summaryrefslogtreecommitdiff
path: root/thirdparty/vhacd/inc/btVector3.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/vhacd/inc/btVector3.h')
-rw-r--r--thirdparty/vhacd/inc/btVector3.h653
1 files changed, 653 insertions, 0 deletions
diff --git a/thirdparty/vhacd/inc/btVector3.h b/thirdparty/vhacd/inc/btVector3.h
new file mode 100644
index 0000000000..664728a419
--- /dev/null
+++ b/thirdparty/vhacd/inc/btVector3.h
@@ -0,0 +1,653 @@
+/*
+Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_VECTOR3_H
+#define BT_VECTOR3_H
+
+#include "btMinMax.h"
+#include "btScalar.h"
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btVector3Data btVector3DoubleData
+#define btVector3DataName "btVector3DoubleData"
+#else
+#define btVector3Data btVector3FloatData
+#define btVector3DataName "btVector3FloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+/**@brief btVector3 can be used to represent 3D points and vectors.
+ * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
+ * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
+ */
+//GODOT ADDITION
+namespace VHACD {
+//
+
+ATTRIBUTE_ALIGNED16(class)
+btVector3 {
+public:
+#if defined(__SPU__) && defined(__CELLOS_LV2__)
+ btScalar m_floats[4];
+
+public:
+ SIMD_FORCE_INLINE const vec_float4 &get128() const {
+ return *((const vec_float4 *)&m_floats[0]);
+ }
+
+public:
+#else //__CELLOS_LV2__ __SPU__
+#ifdef BT_USE_SSE // _WIN32
+ union {
+ __m128 mVec128;
+ btScalar m_floats[4];
+ };
+ SIMD_FORCE_INLINE __m128 get128() const {
+ return mVec128;
+ }
+ SIMD_FORCE_INLINE void set128(__m128 v128) {
+ mVec128 = v128;
+ }
+#else
+ btScalar m_floats[4];
+#endif
+#endif //__CELLOS_LV2__ __SPU__
+
+public:
+ /**@brief No initialization constructor */
+ SIMD_FORCE_INLINE btVector3() {}
+
+ /**@brief Constructor from scalars
+ * @param x X value
+ * @param y Y value
+ * @param z Z value
+ */
+ SIMD_FORCE_INLINE btVector3(const btScalar &x, const btScalar &y, const btScalar &z) {
+ m_floats[0] = x;
+ m_floats[1] = y;
+ m_floats[2] = z;
+ m_floats[3] = btScalar(0.);
+ }
+
+ /**@brief Add a vector to this one
+ * @param The vector to add to this one */
+ SIMD_FORCE_INLINE btVector3 &operator+=(const btVector3 &v) {
+
+ m_floats[0] += v.m_floats[0];
+ m_floats[1] += v.m_floats[1];
+ m_floats[2] += v.m_floats[2];
+ return *this;
+ }
+
+ /**@brief Subtract a vector from this one
+ * @param The vector to subtract */
+ SIMD_FORCE_INLINE btVector3 &operator-=(const btVector3 &v) {
+ m_floats[0] -= v.m_floats[0];
+ m_floats[1] -= v.m_floats[1];
+ m_floats[2] -= v.m_floats[2];
+ return *this;
+ }
+ /**@brief Scale the vector
+ * @param s Scale factor */
+ SIMD_FORCE_INLINE btVector3 &operator*=(const btScalar &s) {
+ m_floats[0] *= s;
+ m_floats[1] *= s;
+ m_floats[2] *= s;
+ return *this;
+ }
+
+ /**@brief Inversely scale the vector
+ * @param s Scale factor to divide by */
+ SIMD_FORCE_INLINE btVector3 &operator/=(const btScalar &s) {
+ btFullAssert(s != btScalar(0.0));
+ return *this *= btScalar(1.0) / s;
+ }
+
+ /**@brief Return the dot product
+ * @param v The other vector in the dot product */
+ SIMD_FORCE_INLINE btScalar dot(const btVector3 &v) const {
+ return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2];
+ }
+
+ /**@brief Return the length of the vector squared */
+ SIMD_FORCE_INLINE btScalar length2() const {
+ return dot(*this);
+ }
+
+ /**@brief Return the length of the vector */
+ SIMD_FORCE_INLINE btScalar length() const {
+ return btSqrt(length2());
+ }
+
+ /**@brief Return the distance squared between the ends of this and another vector
+ * This is symantically treating the vector like a point */
+ SIMD_FORCE_INLINE btScalar distance2(const btVector3 &v) const;
+
+ /**@brief Return the distance between the ends of this and another vector
+ * This is symantically treating the vector like a point */
+ SIMD_FORCE_INLINE btScalar distance(const btVector3 &v) const;
+
+ SIMD_FORCE_INLINE btVector3 &safeNormalize() {
+ btVector3 absVec = this->absolute();
+ int32_t maxIndex = absVec.maxAxis();
+ if (absVec[maxIndex] > 0) {
+ *this /= absVec[maxIndex];
+ return *this /= length();
+ }
+ setValue(1, 0, 0);
+ return *this;
+ }
+
+ /**@brief Normalize this vector
+ * x^2 + y^2 + z^2 = 1 */
+ SIMD_FORCE_INLINE btVector3 &normalize() {
+ return *this /= length();
+ }
+
+ /**@brief Return a normalized version of this vector */
+ SIMD_FORCE_INLINE btVector3 normalized() const;
+
+ /**@brief Return a rotated version of this vector
+ * @param wAxis The axis to rotate about
+ * @param angle The angle to rotate by */
+ SIMD_FORCE_INLINE btVector3 rotate(const btVector3 &wAxis, const btScalar angle) const;
+
+ /**@brief Return the angle between this and another vector
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btScalar angle(const btVector3 &v) const {
+ btScalar s = btSqrt(length2() * v.length2());
+ btFullAssert(s != btScalar(0.0));
+ return btAcos(dot(v) / s);
+ }
+ /**@brief Return a vector will the absolute values of each element */
+ SIMD_FORCE_INLINE btVector3 absolute() const {
+ return btVector3(
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]));
+ }
+ /**@brief Return the cross product between this and another vector
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btVector3 cross(const btVector3 &v) const {
+ return btVector3(
+ m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
+ m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
+ m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
+ }
+
+ SIMD_FORCE_INLINE btScalar triple(const btVector3 &v1, const btVector3 &v2) const {
+ return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
+ }
+
+ /**@brief Return the axis with the smallest value
+ * Note return values are 0,1,2 for x, y, or z */
+ SIMD_FORCE_INLINE int32_t minAxis() const {
+ return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
+ }
+
+ /**@brief Return the axis with the largest value
+ * Note return values are 0,1,2 for x, y, or z */
+ SIMD_FORCE_INLINE int32_t maxAxis() const {
+ return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
+ }
+
+ SIMD_FORCE_INLINE int32_t furthestAxis() const {
+ return absolute().minAxis();
+ }
+
+ SIMD_FORCE_INLINE int32_t closestAxis() const {
+ return absolute().maxAxis();
+ }
+
+ SIMD_FORCE_INLINE void setInterpolate3(const btVector3 &v0, const btVector3 &v1, btScalar rt) {
+ btScalar s = btScalar(1.0) - rt;
+ m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
+ m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
+ m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
+ //don't do the unused w component
+ // m_co[3] = s * v0[3] + rt * v1[3];
+ }
+
+ /**@brief Return the linear interpolation between this and another vector
+ * @param v The other vector
+ * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
+ SIMD_FORCE_INLINE btVector3 lerp(const btVector3 &v, const btScalar &t) const {
+ return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
+ m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
+ m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
+ }
+
+ /**@brief Elementwise multiply this vector by the other
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btVector3 &operator*=(const btVector3 &v) {
+ m_floats[0] *= v.m_floats[0];
+ m_floats[1] *= v.m_floats[1];
+ m_floats[2] *= v.m_floats[2];
+ return *this;
+ }
+
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar &getX() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar &getY() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar &getZ() const { return m_floats[2]; }
+ /**@brief Set the x value */
+ SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; };
+ /**@brief Set the y value */
+ SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; };
+ /**@brief Set the z value */
+ SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; };
+ /**@brief Set the w value */
+ SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; };
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar &x() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar &y() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar &z() const { return m_floats[2]; }
+ /**@brief Return the w value */
+ SIMD_FORCE_INLINE const btScalar &w() const { return m_floats[3]; }
+
+ //SIMD_FORCE_INLINE btScalar& operator[](int32_t i) { return (&m_floats[0])[i]; }
+ //SIMD_FORCE_INLINE const btScalar& operator[](int32_t i) const { return (&m_floats[0])[i]; }
+ ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
+ SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
+ SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
+
+ SIMD_FORCE_INLINE bool operator==(const btVector3 &other) const {
+ return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0]));
+ }
+
+ SIMD_FORCE_INLINE bool operator!=(const btVector3 &other) const {
+ return !(*this == other);
+ }
+
+ /**@brief Set each element to the max of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMax(const btVector3 &other) {
+ btSetMax(m_floats[0], other.m_floats[0]);
+ btSetMax(m_floats[1], other.m_floats[1]);
+ btSetMax(m_floats[2], other.m_floats[2]);
+ btSetMax(m_floats[3], other.w());
+ }
+ /**@brief Set each element to the min of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMin(const btVector3 &other) {
+ btSetMin(m_floats[0], other.m_floats[0]);
+ btSetMin(m_floats[1], other.m_floats[1]);
+ btSetMin(m_floats[2], other.m_floats[2]);
+ btSetMin(m_floats[3], other.w());
+ }
+
+ SIMD_FORCE_INLINE void setValue(const btScalar &x, const btScalar &y, const btScalar &z) {
+ m_floats[0] = x;
+ m_floats[1] = y;
+ m_floats[2] = z;
+ m_floats[3] = btScalar(0.);
+ }
+
+ void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const {
+ v0->setValue(0., -z(), y());
+ v1->setValue(z(), 0., -x());
+ v2->setValue(-y(), x(), 0.);
+ }
+
+ void setZero() {
+ setValue(btScalar(0.), btScalar(0.), btScalar(0.));
+ }
+
+ SIMD_FORCE_INLINE bool isZero() const {
+ return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
+ }
+
+ SIMD_FORCE_INLINE bool fuzzyZero() const {
+ return length2() < SIMD_EPSILON;
+ }
+
+ SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data &dataIn);
+
+ SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData &dataIn);
+
+ SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData &dataIn);
+};
+
+/**@brief Return the sum of two vectors (Point symantics)*/
+SIMD_FORCE_INLINE btVector3
+operator+(const btVector3 &v1, const btVector3 &v2) {
+ return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]);
+}
+
+/**@brief Return the elementwise product of two vectors */
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3 &v1, const btVector3 &v2) {
+ return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]);
+}
+
+/**@brief Return the difference between two vectors */
+SIMD_FORCE_INLINE btVector3
+operator-(const btVector3 &v1, const btVector3 &v2) {
+ return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]);
+}
+/**@brief Return the negative of the vector */
+SIMD_FORCE_INLINE btVector3
+operator-(const btVector3 &v) {
+ return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
+}
+
+/**@brief Return the vector scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3 &v, const btScalar &s) {
+ return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
+}
+
+/**@brief Return the vector scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator*(const btScalar &s, const btVector3 &v) {
+ return v * s;
+}
+
+/**@brief Return the vector inversely scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator/(const btVector3 &v, const btScalar &s) {
+ btFullAssert(s != btScalar(0.0));
+ return v * (btScalar(1.0) / s);
+}
+
+/**@brief Return the vector inversely scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator/(const btVector3 &v1, const btVector3 &v2) {
+ return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]);
+}
+
+/**@brief Return the dot product between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDot(const btVector3 &v1, const btVector3 &v2) {
+ return v1.dot(v2);
+}
+
+/**@brief Return the distance squared between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDistance2(const btVector3 &v1, const btVector3 &v2) {
+ return v1.distance2(v2);
+}
+
+/**@brief Return the distance between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDistance(const btVector3 &v1, const btVector3 &v2) {
+ return v1.distance(v2);
+}
+
+/**@brief Return the angle between two vectors */
+SIMD_FORCE_INLINE btScalar
+btAngle(const btVector3 &v1, const btVector3 &v2) {
+ return v1.angle(v2);
+}
+
+/**@brief Return the cross product of two vectors */
+SIMD_FORCE_INLINE btVector3
+btCross(const btVector3 &v1, const btVector3 &v2) {
+ return v1.cross(v2);
+}
+
+SIMD_FORCE_INLINE btScalar
+btTriple(const btVector3 &v1, const btVector3 &v2, const btVector3 &v3) {
+ return v1.triple(v2, v3);
+}
+
+/**@brief Return the linear interpolation between two vectors
+ * @param v1 One vector
+ * @param v2 The other vector
+ * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
+SIMD_FORCE_INLINE btVector3
+lerp(const btVector3 &v1, const btVector3 &v2, const btScalar &t) {
+ return v1.lerp(v2, t);
+}
+
+SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3 &v) const {
+ return (v - *this).length2();
+}
+
+SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3 &v) const {
+ return (v - *this).length();
+}
+
+SIMD_FORCE_INLINE btVector3 btVector3::normalized() const {
+ return *this / length();
+}
+
+SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3 &wAxis, const btScalar angle) const {
+ // wAxis must be a unit lenght vector
+
+ btVector3 o = wAxis * wAxis.dot(*this);
+ btVector3 x = *this - o;
+ btVector3 y;
+
+ y = wAxis.cross(*this);
+
+ return (o + x * btCos(angle) + y * btSin(angle));
+}
+
+class btVector4 : public btVector3 {
+public:
+ SIMD_FORCE_INLINE btVector4() {}
+
+ SIMD_FORCE_INLINE btVector4(const btScalar &x, const btScalar &y, const btScalar &z, const btScalar &w) :
+ btVector3(x, y, z) {
+ m_floats[3] = w;
+ }
+
+ SIMD_FORCE_INLINE btVector4 absolute4() const {
+ return btVector4(
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]),
+ btFabs(m_floats[3]));
+ }
+
+ btScalar getW() const { return m_floats[3]; }
+
+ SIMD_FORCE_INLINE int32_t maxAxis4() const {
+ int32_t maxIndex = -1;
+ btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
+ if (m_floats[0] > maxVal) {
+ maxIndex = 0;
+ maxVal = m_floats[0];
+ }
+ if (m_floats[1] > maxVal) {
+ maxIndex = 1;
+ maxVal = m_floats[1];
+ }
+ if (m_floats[2] > maxVal) {
+ maxIndex = 2;
+ maxVal = m_floats[2];
+ }
+ if (m_floats[3] > maxVal) {
+ maxIndex = 3;
+ }
+ return maxIndex;
+ }
+
+ SIMD_FORCE_INLINE int32_t minAxis4() const {
+ int32_t minIndex = -1;
+ btScalar minVal = btScalar(BT_LARGE_FLOAT);
+ if (m_floats[0] < minVal) {
+ minIndex = 0;
+ minVal = m_floats[0];
+ }
+ if (m_floats[1] < minVal) {
+ minIndex = 1;
+ minVal = m_floats[1];
+ }
+ if (m_floats[2] < minVal) {
+ minIndex = 2;
+ minVal = m_floats[2];
+ }
+ if (m_floats[3] < minVal) {
+ minIndex = 3;
+ }
+
+ return minIndex;
+ }
+
+ SIMD_FORCE_INLINE int32_t closestAxis4() const {
+ return absolute4().maxAxis4();
+ }
+
+ /**@brief Set x,y,z and zero w
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ */
+
+ /* void getValue(btScalar *m) const
+ {
+ m[0] = m_floats[0];
+ m[1] = m_floats[1];
+ m[2] =m_floats[2];
+ }
+*/
+ /**@brief Set the values
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ * @param w Value of w
+ */
+ SIMD_FORCE_INLINE void setValue(const btScalar &x, const btScalar &y, const btScalar &z, const btScalar &w) {
+ m_floats[0] = x;
+ m_floats[1] = y;
+ m_floats[2] = z;
+ m_floats[3] = w;
+ }
+};
+
+///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar &sourceVal, btScalar &destVal) {
+#ifdef BT_USE_DOUBLE_PRECISION
+ unsigned char *dest = (unsigned char *)&destVal;
+ unsigned char *src = (unsigned char *)&sourceVal;
+ dest[0] = src[7];
+ dest[1] = src[6];
+ dest[2] = src[5];
+ dest[3] = src[4];
+ dest[4] = src[3];
+ dest[5] = src[2];
+ dest[6] = src[1];
+ dest[7] = src[0];
+#else
+ unsigned char *dest = (unsigned char *)&destVal;
+ unsigned char *src = (unsigned char *)&sourceVal;
+ dest[0] = src[3];
+ dest[1] = src[2];
+ dest[2] = src[1];
+ dest[3] = src[0];
+#endif //BT_USE_DOUBLE_PRECISION
+}
+///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3 &sourceVec, btVector3 &destVec) {
+ for (int32_t i = 0; i < 4; i++) {
+ btSwapScalarEndian(sourceVec[i], destVec[i]);
+ }
+}
+
+///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3 &vector) {
+
+ btVector3 swappedVec;
+ for (int32_t i = 0; i < 4; i++) {
+ btSwapScalarEndian(vector[i], swappedVec[i]);
+ }
+ vector = swappedVec;
+}
+
+template <class T>
+SIMD_FORCE_INLINE void btPlaneSpace1(const T &n, T &p, T &q) {
+ if (btFabs(n[2]) > SIMDSQRT12) {
+ // choose p in y-z plane
+ btScalar a = n[1] * n[1] + n[2] * n[2];
+ btScalar k = btRecipSqrt(a);
+ p[0] = 0;
+ p[1] = -n[2] * k;
+ p[2] = n[1] * k;
+ // set q = n x p
+ q[0] = a * k;
+ q[1] = -n[0] * p[2];
+ q[2] = n[0] * p[1];
+ } else {
+ // choose p in x-y plane
+ btScalar a = n[0] * n[0] + n[1] * n[1];
+ btScalar k = btRecipSqrt(a);
+ p[0] = -n[1] * k;
+ p[1] = n[0] * k;
+ p[2] = 0;
+ // set q = n x p
+ q[0] = -n[2] * p[1];
+ q[1] = n[2] * p[0];
+ q[2] = a * k;
+ }
+}
+
+struct btVector3FloatData {
+ float m_floats[4];
+};
+
+struct btVector3DoubleData {
+ double m_floats[4];
+};
+
+SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData &dataOut) const {
+ ///could also do a memcpy, check if it is worth it
+ for (int32_t i = 0; i < 4; i++)
+ dataOut.m_floats[i] = float(m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData &dataIn) {
+ for (int32_t i = 0; i < 4; i++)
+ m_floats[i] = btScalar(dataIn.m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData &dataOut) const {
+ ///could also do a memcpy, check if it is worth it
+ for (int32_t i = 0; i < 4; i++)
+ dataOut.m_floats[i] = double(m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData &dataIn) {
+ for (int32_t i = 0; i < 4; i++)
+ m_floats[i] = btScalar(dataIn.m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data &dataOut) const {
+ ///could also do a memcpy, check if it is worth it
+ for (int32_t i = 0; i < 4; i++)
+ dataOut.m_floats[i] = m_floats[i];
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data &dataIn) {
+ for (int32_t i = 0; i < 4; i++)
+ m_floats[i] = dataIn.m_floats[i];
+}
+
+//GODOT ADDITION
+}; // namespace VHACD
+//
+
+#endif //BT_VECTOR3_H