summaryrefslogtreecommitdiff
path: root/thirdparty/vhacd/inc/btAlignedObjectArray.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/vhacd/inc/btAlignedObjectArray.h')
-rw-r--r--thirdparty/vhacd/inc/btAlignedObjectArray.h716
1 files changed, 372 insertions, 344 deletions
diff --git a/thirdparty/vhacd/inc/btAlignedObjectArray.h b/thirdparty/vhacd/inc/btAlignedObjectArray.h
index d82449e8fd..e6620adf6f 100644
--- a/thirdparty/vhacd/inc/btAlignedObjectArray.h
+++ b/thirdparty/vhacd/inc/btAlignedObjectArray.h
@@ -38,383 +38,411 @@ subject to the following restrictions:
#include <new> //for placement new
#endif //BT_USE_PLACEMENT_NEW
-//GODOT ADDITION
-namespace VHACD {
-//
-
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
template <typename T>
//template <class T>
class btAlignedObjectArray {
- btAlignedAllocator<T, 16> m_allocator;
+ btAlignedAllocator<T, 16> m_allocator;
- int32_t m_size;
- int32_t m_capacity;
- T *m_data;
- //PCK: added this line
- bool m_ownsMemory;
+ int32_t m_size;
+ int32_t m_capacity;
+ T* m_data;
+ //PCK: added this line
+ bool m_ownsMemory;
#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
public:
- SIMD_FORCE_INLINE btAlignedObjectArray<T> &operator=(const btAlignedObjectArray<T> &other) {
- copyFromArray(other);
- return *this;
- }
+ SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
+ {
+ copyFromArray(other);
+ return *this;
+ }
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
private:
- SIMD_FORCE_INLINE btAlignedObjectArray<T> &operator=(const btAlignedObjectArray<T> &other);
+ SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR
protected:
- SIMD_FORCE_INLINE int32_t allocSize(int32_t size) {
- return (size ? size * 2 : 1);
- }
- SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T *dest) const {
- int32_t i;
- for (i = start; i < end; ++i)
+ SIMD_FORCE_INLINE int32_t allocSize(int32_t size)
+ {
+ return (size ? size * 2 : 1);
+ }
+ SIMD_FORCE_INLINE void copy(int32_t start, int32_t end, T* dest) const
+ {
+ int32_t i;
+ for (i = start; i < end; ++i)
#ifdef BT_USE_PLACEMENT_NEW
- new (&dest[i]) T(m_data[i]);
+ new (&dest[i]) T(m_data[i]);
#else
- dest[i] = m_data[i];
+ dest[i] = m_data[i];
#endif //BT_USE_PLACEMENT_NEW
- }
-
- SIMD_FORCE_INLINE void init() {
- //PCK: added this line
- m_ownsMemory = true;
- m_data = 0;
- m_size = 0;
- m_capacity = 0;
- }
- SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last) {
- int32_t i;
- for (i = first; i < last; i++) {
- m_data[i].~T();
- }
- }
-
- SIMD_FORCE_INLINE void *allocate(int32_t size) {
- if (size)
- return m_allocator.allocate(size);
- return 0;
- }
-
- SIMD_FORCE_INLINE void deallocate() {
- if (m_data) {
- //PCK: enclosed the deallocation in this block
- if (m_ownsMemory) {
- m_allocator.deallocate(m_data);
- }
- m_data = 0;
- }
- }
+ }
+
+ SIMD_FORCE_INLINE void init()
+ {
+ //PCK: added this line
+ m_ownsMemory = true;
+ m_data = 0;
+ m_size = 0;
+ m_capacity = 0;
+ }
+ SIMD_FORCE_INLINE void destroy(int32_t first, int32_t last)
+ {
+ int32_t i;
+ for (i = first; i < last; i++) {
+ m_data[i].~T();
+ }
+ }
+
+ SIMD_FORCE_INLINE void* allocate(int32_t size)
+ {
+ if (size)
+ return m_allocator.allocate(size);
+ return 0;
+ }
+
+ SIMD_FORCE_INLINE void deallocate()
+ {
+ if (m_data) {
+ //PCK: enclosed the deallocation in this block
+ if (m_ownsMemory) {
+ m_allocator.deallocate(m_data);
+ }
+ m_data = 0;
+ }
+ }
public:
- btAlignedObjectArray() {
- init();
- }
-
- ~btAlignedObjectArray() {
- clear();
- }
-
- ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
- btAlignedObjectArray(const btAlignedObjectArray &otherArray) {
- init();
-
- int32_t otherSize = otherArray.size();
- resize(otherSize);
- otherArray.copy(0, otherSize, m_data);
- }
-
- /// return the number of elements in the array
- SIMD_FORCE_INLINE int32_t size() const {
- return m_size;
- }
-
- SIMD_FORCE_INLINE const T &at(int32_t n) const {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
-
- SIMD_FORCE_INLINE T &at(int32_t n) {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
-
- SIMD_FORCE_INLINE const T &operator[](int32_t n) const {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
-
- SIMD_FORCE_INLINE T &operator[](int32_t n) {
- btAssert(n >= 0);
- btAssert(n < size());
- return m_data[n];
- }
-
- ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
- SIMD_FORCE_INLINE void clear() {
- destroy(0, size());
-
- deallocate();
-
- init();
- }
-
- SIMD_FORCE_INLINE void pop_back() {
- btAssert(m_size > 0);
- m_size--;
- m_data[m_size].~T();
- }
-
- ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
- ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
- SIMD_FORCE_INLINE void resize(int32_t newsize, const T &fillData = T()) {
- int32_t curSize = size();
-
- if (newsize < curSize) {
- for (int32_t i = newsize; i < curSize; i++) {
- m_data[i].~T();
- }
- } else {
- if (newsize > size()) {
- reserve(newsize);
- }
+ btAlignedObjectArray()
+ {
+ init();
+ }
+
+ ~btAlignedObjectArray()
+ {
+ clear();
+ }
+
+ ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
+ btAlignedObjectArray(const btAlignedObjectArray& otherArray)
+ {
+ init();
+
+ int32_t otherSize = otherArray.size();
+ resize(otherSize);
+ otherArray.copy(0, otherSize, m_data);
+ }
+
+ /// return the number of elements in the array
+ SIMD_FORCE_INLINE int32_t size() const
+ {
+ return m_size;
+ }
+
+ SIMD_FORCE_INLINE const T& at(int32_t n) const
+ {
+ btAssert(n >= 0);
+ btAssert(n < size());
+ return m_data[n];
+ }
+
+ SIMD_FORCE_INLINE T& at(int32_t n)
+ {
+ btAssert(n >= 0);
+ btAssert(n < size());
+ return m_data[n];
+ }
+
+ SIMD_FORCE_INLINE const T& operator[](int32_t n) const
+ {
+ btAssert(n >= 0);
+ btAssert(n < size());
+ return m_data[n];
+ }
+
+ SIMD_FORCE_INLINE T& operator[](int32_t n)
+ {
+ btAssert(n >= 0);
+ btAssert(n < size());
+ return m_data[n];
+ }
+
+ ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
+ SIMD_FORCE_INLINE void clear()
+ {
+ destroy(0, size());
+
+ deallocate();
+
+ init();
+ }
+
+ SIMD_FORCE_INLINE void pop_back()
+ {
+ btAssert(m_size > 0);
+ m_size--;
+ m_data[m_size].~T();
+ }
+
+ ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
+ ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
+ SIMD_FORCE_INLINE void resize(int32_t newsize, const T& fillData = T())
+ {
+ int32_t curSize = size();
+
+ if (newsize < curSize) {
+ for (int32_t i = newsize; i < curSize; i++) {
+ m_data[i].~T();
+ }
+ }
+ else {
+ if (newsize > size()) {
+ reserve(newsize);
+ }
#ifdef BT_USE_PLACEMENT_NEW
- for (int32_t i = curSize; i < newsize; i++) {
- new (&m_data[i]) T(fillData);
- }
+ for (int32_t i = curSize; i < newsize; i++) {
+ new (&m_data[i]) T(fillData);
+ }
#endif //BT_USE_PLACEMENT_NEW
- }
-
- m_size = newsize;
- }
-
- SIMD_FORCE_INLINE T &expandNonInitializing() {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
- m_size++;
-
- return m_data[sz];
- }
-
- SIMD_FORCE_INLINE T &expand(const T &fillValue = T()) {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
- m_size++;
+ }
+
+ m_size = newsize;
+ }
+
+ SIMD_FORCE_INLINE T& expandNonInitializing()
+ {
+ int32_t sz = size();
+ if (sz == capacity()) {
+ reserve(allocSize(size()));
+ }
+ m_size++;
+
+ return m_data[sz];
+ }
+
+ SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
+ {
+ int32_t sz = size();
+ if (sz == capacity()) {
+ reserve(allocSize(size()));
+ }
+ m_size++;
#ifdef BT_USE_PLACEMENT_NEW
- new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
+ new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
#endif
- return m_data[sz];
- }
+ return m_data[sz];
+ }
- SIMD_FORCE_INLINE void push_back(const T &_Val) {
- int32_t sz = size();
- if (sz == capacity()) {
- reserve(allocSize(size()));
- }
+ SIMD_FORCE_INLINE void push_back(const T& _Val)
+ {
+ int32_t sz = size();
+ if (sz == capacity()) {
+ reserve(allocSize(size()));
+ }
#ifdef BT_USE_PLACEMENT_NEW
- new (&m_data[m_size]) T(_Val);
+ new (&m_data[m_size]) T(_Val);
#else
- m_data[size()] = _Val;
+ m_data[size()] = _Val;
#endif //BT_USE_PLACEMENT_NEW
- m_size++;
- }
-
- /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
- SIMD_FORCE_INLINE int32_t capacity() const {
- return m_capacity;
- }
-
- SIMD_FORCE_INLINE void reserve(int32_t _Count) { // determine new minimum length of allocated storage
- if (capacity() < _Count) { // not enough room, reallocate
- T *s = (T *)allocate(_Count);
-
- copy(0, size(), s);
-
- destroy(0, size());
-
- deallocate();
-
- //PCK: added this line
- m_ownsMemory = true;
-
- m_data = s;
-
- m_capacity = _Count;
- }
- }
-
- class less {
- public:
- bool operator()(const T &a, const T &b) {
- return (a < b);
- }
- };
-
- template <typename L>
- void quickSortInternal(const L &CompareFunc, int32_t lo, int32_t hi) {
- // lo is the lower index, hi is the upper index
- // of the region of array a that is to be sorted
- int32_t i = lo, j = hi;
- T x = m_data[(lo + hi) / 2];
-
- // partition
- do {
- while (CompareFunc(m_data[i], x))
- i++;
- while (CompareFunc(x, m_data[j]))
- j--;
- if (i <= j) {
- swap(i, j);
- i++;
- j--;
- }
- } while (i <= j);
-
- // recursion
- if (lo < j)
- quickSortInternal(CompareFunc, lo, j);
- if (i < hi)
- quickSortInternal(CompareFunc, i, hi);
- }
-
- template <typename L>
- void quickSort(const L &CompareFunc) {
- //don't sort 0 or 1 elements
- if (size() > 1) {
- quickSortInternal(CompareFunc, 0, size() - 1);
- }
- }
-
- ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
- template <typename L>
- void downHeap(T *pArr, int32_t k, int32_t n, const L &CompareFunc) {
- /* PRE: a[k+1..N] is a heap */
- /* POST: a[k..N] is a heap */
-
- T temp = pArr[k - 1];
- /* k has child(s) */
- while (k <= n / 2) {
- int32_t child = 2 * k;
-
- if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
- child++;
- }
- /* pick larger child */
- if (CompareFunc(temp, pArr[child - 1])) {
- /* move child up */
- pArr[k - 1] = pArr[child - 1];
- k = child;
- } else {
- break;
- }
- }
- pArr[k - 1] = temp;
- } /*downHeap*/
-
- void swap(int32_t index0, int32_t index1) {
+ m_size++;
+ }
+
+ /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
+ SIMD_FORCE_INLINE int32_t capacity() const
+ {
+ return m_capacity;
+ }
+
+ SIMD_FORCE_INLINE void reserve(int32_t _Count)
+ { // determine new minimum length of allocated storage
+ if (capacity() < _Count) { // not enough room, reallocate
+ T* s = (T*)allocate(_Count);
+
+ copy(0, size(), s);
+
+ destroy(0, size());
+
+ deallocate();
+
+ //PCK: added this line
+ m_ownsMemory = true;
+
+ m_data = s;
+
+ m_capacity = _Count;
+ }
+ }
+
+ class less {
+ public:
+ bool operator()(const T& a, const T& b)
+ {
+ return (a < b);
+ }
+ };
+
+ template <typename L>
+ void quickSortInternal(const L& CompareFunc, int32_t lo, int32_t hi)
+ {
+ // lo is the lower index, hi is the upper index
+ // of the region of array a that is to be sorted
+ int32_t i = lo, j = hi;
+ T x = m_data[(lo + hi) / 2];
+
+ // partition
+ do {
+ while (CompareFunc(m_data[i], x))
+ i++;
+ while (CompareFunc(x, m_data[j]))
+ j--;
+ if (i <= j) {
+ swap(i, j);
+ i++;
+ j--;
+ }
+ } while (i <= j);
+
+ // recursion
+ if (lo < j)
+ quickSortInternal(CompareFunc, lo, j);
+ if (i < hi)
+ quickSortInternal(CompareFunc, i, hi);
+ }
+
+ template <typename L>
+ void quickSort(const L& CompareFunc)
+ {
+ //don't sort 0 or 1 elements
+ if (size() > 1) {
+ quickSortInternal(CompareFunc, 0, size() - 1);
+ }
+ }
+
+ ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
+ template <typename L>
+ void downHeap(T* pArr, int32_t k, int32_t n, const L& CompareFunc)
+ {
+ /* PRE: a[k+1..N] is a heap */
+ /* POST: a[k..N] is a heap */
+
+ T temp = pArr[k - 1];
+ /* k has child(s) */
+ while (k <= n / 2) {
+ int32_t child = 2 * k;
+
+ if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
+ child++;
+ }
+ /* pick larger child */
+ if (CompareFunc(temp, pArr[child - 1])) {
+ /* move child up */
+ pArr[k - 1] = pArr[child - 1];
+ k = child;
+ }
+ else {
+ break;
+ }
+ }
+ pArr[k - 1] = temp;
+ } /*downHeap*/
+
+ void swap(int32_t index0, int32_t index1)
+ {
#ifdef BT_USE_MEMCPY
- char temp[sizeof(T)];
- memcpy(temp, &m_data[index0], sizeof(T));
- memcpy(&m_data[index0], &m_data[index1], sizeof(T));
- memcpy(&m_data[index1], temp, sizeof(T));
+ char temp[sizeof(T)];
+ memcpy(temp, &m_data[index0], sizeof(T));
+ memcpy(&m_data[index0], &m_data[index1], sizeof(T));
+ memcpy(&m_data[index1], temp, sizeof(T));
#else
- T temp = m_data[index0];
- m_data[index0] = m_data[index1];
- m_data[index1] = temp;
+ T temp = m_data[index0];
+ m_data[index0] = m_data[index1];
+ m_data[index1] = temp;
#endif //BT_USE_PLACEMENT_NEW
- }
-
- template <typename L>
- void heapSort(const L &CompareFunc) {
- /* sort a[0..N-1], N.B. 0 to N-1 */
- int32_t k;
- int32_t n = m_size;
- for (k = n / 2; k > 0; k--) {
- downHeap(m_data, k, n, CompareFunc);
- }
-
- /* a[1..N] is now a heap */
- while (n >= 1) {
- swap(0, n - 1); /* largest of a[0..n-1] */
-
- n = n - 1;
- /* restore a[1..i-1] heap */
- downHeap(m_data, 1, n, CompareFunc);
- }
- }
-
- ///non-recursive binary search, assumes sorted array
- int32_t findBinarySearch(const T &key) const {
- int32_t first = 0;
- int32_t last = size() - 1;
-
- //assume sorted array
- while (first <= last) {
- int32_t mid = (first + last) / 2; // compute mid point.
- if (key > m_data[mid])
- first = mid + 1; // repeat search in top half.
- else if (key < m_data[mid])
- last = mid - 1; // repeat search in bottom half.
- else
- return mid; // found it. return position /////
- }
- return size(); // failed to find key
- }
-
- int32_t findLinearSearch(const T &key) const {
- int32_t index = size();
- int32_t i;
-
- for (i = 0; i < size(); i++) {
- if (m_data[i] == key) {
- index = i;
- break;
- }
- }
- return index;
- }
-
- void remove(const T &key) {
-
- int32_t findIndex = findLinearSearch(key);
- if (findIndex < size()) {
- swap(findIndex, size() - 1);
- pop_back();
- }
- }
-
- //PCK: whole function
- void initializeFromBuffer(void *buffer, int32_t size, int32_t capacity) {
- clear();
- m_ownsMemory = false;
- m_data = (T *)buffer;
- m_size = size;
- m_capacity = capacity;
- }
-
- void copyFromArray(const btAlignedObjectArray &otherArray) {
- int32_t otherSize = otherArray.size();
- resize(otherSize);
- otherArray.copy(0, otherSize, m_data);
- }
+ }
+
+ template <typename L>
+ void heapSort(const L& CompareFunc)
+ {
+ /* sort a[0..N-1], N.B. 0 to N-1 */
+ int32_t k;
+ int32_t n = m_size;
+ for (k = n / 2; k > 0; k--) {
+ downHeap(m_data, k, n, CompareFunc);
+ }
+
+ /* a[1..N] is now a heap */
+ while (n >= 1) {
+ swap(0, n - 1); /* largest of a[0..n-1] */
+
+ n = n - 1;
+ /* restore a[1..i-1] heap */
+ downHeap(m_data, 1, n, CompareFunc);
+ }
+ }
+
+ ///non-recursive binary search, assumes sorted array
+ int32_t findBinarySearch(const T& key) const
+ {
+ int32_t first = 0;
+ int32_t last = size() - 1;
+
+ //assume sorted array
+ while (first <= last) {
+ int32_t mid = (first + last) / 2; // compute mid point.
+ if (key > m_data[mid])
+ first = mid + 1; // repeat search in top half.
+ else if (key < m_data[mid])
+ last = mid - 1; // repeat search in bottom half.
+ else
+ return mid; // found it. return position /////
+ }
+ return size(); // failed to find key
+ }
+
+ int32_t findLinearSearch(const T& key) const
+ {
+ int32_t index = size();
+ int32_t i;
+
+ for (i = 0; i < size(); i++) {
+ if (m_data[i] == key) {
+ index = i;
+ break;
+ }
+ }
+ return index;
+ }
+
+ void remove(const T& key)
+ {
+
+ int32_t findIndex = findLinearSearch(key);
+ if (findIndex < size()) {
+ swap(findIndex, size() - 1);
+ pop_back();
+ }
+ }
+
+ //PCK: whole function
+ void initializeFromBuffer(void* buffer, int32_t size, int32_t capacity)
+ {
+ clear();
+ m_ownsMemory = false;
+ m_data = (T*)buffer;
+ m_size = size;
+ m_capacity = capacity;
+ }
+
+ void copyFromArray(const btAlignedObjectArray& otherArray)
+ {
+ int32_t otherSize = otherArray.size();
+ resize(otherSize);
+ otherArray.copy(0, otherSize, m_data);
+ }
};
-//GODOT ADDITION
-}; // namespace VHACD
-//
-
#endif //BT_OBJECT_ARRAY__