diff options
Diffstat (limited to 'thirdparty/vhacd/inc/FloatMath.h')
-rw-r--r-- | thirdparty/vhacd/inc/FloatMath.h | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/thirdparty/vhacd/inc/FloatMath.h b/thirdparty/vhacd/inc/FloatMath.h new file mode 100644 index 0000000000..37b07cb69f --- /dev/null +++ b/thirdparty/vhacd/inc/FloatMath.h @@ -0,0 +1,525 @@ +#ifndef FLOAT_MATH_LIB_H + +#define FLOAT_MATH_LIB_H + + +#include <float.h> +#include <stdint.h> + +namespace FLOAT_MATH +{ + +enum FM_ClipState +{ + FMCS_XMIN = (1<<0), + FMCS_XMAX = (1<<1), + FMCS_YMIN = (1<<2), + FMCS_YMAX = (1<<3), + FMCS_ZMIN = (1<<4), + FMCS_ZMAX = (1<<5), +}; + +enum FM_Axis +{ + FM_XAXIS = (1<<0), + FM_YAXIS = (1<<1), + FM_ZAXIS = (1<<2) +}; + +enum LineSegmentType +{ + LS_START, + LS_MIDDLE, + LS_END +}; + + +const float FM_PI = 3.1415926535897932384626433832795028841971693993751f; +const float FM_DEG_TO_RAD = ((2.0f * FM_PI) / 360.0f); +const float FM_RAD_TO_DEG = (360.0f / (2.0f * FM_PI)); + +//***************** Float versions +//*** +//*** vectors are assumed to be 3 floats or 3 doubles representing X, Y, Z +//*** quaternions are assumed to be 4 floats or 4 doubles representing X,Y,Z,W +//*** matrices are assumed to be 16 floats or 16 doubles representing a standard D3D or OpenGL style 4x4 matrix +//*** bounding volumes are expressed as two sets of 3 floats/double representing bmin(x,y,z) and bmax(x,y,z) +//*** Plane equations are assumed to be 4 floats or 4 doubles representing Ax,By,Cz,D + +FM_Axis fm_getDominantAxis(const float normal[3]); +FM_Axis fm_getDominantAxis(const double normal[3]); + +void fm_decomposeTransform(const float local_transform[16],float trans[3],float rot[4],float scale[3]); +void fm_decomposeTransform(const double local_transform[16],double trans[3],double rot[4],double scale[3]); + +void fm_multiplyTransform(const float *pA,const float *pB,float *pM); +void fm_multiplyTransform(const double *pA,const double *pB,double *pM); + +void fm_inverseTransform(const float matrix[16],float inverse_matrix[16]); +void fm_inverseTransform(const double matrix[16],double inverse_matrix[16]); + +void fm_identity(float matrix[16]); // set 4x4 matrix to identity. +void fm_identity(double matrix[16]); // set 4x4 matrix to identity. + +void fm_inverseRT(const float matrix[16], const float pos[3], float t[3]); // inverse rotate translate the point. +void fm_inverseRT(const double matrix[16],const double pos[3],double t[3]); // inverse rotate translate the point. + +void fm_transform(const float matrix[16], const float pos[3], float t[3]); // rotate and translate this point. +void fm_transform(const double matrix[16],const double pos[3],double t[3]); // rotate and translate this point. + +float fm_getDeterminant(const float matrix[16]); +double fm_getDeterminant(const double matrix[16]); + +void fm_getSubMatrix(int32_t ki,int32_t kj,float pDst[16],const float matrix[16]); +void fm_getSubMatrix(int32_t ki,int32_t kj,double pDst[16],const float matrix[16]); + +void fm_rotate(const float matrix[16],const float pos[3],float t[3]); // only rotate the point by a 4x4 matrix, don't translate. +void fm_rotate(const double matri[16],const double pos[3],double t[3]); // only rotate the point by a 4x4 matrix, don't translate. + +void fm_eulerToMatrix(float ax,float ay,float az,float matrix[16]); // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) +void fm_eulerToMatrix(double ax,double ay,double az,double matrix[16]); // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) + +void fm_getAABB(uint32_t vcount,const float *points,uint32_t pstride,float bmin[3],float bmax[3]); +void fm_getAABB(uint32_t vcount,const double *points,uint32_t pstride,double bmin[3],double bmax[3]); + +void fm_getAABBCenter(const float bmin[3],const float bmax[3],float center[3]); +void fm_getAABBCenter(const double bmin[3],const double bmax[3],double center[3]); + +void fm_transformAABB(const float bmin[3],const float bmax[3],const float matrix[16],float tbmin[3],float tbmax[3]); +void fm_transformAABB(const double bmin[3],const double bmax[3],const double matrix[16],double tbmin[3],double tbmax[3]); + +void fm_eulerToQuat(float x,float y,float z,float quat[4]); // convert euler angles to quaternion. +void fm_eulerToQuat(double x,double y,double z,double quat[4]); // convert euler angles to quaternion. + +void fm_quatToEuler(const float quat[4],float &ax,float &ay,float &az); +void fm_quatToEuler(const double quat[4],double &ax,double &ay,double &az); + +void fm_eulerToQuat(const float euler[3],float quat[4]); // convert euler angles to quaternion. Angles must be radians not degrees! +void fm_eulerToQuat(const double euler[3],double quat[4]); // convert euler angles to quaternion. + +void fm_scale(float x,float y,float z,float matrix[16]); // apply scale to the matrix. +void fm_scale(double x,double y,double z,double matrix[16]); // apply scale to the matrix. + +void fm_eulerToQuatDX(float x,float y,float z,float quat[4]); // convert euler angles to quaternion using the fucked up DirectX method +void fm_eulerToQuatDX(double x,double y,double z,double quat[4]); // convert euler angles to quaternion using the fucked up DirectX method + +void fm_eulerToMatrixDX(float x,float y,float z,float matrix[16]); // convert euler angles to quaternion using the fucked up DirectX method. +void fm_eulerToMatrixDX(double x,double y,double z,double matrix[16]); // convert euler angles to quaternion using the fucked up DirectX method. + +void fm_quatToMatrix(const float quat[4],float matrix[16]); // convert quaterinion rotation to matrix, translation set to zero. +void fm_quatToMatrix(const double quat[4],double matrix[16]); // convert quaterinion rotation to matrix, translation set to zero. + +void fm_quatRotate(const float quat[4],const float v[3],float r[3]); // rotate a vector directly by a quaternion. +void fm_quatRotate(const double quat[4],const double v[3],double r[3]); // rotate a vector directly by a quaternion. + +void fm_getTranslation(const float matrix[16],float t[3]); +void fm_getTranslation(const double matrix[16],double t[3]); + +void fm_setTranslation(const float *translation,float matrix[16]); +void fm_setTranslation(const double *translation,double matrix[16]); + +void fm_multiplyQuat(const float *qa,const float *qb,float *quat); +void fm_multiplyQuat(const double *qa,const double *qb,double *quat); + +void fm_matrixToQuat(const float matrix[16],float quat[4]); // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w +void fm_matrixToQuat(const double matrix[16],double quat[4]); // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w + +float fm_sphereVolume(float radius); // return's the volume of a sphere of this radius (4/3 PI * R cubed ) +double fm_sphereVolume(double radius); // return's the volume of a sphere of this radius (4/3 PI * R cubed ) + +float fm_cylinderVolume(float radius,float h); +double fm_cylinderVolume(double radius,double h); + +float fm_capsuleVolume(float radius,float h); +double fm_capsuleVolume(double radius,double h); + +float fm_distance(const float p1[3],const float p2[3]); +double fm_distance(const double p1[3],const double p2[3]); + +float fm_distanceSquared(const float p1[3],const float p2[3]); +double fm_distanceSquared(const double p1[3],const double p2[3]); + +float fm_distanceSquaredXZ(const float p1[3],const float p2[3]); +double fm_distanceSquaredXZ(const double p1[3],const double p2[3]); + +float fm_computePlane(const float p1[3],const float p2[3],const float p3[3],float *n); // return D +double fm_computePlane(const double p1[3],const double p2[3],const double p3[3],double *n); // return D + +float fm_distToPlane(const float plane[4],const float pos[3]); // computes the distance of this point from the plane. +double fm_distToPlane(const double plane[4],const double pos[3]); // computes the distance of this point from the plane. + +float fm_dot(const float p1[3],const float p2[3]); +double fm_dot(const double p1[3],const double p2[3]); + +void fm_cross(float cross[3],const float a[3],const float b[3]); +void fm_cross(double cross[3],const double a[3],const double b[3]); + +float fm_computeNormalVector(float n[3],const float p1[3],const float p2[3]); // as P2-P1 normalized. +double fm_computeNormalVector(double n[3],const double p1[3],const double p2[3]); // as P2-P1 normalized. + +bool fm_computeWindingOrder(const float p1[3],const float p2[3],const float p3[3]); // returns true if the triangle is clockwise. +bool fm_computeWindingOrder(const double p1[3],const double p2[3],const double p3[3]); // returns true if the triangle is clockwise. + +float fm_normalize(float n[3]); // normalize this vector and return the distance +double fm_normalize(double n[3]); // normalize this vector and return the distance + +float fm_normalizeQuat(float n[4]); // normalize this quat +double fm_normalizeQuat(double n[4]); // normalize this quat + +void fm_matrixMultiply(const float A[16],const float B[16],float dest[16]); +void fm_matrixMultiply(const double A[16],const double B[16],double dest[16]); + +void fm_composeTransform(const float position[3],const float quat[4],const float scale[3],float matrix[16]); +void fm_composeTransform(const double position[3],const double quat[4],const double scale[3],double matrix[16]); + +float fm_computeArea(const float p1[3],const float p2[3],const float p3[3]); +double fm_computeArea(const double p1[3],const double p2[3],const double p3[3]); + +void fm_lerp(const float p1[3],const float p2[3],float dest[3],float lerpValue); +void fm_lerp(const double p1[3],const double p2[3],double dest[3],double lerpValue); + +bool fm_insideTriangleXZ(const float test[3],const float p1[3],const float p2[3],const float p3[3]); +bool fm_insideTriangleXZ(const double test[3],const double p1[3],const double p2[3],const double p3[3]); + +bool fm_insideAABB(const float pos[3],const float bmin[3],const float bmax[3]); +bool fm_insideAABB(const double pos[3],const double bmin[3],const double bmax[3]); + +bool fm_insideAABB(const float obmin[3],const float obmax[3],const float tbmin[3],const float tbmax[3]); // test if bounding box tbmin/tmbax is fully inside obmin/obmax +bool fm_insideAABB(const double obmin[3],const double obmax[3],const double tbmin[3],const double tbmax[3]); // test if bounding box tbmin/tmbax is fully inside obmin/obmax + +uint32_t fm_clipTestPoint(const float bmin[3],const float bmax[3],const float pos[3]); +uint32_t fm_clipTestPoint(const double bmin[3],const double bmax[3],const double pos[3]); + +uint32_t fm_clipTestPointXZ(const float bmin[3],const float bmax[3],const float pos[3]); // only tests X and Z, not Y +uint32_t fm_clipTestPointXZ(const double bmin[3],const double bmax[3],const double pos[3]); // only tests X and Z, not Y + + +uint32_t fm_clipTestAABB(const float bmin[3],const float bmax[3],const float p1[3],const float p2[3],const float p3[3],uint32_t &andCode); +uint32_t fm_clipTestAABB(const double bmin[3],const double bmax[3],const double p1[3],const double p2[3],const double p3[3],uint32_t &andCode); + + +bool fm_lineTestAABBXZ(const float p1[3],const float p2[3],const float bmin[3],const float bmax[3],float &time); +bool fm_lineTestAABBXZ(const double p1[3],const double p2[3],const double bmin[3],const double bmax[3],double &time); + +bool fm_lineTestAABB(const float p1[3],const float p2[3],const float bmin[3],const float bmax[3],float &time); +bool fm_lineTestAABB(const double p1[3],const double p2[3],const double bmin[3],const double bmax[3],double &time); + + +void fm_initMinMax(const float p[3],float bmin[3],float bmax[3]); +void fm_initMinMax(const double p[3],double bmin[3],double bmax[3]); + +void fm_initMinMax(float bmin[3],float bmax[3]); +void fm_initMinMax(double bmin[3],double bmax[3]); + +void fm_minmax(const float p[3],float bmin[3],float bmax[3]); // accumulate to a min-max value +void fm_minmax(const double p[3],double bmin[3],double bmax[3]); // accumulate to a min-max value + +// Computes the diagonal length of the bounding box and then inflates the bounding box on all sides +// by the ratio provided. +void fm_inflateMinMax(float bmin[3], float bmax[3], float ratio); +void fm_inflateMinMax(double bmin[3], double bmax[3], double ratio); + +float fm_solveX(const float plane[4],float y,float z); // solve for X given this plane equation and the other two components. +double fm_solveX(const double plane[4],double y,double z); // solve for X given this plane equation and the other two components. + +float fm_solveY(const float plane[4],float x,float z); // solve for Y given this plane equation and the other two components. +double fm_solveY(const double plane[4],double x,double z); // solve for Y given this plane equation and the other two components. + +float fm_solveZ(const float plane[4],float x,float y); // solve for Z given this plane equation and the other two components. +double fm_solveZ(const double plane[4],double x,double y); // solve for Z given this plane equation and the other two components. + +bool fm_computeBestFitPlane(uint32_t vcount, // number of input data points + const float *points, // starting address of points array. + uint32_t vstride, // stride between input points. + const float *weights, // *optional point weighting values. + uint32_t wstride, // weight stride for each vertex. + float plane[4], // Best fit plane equation + float center[3]); // Best fit weighted center of input points + +bool fm_computeBestFitPlane(uint32_t vcount, // number of input data points + const double *points, // starting address of points array. + uint32_t vstride, // stride between input points. + const double *weights, // *optional point weighting values. + uint32_t wstride, // weight stride for each vertex. + double plane[4], + double center[3]); + +// Computes the average center of a set of data points +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const float *points, // starting address of points array. + float *center); + +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const double *points, // starting address of points array. + double *center); + +// Compute centroid of a triangle mesh; takes area of each triangle into account +// weighted average +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const float *points, // starting address of points array. + uint32_t triangleCount, + const uint32_t *indices, + float *center); + +// Compute centroid of a triangle mesh; takes area of each triangle into account +// weighted average +bool fm_computeCentroid(uint32_t vcount, // number of input data points + const double *points, // starting address of points array. + uint32_t triangleCount, + const uint32_t *indices, + double *center); + + +float fm_computeBestFitAABB(uint32_t vcount,const float *points,uint32_t pstride,float bmin[3],float bmax[3]); // returns the diagonal distance +double fm_computeBestFitAABB(uint32_t vcount,const double *points,uint32_t pstride,double bmin[3],double bmax[3]); // returns the diagonal distance + +float fm_computeBestFitSphere(uint32_t vcount,const float *points,uint32_t pstride,float center[3]); +double fm_computeBestFitSphere(uint32_t vcount,const double *points,uint32_t pstride,double center[3]); + +bool fm_lineSphereIntersect(const float center[3],float radius,const float p1[3],const float p2[3],float intersect[3]); +bool fm_lineSphereIntersect(const double center[3],double radius,const double p1[3],const double p2[3],double intersect[3]); + +bool fm_intersectRayAABB(const float bmin[3],const float bmax[3],const float pos[3],const float dir[3],float intersect[3]); +bool fm_intersectLineSegmentAABB(const float bmin[3],const float bmax[3],const float p1[3],const float p2[3],float intersect[3]); + +bool fm_lineIntersectsTriangle(const float rayStart[3],const float rayEnd[3],const float p1[3],const float p2[3],const float p3[3],float sect[3]); +bool fm_lineIntersectsTriangle(const double rayStart[3],const double rayEnd[3],const double p1[3],const double p2[3],const double p3[3],double sect[3]); + +bool fm_rayIntersectsTriangle(const float origin[3],const float dir[3],const float v0[3],const float v1[3],const float v2[3],float &t); +bool fm_rayIntersectsTriangle(const double origin[3],const double dir[3],const double v0[3],const double v1[3],const double v2[3],double &t); + +bool fm_raySphereIntersect(const float center[3],float radius,const float pos[3],const float dir[3],float distance,float intersect[3]); +bool fm_raySphereIntersect(const double center[3],double radius,const double pos[3],const double dir[3],double distance,double intersect[3]); + +void fm_catmullRom(float out_vector[3],const float p1[3],const float p2[3],const float p3[3],const float *p4, const float s); +void fm_catmullRom(double out_vector[3],const double p1[3],const double p2[3],const double p3[3],const double *p4, const double s); + +bool fm_intersectAABB(const float bmin1[3],const float bmax1[3],const float bmin2[3],const float bmax2[3]); +bool fm_intersectAABB(const double bmin1[3],const double bmax1[3],const double bmin2[3],const double bmax2[3]); + + +// computes the rotation quaternion to go from unit-vector v0 to unit-vector v1 +void fm_rotationArc(const float v0[3],const float v1[3],float quat[4]); +void fm_rotationArc(const double v0[3],const double v1[3],double quat[4]); + +float fm_distancePointLineSegment(const float Point[3],const float LineStart[3],const float LineEnd[3],float intersection[3],LineSegmentType &type,float epsilon); +double fm_distancePointLineSegment(const double Point[3],const double LineStart[3],const double LineEnd[3],double intersection[3],LineSegmentType &type,double epsilon); + + +bool fm_colinear(const double p1[3],const double p2[3],const double p3[3],double epsilon=0.999); // true if these three points in a row are co-linear +bool fm_colinear(const float p1[3],const float p2[3],const float p3[3],float epsilon=0.999f); + +bool fm_colinear(const float a1[3],const float a2[3],const float b1[3],const float b2[3],float epsilon=0.999f); // true if these two line segments are co-linear. +bool fm_colinear(const double a1[3],const double a2[3],const double b1[3],const double b2[3],double epsilon=0.999); // true if these two line segments are co-linear. + +enum IntersectResult +{ + IR_DONT_INTERSECT, + IR_DO_INTERSECT, + IR_COINCIDENT, + IR_PARALLEL, +}; + +IntersectResult fm_intersectLineSegments2d(const float a1[3], const float a2[3], const float b1[3], const float b2[3], float intersectionPoint[3]); +IntersectResult fm_intersectLineSegments2d(const double a1[3],const double a2[3],const double b1[3],const double b2[3],double intersectionPoint[3]); + +IntersectResult fm_intersectLineSegments2dTime(const float a1[3], const float a2[3], const float b1[3], const float b2[3],float &t1,float &t2); +IntersectResult fm_intersectLineSegments2dTime(const double a1[3],const double a2[3],const double b1[3],const double b2[3],double &t1,double &t2); + +// Plane-Triangle splitting + +enum PlaneTriResult +{ + PTR_ON_PLANE, + PTR_FRONT, + PTR_BACK, + PTR_SPLIT, +}; + +PlaneTriResult fm_planeTriIntersection(const float plane[4], // the plane equation in Ax+By+Cz+D format + const float *triangle, // the source triangle. + uint32_t tstride, // stride in bytes of the input and output *vertices* + float epsilon, // the co-planer epsilon value. + float *front, // the triangle in front of the + uint32_t &fcount, // number of vertices in the 'front' triangle + float *back, // the triangle in back of the plane + uint32_t &bcount); // the number of vertices in the 'back' triangle. + + +PlaneTriResult fm_planeTriIntersection(const double plane[4], // the plane equation in Ax+By+Cz+D format + const double *triangle, // the source triangle. + uint32_t tstride, // stride in bytes of the input and output *vertices* + double epsilon, // the co-planer epsilon value. + double *front, // the triangle in front of the + uint32_t &fcount, // number of vertices in the 'front' triangle + double *back, // the triangle in back of the plane + uint32_t &bcount); // the number of vertices in the 'back' triangle. + + +bool fm_intersectPointPlane(const float p1[3],const float p2[3],float *split,const float plane[4]); +bool fm_intersectPointPlane(const double p1[3],const double p2[3],double *split,const double plane[4]); + +PlaneTriResult fm_getSidePlane(const float p[3],const float plane[4],float epsilon); +PlaneTriResult fm_getSidePlane(const double p[3],const double plane[4],double epsilon); + + +void fm_computeBestFitOBB(uint32_t vcount,const float *points,uint32_t pstride,float *sides,float matrix[16],bool bruteForce=true); +void fm_computeBestFitOBB(uint32_t vcount,const double *points,uint32_t pstride,double *sides,double matrix[16],bool bruteForce=true); + +void fm_computeBestFitOBB(uint32_t vcount,const float *points,uint32_t pstride,float *sides,float pos[3],float quat[4],bool bruteForce=true); +void fm_computeBestFitOBB(uint32_t vcount,const double *points,uint32_t pstride,double *sides,double pos[3],double quat[4],bool bruteForce=true); + +void fm_computeBestFitABB(uint32_t vcount,const float *points,uint32_t pstride,float *sides,float pos[3]); +void fm_computeBestFitABB(uint32_t vcount,const double *points,uint32_t pstride,double *sides,double pos[3]); + + +//** Note, if the returned capsule height is less than zero, then you must represent it is a sphere of size radius. +void fm_computeBestFitCapsule(uint32_t vcount,const float *points,uint32_t pstride,float &radius,float &height,float matrix[16],bool bruteForce=true); +void fm_computeBestFitCapsule(uint32_t vcount,const double *points,uint32_t pstride,float &radius,float &height,double matrix[16],bool bruteForce=true); + + +void fm_planeToMatrix(const float plane[4],float matrix[16]); // convert a plane equation to a 4x4 rotation matrix. Reference vector is 0,1,0 +void fm_planeToQuat(const float plane[4],float quat[4],float pos[3]); // convert a plane equation to a quaternion and translation + +void fm_planeToMatrix(const double plane[4],double matrix[16]); // convert a plane equation to a 4x4 rotation matrix +void fm_planeToQuat(const double plane[4],double quat[4],double pos[3]); // convert a plane equation to a quaternion and translation + +inline void fm_doubleToFloat3(const double p[3],float t[3]) { t[0] = (float) p[0]; t[1] = (float)p[1]; t[2] = (float)p[2]; }; +inline void fm_floatToDouble3(const float p[3],double t[3]) { t[0] = (double)p[0]; t[1] = (double)p[1]; t[2] = (double)p[2]; }; + + +void fm_eulerMatrix(float ax,float ay,float az,float matrix[16]); // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) +void fm_eulerMatrix(double ax,double ay,double az,double matrix[16]); // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) + + +float fm_computeMeshVolume(const float *vertices,uint32_t tcount,const uint32_t *indices); +double fm_computeMeshVolume(const double *vertices,uint32_t tcount,const uint32_t *indices); + + +#define FM_DEFAULT_GRANULARITY 0.001f // 1 millimeter is the default granularity + +class fm_VertexIndex +{ +public: + virtual uint32_t getIndex(const float pos[3],bool &newPos) = 0; // get welded index for this float vector[3] + virtual uint32_t getIndex(const double pos[3],bool &newPos) = 0; // get welded index for this double vector[3] + virtual const float * getVerticesFloat(void) const = 0; + virtual const double * getVerticesDouble(void) const = 0; + virtual const float * getVertexFloat(uint32_t index) const = 0; + virtual const double * getVertexDouble(uint32_t index) const = 0; + virtual uint32_t getVcount(void) const = 0; + virtual bool isDouble(void) const = 0; + virtual bool saveAsObj(const char *fname,uint32_t tcount,uint32_t *indices) = 0; +}; + +fm_VertexIndex * fm_createVertexIndex(double granularity,bool snapToGrid); // create an indexed vertex system for doubles +fm_VertexIndex * fm_createVertexIndex(float granularity,bool snapToGrid); // create an indexed vertext system for floats +void fm_releaseVertexIndex(fm_VertexIndex *vindex); + + +class fm_Triangulate +{ +public: + virtual const double * triangulate3d(uint32_t pcount, + const double *points, + uint32_t vstride, + uint32_t &tcount, + bool consolidate, + double epsilon) = 0; + + virtual const float * triangulate3d(uint32_t pcount, + const float *points, + uint32_t vstride, + uint32_t &tcount, + bool consolidate, + float epsilon) = 0; +}; + +fm_Triangulate * fm_createTriangulate(void); +void fm_releaseTriangulate(fm_Triangulate *t); + + +const float * fm_getPoint(const float *points,uint32_t pstride,uint32_t index); +const double * fm_getPoint(const double *points,uint32_t pstride,uint32_t index); + +bool fm_insideTriangle(float Ax, float Ay,float Bx, float By,float Cx, float Cy,float Px, float Py); +bool fm_insideTriangle(double Ax, double Ay,double Bx, double By,double Cx, double Cy,double Px, double Py); +float fm_areaPolygon2d(uint32_t pcount,const float *points,uint32_t pstride); +double fm_areaPolygon2d(uint32_t pcount,const double *points,uint32_t pstride); + +bool fm_pointInsidePolygon2d(uint32_t pcount,const float *points,uint32_t pstride,const float *point,uint32_t xindex=0,uint32_t yindex=1); +bool fm_pointInsidePolygon2d(uint32_t pcount,const double *points,uint32_t pstride,const double *point,uint32_t xindex=0,uint32_t yindex=1); + +uint32_t fm_consolidatePolygon(uint32_t pcount,const float *points,uint32_t pstride,float *dest,float epsilon=0.999999f); // collapses co-linear edges. +uint32_t fm_consolidatePolygon(uint32_t pcount,const double *points,uint32_t pstride,double *dest,double epsilon=0.999999); // collapses co-linear edges. + + +bool fm_computeSplitPlane(uint32_t vcount,const double *vertices,uint32_t tcount,const uint32_t *indices,double *plane); +bool fm_computeSplitPlane(uint32_t vcount,const float *vertices,uint32_t tcount,const uint32_t *indices,float *plane); + +void fm_nearestPointInTriangle(const float *pos,const float *p1,const float *p2,const float *p3,float *nearest); +void fm_nearestPointInTriangle(const double *pos,const double *p1,const double *p2,const double *p3,double *nearest); + +float fm_areaTriangle(const float *p1,const float *p2,const float *p3); +double fm_areaTriangle(const double *p1,const double *p2,const double *p3); + +void fm_subtract(const float *A,const float *B,float *diff); // compute A-B and store the result in 'diff' +void fm_subtract(const double *A,const double *B,double *diff); // compute A-B and store the result in 'diff' + +void fm_multiply(float *A,float scaler); +void fm_multiply(double *A,double scaler); + +void fm_add(const float *A,const float *B,float *sum); +void fm_add(const double *A,const double *B,double *sum); + +void fm_copy3(const float *source,float *dest); +void fm_copy3(const double *source,double *dest); + +// re-indexes an indexed triangle mesh but drops unused vertices. The output_indices can be the same pointer as the input indices. +// the output_vertices can point to the input vertices if you desire. The output_vertices buffer should be at least the same size +// is the input buffer. The routine returns the new vertex count after re-indexing. +uint32_t fm_copyUniqueVertices(uint32_t vcount,const float *input_vertices,float *output_vertices,uint32_t tcount,const uint32_t *input_indices,uint32_t *output_indices); +uint32_t fm_copyUniqueVertices(uint32_t vcount,const double *input_vertices,double *output_vertices,uint32_t tcount,const uint32_t *input_indices,uint32_t *output_indices); + +bool fm_isMeshCoplanar(uint32_t tcount,const uint32_t *indices,const float *vertices,bool doubleSided); // returns true if this collection of indexed triangles are co-planar! +bool fm_isMeshCoplanar(uint32_t tcount,const uint32_t *indices,const double *vertices,bool doubleSided); // returns true if this collection of indexed triangles are co-planar! + +bool fm_samePlane(const float p1[4],const float p2[4],float normalEpsilon=0.01f,float dEpsilon=0.001f,bool doubleSided=false); // returns true if these two plane equations are identical within an epsilon +bool fm_samePlane(const double p1[4],const double p2[4],double normalEpsilon=0.01,double dEpsilon=0.001,bool doubleSided=false); + +void fm_OBBtoAABB(const float obmin[3],const float obmax[3],const float matrix[16],float abmin[3],float abmax[3]); + +// a utility class that will tessellate a mesh. +class fm_Tesselate +{ +public: + virtual const uint32_t * tesselate(fm_VertexIndex *vindex,uint32_t tcount,const uint32_t *indices,float longEdge,uint32_t maxDepth,uint32_t &outcount) = 0; +}; + +fm_Tesselate * fm_createTesselate(void); +void fm_releaseTesselate(fm_Tesselate *t); + +void fm_computeMeanNormals(uint32_t vcount, // the number of vertices + const float *vertices, // the base address of the vertex position data. + uint32_t vstride, // the stride between position data. + float *normals, // the base address of the destination for mean vector normals + uint32_t nstride, // the stride between normals + uint32_t tcount, // the number of triangles + const uint32_t *indices); // the triangle indices + +void fm_computeMeanNormals(uint32_t vcount, // the number of vertices + const double *vertices, // the base address of the vertex position data. + uint32_t vstride, // the stride between position data. + double *normals, // the base address of the destination for mean vector normals + uint32_t nstride, // the stride between normals + uint32_t tcount, // the number of triangles + const uint32_t *indices); // the triangle indices + + +bool fm_isValidTriangle(const float *p1,const float *p2,const float *p3,float epsilon=0.00001f); +bool fm_isValidTriangle(const double *p1,const double *p2,const double *p3,double epsilon=0.00001f); + + +}; // end of namespace + +#endif |