summaryrefslogtreecommitdiff
path: root/thirdparty/tinyexr
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/tinyexr')
-rw-r--r--thirdparty/tinyexr/tinyexr.cc4
-rw-r--r--thirdparty/tinyexr/tinyexr.h9052
2 files changed, 1896 insertions, 7160 deletions
diff --git a/thirdparty/tinyexr/tinyexr.cc b/thirdparty/tinyexr/tinyexr.cc
index fef8f66c98..70115ea5c2 100644
--- a/thirdparty/tinyexr/tinyexr.cc
+++ b/thirdparty/tinyexr/tinyexr.cc
@@ -4,5 +4,9 @@
#endif
#endif
+// -- GODOT start --
+#include <zlib.h> // Should come before including tinyexr.
+// -- GODOT end --
+
#define TINYEXR_IMPLEMENTATION
#include "tinyexr.h"
diff --git a/thirdparty/tinyexr/tinyexr.h b/thirdparty/tinyexr/tinyexr.h
index a3e7b23161..969f07ad79 100644
--- a/thirdparty/tinyexr/tinyexr.h
+++ b/thirdparty/tinyexr/tinyexr.h
@@ -1,7 +1,7 @@
#ifndef TINYEXR_H_
#define TINYEXR_H_
/*
-Copyright (c) 2014 - 2020, Syoyo Fujita and many contributors.
+Copyright (c) 2014 - 2021, Syoyo Fujita and many contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without
@@ -65,6 +65,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// End of OpenEXR license -------------------------------------------------
+
//
//
// Do this:
@@ -88,7 +89,21 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
extern "C" {
#endif
-// Use embedded miniz or not to decode ZIP format pixel. Linking with zlib
+#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
+ defined(__i386) || defined(__i486__) || defined(__i486) || \
+ defined(i386) || defined(__ia64__) || defined(__x86_64__)
+#define TINYEXR_X86_OR_X64_CPU 1
+#else
+#define TINYEXR_X86_OR_X64_CPU 0
+#endif
+
+#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || TINYEXR_X86_OR_X64_CPU
+#define TINYEXR_LITTLE_ENDIAN 1
+#else
+#define TINYEXR_LITTLE_ENDIAN 0
+#endif
+
+// Use miniz or not to decode ZIP format pixel. Linking with zlib
// required if this flas is 0.
#ifndef TINYEXR_USE_MINIZ
#define TINYEXR_USE_MINIZ (1)
@@ -162,9 +177,13 @@ extern "C" {
typedef struct _EXRVersion {
int version; // this must be 2
- int tiled; // tile format image
+ // tile format image;
+ // not zero for only a single-part "normal" tiled file (according to spec.)
+ int tiled;
int long_name; // long name attribute
- int non_image; // deep image(EXR 2.0)
+ // deep image(EXR 2.0);
+ // for a multi-part file, indicates that at least one part is of type deep* (according to spec.)
+ int non_image;
int multipart; // multi-part(EXR 2.0)
} EXRVersion;
@@ -222,6 +241,8 @@ typedef struct _EXRHeader {
int tile_rounding_mode;
int long_name;
+ // for a single-part file, agree with the version field bit 11
+ // for a multi-part file, it is consistent with the type of part
int non_image;
int multipart;
unsigned int header_len;
@@ -244,7 +265,11 @@ typedef struct _EXRHeader {
// ParseEXRHeaderFrom(Meomory|File), then users
// can edit it(only valid for HALF pixel type
// channel)
-
+ // name attribute required for multipart files;
+ // must be unique and non empty (according to spec.);
+ // use EXRSetNameAttr for setting value;
+ // max 255 character allowed - excluding terminating zero
+ char name[256];
} EXRHeader;
typedef struct _EXRMultiPartHeader {
@@ -256,6 +281,10 @@ typedef struct _EXRMultiPartHeader {
typedef struct _EXRImage {
EXRTile *tiles; // Tiled pixel data. The application must reconstruct image
// from tiles manually. NULL if scanline format.
+ struct _EXRImage* next_level; // NULL if scanline format or image is the last level.
+ int level_x; // x level index
+ int level_y; // y level index
+
unsigned char **images; // image[channels][pixels]. NULL if tiled format.
int width;
@@ -339,9 +368,15 @@ extern int SaveEXR(const float *data, const int width, const int height,
const int components, const int save_as_fp16,
const char *filename, const char **err);
+// Returns the number of resolution levels of the image (including the base)
+extern int EXRNumLevels(const EXRImage* exr_image);
+
// Initialize EXRHeader struct
extern void InitEXRHeader(EXRHeader *exr_header);
+// Set name attribute of EXRHeader struct (it makes a copy)
+extern void EXRSetNameAttr(EXRHeader *exr_header, const char* name);
+
// Initialize EXRImage struct
extern void InitEXRImage(EXRImage *exr_image);
@@ -465,6 +500,30 @@ extern size_t SaveEXRImageToMemory(const EXRImage *image,
const EXRHeader *exr_header,
unsigned char **memory, const char **err);
+// Saves multi-channel, multi-frame OpenEXR image to a memory.
+// Image is compressed using EXRImage.compression value.
+// File global attributes (eg. display_window) must be set in the first header.
+// Returns negative value and may set error string in `err` when there's an
+// error
+// When there was an error message, Application must free `err` with
+// FreeEXRErrorMessage()
+extern int SaveEXRMultipartImageToFile(const EXRImage *images,
+ const EXRHeader **exr_headers,
+ unsigned int num_parts,
+ const char *filename, const char **err);
+
+// Saves multi-channel, multi-frame OpenEXR image to a memory.
+// Image is compressed using EXRImage.compression value.
+// File global attributes (eg. display_window) must be set in the first header.
+// Return the number of bytes if success.
+// Return zero and will set error string in `err` when there's an
+// error.
+// When there was an error message, Application must free `err` with
+// FreeEXRErrorMessage()
+extern size_t SaveEXRMultipartImageToMemory(const EXRImage *images,
+ const EXRHeader **exr_headers,
+ unsigned int num_parts,
+ unsigned char **memory, const char **err);
// Loads single-frame OpenEXR deep image.
// Application must free memory of variables in DeepImage(image, offset_table)
// Returns negative value and may set error string in `err` when there's an
@@ -514,6 +573,9 @@ extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
#include <windows.h> // for UTF-8
#endif
@@ -530,8 +592,11 @@ extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
#include <limits>
#include <string>
#include <vector>
+#include <set>
-#if __cplusplus > 199711L
+// https://stackoverflow.com/questions/5047971/how-do-i-check-for-c11-support
+#if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1900)
+#define TINYEXR_HAS_CXX11 (1)
// C++11
#include <cstdint>
@@ -547,6 +612,7 @@ extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
#endif
#if TINYEXR_USE_MINIZ
+#include <miniz.h>
#else
// Issue #46. Please include your own zlib-compatible API header before
// including `tinyexr.h`
@@ -588,6467 +654,6 @@ typedef long long tinyexr_int64;
#endif
#endif
-#if TINYEXR_USE_MINIZ
-
-namespace miniz {
-
-#ifdef __clang__
-#pragma clang diagnostic push
-#pragma clang diagnostic ignored "-Wc++11-long-long"
-#pragma clang diagnostic ignored "-Wold-style-cast"
-#pragma clang diagnostic ignored "-Wpadded"
-#pragma clang diagnostic ignored "-Wsign-conversion"
-#pragma clang diagnostic ignored "-Wc++11-extensions"
-#pragma clang diagnostic ignored "-Wconversion"
-#pragma clang diagnostic ignored "-Wunused-function"
-#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
-#pragma clang diagnostic ignored "-Wundef"
-
-#if __has_warning("-Wcomma")
-#pragma clang diagnostic ignored "-Wcomma"
-#endif
-
-#if __has_warning("-Wmacro-redefined")
-#pragma clang diagnostic ignored "-Wmacro-redefined"
-#endif
-
-#if __has_warning("-Wcast-qual")
-#pragma clang diagnostic ignored "-Wcast-qual"
-#endif
-
-#if __has_warning("-Wzero-as-null-pointer-constant")
-#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
-#endif
-
-#if __has_warning("-Wtautological-constant-compare")
-#pragma clang diagnostic ignored "-Wtautological-constant-compare"
-#endif
-
-#if __has_warning("-Wextra-semi-stmt")
-#pragma clang diagnostic ignored "-Wextra-semi-stmt"
-#endif
-
-#endif
-
-/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP
- reading/writing/appending, PNG writing
- See "unlicense" statement at the end of this file.
- Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013
- Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951:
- http://www.ietf.org/rfc/rfc1951.txt
-
- Most API's defined in miniz.c are optional. For example, to disable the
- archive related functions just define
- MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO
- (see the list below for more macros).
-
- * Change History
- 10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major
- release with Zip64 support (almost there!):
- - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug
- (thanks kahmyong.moon@hp.com) which could cause locate files to not find
- files. This bug
- would only have occurred in earlier versions if you explicitly used this
- flag, OR if you used mz_zip_extract_archive_file_to_heap() or
- mz_zip_add_mem_to_archive_file_in_place()
- (which used this flag). If you can't switch to v1.15 but want to fix
- this bug, just remove the uses of this flag from both helper funcs (and of
- course don't use the flag).
- - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when
- pUser_read_buf is not NULL and compressed size is > uncompressed size
- - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract
- compressed data from directory entries, to account for weird zipfiles which
- contain zero-size compressed data on dir entries.
- Hopefully this fix won't cause any issues on weird zip archives,
- because it assumes the low 16-bits of zip external attributes are DOS
- attributes (which I believe they always are in practice).
- - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the
- internal attributes, just the filename and external attributes
- - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed
- - Added cmake support for Linux builds which builds all the examples,
- tested with clang v3.3 and gcc v4.6.
- - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti
- - Merged MZ_FORCEINLINE fix from hdeanclark
- - Fix <time.h> include before config #ifdef, thanks emil.brink
- - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping
- (super useful for OpenGL apps), and explicit control over the compression
- level (so you can
- set it to 1 for real-time compression).
- - Merged in some compiler fixes from paulharris's github repro.
- - Retested this build under Windows (VS 2010, including static analysis),
- tcc 0.9.26, gcc v4.6 and clang v3.3.
- - Added example6.c, which dumps an image of the mandelbrot set to a PNG
- file.
- - Modified example2 to help test the
- MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more.
- - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix
- possible src file fclose() leak if alignment bytes+local header file write
- faiiled
- - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader():
- Was pushing the wrong central dir header offset, appears harmless in this
- release, but it became a problem in the zip64 branch
- 5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE,
- #include <time.h> (thanks fermtect).
- 5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix
- mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit.
- - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and
- re-ran a randomized regression test on ~500k files.
- - Eliminated a bunch of warnings when compiling with GCC 32-bit/64.
- - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze
- (static analysis) option and fixed all warnings (except for the silly
- "Use of the comma-operator in a tested expression.." analysis warning,
- which I purposely use to work around a MSVC compiler warning).
- - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and
- tested Linux executables. The codeblocks workspace is compatible with
- Linux+Win32/x64.
- - Added miniz_tester solution/project, which is a useful little app
- derived from LZHAM's tester app that I use as part of the regression test.
- - Ran miniz.c and tinfl.c through another series of regression testing on
- ~500,000 files and archives.
- - Modified example5.c so it purposely disables a bunch of high-level
- functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the
- MINIZ_NO_STDIO bug report.)
- - Fix ftell() usage in examples so they exit with an error on files which
- are too large (a limitation of the examples, not miniz itself).
- 4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple
- minor level_and_flags issues in the archive API's.
- level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce
- Dawson <bruced@valvesoftware.com> for the feedback/bug report.
- 5/28/11 v1.11 - Added statement from unlicense.org
- 5/27/11 v1.10 - Substantial compressor optimizations:
- - Level 1 is now ~4x faster than before. The L1 compressor's throughput
- now varies between 70-110MB/sec. on a
- - Core i7 (actual throughput varies depending on the type of data, and x64
- vs. x86).
- - Improved baseline L2-L9 compression perf. Also, greatly improved
- compression perf. issues on some file types.
- - Refactored the compression code for better readability and
- maintainability.
- - Added level 10 compression level (L10 has slightly better ratio than
- level 9, but could have a potentially large
- drop in throughput on some files).
- 5/15/11 v1.09 - Initial stable release.
-
- * Low-level Deflate/Inflate implementation notes:
-
- Compression: Use the "tdefl" API's. The compressor supports raw, static,
- and dynamic blocks, lazy or
- greedy parsing, match length filtering, RLE-only, and Huffman-only streams.
- It performs and compresses
- approximately as well as zlib.
-
- Decompression: Use the "tinfl" API's. The entire decompressor is
- implemented as a single function
- coroutine: see tinfl_decompress(). It supports decompression into a 32KB
- (or larger power of 2) wrapping buffer, or into a memory
- block large enough to hold the entire file.
-
- The low-level tdefl/tinfl API's do not make any use of dynamic memory
- allocation.
-
- * zlib-style API notes:
-
- miniz.c implements a fairly large subset of zlib. There's enough
- functionality present for it to be a drop-in
- zlib replacement in many apps:
- The z_stream struct, optional memory allocation callbacks
- deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
- inflateInit/inflateInit2/inflate/inflateEnd
- compress, compress2, compressBound, uncompress
- CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly
- routines.
- Supports raw deflate streams or standard zlib streams with adler-32
- checking.
-
- Limitations:
- The callback API's are not implemented yet. No support for gzip headers or
- zlib static dictionaries.
- I've tried to closely emulate zlib's various flavors of stream flushing
- and return status codes, but
- there are no guarantees that miniz.c pulls this off perfectly.
-
- * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function,
- originally written by
- Alex Evans. Supports 1-4 bytes/pixel images.
-
- * ZIP archive API notes:
-
- The ZIP archive API's where designed with simplicity and efficiency in
- mind, with just enough abstraction to
- get the job done with minimal fuss. There are simple API's to retrieve file
- information, read files from
- existing archives, create new archives, append new files to existing
- archives, or clone archive data from
- one archive to another. It supports archives located in memory or the heap,
- on disk (using stdio.h),
- or you can specify custom file read/write callbacks.
-
- - Archive reading: Just call this function to read a single file from a
- disk archive:
-
- void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const
- char *pArchive_name,
- size_t *pSize, mz_uint zip_flags);
-
- For more complex cases, use the "mz_zip_reader" functions. Upon opening an
- archive, the entire central
- directory is located and read as-is into memory, and subsequent file access
- only occurs when reading individual files.
-
- - Archives file scanning: The simple way is to use this function to scan a
- loaded archive for a specific file:
-
- int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
- const char *pComment, mz_uint flags);
-
- The locate operation can optionally check file comments too, which (as one
- example) can be used to identify
- multiple versions of the same file in an archive. This function uses a
- simple linear search through the central
- directory, so it's not very fast.
-
- Alternately, you can iterate through all the files in an archive (using
- mz_zip_reader_get_num_files()) and
- retrieve detailed info on each file by calling mz_zip_reader_file_stat().
-
- - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer
- immediately writes compressed file data
- to disk and builds an exact image of the central directory in memory. The
- central directory image is written
- all at once at the end of the archive file when the archive is finalized.
-
- The archive writer can optionally align each file's local header and file
- data to any power of 2 alignment,
- which can be useful when the archive will be read from optical media. Also,
- the writer supports placing
- arbitrary data blobs at the very beginning of ZIP archives. Archives
- written using either feature are still
- readable by any ZIP tool.
-
- - Archive appending: The simple way to add a single file to an archive is
- to call this function:
-
- mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename,
- const char *pArchive_name,
- const void *pBuf, size_t buf_size, const void *pComment, mz_uint16
- comment_size, mz_uint level_and_flags);
-
- The archive will be created if it doesn't already exist, otherwise it'll be
- appended to.
- Note the appending is done in-place and is not an atomic operation, so if
- something goes wrong
- during the operation it's possible the archive could be left without a
- central directory (although the local
- file headers and file data will be fine, so the archive will be
- recoverable).
-
- For more complex archive modification scenarios:
- 1. The safest way is to use a mz_zip_reader to read the existing archive,
- cloning only those bits you want to
- preserve into a new archive using using the
- mz_zip_writer_add_from_zip_reader() function (which compiles the
- compressed file data as-is). When you're done, delete the old archive and
- rename the newly written archive, and
- you're done. This is safe but requires a bunch of temporary disk space or
- heap memory.
-
- 2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using
- mz_zip_writer_init_from_reader(),
- append new files as needed, then finalize the archive which will write an
- updated central directory to the
- original archive. (This is basically what
- mz_zip_add_mem_to_archive_file_in_place() does.) There's a
- possibility that the archive's central directory could be lost with this
- method if anything goes wrong, though.
-
- - ZIP archive support limitations:
- No zip64 or spanning support. Extraction functions can only handle
- unencrypted, stored or deflated files.
- Requires streams capable of seeking.
-
- * This is a header file library, like stb_image.c. To get only a header file,
- either cut and paste the
- below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then
- include miniz.c from it.
-
- * Important: For best perf. be sure to customize the below macros for your
- target platform:
- #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
- #define MINIZ_LITTLE_ENDIAN 1
- #define MINIZ_HAS_64BIT_REGISTERS 1
-
- * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before
- including miniz.c to ensure miniz
- uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be
- able to process large files
- (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
-*/
-
-#ifndef MINIZ_HEADER_INCLUDED
-#define MINIZ_HEADER_INCLUDED
-
-//#include <stdlib.h>
-
-// Defines to completely disable specific portions of miniz.c:
-// If all macros here are defined the only functionality remaining will be
-// CRC-32, adler-32, tinfl, and tdefl.
-
-// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on
-// stdio for file I/O.
-//#define MINIZ_NO_STDIO
-
-// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able
-// to get the current time, or
-// get/set file times, and the C run-time funcs that get/set times won't be
-// called.
-// The current downside is the times written to your archives will be from 1979.
-#define MINIZ_NO_TIME
-
-// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.
-#define MINIZ_NO_ARCHIVE_APIS
-
-// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive
-// API's.
-//#define MINIZ_NO_ARCHIVE_WRITING_APIS
-
-// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression
-// API's.
-//#define MINIZ_NO_ZLIB_APIS
-
-// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent
-// conflicts against stock zlib.
-//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
-
-// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
-// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom
-// user alloc/free/realloc
-// callbacks to the zlib and archive API's, and a few stand-alone helper API's
-// which don't provide custom user
-// functions (such as tdefl_compress_mem_to_heap() and
-// tinfl_decompress_mem_to_heap()) won't work.
-//#define MINIZ_NO_MALLOC
-
-#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
-// TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc
-// on Linux
-#define MINIZ_NO_TIME
-#endif
-
-#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
-//#include <time.h>
-#endif
-
-#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
- defined(__i386) || defined(__i486__) || defined(__i486) || \
- defined(i386) || defined(__ia64__) || defined(__x86_64__)
-// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
-#define MINIZ_X86_OR_X64_CPU 1
-#endif
-
-#if defined(__sparcv9)
-// Big endian
-#else
-#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
-// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
-#define MINIZ_LITTLE_ENDIAN 1
-#endif
-#endif
-
-#if MINIZ_X86_OR_X64_CPU
-// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient
-// integer loads and stores from unaligned addresses.
-//#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
-#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES \
- 0 // disable to suppress compiler warnings
-#endif
-
-#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \
- defined(_LP64) || defined(__LP64__) || defined(__ia64__) || \
- defined(__x86_64__)
-// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are
-// reasonably fast (and don't involve compiler generated calls to helper
-// functions).
-#define MINIZ_HAS_64BIT_REGISTERS 1
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-// ------------------- zlib-style API Definitions.
-
-// For more compatibility with zlib, miniz.c uses unsigned long for some
-// parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
-typedef unsigned long mz_ulong;
-
-// mz_free() internally uses the MZ_FREE() macro (which by default calls free()
-// unless you've modified the MZ_MALLOC macro) to release a block allocated from
-// the heap.
-void mz_free(void *p);
-
-#define MZ_ADLER32_INIT (1)
-// mz_adler32() returns the initial adler-32 value to use when called with
-// ptr==NULL.
-mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);
-
-#define MZ_CRC32_INIT (0)
-// mz_crc32() returns the initial CRC-32 value to use when called with
-// ptr==NULL.
-mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);
-
-// Compression strategies.
-enum {
- MZ_DEFAULT_STRATEGY = 0,
- MZ_FILTERED = 1,
- MZ_HUFFMAN_ONLY = 2,
- MZ_RLE = 3,
- MZ_FIXED = 4
-};
-
-// Method
-#define MZ_DEFLATED 8
-
-#ifndef MINIZ_NO_ZLIB_APIS
-
-// Heap allocation callbacks.
-// Note that mz_alloc_func parameter types purpsosely differ from zlib's:
-// items/size is size_t, not unsigned long.
-typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
-typedef void (*mz_free_func)(void *opaque, void *address);
-typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items,
- size_t size);
-
-#define MZ_VERSION "9.1.15"
-#define MZ_VERNUM 0x91F0
-#define MZ_VER_MAJOR 9
-#define MZ_VER_MINOR 1
-#define MZ_VER_REVISION 15
-#define MZ_VER_SUBREVISION 0
-
-// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The
-// other values are for advanced use (refer to the zlib docs).
-enum {
- MZ_NO_FLUSH = 0,
- MZ_PARTIAL_FLUSH = 1,
- MZ_SYNC_FLUSH = 2,
- MZ_FULL_FLUSH = 3,
- MZ_FINISH = 4,
- MZ_BLOCK = 5
-};
-
-// Return status codes. MZ_PARAM_ERROR is non-standard.
-enum {
- MZ_OK = 0,
- MZ_STREAM_END = 1,
- MZ_NEED_DICT = 2,
- MZ_ERRNO = -1,
- MZ_STREAM_ERROR = -2,
- MZ_DATA_ERROR = -3,
- MZ_MEM_ERROR = -4,
- MZ_BUF_ERROR = -5,
- MZ_VERSION_ERROR = -6,
- MZ_PARAM_ERROR = -10000
-};
-
-// Compression levels: 0-9 are the standard zlib-style levels, 10 is best
-// possible compression (not zlib compatible, and may be very slow),
-// MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
-enum {
- MZ_NO_COMPRESSION = 0,
- MZ_BEST_SPEED = 1,
- MZ_BEST_COMPRESSION = 9,
- MZ_UBER_COMPRESSION = 10,
- MZ_DEFAULT_LEVEL = 6,
- MZ_DEFAULT_COMPRESSION = -1
-};
-
-// Window bits
-#define MZ_DEFAULT_WINDOW_BITS 15
-
-struct mz_internal_state;
-
-// Compression/decompression stream struct.
-typedef struct mz_stream_s {
- const unsigned char *next_in; // pointer to next byte to read
- unsigned int avail_in; // number of bytes available at next_in
- mz_ulong total_in; // total number of bytes consumed so far
-
- unsigned char *next_out; // pointer to next byte to write
- unsigned int avail_out; // number of bytes that can be written to next_out
- mz_ulong total_out; // total number of bytes produced so far
-
- char *msg; // error msg (unused)
- struct mz_internal_state *state; // internal state, allocated by zalloc/zfree
-
- mz_alloc_func
- zalloc; // optional heap allocation function (defaults to malloc)
- mz_free_func zfree; // optional heap free function (defaults to free)
- void *opaque; // heap alloc function user pointer
-
- int data_type; // data_type (unused)
- mz_ulong adler; // adler32 of the source or uncompressed data
- mz_ulong reserved; // not used
-} mz_stream;
-
-typedef mz_stream *mz_streamp;
-
-// Returns the version string of miniz.c.
-const char *mz_version(void);
-
-// mz_deflateInit() initializes a compressor with default options:
-// Parameters:
-// pStream must point to an initialized mz_stream struct.
-// level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
-// level 1 enables a specially optimized compression function that's been
-// optimized purely for performance, not ratio.
-// (This special func. is currently only enabled when
-// MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)
-// Return values:
-// MZ_OK on success.
-// MZ_STREAM_ERROR if the stream is bogus.
-// MZ_PARAM_ERROR if the input parameters are bogus.
-// MZ_MEM_ERROR on out of memory.
-int mz_deflateInit(mz_streamp pStream, int level);
-
-// mz_deflateInit2() is like mz_deflate(), except with more control:
-// Additional parameters:
-// method must be MZ_DEFLATED
-// window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with
-// zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no
-// header or footer)
-// mem_level must be between [1, 9] (it's checked but ignored by miniz.c)
-int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
- int mem_level, int strategy);
-
-// Quickly resets a compressor without having to reallocate anything. Same as
-// calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
-int mz_deflateReset(mz_streamp pStream);
-
-// mz_deflate() compresses the input to output, consuming as much of the input
-// and producing as much output as possible.
-// Parameters:
-// pStream is the stream to read from and write to. You must initialize/update
-// the next_in, avail_in, next_out, and avail_out members.
-// flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or
-// MZ_FINISH.
-// Return values:
-// MZ_OK on success (when flushing, or if more input is needed but not
-// available, and/or there's more output to be written but the output buffer
-// is full).
-// MZ_STREAM_END if all input has been consumed and all output bytes have been
-// written. Don't call mz_deflate() on the stream anymore.
-// MZ_STREAM_ERROR if the stream is bogus.
-// MZ_PARAM_ERROR if one of the parameters is invalid.
-// MZ_BUF_ERROR if no forward progress is possible because the input and/or
-// output buffers are empty. (Fill up the input buffer or free up some output
-// space and try again.)
-int mz_deflate(mz_streamp pStream, int flush);
-
-// mz_deflateEnd() deinitializes a compressor:
-// Return values:
-// MZ_OK on success.
-// MZ_STREAM_ERROR if the stream is bogus.
-int mz_deflateEnd(mz_streamp pStream);
-
-// mz_deflateBound() returns a (very) conservative upper bound on the amount of
-// data that could be generated by deflate(), assuming flush is set to only
-// MZ_NO_FLUSH or MZ_FINISH.
-mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);
-
-// Single-call compression functions mz_compress() and mz_compress2():
-// Returns MZ_OK on success, or one of the error codes from mz_deflate() on
-// failure.
-int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len);
-int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len, int level);
-
-// mz_compressBound() returns a (very) conservative upper bound on the amount of
-// data that could be generated by calling mz_compress().
-mz_ulong mz_compressBound(mz_ulong source_len);
-
-// Initializes a decompressor.
-int mz_inflateInit(mz_streamp pStream);
-
-// mz_inflateInit2() is like mz_inflateInit() with an additional option that
-// controls the window size and whether or not the stream has been wrapped with
-// a zlib header/footer:
-// window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or
-// -MZ_DEFAULT_WINDOW_BITS (raw deflate).
-int mz_inflateInit2(mz_streamp pStream, int window_bits);
-
-// Decompresses the input stream to the output, consuming only as much of the
-// input as needed, and writing as much to the output as possible.
-// Parameters:
-// pStream is the stream to read from and write to. You must initialize/update
-// the next_in, avail_in, next_out, and avail_out members.
-// flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.
-// On the first call, if flush is MZ_FINISH it's assumed the input and output
-// buffers are both sized large enough to decompress the entire stream in a
-// single call (this is slightly faster).
-// MZ_FINISH implies that there are no more source bytes available beside
-// what's already in the input buffer, and that the output buffer is large
-// enough to hold the rest of the decompressed data.
-// Return values:
-// MZ_OK on success. Either more input is needed but not available, and/or
-// there's more output to be written but the output buffer is full.
-// MZ_STREAM_END if all needed input has been consumed and all output bytes
-// have been written. For zlib streams, the adler-32 of the decompressed data
-// has also been verified.
-// MZ_STREAM_ERROR if the stream is bogus.
-// MZ_DATA_ERROR if the deflate stream is invalid.
-// MZ_PARAM_ERROR if one of the parameters is invalid.
-// MZ_BUF_ERROR if no forward progress is possible because the input buffer is
-// empty but the inflater needs more input to continue, or if the output
-// buffer is not large enough. Call mz_inflate() again
-// with more input data, or with more room in the output buffer (except when
-// using single call decompression, described above).
-int mz_inflate(mz_streamp pStream, int flush);
-
-// Deinitializes a decompressor.
-int mz_inflateEnd(mz_streamp pStream);
-
-// Single-call decompression.
-// Returns MZ_OK on success, or one of the error codes from mz_inflate() on
-// failure.
-int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len);
-
-// Returns a string description of the specified error code, or NULL if the
-// error code is invalid.
-const char *mz_error(int err);
-
-// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used
-// as a drop-in replacement for the subset of zlib that miniz.c supports.
-// Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you
-// use zlib in the same project.
-#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
-typedef unsigned char Byte;
-typedef unsigned int uInt;
-typedef mz_ulong uLong;
-typedef Byte Bytef;
-typedef uInt uIntf;
-typedef char charf;
-typedef int intf;
-typedef void *voidpf;
-typedef uLong uLongf;
-typedef void *voidp;
-typedef void *const voidpc;
-#define Z_NULL 0
-#define Z_NO_FLUSH MZ_NO_FLUSH
-#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH
-#define Z_SYNC_FLUSH MZ_SYNC_FLUSH
-#define Z_FULL_FLUSH MZ_FULL_FLUSH
-#define Z_FINISH MZ_FINISH
-#define Z_BLOCK MZ_BLOCK
-#define Z_OK MZ_OK
-#define Z_STREAM_END MZ_STREAM_END
-#define Z_NEED_DICT MZ_NEED_DICT
-#define Z_ERRNO MZ_ERRNO
-#define Z_STREAM_ERROR MZ_STREAM_ERROR
-#define Z_DATA_ERROR MZ_DATA_ERROR
-#define Z_MEM_ERROR MZ_MEM_ERROR
-#define Z_BUF_ERROR MZ_BUF_ERROR
-#define Z_VERSION_ERROR MZ_VERSION_ERROR
-#define Z_PARAM_ERROR MZ_PARAM_ERROR
-#define Z_NO_COMPRESSION MZ_NO_COMPRESSION
-#define Z_BEST_SPEED MZ_BEST_SPEED
-#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION
-#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
-#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY
-#define Z_FILTERED MZ_FILTERED
-#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY
-#define Z_RLE MZ_RLE
-#define Z_FIXED MZ_FIXED
-#define Z_DEFLATED MZ_DEFLATED
-#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
-#define alloc_func mz_alloc_func
-#define free_func mz_free_func
-#define internal_state mz_internal_state
-#define z_stream mz_stream
-#define deflateInit mz_deflateInit
-#define deflateInit2 mz_deflateInit2
-#define deflateReset mz_deflateReset
-#define deflate mz_deflate
-#define deflateEnd mz_deflateEnd
-#define deflateBound mz_deflateBound
-#define compress mz_compress
-#define compress2 mz_compress2
-#define compressBound mz_compressBound
-#define inflateInit mz_inflateInit
-#define inflateInit2 mz_inflateInit2
-#define inflate mz_inflate
-#define inflateEnd mz_inflateEnd
-#define uncompress mz_uncompress
-#define crc32 mz_crc32
-#define adler32 mz_adler32
-#define MAX_WBITS 15
-#define MAX_MEM_LEVEL 9
-#define zError mz_error
-#define ZLIB_VERSION MZ_VERSION
-#define ZLIB_VERNUM MZ_VERNUM
-#define ZLIB_VER_MAJOR MZ_VER_MAJOR
-#define ZLIB_VER_MINOR MZ_VER_MINOR
-#define ZLIB_VER_REVISION MZ_VER_REVISION
-#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION
-#define zlibVersion mz_version
-#define zlib_version mz_version()
-#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
-
-#endif // MINIZ_NO_ZLIB_APIS
-
-// ------------------- Types and macros
-
-typedef unsigned char mz_uint8;
-typedef signed short mz_int16;
-typedef unsigned short mz_uint16;
-typedef unsigned int mz_uint32;
-typedef unsigned int mz_uint;
-typedef long long mz_int64;
-typedef unsigned long long mz_uint64;
-typedef int mz_bool;
-
-#define MZ_FALSE (0)
-#define MZ_TRUE (1)
-
-// An attempt to work around MSVC's spammy "warning C4127: conditional
-// expression is constant" message.
-#ifdef _MSC_VER
-#define MZ_MACRO_END while (0, 0)
-#else
-#define MZ_MACRO_END while (0)
-#endif
-
-// ------------------- ZIP archive reading/writing
-
-#ifndef MINIZ_NO_ARCHIVE_APIS
-
-enum {
- MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
- MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
- MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
-};
-
-typedef struct {
- mz_uint32 m_file_index;
- mz_uint32 m_central_dir_ofs;
- mz_uint16 m_version_made_by;
- mz_uint16 m_version_needed;
- mz_uint16 m_bit_flag;
- mz_uint16 m_method;
-#ifndef MINIZ_NO_TIME
- time_t m_time;
-#endif
- mz_uint32 m_crc32;
- mz_uint64 m_comp_size;
- mz_uint64 m_uncomp_size;
- mz_uint16 m_internal_attr;
- mz_uint32 m_external_attr;
- mz_uint64 m_local_header_ofs;
- mz_uint32 m_comment_size;
- char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
- char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
-} mz_zip_archive_file_stat;
-
-typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs,
- void *pBuf, size_t n);
-typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs,
- const void *pBuf, size_t n);
-
-struct mz_zip_internal_state_tag;
-typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
-
-typedef enum {
- MZ_ZIP_MODE_INVALID = 0,
- MZ_ZIP_MODE_READING = 1,
- MZ_ZIP_MODE_WRITING = 2,
- MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
-} mz_zip_mode;
-
-typedef struct mz_zip_archive_tag {
- mz_uint64 m_archive_size;
- mz_uint64 m_central_directory_file_ofs;
- mz_uint m_total_files;
- mz_zip_mode m_zip_mode;
-
- mz_uint m_file_offset_alignment;
-
- mz_alloc_func m_pAlloc;
- mz_free_func m_pFree;
- mz_realloc_func m_pRealloc;
- void *m_pAlloc_opaque;
-
- mz_file_read_func m_pRead;
- mz_file_write_func m_pWrite;
- void *m_pIO_opaque;
-
- mz_zip_internal_state *m_pState;
-
-} mz_zip_archive;
-
-typedef enum {
- MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
- MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
- MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
- MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
-} mz_zip_flags;
-
-// ZIP archive reading
-
-// Inits a ZIP archive reader.
-// These functions read and validate the archive's central directory.
-mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
- mz_uint32 flags);
-mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
- size_t size, mz_uint32 flags);
-
-#ifndef MINIZ_NO_STDIO
-mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
- mz_uint32 flags);
-#endif
-
-// Returns the total number of files in the archive.
-mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);
-
-// Returns detailed information about an archive file entry.
-mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
- mz_zip_archive_file_stat *pStat);
-
-// Determines if an archive file entry is a directory entry.
-mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
- mz_uint file_index);
-mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
- mz_uint file_index);
-
-// Retrieves the filename of an archive file entry.
-// Returns the number of bytes written to pFilename, or if filename_buf_size is
-// 0 this function returns the number of bytes needed to fully store the
-// filename.
-mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
- char *pFilename, mz_uint filename_buf_size);
-
-// Attempts to locates a file in the archive's central directory.
-// Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
-// Returns -1 if the file cannot be found.
-int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
- const char *pComment, mz_uint flags);
-
-// Extracts a archive file to a memory buffer using no memory allocation.
-mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
- mz_uint file_index, void *pBuf,
- size_t buf_size, mz_uint flags,
- void *pUser_read_buf,
- size_t user_read_buf_size);
-mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
- mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
- mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
-
-// Extracts a archive file to a memory buffer.
-mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
- void *pBuf, size_t buf_size,
- mz_uint flags);
-mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
- const char *pFilename, void *pBuf,
- size_t buf_size, mz_uint flags);
-
-// Extracts a archive file to a dynamically allocated heap buffer.
-void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
- size_t *pSize, mz_uint flags);
-void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
- const char *pFilename, size_t *pSize,
- mz_uint flags);
-
-// Extracts a archive file using a callback function to output the file's data.
-mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
- mz_uint file_index,
- mz_file_write_func pCallback,
- void *pOpaque, mz_uint flags);
-mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
- const char *pFilename,
- mz_file_write_func pCallback,
- void *pOpaque, mz_uint flags);
-
-#ifndef MINIZ_NO_STDIO
-// Extracts a archive file to a disk file and sets its last accessed and
-// modified times.
-// This function only extracts files, not archive directory records.
-mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
- const char *pDst_filename, mz_uint flags);
-mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
- const char *pArchive_filename,
- const char *pDst_filename,
- mz_uint flags);
-#endif
-
-// Ends archive reading, freeing all allocations, and closing the input archive
-// file if mz_zip_reader_init_file() was used.
-mz_bool mz_zip_reader_end(mz_zip_archive *pZip);
-
-// ZIP archive writing
-
-#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
-
-// Inits a ZIP archive writer.
-mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
-mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
- size_t size_to_reserve_at_beginning,
- size_t initial_allocation_size);
-
-#ifndef MINIZ_NO_STDIO
-mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
- mz_uint64 size_to_reserve_at_beginning);
-#endif
-
-// Converts a ZIP archive reader object into a writer object, to allow efficient
-// in-place file appends to occur on an existing archive.
-// For archives opened using mz_zip_reader_init_file, pFilename must be the
-// archive's filename so it can be reopened for writing. If the file can't be
-// reopened, mz_zip_reader_end() will be called.
-// For archives opened using mz_zip_reader_init_mem, the memory block must be
-// growable using the realloc callback (which defaults to realloc unless you've
-// overridden it).
-// Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's
-// user provided m_pWrite function cannot be NULL.
-// Note: In-place archive modification is not recommended unless you know what
-// you're doing, because if execution stops or something goes wrong before
-// the archive is finalized the file's central directory will be hosed.
-mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
- const char *pFilename);
-
-// Adds the contents of a memory buffer to an archive. These functions record
-// the current local time into the archive.
-// To add a directory entry, call this method with an archive name ending in a
-// forwardslash with empty buffer.
-// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
-// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
-// just set to MZ_DEFAULT_COMPRESSION.
-mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
- const void *pBuf, size_t buf_size,
- mz_uint level_and_flags);
-mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
- const char *pArchive_name, const void *pBuf,
- size_t buf_size, const void *pComment,
- mz_uint16 comment_size,
- mz_uint level_and_flags, mz_uint64 uncomp_size,
- mz_uint32 uncomp_crc32);
-
-#ifndef MINIZ_NO_STDIO
-// Adds the contents of a disk file to an archive. This function also records
-// the disk file's modified time into the archive.
-// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
-// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
-// just set to MZ_DEFAULT_COMPRESSION.
-mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
- const char *pSrc_filename, const void *pComment,
- mz_uint16 comment_size, mz_uint level_and_flags);
-#endif
-
-// Adds a file to an archive by fully cloning the data from another archive.
-// This function fully clones the source file's compressed data (no
-// recompression), along with its full filename, extra data, and comment fields.
-mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
- mz_zip_archive *pSource_zip,
- mz_uint file_index);
-
-// Finalizes the archive by writing the central directory records followed by
-// the end of central directory record.
-// After an archive is finalized, the only valid call on the mz_zip_archive
-// struct is mz_zip_writer_end().
-// An archive must be manually finalized by calling this function for it to be
-// valid.
-mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
-mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
- size_t *pSize);
-
-// Ends archive writing, freeing all allocations, and closing the output file if
-// mz_zip_writer_init_file() was used.
-// Note for the archive to be valid, it must have been finalized before ending.
-mz_bool mz_zip_writer_end(mz_zip_archive *pZip);
-
-// Misc. high-level helper functions:
-
-// mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically)
-// appends a memory blob to a ZIP archive.
-// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
-// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
-// just set to MZ_DEFAULT_COMPRESSION.
-mz_bool mz_zip_add_mem_to_archive_file_in_place(
- const char *pZip_filename, const char *pArchive_name, const void *pBuf,
- size_t buf_size, const void *pComment, mz_uint16 comment_size,
- mz_uint level_and_flags);
-
-// Reads a single file from an archive into a heap block.
-// Returns NULL on failure.
-void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
- const char *pArchive_name,
- size_t *pSize, mz_uint zip_flags);
-
-#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
-
-#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
-
-// ------------------- Low-level Decompression API Definitions
-
-// Decompression flags used by tinfl_decompress().
-// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and
-// ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the
-// input is a raw deflate stream.
-// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available
-// beyond the end of the supplied input buffer. If clear, the input buffer
-// contains all remaining input.
-// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large
-// enough to hold the entire decompressed stream. If clear, the output buffer is
-// at least the size of the dictionary (typically 32KB).
-// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the
-// decompressed bytes.
-enum {
- TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
- TINFL_FLAG_HAS_MORE_INPUT = 2,
- TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
- TINFL_FLAG_COMPUTE_ADLER32 = 8
-};
-
-// High level decompression functions:
-// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block
-// allocated via malloc().
-// On entry:
-// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data
-// to decompress.
-// On return:
-// Function returns a pointer to the decompressed data, or NULL on failure.
-// *pOut_len will be set to the decompressed data's size, which could be larger
-// than src_buf_len on uncompressible data.
-// The caller must call mz_free() on the returned block when it's no longer
-// needed.
-void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
- size_t *pOut_len, int flags);
-
-// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block
-// in memory.
-// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes
-// written on success.
-#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
-size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
- const void *pSrc_buf, size_t src_buf_len,
- int flags);
-
-// tinfl_decompress_mem_to_callback() decompresses a block in memory to an
-// internal 32KB buffer, and a user provided callback function will be called to
-// flush the buffer.
-// Returns 1 on success or 0 on failure.
-typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
-int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
- tinfl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags);
-
-struct tinfl_decompressor_tag;
-typedef struct tinfl_decompressor_tag tinfl_decompressor;
-
-// Max size of LZ dictionary.
-#define TINFL_LZ_DICT_SIZE 32768
-
-// Return status.
-typedef enum {
- TINFL_STATUS_BAD_PARAM = -3,
- TINFL_STATUS_ADLER32_MISMATCH = -2,
- TINFL_STATUS_FAILED = -1,
- TINFL_STATUS_DONE = 0,
- TINFL_STATUS_NEEDS_MORE_INPUT = 1,
- TINFL_STATUS_HAS_MORE_OUTPUT = 2
-} tinfl_status;
-
-// Initializes the decompressor to its initial state.
-#define tinfl_init(r) \
- do { \
- (r)->m_state = 0; \
- } \
- MZ_MACRO_END
-#define tinfl_get_adler32(r) (r)->m_check_adler32
-
-// Main low-level decompressor coroutine function. This is the only function
-// actually needed for decompression. All the other functions are just
-// high-level helpers for improved usability.
-// This is a universal API, i.e. it can be used as a building block to build any
-// desired higher level decompression API. In the limit case, it can be called
-// once per every byte input or output.
-tinfl_status tinfl_decompress(tinfl_decompressor *r,
- const mz_uint8 *pIn_buf_next,
- size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
- mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
- const mz_uint32 decomp_flags);
-
-// Internal/private bits follow.
-enum {
- TINFL_MAX_HUFF_TABLES = 3,
- TINFL_MAX_HUFF_SYMBOLS_0 = 288,
- TINFL_MAX_HUFF_SYMBOLS_1 = 32,
- TINFL_MAX_HUFF_SYMBOLS_2 = 19,
- TINFL_FAST_LOOKUP_BITS = 10,
- TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
-};
-
-typedef struct {
- mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
- mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE],
- m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
-} tinfl_huff_table;
-
-#if MINIZ_HAS_64BIT_REGISTERS
-#define TINFL_USE_64BIT_BITBUF 1
-#endif
-
-#if TINFL_USE_64BIT_BITBUF
-typedef mz_uint64 tinfl_bit_buf_t;
-#define TINFL_BITBUF_SIZE (64)
-#else
-typedef mz_uint32 tinfl_bit_buf_t;
-#define TINFL_BITBUF_SIZE (32)
-#endif
-
-struct tinfl_decompressor_tag {
- mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type,
- m_check_adler32, m_dist, m_counter, m_num_extra,
- m_table_sizes[TINFL_MAX_HUFF_TABLES];
- tinfl_bit_buf_t m_bit_buf;
- size_t m_dist_from_out_buf_start;
- tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
- mz_uint8 m_raw_header[4],
- m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
-};
-
-// ------------------- Low-level Compression API Definitions
-
-// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly
-// slower, and raw/dynamic blocks will be output more frequently).
-#define TDEFL_LESS_MEMORY 0
-
-// tdefl_init() compression flags logically OR'd together (low 12 bits contain
-// the max. number of probes per dictionary search):
-// TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes
-// per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap
-// compression), 4095=Huffman+LZ (slowest/best compression).
-enum {
- TDEFL_HUFFMAN_ONLY = 0,
- TDEFL_DEFAULT_MAX_PROBES = 128,
- TDEFL_MAX_PROBES_MASK = 0xFFF
-};
-
-// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before
-// the deflate data, and the Adler-32 of the source data at the end. Otherwise,
-// you'll get raw deflate data.
-// TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even
-// when not writing zlib headers).
-// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more
-// efficient lazy parsing.
-// TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's
-// initialization time to the minimum, but the output may vary from run to run
-// given the same input (depending on the contents of memory).
-// TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)
-// TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
-// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
-// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
-// The low 12 bits are reserved to control the max # of hash probes per
-// dictionary lookup (see TDEFL_MAX_PROBES_MASK).
-enum {
- TDEFL_WRITE_ZLIB_HEADER = 0x01000,
- TDEFL_COMPUTE_ADLER32 = 0x02000,
- TDEFL_GREEDY_PARSING_FLAG = 0x04000,
- TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
- TDEFL_RLE_MATCHES = 0x10000,
- TDEFL_FILTER_MATCHES = 0x20000,
- TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
- TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
-};
-
-// High level compression functions:
-// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block
-// allocated via malloc().
-// On entry:
-// pSrc_buf, src_buf_len: Pointer and size of source block to compress.
-// flags: The max match finder probes (default is 128) logically OR'd against
-// the above flags. Higher probes are slower but improve compression.
-// On return:
-// Function returns a pointer to the compressed data, or NULL on failure.
-// *pOut_len will be set to the compressed data's size, which could be larger
-// than src_buf_len on uncompressible data.
-// The caller must free() the returned block when it's no longer needed.
-void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
- size_t *pOut_len, int flags);
-
-// tdefl_compress_mem_to_mem() compresses a block in memory to another block in
-// memory.
-// Returns 0 on failure.
-size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
- const void *pSrc_buf, size_t src_buf_len,
- int flags);
-
-// Compresses an image to a compressed PNG file in memory.
-// On entry:
-// pImage, w, h, and num_chans describe the image to compress. num_chans may be
-// 1, 2, 3, or 4.
-// The image pitch in bytes per scanline will be w*num_chans. The leftmost
-// pixel on the top scanline is stored first in memory.
-// level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED,
-// MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL
-// If flip is true, the image will be flipped on the Y axis (useful for OpenGL
-// apps).
-// On return:
-// Function returns a pointer to the compressed data, or NULL on failure.
-// *pLen_out will be set to the size of the PNG image file.
-// The caller must mz_free() the returned heap block (which will typically be
-// larger than *pLen_out) when it's no longer needed.
-void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
- int h, int num_chans,
- size_t *pLen_out,
- mz_uint level, mz_bool flip);
-void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
- int num_chans, size_t *pLen_out);
-
-// Output stream interface. The compressor uses this interface to write
-// compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
-typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len,
- void *pUser);
-
-// tdefl_compress_mem_to_output() compresses a block to an output stream. The
-// above helpers use this function internally.
-mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
- tdefl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags);
-
-enum {
- TDEFL_MAX_HUFF_TABLES = 3,
- TDEFL_MAX_HUFF_SYMBOLS_0 = 288,
- TDEFL_MAX_HUFF_SYMBOLS_1 = 32,
- TDEFL_MAX_HUFF_SYMBOLS_2 = 19,
- TDEFL_LZ_DICT_SIZE = 32768,
- TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1,
- TDEFL_MIN_MATCH_LEN = 3,
- TDEFL_MAX_MATCH_LEN = 258
-};
-
-// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed
-// output block (using static/fixed Huffman codes).
-#if TDEFL_LESS_MEMORY
-enum {
- TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024,
- TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
- TDEFL_MAX_HUFF_SYMBOLS = 288,
- TDEFL_LZ_HASH_BITS = 12,
- TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
- TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
- TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
-};
-#else
-enum {
- TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024,
- TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
- TDEFL_MAX_HUFF_SYMBOLS = 288,
- TDEFL_LZ_HASH_BITS = 15,
- TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
- TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
- TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
-};
-#endif
-
-// The low-level tdefl functions below may be used directly if the above helper
-// functions aren't flexible enough. The low-level functions don't make any heap
-// allocations, unlike the above helper functions.
-typedef enum {
- TDEFL_STATUS_BAD_PARAM = -2,
- TDEFL_STATUS_PUT_BUF_FAILED = -1,
- TDEFL_STATUS_OKAY = 0,
- TDEFL_STATUS_DONE = 1
-} tdefl_status;
-
-// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
-typedef enum {
- TDEFL_NO_FLUSH = 0,
- TDEFL_SYNC_FLUSH = 2,
- TDEFL_FULL_FLUSH = 3,
- TDEFL_FINISH = 4
-} tdefl_flush;
-
-// tdefl's compression state structure.
-typedef struct {
- tdefl_put_buf_func_ptr m_pPut_buf_func;
- void *m_pPut_buf_user;
- mz_uint m_flags, m_max_probes[2];
- int m_greedy_parsing;
- mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
- mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
- mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in,
- m_bit_buffer;
- mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit,
- m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index,
- m_wants_to_finish;
- tdefl_status m_prev_return_status;
- const void *m_pIn_buf;
- void *m_pOut_buf;
- size_t *m_pIn_buf_size, *m_pOut_buf_size;
- tdefl_flush m_flush;
- const mz_uint8 *m_pSrc;
- size_t m_src_buf_left, m_out_buf_ofs;
- mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
- mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
- mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
- mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
- mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
- mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
- mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
- mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
-} tdefl_compressor;
-
-// Initializes the compressor.
-// There is no corresponding deinit() function because the tdefl API's do not
-// dynamically allocate memory.
-// pBut_buf_func: If NULL, output data will be supplied to the specified
-// callback. In this case, the user should call the tdefl_compress_buffer() API
-// for compression.
-// If pBut_buf_func is NULL the user should always call the tdefl_compress()
-// API.
-// flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER,
-// etc.)
-tdefl_status tdefl_init(tdefl_compressor *d,
- tdefl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags);
-
-// Compresses a block of data, consuming as much of the specified input buffer
-// as possible, and writing as much compressed data to the specified output
-// buffer as possible.
-tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
- size_t *pIn_buf_size, void *pOut_buf,
- size_t *pOut_buf_size, tdefl_flush flush);
-
-// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a
-// non-NULL tdefl_put_buf_func_ptr.
-// tdefl_compress_buffer() always consumes the entire input buffer.
-tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
- size_t in_buf_size, tdefl_flush flush);
-
-tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
-mz_uint32 tdefl_get_adler32(tdefl_compressor *d);
-
-// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't
-// defined, because it uses some of its macros.
-#ifndef MINIZ_NO_ZLIB_APIS
-// Create tdefl_compress() flags given zlib-style compression parameters.
-// level may range from [0,10] (where 10 is absolute max compression, but may be
-// much slower on some files)
-// window_bits may be -15 (raw deflate) or 15 (zlib)
-// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY,
-// MZ_RLE, or MZ_FIXED
-mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
- int strategy);
-#endif // #ifndef MINIZ_NO_ZLIB_APIS
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // MINIZ_HEADER_INCLUDED
-
-// ------------------- End of Header: Implementation follows. (If you only want
-// the header, define MINIZ_HEADER_FILE_ONLY.)
-
-#ifndef MINIZ_HEADER_FILE_ONLY
-
-typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
-typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
-typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
-
-//#include <assert.h>
-//#include <string.h>
-
-#define MZ_ASSERT(x) assert(x)
-
-#ifdef MINIZ_NO_MALLOC
-#define MZ_MALLOC(x) NULL
-#define MZ_FREE(x) (void)x, ((void)0)
-#define MZ_REALLOC(p, x) NULL
-#else
-#define MZ_MALLOC(x) malloc(x)
-#define MZ_FREE(x) free(x)
-#define MZ_REALLOC(p, x) realloc(p, x)
-#endif
-
-#define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b))
-#define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b))
-#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
-
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
-#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
-#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
-#else
-#define MZ_READ_LE16(p) \
- ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
- ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
-#define MZ_READ_LE32(p) \
- ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
- ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | \
- ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \
- ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
-#endif
-
-#ifdef _MSC_VER
-#define MZ_FORCEINLINE __forceinline
-#elif defined(__GNUC__)
-#define MZ_FORCEINLINE inline __attribute__((__always_inline__))
-#else
-#define MZ_FORCEINLINE inline
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-// ------------------- zlib-style API's
-
-mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) {
- mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16);
- size_t block_len = buf_len % 5552;
- if (!ptr) return MZ_ADLER32_INIT;
- while (buf_len) {
- for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
- s1 += ptr[0], s2 += s1;
- s1 += ptr[1], s2 += s1;
- s1 += ptr[2], s2 += s1;
- s1 += ptr[3], s2 += s1;
- s1 += ptr[4], s2 += s1;
- s1 += ptr[5], s2 += s1;
- s1 += ptr[6], s2 += s1;
- s1 += ptr[7], s2 += s1;
- }
- for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
- s1 %= 65521U, s2 %= 65521U;
- buf_len -= block_len;
- block_len = 5552;
- }
- return (s2 << 16) + s1;
-}
-
-// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C
-// implementation that balances processor cache usage against speed":
-// http://www.geocities.com/malbrain/
-mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) {
- static const mz_uint32 s_crc32[16] = {
- 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4,
- 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
- 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c};
- mz_uint32 crcu32 = (mz_uint32)crc;
- if (!ptr) return MZ_CRC32_INIT;
- crcu32 = ~crcu32;
- while (buf_len--) {
- mz_uint8 b = *ptr++;
- crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)];
- crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)];
- }
- return ~crcu32;
-}
-
-void mz_free(void *p) { MZ_FREE(p); }
-
-#ifndef MINIZ_NO_ZLIB_APIS
-
-static void *def_alloc_func(void *opaque, size_t items, size_t size) {
- (void)opaque, (void)items, (void)size;
- return MZ_MALLOC(items * size);
-}
-static void def_free_func(void *opaque, void *address) {
- (void)opaque, (void)address;
- MZ_FREE(address);
-}
-// static void *def_realloc_func(void *opaque, void *address, size_t items,
-// size_t size) {
-// (void)opaque, (void)address, (void)items, (void)size;
-// return MZ_REALLOC(address, items * size);
-//}
-
-const char *mz_version(void) { return MZ_VERSION; }
-
-int mz_deflateInit(mz_streamp pStream, int level) {
- return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9,
- MZ_DEFAULT_STRATEGY);
-}
-
-int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
- int mem_level, int strategy) {
- tdefl_compressor *pComp;
- mz_uint comp_flags =
- TDEFL_COMPUTE_ADLER32 |
- tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);
-
- if (!pStream) return MZ_STREAM_ERROR;
- if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) ||
- ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
- (-window_bits != MZ_DEFAULT_WINDOW_BITS)))
- return MZ_PARAM_ERROR;
-
- pStream->data_type = 0;
- pStream->adler = MZ_ADLER32_INIT;
- pStream->msg = NULL;
- pStream->reserved = 0;
- pStream->total_in = 0;
- pStream->total_out = 0;
- if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
- if (!pStream->zfree) pStream->zfree = def_free_func;
-
- pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1,
- sizeof(tdefl_compressor));
- if (!pComp) return MZ_MEM_ERROR;
-
- pStream->state = (struct mz_internal_state *)pComp;
-
- if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) {
- mz_deflateEnd(pStream);
- return MZ_PARAM_ERROR;
- }
-
- return MZ_OK;
-}
-
-int mz_deflateReset(mz_streamp pStream) {
- if ((!pStream) || (!pStream->state) || (!pStream->zalloc) ||
- (!pStream->zfree))
- return MZ_STREAM_ERROR;
- pStream->total_in = pStream->total_out = 0;
- tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL,
- ((tdefl_compressor *)pStream->state)->m_flags);
- return MZ_OK;
-}
-
-int mz_deflate(mz_streamp pStream, int flush) {
- size_t in_bytes, out_bytes;
- mz_ulong orig_total_in, orig_total_out;
- int mz_status = MZ_OK;
-
- if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) ||
- (!pStream->next_out))
- return MZ_STREAM_ERROR;
- if (!pStream->avail_out) return MZ_BUF_ERROR;
-
- if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
-
- if (((tdefl_compressor *)pStream->state)->m_prev_return_status ==
- TDEFL_STATUS_DONE)
- return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;
-
- orig_total_in = pStream->total_in;
- orig_total_out = pStream->total_out;
- for (;;) {
- tdefl_status defl_status;
- in_bytes = pStream->avail_in;
- out_bytes = pStream->avail_out;
-
- defl_status = tdefl_compress((tdefl_compressor *)pStream->state,
- pStream->next_in, &in_bytes, pStream->next_out,
- &out_bytes, (tdefl_flush)flush);
- pStream->next_in += (mz_uint)in_bytes;
- pStream->avail_in -= (mz_uint)in_bytes;
- pStream->total_in += (mz_uint)in_bytes;
- pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state);
-
- pStream->next_out += (mz_uint)out_bytes;
- pStream->avail_out -= (mz_uint)out_bytes;
- pStream->total_out += (mz_uint)out_bytes;
-
- if (defl_status < 0) {
- mz_status = MZ_STREAM_ERROR;
- break;
- } else if (defl_status == TDEFL_STATUS_DONE) {
- mz_status = MZ_STREAM_END;
- break;
- } else if (!pStream->avail_out)
- break;
- else if ((!pStream->avail_in) && (flush != MZ_FINISH)) {
- if ((flush) || (pStream->total_in != orig_total_in) ||
- (pStream->total_out != orig_total_out))
- break;
- return MZ_BUF_ERROR; // Can't make forward progress without some input.
- }
- }
- return mz_status;
-}
-
-int mz_deflateEnd(mz_streamp pStream) {
- if (!pStream) return MZ_STREAM_ERROR;
- if (pStream->state) {
- pStream->zfree(pStream->opaque, pStream->state);
- pStream->state = NULL;
- }
- return MZ_OK;
-}
-
-mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) {
- (void)pStream;
- // This is really over conservative. (And lame, but it's actually pretty
- // tricky to compute a true upper bound given the way tdefl's blocking works.)
- return MZ_MAX(128 + (source_len * 110) / 100,
- 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
-}
-
-int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len, int level) {
- int status;
- mz_stream stream;
- memset(&stream, 0, sizeof(stream));
-
- // In case mz_ulong is 64-bits (argh I hate longs).
- if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
-
- stream.next_in = pSource;
- stream.avail_in = (mz_uint32)source_len;
- stream.next_out = pDest;
- stream.avail_out = (mz_uint32)*pDest_len;
-
- status = mz_deflateInit(&stream, level);
- if (status != MZ_OK) return status;
-
- status = mz_deflate(&stream, MZ_FINISH);
- if (status != MZ_STREAM_END) {
- mz_deflateEnd(&stream);
- return (status == MZ_OK) ? MZ_BUF_ERROR : status;
- }
-
- *pDest_len = stream.total_out;
- return mz_deflateEnd(&stream);
-}
-
-int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len) {
- return mz_compress2(pDest, pDest_len, pSource, source_len,
- MZ_DEFAULT_COMPRESSION);
-}
-
-mz_ulong mz_compressBound(mz_ulong source_len) {
- return mz_deflateBound(NULL, source_len);
-}
-
-typedef struct {
- tinfl_decompressor m_decomp;
- mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed;
- int m_window_bits;
- mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
- tinfl_status m_last_status;
-} inflate_state;
-
-int mz_inflateInit2(mz_streamp pStream, int window_bits) {
- inflate_state *pDecomp;
- if (!pStream) return MZ_STREAM_ERROR;
- if ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
- (-window_bits != MZ_DEFAULT_WINDOW_BITS))
- return MZ_PARAM_ERROR;
-
- pStream->data_type = 0;
- pStream->adler = 0;
- pStream->msg = NULL;
- pStream->total_in = 0;
- pStream->total_out = 0;
- pStream->reserved = 0;
- if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
- if (!pStream->zfree) pStream->zfree = def_free_func;
-
- pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1,
- sizeof(inflate_state));
- if (!pDecomp) return MZ_MEM_ERROR;
-
- pStream->state = (struct mz_internal_state *)pDecomp;
-
- tinfl_init(&pDecomp->m_decomp);
- pDecomp->m_dict_ofs = 0;
- pDecomp->m_dict_avail = 0;
- pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
- pDecomp->m_first_call = 1;
- pDecomp->m_has_flushed = 0;
- pDecomp->m_window_bits = window_bits;
-
- return MZ_OK;
-}
-
-int mz_inflateInit(mz_streamp pStream) {
- return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
-}
-
-int mz_inflate(mz_streamp pStream, int flush) {
- inflate_state *pState;
- mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
- size_t in_bytes, out_bytes, orig_avail_in;
- tinfl_status status;
-
- if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR;
- if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
- if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH))
- return MZ_STREAM_ERROR;
-
- pState = (inflate_state *)pStream->state;
- if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
- orig_avail_in = pStream->avail_in;
-
- first_call = pState->m_first_call;
- pState->m_first_call = 0;
- if (pState->m_last_status < 0) return MZ_DATA_ERROR;
-
- if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;
- pState->m_has_flushed |= (flush == MZ_FINISH);
-
- if ((flush == MZ_FINISH) && (first_call)) {
- // MZ_FINISH on the first call implies that the input and output buffers are
- // large enough to hold the entire compressed/decompressed file.
- decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
- in_bytes = pStream->avail_in;
- out_bytes = pStream->avail_out;
- status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes,
- pStream->next_out, pStream->next_out, &out_bytes,
- decomp_flags);
- pState->m_last_status = status;
- pStream->next_in += (mz_uint)in_bytes;
- pStream->avail_in -= (mz_uint)in_bytes;
- pStream->total_in += (mz_uint)in_bytes;
- pStream->adler = tinfl_get_adler32(&pState->m_decomp);
- pStream->next_out += (mz_uint)out_bytes;
- pStream->avail_out -= (mz_uint)out_bytes;
- pStream->total_out += (mz_uint)out_bytes;
-
- if (status < 0)
- return MZ_DATA_ERROR;
- else if (status != TINFL_STATUS_DONE) {
- pState->m_last_status = TINFL_STATUS_FAILED;
- return MZ_BUF_ERROR;
- }
- return MZ_STREAM_END;
- }
- // flush != MZ_FINISH then we must assume there's more input.
- if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
-
- if (pState->m_dict_avail) {
- n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
- memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
- pStream->next_out += n;
- pStream->avail_out -= n;
- pStream->total_out += n;
- pState->m_dict_avail -= n;
- pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
- return ((pState->m_last_status == TINFL_STATUS_DONE) &&
- (!pState->m_dict_avail))
- ? MZ_STREAM_END
- : MZ_OK;
- }
-
- for (;;) {
- in_bytes = pStream->avail_in;
- out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
-
- status = tinfl_decompress(
- &pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict,
- pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
- pState->m_last_status = status;
-
- pStream->next_in += (mz_uint)in_bytes;
- pStream->avail_in -= (mz_uint)in_bytes;
- pStream->total_in += (mz_uint)in_bytes;
- pStream->adler = tinfl_get_adler32(&pState->m_decomp);
-
- pState->m_dict_avail = (mz_uint)out_bytes;
-
- n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
- memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
- pStream->next_out += n;
- pStream->avail_out -= n;
- pStream->total_out += n;
- pState->m_dict_avail -= n;
- pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
-
- if (status < 0)
- return MZ_DATA_ERROR; // Stream is corrupted (there could be some
- // uncompressed data left in the output dictionary -
- // oh well).
- else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
- return MZ_BUF_ERROR; // Signal caller that we can't make forward progress
- // without supplying more input or by setting flush
- // to MZ_FINISH.
- else if (flush == MZ_FINISH) {
- // The output buffer MUST be large to hold the remaining uncompressed data
- // when flush==MZ_FINISH.
- if (status == TINFL_STATUS_DONE)
- return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
- // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's
- // at least 1 more byte on the way. If there's no more room left in the
- // output buffer then something is wrong.
- else if (!pStream->avail_out)
- return MZ_BUF_ERROR;
- } else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) ||
- (!pStream->avail_out) || (pState->m_dict_avail))
- break;
- }
-
- return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail))
- ? MZ_STREAM_END
- : MZ_OK;
-}
-
-int mz_inflateEnd(mz_streamp pStream) {
- if (!pStream) return MZ_STREAM_ERROR;
- if (pStream->state) {
- pStream->zfree(pStream->opaque, pStream->state);
- pStream->state = NULL;
- }
- return MZ_OK;
-}
-
-int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
- const unsigned char *pSource, mz_ulong source_len) {
- mz_stream stream;
- int status;
- memset(&stream, 0, sizeof(stream));
-
- // In case mz_ulong is 64-bits (argh I hate longs).
- if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
-
- stream.next_in = pSource;
- stream.avail_in = (mz_uint32)source_len;
- stream.next_out = pDest;
- stream.avail_out = (mz_uint32)*pDest_len;
-
- status = mz_inflateInit(&stream);
- if (status != MZ_OK) return status;
-
- status = mz_inflate(&stream, MZ_FINISH);
- if (status != MZ_STREAM_END) {
- mz_inflateEnd(&stream);
- return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR
- : status;
- }
- *pDest_len = stream.total_out;
-
- return mz_inflateEnd(&stream);
-}
-
-const char *mz_error(int err) {
- static struct {
- int m_err;
- const char *m_pDesc;
- } s_error_descs[] = {{MZ_OK, ""},
- {MZ_STREAM_END, "stream end"},
- {MZ_NEED_DICT, "need dictionary"},
- {MZ_ERRNO, "file error"},
- {MZ_STREAM_ERROR, "stream error"},
- {MZ_DATA_ERROR, "data error"},
- {MZ_MEM_ERROR, "out of memory"},
- {MZ_BUF_ERROR, "buf error"},
- {MZ_VERSION_ERROR, "version error"},
- {MZ_PARAM_ERROR, "parameter error"}};
- mz_uint i;
- for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i)
- if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc;
- return NULL;
-}
-
-#endif // MINIZ_NO_ZLIB_APIS
-
-// ------------------- Low-level Decompression (completely independent from all
-// compression API's)
-
-#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
-#define TINFL_MEMSET(p, c, l) memset(p, c, l)
-
-#define TINFL_CR_BEGIN \
- switch (r->m_state) { \
- case 0:
-#define TINFL_CR_RETURN(state_index, result) \
- do { \
- status = result; \
- r->m_state = state_index; \
- goto common_exit; \
- case state_index:; \
- } \
- MZ_MACRO_END
-#define TINFL_CR_RETURN_FOREVER(state_index, result) \
- do { \
- for (;;) { \
- TINFL_CR_RETURN(state_index, result); \
- } \
- } \
- MZ_MACRO_END
-#define TINFL_CR_FINISH }
-
-// TODO: If the caller has indicated that there's no more input, and we attempt
-// to read beyond the input buf, then something is wrong with the input because
-// the inflator never
-// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of
-// the stream with 0's in this scenario.
-#define TINFL_GET_BYTE(state_index, c) \
- do { \
- if (pIn_buf_cur >= pIn_buf_end) { \
- for (;;) { \
- if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
- TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
- if (pIn_buf_cur < pIn_buf_end) { \
- c = *pIn_buf_cur++; \
- break; \
- } \
- } else { \
- c = 0; \
- break; \
- } \
- } \
- } else \
- c = *pIn_buf_cur++; \
- } \
- MZ_MACRO_END
-
-#define TINFL_NEED_BITS(state_index, n) \
- do { \
- mz_uint c; \
- TINFL_GET_BYTE(state_index, c); \
- bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
- num_bits += 8; \
- } while (num_bits < (mz_uint)(n))
-#define TINFL_SKIP_BITS(state_index, n) \
- do { \
- if (num_bits < (mz_uint)(n)) { \
- TINFL_NEED_BITS(state_index, n); \
- } \
- bit_buf >>= (n); \
- num_bits -= (n); \
- } \
- MZ_MACRO_END
-#define TINFL_GET_BITS(state_index, b, n) \
- do { \
- if (num_bits < (mz_uint)(n)) { \
- TINFL_NEED_BITS(state_index, n); \
- } \
- b = bit_buf & ((1 << (n)) - 1); \
- bit_buf >>= (n); \
- num_bits -= (n); \
- } \
- MZ_MACRO_END
-
-// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
-// remaining in the input buffer falls below 2.
-// It reads just enough bytes from the input stream that are needed to decode
-// the next Huffman code (and absolutely no more). It works by trying to fully
-// decode a
-// Huffman code by using whatever bits are currently present in the bit buffer.
-// If this fails, it reads another byte, and tries again until it succeeds or
-// until the
-// bit buffer contains >=15 bits (deflate's max. Huffman code size).
-#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
- do { \
- temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
- if (temp >= 0) { \
- code_len = temp >> 9; \
- if ((code_len) && (num_bits >= code_len)) break; \
- } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
- code_len = TINFL_FAST_LOOKUP_BITS; \
- do { \
- temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
- } while ((temp < 0) && (num_bits >= (code_len + 1))); \
- if (temp >= 0) break; \
- } \
- TINFL_GET_BYTE(state_index, c); \
- bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
- num_bits += 8; \
- } while (num_bits < 15);
-
-// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex
-// than you would initially expect because the zlib API expects the decompressor
-// to never read
-// beyond the final byte of the deflate stream. (In other words, when this macro
-// wants to read another byte from the input, it REALLY needs another byte in
-// order to fully
-// decode the next Huffman code.) Handling this properly is particularly
-// important on raw deflate (non-zlib) streams, which aren't followed by a byte
-// aligned adler-32.
-// The slow path is only executed at the very end of the input buffer.
-#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \
- do { \
- int temp; \
- mz_uint code_len, c; \
- if (num_bits < 15) { \
- if ((pIn_buf_end - pIn_buf_cur) < 2) { \
- TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
- } else { \
- bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | \
- (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \
- pIn_buf_cur += 2; \
- num_bits += 16; \
- } \
- } \
- if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \
- 0) \
- code_len = temp >> 9, temp &= 511; \
- else { \
- code_len = TINFL_FAST_LOOKUP_BITS; \
- do { \
- temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
- } while (temp < 0); \
- } \
- sym = temp; \
- bit_buf >>= code_len; \
- num_bits -= code_len; \
- } \
- MZ_MACRO_END
-
-tinfl_status tinfl_decompress(tinfl_decompressor *r,
- const mz_uint8 *pIn_buf_next,
- size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
- mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
- const mz_uint32 decomp_flags) {
- static const int s_length_base[31] = {
- 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
- 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
- static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
- 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
- 4, 4, 5, 5, 5, 5, 0, 0, 0};
- static const int s_dist_base[32] = {
- 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33,
- 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
- 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0};
- static const int s_dist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
- 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
- 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
- static const mz_uint8 s_length_dezigzag[19] = {
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
- static const int s_min_table_sizes[3] = {257, 1, 4};
-
- tinfl_status status = TINFL_STATUS_FAILED;
- mz_uint32 num_bits, dist, counter, num_extra;
- tinfl_bit_buf_t bit_buf;
- const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end =
- pIn_buf_next + *pIn_buf_size;
- mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end =
- pOut_buf_next + *pOut_buf_size;
- size_t out_buf_size_mask =
- (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
- ? (size_t)-1
- : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1,
- dist_from_out_buf_start;
-
- // Ensure the output buffer's size is a power of 2, unless the output buffer
- // is large enough to hold the entire output file (in which case it doesn't
- // matter).
- if (((out_buf_size_mask + 1) & out_buf_size_mask) ||
- (pOut_buf_next < pOut_buf_start)) {
- *pIn_buf_size = *pOut_buf_size = 0;
- return TINFL_STATUS_BAD_PARAM;
- }
-
- num_bits = r->m_num_bits;
- bit_buf = r->m_bit_buf;
- dist = r->m_dist;
- counter = r->m_counter;
- num_extra = r->m_num_extra;
- dist_from_out_buf_start = r->m_dist_from_out_buf_start;
- TINFL_CR_BEGIN
-
- bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
- r->m_z_adler32 = r->m_check_adler32 = 1;
- if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
- TINFL_GET_BYTE(1, r->m_zhdr0);
- TINFL_GET_BYTE(2, r->m_zhdr1);
- counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) ||
- (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
- if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
- counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) ||
- ((out_buf_size_mask + 1) <
- (size_t)(1ULL << (8U + (r->m_zhdr0 >> 4)))));
- if (counter) {
- TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
- }
- }
-
- do {
- TINFL_GET_BITS(3, r->m_final, 3);
- r->m_type = r->m_final >> 1;
- if (r->m_type == 0) {
- TINFL_SKIP_BITS(5, num_bits & 7);
- for (counter = 0; counter < 4; ++counter) {
- if (num_bits)
- TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
- else
- TINFL_GET_BYTE(7, r->m_raw_header[counter]);
- }
- if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) !=
- (mz_uint)(0xFFFF ^
- (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) {
- TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
- }
- while ((counter) && (num_bits)) {
- TINFL_GET_BITS(51, dist, 8);
- while (pOut_buf_cur >= pOut_buf_end) {
- TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
- }
- *pOut_buf_cur++ = (mz_uint8)dist;
- counter--;
- }
- while (counter) {
- size_t n;
- while (pOut_buf_cur >= pOut_buf_end) {
- TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
- }
- while (pIn_buf_cur >= pIn_buf_end) {
- if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) {
- TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
- } else {
- TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
- }
- }
- n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur),
- (size_t)(pIn_buf_end - pIn_buf_cur)),
- counter);
- TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
- pIn_buf_cur += n;
- pOut_buf_cur += n;
- counter -= (mz_uint)n;
- }
- } else if (r->m_type == 3) {
- TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
- } else {
- if (r->m_type == 1) {
- mz_uint8 *p = r->m_tables[0].m_code_size;
- mz_uint i;
- r->m_table_sizes[0] = 288;
- r->m_table_sizes[1] = 32;
- TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
- for (i = 0; i <= 143; ++i) *p++ = 8;
- for (; i <= 255; ++i) *p++ = 9;
- for (; i <= 279; ++i) *p++ = 7;
- for (; i <= 287; ++i) *p++ = 8;
- } else {
- for (counter = 0; counter < 3; counter++) {
- TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
- r->m_table_sizes[counter] += s_min_table_sizes[counter];
- }
- MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
- for (counter = 0; counter < r->m_table_sizes[2]; counter++) {
- mz_uint s;
- TINFL_GET_BITS(14, s, 3);
- r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
- }
- r->m_table_sizes[2] = 19;
- }
- for (; (int)r->m_type >= 0; r->m_type--) {
- int tree_next, tree_cur;
- tinfl_huff_table *pTable;
- mz_uint i, j, used_syms, total, sym_index, next_code[17],
- total_syms[16];
- pTable = &r->m_tables[r->m_type];
- MZ_CLEAR_OBJ(total_syms);
- MZ_CLEAR_OBJ(pTable->m_look_up);
- MZ_CLEAR_OBJ(pTable->m_tree);
- for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
- total_syms[pTable->m_code_size[i]]++;
- used_syms = 0, total = 0;
- next_code[0] = next_code[1] = 0;
- for (i = 1; i <= 15; ++i) {
- used_syms += total_syms[i];
- next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
- }
- if ((65536 != total) && (used_syms > 1)) {
- TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
- }
- for (tree_next = -1, sym_index = 0;
- sym_index < r->m_table_sizes[r->m_type]; ++sym_index) {
- mz_uint rev_code = 0, l, cur_code,
- code_size = pTable->m_code_size[sym_index];
- if (!code_size) continue;
- cur_code = next_code[code_size]++;
- for (l = code_size; l > 0; l--, cur_code >>= 1)
- rev_code = (rev_code << 1) | (cur_code & 1);
- if (code_size <= TINFL_FAST_LOOKUP_BITS) {
- mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
- while (rev_code < TINFL_FAST_LOOKUP_SIZE) {
- pTable->m_look_up[rev_code] = k;
- rev_code += (1 << code_size);
- }
- continue;
- }
- if (0 ==
- (tree_cur = pTable->m_look_up[rev_code &
- (TINFL_FAST_LOOKUP_SIZE - 1)])) {
- pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] =
- (mz_int16)tree_next;
- tree_cur = tree_next;
- tree_next -= 2;
- }
- rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
- for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) {
- tree_cur -= ((rev_code >>= 1) & 1);
- if (!pTable->m_tree[-tree_cur - 1]) {
- pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
- tree_cur = tree_next;
- tree_next -= 2;
- } else
- tree_cur = pTable->m_tree[-tree_cur - 1];
- }
- tree_cur -= ((rev_code >>= 1) & 1);
- pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
- }
- if (r->m_type == 2) {
- for (counter = 0;
- counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) {
- mz_uint s;
- TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
- if (dist < 16) {
- r->m_len_codes[counter++] = (mz_uint8)dist;
- continue;
- }
- if ((dist == 16) && (!counter)) {
- TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
- }
- num_extra = "\02\03\07"[dist - 16];
- TINFL_GET_BITS(18, s, num_extra);
- s += "\03\03\013"[dist - 16];
- TINFL_MEMSET(r->m_len_codes + counter,
- (dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
- counter += s;
- }
- if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) {
- TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
- }
- TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes,
- r->m_table_sizes[0]);
- TINFL_MEMCPY(r->m_tables[1].m_code_size,
- r->m_len_codes + r->m_table_sizes[0],
- r->m_table_sizes[1]);
- }
- }
- for (;;) {
- mz_uint8 *pSrc;
- for (;;) {
- if (((pIn_buf_end - pIn_buf_cur) < 4) ||
- ((pOut_buf_end - pOut_buf_cur) < 2)) {
- TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
- if (counter >= 256) break;
- while (pOut_buf_cur >= pOut_buf_end) {
- TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
- }
- *pOut_buf_cur++ = (mz_uint8)counter;
- } else {
- int sym2;
- mz_uint code_len;
-#if TINFL_USE_64BIT_BITBUF
- if (num_bits < 30) {
- bit_buf |=
- (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
- pIn_buf_cur += 4;
- num_bits += 32;
- }
-#else
- if (num_bits < 15) {
- bit_buf |=
- (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
- pIn_buf_cur += 2;
- num_bits += 16;
- }
-#endif
- if ((sym2 =
- r->m_tables[0]
- .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
- 0)
- code_len = sym2 >> 9;
- else {
- code_len = TINFL_FAST_LOOKUP_BITS;
- do {
- sym2 = r->m_tables[0]
- .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
- } while (sym2 < 0);
- }
- counter = sym2;
- bit_buf >>= code_len;
- num_bits -= code_len;
- if (counter & 256) break;
-
-#if !TINFL_USE_64BIT_BITBUF
- if (num_bits < 15) {
- bit_buf |=
- (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
- pIn_buf_cur += 2;
- num_bits += 16;
- }
-#endif
- if ((sym2 =
- r->m_tables[0]
- .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
- 0)
- code_len = sym2 >> 9;
- else {
- code_len = TINFL_FAST_LOOKUP_BITS;
- do {
- sym2 = r->m_tables[0]
- .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
- } while (sym2 < 0);
- }
- bit_buf >>= code_len;
- num_bits -= code_len;
-
- pOut_buf_cur[0] = (mz_uint8)counter;
- if (sym2 & 256) {
- pOut_buf_cur++;
- counter = sym2;
- break;
- }
- pOut_buf_cur[1] = (mz_uint8)sym2;
- pOut_buf_cur += 2;
- }
- }
- if ((counter &= 511) == 256) break;
-
- num_extra = s_length_extra[counter - 257];
- counter = s_length_base[counter - 257];
- if (num_extra) {
- mz_uint extra_bits;
- TINFL_GET_BITS(25, extra_bits, num_extra);
- counter += extra_bits;
- }
-
- TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
- num_extra = s_dist_extra[dist];
- dist = s_dist_base[dist];
- if (num_extra) {
- mz_uint extra_bits;
- TINFL_GET_BITS(27, extra_bits, num_extra);
- dist += extra_bits;
- }
-
- dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
- if ((dist > dist_from_out_buf_start) &&
- (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) {
- TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
- }
-
- pSrc = pOut_buf_start +
- ((dist_from_out_buf_start - dist) & out_buf_size_mask);
-
- if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) {
- while (counter--) {
- while (pOut_buf_cur >= pOut_buf_end) {
- TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
- }
- *pOut_buf_cur++ =
- pOut_buf_start[(dist_from_out_buf_start++ - dist) &
- out_buf_size_mask];
- }
- continue;
- }
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
- else if ((counter >= 9) && (counter <= dist)) {
- const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
- do {
- ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
- ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
- pOut_buf_cur += 8;
- } while ((pSrc += 8) < pSrc_end);
- if ((counter &= 7) < 3) {
- if (counter) {
- pOut_buf_cur[0] = pSrc[0];
- if (counter > 1) pOut_buf_cur[1] = pSrc[1];
- pOut_buf_cur += counter;
- }
- continue;
- }
- }
-#endif
- do {
- pOut_buf_cur[0] = pSrc[0];
- pOut_buf_cur[1] = pSrc[1];
- pOut_buf_cur[2] = pSrc[2];
- pOut_buf_cur += 3;
- pSrc += 3;
- } while ((int)(counter -= 3) > 2);
- if ((int)counter > 0) {
- pOut_buf_cur[0] = pSrc[0];
- if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1];
- pOut_buf_cur += counter;
- }
- }
- }
- } while (!(r->m_final & 1));
- if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
- TINFL_SKIP_BITS(32, num_bits & 7);
- for (counter = 0; counter < 4; ++counter) {
- mz_uint s;
- if (num_bits)
- TINFL_GET_BITS(41, s, 8);
- else
- TINFL_GET_BYTE(42, s);
- r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
- }
- }
- TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
- TINFL_CR_FINISH
-
-common_exit:
- r->m_num_bits = num_bits;
- r->m_bit_buf = bit_buf;
- r->m_dist = dist;
- r->m_counter = counter;
- r->m_num_extra = num_extra;
- r->m_dist_from_out_buf_start = dist_from_out_buf_start;
- *pIn_buf_size = pIn_buf_cur - pIn_buf_next;
- *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
- if ((decomp_flags &
- (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) &&
- (status >= 0)) {
- const mz_uint8 *ptr = pOut_buf_next;
- size_t buf_len = *pOut_buf_size;
- mz_uint32 i, s1 = r->m_check_adler32 & 0xffff,
- s2 = r->m_check_adler32 >> 16;
- size_t block_len = buf_len % 5552;
- while (buf_len) {
- for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
- s1 += ptr[0], s2 += s1;
- s1 += ptr[1], s2 += s1;
- s1 += ptr[2], s2 += s1;
- s1 += ptr[3], s2 += s1;
- s1 += ptr[4], s2 += s1;
- s1 += ptr[5], s2 += s1;
- s1 += ptr[6], s2 += s1;
- s1 += ptr[7], s2 += s1;
- }
- for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
- s1 %= 65521U, s2 %= 65521U;
- buf_len -= block_len;
- block_len = 5552;
- }
- r->m_check_adler32 = (s2 << 16) + s1;
- if ((status == TINFL_STATUS_DONE) &&
- (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) &&
- (r->m_check_adler32 != r->m_z_adler32))
- status = TINFL_STATUS_ADLER32_MISMATCH;
- }
- return status;
-}
-
-// Higher level helper functions.
-void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
- size_t *pOut_len, int flags) {
- tinfl_decompressor decomp;
- void *pBuf = NULL, *pNew_buf;
- size_t src_buf_ofs = 0, out_buf_capacity = 0;
- *pOut_len = 0;
- tinfl_init(&decomp);
- for (;;) {
- size_t src_buf_size = src_buf_len - src_buf_ofs,
- dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
- tinfl_status status = tinfl_decompress(
- &decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size,
- (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL,
- &dst_buf_size,
- (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
- TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
- if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
- MZ_FREE(pBuf);
- *pOut_len = 0;
- return NULL;
- }
- src_buf_ofs += src_buf_size;
- *pOut_len += dst_buf_size;
- if (status == TINFL_STATUS_DONE) break;
- new_out_buf_capacity = out_buf_capacity * 2;
- if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
- pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
- if (!pNew_buf) {
- MZ_FREE(pBuf);
- *pOut_len = 0;
- return NULL;
- }
- pBuf = pNew_buf;
- out_buf_capacity = new_out_buf_capacity;
- }
- return pBuf;
-}
-
-size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
- const void *pSrc_buf, size_t src_buf_len,
- int flags) {
- tinfl_decompressor decomp;
- tinfl_status status;
- tinfl_init(&decomp);
- status =
- tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len,
- (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len,
- (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
- TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
- return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
- : out_buf_len;
-}
-
-int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
- tinfl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags) {
- int result = 0;
- tinfl_decompressor decomp;
- mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
- size_t in_buf_ofs = 0, dict_ofs = 0;
- if (!pDict) return TINFL_STATUS_FAILED;
- tinfl_init(&decomp);
- for (;;) {
- size_t in_buf_size = *pIn_buf_size - in_buf_ofs,
- dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
- tinfl_status status =
- tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs,
- &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
- (flags & ~(TINFL_FLAG_HAS_MORE_INPUT |
- TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
- in_buf_ofs += in_buf_size;
- if ((dst_buf_size) &&
- (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
- break;
- if (status != TINFL_STATUS_HAS_MORE_OUTPUT) {
- result = (status == TINFL_STATUS_DONE);
- break;
- }
- dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
- }
- MZ_FREE(pDict);
- *pIn_buf_size = in_buf_ofs;
- return result;
-}
-
-// ------------------- Low-level Compression (independent from all decompression
-// API's)
-
-// Purposely making these tables static for faster init and thread safety.
-static const mz_uint16 s_tdefl_len_sym[256] = {
- 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268,
- 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272,
- 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274,
- 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276,
- 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
- 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
- 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279,
- 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280,
- 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281,
- 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
- 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282,
- 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
- 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283,
- 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
- 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284,
- 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
- 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
- 285};
-
-static const mz_uint8 s_tdefl_len_extra[256] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0};
-
-static const mz_uint8 s_tdefl_small_dist_sym[512] = {
- 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
- 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
- 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
- 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
- 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
- 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
- 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17};
-
-static const mz_uint8 s_tdefl_small_dist_extra[512] = {
- 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
-
-static const mz_uint8 s_tdefl_large_dist_sym[128] = {
- 0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24,
- 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
- 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27,
- 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
- 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
- 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
- 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29};
-
-static const mz_uint8 s_tdefl_large_dist_extra[128] = {
- 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
- 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
- 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
- 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13};
-
-// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted
-// values.
-typedef struct {
- mz_uint16 m_key, m_sym_index;
-} tdefl_sym_freq;
-static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms,
- tdefl_sym_freq *pSyms0,
- tdefl_sym_freq *pSyms1) {
- mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2];
- tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
- MZ_CLEAR_OBJ(hist);
- for (i = 0; i < num_syms; i++) {
- mz_uint freq = pSyms0[i].m_key;
- hist[freq & 0xFF]++;
- hist[256 + ((freq >> 8) & 0xFF)]++;
- }
- while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
- total_passes--;
- for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) {
- const mz_uint32 *pHist = &hist[pass << 8];
- mz_uint offsets[256], cur_ofs = 0;
- for (i = 0; i < 256; i++) {
- offsets[i] = cur_ofs;
- cur_ofs += pHist[i];
- }
- for (i = 0; i < num_syms; i++)
- pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] =
- pCur_syms[i];
- {
- tdefl_sym_freq *t = pCur_syms;
- pCur_syms = pNew_syms;
- pNew_syms = t;
- }
- }
- return pCur_syms;
-}
-
-// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat,
-// alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
-static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) {
- int root, leaf, next, avbl, used, dpth;
- if (n == 0)
- return;
- else if (n == 1) {
- A[0].m_key = 1;
- return;
- }
- A[0].m_key += A[1].m_key;
- root = 0;
- leaf = 2;
- for (next = 1; next < n - 1; next++) {
- if (leaf >= n || A[root].m_key < A[leaf].m_key) {
- A[next].m_key = A[root].m_key;
- A[root++].m_key = (mz_uint16)next;
- } else
- A[next].m_key = A[leaf++].m_key;
- if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) {
- A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key);
- A[root++].m_key = (mz_uint16)next;
- } else
- A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
- }
- A[n - 2].m_key = 0;
- for (next = n - 3; next >= 0; next--)
- A[next].m_key = A[A[next].m_key].m_key + 1;
- avbl = 1;
- used = dpth = 0;
- root = n - 2;
- next = n - 1;
- while (avbl > 0) {
- while (root >= 0 && (int)A[root].m_key == dpth) {
- used++;
- root--;
- }
- while (avbl > used) {
- A[next--].m_key = (mz_uint16)(dpth);
- avbl--;
- }
- avbl = 2 * used;
- dpth++;
- used = 0;
- }
-}
-
-// Limits canonical Huffman code table's max code size.
-enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
-static void tdefl_huffman_enforce_max_code_size(int *pNum_codes,
- int code_list_len,
- int max_code_size) {
- int i;
- mz_uint32 total = 0;
- if (code_list_len <= 1) return;
- for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++)
- pNum_codes[max_code_size] += pNum_codes[i];
- for (i = max_code_size; i > 0; i--)
- total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
- while (total != (1UL << max_code_size)) {
- pNum_codes[max_code_size]--;
- for (i = max_code_size - 1; i > 0; i--)
- if (pNum_codes[i]) {
- pNum_codes[i]--;
- pNum_codes[i + 1] += 2;
- break;
- }
- total--;
- }
-}
-
-static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num,
- int table_len, int code_size_limit,
- int static_table) {
- int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE];
- mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1];
- MZ_CLEAR_OBJ(num_codes);
- if (static_table) {
- for (i = 0; i < table_len; i++)
- num_codes[d->m_huff_code_sizes[table_num][i]]++;
- } else {
- tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS],
- *pSyms;
- int num_used_syms = 0;
- const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
- for (i = 0; i < table_len; i++)
- if (pSym_count[i]) {
- syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i];
- syms0[num_used_syms++].m_sym_index = (mz_uint16)i;
- }
-
- pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1);
- tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);
-
- for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
-
- tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms,
- code_size_limit);
-
- MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]);
- MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
- for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
- for (l = num_codes[i]; l > 0; l--)
- d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
- }
-
- next_code[1] = 0;
- for (j = 0, i = 2; i <= code_size_limit; i++)
- next_code[i] = j = ((j + num_codes[i - 1]) << 1);
-
- for (i = 0; i < table_len; i++) {
- mz_uint rev_code = 0, code, code_size;
- if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;
- code = next_code[code_size]++;
- for (l = code_size; l > 0; l--, code >>= 1)
- rev_code = (rev_code << 1) | (code & 1);
- d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
- }
-}
-
-#define TDEFL_PUT_BITS(b, l) \
- do { \
- mz_uint bits = b; \
- mz_uint len = l; \
- MZ_ASSERT(bits <= ((1U << len) - 1U)); \
- d->m_bit_buffer |= (bits << d->m_bits_in); \
- d->m_bits_in += len; \
- while (d->m_bits_in >= 8) { \
- if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
- *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
- d->m_bit_buffer >>= 8; \
- d->m_bits_in -= 8; \
- } \
- } \
- MZ_MACRO_END
-
-#define TDEFL_RLE_PREV_CODE_SIZE() \
- { \
- if (rle_repeat_count) { \
- if (rle_repeat_count < 3) { \
- d->m_huff_count[2][prev_code_size] = (mz_uint16)( \
- d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
- while (rle_repeat_count--) \
- packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
- } else { \
- d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \
- packed_code_sizes[num_packed_code_sizes++] = 16; \
- packed_code_sizes[num_packed_code_sizes++] = \
- (mz_uint8)(rle_repeat_count - 3); \
- } \
- rle_repeat_count = 0; \
- } \
- }
-
-#define TDEFL_RLE_ZERO_CODE_SIZE() \
- { \
- if (rle_z_count) { \
- if (rle_z_count < 3) { \
- d->m_huff_count[2][0] = \
- (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \
- while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
- } else if (rle_z_count <= 10) { \
- d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \
- packed_code_sizes[num_packed_code_sizes++] = 17; \
- packed_code_sizes[num_packed_code_sizes++] = \
- (mz_uint8)(rle_z_count - 3); \
- } else { \
- d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \
- packed_code_sizes[num_packed_code_sizes++] = 18; \
- packed_code_sizes[num_packed_code_sizes++] = \
- (mz_uint8)(rle_z_count - 11); \
- } \
- rle_z_count = 0; \
- } \
- }
-
-static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = {
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
-
-static void tdefl_start_dynamic_block(tdefl_compressor *d) {
- int num_lit_codes, num_dist_codes, num_bit_lengths;
- mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count,
- rle_repeat_count, packed_code_sizes_index;
- mz_uint8
- code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
- packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
- prev_code_size = 0xFF;
-
- d->m_huff_count[0][256] = 1;
-
- tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
- tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);
-
- for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--)
- if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;
- for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--)
- if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;
-
- memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
- memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0],
- num_dist_codes);
- total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
- num_packed_code_sizes = 0;
- rle_z_count = 0;
- rle_repeat_count = 0;
-
- memset(&d->m_huff_count[2][0], 0,
- sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
- for (i = 0; i < total_code_sizes_to_pack; i++) {
- mz_uint8 code_size = code_sizes_to_pack[i];
- if (!code_size) {
- TDEFL_RLE_PREV_CODE_SIZE();
- if (++rle_z_count == 138) {
- TDEFL_RLE_ZERO_CODE_SIZE();
- }
- } else {
- TDEFL_RLE_ZERO_CODE_SIZE();
- if (code_size != prev_code_size) {
- TDEFL_RLE_PREV_CODE_SIZE();
- d->m_huff_count[2][code_size] =
- (mz_uint16)(d->m_huff_count[2][code_size] + 1);
- packed_code_sizes[num_packed_code_sizes++] = code_size;
- } else if (++rle_repeat_count == 6) {
- TDEFL_RLE_PREV_CODE_SIZE();
- }
- }
- prev_code_size = code_size;
- }
- if (rle_repeat_count) {
- TDEFL_RLE_PREV_CODE_SIZE();
- } else {
- TDEFL_RLE_ZERO_CODE_SIZE();
- }
-
- tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);
-
- TDEFL_PUT_BITS(2, 2);
-
- TDEFL_PUT_BITS(num_lit_codes - 257, 5);
- TDEFL_PUT_BITS(num_dist_codes - 1, 5);
-
- for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--)
- if (d->m_huff_code_sizes
- [2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]])
- break;
- num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1));
- TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
- for (i = 0; (int)i < num_bit_lengths; i++)
- TDEFL_PUT_BITS(
- d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);
-
- for (packed_code_sizes_index = 0;
- packed_code_sizes_index < num_packed_code_sizes;) {
- mz_uint code = packed_code_sizes[packed_code_sizes_index++];
- MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
- TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
- if (code >= 16)
- TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++],
- "\02\03\07"[code - 16]);
- }
-}
-
-static void tdefl_start_static_block(tdefl_compressor *d) {
- mz_uint i;
- mz_uint8 *p = &d->m_huff_code_sizes[0][0];
-
- for (i = 0; i <= 143; ++i) *p++ = 8;
- for (; i <= 255; ++i) *p++ = 9;
- for (; i <= 279; ++i) *p++ = 7;
- for (; i <= 287; ++i) *p++ = 8;
-
- memset(d->m_huff_code_sizes[1], 5, 32);
-
- tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
- tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);
-
- TDEFL_PUT_BITS(1, 2);
-}
-
-static const mz_uint mz_bitmasks[17] = {
- 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
- 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF};
-
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \
- MINIZ_HAS_64BIT_REGISTERS
-static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
- mz_uint flags;
- mz_uint8 *pLZ_codes;
- mz_uint8 *pOutput_buf = d->m_pOutput_buf;
- mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
- mz_uint64 bit_buffer = d->m_bit_buffer;
- mz_uint bits_in = d->m_bits_in;
-
-#define TDEFL_PUT_BITS_FAST(b, l) \
- { \
- bit_buffer |= (((mz_uint64)(b)) << bits_in); \
- bits_in += (l); \
- }
-
- flags = 1;
- for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end;
- flags >>= 1) {
- if (flags == 1) flags = *pLZ_codes++ | 0x100;
-
- if (flags & 1) {
- mz_uint s0, s1, n0, n1, sym, num_extra_bits;
- mz_uint match_len = pLZ_codes[0],
- match_dist = *(const mz_uint16 *)(pLZ_codes + 1);
- pLZ_codes += 3;
-
- MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
- TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
- d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
- TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
- s_tdefl_len_extra[match_len]);
-
- // This sequence coaxes MSVC into using cmov's vs. jmp's.
- s0 = s_tdefl_small_dist_sym[match_dist & 511];
- n0 = s_tdefl_small_dist_extra[match_dist & 511];
- s1 = s_tdefl_large_dist_sym[match_dist >> 8];
- n1 = s_tdefl_large_dist_extra[match_dist >> 8];
- sym = (match_dist < 512) ? s0 : s1;
- num_extra_bits = (match_dist < 512) ? n0 : n1;
-
- MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
- TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym],
- d->m_huff_code_sizes[1][sym]);
- TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits],
- num_extra_bits);
- } else {
- mz_uint lit = *pLZ_codes++;
- MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
- TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
- d->m_huff_code_sizes[0][lit]);
-
- if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
- flags >>= 1;
- lit = *pLZ_codes++;
- MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
- TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
- d->m_huff_code_sizes[0][lit]);
-
- if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
- flags >>= 1;
- lit = *pLZ_codes++;
- MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
- TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
- d->m_huff_code_sizes[0][lit]);
- }
- }
- }
-
- if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE;
-
- *(mz_uint64 *)pOutput_buf = bit_buffer;
- pOutput_buf += (bits_in >> 3);
- bit_buffer >>= (bits_in & ~7);
- bits_in &= 7;
- }
-
-#undef TDEFL_PUT_BITS_FAST
-
- d->m_pOutput_buf = pOutput_buf;
- d->m_bits_in = 0;
- d->m_bit_buffer = 0;
-
- while (bits_in) {
- mz_uint32 n = MZ_MIN(bits_in, 16);
- TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
- bit_buffer >>= n;
- bits_in -= n;
- }
-
- TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
-
- return (d->m_pOutput_buf < d->m_pOutput_buf_end);
-}
-#else
-static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
- mz_uint flags;
- mz_uint8 *pLZ_codes;
-
- flags = 1;
- for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf;
- flags >>= 1) {
- if (flags == 1) flags = *pLZ_codes++ | 0x100;
- if (flags & 1) {
- mz_uint sym, num_extra_bits;
- mz_uint match_len = pLZ_codes[0],
- match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8));
- pLZ_codes += 3;
-
- MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
- TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
- d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
- TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
- s_tdefl_len_extra[match_len]);
-
- if (match_dist < 512) {
- sym = s_tdefl_small_dist_sym[match_dist];
- num_extra_bits = s_tdefl_small_dist_extra[match_dist];
- } else {
- sym = s_tdefl_large_dist_sym[match_dist >> 8];
- num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
- }
- MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
- TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
- TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
- } else {
- mz_uint lit = *pLZ_codes++;
- MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
- TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
- }
- }
-
- TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
-
- return (d->m_pOutput_buf < d->m_pOutput_buf_end);
-}
-#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN &&
- // MINIZ_HAS_64BIT_REGISTERS
-
-static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) {
- if (static_block)
- tdefl_start_static_block(d);
- else
- tdefl_start_dynamic_block(d);
- return tdefl_compress_lz_codes(d);
-}
-
-static int tdefl_flush_block(tdefl_compressor *d, int flush) {
- mz_uint saved_bit_buf, saved_bits_in;
- mz_uint8 *pSaved_output_buf;
- mz_bool comp_block_succeeded = MZ_FALSE;
- int n, use_raw_block =
- ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) &&
- (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
- mz_uint8 *pOutput_buf_start =
- ((d->m_pPut_buf_func == NULL) &&
- ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE))
- ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs)
- : d->m_output_buf;
-
- d->m_pOutput_buf = pOutput_buf_start;
- d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
-
- MZ_ASSERT(!d->m_output_flush_remaining);
- d->m_output_flush_ofs = 0;
- d->m_output_flush_remaining = 0;
-
- *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
- d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);
-
- if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) {
- TDEFL_PUT_BITS(0x78, 8);
- TDEFL_PUT_BITS(0x01, 8);
- }
-
- TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);
-
- pSaved_output_buf = d->m_pOutput_buf;
- saved_bit_buf = d->m_bit_buffer;
- saved_bits_in = d->m_bits_in;
-
- if (!use_raw_block)
- comp_block_succeeded =
- tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) ||
- (d->m_total_lz_bytes < 48));
-
- // If the block gets expanded, forget the current contents of the output
- // buffer and send a raw block instead.
- if (((use_raw_block) ||
- ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >=
- d->m_total_lz_bytes))) &&
- ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) {
- mz_uint i;
- d->m_pOutput_buf = pSaved_output_buf;
- d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
- TDEFL_PUT_BITS(0, 2);
- if (d->m_bits_in) {
- TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
- }
- for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) {
- TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
- }
- for (i = 0; i < d->m_total_lz_bytes; ++i) {
- TDEFL_PUT_BITS(
- d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK],
- 8);
- }
- }
- // Check for the extremely unlikely (if not impossible) case of the compressed
- // block not fitting into the output buffer when using dynamic codes.
- else if (!comp_block_succeeded) {
- d->m_pOutput_buf = pSaved_output_buf;
- d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
- tdefl_compress_block(d, MZ_TRUE);
- }
-
- if (flush) {
- if (flush == TDEFL_FINISH) {
- if (d->m_bits_in) {
- TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
- }
- if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) {
- mz_uint i, a = d->m_adler32;
- for (i = 0; i < 4; i++) {
- TDEFL_PUT_BITS((a >> 24) & 0xFF, 8);
- a <<= 8;
- }
- }
- } else {
- mz_uint i, z = 0;
- TDEFL_PUT_BITS(0, 3);
- if (d->m_bits_in) {
- TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
- }
- for (i = 2; i; --i, z ^= 0xFFFF) {
- TDEFL_PUT_BITS(z & 0xFFFF, 16);
- }
- }
- }
-
- MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);
-
- memset(&d->m_huff_count[0][0], 0,
- sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
- memset(&d->m_huff_count[1][0], 0,
- sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
-
- d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
- d->m_pLZ_flags = d->m_lz_code_buf;
- d->m_num_flags_left = 8;
- d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes;
- d->m_total_lz_bytes = 0;
- d->m_block_index++;
-
- if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) {
- if (d->m_pPut_buf_func) {
- *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
- if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
- return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
- } else if (pOutput_buf_start == d->m_output_buf) {
- int bytes_to_copy = (int)MZ_MIN(
- (size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
- memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf,
- bytes_to_copy);
- d->m_out_buf_ofs += bytes_to_copy;
- if ((n -= bytes_to_copy) != 0) {
- d->m_output_flush_ofs = bytes_to_copy;
- d->m_output_flush_remaining = n;
- }
- } else {
- d->m_out_buf_ofs += n;
- }
- }
-
- return d->m_output_flush_remaining;
-}
-
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
-#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p)
-static MZ_FORCEINLINE void tdefl_find_match(
- tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
- mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
- mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
- match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
- probe_len;
- mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
- const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q;
- mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]),
- s01 = TDEFL_READ_UNALIGNED_WORD(s);
- MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
- if (max_match_len <= match_len) return;
- for (;;) {
- for (;;) {
- if (--num_probes_left == 0) return;
-#define TDEFL_PROBE \
- next_probe_pos = d->m_next[probe_pos]; \
- if ((!next_probe_pos) || \
- ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
- return; \
- probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
- if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \
- break;
- TDEFL_PROBE;
- TDEFL_PROBE;
- TDEFL_PROBE;
- }
- if (!dist) break;
- q = (const mz_uint16 *)(d->m_dict + probe_pos);
- if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue;
- p = s;
- probe_len = 32;
- do {
- } while (
- (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (--probe_len > 0));
- if (!probe_len) {
- *pMatch_dist = dist;
- *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN);
- break;
- } else if ((probe_len = ((mz_uint)(p - s) * 2) +
- (mz_uint)(*(const mz_uint8 *)p ==
- *(const mz_uint8 *)q)) > match_len) {
- *pMatch_dist = dist;
- if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) ==
- max_match_len)
- break;
- c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
- }
- }
-}
-#else
-static MZ_FORCEINLINE void tdefl_find_match(
- tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
- mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
- mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
- match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
- probe_len;
- mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
- const mz_uint8 *s = d->m_dict + pos, *p, *q;
- mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
- MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
- if (max_match_len <= match_len) return;
- for (;;) {
- for (;;) {
- if (--num_probes_left == 0) return;
-#define TDEFL_PROBE \
- next_probe_pos = d->m_next[probe_pos]; \
- if ((!next_probe_pos) || \
- ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
- return; \
- probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
- if ((d->m_dict[probe_pos + match_len] == c0) && \
- (d->m_dict[probe_pos + match_len - 1] == c1)) \
- break;
- TDEFL_PROBE;
- TDEFL_PROBE;
- TDEFL_PROBE;
- }
- if (!dist) break;
- p = s;
- q = d->m_dict + probe_pos;
- for (probe_len = 0; probe_len < max_match_len; probe_len++)
- if (*p++ != *q++) break;
- if (probe_len > match_len) {
- *pMatch_dist = dist;
- if ((*pMatch_len = match_len = probe_len) == max_match_len) return;
- c0 = d->m_dict[pos + match_len];
- c1 = d->m_dict[pos + match_len - 1];
- }
- }
-}
-#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
-
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
-static mz_bool tdefl_compress_fast(tdefl_compressor *d) {
- // Faster, minimally featured LZRW1-style match+parse loop with better
- // register utilization. Intended for applications where raw throughput is
- // valued more highly than ratio.
- mz_uint lookahead_pos = d->m_lookahead_pos,
- lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size,
- total_lz_bytes = d->m_total_lz_bytes,
- num_flags_left = d->m_num_flags_left;
- mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
- mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
-
- while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) {
- const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
- mz_uint dst_pos =
- (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
- mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
- d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
- d->m_src_buf_left -= num_bytes_to_process;
- lookahead_size += num_bytes_to_process;
-
- while (num_bytes_to_process) {
- mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
- memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
- if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
- memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc,
- MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
- d->m_pSrc += n;
- dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
- num_bytes_to_process -= n;
- }
-
- dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
- if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE))
- break;
-
- while (lookahead_size >= 4) {
- mz_uint cur_match_dist, cur_match_len = 1;
- mz_uint8 *pCur_dict = d->m_dict + cur_pos;
- mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
- mz_uint hash =
- (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) &
- TDEFL_LEVEL1_HASH_SIZE_MASK;
- mz_uint probe_pos = d->m_hash[hash];
- d->m_hash[hash] = (mz_uint16)lookahead_pos;
-
- if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <=
- dict_size) &&
- ((*(const mz_uint32 *)(d->m_dict +
- (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) &
- 0xFFFFFF) == first_trigram)) {
- const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
- const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);
- mz_uint32 probe_len = 32;
- do {
- } while ((TDEFL_READ_UNALIGNED_WORD(++p) ==
- TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) ==
- TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) ==
- TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (TDEFL_READ_UNALIGNED_WORD(++p) ==
- TDEFL_READ_UNALIGNED_WORD(++q)) &&
- (--probe_len > 0));
- cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) +
- (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
- if (!probe_len)
- cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
-
- if ((cur_match_len < TDEFL_MIN_MATCH_LEN) ||
- ((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
- (cur_match_dist >= 8U * 1024U))) {
- cur_match_len = 1;
- *pLZ_code_buf++ = (mz_uint8)first_trigram;
- *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
- d->m_huff_count[0][(mz_uint8)first_trigram]++;
- } else {
- mz_uint32 s0, s1;
- cur_match_len = MZ_MIN(cur_match_len, lookahead_size);
-
- MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) &&
- (cur_match_dist >= 1) &&
- (cur_match_dist <= TDEFL_LZ_DICT_SIZE));
-
- cur_match_dist--;
-
- pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
- *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
- pLZ_code_buf += 3;
- *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);
-
- s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
- s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
- d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;
-
- d->m_huff_count[0][s_tdefl_len_sym[cur_match_len -
- TDEFL_MIN_MATCH_LEN]]++;
- }
- } else {
- *pLZ_code_buf++ = (mz_uint8)first_trigram;
- *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
- d->m_huff_count[0][(mz_uint8)first_trigram]++;
- }
-
- if (--num_flags_left == 0) {
- num_flags_left = 8;
- pLZ_flags = pLZ_code_buf++;
- }
-
- total_lz_bytes += cur_match_len;
- lookahead_pos += cur_match_len;
- dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
- cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
- MZ_ASSERT(lookahead_size >= cur_match_len);
- lookahead_size -= cur_match_len;
-
- if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
- int n;
- d->m_lookahead_pos = lookahead_pos;
- d->m_lookahead_size = lookahead_size;
- d->m_dict_size = dict_size;
- d->m_total_lz_bytes = total_lz_bytes;
- d->m_pLZ_code_buf = pLZ_code_buf;
- d->m_pLZ_flags = pLZ_flags;
- d->m_num_flags_left = num_flags_left;
- if ((n = tdefl_flush_block(d, 0)) != 0)
- return (n < 0) ? MZ_FALSE : MZ_TRUE;
- total_lz_bytes = d->m_total_lz_bytes;
- pLZ_code_buf = d->m_pLZ_code_buf;
- pLZ_flags = d->m_pLZ_flags;
- num_flags_left = d->m_num_flags_left;
- }
- }
-
- while (lookahead_size) {
- mz_uint8 lit = d->m_dict[cur_pos];
-
- total_lz_bytes++;
- *pLZ_code_buf++ = lit;
- *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
- if (--num_flags_left == 0) {
- num_flags_left = 8;
- pLZ_flags = pLZ_code_buf++;
- }
-
- d->m_huff_count[0][lit]++;
-
- lookahead_pos++;
- dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
- cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
- lookahead_size--;
-
- if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
- int n;
- d->m_lookahead_pos = lookahead_pos;
- d->m_lookahead_size = lookahead_size;
- d->m_dict_size = dict_size;
- d->m_total_lz_bytes = total_lz_bytes;
- d->m_pLZ_code_buf = pLZ_code_buf;
- d->m_pLZ_flags = pLZ_flags;
- d->m_num_flags_left = num_flags_left;
- if ((n = tdefl_flush_block(d, 0)) != 0)
- return (n < 0) ? MZ_FALSE : MZ_TRUE;
- total_lz_bytes = d->m_total_lz_bytes;
- pLZ_code_buf = d->m_pLZ_code_buf;
- pLZ_flags = d->m_pLZ_flags;
- num_flags_left = d->m_num_flags_left;
- }
- }
- }
-
- d->m_lookahead_pos = lookahead_pos;
- d->m_lookahead_size = lookahead_size;
- d->m_dict_size = dict_size;
- d->m_total_lz_bytes = total_lz_bytes;
- d->m_pLZ_code_buf = pLZ_code_buf;
- d->m_pLZ_flags = pLZ_flags;
- d->m_num_flags_left = num_flags_left;
- return MZ_TRUE;
-}
-#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
-
-static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d,
- mz_uint8 lit) {
- d->m_total_lz_bytes++;
- *d->m_pLZ_code_buf++ = lit;
- *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1);
- if (--d->m_num_flags_left == 0) {
- d->m_num_flags_left = 8;
- d->m_pLZ_flags = d->m_pLZ_code_buf++;
- }
- d->m_huff_count[0][lit]++;
-}
-
-static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d,
- mz_uint match_len,
- mz_uint match_dist) {
- mz_uint32 s0, s1;
-
- MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) &&
- (match_dist <= TDEFL_LZ_DICT_SIZE));
-
- d->m_total_lz_bytes += match_len;
-
- d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);
-
- match_dist -= 1;
- d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
- d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8);
- d->m_pLZ_code_buf += 3;
-
- *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80);
- if (--d->m_num_flags_left == 0) {
- d->m_num_flags_left = 8;
- d->m_pLZ_flags = d->m_pLZ_code_buf++;
- }
-
- s0 = s_tdefl_small_dist_sym[match_dist & 511];
- s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
- d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;
-
- if (match_len >= TDEFL_MIN_MATCH_LEN)
- d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
-}
-
-static mz_bool tdefl_compress_normal(tdefl_compressor *d) {
- const mz_uint8 *pSrc = d->m_pSrc;
- size_t src_buf_left = d->m_src_buf_left;
- tdefl_flush flush = d->m_flush;
-
- while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) {
- mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
- // Update dictionary and hash chains. Keeps the lookahead size equal to
- // TDEFL_MAX_MATCH_LEN.
- if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) {
- mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
- TDEFL_LZ_DICT_SIZE_MASK,
- ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
- mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
- << TDEFL_LZ_HASH_SHIFT) ^
- d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
- mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
- src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
- const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
- src_buf_left -= num_bytes_to_process;
- d->m_lookahead_size += num_bytes_to_process;
- while (pSrc != pSrc_end) {
- mz_uint8 c = *pSrc++;
- d->m_dict[dst_pos] = c;
- if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
- d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
- hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
- d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
- d->m_hash[hash] = (mz_uint16)(ins_pos);
- dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
- ins_pos++;
- }
- } else {
- while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) {
- mz_uint8 c = *pSrc++;
- mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
- TDEFL_LZ_DICT_SIZE_MASK;
- src_buf_left--;
- d->m_dict[dst_pos] = c;
- if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
- d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
- if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) {
- mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
- mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
- << (TDEFL_LZ_HASH_SHIFT * 2)) ^
- (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]
- << TDEFL_LZ_HASH_SHIFT) ^
- c) &
- (TDEFL_LZ_HASH_SIZE - 1);
- d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
- d->m_hash[hash] = (mz_uint16)(ins_pos);
- }
- }
- }
- d->m_dict_size =
- MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
- if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break;
-
- // Simple lazy/greedy parsing state machine.
- len_to_move = 1;
- cur_match_dist = 0;
- cur_match_len =
- d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1);
- cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
- if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) {
- if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) {
- mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
- cur_match_len = 0;
- while (cur_match_len < d->m_lookahead_size) {
- if (d->m_dict[cur_pos + cur_match_len] != c) break;
- cur_match_len++;
- }
- if (cur_match_len < TDEFL_MIN_MATCH_LEN)
- cur_match_len = 0;
- else
- cur_match_dist = 1;
- }
- } else {
- tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size,
- d->m_lookahead_size, &cur_match_dist, &cur_match_len);
- }
- if (((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
- (cur_match_dist >= 8U * 1024U)) ||
- (cur_pos == cur_match_dist) ||
- ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) {
- cur_match_dist = cur_match_len = 0;
- }
- if (d->m_saved_match_len) {
- if (cur_match_len > d->m_saved_match_len) {
- tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
- if (cur_match_len >= 128) {
- tdefl_record_match(d, cur_match_len, cur_match_dist);
- d->m_saved_match_len = 0;
- len_to_move = cur_match_len;
- } else {
- d->m_saved_lit = d->m_dict[cur_pos];
- d->m_saved_match_dist = cur_match_dist;
- d->m_saved_match_len = cur_match_len;
- }
- } else {
- tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
- len_to_move = d->m_saved_match_len - 1;
- d->m_saved_match_len = 0;
- }
- } else if (!cur_match_dist)
- tdefl_record_literal(d,
- d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
- else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) ||
- (cur_match_len >= 128)) {
- tdefl_record_match(d, cur_match_len, cur_match_dist);
- len_to_move = cur_match_len;
- } else {
- d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)];
- d->m_saved_match_dist = cur_match_dist;
- d->m_saved_match_len = cur_match_len;
- }
- // Move the lookahead forward by len_to_move bytes.
- d->m_lookahead_pos += len_to_move;
- MZ_ASSERT(d->m_lookahead_size >= len_to_move);
- d->m_lookahead_size -= len_to_move;
- d->m_dict_size =
- MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE);
- // Check if it's time to flush the current LZ codes to the internal output
- // buffer.
- if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
- ((d->m_total_lz_bytes > 31 * 1024) &&
- (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >=
- d->m_total_lz_bytes) ||
- (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) {
- int n;
- d->m_pSrc = pSrc;
- d->m_src_buf_left = src_buf_left;
- if ((n = tdefl_flush_block(d, 0)) != 0)
- return (n < 0) ? MZ_FALSE : MZ_TRUE;
- }
- }
-
- d->m_pSrc = pSrc;
- d->m_src_buf_left = src_buf_left;
- return MZ_TRUE;
-}
-
-static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) {
- if (d->m_pIn_buf_size) {
- *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
- }
-
- if (d->m_pOut_buf_size) {
- size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs,
- d->m_output_flush_remaining);
- memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs,
- d->m_output_buf + d->m_output_flush_ofs, n);
- d->m_output_flush_ofs += (mz_uint)n;
- d->m_output_flush_remaining -= (mz_uint)n;
- d->m_out_buf_ofs += n;
-
- *d->m_pOut_buf_size = d->m_out_buf_ofs;
- }
-
- return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE
- : TDEFL_STATUS_OKAY;
-}
-
-tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
- size_t *pIn_buf_size, void *pOut_buf,
- size_t *pOut_buf_size, tdefl_flush flush) {
- if (!d) {
- if (pIn_buf_size) *pIn_buf_size = 0;
- if (pOut_buf_size) *pOut_buf_size = 0;
- return TDEFL_STATUS_BAD_PARAM;
- }
-
- d->m_pIn_buf = pIn_buf;
- d->m_pIn_buf_size = pIn_buf_size;
- d->m_pOut_buf = pOut_buf;
- d->m_pOut_buf_size = pOut_buf_size;
- d->m_pSrc = (const mz_uint8 *)(pIn_buf);
- d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
- d->m_out_buf_ofs = 0;
- d->m_flush = flush;
-
- if (((d->m_pPut_buf_func != NULL) ==
- ((pOut_buf != NULL) || (pOut_buf_size != NULL))) ||
- (d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
- (d->m_wants_to_finish && (flush != TDEFL_FINISH)) ||
- (pIn_buf_size && *pIn_buf_size && !pIn_buf) ||
- (pOut_buf_size && *pOut_buf_size && !pOut_buf)) {
- if (pIn_buf_size) *pIn_buf_size = 0;
- if (pOut_buf_size) *pOut_buf_size = 0;
- return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
- }
- d->m_wants_to_finish |= (flush == TDEFL_FINISH);
-
- if ((d->m_output_flush_remaining) || (d->m_finished))
- return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
-
-#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
- if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
- ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
- ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS |
- TDEFL_RLE_MATCHES)) == 0)) {
- if (!tdefl_compress_fast(d)) return d->m_prev_return_status;
- } else
-#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
- {
- if (!tdefl_compress_normal(d)) return d->m_prev_return_status;
- }
-
- if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) &&
- (pIn_buf))
- d->m_adler32 =
- (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf,
- d->m_pSrc - (const mz_uint8 *)pIn_buf);
-
- if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) &&
- (!d->m_output_flush_remaining)) {
- if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status;
- d->m_finished = (flush == TDEFL_FINISH);
- if (flush == TDEFL_FULL_FLUSH) {
- MZ_CLEAR_OBJ(d->m_hash);
- MZ_CLEAR_OBJ(d->m_next);
- d->m_dict_size = 0;
- }
- }
-
- return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
-}
-
-tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
- size_t in_buf_size, tdefl_flush flush) {
- MZ_ASSERT(d->m_pPut_buf_func);
- return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
-}
-
-tdefl_status tdefl_init(tdefl_compressor *d,
- tdefl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags) {
- d->m_pPut_buf_func = pPut_buf_func;
- d->m_pPut_buf_user = pPut_buf_user;
- d->m_flags = (mz_uint)(flags);
- d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3;
- d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
- d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
- if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);
- d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size =
- d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
- d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished =
- d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
- d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
- d->m_pLZ_flags = d->m_lz_code_buf;
- d->m_num_flags_left = 8;
- d->m_pOutput_buf = d->m_output_buf;
- d->m_pOutput_buf_end = d->m_output_buf;
- d->m_prev_return_status = TDEFL_STATUS_OKAY;
- d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0;
- d->m_adler32 = 1;
- d->m_pIn_buf = NULL;
- d->m_pOut_buf = NULL;
- d->m_pIn_buf_size = NULL;
- d->m_pOut_buf_size = NULL;
- d->m_flush = TDEFL_NO_FLUSH;
- d->m_pSrc = NULL;
- d->m_src_buf_left = 0;
- d->m_out_buf_ofs = 0;
- memset(&d->m_huff_count[0][0], 0,
- sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
- memset(&d->m_huff_count[1][0], 0,
- sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
- return TDEFL_STATUS_OKAY;
-}
-
-tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) {
- return d->m_prev_return_status;
-}
-
-mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; }
-
-mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
- tdefl_put_buf_func_ptr pPut_buf_func,
- void *pPut_buf_user, int flags) {
- tdefl_compressor *pComp;
- mz_bool succeeded;
- if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;
- pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
- if (!pComp) return MZ_FALSE;
- succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) ==
- TDEFL_STATUS_OKAY);
- succeeded =
- succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) ==
- TDEFL_STATUS_DONE);
- MZ_FREE(pComp);
- return succeeded;
-}
-
-typedef struct {
- size_t m_size, m_capacity;
- mz_uint8 *m_pBuf;
- mz_bool m_expandable;
-} tdefl_output_buffer;
-
-static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len,
- void *pUser) {
- tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
- size_t new_size = p->m_size + len;
- if (new_size > p->m_capacity) {
- size_t new_capacity = p->m_capacity;
- mz_uint8 *pNew_buf;
- if (!p->m_expandable) return MZ_FALSE;
- do {
- new_capacity = MZ_MAX(128U, new_capacity << 1U);
- } while (new_size > new_capacity);
- pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity);
- if (!pNew_buf) return MZ_FALSE;
- p->m_pBuf = pNew_buf;
- p->m_capacity = new_capacity;
- }
- memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len);
- p->m_size = new_size;
- return MZ_TRUE;
-}
-
-void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
- size_t *pOut_len, int flags) {
- tdefl_output_buffer out_buf;
- MZ_CLEAR_OBJ(out_buf);
- if (!pOut_len)
- return MZ_FALSE;
- else
- *pOut_len = 0;
- out_buf.m_expandable = MZ_TRUE;
- if (!tdefl_compress_mem_to_output(
- pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
- return NULL;
- *pOut_len = out_buf.m_size;
- return out_buf.m_pBuf;
-}
-
-size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
- const void *pSrc_buf, size_t src_buf_len,
- int flags) {
- tdefl_output_buffer out_buf;
- MZ_CLEAR_OBJ(out_buf);
- if (!pOut_buf) return 0;
- out_buf.m_pBuf = (mz_uint8 *)pOut_buf;
- out_buf.m_capacity = out_buf_len;
- if (!tdefl_compress_mem_to_output(
- pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
- return 0;
- return out_buf.m_size;
-}
-
-#ifndef MINIZ_NO_ZLIB_APIS
-static const mz_uint s_tdefl_num_probes[11] = {0, 1, 6, 32, 16, 32,
- 128, 256, 512, 768, 1500};
-
-// level may actually range from [0,10] (10 is a "hidden" max level, where we
-// want a bit more compression and it's fine if throughput to fall off a cliff
-// on some files).
-mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
- int strategy) {
- mz_uint comp_flags =
- s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] |
- ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
- if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
-
- if (!level)
- comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
- else if (strategy == MZ_FILTERED)
- comp_flags |= TDEFL_FILTER_MATCHES;
- else if (strategy == MZ_HUFFMAN_ONLY)
- comp_flags &= ~TDEFL_MAX_PROBES_MASK;
- else if (strategy == MZ_FIXED)
- comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
- else if (strategy == MZ_RLE)
- comp_flags |= TDEFL_RLE_MATCHES;
-
- return comp_flags;
-}
-#endif // MINIZ_NO_ZLIB_APIS
-
-#ifdef _MSC_VER
-#pragma warning(push)
-#pragma warning(disable : 4204) // nonstandard extension used : non-constant
- // aggregate initializer (also supported by GNU
- // C and C99, so no big deal)
-#pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to
- // 'int', possible loss of data
-#pragma warning(disable : 4267) // 'argument': conversion from '__int64' to
- // 'int', possible loss of data
-#pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is
- // deprecated. Instead, use the ISO C and C++
- // conformant name: _strdup.
-#endif
-
-// Simple PNG writer function by Alex Evans, 2011. Released into the public
-// domain: https://gist.github.com/908299, more context at
-// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
-// This is actually a modification of Alex's original code so PNG files
-// generated by this function pass pngcheck.
-void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
- int h, int num_chans,
- size_t *pLen_out,
- mz_uint level, mz_bool flip) {
- // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was
- // defined.
- static const mz_uint s_tdefl_png_num_probes[11] = {
- 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500};
- tdefl_compressor *pComp =
- (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
- tdefl_output_buffer out_buf;
- int i, bpl = w * num_chans, y, z;
- mz_uint32 c;
- *pLen_out = 0;
- if (!pComp) return NULL;
- MZ_CLEAR_OBJ(out_buf);
- out_buf.m_expandable = MZ_TRUE;
- out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h);
- if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) {
- MZ_FREE(pComp);
- return NULL;
- }
- // write dummy header
- for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);
- // compress image data
- tdefl_init(
- pComp, tdefl_output_buffer_putter, &out_buf,
- s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER);
- for (y = 0; y < h; ++y) {
- tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH);
- tdefl_compress_buffer(pComp,
- (mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl,
- bpl, TDEFL_NO_FLUSH);
- }
- if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) !=
- TDEFL_STATUS_DONE) {
- MZ_FREE(pComp);
- MZ_FREE(out_buf.m_pBuf);
- return NULL;
- }
- // write real header
- *pLen_out = out_buf.m_size - 41;
- {
- static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
- mz_uint8 pnghdr[41] = {0x89,
- 0x50,
- 0x4e,
- 0x47,
- 0x0d,
- 0x0a,
- 0x1a,
- 0x0a,
- 0x00,
- 0x00,
- 0x00,
- 0x0d,
- 0x49,
- 0x48,
- 0x44,
- 0x52,
- 0,
- 0,
- (mz_uint8)(w >> 8),
- (mz_uint8)w,
- 0,
- 0,
- (mz_uint8)(h >> 8),
- (mz_uint8)h,
- 8,
- chans[num_chans],
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- (mz_uint8)(*pLen_out >> 24),
- (mz_uint8)(*pLen_out >> 16),
- (mz_uint8)(*pLen_out >> 8),
- (mz_uint8)*pLen_out,
- 0x49,
- 0x44,
- 0x41,
- 0x54};
- c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17);
- for (i = 0; i < 4; ++i, c <<= 8)
- ((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24);
- memcpy(out_buf.m_pBuf, pnghdr, 41);
- }
- // write footer (IDAT CRC-32, followed by IEND chunk)
- if (!tdefl_output_buffer_putter(
- "\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) {
- *pLen_out = 0;
- MZ_FREE(pComp);
- MZ_FREE(out_buf.m_pBuf);
- return NULL;
- }
- c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4,
- *pLen_out + 4);
- for (i = 0; i < 4; ++i, c <<= 8)
- (out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24);
- // compute final size of file, grab compressed data buffer and return
- *pLen_out += 57;
- MZ_FREE(pComp);
- return out_buf.m_pBuf;
-}
-void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
- int num_chans, size_t *pLen_out) {
- // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we
- // can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's
- // where #defined out)
- return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans,
- pLen_out, 6, MZ_FALSE);
-}
-
-// ------------------- .ZIP archive reading
-
-#ifndef MINIZ_NO_ARCHIVE_APIS
-#error "No arvhive APIs"
-
-#ifdef MINIZ_NO_STDIO
-#define MZ_FILE void *
-#else
-#include <stdio.h>
-#include <sys/stat.h>
-
-#if defined(_MSC_VER) || defined(__MINGW64__)
-static FILE *mz_fopen(const char *pFilename, const char *pMode) {
- FILE *pFile = NULL;
- fopen_s(&pFile, pFilename, pMode);
- return pFile;
-}
-static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) {
- FILE *pFile = NULL;
- if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL;
- return pFile;
-}
-#ifndef MINIZ_NO_TIME
-#include <sys/utime.h>
-#endif
-#define MZ_FILE FILE
-#define MZ_FOPEN mz_fopen
-#define MZ_FCLOSE fclose
-#define MZ_FREAD fread
-#define MZ_FWRITE fwrite
-#define MZ_FTELL64 _ftelli64
-#define MZ_FSEEK64 _fseeki64
-#define MZ_FILE_STAT_STRUCT _stat
-#define MZ_FILE_STAT _stat
-#define MZ_FFLUSH fflush
-#define MZ_FREOPEN mz_freopen
-#define MZ_DELETE_FILE remove
-#elif defined(__MINGW32__)
-#ifndef MINIZ_NO_TIME
-#include <sys/utime.h>
-#endif
-#define MZ_FILE FILE
-#define MZ_FOPEN(f, m) fopen(f, m)
-#define MZ_FCLOSE fclose
-#define MZ_FREAD fread
-#define MZ_FWRITE fwrite
-#define MZ_FTELL64 ftello64
-#define MZ_FSEEK64 fseeko64
-#define MZ_FILE_STAT_STRUCT _stat
-#define MZ_FILE_STAT _stat
-#define MZ_FFLUSH fflush
-#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
-#define MZ_DELETE_FILE remove
-#elif defined(__TINYC__)
-#ifndef MINIZ_NO_TIME
-#include <sys/utime.h>
-#endif
-#define MZ_FILE FILE
-#define MZ_FOPEN(f, m) fopen(f, m)
-#define MZ_FCLOSE fclose
-#define MZ_FREAD fread
-#define MZ_FWRITE fwrite
-#define MZ_FTELL64 ftell
-#define MZ_FSEEK64 fseek
-#define MZ_FILE_STAT_STRUCT stat
-#define MZ_FILE_STAT stat
-#define MZ_FFLUSH fflush
-#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
-#define MZ_DELETE_FILE remove
-#elif defined(__GNUC__) && defined(_LARGEFILE64_SOURCE) && _LARGEFILE64_SOURCE
-#ifndef MINIZ_NO_TIME
-#include <utime.h>
-#endif
-#define MZ_FILE FILE
-#define MZ_FOPEN(f, m) fopen64(f, m)
-#define MZ_FCLOSE fclose
-#define MZ_FREAD fread
-#define MZ_FWRITE fwrite
-#define MZ_FTELL64 ftello64
-#define MZ_FSEEK64 fseeko64
-#define MZ_FILE_STAT_STRUCT stat64
-#define MZ_FILE_STAT stat64
-#define MZ_FFLUSH fflush
-#define MZ_FREOPEN(p, m, s) freopen64(p, m, s)
-#define MZ_DELETE_FILE remove
-#else
-#ifndef MINIZ_NO_TIME
-#include <utime.h>
-#endif
-#define MZ_FILE FILE
-#define MZ_FOPEN(f, m) fopen(f, m)
-#define MZ_FCLOSE fclose
-#define MZ_FREAD fread
-#define MZ_FWRITE fwrite
-#define MZ_FTELL64 ftello
-#define MZ_FSEEK64 fseeko
-#define MZ_FILE_STAT_STRUCT stat
-#define MZ_FILE_STAT stat
-#define MZ_FFLUSH fflush
-#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
-#define MZ_DELETE_FILE remove
-#endif // #ifdef _MSC_VER
-#endif // #ifdef MINIZ_NO_STDIO
-
-#define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c))
-
-// Various ZIP archive enums. To completely avoid cross platform compiler
-// alignment and platform endian issues, miniz.c doesn't use structs for any of
-// this stuff.
-enum {
- // ZIP archive identifiers and record sizes
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50,
- MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50,
- MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50,
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30,
- MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46,
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22,
- // Central directory header record offsets
- MZ_ZIP_CDH_SIG_OFS = 0,
- MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4,
- MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6,
- MZ_ZIP_CDH_BIT_FLAG_OFS = 8,
- MZ_ZIP_CDH_METHOD_OFS = 10,
- MZ_ZIP_CDH_FILE_TIME_OFS = 12,
- MZ_ZIP_CDH_FILE_DATE_OFS = 14,
- MZ_ZIP_CDH_CRC32_OFS = 16,
- MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20,
- MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24,
- MZ_ZIP_CDH_FILENAME_LEN_OFS = 28,
- MZ_ZIP_CDH_EXTRA_LEN_OFS = 30,
- MZ_ZIP_CDH_COMMENT_LEN_OFS = 32,
- MZ_ZIP_CDH_DISK_START_OFS = 34,
- MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36,
- MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38,
- MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42,
- // Local directory header offsets
- MZ_ZIP_LDH_SIG_OFS = 0,
- MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4,
- MZ_ZIP_LDH_BIT_FLAG_OFS = 6,
- MZ_ZIP_LDH_METHOD_OFS = 8,
- MZ_ZIP_LDH_FILE_TIME_OFS = 10,
- MZ_ZIP_LDH_FILE_DATE_OFS = 12,
- MZ_ZIP_LDH_CRC32_OFS = 14,
- MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18,
- MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22,
- MZ_ZIP_LDH_FILENAME_LEN_OFS = 26,
- MZ_ZIP_LDH_EXTRA_LEN_OFS = 28,
- // End of central directory offsets
- MZ_ZIP_ECDH_SIG_OFS = 0,
- MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4,
- MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6,
- MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8,
- MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10,
- MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12,
- MZ_ZIP_ECDH_CDIR_OFS_OFS = 16,
- MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20,
-};
-
-typedef struct {
- void *m_p;
- size_t m_size, m_capacity;
- mz_uint m_element_size;
-} mz_zip_array;
-
-struct mz_zip_internal_state_tag {
- mz_zip_array m_central_dir;
- mz_zip_array m_central_dir_offsets;
- mz_zip_array m_sorted_central_dir_offsets;
- MZ_FILE *m_pFile;
- void *m_pMem;
- size_t m_mem_size;
- size_t m_mem_capacity;
-};
-
-#define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \
- (array_ptr)->m_element_size = element_size
-#define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \
- ((element_type *)((array_ptr)->m_p))[index]
-
-static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip,
- mz_zip_array *pArray) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p);
- memset(pArray, 0, sizeof(mz_zip_array));
-}
-
-static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip,
- mz_zip_array *pArray,
- size_t min_new_capacity,
- mz_uint growing) {
- void *pNew_p;
- size_t new_capacity = min_new_capacity;
- MZ_ASSERT(pArray->m_element_size);
- if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE;
- if (growing) {
- new_capacity = MZ_MAX(1, pArray->m_capacity);
- while (new_capacity < min_new_capacity) new_capacity *= 2;
- }
- if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p,
- pArray->m_element_size, new_capacity)))
- return MZ_FALSE;
- pArray->m_p = pNew_p;
- pArray->m_capacity = new_capacity;
- return MZ_TRUE;
-}
-
-static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip,
- mz_zip_array *pArray,
- size_t new_capacity,
- mz_uint growing) {
- if (new_capacity > pArray->m_capacity) {
- if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing))
- return MZ_FALSE;
- }
- return MZ_TRUE;
-}
-
-static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip,
- mz_zip_array *pArray,
- size_t new_size,
- mz_uint growing) {
- if (new_size > pArray->m_capacity) {
- if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing))
- return MZ_FALSE;
- }
- pArray->m_size = new_size;
- return MZ_TRUE;
-}
-
-static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip,
- mz_zip_array *pArray,
- size_t n) {
- return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE);
-}
-
-static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip,
- mz_zip_array *pArray,
- const void *pElements,
- size_t n) {
- size_t orig_size = pArray->m_size;
- if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE))
- return MZ_FALSE;
- memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size,
- pElements, n * pArray->m_element_size);
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_TIME
-static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) {
- struct tm tm;
- memset(&tm, 0, sizeof(tm));
- tm.tm_isdst = -1;
- tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900;
- tm.tm_mon = ((dos_date >> 5) & 15) - 1;
- tm.tm_mday = dos_date & 31;
- tm.tm_hour = (dos_time >> 11) & 31;
- tm.tm_min = (dos_time >> 5) & 63;
- tm.tm_sec = (dos_time << 1) & 62;
- return mktime(&tm);
-}
-
-static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time,
- mz_uint16 *pDOS_date) {
-#ifdef _MSC_VER
- struct tm tm_struct;
- struct tm *tm = &tm_struct;
- errno_t err = localtime_s(tm, &time);
- if (err) {
- *pDOS_date = 0;
- *pDOS_time = 0;
- return;
- }
-#else
- struct tm *tm = localtime(&time);
-#endif
- *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) +
- ((tm->tm_sec) >> 1));
- *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) +
- ((tm->tm_mon + 1) << 5) + tm->tm_mday);
-}
-#endif
-
-#ifndef MINIZ_NO_STDIO
-static mz_bool mz_zip_get_file_modified_time(const char *pFilename,
- mz_uint16 *pDOS_time,
- mz_uint16 *pDOS_date) {
-#ifdef MINIZ_NO_TIME
- (void)pFilename;
- *pDOS_date = *pDOS_time = 0;
-#else
- struct MZ_FILE_STAT_STRUCT file_stat;
- // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000
- // bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh.
- if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE;
- mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date);
-#endif // #ifdef MINIZ_NO_TIME
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_TIME
-static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time,
- time_t modified_time) {
- struct utimbuf t;
- t.actime = access_time;
- t.modtime = modified_time;
- return !utime(pFilename, &t);
-}
-#endif // #ifndef MINIZ_NO_TIME
-#endif // #ifndef MINIZ_NO_STDIO
-
-static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip,
- mz_uint32 flags) {
- (void)flags;
- if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
- return MZ_FALSE;
-
- if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
- if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
- if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
-
- pZip->m_zip_mode = MZ_ZIP_MODE_READING;
- pZip->m_archive_size = 0;
- pZip->m_central_directory_file_ofs = 0;
- pZip->m_total_files = 0;
-
- if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
- return MZ_FALSE;
- memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
- sizeof(mz_uint8));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
- sizeof(mz_uint32));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
- sizeof(mz_uint32));
- return MZ_TRUE;
-}
-
-static MZ_FORCEINLINE mz_bool
-mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array,
- const mz_zip_array *pCentral_dir_offsets,
- mz_uint l_index, mz_uint r_index) {
- const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
- pCentral_dir_array, mz_uint8,
- MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
- l_index)),
- *pE;
- const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(
- pCentral_dir_array, mz_uint8,
- MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index));
- mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS),
- r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- mz_uint8 l = 0, r = 0;
- pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
- pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
- pE = pL + MZ_MIN(l_len, r_len);
- while (pL < pE) {
- if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
- pL++;
- pR++;
- }
- return (pL == pE) ? (l_len < r_len) : (l < r);
-}
-
-#define MZ_SWAP_UINT32(a, b) \
- do { \
- mz_uint32 t = a; \
- a = b; \
- b = t; \
- } \
- MZ_MACRO_END
-
-// Heap sort of lowercased filenames, used to help accelerate plain central
-// directory searches by mz_zip_reader_locate_file(). (Could also use qsort(),
-// but it could allocate memory.)
-static void mz_zip_reader_sort_central_dir_offsets_by_filename(
- mz_zip_archive *pZip) {
- mz_zip_internal_state *pState = pZip->m_pState;
- const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
- const mz_zip_array *pCentral_dir = &pState->m_central_dir;
- mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
- &pState->m_sorted_central_dir_offsets, mz_uint32, 0);
- const int size = pZip->m_total_files;
- int start = (size - 2) >> 1, end;
- while (start >= 0) {
- int child, root = start;
- for (;;) {
- if ((child = (root << 1) + 1) >= size) break;
- child +=
- (((child + 1) < size) &&
- (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
- pIndices[child], pIndices[child + 1])));
- if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
- pIndices[root], pIndices[child]))
- break;
- MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
- root = child;
- }
- start--;
- }
-
- end = size - 1;
- while (end > 0) {
- int child, root = 0;
- MZ_SWAP_UINT32(pIndices[end], pIndices[0]);
- for (;;) {
- if ((child = (root << 1) + 1) >= end) break;
- child +=
- (((child + 1) < end) &&
- mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
- pIndices[child], pIndices[child + 1]));
- if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
- pIndices[root], pIndices[child]))
- break;
- MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
- root = child;
- }
- end--;
- }
-}
-
-static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip,
- mz_uint32 flags) {
- mz_uint cdir_size, num_this_disk, cdir_disk_index;
- mz_uint64 cdir_ofs;
- mz_int64 cur_file_ofs;
- const mz_uint8 *p;
- mz_uint32 buf_u32[4096 / sizeof(mz_uint32)];
- mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
- mz_bool sort_central_dir =
- ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0);
- // Basic sanity checks - reject files which are too small, and check the first
- // 4 bytes of the file to make sure a local header is there.
- if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- // Find the end of central directory record by scanning the file from the end
- // towards the beginning.
- cur_file_ofs =
- MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0);
- for (;;) {
- int i,
- n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs);
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n)
- return MZ_FALSE;
- for (i = n - 4; i >= 0; --i)
- if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break;
- if (i >= 0) {
- cur_file_ofs += i;
- break;
- }
- if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >=
- (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)))
- return MZ_FALSE;
- cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0);
- }
- // Read and verify the end of central directory record.
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) !=
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) !=
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) ||
- ((pZip->m_total_files =
- MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) !=
- MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS)))
- return MZ_FALSE;
-
- num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS);
- cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS);
- if (((num_this_disk | cdir_disk_index) != 0) &&
- ((num_this_disk != 1) || (cdir_disk_index != 1)))
- return MZ_FALSE;
-
- if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) <
- pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
-
- cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS);
- if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE;
-
- pZip->m_central_directory_file_ofs = cdir_ofs;
-
- if (pZip->m_total_files) {
- mz_uint i, n;
-
- // Read the entire central directory into a heap block, and allocate another
- // heap block to hold the unsorted central dir file record offsets, and
- // another to hold the sorted indices.
- if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size,
- MZ_FALSE)) ||
- (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets,
- pZip->m_total_files, MZ_FALSE)))
- return MZ_FALSE;
-
- if (sort_central_dir) {
- if (!mz_zip_array_resize(pZip,
- &pZip->m_pState->m_sorted_central_dir_offsets,
- pZip->m_total_files, MZ_FALSE))
- return MZ_FALSE;
- }
-
- if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs,
- pZip->m_pState->m_central_dir.m_p,
- cdir_size) != cdir_size)
- return MZ_FALSE;
-
- // Now create an index into the central directory file records, do some
- // basic sanity checking on each record, and check for zip64 entries (which
- // are not yet supported).
- p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p;
- for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) {
- mz_uint total_header_size, comp_size, decomp_size, disk_index;
- if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) ||
- (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG))
- return MZ_FALSE;
- MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
- i) =
- (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p);
- if (sort_central_dir)
- MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets,
- mz_uint32, i) = i;
- comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
- decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
- if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) &&
- (decomp_size != comp_size)) ||
- (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) ||
- (comp_size == 0xFFFFFFFF))
- return MZ_FALSE;
- disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS);
- if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE;
- if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) +
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size)
- return MZ_FALSE;
- if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
- MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
- MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) >
- n)
- return MZ_FALSE;
- n -= total_header_size;
- p += total_header_size;
- }
- }
-
- if (sort_central_dir)
- mz_zip_reader_sort_central_dir_offsets_by_filename(pZip);
-
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
- mz_uint32 flags) {
- if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE;
- if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
- pZip->m_archive_size = size;
- if (!mz_zip_reader_read_central_dir(pZip, flags)) {
- mz_zip_reader_end(pZip);
- return MZ_FALSE;
- }
- return MZ_TRUE;
-}
-
-static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs,
- void *pBuf, size_t n) {
- mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
- size_t s = (file_ofs >= pZip->m_archive_size)
- ? 0
- : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n);
- memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s);
- return s;
-}
-
-mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
- size_t size, mz_uint32 flags) {
- if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
- pZip->m_archive_size = size;
- pZip->m_pRead = mz_zip_mem_read_func;
- pZip->m_pIO_opaque = pZip;
-#ifdef __cplusplus
- pZip->m_pState->m_pMem = const_cast<void *>(pMem);
-#else
- pZip->m_pState->m_pMem = (void *)pMem;
-#endif
- pZip->m_pState->m_mem_size = size;
- if (!mz_zip_reader_read_central_dir(pZip, flags)) {
- mz_zip_reader_end(pZip);
- return MZ_FALSE;
- }
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_STDIO
-static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs,
- void *pBuf, size_t n) {
- mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
- mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
- if (((mz_int64)file_ofs < 0) ||
- (((cur_ofs != (mz_int64)file_ofs)) &&
- (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
- return 0;
- return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile);
-}
-
-mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
- mz_uint32 flags) {
- mz_uint64 file_size;
- MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb");
- if (!pFile) return MZ_FALSE;
- if (MZ_FSEEK64(pFile, 0, SEEK_END)) {
- MZ_FCLOSE(pFile);
- return MZ_FALSE;
- }
- file_size = MZ_FTELL64(pFile);
- if (!mz_zip_reader_init_internal(pZip, flags)) {
- MZ_FCLOSE(pFile);
- return MZ_FALSE;
- }
- pZip->m_pRead = mz_zip_file_read_func;
- pZip->m_pIO_opaque = pZip;
- pZip->m_pState->m_pFile = pFile;
- pZip->m_archive_size = file_size;
- if (!mz_zip_reader_read_central_dir(pZip, flags)) {
- mz_zip_reader_end(pZip);
- return MZ_FALSE;
- }
- return MZ_TRUE;
-}
-#endif // #ifndef MINIZ_NO_STDIO
-
-mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) {
- return pZip ? pZip->m_total_files : 0;
-}
-
-static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh(
- mz_zip_archive *pZip, mz_uint file_index) {
- if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
- return NULL;
- return &MZ_ZIP_ARRAY_ELEMENT(
- &pZip->m_pState->m_central_dir, mz_uint8,
- MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
- file_index));
-}
-
-mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
- mz_uint file_index) {
- mz_uint m_bit_flag;
- const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
- if (!p) return MZ_FALSE;
- m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
- return (m_bit_flag & 1);
-}
-
-mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
- mz_uint file_index) {
- mz_uint filename_len, external_attr;
- const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
- if (!p) return MZ_FALSE;
-
- // First see if the filename ends with a '/' character.
- filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- if (filename_len) {
- if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/')
- return MZ_TRUE;
- }
-
- // Bugfix: This code was also checking if the internal attribute was non-zero,
- // which wasn't correct.
- // Most/all zip writers (hopefully) set DOS file/directory attributes in the
- // low 16-bits, so check for the DOS directory flag and ignore the source OS
- // ID in the created by field.
- // FIXME: Remove this check? Is it necessary - we already check the filename.
- external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
- if ((external_attr & 0x10) != 0) return MZ_TRUE;
-
- return MZ_FALSE;
-}
-
-mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
- mz_zip_archive_file_stat *pStat) {
- mz_uint n;
- const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
- if ((!p) || (!pStat)) return MZ_FALSE;
-
- // Unpack the central directory record.
- pStat->m_file_index = file_index;
- pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(
- &pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index);
- pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS);
- pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS);
- pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
- pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS);
-#ifndef MINIZ_NO_TIME
- pStat->m_time =
- mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS),
- MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS));
-#endif
- pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS);
- pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
- pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
- pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS);
- pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
- pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
-
- // Copy as much of the filename and comment as possible.
- n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1);
- memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
- pStat->m_filename[n] = '\0';
-
- n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS);
- n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
- pStat->m_comment_size = n;
- memcpy(pStat->m_comment,
- p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
- MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS),
- n);
- pStat->m_comment[n] = '\0';
-
- return MZ_TRUE;
-}
-
-mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
- char *pFilename, mz_uint filename_buf_size) {
- mz_uint n;
- const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
- if (!p) {
- if (filename_buf_size) pFilename[0] = '\0';
- return 0;
- }
- n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- if (filename_buf_size) {
- n = MZ_MIN(n, filename_buf_size - 1);
- memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
- pFilename[n] = '\0';
- }
- return n + 1;
-}
-
-static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA,
- const char *pB,
- mz_uint len,
- mz_uint flags) {
- mz_uint i;
- if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len);
- for (i = 0; i < len; ++i)
- if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE;
- return MZ_TRUE;
-}
-
-static MZ_FORCEINLINE int mz_zip_reader_filename_compare(
- const mz_zip_array *pCentral_dir_array,
- const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR,
- mz_uint r_len) {
- const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
- pCentral_dir_array, mz_uint8,
- MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
- l_index)),
- *pE;
- mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- mz_uint8 l = 0, r = 0;
- pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
- pE = pL + MZ_MIN(l_len, r_len);
- while (pL < pE) {
- if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
- pL++;
- pR++;
- }
- return (pL == pE) ? (int)(l_len - r_len) : (l - r);
-}
-
-static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip,
- const char *pFilename) {
- mz_zip_internal_state *pState = pZip->m_pState;
- const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
- const mz_zip_array *pCentral_dir = &pState->m_central_dir;
- mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
- &pState->m_sorted_central_dir_offsets, mz_uint32, 0);
- const int size = pZip->m_total_files;
- const mz_uint filename_len = (mz_uint)strlen(pFilename);
- int l = 0, h = size - 1;
- while (l <= h) {
- int m = (l + h) >> 1, file_index = pIndices[m],
- comp =
- mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets,
- file_index, pFilename, filename_len);
- if (!comp)
- return file_index;
- else if (comp < 0)
- l = m + 1;
- else
- h = m - 1;
- }
- return -1;
-}
-
-int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
- const char *pComment, mz_uint flags) {
- mz_uint file_index;
- size_t name_len, comment_len;
- if ((!pZip) || (!pZip->m_pState) || (!pName) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
- return -1;
- if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) &&
- (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size))
- return mz_zip_reader_locate_file_binary_search(pZip, pName);
- name_len = strlen(pName);
- if (name_len > 0xFFFF) return -1;
- comment_len = pComment ? strlen(pComment) : 0;
- if (comment_len > 0xFFFF) return -1;
- for (file_index = 0; file_index < pZip->m_total_files; file_index++) {
- const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(
- &pZip->m_pState->m_central_dir, mz_uint8,
- MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
- file_index));
- mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS);
- const char *pFilename =
- (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
- if (filename_len < name_len) continue;
- if (comment_len) {
- mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS),
- file_comment_len =
- MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS);
- const char *pFile_comment = pFilename + filename_len + file_extra_len;
- if ((file_comment_len != comment_len) ||
- (!mz_zip_reader_string_equal(pComment, pFile_comment,
- file_comment_len, flags)))
- continue;
- }
- if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) {
- int ofs = filename_len - 1;
- do {
- if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') ||
- (pFilename[ofs] == ':'))
- break;
- } while (--ofs >= 0);
- ofs++;
- pFilename += ofs;
- filename_len -= ofs;
- }
- if ((filename_len == name_len) &&
- (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags)))
- return file_index;
- }
- return -1;
-}
-
-mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
- mz_uint file_index, void *pBuf,
- size_t buf_size, mz_uint flags,
- void *pUser_read_buf,
- size_t user_read_buf_size) {
- int status = TINFL_STATUS_DONE;
- mz_uint64 needed_size, cur_file_ofs, comp_remaining,
- out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail;
- mz_zip_archive_file_stat file_stat;
- void *pRead_buf;
- mz_uint32
- local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
- sizeof(mz_uint32)];
- mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
- tinfl_decompressor inflator;
-
- if ((buf_size) && (!pBuf)) return MZ_FALSE;
-
- if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
-
- // Empty file, or a directory (but not always a directory - I've seen odd zips
- // with directories that have compressed data which inflates to 0 bytes)
- if (!file_stat.m_comp_size) return MZ_TRUE;
-
- // Entry is a subdirectory (I've seen old zips with dir entries which have
- // compressed deflate data which inflates to 0 bytes, but these entries claim
- // to uncompress to 512 bytes in the headers).
- // I'm torn how to handle this case - should it fail instead?
- if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
-
- // Encryption and patch files are not supported.
- if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
-
- // This function only supports stored and deflate.
- if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
- (file_stat.m_method != MZ_DEFLATED))
- return MZ_FALSE;
-
- // Ensure supplied output buffer is large enough.
- needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size
- : file_stat.m_uncomp_size;
- if (buf_size < needed_size) return MZ_FALSE;
-
- // Read and parse the local directory entry.
- cur_file_ofs = file_stat.m_local_header_ofs;
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
- return MZ_FALSE;
-
- cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
- MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
- if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
- return MZ_FALSE;
-
- if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
- // The file is stored or the caller has requested the compressed data.
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
- (size_t)needed_size) != needed_size)
- return MZ_FALSE;
- return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) ||
- (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
- (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32);
- }
-
- // Decompress the file either directly from memory or from a file input
- // buffer.
- tinfl_init(&inflator);
-
- if (pZip->m_pState->m_pMem) {
- // Read directly from the archive in memory.
- pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
- read_buf_size = read_buf_avail = file_stat.m_comp_size;
- comp_remaining = 0;
- } else if (pUser_read_buf) {
- // Use a user provided read buffer.
- if (!user_read_buf_size) return MZ_FALSE;
- pRead_buf = (mz_uint8 *)pUser_read_buf;
- read_buf_size = user_read_buf_size;
- read_buf_avail = 0;
- comp_remaining = file_stat.m_comp_size;
- } else {
- // Temporarily allocate a read buffer.
- read_buf_size =
- MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
-#ifdef _MSC_VER
- if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
- (read_buf_size > 0x7FFFFFFF))
-#else
- if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
-#endif
- return MZ_FALSE;
- if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
- (size_t)read_buf_size)))
- return MZ_FALSE;
- read_buf_avail = 0;
- comp_remaining = file_stat.m_comp_size;
- }
-
- do {
- size_t in_buf_size,
- out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs);
- if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
- read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
- (size_t)read_buf_avail) != read_buf_avail) {
- status = TINFL_STATUS_FAILED;
- break;
- }
- cur_file_ofs += read_buf_avail;
- comp_remaining -= read_buf_avail;
- read_buf_ofs = 0;
- }
- in_buf_size = (size_t)read_buf_avail;
- status = tinfl_decompress(
- &inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
- (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size,
- TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
- (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0));
- read_buf_avail -= in_buf_size;
- read_buf_ofs += in_buf_size;
- out_buf_ofs += out_buf_size;
- } while (status == TINFL_STATUS_NEEDS_MORE_INPUT);
-
- if (status == TINFL_STATUS_DONE) {
- // Make sure the entire file was decompressed, and check its CRC.
- if ((out_buf_ofs != file_stat.m_uncomp_size) ||
- (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
- (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32))
- status = TINFL_STATUS_FAILED;
- }
-
- if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf))
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
-
- return status == TINFL_STATUS_DONE;
-}
-
-mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
- mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
- mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) {
- int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
- if (file_index < 0) return MZ_FALSE;
- return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
- flags, pUser_read_buf,
- user_read_buf_size);
-}
-
-mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
- void *pBuf, size_t buf_size,
- mz_uint flags) {
- return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
- flags, NULL, 0);
-}
-
-mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
- const char *pFilename, void *pBuf,
- size_t buf_size, mz_uint flags) {
- return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf,
- buf_size, flags, NULL, 0);
-}
-
-void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
- size_t *pSize, mz_uint flags) {
- mz_uint64 comp_size, uncomp_size, alloc_size;
- const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
- void *pBuf;
-
- if (pSize) *pSize = 0;
- if (!p) return NULL;
-
- comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
- uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
-
- alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size;
-#ifdef _MSC_VER
- if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
-#else
- if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
-#endif
- return NULL;
- if (NULL ==
- (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size)))
- return NULL;
-
- if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size,
- flags)) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
- return NULL;
- }
-
- if (pSize) *pSize = (size_t)alloc_size;
- return pBuf;
-}
-
-void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
- const char *pFilename, size_t *pSize,
- mz_uint flags) {
- int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
- if (file_index < 0) {
- if (pSize) *pSize = 0;
- return MZ_FALSE;
- }
- return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags);
-}
-
-mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
- mz_uint file_index,
- mz_file_write_func pCallback,
- void *pOpaque, mz_uint flags) {
- int status = TINFL_STATUS_DONE;
- mz_uint file_crc32 = MZ_CRC32_INIT;
- mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining,
- out_buf_ofs = 0, cur_file_ofs;
- mz_zip_archive_file_stat file_stat;
- void *pRead_buf = NULL;
- void *pWrite_buf = NULL;
- mz_uint32
- local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
- sizeof(mz_uint32)];
- mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
-
- if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
-
- // Empty file, or a directory (but not always a directory - I've seen odd zips
- // with directories that have compressed data which inflates to 0 bytes)
- if (!file_stat.m_comp_size) return MZ_TRUE;
-
- // Entry is a subdirectory (I've seen old zips with dir entries which have
- // compressed deflate data which inflates to 0 bytes, but these entries claim
- // to uncompress to 512 bytes in the headers).
- // I'm torn how to handle this case - should it fail instead?
- if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
-
- // Encryption and patch files are not supported.
- if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
-
- // This function only supports stored and deflate.
- if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
- (file_stat.m_method != MZ_DEFLATED))
- return MZ_FALSE;
-
- // Read and parse the local directory entry.
- cur_file_ofs = file_stat.m_local_header_ofs;
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
- return MZ_FALSE;
-
- cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
- MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
- if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
- return MZ_FALSE;
-
- // Decompress the file either directly from memory or from a file input
- // buffer.
- if (pZip->m_pState->m_pMem) {
- pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
- read_buf_size = read_buf_avail = file_stat.m_comp_size;
- comp_remaining = 0;
- } else {
- read_buf_size =
- MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
- if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
- (size_t)read_buf_size)))
- return MZ_FALSE;
- read_buf_avail = 0;
- comp_remaining = file_stat.m_comp_size;
- }
-
- if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
- // The file is stored or the caller has requested the compressed data.
- if (pZip->m_pState->m_pMem) {
-#ifdef _MSC_VER
- if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
- (file_stat.m_comp_size > 0xFFFFFFFF))
-#else
- if (((sizeof(size_t) == sizeof(mz_uint32))) &&
- (file_stat.m_comp_size > 0xFFFFFFFF))
-#endif
- return MZ_FALSE;
- if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
- (size_t)file_stat.m_comp_size) != file_stat.m_comp_size)
- status = TINFL_STATUS_FAILED;
- else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
- file_crc32 =
- (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf,
- (size_t)file_stat.m_comp_size);
- cur_file_ofs += file_stat.m_comp_size;
- out_buf_ofs += file_stat.m_comp_size;
- comp_remaining = 0;
- } else {
- while (comp_remaining) {
- read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
- (size_t)read_buf_avail) != read_buf_avail) {
- status = TINFL_STATUS_FAILED;
- break;
- }
-
- if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
- file_crc32 = (mz_uint32)mz_crc32(
- file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail);
-
- if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
- (size_t)read_buf_avail) != read_buf_avail) {
- status = TINFL_STATUS_FAILED;
- break;
- }
- cur_file_ofs += read_buf_avail;
- out_buf_ofs += read_buf_avail;
- comp_remaining -= read_buf_avail;
- }
- }
- } else {
- tinfl_decompressor inflator;
- tinfl_init(&inflator);
-
- if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
- TINFL_LZ_DICT_SIZE)))
- status = TINFL_STATUS_FAILED;
- else {
- do {
- mz_uint8 *pWrite_buf_cur =
- (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
- size_t in_buf_size,
- out_buf_size =
- TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
- if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
- read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
- if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
- (size_t)read_buf_avail) != read_buf_avail) {
- status = TINFL_STATUS_FAILED;
- break;
- }
- cur_file_ofs += read_buf_avail;
- comp_remaining -= read_buf_avail;
- read_buf_ofs = 0;
- }
-
- in_buf_size = (size_t)read_buf_avail;
- status = tinfl_decompress(
- &inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
- (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size,
- comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0);
- read_buf_avail -= in_buf_size;
- read_buf_ofs += in_buf_size;
-
- if (out_buf_size) {
- if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) !=
- out_buf_size) {
- status = TINFL_STATUS_FAILED;
- break;
- }
- file_crc32 =
- (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size);
- if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) {
- status = TINFL_STATUS_FAILED;
- break;
- }
- }
- } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) ||
- (status == TINFL_STATUS_HAS_MORE_OUTPUT));
- }
- }
-
- if ((status == TINFL_STATUS_DONE) &&
- (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) {
- // Make sure the entire file was decompressed, and check its CRC.
- if ((out_buf_ofs != file_stat.m_uncomp_size) ||
- (file_crc32 != file_stat.m_crc32))
- status = TINFL_STATUS_FAILED;
- }
-
- if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf);
-
- return status == TINFL_STATUS_DONE;
-}
-
-mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
- const char *pFilename,
- mz_file_write_func pCallback,
- void *pOpaque, mz_uint flags) {
- int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
- if (file_index < 0) return MZ_FALSE;
- return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque,
- flags);
-}
-
-#ifndef MINIZ_NO_STDIO
-static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs,
- const void *pBuf, size_t n) {
- (void)ofs;
- return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque);
-}
-
-mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
- const char *pDst_filename,
- mz_uint flags) {
- mz_bool status;
- mz_zip_archive_file_stat file_stat;
- MZ_FILE *pFile;
- if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
- pFile = MZ_FOPEN(pDst_filename, "wb");
- if (!pFile) return MZ_FALSE;
- status = mz_zip_reader_extract_to_callback(
- pZip, file_index, mz_zip_file_write_callback, pFile, flags);
- if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE;
-#ifndef MINIZ_NO_TIME
- if (status)
- mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time);
-#endif
- return status;
-}
-#endif // #ifndef MINIZ_NO_STDIO
-
-mz_bool mz_zip_reader_end(mz_zip_archive *pZip) {
- if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
- return MZ_FALSE;
-
- if (pZip->m_pState) {
- mz_zip_internal_state *pState = pZip->m_pState;
- pZip->m_pState = NULL;
- mz_zip_array_clear(pZip, &pState->m_central_dir);
- mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
- mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
-
-#ifndef MINIZ_NO_STDIO
- if (pState->m_pFile) {
- MZ_FCLOSE(pState->m_pFile);
- pState->m_pFile = NULL;
- }
-#endif // #ifndef MINIZ_NO_STDIO
-
- pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
- }
- pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
-
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_STDIO
-mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
- const char *pArchive_filename,
- const char *pDst_filename,
- mz_uint flags) {
- int file_index =
- mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags);
- if (file_index < 0) return MZ_FALSE;
- return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags);
-}
-#endif
-
-// ------------------- .ZIP archive writing
-
-#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
-
-static void mz_write_le16(mz_uint8 *p, mz_uint16 v) {
- p[0] = (mz_uint8)v;
- p[1] = (mz_uint8)(v >> 8);
-}
-static void mz_write_le32(mz_uint8 *p, mz_uint32 v) {
- p[0] = (mz_uint8)v;
- p[1] = (mz_uint8)(v >> 8);
- p[2] = (mz_uint8)(v >> 16);
- p[3] = (mz_uint8)(v >> 24);
-}
-#define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v))
-#define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v))
-
-mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) {
- if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
- return MZ_FALSE;
-
- if (pZip->m_file_offset_alignment) {
- // Ensure user specified file offset alignment is a power of 2.
- if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1))
- return MZ_FALSE;
- }
-
- if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
- if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
- if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
-
- pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
- pZip->m_archive_size = existing_size;
- pZip->m_central_directory_file_ofs = 0;
- pZip->m_total_files = 0;
-
- if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
- return MZ_FALSE;
- memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
- sizeof(mz_uint8));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
- sizeof(mz_uint32));
- MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
- sizeof(mz_uint32));
- return MZ_TRUE;
-}
-
-static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs,
- const void *pBuf, size_t n) {
- mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
- mz_zip_internal_state *pState = pZip->m_pState;
- mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size);
-#ifdef _MSC_VER
- if ((!n) ||
- ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
-#else
- if ((!n) ||
- ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
-#endif
- return 0;
- if (new_size > pState->m_mem_capacity) {
- void *pNew_block;
- size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity);
- while (new_capacity < new_size) new_capacity *= 2;
- if (NULL == (pNew_block = pZip->m_pRealloc(
- pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity)))
- return 0;
- pState->m_pMem = pNew_block;
- pState->m_mem_capacity = new_capacity;
- }
- memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n);
- pState->m_mem_size = (size_t)new_size;
- return n;
-}
-
-mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
- size_t size_to_reserve_at_beginning,
- size_t initial_allocation_size) {
- pZip->m_pWrite = mz_zip_heap_write_func;
- pZip->m_pIO_opaque = pZip;
- if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
- if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size,
- size_to_reserve_at_beginning))) {
- if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1, initial_allocation_size))) {
- mz_zip_writer_end(pZip);
- return MZ_FALSE;
- }
- pZip->m_pState->m_mem_capacity = initial_allocation_size;
- }
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_STDIO
-static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs,
- const void *pBuf, size_t n) {
- mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
- mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
- if (((mz_int64)file_ofs < 0) ||
- (((cur_ofs != (mz_int64)file_ofs)) &&
- (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
- return 0;
- return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile);
-}
-
-mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
- mz_uint64 size_to_reserve_at_beginning) {
- MZ_FILE *pFile;
- pZip->m_pWrite = mz_zip_file_write_func;
- pZip->m_pIO_opaque = pZip;
- if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
- if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) {
- mz_zip_writer_end(pZip);
- return MZ_FALSE;
- }
- pZip->m_pState->m_pFile = pFile;
- if (size_to_reserve_at_beginning) {
- mz_uint64 cur_ofs = 0;
- char buf[4096];
- MZ_CLEAR_OBJ(buf);
- do {
- size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning);
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) {
- mz_zip_writer_end(pZip);
- return MZ_FALSE;
- }
- cur_ofs += n;
- size_to_reserve_at_beginning -= n;
- } while (size_to_reserve_at_beginning);
- }
- return MZ_TRUE;
-}
-#endif // #ifndef MINIZ_NO_STDIO
-
-mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
- const char *pFilename) {
- mz_zip_internal_state *pState;
- if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
- return MZ_FALSE;
- // No sense in trying to write to an archive that's already at the support max
- // size
- if ((pZip->m_total_files == 0xFFFF) ||
- ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
- return MZ_FALSE;
-
- pState = pZip->m_pState;
-
- if (pState->m_pFile) {
-#ifdef MINIZ_NO_STDIO
- pFilename;
- return MZ_FALSE;
-#else
- // Archive is being read from stdio - try to reopen as writable.
- if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
- if (!pFilename) return MZ_FALSE;
- pZip->m_pWrite = mz_zip_file_write_func;
- if (NULL ==
- (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) {
- // The mz_zip_archive is now in a bogus state because pState->m_pFile is
- // NULL, so just close it.
- mz_zip_reader_end(pZip);
- return MZ_FALSE;
- }
-#endif // #ifdef MINIZ_NO_STDIO
- } else if (pState->m_pMem) {
- // Archive lives in a memory block. Assume it's from the heap that we can
- // resize using the realloc callback.
- if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
- pState->m_mem_capacity = pState->m_mem_size;
- pZip->m_pWrite = mz_zip_heap_write_func;
- }
- // Archive is being read via a user provided read function - make sure the
- // user has specified a write function too.
- else if (!pZip->m_pWrite)
- return MZ_FALSE;
-
- // Start writing new files at the archive's current central directory
- // location.
- pZip->m_archive_size = pZip->m_central_directory_file_ofs;
- pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
- pZip->m_central_directory_file_ofs = 0;
-
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
- const void *pBuf, size_t buf_size,
- mz_uint level_and_flags) {
- return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0,
- level_and_flags, 0, 0);
-}
-
-typedef struct {
- mz_zip_archive *m_pZip;
- mz_uint64 m_cur_archive_file_ofs;
- mz_uint64 m_comp_size;
-} mz_zip_writer_add_state;
-
-static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len,
- void *pUser) {
- mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser;
- if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque,
- pState->m_cur_archive_file_ofs, pBuf,
- len) != len)
- return MZ_FALSE;
- pState->m_cur_archive_file_ofs += len;
- pState->m_comp_size += len;
- return MZ_TRUE;
-}
-
-static mz_bool mz_zip_writer_create_local_dir_header(
- mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
- mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
- mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
- mz_uint16 dos_time, mz_uint16 dos_date) {
- (void)pZip;
- memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE);
- MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date);
- MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32);
- MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size);
- MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size);
- MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size);
- return MZ_TRUE;
-}
-
-static mz_bool mz_zip_writer_create_central_dir_header(
- mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
- mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size,
- mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method,
- mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date,
- mz_uint64 local_header_ofs, mz_uint32 ext_attributes) {
- (void)pZip;
- memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size);
- MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes);
- MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs);
- return MZ_TRUE;
-}
-
-static mz_bool mz_zip_writer_add_to_central_dir(
- mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size,
- const void *pExtra, mz_uint16 extra_size, const void *pComment,
- mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
- mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
- mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs,
- mz_uint32 ext_attributes) {
- mz_zip_internal_state *pState = pZip->m_pState;
- mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size;
- size_t orig_central_dir_size = pState->m_central_dir.m_size;
- mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
-
- // No zip64 support yet
- if ((local_header_ofs > 0xFFFFFFFF) ||
- (((mz_uint64)pState->m_central_dir.m_size +
- MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size +
- comment_size) > 0xFFFFFFFF))
- return MZ_FALSE;
-
- if (!mz_zip_writer_create_central_dir_header(
- pZip, central_dir_header, filename_size, extra_size, comment_size,
- uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time,
- dos_date, local_header_ofs, ext_attributes))
- return MZ_FALSE;
-
- if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header,
- MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) ||
- (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename,
- filename_size)) ||
- (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra,
- extra_size)) ||
- (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment,
- comment_size)) ||
- (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets,
- &central_dir_ofs, 1))) {
- // Try to push the central directory array back into its original state.
- mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
- MZ_FALSE);
- return MZ_FALSE;
- }
-
- return MZ_TRUE;
-}
-
-static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) {
- // Basic ZIP archive filename validity checks: Valid filenames cannot start
- // with a forward slash, cannot contain a drive letter, and cannot use
- // DOS-style backward slashes.
- if (*pArchive_name == '/') return MZ_FALSE;
- while (*pArchive_name) {
- if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE;
- pArchive_name++;
- }
- return MZ_TRUE;
-}
-
-static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment(
- mz_zip_archive *pZip) {
- mz_uint32 n;
- if (!pZip->m_file_offset_alignment) return 0;
- n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1));
- return (pZip->m_file_offset_alignment - n) &
- (pZip->m_file_offset_alignment - 1);
-}
-
-static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip,
- mz_uint64 cur_file_ofs, mz_uint32 n) {
- char buf[4096];
- memset(buf, 0, MZ_MIN(sizeof(buf), n));
- while (n) {
- mz_uint32 s = MZ_MIN(sizeof(buf), n);
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s)
- return MZ_FALSE;
- cur_file_ofs += s;
- n -= s;
- }
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
- const char *pArchive_name, const void *pBuf,
- size_t buf_size, const void *pComment,
- mz_uint16 comment_size,
- mz_uint level_and_flags, mz_uint64 uncomp_size,
- mz_uint32 uncomp_crc32) {
- mz_uint16 method = 0, dos_time = 0, dos_date = 0;
- mz_uint level, ext_attributes = 0, num_alignment_padding_bytes;
- mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
- cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0;
- size_t archive_name_size;
- mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
- tdefl_compressor *pComp = NULL;
- mz_bool store_data_uncompressed;
- mz_zip_internal_state *pState;
-
- if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
- level = level_and_flags & 0xF;
- store_data_uncompressed =
- ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA));
-
- if ((!pZip) || (!pZip->m_pState) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) ||
- (!pArchive_name) || ((comment_size) && (!pComment)) ||
- (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION))
- return MZ_FALSE;
-
- pState = pZip->m_pState;
-
- if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size))
- return MZ_FALSE;
- // No zip64 support yet
- if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE;
- if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
-
-#ifndef MINIZ_NO_TIME
- {
- time_t cur_time;
- time(&cur_time);
- mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date);
- }
-#endif // #ifndef MINIZ_NO_TIME
-
- archive_name_size = strlen(pArchive_name);
- if (archive_name_size > 0xFFFF) return MZ_FALSE;
-
- num_alignment_padding_bytes =
- mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
-
- // no zip64 support yet
- if ((pZip->m_total_files == 0xFFFF) ||
- ((pZip->m_archive_size + num_alignment_padding_bytes +
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
- comment_size + archive_name_size) > 0xFFFFFFFF))
- return MZ_FALSE;
-
- if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) {
- // Set DOS Subdirectory attribute bit.
- ext_attributes |= 0x10;
- // Subdirectories cannot contain data.
- if ((buf_size) || (uncomp_size)) return MZ_FALSE;
- }
-
- // Try to do any allocations before writing to the archive, so if an
- // allocation fails the file remains unmodified. (A good idea if we're doing
- // an in-place modification.)
- if ((!mz_zip_array_ensure_room(
- pZip, &pState->m_central_dir,
- MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) ||
- (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1)))
- return MZ_FALSE;
-
- if ((!store_data_uncompressed) && (buf_size)) {
- if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor))))
- return MZ_FALSE;
- }
-
- if (!mz_zip_writer_write_zeros(
- pZip, cur_archive_file_ofs,
- num_alignment_padding_bytes + sizeof(local_dir_header))) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- return MZ_FALSE;
- }
- local_dir_header_ofs += num_alignment_padding_bytes;
- if (pZip->m_file_offset_alignment) {
- MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
- 0);
- }
- cur_archive_file_ofs +=
- num_alignment_padding_bytes + sizeof(local_dir_header);
-
- MZ_CLEAR_OBJ(local_dir_header);
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
- archive_name_size) != archive_name_size) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- return MZ_FALSE;
- }
- cur_archive_file_ofs += archive_name_size;
-
- if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) {
- uncomp_crc32 =
- (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size);
- uncomp_size = buf_size;
- if (uncomp_size <= 3) {
- level = 0;
- store_data_uncompressed = MZ_TRUE;
- }
- }
-
- if (store_data_uncompressed) {
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf,
- buf_size) != buf_size) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- return MZ_FALSE;
- }
-
- cur_archive_file_ofs += buf_size;
- comp_size = buf_size;
-
- if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED;
- } else if (buf_size) {
- mz_zip_writer_add_state state;
-
- state.m_pZip = pZip;
- state.m_cur_archive_file_ofs = cur_archive_file_ofs;
- state.m_comp_size = 0;
-
- if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
- tdefl_create_comp_flags_from_zip_params(
- level, -15, MZ_DEFAULT_STRATEGY)) !=
- TDEFL_STATUS_OKAY) ||
- (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) !=
- TDEFL_STATUS_DONE)) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- return MZ_FALSE;
- }
-
- comp_size = state.m_comp_size;
- cur_archive_file_ofs = state.m_cur_archive_file_ofs;
-
- method = MZ_DEFLATED;
- }
-
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- pComp = NULL;
-
- // no zip64 support yet
- if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
- return MZ_FALSE;
-
- if (!mz_zip_writer_create_local_dir_header(
- pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
- comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
- return MZ_FALSE;
-
- if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
- sizeof(local_dir_header)) != sizeof(local_dir_header))
- return MZ_FALSE;
-
- if (!mz_zip_writer_add_to_central_dir(
- pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
- comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
- dos_time, dos_date, local_dir_header_ofs, ext_attributes))
- return MZ_FALSE;
-
- pZip->m_total_files++;
- pZip->m_archive_size = cur_archive_file_ofs;
-
- return MZ_TRUE;
-}
-
-#ifndef MINIZ_NO_STDIO
-mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
- const char *pSrc_filename, const void *pComment,
- mz_uint16 comment_size,
- mz_uint level_and_flags) {
- mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes;
- mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0;
- mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
- cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0,
- comp_size = 0;
- size_t archive_name_size;
- mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
- MZ_FILE *pSrc_file = NULL;
-
- if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
- level = level_and_flags & 0xF;
-
- if ((!pZip) || (!pZip->m_pState) ||
- (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) ||
- ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION))
- return MZ_FALSE;
- if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE;
- if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
-
- archive_name_size = strlen(pArchive_name);
- if (archive_name_size > 0xFFFF) return MZ_FALSE;
-
- num_alignment_padding_bytes =
- mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
-
- // no zip64 support yet
- if ((pZip->m_total_files == 0xFFFF) ||
- ((pZip->m_archive_size + num_alignment_padding_bytes +
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
- comment_size + archive_name_size) > 0xFFFFFFFF))
- return MZ_FALSE;
-
- if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date))
- return MZ_FALSE;
-
- pSrc_file = MZ_FOPEN(pSrc_filename, "rb");
- if (!pSrc_file) return MZ_FALSE;
- MZ_FSEEK64(pSrc_file, 0, SEEK_END);
- uncomp_size = MZ_FTELL64(pSrc_file);
- MZ_FSEEK64(pSrc_file, 0, SEEK_SET);
-
- if (uncomp_size > 0xFFFFFFFF) {
- // No zip64 support yet
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
- if (uncomp_size <= 3) level = 0;
-
- if (!mz_zip_writer_write_zeros(
- pZip, cur_archive_file_ofs,
- num_alignment_padding_bytes + sizeof(local_dir_header))) {
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
- local_dir_header_ofs += num_alignment_padding_bytes;
- if (pZip->m_file_offset_alignment) {
- MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
- 0);
- }
- cur_archive_file_ofs +=
- num_alignment_padding_bytes + sizeof(local_dir_header);
-
- MZ_CLEAR_OBJ(local_dir_header);
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
- archive_name_size) != archive_name_size) {
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
- cur_archive_file_ofs += archive_name_size;
-
- if (uncomp_size) {
- mz_uint64 uncomp_remaining = uncomp_size;
- void *pRead_buf =
- pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE);
- if (!pRead_buf) {
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
-
- if (!level) {
- while (uncomp_remaining) {
- mz_uint n =
- (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining);
- if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) ||
- (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf,
- n) != n)) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
- uncomp_crc32 =
- (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n);
- uncomp_remaining -= n;
- cur_archive_file_ofs += n;
- }
- comp_size = uncomp_size;
- } else {
- mz_bool result = MZ_FALSE;
- mz_zip_writer_add_state state;
- tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor));
- if (!pComp) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
-
- state.m_pZip = pZip;
- state.m_cur_archive_file_ofs = cur_archive_file_ofs;
- state.m_comp_size = 0;
-
- if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
- tdefl_create_comp_flags_from_zip_params(
- level, -15, MZ_DEFAULT_STRATEGY)) !=
- TDEFL_STATUS_OKAY) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
-
- for (;;) {
- size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining,
- (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
- tdefl_status status;
-
- if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size)
- break;
-
- uncomp_crc32 = (mz_uint32)mz_crc32(
- uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size);
- uncomp_remaining -= in_buf_size;
-
- status = tdefl_compress_buffer(
- pComp, pRead_buf, in_buf_size,
- uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH);
- if (status == TDEFL_STATUS_DONE) {
- result = MZ_TRUE;
- break;
- } else if (status != TDEFL_STATUS_OKAY)
- break;
- }
-
- pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
-
- if (!result) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- MZ_FCLOSE(pSrc_file);
- return MZ_FALSE;
- }
-
- comp_size = state.m_comp_size;
- cur_archive_file_ofs = state.m_cur_archive_file_ofs;
-
- method = MZ_DEFLATED;
- }
-
- pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
- }
-
- MZ_FCLOSE(pSrc_file);
- pSrc_file = NULL;
-
- // no zip64 support yet
- if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
- return MZ_FALSE;
-
- if (!mz_zip_writer_create_local_dir_header(
- pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
- comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
- return MZ_FALSE;
-
- if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
- sizeof(local_dir_header)) != sizeof(local_dir_header))
- return MZ_FALSE;
-
- if (!mz_zip_writer_add_to_central_dir(
- pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
- comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
- dos_time, dos_date, local_dir_header_ofs, ext_attributes))
- return MZ_FALSE;
-
- pZip->m_total_files++;
- pZip->m_archive_size = cur_archive_file_ofs;
-
- return MZ_TRUE;
-}
-#endif // #ifndef MINIZ_NO_STDIO
-
-mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
- mz_zip_archive *pSource_zip,
- mz_uint file_index) {
- mz_uint n, bit_flags, num_alignment_padding_bytes;
- mz_uint64 comp_bytes_remaining, local_dir_header_ofs;
- mz_uint64 cur_src_file_ofs, cur_dst_file_ofs;
- mz_uint32
- local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
- sizeof(mz_uint32)];
- mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
- mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
- size_t orig_central_dir_size;
- mz_zip_internal_state *pState;
- void *pBuf;
- const mz_uint8 *pSrc_central_header;
-
- if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
- return MZ_FALSE;
- if (NULL ==
- (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index)))
- return MZ_FALSE;
- pState = pZip->m_pState;
-
- num_alignment_padding_bytes =
- mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
-
- // no zip64 support yet
- if ((pZip->m_total_files == 0xFFFF) ||
- ((pZip->m_archive_size + num_alignment_padding_bytes +
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) >
- 0xFFFFFFFF))
- return MZ_FALSE;
-
- cur_src_file_ofs =
- MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
- cur_dst_file_ofs = pZip->m_archive_size;
-
- if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs,
- pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
- return MZ_FALSE;
- cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
-
- if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs,
- num_alignment_padding_bytes))
- return MZ_FALSE;
- cur_dst_file_ofs += num_alignment_padding_bytes;
- local_dir_header_ofs = cur_dst_file_ofs;
- if (pZip->m_file_offset_alignment) {
- MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
- 0);
- }
-
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header,
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
- MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
- return MZ_FALSE;
- cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
-
- n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
- comp_bytes_remaining =
- n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
-
- if (NULL == (pBuf = pZip->m_pAlloc(
- pZip->m_pAlloc_opaque, 1,
- (size_t)MZ_MAX(sizeof(mz_uint32) * 4,
- MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE,
- comp_bytes_remaining)))))
- return MZ_FALSE;
-
- while (comp_bytes_remaining) {
- n = (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining);
- if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
- n) != n) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
- return MZ_FALSE;
- }
- cur_src_file_ofs += n;
-
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
- return MZ_FALSE;
- }
- cur_dst_file_ofs += n;
-
- comp_bytes_remaining -= n;
- }
-
- bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS);
- if (bit_flags & 8) {
- // Copy data descriptor
- if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
- sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
- return MZ_FALSE;
- }
-
- n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3);
- if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
- return MZ_FALSE;
- }
-
- cur_src_file_ofs += n;
- cur_dst_file_ofs += n;
- }
- pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
-
- // no zip64 support yet
- if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE;
-
- orig_central_dir_size = pState->m_central_dir.m_size;
-
- memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
- MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS,
- local_dir_header_ofs);
- if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header,
- MZ_ZIP_CENTRAL_DIR_HEADER_SIZE))
- return MZ_FALSE;
-
- n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
- MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
- MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS);
- if (!mz_zip_array_push_back(
- pZip, &pState->m_central_dir,
- pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) {
- mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
- MZ_FALSE);
- return MZ_FALSE;
- }
-
- if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE;
- n = (mz_uint32)orig_central_dir_size;
- if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) {
- mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
- MZ_FALSE);
- return MZ_FALSE;
- }
-
- pZip->m_total_files++;
- pZip->m_archive_size = cur_dst_file_ofs;
-
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) {
- mz_zip_internal_state *pState;
- mz_uint64 central_dir_ofs, central_dir_size;
- mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE];
-
- if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
- return MZ_FALSE;
-
- pState = pZip->m_pState;
-
- // no zip64 support yet
- if ((pZip->m_total_files > 0xFFFF) ||
- ((pZip->m_archive_size + pState->m_central_dir.m_size +
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
- return MZ_FALSE;
-
- central_dir_ofs = 0;
- central_dir_size = 0;
- if (pZip->m_total_files) {
- // Write central directory
- central_dir_ofs = pZip->m_archive_size;
- central_dir_size = pState->m_central_dir.m_size;
- pZip->m_central_directory_file_ofs = central_dir_ofs;
- if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs,
- pState->m_central_dir.m_p,
- (size_t)central_dir_size) != central_dir_size)
- return MZ_FALSE;
- pZip->m_archive_size += central_dir_size;
- }
-
- // Write end of central directory record
- MZ_CLEAR_OBJ(hdr);
- MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS,
- MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG);
- MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS,
- pZip->m_total_files);
- MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files);
- MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size);
- MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs);
-
- if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr,
- sizeof(hdr)) != sizeof(hdr))
- return MZ_FALSE;
-#ifndef MINIZ_NO_STDIO
- if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE;
-#endif // #ifndef MINIZ_NO_STDIO
-
- pZip->m_archive_size += sizeof(hdr);
-
- pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED;
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
- size_t *pSize) {
- if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE;
- if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE;
- if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE;
-
- *pBuf = pZip->m_pState->m_pMem;
- *pSize = pZip->m_pState->m_mem_size;
- pZip->m_pState->m_pMem = NULL;
- pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0;
- return MZ_TRUE;
-}
-
-mz_bool mz_zip_writer_end(mz_zip_archive *pZip) {
- mz_zip_internal_state *pState;
- mz_bool status = MZ_TRUE;
- if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
- ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) &&
- (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED)))
- return MZ_FALSE;
-
- pState = pZip->m_pState;
- pZip->m_pState = NULL;
- mz_zip_array_clear(pZip, &pState->m_central_dir);
- mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
- mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
-
-#ifndef MINIZ_NO_STDIO
- if (pState->m_pFile) {
- MZ_FCLOSE(pState->m_pFile);
- pState->m_pFile = NULL;
- }
-#endif // #ifndef MINIZ_NO_STDIO
-
- if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) {
- pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem);
- pState->m_pMem = NULL;
- }
-
- pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
- pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
- return status;
-}
-
-#ifndef MINIZ_NO_STDIO
-mz_bool mz_zip_add_mem_to_archive_file_in_place(
- const char *pZip_filename, const char *pArchive_name, const void *pBuf,
- size_t buf_size, const void *pComment, mz_uint16 comment_size,
- mz_uint level_and_flags) {
- mz_bool status, created_new_archive = MZ_FALSE;
- mz_zip_archive zip_archive;
- struct MZ_FILE_STAT_STRUCT file_stat;
- MZ_CLEAR_OBJ(zip_archive);
- if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
- if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) ||
- ((comment_size) && (!pComment)) ||
- ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION))
- return MZ_FALSE;
- if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
- if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) {
- // Create a new archive.
- if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0))
- return MZ_FALSE;
- created_new_archive = MZ_TRUE;
- } else {
- // Append to an existing archive.
- if (!mz_zip_reader_init_file(
- &zip_archive, pZip_filename,
- level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
- return MZ_FALSE;
- if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) {
- mz_zip_reader_end(&zip_archive);
- return MZ_FALSE;
- }
- }
- status =
- mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size,
- pComment, comment_size, level_and_flags, 0, 0);
- // Always finalize, even if adding failed for some reason, so we have a valid
- // central directory. (This may not always succeed, but we can try.)
- if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE;
- if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE;
- if ((!status) && (created_new_archive)) {
- // It's a new archive and something went wrong, so just delete it.
- int ignoredStatus = MZ_DELETE_FILE(pZip_filename);
- (void)ignoredStatus;
- }
- return status;
-}
-
-void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
- const char *pArchive_name,
- size_t *pSize, mz_uint flags) {
- int file_index;
- mz_zip_archive zip_archive;
- void *p = NULL;
-
- if (pSize) *pSize = 0;
-
- if ((!pZip_filename) || (!pArchive_name)) return NULL;
-
- MZ_CLEAR_OBJ(zip_archive);
- if (!mz_zip_reader_init_file(
- &zip_archive, pZip_filename,
- flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
- return NULL;
-
- if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL,
- flags)) >= 0)
- p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags);
-
- mz_zip_reader_end(&zip_archive);
- return p;
-}
-
-#endif // #ifndef MINIZ_NO_STDIO
-
-#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
-
-#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
-
-#ifdef __cplusplus
-}
-#endif
-
-#ifdef _MSC_VER
-#pragma warning(pop)
-#endif
-
-#endif // MINIZ_HEADER_FILE_ONLY
-
-/*
- This is free and unencumbered software released into the public domain.
-
- Anyone is free to copy, modify, publish, use, compile, sell, or
- distribute this software, either in source code form or as a compiled
- binary, for any purpose, commercial or non-commercial, and by any
- means.
-
- In jurisdictions that recognize copyright laws, the author or authors
- of this software dedicate any and all copyright interest in the
- software to the public domain. We make this dedication for the benefit
- of the public at large and to the detriment of our heirs and
- successors. We intend this dedication to be an overt act of
- relinquishment in perpetuity of all present and future rights to this
- software under copyright law.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
- OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- OTHER DEALINGS IN THE SOFTWARE.
-
- For more information, please refer to <http://unlicense.org/>
-*/
-
-// ---------------------- end of miniz ----------------------------------------
-
-#ifdef __clang__
-#pragma clang diagnostic pop
-#endif
-
-} // namespace miniz
-#else
-
-// Reuse MINIZ_LITTE_ENDIAN macro
-
-#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
- defined(__i386) || defined(__i486__) || defined(__i486) || \
- defined(i386) || defined(__ia64__) || defined(__x86_64__)
-// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
-#define MINIZ_X86_OR_X64_CPU 1
-#endif
-
-#if defined(__sparcv9)
-// Big endian
-#else
-#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
-// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
-#define MINIZ_LITTLE_ENDIAN 1
-#endif
-#endif
-
-#endif // TINYEXR_USE_MINIZ
-
// static bool IsBigEndian(void) {
// union {
// unsigned int i;
@@ -7079,7 +684,7 @@ static void cpy2(unsigned short *dst_val, const unsigned short *src_val) {
}
static void swap2(unsigned short *val) {
-#ifdef MINIZ_LITTLE_ENDIAN
+#ifdef TINYEXR_LITTLE_ENDIAN
(void)val;
#else
unsigned short tmp = *val;
@@ -7138,7 +743,7 @@ static void cpy4(float *dst_val, const float *src_val) {
#endif
static void swap4(unsigned int *val) {
-#ifdef MINIZ_LITTLE_ENDIAN
+#ifdef TINYEXR_LITTLE_ENDIAN
(void)val;
#else
unsigned int tmp = *val;
@@ -7153,7 +758,7 @@ static void swap4(unsigned int *val) {
}
static void swap4(int *val) {
-#ifdef MINIZ_LITTLE_ENDIAN
+#ifdef TINYEXR_LITTLE_ENDIAN
(void)val;
#else
int tmp = *val;
@@ -7168,7 +773,7 @@ static void swap4(int *val) {
}
static void swap4(float *val) {
-#ifdef MINIZ_LITTLE_ENDIAN
+#ifdef TINYEXR_LITTLE_ENDIAN
(void)val;
#else
float tmp = *val;
@@ -7199,7 +804,7 @@ static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64
#endif
static void swap8(tinyexr::tinyexr_uint64 *val) {
-#ifdef MINIZ_LITTLE_ENDIAN
+#ifdef TINYEXR_LITTLE_ENDIAN
(void)val;
#else
tinyexr::tinyexr_uint64 tmp = (*val);
@@ -7218,12 +823,11 @@ static void swap8(tinyexr::tinyexr_uint64 *val) {
}
// https://gist.github.com/rygorous/2156668
-// Reuse MINIZ_LITTLE_ENDIAN flag from miniz.
union FP32 {
unsigned int u;
float f;
struct {
-#if MINIZ_LITTLE_ENDIAN
+#if TINYEXR_LITTLE_ENDIAN
unsigned int Mantissa : 23;
unsigned int Exponent : 8;
unsigned int Sign : 1;
@@ -7243,7 +847,7 @@ union FP32 {
union FP16 {
unsigned short u;
struct {
-#if MINIZ_LITTLE_ENDIAN
+#if TINYEXR_LITTLE_ENDIAN
unsigned int Mantissa : 10;
unsigned int Exponent : 5;
unsigned int Sign : 1;
@@ -7351,7 +955,7 @@ static const char *ReadString(std::string *s, const char *ptr, size_t len) {
}
if (size_t(q - ptr) >= len) {
- (*s) = std::string();
+ (*s).clear();
return NULL;
}
@@ -7438,6 +1042,7 @@ static void WriteAttributeToMemory(std::vector<unsigned char> *out,
typedef struct {
std::string name; // less than 255 bytes long
int pixel_type;
+ int requested_pixel_type;
int x_sampling;
int y_sampling;
unsigned char p_linear;
@@ -7465,6 +1070,7 @@ struct HeaderInfo {
int chunk_count;
// Tiled format
+ int tiled; // Non-zero if the part is tiled.
int tile_size_x;
int tile_size_y;
int tile_level_mode;
@@ -7474,6 +1080,11 @@ struct HeaderInfo {
int compression_type;
+ // required for multi-part or non-image files
+ std::string name;
+ // required for multi-part or non-image files
+ std::string type;
+
void clear() {
channels.clear();
attributes.clear();
@@ -7495,6 +1106,7 @@ struct HeaderInfo {
chunk_count = 0;
// Tiled format
+ tiled = 0;
tile_size_x = 0;
tile_size_y = 0;
tile_level_mode = 0;
@@ -7502,6 +1114,9 @@ struct HeaderInfo {
header_len = 0;
compression_type = 0;
+
+ name.clear();
+ type.clear();
}
};
@@ -7558,7 +1173,7 @@ static void WriteChannelInfo(std::vector<unsigned char> &data,
// Calculate total size.
for (size_t c = 0; c < channels.size(); c++) {
- sz += strlen(channels[c].name.c_str()) + 1; // +1 for \0
+ sz += channels[c].name.length() + 1; // +1 for \0
sz += 16; // 4 * int
}
data.resize(sz + 1);
@@ -7566,12 +1181,12 @@ static void WriteChannelInfo(std::vector<unsigned char> &data,
unsigned char *p = &data.at(0);
for (size_t c = 0; c < channels.size(); c++) {
- memcpy(p, channels[c].name.c_str(), strlen(channels[c].name.c_str()));
- p += strlen(channels[c].name.c_str());
+ memcpy(p, channels[c].name.c_str(), channels[c].name.length());
+ p += channels[c].name.length();
(*p) = '\0';
p++;
- int pixel_type = channels[c].pixel_type;
+ int pixel_type = channels[c].requested_pixel_type;
int x_sampling = channels[c].x_sampling;
int y_sampling = channels[c].y_sampling;
tinyexr::swap4(&pixel_type);
@@ -7650,11 +1265,11 @@ static void CompressZip(unsigned char *dst,
// Compress the data using miniz
//
- miniz::mz_ulong outSize = miniz::mz_compressBound(src_size);
- int ret = miniz::mz_compress(
+ mz_ulong outSize = mz_compressBound(src_size);
+ int ret = mz_compress(
dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)),
src_size);
- assert(ret == miniz::MZ_OK);
+ assert(ret == MZ_OK);
(void)ret;
compressedSize = outSize;
@@ -7687,8 +1302,8 @@ static bool DecompressZip(unsigned char *dst,
#if TINYEXR_USE_MINIZ
int ret =
- miniz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
- if (miniz::MZ_OK != ret) {
+ mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
+ if (MZ_OK != ret) {
return false;
}
#else
@@ -8989,7 +2604,8 @@ static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in,
if (po == rlc) {
if (lc < 8) {
/* TinyEXR issue 78 */
- if ((in + 1) >= in_end) {
+ /* TinyEXR issue 160. in + 1 -> in */
+ if (in >= in_end) {
return false;
}
@@ -9332,7 +2948,7 @@ static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
unsigned short minNonZero;
unsigned short maxNonZero;
-#if !MINIZ_LITTLE_ENDIAN
+#if !TINYEXR_LITTLE_ENDIAN
// @todo { PIZ compression on BigEndian architecture. }
assert(0);
return false;
@@ -9355,7 +2971,7 @@ static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
// cd.ys = c.channel().ySampling;
size_t pixelSize = sizeof(int); // UINT and FLOAT
- if (channelInfo[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
+ if (channelInfo[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
pixelSize = sizeof(short);
}
@@ -9445,10 +3061,10 @@ static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
}
static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
- size_t tmpBufSize, size_t inLen, int num_channels,
+ size_t tmpBufSizeInBytes, size_t inLen, int num_channels,
const EXRChannelInfo *channels, int data_width,
int num_lines) {
- if (inLen == tmpBufSize) {
+ if (inLen == tmpBufSizeInBytes) {
// Data is not compressed(Issue 40).
memcpy(outPtr, inPtr, inLen);
return true;
@@ -9458,7 +3074,7 @@ static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
unsigned short minNonZero;
unsigned short maxNonZero;
-#if !MINIZ_LITTLE_ENDIAN
+#if !TINYEXR_LITTLE_ENDIAN
// @todo { PIZ compression on BigEndian architecture. }
assert(0);
return false;
@@ -9501,7 +3117,7 @@ static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
return false;
}
- std::vector<unsigned short> tmpBuffer(tmpBufSize);
+ std::vector<unsigned short> tmpBuffer(tmpBufSizeInBytes / sizeof(unsigned short));
hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer);
//
@@ -9543,7 +3159,7 @@ static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
// Expand the pixel data to their original range
//
- applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSize));
+ applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSizeInBytes / sizeof(unsigned short)));
for (int y = 0; y < num_lines; y++) {
for (size_t i = 0; i < channelData.size(); ++i) {
@@ -9802,6 +3418,9 @@ static bool CompressZfp(std::vector<unsigned char> *outBuf,
// -----------------------------------------------------------------
//
+// heuristics
+#define TINYEXR_DIMENSION_THRESHOLD (1024 * 8192)
+
// TODO(syoyo): Refactor function arguments.
static bool DecodePixelData(/* out */ unsigned char **out_images,
const int *requested_pixel_types,
@@ -10432,8 +4051,8 @@ static bool DecodeTiledPixelData(
const EXRAttribute *attributes, size_t num_channels,
const EXRChannelInfo *channels,
const std::vector<size_t> &channel_offset_list) {
- if (tile_size_x > data_width || tile_size_y > data_height ||
- tile_size_x * tile_offset_x > data_width ||
+ // Here, data_width and data_height are the dimensions of the current (sub)level.
+ if (tile_size_x * tile_offset_x > data_width ||
tile_size_y * tile_offset_y > data_height) {
return false;
}
@@ -10541,6 +4160,7 @@ static inline std::wstring UTF8ToWchar(const std::string &str) {
}
#endif
+
static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
const EXRVersion *version, std::string *err,
const unsigned char *buf, size_t size) {
@@ -10579,6 +4199,11 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
bool has_pixel_aspect_ratio = false;
bool has_screen_window_center = false;
bool has_screen_window_width = false;
+ bool has_name = false;
+ bool has_type = false;
+
+ info->name.clear();
+ info->type.clear();
info->data_window.min_x = 0;
info->data_window.min_y = 0;
@@ -10594,6 +4219,7 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
info->screen_window_width = -1.0f;
info->pixel_aspect_ratio = -1.0f;
+ info->tiled = 0;
info->tile_size_x = -1;
info->tile_size_y = -1;
info->tile_level_mode = -1;
@@ -10628,7 +4254,8 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
marker += marker_size;
size -= marker_size;
- if (version->tiled && attr_name.compare("tiles") == 0) {
+ // For a multipart file, the version field 9th bit is 0.
+ if ((version->tiled || version->multipart || version->non_image) && attr_name.compare("tiles") == 0) {
unsigned int x_size, y_size;
unsigned char tile_mode;
assert(data.size() == 9);
@@ -10652,7 +4279,7 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
// mode = levelMode + roundingMode * 16
info->tile_level_mode = tile_mode & 0x3;
info->tile_rounding_mode = (tile_mode >> 4) & 0x1;
-
+ info->tiled = 1;
} else if (attr_name.compare("compression") == 0) {
bool ok = false;
if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) {
@@ -10771,6 +4398,22 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
memcpy(&info->chunk_count, &data.at(0), sizeof(int));
tinyexr::swap4(&info->chunk_count);
}
+ } else if (attr_name.compare("name") == 0) {
+ if (!data.empty() && data[0]) {
+ data.push_back(0);
+ size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
+ info->name.resize(len);
+ info->name.assign(reinterpret_cast<const char*>(&data[0]), len);
+ has_name = true;
+ }
+ } else if (attr_name.compare("type") == 0) {
+ if (!data.empty() && data[0]) {
+ data.push_back(0);
+ size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
+ info->type.resize(len);
+ info->type.assign(reinterpret_cast<const char*>(&data[0]), len);
+ has_type = true;
+ }
} else {
// Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES)
if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
@@ -10835,6 +4478,17 @@ static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
<< std::endl;
}
+ if (version->multipart || version->non_image) {
+ if (!has_name) {
+ ss_err << "\"name\" attribute not found in the header."
+ << std::endl;
+ }
+ if (!has_type) {
+ ss_err << "\"type\" attribute not found in the header."
+ << std::endl;
+ }
+ }
+
if (!(ss_err.str().empty())) {
if (err) {
(*err) += ss_err.str();
@@ -10865,12 +4519,30 @@ static void ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info) {
exr_header->data_window.max_y = info.data_window.max_y;
exr_header->line_order = info.line_order;
exr_header->compression_type = info.compression_type;
-
+ exr_header->tiled = info.tiled;
exr_header->tile_size_x = info.tile_size_x;
exr_header->tile_size_y = info.tile_size_y;
exr_header->tile_level_mode = info.tile_level_mode;
exr_header->tile_rounding_mode = info.tile_rounding_mode;
+ EXRSetNameAttr(exr_header, info.name.c_str());
+
+ if (!info.type.empty()) {
+ if (info.type == "scanlineimage") {
+ assert(!exr_header->tiled);
+ } else if (info.type == "tiledimage") {
+ assert(exr_header->tiled);
+ } else if (info.type == "deeptile") {
+ exr_header->non_image = 1;
+ assert(exr_header->tiled);
+ } else if (info.type == "deepscanline") {
+ exr_header->non_image = 1;
+ assert(!exr_header->tiled);
+ } else {
+ assert(false);
+ }
+ }
+
exr_header->num_channels = static_cast<int>(info.channels.size());
exr_header->channels = static_cast<EXRChannelInfo *>(malloc(
@@ -10932,8 +4604,216 @@ static void ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info) {
exr_header->header_len = info.header_len;
}
+struct OffsetData {
+ OffsetData() : num_x_levels(0), num_y_levels(0) {}
+ std::vector<std::vector<std::vector <tinyexr::tinyexr_uint64> > > offsets;
+ int num_x_levels;
+ int num_y_levels;
+};
+
+int LevelIndex(int lx, int ly, int tile_level_mode, int num_x_levels) {
+ switch (tile_level_mode) {
+ case TINYEXR_TILE_ONE_LEVEL:
+ return 0;
+
+ case TINYEXR_TILE_MIPMAP_LEVELS:
+ return lx;
+
+ case TINYEXR_TILE_RIPMAP_LEVELS:
+ return lx + ly * num_x_levels;
+
+ default:
+ assert(false);
+ }
+ return 0;
+}
+
+static int LevelSize(int toplevel_size, int level, int tile_rounding_mode) {
+ assert(level >= 0);
+
+ int b = (int)(1u << (unsigned)level);
+ int level_size = toplevel_size / b;
+
+ if (tile_rounding_mode == TINYEXR_TILE_ROUND_UP && level_size * b < toplevel_size)
+ level_size += 1;
+
+ return std::max(level_size, 1);
+}
+
+static int DecodeTiledLevel(EXRImage* exr_image, const EXRHeader* exr_header,
+ const OffsetData& offset_data,
+ const std::vector<size_t>& channel_offset_list,
+ int pixel_data_size,
+ const unsigned char* head, const size_t size,
+ std::string* err) {
+ int num_channels = exr_header->num_channels;
+
+ int level_index = LevelIndex(exr_image->level_x, exr_image->level_y, exr_header->tile_level_mode, offset_data.num_x_levels);
+ int num_y_tiles = (int)offset_data.offsets[level_index].size();
+ assert(num_y_tiles);
+ int num_x_tiles = (int)offset_data.offsets[level_index][0].size();
+ assert(num_x_tiles);
+ int num_tiles = num_x_tiles * num_y_tiles;
+
+ int err_code = TINYEXR_SUCCESS;
+
+ enum {
+ EF_SUCCESS = 0,
+ EF_INVALID_DATA = 1,
+ EF_INSUFFICIENT_DATA = 2,
+ EF_FAILED_TO_DECODE = 4
+ };
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::atomic<unsigned> error_flag(EF_SUCCESS);
+#else
+ unsigned error_flag(EF_SUCCESS);
+#endif
+
+ // Although the spec says : "...the data window is subdivided into an array of smaller rectangles...",
+ // the IlmImf library allows the dimensions of the tile to be larger (or equal) than the dimensions of the data window.
+#if 0
+ if ((exr_header->tile_size_x > exr_image->width || exr_header->tile_size_y > exr_image->height) &&
+ exr_image->level_x == 0 && exr_image->level_y == 0) {
+ if (err) {
+ (*err) += "Failed to decode tile data.\n";
+ }
+ err_code = TINYEXR_ERROR_INVALID_DATA;
+ }
+#endif
+ exr_image->tiles = static_cast<EXRTile*>(
+ calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
+
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::vector<std::thread> workers;
+ std::atomic<int> tile_count(0);
+
+ int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
+ if (num_threads > int(num_tiles)) {
+ num_threads = int(num_tiles);
+ }
+
+ for (int t = 0; t < num_threads; t++) {
+ workers.emplace_back(std::thread([&]()
+ {
+ int tile_idx = 0;
+ while ((tile_idx = tile_count++) < num_tiles) {
+
+#else
+#if TINYEXR_USE_OPENMP
+#pragma omp parallel for
+#endif
+ for (int tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
+#endif
+ // Allocate memory for each tile.
+ exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
+ num_channels, exr_header->channels,
+ exr_header->requested_pixel_types, exr_header->tile_size_x,
+ exr_header->tile_size_y);
+
+ int x_tile = tile_idx % num_x_tiles;
+ int y_tile = tile_idx / num_x_tiles;
+ // 16 byte: tile coordinates
+ // 4 byte : data size
+ // ~ : data(uncompressed or compressed)
+ tinyexr::tinyexr_uint64 offset = offset_data.offsets[level_index][y_tile][x_tile];
+ if (offset + sizeof(int) * 5 > size) {
+ // Insufficient data size.
+ error_flag |= EF_INSUFFICIENT_DATA;
+ continue;
+ }
+
+ size_t data_size =
+ size_t(size - (offset + sizeof(int) * 5));
+ const unsigned char* data_ptr =
+ reinterpret_cast<const unsigned char*>(head + offset);
+
+ int tile_coordinates[4];
+ memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
+ tinyexr::swap4(&tile_coordinates[0]);
+ tinyexr::swap4(&tile_coordinates[1]);
+ tinyexr::swap4(&tile_coordinates[2]);
+ tinyexr::swap4(&tile_coordinates[3]);
+
+ if (tile_coordinates[2] != exr_image->level_x) {
+ // Invalid data.
+ error_flag |= EF_INVALID_DATA;
+ continue;
+ }
+ if (tile_coordinates[3] != exr_image->level_y) {
+ // Invalid data.
+ error_flag |= EF_INVALID_DATA;
+ continue;
+ }
+
+ int data_len;
+ memcpy(&data_len, data_ptr + 16,
+ sizeof(int)); // 16 = sizeof(tile_coordinates)
+ tinyexr::swap4(&data_len);
+
+ if (data_len < 2 || size_t(data_len) > data_size) {
+ // Insufficient data size.
+ error_flag |= EF_INSUFFICIENT_DATA;
+ continue;
+ }
+
+ // Move to data addr: 20 = 16 + 4;
+ data_ptr += 20;
+ bool ret = tinyexr::DecodeTiledPixelData(
+ exr_image->tiles[tile_idx].images,
+ &(exr_image->tiles[tile_idx].width),
+ &(exr_image->tiles[tile_idx].height),
+ exr_header->requested_pixel_types, data_ptr,
+ static_cast<size_t>(data_len), exr_header->compression_type,
+ exr_header->line_order,
+ exr_image->width, exr_image->height,
+ tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
+ exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
+ static_cast<size_t>(exr_header->num_custom_attributes),
+ exr_header->custom_attributes,
+ static_cast<size_t>(exr_header->num_channels),
+ exr_header->channels, channel_offset_list);
+
+ if (!ret) {
+ // Failed to decode tile data.
+ error_flag |= EF_FAILED_TO_DECODE;
+ }
+
+ exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
+ exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
+ exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
+ exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
+
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ }
+ }));
+ } // num_thread loop
+
+ for (auto& t : workers) {
+ t.join();
+ }
+
+#else
+ } // parallel for
+#endif
+
+ // Even in the event of an error, the reserved memory may be freed.
+ exr_image->num_channels = num_channels;
+ exr_image->num_tiles = static_cast<int>(num_tiles);
+
+ if (error_flag) err_code = TINYEXR_ERROR_INVALID_DATA;
+ if (err) {
+ if (error_flag & EF_INSUFFICIENT_DATA) {
+ (*err) += "Insufficient data length.\n";
+ }
+ if (error_flag & EF_FAILED_TO_DECODE) {
+ (*err) += "Failed to decode tile data.\n";
+ }
+ }
+ return err_code;
+}
+
static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
- const std::vector<tinyexr::tinyexr_uint64> &offsets,
+ const OffsetData& offset_data,
const unsigned char *head, const size_t size,
std::string *err) {
int num_channels = exr_header->num_channels;
@@ -10971,8 +4851,7 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
// Do not allow too large data_width and data_height. header invalid?
{
- const int threshold = 1024 * 8192; // heuristics
- if ((data_width > threshold) || (data_height > threshold)) {
+ if ((data_width > TINYEXR_DIMENSION_THRESHOLD) || (data_height > TINYEXR_DIMENSION_THRESHOLD)) {
if (err) {
std::stringstream ss;
ss << "data_with or data_height too large. data_width: " << data_width
@@ -10982,8 +4861,21 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
}
return TINYEXR_ERROR_INVALID_DATA;
}
+ if (exr_header->tiled) {
+ if ((exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) || (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD)) {
+ if (err) {
+ std::stringstream ss;
+ ss << "tile with or tile height too large. tile width: " << exr_header->tile_size_x
+ << ", "
+ << "tile height = " << exr_header->tile_size_y << std::endl;
+ (*err) += ss.str();
+ }
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ }
}
+ const std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
size_t num_blocks = offsets.size();
std::vector<size_t> channel_offset_list;
@@ -10998,7 +4890,11 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
return TINYEXR_ERROR_INVALID_DATA;
}
- bool invalid_data = false; // TODO(LTE): Use atomic lock for MT safety.
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::atomic<bool> invalid_data(false);
+#else
+ bool invalid_data(false);
+#endif
if (exr_header->tiled) {
// value check
@@ -11019,136 +4915,60 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
}
return TINYEXR_ERROR_INVALID_HEADER;
}
-
- size_t num_tiles = offsets.size(); // = # of blocks
-
- exr_image->tiles = static_cast<EXRTile *>(
- calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
-
- int err_code = TINYEXR_SUCCESS;
-
-#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
-
- std::vector<std::thread> workers;
- std::atomic<size_t> tile_count(0);
-
- int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
- if (num_threads > int(num_tiles)) {
- num_threads = int(num_tiles);
- }
-
- for (int t = 0; t < num_threads; t++) {
- workers.emplace_back(std::thread([&]() {
- size_t tile_idx = 0;
- while ((tile_idx = tile_count++) < num_tiles) {
-
-#else
- for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
-#endif
- // Allocate memory for each tile.
- exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
- num_channels, exr_header->channels,
- exr_header->requested_pixel_types, exr_header->tile_size_x,
- exr_header->tile_size_y);
-
- // 16 byte: tile coordinates
- // 4 byte : data size
- // ~ : data(uncompressed or compressed)
- if (offsets[tile_idx] + sizeof(int) * 5 > size) {
- // TODO(LTE): atomic
- if (err) {
- (*err) += "Insufficient data size.\n";
- }
- err_code = TINYEXR_ERROR_INVALID_DATA;
- break;
- }
-
- size_t data_size =
- size_t(size - (offsets[tile_idx] + sizeof(int) * 5));
- const unsigned char *data_ptr =
- reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]);
-
- int tile_coordinates[4];
- memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
- tinyexr::swap4(&tile_coordinates[0]);
- tinyexr::swap4(&tile_coordinates[1]);
- tinyexr::swap4(&tile_coordinates[2]);
- tinyexr::swap4(&tile_coordinates[3]);
-
- // @todo{ LoD }
- if (tile_coordinates[2] != 0) {
- err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
- break;
- }
- if (tile_coordinates[3] != 0) {
- err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
- break;
- }
-
- int data_len;
- memcpy(&data_len, data_ptr + 16,
- sizeof(int)); // 16 = sizeof(tile_coordinates)
- tinyexr::swap4(&data_len);
-
- if (data_len < 4 || size_t(data_len) > data_size) {
- // TODO(LTE): atomic
- if (err) {
- (*err) += "Insufficient data length.\n";
- }
- err_code = TINYEXR_ERROR_INVALID_DATA;
- break;
- }
-
- // Move to data addr: 20 = 16 + 4;
- data_ptr += 20;
-
- bool ret = tinyexr::DecodeTiledPixelData(
- exr_image->tiles[tile_idx].images,
- &(exr_image->tiles[tile_idx].width),
- &(exr_image->tiles[tile_idx].height),
- exr_header->requested_pixel_types, data_ptr,
- static_cast<size_t>(data_len), exr_header->compression_type,
- exr_header->line_order, data_width, data_height,
- tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
- exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
- static_cast<size_t>(exr_header->num_custom_attributes),
- exr_header->custom_attributes,
- static_cast<size_t>(exr_header->num_channels),
- exr_header->channels, channel_offset_list);
-
- if (!ret) {
- // TODO(LTE): atomic
- if (err) {
- (*err) += "Failed to decode tile data.\n";
- }
- err_code = TINYEXR_ERROR_INVALID_DATA;
+ if (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) {
+ EXRImage* level_image = NULL;
+ for (int level = 0; level < offset_data.num_x_levels; ++level) {
+ if (!level_image) {
+ level_image = exr_image;
+ } else {
+ level_image->next_level = new EXRImage;
+ InitEXRImage(level_image->next_level);
+ level_image = level_image->next_level;
+ }
+ level_image->width =
+ LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level, exr_header->tile_rounding_mode);
+ level_image->height =
+ LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level, exr_header->tile_rounding_mode);
+ level_image->level_x = level;
+ level_image->level_y = level;
+
+ int ret = DecodeTiledLevel(level_image, exr_header,
+ offset_data,
+ channel_offset_list,
+ pixel_data_size,
+ head, size,
+ err);
+ if (ret != TINYEXR_SUCCESS) return ret;
+ }
+ } else {
+ EXRImage* level_image = NULL;
+ for (int level_y = 0; level_y < offset_data.num_y_levels; ++level_y)
+ for (int level_x = 0; level_x < offset_data.num_x_levels; ++level_x) {
+ if (!level_image) {
+ level_image = exr_image;
+ } else {
+ level_image->next_level = new EXRImage;
+ InitEXRImage(level_image->next_level);
+ level_image = level_image->next_level;
}
- exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
- exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
- exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
- exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
-
-#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
+ level_image->width =
+ LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level_x, exr_header->tile_rounding_mode);
+ level_image->height =
+ LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level_y, exr_header->tile_rounding_mode);
+ level_image->level_x = level_x;
+ level_image->level_y = level_y;
+
+ int ret = DecodeTiledLevel(level_image, exr_header,
+ offset_data,
+ channel_offset_list,
+ pixel_data_size,
+ head, size,
+ err);
+ if (ret != TINYEXR_SUCCESS) return ret;
}
- }));
- } // num_thread loop
-
- for (auto &t : workers) {
- t.join();
}
-
-#else
- }
-#endif
-
- if (err_code != TINYEXR_SUCCESS) {
- return err_code;
- }
-
- exr_image->num_tiles = static_cast<int>(num_tiles);
} else { // scanline format
-
// Don't allow too large image(256GB * pixel_data_size or more). Workaround
// for #104.
size_t total_data_len =
@@ -11170,7 +4990,7 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
num_channels, exr_header->channels, exr_header->requested_pixel_types,
data_width, data_height);
-#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
std::vector<std::thread> workers;
std::atomic<int> y_count(0);
@@ -11271,7 +5091,7 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
}
}
-#if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
}
}));
}
@@ -11286,7 +5106,6 @@ static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
if (invalid_data) {
if (err) {
- std::stringstream ss;
(*err) += "Invalid data found when decoding pixels.\n";
}
return TINYEXR_ERROR_INVALID_DATA;
@@ -11343,6 +5162,370 @@ static bool ReconstructLineOffsets(
return true;
}
+
+static int FloorLog2(unsigned x) {
+ //
+ // For x > 0, floorLog2(y) returns floor(log(x)/log(2)).
+ //
+ int y = 0;
+ while (x > 1) {
+ y += 1;
+ x >>= 1u;
+ }
+ return y;
+}
+
+
+static int CeilLog2(unsigned x) {
+ //
+ // For x > 0, ceilLog2(y) returns ceil(log(x)/log(2)).
+ //
+ int y = 0;
+ int r = 0;
+ while (x > 1) {
+ if (x & 1)
+ r = 1;
+
+ y += 1;
+ x >>= 1u;
+ }
+ return y + r;
+}
+
+static int RoundLog2(int x, int tile_rounding_mode) {
+ return (tile_rounding_mode == TINYEXR_TILE_ROUND_DOWN) ? FloorLog2(static_cast<unsigned>(x)) : CeilLog2(static_cast<unsigned>(x));
+}
+
+static int CalculateNumXLevels(const EXRHeader* exr_header) {
+ int min_x = exr_header->data_window.min_x;
+ int max_x = exr_header->data_window.max_x;
+ int min_y = exr_header->data_window.min_y;
+ int max_y = exr_header->data_window.max_y;
+
+ int num = 0;
+ switch (exr_header->tile_level_mode) {
+ case TINYEXR_TILE_ONE_LEVEL:
+
+ num = 1;
+ break;
+
+ case TINYEXR_TILE_MIPMAP_LEVELS:
+
+ {
+ int w = max_x - min_x + 1;
+ int h = max_y - min_y + 1;
+ num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
+ }
+ break;
+
+ case TINYEXR_TILE_RIPMAP_LEVELS:
+
+ {
+ int w = max_x - min_x + 1;
+ num = RoundLog2(w, exr_header->tile_rounding_mode) + 1;
+ }
+ break;
+
+ default:
+
+ assert(false);
+ }
+
+ return num;
+}
+
+static int CalculateNumYLevels(const EXRHeader* exr_header) {
+ int min_x = exr_header->data_window.min_x;
+ int max_x = exr_header->data_window.max_x;
+ int min_y = exr_header->data_window.min_y;
+ int max_y = exr_header->data_window.max_y;
+ int num = 0;
+
+ switch (exr_header->tile_level_mode) {
+ case TINYEXR_TILE_ONE_LEVEL:
+
+ num = 1;
+ break;
+
+ case TINYEXR_TILE_MIPMAP_LEVELS:
+
+ {
+ int w = max_x - min_x + 1;
+ int h = max_y - min_y + 1;
+ num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
+ }
+ break;
+
+ case TINYEXR_TILE_RIPMAP_LEVELS:
+
+ {
+ int h = max_y - min_y + 1;
+ num = RoundLog2(h, exr_header->tile_rounding_mode) + 1;
+ }
+ break;
+
+ default:
+
+ assert(false);
+ }
+
+ return num;
+}
+
+static void CalculateNumTiles(std::vector<int>& numTiles,
+ int toplevel_size,
+ int size,
+ int tile_rounding_mode) {
+ for (unsigned i = 0; i < numTiles.size(); i++) {
+ int l = LevelSize(toplevel_size, i, tile_rounding_mode);
+ assert(l <= std::numeric_limits<int>::max() - size + 1);
+
+ numTiles[i] = (l + size - 1) / size;
+ }
+}
+
+static void PrecalculateTileInfo(std::vector<int>& num_x_tiles,
+ std::vector<int>& num_y_tiles,
+ const EXRHeader* exr_header) {
+ int min_x = exr_header->data_window.min_x;
+ int max_x = exr_header->data_window.max_x;
+ int min_y = exr_header->data_window.min_y;
+ int max_y = exr_header->data_window.max_y;
+
+ int num_x_levels = CalculateNumXLevels(exr_header);
+ int num_y_levels = CalculateNumYLevels(exr_header);
+
+ num_x_tiles.resize(num_x_levels);
+ num_y_tiles.resize(num_y_levels);
+
+ CalculateNumTiles(num_x_tiles,
+ max_x - min_x + 1,
+ exr_header->tile_size_x,
+ exr_header->tile_rounding_mode);
+
+ CalculateNumTiles(num_y_tiles,
+ max_y - min_y + 1,
+ exr_header->tile_size_y,
+ exr_header->tile_rounding_mode);
+}
+
+static void InitSingleResolutionOffsets(OffsetData& offset_data, size_t num_blocks) {
+ offset_data.offsets.resize(1);
+ offset_data.offsets[0].resize(1);
+ offset_data.offsets[0][0].resize(num_blocks);
+ offset_data.num_x_levels = 1;
+ offset_data.num_y_levels = 1;
+}
+
+// Return sum of tile blocks.
+static int InitTileOffsets(OffsetData& offset_data,
+ const EXRHeader* exr_header,
+ const std::vector<int>& num_x_tiles,
+ const std::vector<int>& num_y_tiles) {
+ int num_tile_blocks = 0;
+ offset_data.num_x_levels = static_cast<int>(num_x_tiles.size());
+ offset_data.num_y_levels = static_cast<int>(num_y_tiles.size());
+ switch (exr_header->tile_level_mode) {
+ case TINYEXR_TILE_ONE_LEVEL:
+ case TINYEXR_TILE_MIPMAP_LEVELS:
+ assert(offset_data.num_x_levels == offset_data.num_y_levels);
+ offset_data.offsets.resize(offset_data.num_x_levels);
+
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
+ offset_data.offsets[l].resize(num_y_tiles[l]);
+
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
+ offset_data.offsets[l][dy].resize(num_x_tiles[l]);
+ num_tile_blocks += num_x_tiles[l];
+ }
+ }
+ break;
+
+ case TINYEXR_TILE_RIPMAP_LEVELS:
+
+ offset_data.offsets.resize(static_cast<size_t>(offset_data.num_x_levels) * static_cast<size_t>(offset_data.num_y_levels));
+
+ for (int ly = 0; ly < offset_data.num_y_levels; ++ly) {
+ for (int lx = 0; lx < offset_data.num_x_levels; ++lx) {
+ int l = ly * offset_data.num_x_levels + lx;
+ offset_data.offsets[l].resize(num_y_tiles[ly]);
+
+ for (size_t dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
+ offset_data.offsets[l][dy].resize(num_x_tiles[lx]);
+ num_tile_blocks += num_x_tiles[lx];
+ }
+ }
+ }
+ break;
+
+ default:
+ assert(false);
+ }
+ return num_tile_blocks;
+}
+
+static bool IsAnyOffsetsAreInvalid(const OffsetData& offset_data) {
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
+ for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx)
+ if (reinterpret_cast<const tinyexr::tinyexr_int64&>(offset_data.offsets[l][dy][dx]) <= 0)
+ return true;
+
+ return false;
+}
+
+static bool isValidTile(const EXRHeader* exr_header,
+ const OffsetData& offset_data,
+ int dx, int dy, int lx, int ly) {
+ if (lx < 0 || ly < 0 || dx < 0 || dy < 0) return false;
+ int num_x_levels = offset_data.num_x_levels;
+ int num_y_levels = offset_data.num_y_levels;
+ switch (exr_header->tile_level_mode) {
+ case TINYEXR_TILE_ONE_LEVEL:
+
+ if (lx == 0 &&
+ ly == 0 &&
+ offset_data.offsets.size() > 0 &&
+ offset_data.offsets[0].size() > static_cast<size_t>(dy) &&
+ offset_data.offsets[0][dy].size() > static_cast<size_t>(dx)) {
+ return true;
+ }
+
+ break;
+
+ case TINYEXR_TILE_MIPMAP_LEVELS:
+
+ if (lx < num_x_levels &&
+ ly < num_y_levels &&
+ offset_data.offsets.size() > static_cast<size_t>(lx) &&
+ offset_data.offsets[lx].size() > static_cast<size_t>(dy) &&
+ offset_data.offsets[lx][dy].size() > static_cast<size_t>(dx)) {
+ return true;
+ }
+
+ break;
+
+ case TINYEXR_TILE_RIPMAP_LEVELS:
+ {
+ size_t idx = static_cast<size_t>(lx) + static_cast<size_t>(ly)* static_cast<size_t>(num_x_levels);
+ if (lx < num_x_levels &&
+ ly < num_y_levels &&
+ (offset_data.offsets.size() > idx) &&
+ offset_data.offsets[idx].size() > static_cast<size_t>(dy) &&
+ offset_data.offsets[idx][dy].size() > static_cast<size_t>(dx)) {
+ return true;
+ }
+ }
+
+ break;
+
+ default:
+
+ return false;
+ }
+
+ return false;
+}
+
+static void ReconstructTileOffsets(OffsetData& offset_data,
+ const EXRHeader* exr_header,
+ const unsigned char* head, const unsigned char* marker, const size_t /*size*/,
+ bool isMultiPartFile,
+ bool isDeep) {
+ int numXLevels = offset_data.num_x_levels;
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
+ for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
+ tinyexr::tinyexr_uint64 tileOffset = marker - head;
+
+ if (isMultiPartFile) {
+ //int partNumber;
+ marker += sizeof(int);
+ }
+
+ int tileX;
+ memcpy(&tileX, marker, sizeof(int));
+ tinyexr::swap4(&tileX);
+ marker += sizeof(int);
+
+ int tileY;
+ memcpy(&tileY, marker, sizeof(int));
+ tinyexr::swap4(&tileY);
+ marker += sizeof(int);
+
+ int levelX;
+ memcpy(&levelX, marker, sizeof(int));
+ tinyexr::swap4(&levelX);
+ marker += sizeof(int);
+
+ int levelY;
+ memcpy(&levelY, marker, sizeof(int));
+ tinyexr::swap4(&levelY);
+ marker += sizeof(int);
+
+ if (isDeep) {
+ tinyexr::tinyexr_int64 packed_offset_table_size;
+ memcpy(&packed_offset_table_size, marker, sizeof(tinyexr::tinyexr_int64));
+ tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_offset_table_size));
+ marker += sizeof(tinyexr::tinyexr_int64);
+
+ tinyexr::tinyexr_int64 packed_sample_size;
+ memcpy(&packed_sample_size, marker, sizeof(tinyexr::tinyexr_int64));
+ tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_sample_size));
+ marker += sizeof(tinyexr::tinyexr_int64);
+
+ // next Int64 is unpacked sample size - skip that too
+ marker += packed_offset_table_size + packed_sample_size + 8;
+
+ } else {
+
+ int dataSize;
+ memcpy(&dataSize, marker, sizeof(int));
+ tinyexr::swap4(&dataSize);
+ marker += sizeof(int);
+ marker += dataSize;
+ }
+
+ if (!isValidTile(exr_header, offset_data,
+ tileX, tileY, levelX, levelY))
+ return;
+
+ int level_idx = LevelIndex(levelX, levelY, exr_header->tile_level_mode, numXLevels);
+ offset_data.offsets[level_idx][tileY][tileX] = tileOffset;
+ }
+ }
+ }
+}
+
+// marker output is also
+static int ReadOffsets(OffsetData& offset_data,
+ const unsigned char* head,
+ const unsigned char*& marker,
+ const size_t size,
+ const char** err) {
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
+ for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
+ tinyexr::tinyexr_uint64 offset;
+ if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
+ tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+
+ memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
+ tinyexr::swap8(&offset);
+ if (offset >= size) {
+ tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ marker += sizeof(tinyexr::tinyexr_uint64); // = 8
+ offset_data.offsets[l][dy][dx] = offset;
+ }
+ }
+ }
+ return TINYEXR_SUCCESS;
+}
+
static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
const unsigned char *head,
const unsigned char *marker, const size_t size,
@@ -11383,100 +5566,114 @@ static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
// Do not allow too large data_width and data_height. header invalid?
{
- const int threshold = 1024 * 8192; // heuristics
- if (data_width > threshold) {
+ if (data_width > TINYEXR_DIMENSION_THRESHOLD) {
tinyexr::SetErrorMessage("data width too large.", err);
return TINYEXR_ERROR_INVALID_DATA;
}
- if (data_height > threshold) {
+ if (data_height > TINYEXR_DIMENSION_THRESHOLD) {
tinyexr::SetErrorMessage("data height too large.", err);
return TINYEXR_ERROR_INVALID_DATA;
}
}
- // Read offset tables.
- size_t num_blocks = 0;
-
- if (exr_header->chunk_count > 0) {
- // Use `chunkCount` attribute.
- num_blocks = static_cast<size_t>(exr_header->chunk_count);
- } else if (exr_header->tiled) {
- // @todo { LoD }
- if (exr_header->tile_size_x > data_width || exr_header->tile_size_x < 1 ||
- exr_header->tile_size_y > data_height || exr_header->tile_size_y < 1) {
- tinyexr::SetErrorMessage("tile sizes are invalid.", err);
+ if (exr_header->tiled) {
+ if (exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) {
+ tinyexr::SetErrorMessage("tile width too large.", err);
return TINYEXR_ERROR_INVALID_DATA;
}
-
- size_t num_x_tiles = static_cast<size_t>(data_width) /
- static_cast<size_t>(exr_header->tile_size_x);
- if (num_x_tiles * static_cast<size_t>(exr_header->tile_size_x) <
- static_cast<size_t>(data_width)) {
- num_x_tiles++;
+ if (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD) {
+ tinyexr::SetErrorMessage("tile height too large.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
}
- size_t num_y_tiles = static_cast<size_t>(data_height) /
- static_cast<size_t>(exr_header->tile_size_y);
- if (num_y_tiles * static_cast<size_t>(exr_header->tile_size_y) <
- static_cast<size_t>(data_height)) {
- num_y_tiles++;
+ }
+
+ // Read offset tables.
+ OffsetData offset_data;
+ size_t num_blocks = 0;
+ // For a multi-resolution image, the size of the offset table will be calculated from the other attributes of the header.
+ // If chunk_count > 0 then chunk_count must be equal to the calculated tile count.
+ if (exr_header->tiled) {
+ {
+ std::vector<int> num_x_tiles, num_y_tiles;
+ PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header);
+ num_blocks = InitTileOffsets(offset_data, exr_header, num_x_tiles, num_y_tiles);
+ if (exr_header->chunk_count > 0) {
+ if (exr_header->chunk_count != static_cast<int>(num_blocks)) {
+ tinyexr::SetErrorMessage("Invalid offset table size.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ }
}
- num_blocks = num_x_tiles * num_y_tiles;
+ int ret = ReadOffsets(offset_data, head, marker, size, err);
+ if (ret != TINYEXR_SUCCESS) return ret;
+ if (IsAnyOffsetsAreInvalid(offset_data)) {
+ ReconstructTileOffsets(offset_data, exr_header,
+ head, marker, size,
+ exr_header->multipart, exr_header->non_image);
+ }
+ } else if (exr_header->chunk_count > 0) {
+ // Use `chunkCount` attribute.
+ num_blocks = static_cast<size_t>(exr_header->chunk_count);
+ InitSingleResolutionOffsets(offset_data, num_blocks);
} else {
num_blocks = static_cast<size_t>(data_height) /
- static_cast<size_t>(num_scanline_blocks);
+ static_cast<size_t>(num_scanline_blocks);
if (num_blocks * static_cast<size_t>(num_scanline_blocks) <
- static_cast<size_t>(data_height)) {
+ static_cast<size_t>(data_height)) {
num_blocks++;
}
- }
-
- std::vector<tinyexr::tinyexr_uint64> offsets(num_blocks);
-
- for (size_t y = 0; y < num_blocks; y++) {
- tinyexr::tinyexr_uint64 offset;
- // Issue #81
- if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
- tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
- tinyexr::swap8(&offset);
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- marker += sizeof(tinyexr::tinyexr_uint64); // = 8
- offsets[y] = offset;
+ InitSingleResolutionOffsets(offset_data, num_blocks);
}
- // If line offsets are invalid, we try to reconstruct it.
- // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
- for (size_t y = 0; y < num_blocks; y++) {
- if (offsets[y] <= 0) {
- // TODO(syoyo) Report as warning?
- // if (err) {
- // stringstream ss;
- // ss << "Incomplete lineOffsets." << std::endl;
- // (*err) += ss.str();
- //}
- bool ret =
+ if (!exr_header->tiled) {
+ std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
+ for (size_t y = 0; y < num_blocks; y++) {
+ tinyexr::tinyexr_uint64 offset;
+ // Issue #81
+ if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
+ tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+
+ memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
+ tinyexr::swap8(&offset);
+ if (offset >= size) {
+ tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ marker += sizeof(tinyexr::tinyexr_uint64); // = 8
+ offsets[y] = offset;
+ }
+
+ // If line offsets are invalid, we try to reconstruct it.
+ // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
+ for (size_t y = 0; y < num_blocks; y++) {
+ if (offsets[y] <= 0) {
+ // TODO(syoyo) Report as warning?
+ // if (err) {
+ // stringstream ss;
+ // ss << "Incomplete lineOffsets." << std::endl;
+ // (*err) += ss.str();
+ //}
+ bool ret =
ReconstructLineOffsets(&offsets, num_blocks, head, marker, size);
- if (ret) {
- // OK
- break;
- } else {
- tinyexr::SetErrorMessage(
+ if (ret) {
+ // OK
+ break;
+ } else {
+ tinyexr::SetErrorMessage(
"Cannot reconstruct lineOffset table in DecodeEXRImage.", err);
- return TINYEXR_ERROR_INVALID_DATA;
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
}
}
}
{
std::string e;
- int ret = DecodeChunk(exr_image, exr_header, offsets, head, size, &e);
+ int ret = DecodeChunk(exr_image, exr_header, offset_data, head, size, &e);
if (ret != TINYEXR_SUCCESS) {
if (!e.empty()) {
@@ -11530,7 +5727,7 @@ struct LayerChannel {
};
static void ChannelsInLayer(const EXRHeader &exr_header,
- const std::string layer_name,
+ const std::string &layer_name,
std::vector<LayerChannel> &channels) {
channels.clear();
for (int c = 0; c < exr_header.num_channels; c++) {
@@ -11881,8 +6078,8 @@ int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version,
ConvertHeader(exr_header, info);
- // transfoer `tiled` from version.
- exr_header->tiled = version->tiled;
+ exr_header->multipart = version->multipart ? 1 : 0;
+ exr_header->non_image = version->non_image ? 1 : 0;
return ret;
}
@@ -12087,7 +6284,7 @@ int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (errcode != 0) {
@@ -12096,7 +6293,7 @@ int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
return TINYEXR_ERROR_CANT_OPEN_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
#else
@@ -12155,207 +6352,400 @@ int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header,
err);
}
-size_t SaveEXRImageToMemory(const EXRImage *exr_image,
- const EXRHeader *exr_header,
- unsigned char **memory_out, const char **err) {
- if (exr_image == NULL || memory_out == NULL ||
- exr_header->compression_type < 0) {
- tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory", err);
- return 0;
- }
+namespace tinyexr
+{
-#if !TINYEXR_USE_PIZ
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
- err);
- return 0;
- }
-#endif
+// out_data must be allocated initially with the block-header size
+// of the current image(-part) type
+static bool EncodePixelData(/* out */ std::vector<unsigned char>& out_data,
+ const unsigned char* const* images,
+ int compression_type,
+ int /*line_order*/,
+ int width, // for tiled : tile.width
+ int /*height*/, // for tiled : header.tile_size_y
+ int x_stride, // for tiled : header.tile_size_x
+ int line_no, // for tiled : 0
+ int num_lines, // for tiled : tile.height
+ size_t pixel_data_size,
+ const std::vector<ChannelInfo>& channels,
+ const std::vector<size_t>& channel_offset_list,
+ const void* compression_param = 0) // zfp compression param
+{
+ size_t buf_size = static_cast<size_t>(width) *
+ static_cast<size_t>(num_lines) *
+ static_cast<size_t>(pixel_data_size);
+ //int last2bit = (buf_size & 3);
+ // buf_size must be multiple of four
+ //if(last2bit) buf_size += 4 - last2bit;
+ std::vector<unsigned char> buf(buf_size);
-#if !TINYEXR_USE_ZFP
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
- err);
- return 0;
- }
-#endif
+ size_t start_y = static_cast<size_t>(line_no);
+ for (size_t c = 0; c < channels.size(); c++) {
+ if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
+ if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
+ for (int y = 0; y < num_lines; y++) {
+ // Assume increasing Y
+ float *line_ptr = reinterpret_cast<float *>(&buf.at(
+ static_cast<size_t>(pixel_data_size * y * width) +
+ channel_offset_list[c] *
+ static_cast<size_t>(width)));
+ for (int x = 0; x < width; x++) {
+ tinyexr::FP16 h16;
+ h16.u = reinterpret_cast<const unsigned short * const *>(
+ images)[c][(y + start_y) * x_stride + x];
-#if TINYEXR_USE_ZFP
- for (size_t i = 0; i < static_cast<size_t>(exr_header->num_channels); i++) {
- if (exr_header->requested_pixel_types[i] != TINYEXR_PIXELTYPE_FLOAT) {
- tinyexr::SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
- err);
- return 0;
+ tinyexr::FP32 f32 = half_to_float(h16);
+
+ tinyexr::swap4(&f32.f);
+
+ // line_ptr[x] = f32.f;
+ tinyexr::cpy4(line_ptr + x, &(f32.f));
+ }
+ }
+ } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
+ for (int y = 0; y < num_lines; y++) {
+ // Assume increasing Y
+ unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
+ &buf.at(static_cast<size_t>(pixel_data_size * y *
+ width) +
+ channel_offset_list[c] *
+ static_cast<size_t>(width)));
+ for (int x = 0; x < width; x++) {
+ unsigned short val = reinterpret_cast<const unsigned short * const *>(
+ images)[c][(y + start_y) * x_stride + x];
+
+ tinyexr::swap2(&val);
+
+ // line_ptr[x] = val;
+ tinyexr::cpy2(line_ptr + x, &val);
+ }
+ }
+ } else {
+ assert(0);
+ }
+
+ } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
+ if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
+ for (int y = 0; y < num_lines; y++) {
+ // Assume increasing Y
+ unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
+ &buf.at(static_cast<size_t>(pixel_data_size * y *
+ width) +
+ channel_offset_list[c] *
+ static_cast<size_t>(width)));
+ for (int x = 0; x < width; x++) {
+ tinyexr::FP32 f32;
+ f32.f = reinterpret_cast<const float * const *>(
+ images)[c][(y + start_y) * x_stride + x];
+
+ tinyexr::FP16 h16;
+ h16 = float_to_half_full(f32);
+
+ tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
+
+ // line_ptr[x] = h16.u;
+ tinyexr::cpy2(line_ptr + x, &(h16.u));
+ }
+ }
+ } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
+ for (int y = 0; y < num_lines; y++) {
+ // Assume increasing Y
+ float *line_ptr = reinterpret_cast<float *>(&buf.at(
+ static_cast<size_t>(pixel_data_size * y * width) +
+ channel_offset_list[c] *
+ static_cast<size_t>(width)));
+ for (int x = 0; x < width; x++) {
+ float val = reinterpret_cast<const float * const *>(
+ images)[c][(y + start_y) * x_stride + x];
+
+ tinyexr::swap4(&val);
+
+ // line_ptr[x] = val;
+ tinyexr::cpy4(line_ptr + x, &val);
+ }
+ }
+ } else {
+ assert(0);
+ }
+ } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
+ for (int y = 0; y < num_lines; y++) {
+ // Assume increasing Y
+ unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
+ static_cast<size_t>(pixel_data_size * y * width) +
+ channel_offset_list[c] * static_cast<size_t>(width)));
+ for (int x = 0; x < width; x++) {
+ unsigned int val = reinterpret_cast<const unsigned int * const *>(
+ images)[c][(y + start_y) * x_stride + x];
+
+ tinyexr::swap4(&val);
+
+ // line_ptr[x] = val;
+ tinyexr::cpy4(line_ptr + x, &val);
+ }
+ }
}
}
+
+ if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
+ // 4 byte: scan line
+ // 4 byte: data size
+ // ~ : pixel data(uncompressed)
+ out_data.insert(out_data.end(), buf.begin(), buf.end());
+
+ } else if ((compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
+ (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
+#if TINYEXR_USE_MINIZ
+ std::vector<unsigned char> block(mz_compressBound(
+ static_cast<unsigned long>(buf.size())));
+#else
+ std::vector<unsigned char> block(
+ compressBound(static_cast<uLong>(buf.size())));
#endif
+ tinyexr::tinyexr_uint64 outSize = block.size();
- std::vector<unsigned char> memory;
+ tinyexr::CompressZip(&block.at(0), outSize,
+ reinterpret_cast<const unsigned char *>(&buf.at(0)),
+ static_cast<unsigned long>(buf.size()));
- // Header
- {
- const char header[] = {0x76, 0x2f, 0x31, 0x01};
- memory.insert(memory.end(), header, header + 4);
- }
+ // 4 byte: scan line
+ // 4 byte: data size
+ // ~ : pixel data(compressed)
+ unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
- // Version, scanline.
- {
- char marker[] = {2, 0, 0, 0};
- /* @todo
- if (exr_header->tiled) {
- marker[1] |= 0x2;
- }
- if (exr_header->long_name) {
- marker[1] |= 0x4;
- }
- if (exr_header->non_image) {
- marker[1] |= 0x8;
- }
- if (exr_header->multipart) {
- marker[1] |= 0x10;
- }
- */
- memory.insert(memory.end(), marker, marker + 4);
- }
+ out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
- int num_scanlines = 1;
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
- num_scanlines = 16;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
- num_scanlines = 32;
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
- num_scanlines = 16;
- }
+ } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
+ // (buf.size() * 3) / 2 would be enough.
+ std::vector<unsigned char> block((buf.size() * 3) / 2);
- // Write attributes.
- std::vector<tinyexr::ChannelInfo> channels;
- {
- std::vector<unsigned char> data;
+ tinyexr::tinyexr_uint64 outSize = block.size();
- for (int c = 0; c < exr_header->num_channels; c++) {
- tinyexr::ChannelInfo info;
- info.p_linear = 0;
- info.pixel_type = exr_header->requested_pixel_types[c];
- info.x_sampling = 1;
- info.y_sampling = 1;
- info.name = std::string(exr_header->channels[c].name);
- channels.push_back(info);
- }
+ tinyexr::CompressRle(&block.at(0), outSize,
+ reinterpret_cast<const unsigned char *>(&buf.at(0)),
+ static_cast<unsigned long>(buf.size()));
- tinyexr::WriteChannelInfo(data, channels);
+ // 4 byte: scan line
+ // 4 byte: data size
+ // ~ : pixel data(compressed)
+ unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
+ out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
- tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
- static_cast<int>(data.size()));
- }
+ } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
+#if TINYEXR_USE_PIZ
+ unsigned int bufLen =
+ 8192 + static_cast<unsigned int>(
+ 2 * static_cast<unsigned int>(
+ buf.size())); // @fixme { compute good bound. }
+ std::vector<unsigned char> block(bufLen);
+ unsigned int outSize = static_cast<unsigned int>(block.size());
+
+ CompressPiz(&block.at(0), &outSize,
+ reinterpret_cast<const unsigned char *>(&buf.at(0)),
+ buf.size(), channels, width, num_lines);
+
+ // 4 byte: scan line
+ // 4 byte: data size
+ // ~ : pixel data(compressed)
+ unsigned int data_len = outSize;
+ out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
- {
- int comp = exr_header->compression_type;
- tinyexr::swap4(&comp);
- tinyexr::WriteAttributeToMemory(
- &memory, "compression", "compression",
- reinterpret_cast<const unsigned char *>(&comp), 1);
- }
+#else
+ assert(0);
+#endif
+ } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
+#if TINYEXR_USE_ZFP
+ const ZFPCompressionParam* zfp_compression_param = reinterpret_cast<const ZFPCompressionParam*>(compression_param);
+ std::vector<unsigned char> block;
+ unsigned int outSize;
- {
- int data[4] = {0, 0, exr_image->width - 1, exr_image->height - 1};
- tinyexr::swap4(&data[0]);
- tinyexr::swap4(&data[1]);
- tinyexr::swap4(&data[2]);
- tinyexr::swap4(&data[3]);
- tinyexr::WriteAttributeToMemory(
- &memory, "dataWindow", "box2i",
- reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
- tinyexr::WriteAttributeToMemory(
- &memory, "displayWindow", "box2i",
- reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
- }
+ tinyexr::CompressZfp(
+ &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
+ width, num_lines, static_cast<int>(channels.size()), *zfp_compression_param);
- {
- unsigned char line_order = 0; // @fixme { read line_order from EXRHeader }
- tinyexr::WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
- &line_order, 1);
- }
+ // 4 byte: scan line
+ // 4 byte: data size
+ // ~ : pixel data(compressed)
+ unsigned int data_len = outSize;
+ out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
- {
- float aspectRatio = 1.0f;
- tinyexr::swap4(&aspectRatio);
- tinyexr::WriteAttributeToMemory(
- &memory, "pixelAspectRatio", "float",
- reinterpret_cast<const unsigned char *>(&aspectRatio), sizeof(float));
+#else
+ (void)compression_param;
+ assert(0);
+#endif
+ } else {
+ assert(0);
+ return false;
}
- {
- float center[2] = {0.0f, 0.0f};
- tinyexr::swap4(&center[0]);
- tinyexr::swap4(&center[1]);
- tinyexr::WriteAttributeToMemory(
- &memory, "screenWindowCenter", "v2f",
- reinterpret_cast<const unsigned char *>(center), 2 * sizeof(float));
+ return true;
+}
+
+static int EncodeTiledLevel(const EXRImage* level_image, const EXRHeader* exr_header,
+ const std::vector<tinyexr::ChannelInfo>& channels,
+ std::vector<std::vector<unsigned char> >& data_list,
+ size_t start_index, // for data_list
+ int num_x_tiles, int num_y_tiles,
+ const std::vector<size_t>& channel_offset_list,
+ int pixel_data_size,
+ const void* compression_param, // must be set if zfp compression is enabled
+ std::string* err) {
+ int num_tiles = num_x_tiles * num_y_tiles;
+ assert(num_tiles == level_image->num_tiles);
+
+ if ((exr_header->tile_size_x > level_image->width || exr_header->tile_size_y > level_image->height) &&
+ level_image->level_x == 0 && level_image->level_y == 0) {
+ if (err) {
+ (*err) += "Failed to encode tile data.\n";
+ }
+ return TINYEXR_ERROR_INVALID_DATA;
}
- {
- float w = static_cast<float>(exr_image->width);
- tinyexr::swap4(&w);
- tinyexr::WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
- reinterpret_cast<const unsigned char *>(&w),
- sizeof(float));
+
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::atomic<bool> invalid_data(false);
+#else
+ bool invalid_data(false);
+#endif
+
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::vector<std::thread> workers;
+ std::atomic<int> tile_count(0);
+
+ int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
+ if (num_threads > int(num_tiles)) {
+ num_threads = int(num_tiles);
}
- // Custom attributes
- if (exr_header->num_custom_attributes > 0) {
- for (int i = 0; i < exr_header->num_custom_attributes; i++) {
- tinyexr::WriteAttributeToMemory(
- &memory, exr_header->custom_attributes[i].name,
- exr_header->custom_attributes[i].type,
- reinterpret_cast<const unsigned char *>(
- exr_header->custom_attributes[i].value),
- exr_header->custom_attributes[i].size);
+ for (int t = 0; t < num_threads; t++) {
+ workers.emplace_back(std::thread([&]() {
+ int i = 0;
+ while ((i = tile_count++) < num_tiles) {
+
+#else
+ // Use signed int since some OpenMP compiler doesn't allow unsigned type for
+ // `parallel for`
+#if TINYEXR_USE_OPENMP
+#pragma omp parallel for
+#endif
+ for (int i = 0; i < num_tiles; i++) {
+
+#endif
+ size_t tile_idx = static_cast<size_t>(i);
+ size_t data_idx = tile_idx + start_index;
+
+ int x_tile = i % num_x_tiles;
+ int y_tile = i / num_x_tiles;
+
+ EXRTile& tile = level_image->tiles[tile_idx];
+
+ const unsigned char* const* images =
+ static_cast<const unsigned char* const*>(tile.images);
+
+ data_list[data_idx].resize(5*sizeof(int));
+ size_t data_header_size = data_list[data_idx].size();
+ bool ret = EncodePixelData(data_list[data_idx],
+ images,
+ exr_header->compression_type,
+ 0, // increasing y
+ tile.width,
+ exr_header->tile_size_y,
+ exr_header->tile_size_x,
+ 0,
+ tile.height,
+ pixel_data_size,
+ channels,
+ channel_offset_list,
+ compression_param);
+ if (!ret) {
+ invalid_data = true;
+ continue;
}
+ assert(data_list[data_idx].size() > data_header_size);
+ int data_len = static_cast<int>(data_list[data_idx].size() - data_header_size);
+ //tileX, tileY, levelX, levelY // pixel_data_size(int)
+ memcpy(&data_list[data_idx][0], &x_tile, sizeof(int));
+ memcpy(&data_list[data_idx][4], &y_tile, sizeof(int));
+ memcpy(&data_list[data_idx][8], &level_image->level_x, sizeof(int));
+ memcpy(&data_list[data_idx][12], &level_image->level_y, sizeof(int));
+ memcpy(&data_list[data_idx][16], &data_len, sizeof(int));
+
+ swap4(reinterpret_cast<int*>(&data_list[data_idx][0]));
+ swap4(reinterpret_cast<int*>(&data_list[data_idx][4]));
+ swap4(reinterpret_cast<int*>(&data_list[data_idx][8]));
+ swap4(reinterpret_cast<int*>(&data_list[data_idx][12]));
+ swap4(reinterpret_cast<int*>(&data_list[data_idx][16]));
+
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
}
+}));
+ }
- { // end of header
- unsigned char e = 0;
- memory.push_back(e);
+ for (auto &t : workers) {
+ t.join();
+ }
+#else
+ } // omp parallel
+#endif
+
+ if (invalid_data) {
+ if (err) {
+ (*err) += "Failed to encode tile data.\n";
+ }
+ return TINYEXR_ERROR_INVALID_DATA;
}
+ return TINYEXR_SUCCESS;
+}
- int num_blocks = exr_image->height / num_scanlines;
- if (num_blocks * num_scanlines < exr_image->height) {
- num_blocks++;
+static int NumScanlines(int compression_type) {
+ int num_scanlines = 1;
+ if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
+ num_scanlines = 16;
+ } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
+ num_scanlines = 32;
+ } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
+ num_scanlines = 16;
}
+ return num_scanlines;
+}
- std::vector<tinyexr::tinyexr_uint64> offsets(static_cast<size_t>(num_blocks));
+static int EncodeChunk(const EXRImage* exr_image, const EXRHeader* exr_header,
+ const std::vector<ChannelInfo>& channels,
+ int num_blocks,
+ tinyexr_uint64 chunk_offset, // starting offset of current chunk
+ bool is_multipart,
+ OffsetData& offset_data, // output block offsets, must be initialized
+ std::vector<std::vector<unsigned char> >& data_list, // output
+ tinyexr_uint64& total_size, // output: ending offset of current chunk
+ std::string* err) {
+ int num_scanlines = NumScanlines(exr_header->compression_type);
- size_t headerSize = memory.size();
- tinyexr::tinyexr_uint64 offset =
- headerSize +
- static_cast<size_t>(num_blocks) *
- sizeof(
- tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable)
+ data_list.resize(num_blocks);
- std::vector<std::vector<unsigned char> > data_list(
- static_cast<size_t>(num_blocks));
std::vector<size_t> channel_offset_list(
- static_cast<size_t>(exr_header->num_channels));
+ static_cast<size_t>(exr_header->num_channels));
int pixel_data_size = 0;
- size_t channel_offset = 0;
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- channel_offset_list[c] = channel_offset;
- if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- pixel_data_size += sizeof(unsigned short);
- channel_offset += sizeof(unsigned short);
- } else if (exr_header->requested_pixel_types[c] ==
- TINYEXR_PIXELTYPE_FLOAT) {
- pixel_data_size += sizeof(float);
- channel_offset += sizeof(float);
- } else if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
- pixel_data_size += sizeof(unsigned int);
- channel_offset += sizeof(unsigned int);
- } else {
- assert(0);
+ {
+ size_t channel_offset = 0;
+ for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
+ channel_offset_list[c] = channel_offset;
+ if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
+ pixel_data_size += sizeof(unsigned short);
+ channel_offset += sizeof(unsigned short);
+ } else if (channels[c].requested_pixel_type ==
+ TINYEXR_PIXELTYPE_FLOAT) {
+ pixel_data_size += sizeof(float);
+ channel_offset += sizeof(float);
+ } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_UINT) {
+ pixel_data_size += sizeof(unsigned int);
+ channel_offset += sizeof(unsigned int);
+ } else {
+ assert(0);
+ }
}
}
+ const void* compression_param = 0;
#if TINYEXR_USE_ZFP
tinyexr::ZFPCompressionParam zfp_compression_param;
@@ -12364,304 +6754,517 @@ size_t SaveEXRImageToMemory(const EXRImage *exr_image,
{
std::string e;
bool ret = tinyexr::FindZFPCompressionParam(
- &zfp_compression_param, exr_header->custom_attributes,
- exr_header->num_custom_attributes, &e);
+ &zfp_compression_param, exr_header->custom_attributes,
+ exr_header->num_custom_attributes, &e);
if (!ret) {
// Use predefined compression parameter.
zfp_compression_param.type = 0;
zfp_compression_param.rate = 2;
}
+ compression_param = &zfp_compression_param;
}
#endif
- // TODO(LTE): C++11 thread
+ tinyexr_uint64 offset = chunk_offset;
+ tinyexr_uint64 doffset = is_multipart ? 4u : 0u;
-// Use signed int since some OpenMP compiler doesn't allow unsigned type for
-// `parallel for`
-#if TINYEXR_USE_OPENMP
-#pragma omp parallel for
-#endif
- for (int i = 0; i < num_blocks; i++) {
- size_t ii = static_cast<size_t>(i);
- int start_y = num_scanlines * i;
- int endY = (std::min)(num_scanlines * (i + 1), exr_image->height);
- int h = endY - start_y;
-
- std::vector<unsigned char> buf(
- static_cast<size_t>(exr_image->width * h * pixel_data_size));
+ if (exr_image->tiles) {
+ const EXRImage* level_image = exr_image;
+ size_t block_idx = 0;
+ tinyexr::tinyexr_uint64 block_data_size = 0;
+ int num_levels = (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
+ offset_data.num_x_levels : (offset_data.num_x_levels * offset_data.num_y_levels);
+ for (int level_index = 0; level_index < num_levels; ++level_index) {
+ if (!level_image) {
+ if (err) {
+ (*err) += "Invalid number of tiled levels for EncodeChunk\n";
+ }
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
- for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
- if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
- for (int y = 0; y < h; y++) {
- // Assume increasing Y
- float *line_ptr = reinterpret_cast<float *>(&buf.at(
- static_cast<size_t>(pixel_data_size * y * exr_image->width) +
- channel_offset_list[c] *
- static_cast<size_t>(exr_image->width)));
- for (int x = 0; x < exr_image->width; x++) {
- tinyexr::FP16 h16;
- h16.u = reinterpret_cast<unsigned short **>(
- exr_image->images)[c][(y + start_y) * exr_image->width + x];
-
- tinyexr::FP32 f32 = half_to_float(h16);
-
- tinyexr::swap4(&f32.f);
-
- // line_ptr[x] = f32.f;
- tinyexr::cpy4(line_ptr + x, &(f32.f));
- }
- }
- } else if (exr_header->requested_pixel_types[c] ==
- TINYEXR_PIXELTYPE_HALF) {
- for (int y = 0; y < h; y++) {
- // Assume increasing Y
- unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &buf.at(static_cast<size_t>(pixel_data_size * y *
- exr_image->width) +
- channel_offset_list[c] *
- static_cast<size_t>(exr_image->width)));
- for (int x = 0; x < exr_image->width; x++) {
- unsigned short val = reinterpret_cast<unsigned short **>(
- exr_image->images)[c][(y + start_y) * exr_image->width + x];
-
- tinyexr::swap2(&val);
-
- // line_ptr[x] = val;
- tinyexr::cpy2(line_ptr + x, &val);
- }
- }
- } else {
- assert(0);
+ int level_index_from_image = LevelIndex(level_image->level_x, level_image->level_y,
+ exr_header->tile_level_mode, offset_data.num_x_levels);
+ if (level_index_from_image != level_index) {
+ if (err) {
+ (*err) += "Incorrect level ordering in tiled image\n";
}
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ int num_y_tiles = (int)offset_data.offsets[level_index].size();
+ assert(num_y_tiles);
+ int num_x_tiles = (int)offset_data.offsets[level_index][0].size();
+ assert(num_x_tiles);
+
+ std::string e;
+ int ret = EncodeTiledLevel(level_image,
+ exr_header,
+ channels,
+ data_list,
+ block_idx,
+ num_x_tiles,
+ num_y_tiles,
+ channel_offset_list,
+ pixel_data_size,
+ compression_param,
+ &e);
+ if (ret != TINYEXR_SUCCESS) {
+ if (!e.empty() && err) {
+ (*err) += e;
+ }
+ return ret;
+ }
- } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
- if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
- for (int y = 0; y < h; y++) {
- // Assume increasing Y
- unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
- &buf.at(static_cast<size_t>(pixel_data_size * y *
- exr_image->width) +
- channel_offset_list[c] *
- static_cast<size_t>(exr_image->width)));
- for (int x = 0; x < exr_image->width; x++) {
- tinyexr::FP32 f32;
- f32.f = reinterpret_cast<float **>(
- exr_image->images)[c][(y + start_y) * exr_image->width + x];
-
- tinyexr::FP16 h16;
- h16 = float_to_half_full(f32);
-
- tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
-
- // line_ptr[x] = h16.u;
- tinyexr::cpy2(line_ptr + x, &(h16.u));
- }
- }
- } else if (exr_header->requested_pixel_types[c] ==
- TINYEXR_PIXELTYPE_FLOAT) {
- for (int y = 0; y < h; y++) {
- // Assume increasing Y
- float *line_ptr = reinterpret_cast<float *>(&buf.at(
- static_cast<size_t>(pixel_data_size * y * exr_image->width) +
- channel_offset_list[c] *
- static_cast<size_t>(exr_image->width)));
- for (int x = 0; x < exr_image->width; x++) {
- float val = reinterpret_cast<float **>(
- exr_image->images)[c][(y + start_y) * exr_image->width + x];
-
- tinyexr::swap4(&val);
-
- // line_ptr[x] = val;
- tinyexr::cpy4(line_ptr + x, &val);
- }
- }
- } else {
- assert(0);
+ for (size_t j = 0; j < static_cast<size_t>(num_y_tiles); ++j)
+ for (size_t i = 0; i < static_cast<size_t>(num_x_tiles); ++i) {
+ offset_data.offsets[level_index][j][i] = offset;
+ swap8(reinterpret_cast<tinyexr_uint64*>(&offset_data.offsets[level_index][j][i]));
+ offset += data_list[block_idx].size() + doffset;
+ block_data_size += data_list[block_idx].size();
+ ++block_idx;
}
- } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
- for (int y = 0; y < h; y++) {
- // Assume increasing Y
- unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
- static_cast<size_t>(pixel_data_size * y * exr_image->width) +
- channel_offset_list[c] * static_cast<size_t>(exr_image->width)));
- for (int x = 0; x < exr_image->width; x++) {
- unsigned int val = reinterpret_cast<unsigned int **>(
- exr_image->images)[c][(y + start_y) * exr_image->width + x];
+ level_image = level_image->next_level;
+ }
+ assert(static_cast<int>(block_idx) == num_blocks);
+ total_size = offset;
+ } else { // scanlines
+ std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
- tinyexr::swap4(&val);
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ std::atomic<bool> invalid_data(false);
+ std::vector<std::thread> workers;
+ std::atomic<int> block_count(0);
- // line_ptr[x] = val;
- tinyexr::cpy4(line_ptr + x, &val);
- }
- }
+ int num_threads = std::min(std::max(1, int(std::thread::hardware_concurrency())), num_blocks);
+
+ for (int t = 0; t < num_threads; t++) {
+ workers.emplace_back(std::thread([&]() {
+ int i = 0;
+ while ((i = block_count++) < num_blocks) {
+
+#else
+ bool invalid_data(false);
+#if TINYEXR_USE_OPENMP
+#pragma omp parallel for
+#endif
+ for (int i = 0; i < num_blocks; i++) {
+
+#endif
+ int start_y = num_scanlines * i;
+ int end_Y = (std::min)(num_scanlines * (i + 1), exr_image->height);
+ int num_lines = end_Y - start_y;
+
+ const unsigned char* const* images =
+ static_cast<const unsigned char* const*>(exr_image->images);
+
+ data_list[i].resize(2*sizeof(int));
+ size_t data_header_size = data_list[i].size();
+
+ bool ret = EncodePixelData(data_list[i],
+ images,
+ exr_header->compression_type,
+ 0, // increasing y
+ exr_image->width,
+ exr_image->height,
+ exr_image->width,
+ start_y,
+ num_lines,
+ pixel_data_size,
+ channels,
+ channel_offset_list,
+ compression_param);
+ if (!ret) {
+ invalid_data = true;
+ continue; // "break" cannot be used with OpenMP
}
+ assert(data_list[i].size() > data_header_size);
+ int data_len = static_cast<int>(data_list[i].size() - data_header_size);
+ memcpy(&data_list[i][0], &start_y, sizeof(int));
+ memcpy(&data_list[i][4], &data_len, sizeof(int));
+
+ swap4(reinterpret_cast<int*>(&data_list[i][0]));
+ swap4(reinterpret_cast<int*>(&data_list[i][4]));
+#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
+ }
+ }));
}
- if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(uncompressed)
- std::vector<unsigned char> header(8);
- unsigned int data_len = static_cast<unsigned int>(buf.size());
- memcpy(&header.at(0), &start_y, sizeof(int));
- memcpy(&header.at(4), &data_len, sizeof(unsigned int));
+ for (auto &t : workers) {
+ t.join();
+ }
+#else
+ } // omp parallel
+#endif
+
+ if (invalid_data) {
+ if (err) {
+ (*err) += "Failed to encode scanline data.\n";
+ }
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
+ for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
+ offsets[i] = offset;
+ tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
+ offset += data_list[i].size() + doffset;
+ }
- data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
- data_list[ii].insert(data_list[ii].end(), buf.begin(),
- buf.begin() + data_len);
+ total_size = static_cast<size_t>(offset);
+ }
+ return TINYEXR_SUCCESS;
+}
- } else if ((exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
- (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
-#if TINYEXR_USE_MINIZ
- std::vector<unsigned char> block(tinyexr::miniz::mz_compressBound(
- static_cast<unsigned long>(buf.size())));
+// can save a single or multi-part image (no deep* formats)
+static size_t SaveEXRNPartImageToMemory(const EXRImage* exr_images,
+ const EXRHeader** exr_headers,
+ unsigned int num_parts,
+ unsigned char** memory_out, const char** err) {
+ if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
+ memory_out == NULL) {
+ SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
+ err);
+ return 0;
+ }
+ {
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ if (exr_headers[i]->compression_type < 0) {
+ SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
+ err);
+ return 0;
+ }
+#if !TINYEXR_USE_PIZ
+ if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
+ SetErrorMessage("PIZ compression is not supported in this build",
+ err);
+ return 0;
+ }
+#endif
+#if !TINYEXR_USE_ZFP
+ if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
+ SetErrorMessage("ZFP compression is not supported in this build",
+ err);
+ return 0;
+ }
#else
- std::vector<unsigned char> block(
- compressBound(static_cast<uLong>(buf.size())));
+ for (int c = 0; c < exr_header->num_channels; ++c) {
+ if (exr_headers[i]->requested_pixel_types[c] != TINYEXR_PIXELTYPE_FLOAT) {
+ SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
+ err);
+ return 0;
+ }
+ }
#endif
- tinyexr::tinyexr_uint64 outSize = block.size();
-
- tinyexr::CompressZip(&block.at(0), outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- static_cast<unsigned long>(buf.size()));
+ }
+ }
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- std::vector<unsigned char> header(8);
- unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
- memcpy(&header.at(0), &start_y, sizeof(int));
- memcpy(&header.at(4), &data_len, sizeof(unsigned int));
+ std::vector<unsigned char> memory;
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
+ // Header
+ {
+ const char header[] = { 0x76, 0x2f, 0x31, 0x01 };
+ memory.insert(memory.end(), header, header + 4);
+ }
- data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
- data_list[ii].insert(data_list[ii].end(), block.begin(),
- block.begin() + data_len);
+ // Version
+ // using value from the first header
+ int long_name = exr_headers[0]->long_name;
+ {
+ char marker[] = { 2, 0, 0, 0 };
+ /* @todo
+ if (exr_header->non_image) {
+ marker[1] |= 0x8;
+ }
+ */
+ // tiled
+ if (num_parts == 1 && exr_images[0].tiles) {
+ marker[1] |= 0x2;
+ }
+ // long_name
+ if (long_name) {
+ marker[1] |= 0x4;
+ }
+ // multipart
+ if (num_parts > 1) {
+ marker[1] |= 0x10;
+ }
+ memory.insert(memory.end(), marker, marker + 4);
+ }
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
- // (buf.size() * 3) / 2 would be enough.
- std::vector<unsigned char> block((buf.size() * 3) / 2);
+ int total_chunk_count = 0;
+ std::vector<int> chunk_count(num_parts);
+ std::vector<OffsetData> offset_data(num_parts);
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ if (!exr_images[i].tiles) {
+ int num_scanlines = NumScanlines(exr_headers[i]->compression_type);
+ chunk_count[i] =
+ (exr_images[i].height + num_scanlines - 1) / num_scanlines;
+ InitSingleResolutionOffsets(offset_data[i], chunk_count[i]);
+ total_chunk_count += chunk_count[i];
+ } else {
+ {
+ std::vector<int> num_x_tiles, num_y_tiles;
+ PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i]);
+ chunk_count[i] =
+ InitTileOffsets(offset_data[i], exr_headers[i], num_x_tiles, num_y_tiles);
+ total_chunk_count += chunk_count[i];
+ }
+ }
+ }
+ // Write attributes to memory buffer.
+ std::vector< std::vector<tinyexr::ChannelInfo> > channels(num_parts);
+ {
+ std::set<std::string> partnames;
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ //channels
+ {
+ std::vector<unsigned char> data;
+
+ for (int c = 0; c < exr_headers[i]->num_channels; c++) {
+ tinyexr::ChannelInfo info;
+ info.p_linear = 0;
+ info.pixel_type = exr_headers[i]->pixel_types[c];
+ info.requested_pixel_type = exr_headers[i]->requested_pixel_types[c];
+ info.x_sampling = 1;
+ info.y_sampling = 1;
+ info.name = std::string(exr_headers[i]->channels[c].name);
+ channels[i].push_back(info);
+ }
- tinyexr::tinyexr_uint64 outSize = block.size();
+ tinyexr::WriteChannelInfo(data, channels[i]);
- tinyexr::CompressRle(&block.at(0), outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- static_cast<unsigned long>(buf.size()));
+ tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
+ static_cast<int>(data.size()));
+ }
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- std::vector<unsigned char> header(8);
- unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
- memcpy(&header.at(0), &start_y, sizeof(int));
- memcpy(&header.at(4), &data_len, sizeof(unsigned int));
+ {
+ int comp = exr_headers[i]->compression_type;
+ swap4(&comp);
+ WriteAttributeToMemory(
+ &memory, "compression", "compression",
+ reinterpret_cast<const unsigned char*>(&comp), 1);
+ }
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
+ {
+ int data[4] = { 0, 0, exr_images[i].width - 1, exr_images[i].height - 1 };
+ swap4(&data[0]);
+ swap4(&data[1]);
+ swap4(&data[2]);
+ swap4(&data[3]);
+ WriteAttributeToMemory(
+ &memory, "dataWindow", "box2i",
+ reinterpret_cast<const unsigned char*>(data), sizeof(int) * 4);
+
+ int data0[4] = { 0, 0, exr_images[0].width - 1, exr_images[0].height - 1 };
+ swap4(&data0[0]);
+ swap4(&data0[1]);
+ swap4(&data0[2]);
+ swap4(&data0[3]);
+ // Note: must be the same across parts (currently, using value from the first header)
+ WriteAttributeToMemory(
+ &memory, "displayWindow", "box2i",
+ reinterpret_cast<const unsigned char*>(data0), sizeof(int) * 4);
+ }
- data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
- data_list[ii].insert(data_list[ii].end(), block.begin(),
- block.begin() + data_len);
+ {
+ unsigned char line_order = 0; // @fixme { read line_order from EXRHeader }
+ WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
+ &line_order, 1);
+ }
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
-#if TINYEXR_USE_PIZ
- unsigned int bufLen =
- 8192 + static_cast<unsigned int>(
- 2 * static_cast<unsigned int>(
- buf.size())); // @fixme { compute good bound. }
- std::vector<unsigned char> block(bufLen);
- unsigned int outSize = static_cast<unsigned int>(block.size());
-
- CompressPiz(&block.at(0), &outSize,
- reinterpret_cast<const unsigned char *>(&buf.at(0)),
- buf.size(), channels, exr_image->width, h);
-
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- std::vector<unsigned char> header(8);
- unsigned int data_len = outSize;
- memcpy(&header.at(0), &start_y, sizeof(int));
- memcpy(&header.at(4), &data_len, sizeof(unsigned int));
-
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
-
- data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
- data_list[ii].insert(data_list[ii].end(), block.begin(),
- block.begin() + data_len);
+ {
+ // Note: must be the same across parts
+ float aspectRatio = 1.0f;
+ swap4(&aspectRatio);
+ WriteAttributeToMemory(
+ &memory, "pixelAspectRatio", "float",
+ reinterpret_cast<const unsigned char*>(&aspectRatio), sizeof(float));
+ }
-#else
- assert(0);
-#endif
- } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
-#if TINYEXR_USE_ZFP
- std::vector<unsigned char> block;
- unsigned int outSize;
+ {
+ float center[2] = { 0.0f, 0.0f };
+ swap4(&center[0]);
+ swap4(&center[1]);
+ WriteAttributeToMemory(
+ &memory, "screenWindowCenter", "v2f",
+ reinterpret_cast<const unsigned char*>(center), 2 * sizeof(float));
+ }
- tinyexr::CompressZfp(
- &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
- exr_image->width, h, exr_header->num_channels, zfp_compression_param);
+ {
+ float w = 1.0f;
+ swap4(&w);
+ WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
+ reinterpret_cast<const unsigned char*>(&w),
+ sizeof(float));
+ }
- // 4 byte: scan line
- // 4 byte: data size
- // ~ : pixel data(compressed)
- std::vector<unsigned char> header(8);
- unsigned int data_len = outSize;
- memcpy(&header.at(0), &start_y, sizeof(int));
- memcpy(&header.at(4), &data_len, sizeof(unsigned int));
+ if (exr_images[i].tiles) {
+ unsigned char tile_mode = static_cast<unsigned char>(exr_headers[i]->tile_level_mode & 0x3);
+ if (exr_headers[i]->tile_rounding_mode) tile_mode |= (1u << 4u);
+ //unsigned char data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ unsigned int datai[3] = { 0, 0, 0 };
+ unsigned char* data = reinterpret_cast<unsigned char*>(&datai[0]);
+ datai[0] = static_cast<unsigned int>(exr_headers[i]->tile_size_x);
+ datai[1] = static_cast<unsigned int>(exr_headers[i]->tile_size_y);
+ data[8] = tile_mode;
+ swap4(reinterpret_cast<unsigned int*>(&data[0]));
+ swap4(reinterpret_cast<unsigned int*>(&data[4]));
+ WriteAttributeToMemory(
+ &memory, "tiles", "tiledesc",
+ reinterpret_cast<const unsigned char*>(data), 9);
+ }
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
- tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
+ // must be present for multi-part files - according to spec.
+ if (num_parts > 1) {
+ // name
+ {
+ size_t len = 0;
+ if ((len = strlen(exr_headers[i]->name)) > 0) {
+ partnames.emplace(exr_headers[i]->name);
+ if (partnames.size() != i + 1) {
+ SetErrorMessage("'name' attributes must be unique for a multi-part file", err);
+ return 0;
+ }
+ WriteAttributeToMemory(
+ &memory, "name", "string",
+ reinterpret_cast<const unsigned char*>(exr_headers[i]->name),
+ static_cast<int>(len));
+ } else {
+ SetErrorMessage("Invalid 'name' attribute for a multi-part file", err);
+ return 0;
+ }
+ }
+ // type
+ {
+ const char* type = "scanlineimage";
+ if (exr_images[i].tiles) type = "tiledimage";
+ WriteAttributeToMemory(
+ &memory, "type", "string",
+ reinterpret_cast<const unsigned char*>(type),
+ static_cast<int>(strlen(type)));
+ }
+ // chunkCount
+ {
+ WriteAttributeToMemory(
+ &memory, "chunkCount", "int",
+ reinterpret_cast<const unsigned char*>(&chunk_count[i]),
+ 4);
+ }
+ }
- data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
- data_list[ii].insert(data_list[ii].end(), block.begin(),
- block.begin() + data_len);
+ // Custom attributes
+ if (exr_headers[i]->num_custom_attributes > 0) {
+ for (int j = 0; j < exr_headers[i]->num_custom_attributes; j++) {
+ tinyexr::WriteAttributeToMemory(
+ &memory, exr_headers[i]->custom_attributes[j].name,
+ exr_headers[i]->custom_attributes[j].type,
+ reinterpret_cast<const unsigned char*>(
+ exr_headers[i]->custom_attributes[j].value),
+ exr_headers[i]->custom_attributes[j].size);
+ }
+ }
-#else
- assert(0);
-#endif
- } else {
- assert(0);
+ { // end of header
+ memory.push_back(0);
+ }
}
- } // omp parallel
-
- for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
- offsets[i] = offset;
- tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
- offset += data_list[i].size();
+ }
+ if (num_parts > 1) {
+ // end of header list
+ memory.push_back(0);
}
- size_t totalSize = static_cast<size_t>(offset);
- {
- memory.insert(
- memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)),
- reinterpret_cast<unsigned char *>(&offsets.at(0)) +
- sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks));
+ tinyexr_uint64 chunk_offset = memory.size() + size_t(total_chunk_count) * sizeof(tinyexr_uint64);
+
+ tinyexr_uint64 total_size = 0;
+ std::vector< std::vector< std::vector<unsigned char> > > data_lists(num_parts);
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ std::string e;
+ int ret = EncodeChunk(&exr_images[i], exr_headers[i],
+ channels[i],
+ chunk_count[i],
+ // starting offset of current chunk after part-number
+ chunk_offset,
+ num_parts > 1,
+ offset_data[i], // output: block offsets, must be initialized
+ data_lists[i], // output
+ total_size, // output
+ &e);
+ if (ret != TINYEXR_SUCCESS) {
+ if (!e.empty()) {
+ tinyexr::SetErrorMessage(e, err);
+ }
+ return 0;
+ }
+ chunk_offset = total_size;
}
- if (memory.size() == 0) {
+ // Allocating required memory
+ if (total_size == 0) { // something went wrong
tinyexr::SetErrorMessage("Output memory size is zero", err);
return 0;
}
-
- (*memory_out) = static_cast<unsigned char *>(malloc(totalSize));
- memcpy((*memory_out), &memory.at(0), memory.size());
- unsigned char *memory_ptr = *memory_out + memory.size();
-
- for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
- memcpy(memory_ptr, &data_list[i].at(0), data_list[i].size());
- memory_ptr += data_list[i].size();
+ (*memory_out) = static_cast<unsigned char*>(malloc(total_size));
+
+ // Writing header
+ memcpy((*memory_out), &memory[0], memory.size());
+ unsigned char* memory_ptr = *memory_out + memory.size();
+ size_t sum = memory.size();
+
+ // Writing offset data for chunks
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ if (exr_images[i].tiles) {
+ const EXRImage* level_image = &exr_images[i];
+ int num_levels = (exr_headers[i]->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
+ offset_data[i].num_x_levels : (offset_data[i].num_x_levels * offset_data[i].num_y_levels);
+ for (int level_index = 0; level_index < num_levels; ++level_index) {
+ for (size_t j = 0; j < offset_data[i].offsets[level_index].size(); ++j) {
+ size_t num_bytes = sizeof(tinyexr_uint64) * offset_data[i].offsets[level_index][j].size();
+ sum += num_bytes;
+ assert(sum <= total_size);
+ memcpy(memory_ptr,
+ reinterpret_cast<unsigned char*>(&offset_data[i].offsets[level_index][j][0]),
+ num_bytes);
+ memory_ptr += num_bytes;
+ }
+ level_image = level_image->next_level;
+ }
+ } else {
+ size_t num_bytes = sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(chunk_count[i]);
+ sum += num_bytes;
+ assert(sum <= total_size);
+ std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data[i].offsets[0][0];
+ memcpy(memory_ptr, reinterpret_cast<unsigned char*>(&offsets[0]), num_bytes);
+ memory_ptr += num_bytes;
+ }
+ }
+
+ // Writing chunk data
+ for (unsigned int i = 0; i < num_parts; ++i) {
+ for (size_t j = 0; j < static_cast<size_t>(chunk_count[i]); ++j) {
+ if (num_parts > 1) {
+ sum += 4;
+ assert(sum <= total_size);
+ unsigned int part_number = i;
+ swap4(&part_number);
+ memcpy(memory_ptr, &part_number, 4);
+ memory_ptr += 4;
+ }
+ sum += data_lists[i][j].size();
+ assert(sum <= total_size);
+ memcpy(memory_ptr, &data_lists[i][j][0], data_lists[i][j].size());
+ memory_ptr += data_lists[i][j].size();
+ }
}
+ assert(sum == total_size);
+ return total_size; // OK
+}
+
+} // tinyexr
- return totalSize; // OK
+size_t SaveEXRImageToMemory(const EXRImage* exr_image,
+ const EXRHeader* exr_header,
+ unsigned char** memory_out, const char** err) {
+ return tinyexr::SaveEXRNPartImageToMemory(exr_image, &exr_header, 1, memory_out, err);
}
int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
@@ -12690,7 +7293,7 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
if (errcode != 0) {
@@ -12699,7 +7302,7 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
return TINYEXR_ERROR_CANT_WRITE_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "wb");
#endif
#else
@@ -12733,6 +7336,75 @@ int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
return TINYEXR_SUCCESS;
}
+size_t SaveEXRMultipartImageToMemory(const EXRImage* exr_images,
+ const EXRHeader** exr_headers,
+ unsigned int num_parts,
+ unsigned char** memory_out, const char** err) {
+ if (exr_images == NULL || exr_headers == NULL || num_parts < 2 ||
+ memory_out == NULL) {
+ tinyexr::SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
+ err);
+ return 0;
+ }
+ return tinyexr::SaveEXRNPartImageToMemory(exr_images, exr_headers, num_parts, memory_out, err);
+}
+
+int SaveEXRMultipartImageToFile(const EXRImage* exr_images,
+ const EXRHeader** exr_headers,
+ unsigned int num_parts,
+ const char* filename,
+ const char** err) {
+ if (exr_images == NULL || exr_headers == NULL || num_parts < 2) {
+ tinyexr::SetErrorMessage("Invalid argument for SaveEXRMultipartImageToFile",
+ err);
+ return TINYEXR_ERROR_INVALID_ARGUMENT;
+ }
+
+ FILE *fp = NULL;
+#ifdef _WIN32
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
+ errno_t errcode =
+ _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
+ if (errcode != 0) {
+ tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
+ err);
+ return TINYEXR_ERROR_CANT_WRITE_FILE;
+ }
+#else
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
+ fp = fopen(filename, "wb");
+#endif
+#else
+ fp = fopen(filename, "wb");
+#endif
+ if (!fp) {
+ tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
+ err);
+ return TINYEXR_ERROR_CANT_WRITE_FILE;
+ }
+
+ unsigned char *mem = NULL;
+ size_t mem_size = SaveEXRMultipartImageToMemory(exr_images, exr_headers, num_parts, &mem, err);
+ if (mem_size == 0) {
+ return TINYEXR_ERROR_SERIALZATION_FAILED;
+ }
+
+ size_t written_size = 0;
+ if ((mem_size > 0) && mem) {
+ written_size = fwrite(mem, 1, mem_size, fp);
+ }
+ free(mem);
+
+ fclose(fp);
+
+ if (written_size != mem_size) {
+ tinyexr::SetErrorMessage("Cannot write a file", err);
+ return TINYEXR_ERROR_CANT_WRITE_FILE;
+ }
+
+ return TINYEXR_SUCCESS;
+}
+
int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
if (deep_image == NULL) {
tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err);
@@ -12741,7 +7413,7 @@ int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
#ifdef _WIN32
FILE *fp = NULL;
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (errcode != 0) {
@@ -12750,7 +7422,7 @@ int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
return TINYEXR_ERROR_CANT_OPEN_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
if (!fp) {
@@ -12917,9 +7589,6 @@ int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
int data_width = dw - dx + 1;
int data_height = dh - dy + 1;
- std::vector<float> image(
- static_cast<size_t>(data_width * data_height * 4)); // 4 = RGBA
-
// Read offset tables.
int num_blocks = data_height / num_scanline_blocks;
if (num_blocks * num_scanline_blocks < data_height) {
@@ -13138,6 +7807,9 @@ void InitEXRImage(EXRImage *exr_image) {
exr_image->images = NULL;
exr_image->tiles = NULL;
+ exr_image->next_level = NULL;
+ exr_image->level_x = 0;
+ exr_image->level_y = 0;
exr_image->num_tiles = 0;
}
@@ -13184,14 +7856,43 @@ int FreeEXRHeader(EXRHeader *exr_header) {
free(exr_header->custom_attributes);
}
+ EXRSetNameAttr(exr_header, NULL);
+
return TINYEXR_SUCCESS;
}
+void EXRSetNameAttr(EXRHeader* exr_header, const char* name) {
+ if (exr_header == NULL) {
+ return;
+ }
+ memset(exr_header->name, 0, 256);
+ if (name != NULL) {
+ size_t len = std::min(strlen(name), (size_t)255);
+ if (len) {
+ memcpy(exr_header->name, name, len);
+ }
+ }
+}
+
+int EXRNumLevels(const EXRImage* exr_image) {
+ if (exr_image == NULL) return 0;
+ if(exr_image->images) return 1; // scanlines
+ int levels = 1;
+ const EXRImage* level_image = exr_image;
+ while((level_image = level_image->next_level)) ++levels;
+ return levels;
+}
+
int FreeEXRImage(EXRImage *exr_image) {
if (exr_image == NULL) {
return TINYEXR_ERROR_INVALID_ARGUMENT;
}
+ if (exr_image->next_level) {
+ FreeEXRImage(exr_image->next_level);
+ delete exr_image->next_level;
+ }
+
for (int i = 0; i < exr_image->num_channels; i++) {
if (exr_image->images && exr_image->images[i]) {
free(exr_image->images[i]);
@@ -13229,7 +7930,7 @@ int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (errcode != 0) {
@@ -13237,7 +7938,7 @@ int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
return TINYEXR_ERROR_INVALID_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
#else
@@ -13333,11 +8034,11 @@ int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers,
static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size()));
for (size_t i = 0; i < infos.size(); i++) {
EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader)));
+ memset(exr_header, 0, sizeof(EXRHeader));
ConvertHeader(exr_header, infos[i]);
- // transfoer `tiled` from version.
- exr_header->tiled = exr_version->tiled;
+ exr_header->multipart = exr_version->multipart ? 1 : 0;
(*exr_headers)[i] = exr_header;
}
@@ -13359,7 +8060,7 @@ int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (errcode != 0) {
@@ -13367,7 +8068,7 @@ int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
return TINYEXR_ERROR_INVALID_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
#else
@@ -13465,14 +8166,14 @@ int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) {
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (err != 0) {
// TODO(syoyo): return wfopen_s erro code
return TINYEXR_ERROR_CANT_OPEN_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
#else
@@ -13543,51 +8244,82 @@ int LoadEXRMultipartImageFromMemory(EXRImage *exr_images,
// http://www.openexr.com/openexrfilelayout.pdf
// Load chunk offset table.
- std::vector<std::vector<tinyexr::tinyexr_uint64> > chunk_offset_table_list;
+ std::vector<tinyexr::OffsetData> chunk_offset_table_list;
+ chunk_offset_table_list.reserve(num_parts);
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
- std::vector<tinyexr::tinyexr_uint64> offset_table(
- static_cast<size_t>(exr_headers[i]->chunk_count));
-
- for (size_t c = 0; c < offset_table.size(); c++) {
- tinyexr::tinyexr_uint64 offset;
- memcpy(&offset, marker, 8);
- tinyexr::swap8(&offset);
+ chunk_offset_table_list.resize(chunk_offset_table_list.size() + 1);
+ tinyexr::OffsetData& offset_data = chunk_offset_table_list.back();
+ if (!exr_headers[i]->tiled || exr_headers[i]->tile_level_mode == TINYEXR_TILE_ONE_LEVEL) {
+ tinyexr::InitSingleResolutionOffsets(offset_data, exr_headers[i]->chunk_count);
+ std::vector<tinyexr::tinyexr_uint64>& offset_table = offset_data.offsets[0][0];
+
+ for (size_t c = 0; c < offset_table.size(); c++) {
+ tinyexr::tinyexr_uint64 offset;
+ memcpy(&offset, marker, 8);
+ tinyexr::swap8(&offset);
+
+ if (offset >= size) {
+ tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
+ err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
- if (offset >= size) {
- tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
- err);
- return TINYEXR_ERROR_INVALID_DATA;
+ offset_table[c] = offset + 4; // +4 to skip 'part number'
+ marker += 8;
+ }
+ } else {
+ {
+ std::vector<int> num_x_tiles, num_y_tiles;
+ tinyexr::PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i]);
+ int num_blocks = InitTileOffsets(offset_data, exr_headers[i], num_x_tiles, num_y_tiles);
+ if (num_blocks != exr_headers[i]->chunk_count) {
+ tinyexr::SetErrorMessage("Invalid offset table size.", err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ }
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
+ for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
+ tinyexr::tinyexr_uint64 offset;
+ memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
+ tinyexr::swap8(&offset);
+ if (offset >= size) {
+ tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
+ err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ offset_data.offsets[l][dy][dx] = offset + 4; // +4 to skip 'part number'
+ marker += sizeof(tinyexr::tinyexr_uint64); // = 8
+ }
+ }
}
-
- offset_table[c] = offset + 4; // +4 to skip 'part number'
- marker += 8;
}
-
- chunk_offset_table_list.push_back(offset_table);
}
// Decode image.
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
- std::vector<tinyexr::tinyexr_uint64> &offset_table =
- chunk_offset_table_list[i];
+ tinyexr::OffsetData &offset_data = chunk_offset_table_list[i];
// First check 'part number' is identitical to 'i'
- for (size_t c = 0; c < offset_table.size(); c++) {
- const unsigned char *part_number_addr =
- memory + offset_table[c] - 4; // -4 to move to 'part number' field.
- unsigned int part_no;
- memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4
- tinyexr::swap4(&part_no);
-
- if (part_no != i) {
- tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
- err);
- return TINYEXR_ERROR_INVALID_DATA;
- }
- }
+ for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
+ for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
+ for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
+
+ const unsigned char *part_number_addr =
+ memory + offset_data.offsets[l][dy][dx] - 4; // -4 to move to 'part number' field.
+ unsigned int part_no;
+ memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4
+ tinyexr::swap4(&part_no);
+
+ if (part_no != i) {
+ tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
+ err);
+ return TINYEXR_ERROR_INVALID_DATA;
+ }
+ }
std::string e;
- int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_table,
+ int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_data,
memory, size, &e);
if (ret != TINYEXR_SUCCESS) {
if (!e.empty()) {
@@ -13612,7 +8344,7 @@ int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
FILE *fp = NULL;
#ifdef _WIN32
-#if defined(_MSC_VER) || defined(__MINGW32__) // MSVC, MinGW gcc or clang
+#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
errno_t errcode =
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
if (errcode != 0) {
@@ -13620,7 +8352,7 @@ int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
return TINYEXR_ERROR_CANT_OPEN_FILE;
}
#else
- // Unknown compiler
+ // Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
fp = fopen(filename, "rb");
#endif
#else