caller_p); + scan+=pstride; + } + } + + /* Set xspan = distance between the 2 points xmin & xmax (squared) */ + REAL dx = xmax[0] - xmin[0]; + REAL dy = xmax[1] - xmin[1]; + REAL dz = xmax[2] - xmin[2]; + REAL xspan = dx*dx + dy*dy + dz*dz; + +/* Same for y & z spans */ + dx = ymax[0] - ymin[0]; + dy = ymax[1] - ymin[1]; + dz = ymax[2] - ymin[2]; + REAL yspan = dx*dx + dy*dy + dz*dz; + + dx = zmax[0] - zmin[0]; + dy = zmax[1] - zmin[1]; + dz = zmax[2] - zmin[2]; + REAL zspan = dx*dx + dy*dy + dz*dz; + + /* Set points dia1 & dia2 to the maximally separated pair */ + Copy(dia1,xmin); + Copy(dia2,xmax); /* assume xspan biggest */ + REAL maxspan = xspan; + + if (yspan>maxspan) + { + maxspan = yspan; + Copy(dia1,ymin); + Copy(dia2,ymax); + } + + if (zspan>maxspan) + { + maxspan = zspan; + Copy(dia1,zmin); + Copy(dia2,zmax); + } + + + /* dia1,dia2 is a diameter of initial sphere */ + /* calc initial center */ + center[0] = (dia1[0]+dia2[0])*0.5f; + center[1] = (dia1[1]+dia2[1])*0.5f; + center[2] = (dia1[2]+dia2[2])*0.5f; + + /* calculate initial radius**2 and radius */ + + dx = dia2[0]-center[0]; /* x component of radius vector */ + dy = dia2[1]-center[1]; /* y component of radius vector */ + dz = dia2[2]-center[2]; /* z component of radius vector */ + + radius2 = dx*dx + dy*dy + dz*dz; + radius = REAL(sqrt(radius2)); + + /* SECOND PASS: increment current sphere */ + { + const char *scan = (const char *)points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *caller_p = (const REAL *)scan; + dx = caller_p[0]-center[0]; + dy = caller_p[1]-center[1]; + dz = caller_p[2]-center[2]; + REAL old_to_p_sq = dx*dx + dy*dy + dz*dz; + if (old_to_p_sq > radius2) /* do r**2 test first */ + { /* this point is outside of current sphere */ + REAL old_to_p = REAL(sqrt(old_to_p_sq)); + /* calc radius of new sphere */ + radius = (radius + old_to_p) * 0.5f; + radius2 = radius*radius; /* for next r**2 compare */ + REAL old_to_new = old_to_p - radius; + /* calc center of new sphere */ + REAL recip = 1.0f /old_to_p; + REAL cx = (radius*center[0] + old_to_new*caller_p[0]) * recip; + REAL cy = (radius*center[1] + old_to_new*caller_p[1]) * recip; + REAL cz = (radius*center[2] + old_to_new*caller_p[2]) * recip; + Set(center,cx,cy,cz); + scan+=pstride; + } + } + } + return radius; +} + + +void fm_computeBestFitCapsule(uint32_t vcount,const REAL *points,uint32_t pstride,REAL &radius,REAL &height,REAL matrix[16],bool bruteForce) +{ + REAL sides[3]; + REAL omatrix[16]; + fm_computeBestFitOBB(vcount,points,pstride,sides,omatrix,bruteForce); + + int32_t axis = 0; + if ( sides[0] > sides[1] && sides[0] > sides[2] ) + axis = 0; + else if ( sides[1] > sides[0] && sides[1] > sides[2] ) + axis = 1; + else + axis = 2; + + REAL localTransform[16]; + + REAL maxDist = 0; + REAL maxLen = 0; + + switch ( axis ) + { + case 0: + { + fm_eulerMatrix(0,0,FM_PI/2,localTransform); + fm_matrixMultiply(localTransform,omatrix,matrix); + + const uint8_t *scan = (const uint8_t *)points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *p = (const REAL *)scan; + REAL t[3]; + fm_inverseRT(omatrix,p,t); + REAL dist = t[1]*t[1]+t[2]*t[2]; + if ( dist > maxDist ) + { + maxDist = dist; + } + REAL l = (REAL) fabs(t[0]); + if ( l > maxLen ) + { + maxLen = l; + } + scan+=pstride; + } + } + height = sides[0]; + break; + case 1: + { + fm_eulerMatrix(0,FM_PI/2,0,localTransform); + fm_matrixMultiply(localTransform,omatrix,matrix); + + const uint8_t *scan = (const uint8_t *)points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *p = (const REAL *)scan; + REAL t[3]; + fm_inverseRT(omatrix,p,t); + REAL dist = t[0]*t[0]+t[2]*t[2]; + if ( dist > maxDist ) + { + maxDist = dist; + } + REAL l = (REAL) fabs(t[1]); + if ( l > maxLen ) + { + maxLen = l; + } + scan+=pstride; + } + } + height = sides[1]; + break; + case 2: + { + fm_eulerMatrix(FM_PI/2,0,0,localTransform); + fm_matrixMultiply(localTransform,omatrix,matrix); + + const uint8_t *scan = (const uint8_t *)points; + for (uint32_t i=0; i<vcount; i++) + { + const REAL *p = (const REAL *)scan; + REAL t[3]; + fm_inverseRT(omatrix,p,t); + REAL dist = t[0]*t[0]+t[1]*t[1]; + if ( dist > maxDist ) + { + maxDist = dist; + } + REAL l = (REAL) fabs(t[2]); + if ( l > maxLen ) + { + maxLen = l; + } + scan+=pstride; + } + } + height = sides[2]; + break; + } + radius = (REAL)sqrt(maxDist); + height = (maxLen*2)-(radius*2); +} + + +//************* Triangulation + +#ifndef TRIANGULATE_H + +#define TRIANGULATE_H + +typedef uint32_t TU32; + +class TVec +{ +public: + TVec(double _x,double _y,double _z) { x = _x; y = _y; z = _z; }; + TVec(void) { }; + + double x; + double y; + double z; +}; + +typedef std::vector< TVec > TVecVector; +typedef std::vector< TU32 > TU32Vector; + +class CTriangulator +{ +public: + /// Default constructor + CTriangulator(); + + /// Default destructor + virtual ~CTriangulator(); + + /// Triangulates the contour + void triangulate(TU32Vector &indices); + + /// Returns the given point in the triangulator array + inline TVec get(const TU32 id) { return mPoints[id]; } + + virtual void reset(void) + { + mInputPoints.clear(); + mPoints.clear(); + mIndices.clear(); + } + + virtual void addPoint(double x,double y,double z) + { + TVec v(x,y,z); + // update bounding box... + if ( mInputPoints.empty() ) + { + mMin = v; + mMax = v; + } + else + { + if ( x < mMin.x ) mMin.x = x; + if ( y < mMin.y ) mMin.y = y; + if ( z < mMin.z ) mMin.z = z; + + if ( x > mMax.x ) mMax.x = x; + if ( y > mMax.y ) mMax.y = y; + if ( z > mMax.z ) mMax.z = z; + } + mInputPoints.push_back(v); + } + + // Triangulation happens in 2d. We could inverse transform the polygon around the normal direction, or we just use the two most signficant axes + // Here we find the two longest axes and use them to triangulate. Inverse transforming them would introduce more doubleing point error and isn't worth it. + virtual uint32_t * triangulate(uint32_t &tcount,double epsilon) + { + uint32_t *ret = 0; + tcount = 0; + mEpsilon = epsilon; + + if ( !mInputPoints.empty() ) + { + mPoints.clear(); + + double dx = mMax.x - mMin.x; // locate the first, second and third longest edges and store them in i1, i2, i3 + double dy = mMax.y - mMin.y; + double dz = mMax.z - mMin.z; + + uint32_t i1,i2,i3; + + if ( dx > dy && dx > dz ) + { + i1 = 0; + if ( dy > dz ) + { + i2 = 1; + i3 = 2; + } + else + { + i2 = 2; + i3 = 1; + } + } + else if ( dy > dx && dy > dz ) + { + i1 = 1; + if ( dx > dz ) + { + i2 = 0; + i3 = 2; + } + else + { + i2 = 2; + i3 = 0; + } + } + else + { + i1 = 2; + if ( dx > dy ) + { + i2 = 0; + i3 = 1; + } + else + { + i2 = 1; + i3 = 0; + } + } + + uint32_t pcount = (uint32_t)mInputPoints.size(); + const double *points = &mInputPoints[0].x; + for (uint32_t i=0; i<pcount; i++) + { + TVec v( points[i1], points[i2], points[i3] ); + mPoints.push_back(v); + points+=3; + } + + mIndices.clear(); + triangulate(mIndices); + tcount = (uint32_t)mIndices.size()/3; + if ( tcount ) + { + ret = &mIndices[0]; + } + } + return ret; + } + + virtual const double * getPoint(uint32_t index) + { + return &mInputPoints[index].x; + } + + +private: + double mEpsilon; + TVec mMin; + TVec mMax; + TVecVector mInputPoints; + TVecVector mPoints; + TU32Vector mIndices; + + /// Tests if a point is inside the given triangle + bool _insideTriangle(const TVec& A, const TVec& B, const TVec& C,const TVec& P); + + /// Returns the area of the contour + double _area(); + + bool _snip(int32_t u, int32_t v, int32_t w, int32_t n, int32_t *V); + + /// Processes the triangulation + void _process(TU32Vector &indices); + +}; + +/// Default constructor +CTriangulator::CTriangulator(void) +{ +} + +/// Default destructor +CTriangulator::~CTriangulator() +{ +} + +/// Triangulates the contour +void CTriangulator::triangulate(TU32Vector &indices) +{ + _process(indices); +} + +/// Processes the triangulation +void CTriangulator::_process(TU32Vector &indices) +{ + const int32_t n = (const int32_t)mPoints.size(); + if (n < 3) + return; + int32_t *V = (int32_t *)malloc(sizeof(int32_t)*n); + + bool flipped = false; + + if (0.0f < _area()) + { + for (int32_t v = 0; v < n; v++) + V[v] = v; + } + else + { + flipped = true; + for (int32_t v = 0; v < n; v++) + V[v] = (n - 1) - v; + } + + int32_t nv = n; + int32_t count = 2 * nv; + for (int32_t m = 0, v = nv - 1; nv > 2;) + { + if (0 >= (count--)) + return; + + int32_t u = v; + if (nv <= u) + u = 0; + v = u + 1; + if (nv <= v) + v = 0; + int32_t w = v + 1; + if (nv <= w) + w = 0; + + if (_snip(u, v, w, nv, V)) + { + int32_t a, b, c, s, t; + a = V[u]; + b = V[v]; + c = V[w]; + if ( flipped ) + { + indices.push_back(a); + indices.push_back(b); + indices.push_back(c); + } + else + { + indices.push_back(c); + indices.push_back(b); + indices.push_back(a); + } + m++; + for (s = v, t = v + 1; t < nv; s++, t++) + V[s] = V[t]; + nv--; + count = 2 * nv; + } + } + + free(V); +} + +/// Returns the area of the contour +double CTriangulator::_area() +{ + int32_t n = (uint32_t)mPoints.size(); + double A = 0.0f; + for (int32_t p = n - 1, q = 0; q < n; p = q++) + { + const TVec &pval = mPoints[p]; + const TVec &qval = mPoints[q]; + A += pval.x * qval.y - qval.x * pval.y; + } + A*=0.5f; + return A; +} + +bool CTriangulator::_snip(int32_t u, int32_t v, int32_t w, int32_t n, int32_t *V) +{ + int32_t p; + + const TVec &A = mPoints[ V[u] ]; + const TVec &B = mPoints[ V[v] ]; + const TVec &C = mPoints[ V[w] ]; + + if (mEpsilon > (((B.x - A.x) * (C.y - A.y)) - ((B.y - A.y) * (C.x - A.x))) ) + return false; + + for (p = 0; p < n; p++) + { + if ((p == u) || (p == v) || (p == w)) + continue; + const TVec &P = mPoints[ V[p] ]; + if (_insideTriangle(A, B, C, P)) + return false; + } + return true; +} + +/// Tests if a point is inside the given triangle +bool CTriangulator::_insideTriangle(const TVec& A, const TVec& B, const TVec& C,const TVec& P) +{ + double ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; + double cCROSSap, bCROSScp, aCROSSbp; + + ax = C.x - B.x; ay = C.y - B.y; + bx = A.x - C.x; by = A.y - C.y; + cx = B.x - A.x; cy = B.y - A.y; + apx = P.x - A.x; apy = P.y - A.y; + bpx = P.x - B.x; bpy = P.y - B.y; + cpx = P.x - C.x; cpy = P.y - C.y; + + aCROSSbp = ax * bpy - ay * bpx; + cCROSSap = cx * apy - cy * apx; + bCROSScp = bx * cpy - by * cpx; + + return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f)); +} + +class Triangulate : public fm_Triangulate +{ +public: + Triangulate(void) + { + mPointsFloat = 0; + mPointsDouble = 0; + } + + virtual ~Triangulate(void) + { + reset(); + } + void reset(void) + { + free(mPointsFloat); + free(mPointsDouble); + mPointsFloat = 0; + mPointsDouble = 0; + } + + virtual const double * triangulate3d(uint32_t pcount, + const double *_points, + uint32_t vstride, + uint32_t &tcount, + bool consolidate, + double epsilon) + { + reset(); + + double *points = (double *)malloc(sizeof(double)*pcount*3); + if ( consolidate ) + { + pcount = fm_consolidatePolygon(pcount,_points,vstride,points,1-epsilon); + } + else + { + double *dest = points; + for (uint32_t i=0; i<pcount; i++) + { + const double *src = fm_getPoint(_points,vstride,i); + dest[0] = src[0]; + dest[1] = src[1]; + dest[2] = src[2]; + dest+=3; + } + vstride = sizeof(double)*3; + } + + if ( pcount >= 3 ) + { + CTriangulator ct; + for (uint32_t i=0; i<pcount; i++) + { + const double *src = fm_getPoint(points,vstride,i); + ct.addPoint( src[0], src[1], src[2] ); + } + uint32_t _tcount; + uint32_t *indices = ct.triangulate(_tcount,epsilon); + if ( indices ) + { + tcount = _tcount; + mPointsDouble = (double *)malloc(sizeof(double)*tcount*3*3); + double *dest = mPointsDouble; + for (uint32_t i=0; i<tcount; i++) + { + uint32_t i1 = indices[i*3+0]; + uint32_t i2 = indices[i*3+1]; + uint32_t i3 = indices[i*3+2]; + const double *p1 = ct.getPoint(i1); + const double *p2 = ct.getPoint(i2); + const double *p3 = ct.getPoint(i3); + + dest[0] = p1[0]; + dest[1] = p1[1]; + dest[2] = p1[2]; + + dest[3] = p2[0]; + dest[4] = p2[1]; + dest[5] = p2[2]; + + dest[6] = p3[0]; + dest[7] = p3[1]; + dest[8] = p3[2]; + dest+=9; + } + } + } + free(points); + + return mPointsDouble; + } + + virtual const float * triangulate3d(uint32_t pcount, + const float *points, + uint32_t vstride, + uint32_t &tcount, + bool consolidate, + float epsilon) + { + reset(); + + double *temp = (double *)malloc(sizeof(double)*pcount*3); + double *dest = temp; + for (uint32_t i=0; i<pcount; i++) + { + const float *p = fm_getPoint(points,vstride,i); + dest[0] = p[0]; + dest[1] = p[1]; + dest[2] = p[2]; + dest+=3; + } + const double *results = triangulate3d(pcount,temp,sizeof(double)*3,tcount,consolidate,epsilon); + if ( results ) + { + uint32_t fcount = tcount*3*3; + mPointsFloat = (float *)malloc(sizeof(float)*tcount*3*3); + for (uint32_t i=0; i<fcount; i++) + { + mPointsFloat[i] = (float) results[i]; + } + free(mPointsDouble); + mPointsDouble = 0; + } + free(temp); + + return mPointsFloat; + } + +private: + float *mPointsFloat; + double *mPointsDouble; +}; + +fm_Triangulate * fm_createTriangulate(void) +{ + Triangulate *t = new Triangulate; + return static_cast< fm_Triangulate *>(t); +} + +void fm_releaseTriangulate(fm_Triangulate *t) +{ + Triangulate *tt = static_cast< Triangulate *>(t); + delete tt; +} + +#endif + +bool validDistance(const REAL *p1,const REAL *p2,REAL epsilon) +{ + bool ret = true; + + REAL dx = p1[0] - p2[0]; + REAL dy = p1[1] - p2[1]; + REAL dz = p1[2] - p2[2]; + REAL dist = dx*dx+dy*dy+dz*dz; + if ( dist < (epsilon*epsilon) ) + { + ret = false; + } + return ret; +} + +bool fm_isValidTriangle(const REAL *p1,const REAL *p2,const REAL *p3,REAL epsilon) +{ + bool ret = false; + + if ( validDistance(p1,p2,epsilon) && + validDistance(p1,p3,epsilon) && + validDistance(p2,p3,epsilon) ) + { + + REAL area = fm_computeArea(p1,p2,p3); + if ( area > epsilon ) + { + REAL _vertices[3*3],vertices[64*3]; + + _vertices[0] = p1[0]; + _vertices[1] = p1[1]; + _vertices[2] = p1[2]; + + _vertices[3] = p2[0]; + _vertices[4] = p2[1]; + _vertices[5] = p2[2]; + + _vertices[6] = p3[0]; + _vertices[7] = p3[1]; + _vertices[8] = p3[2]; + + uint32_t pcount = fm_consolidatePolygon(3,_vertices,sizeof(REAL)*3,vertices,1-epsilon); + if ( pcount == 3 ) + { + ret = true; + } + } + } + return ret; +} + + +void fm_multiplyQuat(const REAL *left,const REAL *right,REAL *quat) +{ + REAL a,b,c,d; + + a = left[3]*right[3] - left[0]*right[0] - left[1]*right[1] - left[2]*right[2]; + b = left[3]*right[0] + right[3]*left[0] + left[1]*right[2] - right[1]*left[2]; + c = left[3]*right[1] + right[3]*left[1] + left[2]*right[0] - right[2]*left[0]; + d = left[3]*right[2] + right[3]*left[2] + left[0]*right[1] - right[0]*left[1]; + + quat[3] = a; + quat[0] = b; + quat[1] = c; + quat[2] = d; +} + +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const REAL *points, // starting address of points array. + REAL *center) + +{ + bool ret = false; + if ( vcount ) + { + center[0] = 0; + center[1] = 0; + center[2] = 0; + const REAL *p = points; + for (uint32_t i=0; i<vcount; i++) + { + center[0]+=p[0]; + center[1]+=p[1]; + center[2]+=p[2]; + p += 3; + } + REAL recip = 1.0f / (REAL)vcount; + center[0]*=recip; + center[1]*=recip; + center[2]*=recip; + ret = true; + } + return ret; +} + +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const REAL *points, // starting address of points array. + uint32_t triCount, + const uint32_t *indices, + REAL *center) + +{ + bool ret = false; + if (vcount) + { + center[0] = 0; + center[1] = 0; + center[2] = 0; + + REAL numerator[3] = { 0, 0, 0 }; + REAL denomintaor = 0; + + for (uint32_t i = 0; i < triCount; i++) + { + uint32_t i1 = indices[i * 3 + 0]; + uint32_t i2 = indices[i * 3 + 1]; + uint32_t i3 = indices[i * 3 + 2]; + + const REAL *p1 = &points[i1 * 3]; + const REAL *p2 = &points[i2 * 3]; + const REAL *p3 = &points[i3 * 3]; + + // Compute the sum of the three positions + REAL sum[3]; + sum[0] = p1[0] + p2[0] + p3[0]; + sum[1] = p1[1] + p2[1] + p3[1]; + sum[2] = p1[2] + p2[2] + p3[2]; + + // Compute the average of the three positions + sum[0] = sum[0] / 3; + sum[1] = sum[1] / 3; + sum[2] = sum[2] / 3; + + // Compute the area of this triangle + REAL area = fm_computeArea(p1, p2, p3); + + numerator[0]+= (sum[0] * area); + numerator[1]+= (sum[1] * area); + numerator[2]+= (sum[2] * area); + + denomintaor += area; + + } + REAL recip = 1 / denomintaor; + center[0] = numerator[0] * recip; + center[1] = numerator[1] * recip; + center[2] = numerator[2] * recip; + ret = true; + } + return ret; +} + + +#ifndef TEMPLATE_VEC3 +#define TEMPLATE_VEC3 +template <class Type> class Vec3 +{ +public: + Vec3(void) + { + + } + Vec3(Type _x,Type _y,Type _z) + { + x = _x; + y = _y; + z = _z; + } + Type x; + Type y; + Type z; +}; +#endif + +void fm_transformAABB(const REAL bmin[3],const REAL bmax[3],const REAL matrix[16],REAL tbmin[3],REAL tbmax[3]) +{ + Vec3<REAL> box[8]; + box[0] = Vec3< REAL >( bmin[0], bmin[1], bmin[2] ); + box[1] = Vec3< REAL >( bmax[0], bmin[1], bmin[2] ); + box[2] = Vec3< REAL >( bmax[0], bmax[1], bmin[2] ); + box[3] = Vec3< REAL >( bmin[0], bmax[1], bmin[2] ); + box[4] = Vec3< REAL >( bmin[0], bmin[1], bmax[2] ); + box[5] = Vec3< REAL >( bmax[0], bmin[1], bmax[2] ); + box[6] = Vec3< REAL >( bmax[0], bmax[1], bmax[2] ); + box[7] = Vec3< REAL >( bmin[0], bmax[1], bmax[2] ); + // transform all 8 corners of the box and then recompute a new AABB + for (unsigned int i=0; i<8; i++) + { + Vec3< REAL > &p = box[i]; + fm_transform(matrix,&p.x,&p.x); + if ( i == 0 ) + { + tbmin[0] = tbmax[0] = p.x; + tbmin[1] = tbmax[1] = p.y; + tbmin[2] = tbmax[2] = p.z; + } + else + { + if ( p.x < tbmin[0] ) tbmin[0] = p.x; + if ( p.y < tbmin[1] ) tbmin[1] = p.y; + if ( p.z < tbmin[2] ) tbmin[2] = p.z; + if ( p.x > tbmax[0] ) tbmax[0] = p.x; + if ( p.y > tbmax[1] ) tbmax[1] = p.y; + if ( p.z > tbmax[2] ) tbmax[2] = p.z; + } + } +} + +REAL fm_normalizeQuat(REAL n[4]) // normalize this quat +{ + REAL dx = n[0]*n[0]; + REAL dy = n[1]*n[1]; + REAL dz = n[2]*n[2]; + REAL dw = n[3]*n[3]; + + REAL dist = dx*dx+dy*dy+dz*dz+dw*dw; + + dist = (REAL)sqrt(dist); + + REAL recip = 1.0f / dist; + + n[0]*=recip; + n[1]*=recip; + n[2]*=recip; + n[3]*=recip; + + return dist; +} + + +}; // end of namespace |