diff options
Diffstat (limited to 'thirdparty/thorvg/src/lib/sw_engine/tvgSwRaster.cpp')
-rw-r--r-- | thirdparty/thorvg/src/lib/sw_engine/tvgSwRaster.cpp | 1497 |
1 files changed, 1497 insertions, 0 deletions
diff --git a/thirdparty/thorvg/src/lib/sw_engine/tvgSwRaster.cpp b/thirdparty/thorvg/src/lib/sw_engine/tvgSwRaster.cpp new file mode 100644 index 0000000000..deebed16ee --- /dev/null +++ b/thirdparty/thorvg/src/lib/sw_engine/tvgSwRaster.cpp @@ -0,0 +1,1497 @@ +/* + * Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved. + + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "tvgMath.h" +#include "tvgRender.h" +#include "tvgSwCommon.h" + +/************************************************************************/ +/* Internal Class Implementation */ +/************************************************************************/ +constexpr auto DOWN_SCALE_TOLERANCE = 0.5f; + + +static inline uint32_t _multiplyAlpha(uint32_t c, uint32_t a) +{ + return ((c * a + 0xff) >> 8); +} + + +static inline uint32_t _alpha(uint32_t c) +{ + return (c >> 24); +} + + +static inline uint32_t _ialpha(uint32_t c) +{ + return (~c >> 24); +} + + +static inline uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + return (a << 24 | b << 16 | g << 8 | r); +} + + +static inline uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + return (a << 24 | r << 16 | g << 8 | b); +} + + +#include "tvgSwRasterTexmap.h" +#include "tvgSwRasterC.h" +#include "tvgSwRasterAvx.h" +#include "tvgSwRasterNeon.h" + + +static inline bool _compositing(const SwSurface* surface) +{ + if (!surface->compositor || surface->compositor->method == CompositeMethod::None) return false; + return true; +} + + +static inline uint32_t _halfScale(float scale) +{ + auto halfScale = static_cast<uint32_t>(0.5f / scale); + if (halfScale == 0) halfScale = 1; + return halfScale; +} + +//Bilinear Interpolation +static uint32_t _interpUpScaler(const uint32_t *img, uint32_t w, uint32_t h, float sx, float sy) +{ + auto rx = (uint32_t)(sx); + auto ry = (uint32_t)(sy); + auto rx2 = rx + 1; + if (rx2 >= w) rx2 = w - 1; + auto ry2 = ry + 1; + if (ry2 >= h) ry2 = h - 1; + + auto dx = static_cast<uint32_t>((sx - rx) * 255.0f); + auto dy = static_cast<uint32_t>((sy - ry) * 255.0f); + + auto c1 = img[rx + ry * w]; + auto c2 = img[rx2 + ry * w]; + auto c3 = img[rx2 + ry2 * w]; + auto c4 = img[rx + ry2 * w]; + + return INTERPOLATE(dy, INTERPOLATE(dx, c3, c4), INTERPOLATE(dx, c2, c1)); +} + + +//2n x 2n Mean Kernel +static uint32_t _interpDownScaler(const uint32_t *img, uint32_t stride, uint32_t w, uint32_t h, uint32_t rx, uint32_t ry, uint32_t n) +{ + uint32_t c[4] = {0, 0, 0, 0}; + auto n2 = n * n; + auto src = img + rx - n + (ry - n) * stride; + + for (auto y = ry - n; y < ry + n; ++y) { + if (y >= h) continue; + auto p = src; + for (auto x = rx - n; x < rx + n; ++x, ++p) { + if (x >= w) continue; + c[0] += *p >> 24; + c[1] += (*p >> 16) & 0xff; + c[2] += (*p >> 8) & 0xff; + c[3] += *p & 0xff; + } + src += stride; + } + for (auto i = 0; i < 4; ++i) { + c[i] = (c[i] >> 2) / n2; + } + return (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3]; +} + + +/************************************************************************/ +/* Rect */ +/************************************************************************/ + +static bool _rasterMaskedRect(SwSurface* surface, const SwBBox& region, uint32_t color, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Masked Rect"); + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride) + region.min.x; //compositor buffer + + for (uint32_t y = 0; y < h; ++y) { + auto dst = &buffer[y * surface->stride]; + auto cmp = &cbuffer[y * surface->stride]; + for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp) { + auto tmp = ALPHA_BLEND(color, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + return true; +} + + +static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint32_t color) +{ + auto buffer = surface->buffer + (region.min.y * surface->stride); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + for (uint32_t y = 0; y < h; ++y) { + rasterRGBA32(buffer + y * surface->stride, color, region.min.x, w); + } + return true; +} + + +static bool _rasterRect(SwSurface* surface, const SwBBox& region, uint32_t color, uint8_t opacity) +{ + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterMaskedRect(surface, region, color, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterMaskedRect(surface, region, color, _ialpha); + } + } else { + if (opacity == 255) { + return _rasterSolidRect(surface, region, color); + } else { +#if defined(THORVG_AVX_VECTOR_SUPPORT) + return avxRasterTranslucentRect(surface, region, color); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + return neonRasterTranslucentRect(surface, region, color); +#else + return cRasterTranslucentRect(surface, region, color); +#endif + } + } + return false; +} + + +/************************************************************************/ +/* Rle */ +/************************************************************************/ + +static bool _rasterMaskedRle(SwSurface* surface, SwRleData* rle, uint32_t color, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Masked Rle"); + + auto span = rle->spans; + uint32_t src; + auto cbuffer = surface->compositor->image.data; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[span->y * surface->compositor->image.stride + span->x]; + if (span->coverage == 255) src = color; + else src = ALPHA_BLEND(color, span->coverage); + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { + auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + return true; +} + + +static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint32_t color) +{ + auto span = rle->spans; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + if (span->coverage == 255) { + rasterRGBA32(surface->buffer + span->y * surface->stride, color, span->x, span->len); + } else { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto src = ALPHA_BLEND(color, span->coverage); + auto ialpha = 255 - span->coverage; + for (uint32_t x = 0; x < span->len; ++x, ++dst) { + *dst = src + ALPHA_BLEND(*dst, ialpha); + } + } + } + return true; +} + + +static bool _rasterRle(SwSurface* surface, SwRleData* rle, uint32_t color, uint8_t opacity) +{ + if (!rle) return false; + + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterMaskedRle(surface, rle, color, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterMaskedRle(surface, rle, color, _ialpha); + } + } else { + if (opacity == 255) { + return _rasterSolidRle(surface, rle, color); + } else { +#if defined(THORVG_AVX_VECTOR_SUPPORT) + return avxRasterTranslucentRle(surface, rle, color); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + return neonRasterTranslucentRle(surface, rle, color); +#else + return cRasterTranslucentRle(surface, rle, color); +#endif + } + } + return false; +} + + +/************************************************************************/ +/* RLE Transformed RGBA Image */ +/************************************************************************/ + +static bool _transformedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, uint32_t opacity) +{ + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity, _ialpha); + } + } else { + return _rasterTexmapPolygon(surface, image, transform, nullptr, opacity, nullptr); + } + return false; +} + +/************************************************************************/ +/* RLE Scaled RGBA Image */ +/************************************************************************/ + +static bool _rasterScaledMaskedTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Scaled Masked Translucent Rle Image"); + + auto span = image->rle->spans; + + //Center (Down-Scaled) + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = (uint32_t)(span->y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &surface->compositor->image.data[span->y * surface->compositor->image.stride + span->x]; + auto alpha = _multiplyAlpha(span->coverage, opacity); + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), alpha); + auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + //Center (Up-Scaled) + } else { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &surface->compositor->image.data[span->y * surface->compositor->image.stride + span->x]; + auto alpha = _multiplyAlpha(span->coverage, opacity); + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), alpha); + auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterScaledMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Scaled Masked Rle Image"); + + auto span = image->rle->spans; + + //Center (Down-Scaled) + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = (uint32_t)(span->y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &surface->compositor->image.data[span->y * surface->compositor->image.stride + span->x]; + if (span->coverage == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto tmp = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), span->coverage); + auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + //Center (Up-Scaled) + } else { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &surface->compositor->image.data[span->y * surface->compositor->image.stride + span->x]; + if (span->coverage == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto tmp = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), span->coverage); + auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + } + return true; +} + + +static bool _rasterScaledTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) +{ + auto span = image->rle->spans; + + //Center (Down-Scaled) + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = (uint32_t)(span->y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto alpha = _multiplyAlpha(span->coverage, opacity); + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), alpha); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + //Center (Up-Scaled) + } else { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto alpha = _multiplyAlpha(span->coverage, opacity); + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), alpha); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + return true; +} + + +static bool _rasterScaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) +{ + auto span = image->rle->spans; + + //Center (Down-Scaled) + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = (uint32_t)(span->y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + if (span->coverage == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = _interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), span->coverage); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + //Center (Up-Scaled) + } else { + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto sy = span->y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + if (span->coverage == 255) { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = _interpUpScaler(image->data, image->w, image->h, sx, sy); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } else { + for (uint32_t x = static_cast<uint32_t>(span->x); x < static_cast<uint32_t>(span->x) + span->len; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), span->coverage); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + } + return true; +} + + +static bool _scaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) +{ + Matrix itransform; + if (transform && !mathInverse(transform, &itransform)) return false; + + auto halfScale = _halfScale(image->scale); + + if (_compositing(surface)) { + if (opacity == 255) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterScaledMaskedRleRGBAImage(surface, image, &itransform, region, halfScale, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterScaledMaskedRleRGBAImage(surface, image, &itransform, region, halfScale, _ialpha); + } + } else { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterScaledMaskedTranslucentRleRGBAImage(surface, image, &itransform, region, opacity, halfScale, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterScaledMaskedTranslucentRleRGBAImage(surface, image, &itransform, region, opacity, halfScale, _ialpha); + } + } + } else { + if (opacity == 255) return _rasterScaledRleRGBAImage(surface, image, &itransform, region, opacity, halfScale); + else return _rasterScaledTranslucentRleRGBAImage(surface, image, &itransform, region, opacity, halfScale); + } + return false; +} + + +/************************************************************************/ +/* RLE Direct RGBA Image */ +/************************************************************************/ + +static bool _rasterDirectMaskedTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Direct Masked Rle Image"); + + auto span = image->rle->spans; + auto cbuffer = surface->compositor->image.data; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[span->y * surface->compositor->image.stride + span->x]; + auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto alpha = _multiplyAlpha(span->coverage, opacity); + if (alpha == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { + auto tmp = ALPHA_BLEND(*img, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { + auto tmp = ALPHA_BLEND(*img, _multiplyAlpha(alpha, blendMethod(*cmp))); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterDirectMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Direct Masked Rle Image"); + + auto span = image->rle->spans; + auto cbuffer = surface->compositor->image.data; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[span->y * surface->compositor->image.stride + span->x]; + auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); + if (span->coverage == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { + auto tmp = ALPHA_BLEND(*img, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { + auto tmp = ALPHA_BLEND(*img, _multiplyAlpha(span->coverage, blendMethod(*cmp))); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterDirectTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity) +{ + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); + auto alpha = _multiplyAlpha(span->coverage, opacity); + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + auto src = ALPHA_BLEND(*img, alpha); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + return true; +} + + +static bool _rasterDirectRleRGBAImage(SwSurface* surface, const SwImage* image) +{ + auto span = image->rle->spans; + + for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); + if (span->coverage == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + *dst = *img + ALPHA_BLEND(*dst, _ialpha(*img)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { + auto src = ALPHA_BLEND(*img, span->coverage); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + return true; +} + + +static bool _directRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity) +{ + if (_compositing(surface)) { + if (opacity == 255) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterDirectMaskedRleRGBAImage(surface, image, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterDirectMaskedRleRGBAImage(surface, image, _ialpha); + } + } else { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterDirectMaskedTranslucentRleRGBAImage(surface, image, opacity, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterDirectMaskedTranslucentRleRGBAImage(surface, image, opacity, _ialpha); + } + } + } else { + if (opacity == 255) return _rasterDirectRleRGBAImage(surface, image); + else return _rasterDirectTranslucentRleRGBAImage(surface, image, opacity); + } + return false; +} + + +/************************************************************************/ +/* Transformed RGBA Image */ +/************************************************************************/ + +static bool _transformedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) +{ + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterTexmapPolygon(surface, image, transform, ®ion, opacity, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterTexmapPolygon(surface, image, transform, ®ion, opacity, _ialpha); + } + } else { + return _rasterTexmapPolygon(surface, image, transform, ®ion, opacity, nullptr); + } + return false; +} + + +/************************************************************************/ +/*Scaled RGBA Image */ +/************************************************************************/ + + +static bool _rasterScaledMaskedTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Scaled Masked Image"); + + auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride + region.min.x); + + // Down-Scaled + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = (uint32_t)(y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = dbuffer; + auto cmp = cbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto alpha = _multiplyAlpha(opacity, blendMethod(*cmp)); + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), alpha); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + dbuffer += surface->stride; + cbuffer += surface->compositor->image.stride; + } + // Up-Scaled + } else { + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + auto cmp = cbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto alpha = _multiplyAlpha(opacity, blendMethod(*cmp)); + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), alpha); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + dbuffer += surface->stride; + cbuffer += surface->compositor->image.stride; + } + } + return true; +} + + +static bool _rasterScaledMaskedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Scaled Masked Image"); + + auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride + region.min.x); + + // Down-Scaled + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = (uint32_t)(y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = dbuffer; + auto cmp = cbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), blendMethod(*cmp)); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + dbuffer += surface->stride; + cbuffer += surface->compositor->image.stride; + } + // Up-Scaled + } else { + for (auto y = region.min.y; y < region.max.y; ++y) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + auto cmp = cbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), blendMethod(*cmp)); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + dbuffer += surface->stride; + cbuffer += surface->compositor->image.stride; + } + } + return true; +} + + +static bool _rasterScaledTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) +{ + auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); + + // Down-Scaled + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = (uint32_t)(y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = dbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale), opacity); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + // Up-Scaled + } else { + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = fabsf(y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = dbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), opacity); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + return true; +} + + +static bool _rasterScaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t halfScale) +{ + auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); + + // Down-Scaled + if (image->scale < DOWN_SCALE_TOLERANCE) { + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = (uint32_t)(y * itransform->e22 + itransform->e23); + if (sy >= image->h) continue; + auto dst = dbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = (uint32_t)(x * itransform->e11 + itransform->e13); + if (sx >= image->w) continue; + auto src = _interpDownScaler(image->data, image->stride, image->w, image->h, sx, sy, halfScale); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + // Up-Scaled + } else { + for (auto y = region.min.y; y < region.max.y; ++y, dbuffer += surface->stride) { + auto sy = y * itransform->e22 + itransform->e23; + if ((uint32_t)sy >= image->h) continue; + auto dst = dbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { + auto sx = x * itransform->e11 + itransform->e13; + if ((uint32_t)sx >= image->w) continue; + auto src = _interpUpScaler(image->data, image->w, image->h, sx, sy); + *dst = src + ALPHA_BLEND(*dst, _ialpha(src)); + } + } + } + return true; +} + + +static bool _scaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) +{ + Matrix itransform; + if (transform && !mathInverse(transform, &itransform)) return false; + + auto halfScale = _halfScale(image->scale); + + if (_compositing(surface)) { + if (opacity == 255) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterScaledMaskedRGBAImage(surface, image, &itransform, region, halfScale, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterScaledMaskedRGBAImage(surface, image, &itransform, region, halfScale, _ialpha); + } + } else { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterScaledMaskedTranslucentRGBAImage(surface, image, &itransform, region, opacity, halfScale, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterScaledMaskedTranslucentRGBAImage(surface, image, &itransform, region, opacity, halfScale, _ialpha); + } + } + } else { + if (opacity == 255) return _rasterScaledRGBAImage(surface, image, &itransform, region, halfScale); + else return _rasterScaledTranslucentRGBAImage(surface, image, &itransform, region, opacity, halfScale); + } + return false; +} + + +/************************************************************************/ +/* Direct RGBA Image */ +/************************************************************************/ + +static bool _rasterDirectMaskedRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Direct Masked Image"); + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h2 = static_cast<uint32_t>(region.max.y - region.min.y); + auto w2 = static_cast<uint32_t>(region.max.x - region.min.x); + + auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride) + region.min.x; //compositor buffer + + for (uint32_t y = 0; y < h2; ++y) { + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + buffer += surface->stride; + cbuffer += surface->compositor->image.stride; + sbuffer += image->stride; + } + return true; +} + + +static bool _rasterDirectMaskedTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) +{ + TVGLOG("SW_ENGINE", "Direct Masked Translucent Image"); + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h2 = static_cast<uint32_t>(region.max.y - region.min.y); + auto w2 = static_cast<uint32_t>(region.max.x - region.min.x); + + auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride) + region.min.x; //compositor buffer + + for (uint32_t y = 0; y < h2; ++y) { + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { + auto tmp = ALPHA_BLEND(*src, _multiplyAlpha(opacity, blendMethod(*cmp))); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + buffer += surface->stride; + cbuffer += surface->compositor->image.stride; + sbuffer += image->stride; + } + return true; +} + + +static bool _rasterDirectTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity) +{ + auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; + auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto dst = dbuffer; + auto src = sbuffer; + for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { + auto tmp = ALPHA_BLEND(*src, opacity); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} + + +static bool _rasterDirectRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region) +{ + auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; + auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); + + for (auto y = region.min.y; y < region.max.y; ++y) { + auto dst = dbuffer; + auto src = sbuffer; + for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { + *dst = *src + ALPHA_BLEND(*dst, _ialpha(*src)); + } + dbuffer += surface->stride; + sbuffer += image->stride; + } + return true; +} + + +//Blenders for the following scenarios: [Composition / Non-Composition] * [Opaque / Translucent] +static bool _directRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity) +{ + if (_compositing(surface)) { + if (opacity == 255) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterDirectMaskedRGBAImage(surface, image, region, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterDirectMaskedRGBAImage(surface, image, region, _ialpha); + } + } else { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterDirectMaskedTranslucentRGBAImage(surface, image, region, opacity, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterDirectMaskedTranslucentRGBAImage(surface, image, region, opacity, _ialpha); + } + } + } else { + if (opacity == 255) return _rasterDirectRGBAImage(surface, image, region); + else return _rasterDirectTranslucentRGBAImage(surface, image, region, opacity); + } + return false; +} + + +//Blenders for the following scenarios: [RLE / Whole] * [Direct / Scaled / Transformed] +static bool _rasterRGBAImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) +{ + //RLE Image + if (image->rle) { + if (image->direct) return _directRleRGBAImage(surface, image, opacity); + else if (image->scaled) return _scaledRleRGBAImage(surface, image, transform, region, opacity); + else return _transformedRleRGBAImage(surface, image, transform, opacity); + //Whole Image + } else { + if (image->direct) return _directRGBAImage(surface, image, region, opacity); + else if (image->scaled) return _scaledRGBAImage(surface, image, transform, region, opacity); + else return _transformedRGBAImage(surface, image, transform, region, opacity); + } +} + + +/************************************************************************/ +/* Rect Linear Gradient */ +/************************************************************************/ + +static bool _rasterLinearGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride) + region.min.x; + + auto sbuffer = static_cast<uint32_t*>(alloca(w * sizeof(uint32_t))); + if (!sbuffer) return false; + + for (uint32_t y = 0; y < h; ++y) { + fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + buffer += surface->stride; + cbuffer += surface->stride; + } + return true; +} + + +static bool _rasterTranslucentLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + + auto sbuffer = static_cast<uint32_t*>(alloca(w * sizeof(uint32_t))); + if (!sbuffer) return false; + + for (uint32_t y = 0; y < h; ++y) { + auto dst = buffer; + fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); + for (uint32_t x = 0; x < w; ++x, ++dst) { + *dst = sbuffer[x] + ALPHA_BLEND(*dst, _ialpha(sbuffer[x])); + } + buffer += surface->stride; + } + return true; +} + + +static bool _rasterSolidLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + + for (uint32_t y = 0; y < h; ++y) { + fillFetchLinear(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w); + } + return true; +} + + +static bool _rasterLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterLinearGradientMaskedRect(surface, region, fill, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterLinearGradientMaskedRect(surface, region, fill, _ialpha); + } + } else { + if (fill->translucent) return _rasterTranslucentLinearGradientRect(surface, region, fill); + else _rasterSolidLinearGradientRect(surface, region, fill); + } + return false; +} + + +/************************************************************************/ +/* Rle Linear Gradient */ +/************************************************************************/ + +static bool _rasterLinearGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto span = rle->spans; + auto cbuffer = surface->compositor->image.data; + auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buffer) return false; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + fillFetchLinear(fill, buffer, span->y, span->x, span->len); + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[span->y * surface->compositor->image.stride + span->x]; + auto src = buffer; + if (span->coverage == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + auto ialpha = 255 - span->coverage; + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto span = rle->spans; + auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buffer) return false; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + fillFetchLinear(fill, buffer, span->y, span->x, span->len); + if (span->coverage == 255) { + for (uint32_t i = 0; i < span->len; ++i, ++dst) { + *dst = buffer[i] + ALPHA_BLEND(*dst, _ialpha(buffer[i])); + } + } else { + for (uint32_t i = 0; i < span->len; ++i, ++dst) { + auto tmp = ALPHA_BLEND(buffer[i], span->coverage); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterSolidLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (fill->linear.len < FLT_EPSILON) return false; + + auto buf = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buf) return false; + + auto span = rle->spans; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + if (span->coverage == 255) { + fillFetchLinear(fill, surface->buffer + span->y * surface->stride + span->x, span->y, span->x, span->len); + } else { + fillFetchLinear(fill, buf, span->y, span->x, span->len); + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + for (uint32_t i = 0; i < span->len; ++i) { + dst[i] = INTERPOLATE(span->coverage, buf[i], dst[i]); + } + } + } + return true; +} + + +static bool _rasterLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (!rle) return false; + + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterLinearGradientMaskedRle(surface, rle, fill, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterLinearGradientMaskedRle(surface, rle, fill, _ialpha); + } + } else { + if (fill->translucent) return _rasterTranslucentLinearGradientRle(surface, rle, fill); + else return _rasterSolidLinearGradientRle(surface, rle, fill); + } + return false; +} + + +/************************************************************************/ +/* Rect Radial Gradient */ +/************************************************************************/ + +static bool _rasterRadialGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + auto cbuffer = surface->compositor->image.data + (region.min.y * surface->compositor->image.stride) + region.min.x; + + auto sbuffer = static_cast<uint32_t*>(alloca(w * sizeof(uint32_t))); + if (!sbuffer) return false; + + for (uint32_t y = 0; y < h; ++y) { + fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); + auto dst = buffer; + auto cmp = cbuffer; + auto src = sbuffer; + for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + buffer += surface->stride; + cbuffer += surface->stride; + } + return true; +} + + +static bool _rasterTranslucentRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + + auto sbuffer = static_cast<uint32_t*>(alloca(w * sizeof(uint32_t))); + if (!sbuffer) return false; + + for (uint32_t y = 0; y < h; ++y) { + auto dst = buffer; + fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); + for (uint32_t x = 0; x < w; ++x, ++dst) { + *dst = sbuffer[x] + ALPHA_BLEND(*dst, _ialpha(sbuffer[x])); + } + buffer += surface->stride; + } + return true; +} + + +static bool _rasterSolidRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; + auto h = static_cast<uint32_t>(region.max.y - region.min.y); + auto w = static_cast<uint32_t>(region.max.x - region.min.x); + + for (uint32_t y = 0; y < h; ++y) { + auto dst = &buffer[y * surface->stride]; + fillFetchRadial(fill, dst, region.min.y + y, region.min.x, w); + } + return true; +} + + +static bool _rasterRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) +{ + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterRadialGradientMaskedRect(surface, region, fill, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterRadialGradientMaskedRect(surface, region, fill, _ialpha); + } + } else { + if (fill->translucent) return _rasterTranslucentRadialGradientRect(surface, region, fill); + else return _rasterSolidRadialGradientRect(surface, region, fill); + } + return false; +} + + +/************************************************************************/ +/* RLE Radial Gradient */ +/************************************************************************/ + +static bool _rasterRadialGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto span = rle->spans; + auto cbuffer = surface->compositor->image.data; + auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buffer) return false; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + fillFetchRadial(fill, buffer, span->y, span->x, span->len); + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + auto cmp = &cbuffer[span->y * surface->compositor->image.stride + span->x]; + auto src = buffer; + if (span->coverage == 255) { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { + auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } else { + for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { + auto tmp = INTERPOLATE(span->coverage, ALPHA_BLEND(*src, blendMethod(*cmp)), *dst); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto span = rle->spans; + auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buffer) return false; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + fillFetchRadial(fill, buffer, span->y, span->x, span->len); + if (span->coverage == 255) { + for (uint32_t i = 0; i < span->len; ++i, ++dst) { + *dst = buffer[i] + ALPHA_BLEND(*dst, _ialpha(buffer[i])); + } + } else { + for (uint32_t i = 0; i < span->len; ++i, ++dst) { + auto tmp = ALPHA_BLEND(buffer[i], span->coverage); + *dst = tmp + ALPHA_BLEND(*dst, _ialpha(tmp)); + } + } + } + return true; +} + + +static bool _rasterSolidRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (fill->radial.a < FLT_EPSILON) return false; + + auto buf = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t))); + if (!buf) return false; + + auto span = rle->spans; + + for (uint32_t i = 0; i < rle->size; ++i, ++span) { + auto dst = &surface->buffer[span->y * surface->stride + span->x]; + if (span->coverage == 255) { + fillFetchRadial(fill, dst, span->y, span->x, span->len); + } else { + fillFetchRadial(fill, buf, span->y, span->x, span->len); + auto ialpha = 255 - span->coverage; + for (uint32_t i = 0; i < span->len; ++i, ++dst) { + *dst = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(*dst, ialpha); + } + } + } + return true; +} + + +static bool _rasterRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) +{ + if (!rle) return false; + + if (_compositing(surface)) { + if (surface->compositor->method == CompositeMethod::AlphaMask) { + return _rasterRadialGradientMaskedRle(surface, rle, fill, _alpha); + } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { + return _rasterRadialGradientMaskedRle(surface, rle, fill, _ialpha); + } + } else { + if (fill->translucent) _rasterTranslucentRadialGradientRle(surface, rle, fill); + else return _rasterSolidRadialGradientRle(surface, rle, fill); + } + return false; +} + + +/************************************************************************/ +/* External Class Implementation */ +/************************************************************************/ + +void rasterRGBA32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len) +{ +#if defined(THORVG_AVX_VECTOR_SUPPORT) + avxRasterRGBA32(dst, val, offset, len); +#elif defined(THORVG_NEON_VECTOR_SUPPORT) + neonRasterRGBA32(dst, val, offset, len); +#else + cRasterRGBA32(dst, val, offset, len); +#endif +} + + +bool rasterCompositor(SwSurface* surface) +{ + if (surface->cs == SwCanvas::ABGR8888 || surface->cs == SwCanvas::ABGR8888_STRAIGHT) { + surface->blender.join = _abgrJoin; + } else if (surface->cs == SwCanvas::ARGB8888 || surface->cs == SwCanvas::ARGB8888_STRAIGHT) { + surface->blender.join = _argbJoin; + } else { + //What Color Space ??? + return false; + } + return true; +} + + +bool rasterClear(SwSurface* surface) +{ + if (!surface || !surface->buffer || surface->stride <= 0 || surface->w <= 0 || surface->h <= 0) return false; + + if (surface->w == surface->stride) { + rasterRGBA32(surface->buffer, 0x00000000, 0, surface->w * surface->h); + } else { + for (uint32_t i = 0; i < surface->h; i++) { + rasterRGBA32(surface->buffer + surface->stride * i, 0x00000000, 0, surface->w); + } + } + return true; +} + + +void rasterUnpremultiply(SwSurface* surface) +{ + //OPTIMIZE_ME: +SIMD + for (uint32_t y = 0; y < surface->h; y++) { + auto buffer = surface->buffer + surface->stride * y; + for (uint32_t x = 0; x < surface->w; ++x) { + uint8_t a = buffer[x] >> 24; + if (a == 255) { + continue; + } else if (a == 0) { + buffer[x] = 0x00ffffff; + } else { + uint16_t r = ((buffer[x] >> 8) & 0xff00) / a; + uint16_t g = ((buffer[x]) & 0xff00) / a; + uint16_t b = ((buffer[x] << 8) & 0xff00) / a; + if (r > 0xff) r = 0xff; + if (g > 0xff) g = 0xff; + if (b > 0xff) b = 0xff; + buffer[x] = (a << 24) | (r << 16) | (g << 8) | (b); + } + } + } +} + + +bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id) +{ + if (!shape->fill) return false; + + if (shape->fastTrack) { + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRect(surface, shape->bbox, shape->fill); + else if (id == TVG_CLASS_ID_RADIAL)return _rasterRadialGradientRect(surface, shape->bbox, shape->fill); + } else { + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->rle, shape->fill); + else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->rle, shape->fill); + } + return false; +} + + +bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id) +{ + if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false; + + if (id == TVG_CLASS_ID_LINEAR) return _rasterLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); + else if (id == TVG_CLASS_ID_RADIAL) return _rasterRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); + + return false; +} + + +bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (a < 255) { + r = _multiplyAlpha(r, a); + g = _multiplyAlpha(g, a); + b = _multiplyAlpha(b, a); + } + + auto color = surface->blender.join(r, g, b, a); + + if (shape->fastTrack) return _rasterRect(surface, shape->bbox, color, a); + else return _rasterRle(surface, shape->rle, color, a); +} + + +bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) +{ + if (a < 255) { + r = _multiplyAlpha(r, a); + g = _multiplyAlpha(g, a); + b = _multiplyAlpha(b, a); + } + + auto color = surface->blender.join(r, g, b, a); + + return _rasterRle(surface, shape->strokeRle, color, a); +} + + +bool rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& bbox, uint32_t opacity) +{ + //Verify Boundary + if (bbox.max.x < 0 || bbox.max.y < 0 || bbox.min.x >= surface->w || bbox.min.y >= surface->h) return false; + + //TOOD: switch (image->format) + //TODO: case: _rasterRGBImage() + //TODO: case: _rasterGrayscaleImage() + //TODO: case: _rasterAlphaImage() + return _rasterRGBAImage(surface, image, transform, bbox, opacity); +}
\ No newline at end of file |