diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmesh/param/OrthogonalProjectionMap.cpp')
-rw-r--r-- | thirdparty/thekla_atlas/nvmesh/param/OrthogonalProjectionMap.cpp | 99 |
1 files changed, 99 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmesh/param/OrthogonalProjectionMap.cpp b/thirdparty/thekla_atlas/nvmesh/param/OrthogonalProjectionMap.cpp new file mode 100644 index 0000000000..d6e5e30561 --- /dev/null +++ b/thirdparty/thekla_atlas/nvmesh/param/OrthogonalProjectionMap.cpp @@ -0,0 +1,99 @@ +// This code is in the public domain -- castano@gmail.com + +#include "nvmesh.h" // pch + +#include "OrthogonalProjectionMap.h" + +#include "nvcore/Array.inl" + +#include "nvmath/Fitting.h" +#include "nvmath/Vector.inl" +#include "nvmath/Box.inl" +#include "nvmath/Plane.inl" + +#include "nvmesh/halfedge/Mesh.h" +#include "nvmesh/halfedge/Vertex.h" +#include "nvmesh/halfedge/Face.h" +#include "nvmesh/geometry/Bounds.h" + + +using namespace nv; + +bool nv::computeOrthogonalProjectionMap(HalfEdge::Mesh * mesh) +{ + Vector3 axis[2]; + +#if 1 + + uint vertexCount = mesh->vertexCount(); + Array<Vector3> points(vertexCount); + points.resize(vertexCount); + + for (uint i = 0; i < vertexCount; i++) + { + points[i] = mesh->vertexAt(i)->pos; + } + +#if 0 + axis[0] = Fit::computePrincipalComponent_EigenSolver(vertexCount, points.buffer()); + axis[0] = normalize(axis[0]); + + Plane plane = Fit::bestPlane(vertexCount, points.buffer()); + + Vector3 n = plane.vector(); + + axis[1] = cross(axis[0], n); + axis[1] = normalize(axis[1]); +#else + // Avoid redundant computations. + float matrix[6]; + Fit::computeCovariance(vertexCount, points.buffer(), matrix); + + if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0) { + return false; + } + + float eigenValues[3]; + Vector3 eigenVectors[3]; + if (!nv::Fit::eigenSolveSymmetric3(matrix, eigenValues, eigenVectors)) { + return false; + } + + axis[0] = normalize(eigenVectors[0]); + axis[1] = normalize(eigenVectors[1]); +#endif + + +#else + + // IC: I thought this was generally more robust, but turns out it's not even guaranteed to return a valid projection. Imagine a narrow quad perpendicular to one plane, but rotated so that the shortest axis of + // the bounding box is in the direction of that plane. + + // Use the shortest box axis + Box box = MeshBounds::box(mesh); + Vector3 dir = box.extents(); + + if (fabs(dir.x) <= fabs(dir.y) && fabs(dir.x) <= fabs(dir.z)) { + axis[0] = Vector3(0, 1, 0); + axis[1] = Vector3(0, 0, 1); + } + else if (fabs(dir.y) <= fabs(dir.z)) { + axis[0] = Vector3(1, 0, 0); + axis[1] = Vector3(0, 0, 1); + } + else { + axis[0] = Vector3(1, 0, 0); + axis[1] = Vector3(0, 1, 0); + } +#endif + + // Project vertices to plane. + for (HalfEdge::Mesh::VertexIterator it(mesh->vertices()); !it.isDone(); it.advance()) + { + HalfEdge::Vertex * vertex = it.current(); + vertex->tex.x = dot(axis[0], vertex->pos); + vertex->tex.y = dot(axis[1], vertex->pos); + } + + return true; +} |