diff options
Diffstat (limited to 'thirdparty/vhacd/inc/btVector3.h')
-rw-r--r-- | thirdparty/vhacd/inc/btVector3.h | 723 |
1 files changed, 723 insertions, 0 deletions
diff --git a/thirdparty/vhacd/inc/btVector3.h b/thirdparty/vhacd/inc/btVector3.h new file mode 100644 index 0000000000..4ed9716734 --- /dev/null +++ b/thirdparty/vhacd/inc/btVector3.h @@ -0,0 +1,723 @@ +/* +Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_VECTOR3_H +#define BT_VECTOR3_H + +#include "btMinMax.h" +#include "btScalar.h" + +#ifdef BT_USE_DOUBLE_PRECISION +#define btVector3Data btVector3DoubleData +#define btVector3DataName "btVector3DoubleData" +#else +#define btVector3Data btVector3FloatData +#define btVector3DataName "btVector3FloatData" +#endif //BT_USE_DOUBLE_PRECISION + +// -- GODOT start -- +namespace VHACD { +// -- GODOT end -- + +/**@brief btVector3 can be used to represent 3D points and vectors. + * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user + * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers + */ +ATTRIBUTE_ALIGNED16(class) +btVector3 +{ +public: +#if defined(__SPU__) && defined(__CELLOS_LV2__) + btScalar m_floats[4]; + +public: + SIMD_FORCE_INLINE const vec_float4& get128() const + { + return *((const vec_float4*)&m_floats[0]); + } + +public: +#else //__CELLOS_LV2__ __SPU__ +#ifdef BT_USE_SSE // _WIN32 + union { + __m128 mVec128; + btScalar m_floats[4]; + }; + SIMD_FORCE_INLINE __m128 get128() const + { + return mVec128; + } + SIMD_FORCE_INLINE void set128(__m128 v128) + { + mVec128 = v128; + } +#else + btScalar m_floats[4]; +#endif +#endif //__CELLOS_LV2__ __SPU__ + +public: + /**@brief No initialization constructor */ + SIMD_FORCE_INLINE btVector3() {} + + /**@brief Constructor from scalars + * @param x X value + * @param y Y value + * @param z Z value + */ + SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z) + { + m_floats[0] = x; + m_floats[1] = y; + m_floats[2] = z; + m_floats[3] = btScalar(0.); + } + + /**@brief Add a vector to this one + * @param The vector to add to this one */ + SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) + { + + m_floats[0] += v.m_floats[0]; + m_floats[1] += v.m_floats[1]; + m_floats[2] += v.m_floats[2]; + return *this; + } + + /**@brief Subtract a vector from this one + * @param The vector to subtract */ + SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) + { + m_floats[0] -= v.m_floats[0]; + m_floats[1] -= v.m_floats[1]; + m_floats[2] -= v.m_floats[2]; + return *this; + } + /**@brief Scale the vector + * @param s Scale factor */ + SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) + { + m_floats[0] *= s; + m_floats[1] *= s; + m_floats[2] *= s; + return *this; + } + + /**@brief Inversely scale the vector + * @param s Scale factor to divide by */ + SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) + { + btFullAssert(s != btScalar(0.0)); + return * this *= btScalar(1.0) / s; + } + + /**@brief Return the dot product + * @param v The other vector in the dot product */ + SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const + { + return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2]; + } + + /**@brief Return the length of the vector squared */ + SIMD_FORCE_INLINE btScalar length2() const + { + return dot(*this); + } + + /**@brief Return the length of the vector */ + SIMD_FORCE_INLINE btScalar length() const + { + return btSqrt(length2()); + } + + /**@brief Return the distance squared between the ends of this and another vector + * This is symantically treating the vector like a point */ + SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; + + /**@brief Return the distance between the ends of this and another vector + * This is symantically treating the vector like a point */ + SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; + + SIMD_FORCE_INLINE btVector3& safeNormalize() + { + btVector3 absVec = this->absolute(); + int32_t maxIndex = absVec.maxAxis(); + if (absVec[maxIndex] > 0) { + *this /= absVec[maxIndex]; + return * this /= length(); + } + setValue(1, 0, 0); + return *this; + } + + /**@brief Normalize this vector + * x^2 + y^2 + z^2 = 1 */ + SIMD_FORCE_INLINE btVector3& normalize() + { + return * this /= length(); + } + + /**@brief Return a normalized version of this vector */ + SIMD_FORCE_INLINE btVector3 normalized() const; + + /**@brief Return a rotated version of this vector + * @param wAxis The axis to rotate about + * @param angle The angle to rotate by */ + SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const; + + /**@brief Return the angle between this and another vector + * @param v The other vector */ + SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const + { + btScalar s = btSqrt(length2() * v.length2()); + btFullAssert(s != btScalar(0.0)); + return btAcos(dot(v) / s); + } + /**@brief Return a vector will the absolute values of each element */ + SIMD_FORCE_INLINE btVector3 absolute() const + { + return btVector3( + btFabs(m_floats[0]), + btFabs(m_floats[1]), + btFabs(m_floats[2])); + } + /**@brief Return the cross product between this and another vector + * @param v The other vector */ + SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const + { + return btVector3( + m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1], + m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], + m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); + } + + SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const + { + return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); + } + + /**@brief Return the axis with the smallest value + * Note return values are 0,1,2 for x, y, or z */ + SIMD_FORCE_INLINE int32_t minAxis() const + { + return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2); + } + + /**@brief Return the axis with the largest value + * Note return values are 0,1,2 for x, y, or z */ + SIMD_FORCE_INLINE int32_t maxAxis() const + { + return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0); + } + + SIMD_FORCE_INLINE int32_t furthestAxis() const + { + return absolute().minAxis(); + } + + SIMD_FORCE_INLINE int32_t closestAxis() const + { + return absolute().maxAxis(); + } + + SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) + { + btScalar s = btScalar(1.0) - rt; + m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; + m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; + m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; + //don't do the unused w component + // m_co[3] = s * v0[3] + rt * v1[3]; + } + + /**@brief Return the linear interpolation between this and another vector + * @param v The other vector + * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ + SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const + { + return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, + m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, + m_floats[2] + (v.m_floats[2] - m_floats[2]) * t); + } + + /**@brief Elementwise multiply this vector by the other + * @param v The other vector */ + SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) + { + m_floats[0] *= v.m_floats[0]; + m_floats[1] *= v.m_floats[1]; + m_floats[2] *= v.m_floats[2]; + return *this; + } + + /**@brief Return the x value */ + SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } + /**@brief Return the y value */ + SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } + /**@brief Return the z value */ + SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } + /**@brief Set the x value */ + SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; }; + /**@brief Set the y value */ + SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; }; + /**@brief Set the z value */ + SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; }; + /**@brief Set the w value */ + SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; }; + /**@brief Return the x value */ + SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } + /**@brief Return the y value */ + SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } + /**@brief Return the z value */ + SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } + /**@brief Return the w value */ + SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } + + //SIMD_FORCE_INLINE btScalar& operator[](int32_t i) { return (&m_floats[0])[i]; } + //SIMD_FORCE_INLINE const btScalar& operator[](int32_t i) const { return (&m_floats[0])[i]; } + ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. + SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; } + SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; } + + SIMD_FORCE_INLINE bool operator==(const btVector3& other) const + { + return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0])); + } + + SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const + { + return !(*this == other); + } + + /**@brief Set each element to the max of the current values and the values of another btVector3 + * @param other The other btVector3 to compare with + */ + SIMD_FORCE_INLINE void setMax(const btVector3& other) + { + btSetMax(m_floats[0], other.m_floats[0]); + btSetMax(m_floats[1], other.m_floats[1]); + btSetMax(m_floats[2], other.m_floats[2]); + btSetMax(m_floats[3], other.w()); + } + /**@brief Set each element to the min of the current values and the values of another btVector3 + * @param other The other btVector3 to compare with + */ + SIMD_FORCE_INLINE void setMin(const btVector3& other) + { + btSetMin(m_floats[0], other.m_floats[0]); + btSetMin(m_floats[1], other.m_floats[1]); + btSetMin(m_floats[2], other.m_floats[2]); + btSetMin(m_floats[3], other.w()); + } + + SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z) + { + m_floats[0] = x; + m_floats[1] = y; + m_floats[2] = z; + m_floats[3] = btScalar(0.); + } + + void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const + { + v0->setValue(0., -z(), y()); + v1->setValue(z(), 0., -x()); + v2->setValue(-y(), x(), 0.); + } + + void setZero() + { + setValue(btScalar(0.), btScalar(0.), btScalar(0.)); + } + + SIMD_FORCE_INLINE bool isZero() const + { + return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0); + } + + SIMD_FORCE_INLINE bool fuzzyZero() const + { + return length2() < SIMD_EPSILON; + } + + SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const; + + SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn); + + SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const; + + SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); + + SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const; + + SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); +}; + +/**@brief Return the sum of two vectors (Point symantics)*/ +SIMD_FORCE_INLINE btVector3 +operator+(const btVector3& v1, const btVector3& v2) +{ + return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]); +} + +/**@brief Return the elementwise product of two vectors */ +SIMD_FORCE_INLINE btVector3 +operator*(const btVector3& v1, const btVector3& v2) +{ + return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]); +} + +/**@brief Return the difference between two vectors */ +SIMD_FORCE_INLINE btVector3 +operator-(const btVector3& v1, const btVector3& v2) +{ + return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]); +} +/**@brief Return the negative of the vector */ +SIMD_FORCE_INLINE btVector3 +operator-(const btVector3& v) +{ + return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); +} + +/**@brief Return the vector scaled by s */ +SIMD_FORCE_INLINE btVector3 +operator*(const btVector3& v, const btScalar& s) +{ + return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s); +} + +/**@brief Return the vector scaled by s */ +SIMD_FORCE_INLINE btVector3 +operator*(const btScalar& s, const btVector3& v) +{ + return v * s; +} + +/**@brief Return the vector inversely scaled by s */ +SIMD_FORCE_INLINE btVector3 +operator/(const btVector3& v, const btScalar& s) +{ + btFullAssert(s != btScalar(0.0)); + return v * (btScalar(1.0) / s); +} + +/**@brief Return the vector inversely scaled by s */ +SIMD_FORCE_INLINE btVector3 +operator/(const btVector3& v1, const btVector3& v2) +{ + return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]); +} + +/**@brief Return the dot product between two vectors */ +SIMD_FORCE_INLINE btScalar +btDot(const btVector3& v1, const btVector3& v2) +{ + return v1.dot(v2); +} + +/**@brief Return the distance squared between two vectors */ +SIMD_FORCE_INLINE btScalar +btDistance2(const btVector3& v1, const btVector3& v2) +{ + return v1.distance2(v2); +} + +/**@brief Return the distance between two vectors */ +SIMD_FORCE_INLINE btScalar +btDistance(const btVector3& v1, const btVector3& v2) +{ + return v1.distance(v2); +} + +/**@brief Return the angle between two vectors */ +SIMD_FORCE_INLINE btScalar +btAngle(const btVector3& v1, const btVector3& v2) +{ + return v1.angle(v2); +} + +/**@brief Return the cross product of two vectors */ +SIMD_FORCE_INLINE btVector3 +btCross(const btVector3& v1, const btVector3& v2) +{ + return v1.cross(v2); +} + +SIMD_FORCE_INLINE btScalar +btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3) +{ + return v1.triple(v2, v3); +} + +/**@brief Return the linear interpolation between two vectors + * @param v1 One vector + * @param v2 The other vector + * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ +SIMD_FORCE_INLINE btVector3 +lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) +{ + return v1.lerp(v2, t); +} + +SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const +{ + return (v - *this).length2(); +} + +SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const +{ + return (v - *this).length(); +} + +SIMD_FORCE_INLINE btVector3 btVector3::normalized() const +{ + return *this / length(); +} + +SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar angle) const +{ + // wAxis must be a unit lenght vector + + btVector3 o = wAxis * wAxis.dot(*this); + btVector3 x = *this - o; + btVector3 y; + + y = wAxis.cross(*this); + + return (o + x * btCos(angle) + y * btSin(angle)); +} + +class btVector4 : public btVector3 { +public: + SIMD_FORCE_INLINE btVector4() {} + + SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) + : btVector3(x, y, z) + { + m_floats[3] = w; + } + + SIMD_FORCE_INLINE btVector4 absolute4() const + { + return btVector4( + btFabs(m_floats[0]), + btFabs(m_floats[1]), + btFabs(m_floats[2]), + btFabs(m_floats[3])); + } + + btScalar getW() const { return m_floats[3]; } + + SIMD_FORCE_INLINE int32_t maxAxis4() const + { + int32_t maxIndex = -1; + btScalar maxVal = btScalar(-BT_LARGE_FLOAT); + if (m_floats[0] > maxVal) { + maxIndex = 0; + maxVal = m_floats[0]; + } + if (m_floats[1] > maxVal) { + maxIndex = 1; + maxVal = m_floats[1]; + } + if (m_floats[2] > maxVal) { + maxIndex = 2; + maxVal = m_floats[2]; + } + if (m_floats[3] > maxVal) { + maxIndex = 3; + } + return maxIndex; + } + + SIMD_FORCE_INLINE int32_t minAxis4() const + { + int32_t minIndex = -1; + btScalar minVal = btScalar(BT_LARGE_FLOAT); + if (m_floats[0] < minVal) { + minIndex = 0; + minVal = m_floats[0]; + } + if (m_floats[1] < minVal) { + minIndex = 1; + minVal = m_floats[1]; + } + if (m_floats[2] < minVal) { + minIndex = 2; + minVal = m_floats[2]; + } + if (m_floats[3] < minVal) { + minIndex = 3; + } + + return minIndex; + } + + SIMD_FORCE_INLINE int32_t closestAxis4() const + { + return absolute4().maxAxis4(); + } + + /**@brief Set x,y,z and zero w + * @param x Value of x + * @param y Value of y + * @param z Value of z + */ + + /* void getValue(btScalar *m) const + { + m[0] = m_floats[0]; + m[1] = m_floats[1]; + m[2] =m_floats[2]; + } +*/ + /**@brief Set the values + * @param x Value of x + * @param y Value of y + * @param z Value of z + * @param w Value of w + */ + SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) + { + m_floats[0] = x; + m_floats[1] = y; + m_floats[2] = z; + m_floats[3] = w; + } +}; + +///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization +SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) +{ +#ifdef BT_USE_DOUBLE_PRECISION + unsigned char* dest = (unsigned char*)&destVal; + unsigned char* src = (unsigned char*)&sourceVal; + dest[0] = src[7]; + dest[1] = src[6]; + dest[2] = src[5]; + dest[3] = src[4]; + dest[4] = src[3]; + dest[5] = src[2]; + dest[6] = src[1]; + dest[7] = src[0]; +#else + unsigned char* dest = (unsigned char*)&destVal; + unsigned char* src = (unsigned char*)&sourceVal; + dest[0] = src[3]; + dest[1] = src[2]; + dest[2] = src[1]; + dest[3] = src[0]; +#endif //BT_USE_DOUBLE_PRECISION +} +///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization +SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) +{ + for (int32_t i = 0; i < 4; i++) { + btSwapScalarEndian(sourceVec[i], destVec[i]); + } +} + +///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization +SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) +{ + + btVector3 swappedVec; + for (int32_t i = 0; i < 4; i++) { + btSwapScalarEndian(vector[i], swappedVec[i]); + } + vector = swappedVec; +} + +template <class T> +SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q) +{ + if (btFabs(n[2]) > SIMDSQRT12) { + // choose p in y-z plane + btScalar a = n[1] * n[1] + n[2] * n[2]; + btScalar k = btRecipSqrt(a); + p[0] = 0; + p[1] = -n[2] * k; + p[2] = n[1] * k; + // set q = n x p + q[0] = a * k; + q[1] = -n[0] * p[2]; + q[2] = n[0] * p[1]; + } + else { + // choose p in x-y plane + btScalar a = n[0] * n[0] + n[1] * n[1]; + btScalar k = btRecipSqrt(a); + p[0] = -n[1] * k; + p[1] = n[0] * k; + p[2] = 0; + // set q = n x p + q[0] = -n[2] * p[1]; + q[1] = n[2] * p[0]; + q[2] = a * k; + } +} + +struct btVector3FloatData { + float m_floats[4]; +}; + +struct btVector3DoubleData { + double m_floats[4]; +}; + +SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int32_t i = 0; i < 4; i++) + dataOut.m_floats[i] = float(m_floats[i]); +} + +SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) +{ + for (int32_t i = 0; i < 4; i++) + m_floats[i] = btScalar(dataIn.m_floats[i]); +} + +SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int32_t i = 0; i < 4; i++) + dataOut.m_floats[i] = double(m_floats[i]); +} + +SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) +{ + for (int32_t i = 0; i < 4; i++) + m_floats[i] = btScalar(dataIn.m_floats[i]); +} + +SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const +{ + ///could also do a memcpy, check if it is worth it + for (int32_t i = 0; i < 4; i++) + dataOut.m_floats[i] = m_floats[i]; +} + +SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn) +{ + for (int32_t i = 0; i < 4; i++) + m_floats[i] = dataIn.m_floats[i]; +} + +// -- GODOT start -- +}; // namespace VHACD +// -- GODOT end -- + +#endif //BT_VECTOR3_H |