summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp')
-rw-r--r--thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp1387
1 files changed, 1387 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp b/thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp
new file mode 100644
index 0000000000..5ce452cb9e
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmesh/param/AtlasPacker.cpp
@@ -0,0 +1,1387 @@
+// This code is in the public domain -- castano@gmail.com
+
+#include "nvmesh.h" // pch
+
+#include "AtlasPacker.h"
+#include "nvmesh/halfedge/Vertex.h"
+#include "nvmesh/halfedge/Face.h"
+#include "nvmesh/param/Atlas.h"
+#include "nvmesh/param/Util.h"
+#include "nvmesh/raster/Raster.h"
+
+#include "nvmath/Vector.inl"
+#include "nvmath/ConvexHull.h"
+#include "nvmath/Color.h"
+#include "nvmath/ftoi.h"
+
+#include "nvcore/StrLib.h" // debug
+#include "nvcore/StdStream.h" // fileOpen
+
+#include <float.h> // FLT_MAX
+#include <limits.h> // UINT_MAX
+
+using namespace nv;
+
+#define DEBUG_OUTPUT 0
+
+#if DEBUG_OUTPUT
+
+#include "nvimage/ImageIO.h"
+
+namespace
+{
+ const uint TGA_TYPE_GREY = 3;
+ const uint TGA_TYPE_RGB = 2;
+ const uint TGA_ORIGIN_UPPER = 0x20;
+
+#pragma pack(push, 1)
+ struct TgaHeader {
+ uint8 id_length;
+ uint8 colormap_type;
+ uint8 image_type;
+ uint16 colormap_index;
+ uint16 colormap_length;
+ uint8 colormap_size;
+ uint16 x_origin;
+ uint16 y_origin;
+ uint16 width;
+ uint16 height;
+ uint8 pixel_size;
+ uint8 flags;
+
+ enum { Size = 18 }; //const static int SIZE = 18;
+ };
+#pragma pack(pop)
+
+ static void outputDebugBitmap(const char * fileName, const BitMap & bitmap, int w, int h)
+ {
+ FILE * fp = fileOpen(fileName, "wb");
+ if (fp == NULL) return;
+
+ nvStaticCheck(sizeof(TgaHeader) == TgaHeader::Size);
+ TgaHeader tga;
+ tga.id_length = 0;
+ tga.colormap_type = 0;
+ tga.image_type = TGA_TYPE_GREY;
+
+ tga.colormap_index = 0;
+ tga.colormap_length = 0;
+ tga.colormap_size = 0;
+
+ tga.x_origin = 0;
+ tga.y_origin = 0;
+ tga.width = w;
+ tga.height = h;
+ tga.pixel_size = 8;
+ tga.flags = TGA_ORIGIN_UPPER;
+
+ fwrite(&tga, sizeof(TgaHeader), 1, fp);
+
+ for (int j = 0; j < h; j++) {
+ for (int i = 0; i < w; i++) {
+ uint8 color = bitmap.bitAt(i, j) ? 0xFF : 0x0;
+ fwrite(&color, 1, 1, fp);
+ }
+ }
+
+ fclose(fp);
+ }
+
+ static void outputDebugImage(const char * fileName, const Image & bitmap, int w, int h)
+ {
+ FILE * fp = fileOpen(fileName, "wb");
+ if (fp == NULL) return;
+
+ nvStaticCheck(sizeof(TgaHeader) == TgaHeader::Size);
+ TgaHeader tga;
+ tga.id_length = 0;
+ tga.colormap_type = 0;
+ tga.image_type = TGA_TYPE_RGB;
+
+ tga.colormap_index = 0;
+ tga.colormap_length = 0;
+ tga.colormap_size = 0;
+
+ tga.x_origin = 0;
+ tga.y_origin = 0;
+ tga.width = w;
+ tga.height = h;
+ tga.pixel_size = 24;
+ tga.flags = TGA_ORIGIN_UPPER;
+
+ fwrite(&tga, sizeof(TgaHeader), 1, fp);
+
+ for (int j = 0; j < h; j++) {
+ for (int i = 0; i < w; i++) {
+ Color32 color = bitmap.pixel(i, j);
+ fwrite(&color.r, 1, 1, fp);
+ fwrite(&color.g, 1, 1, fp);
+ fwrite(&color.b, 1, 1, fp);
+ }
+ }
+
+ fclose(fp);
+ }
+}
+
+#endif // DEBUG_OUTPUT
+
+inline int align(int x, int a) {
+ //return a * ((x + a - 1) / a);
+ //return (x + a - 1) & -a;
+ return (x + a - 1) & ~(a - 1);
+}
+
+inline bool isAligned(int x, int a) {
+ return (x & (a - 1)) == 0;
+}
+
+
+
+AtlasPacker::AtlasPacker(Atlas * atlas) : m_atlas(atlas), m_bitmap(256, 256)
+{
+ m_width = 0;
+ m_height = 0;
+
+ m_debug_bitmap.allocate(256, 256);
+ m_debug_bitmap.fill(Color32(0,0,0,0));
+}
+
+AtlasPacker::~AtlasPacker()
+{
+}
+
+// This should compute convex hull and use rotating calipers to find the best box. Currently it uses a brute force method.
+static bool computeBoundingBox(Chart * chart, Vector2 * majorAxis, Vector2 * minorAxis, Vector2 * minCorner, Vector2 * maxCorner)
+{
+ // Compute list of boundary points.
+ Array<Vector2> points(16);
+
+ HalfEdge::Mesh * mesh = chart->chartMesh();
+ const uint vertexCount = mesh->vertexCount();
+
+ for (uint i = 0; i < vertexCount; i++) {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(i);
+ if (vertex->isBoundary()) {
+ points.append(vertex->tex);
+ }
+ }
+
+ // This is not valid anymore. The chart mesh may have multiple boundaries!
+ /*const HalfEdge::Vertex * vertex = findBoundaryVertex(chart->chartMesh());
+
+ // Traverse boundary.
+ const HalfEdge::Edge * const firstEdge = vertex->edge();
+ const HalfEdge::Edge * edge = firstEdge;
+ do {
+ vertex = edge->vertex();
+
+ nvDebugCheck (vertex->isBoundary());
+ points.append(vertex->tex);
+
+ edge = edge->next();
+ } while (edge != firstEdge);*/
+
+#if 1
+ Array<Vector2> hull;
+ if (points.size()==0) {
+ return false;
+ }
+
+ convexHull(points, hull, 0.00001f);
+
+ // @@ Ideally I should use rotating calipers to find the best box. Using brute force for now.
+
+ float best_area = FLT_MAX;
+ Vector2 best_min;
+ Vector2 best_max;
+ Vector2 best_axis;
+
+ const uint hullCount = hull.count();
+ for (uint i = 0, j = hullCount-1; i < hullCount; j = i, i++) {
+
+ if (equal(hull[i], hull[j])) {
+ continue;
+ }
+
+ Vector2 axis = normalize(hull[i] - hull[j], 0.0f);
+ nvDebugCheck(isFinite(axis));
+
+ // Compute bounding box.
+ Vector2 box_min(FLT_MAX, FLT_MAX);
+ Vector2 box_max(-FLT_MAX, -FLT_MAX);
+
+ for (uint v = 0; v < hullCount; v++) {
+
+ Vector2 point = hull[v];
+
+ float x = dot(axis, point);
+ if (x < box_min.x) box_min.x = x;
+ if (x > box_max.x) box_max.x = x;
+
+ float y = dot(Vector2(-axis.y, axis.x), point);
+ if (y < box_min.y) box_min.y = y;
+ if (y > box_max.y) box_max.y = y;
+ }
+
+ // Compute box area.
+ float area = (box_max.x - box_min.x) * (box_max.y - box_min.y);
+
+ if (area < best_area) {
+ best_area = area;
+ best_min = box_min;
+ best_max = box_max;
+ best_axis = axis;
+ }
+ }
+
+ // Make sure the box contains all the input points since the convex hull is not 100% accurate.
+ /*const uint pointCount = points.count();
+ for (uint v = 0; v < pointCount; v++) {
+
+ Vector2 point = points[v];
+
+ float x = dot(best_axis, point);
+ if (x < best_min.x) best_min.x = x;
+
+ float y = dot(Vector2(-best_axis.y, best_axis.x), point);
+ if (y < best_min.y) best_min.y = y;
+ }*/
+
+ // Consider all points, not only boundary points, in case the input chart is malformed.
+ for (uint i = 0; i < vertexCount; i++) {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(i);
+ Vector2 point = vertex->tex;
+
+ float x = dot(best_axis, point);
+ if (x < best_min.x) best_min.x = x;
+ if (x > best_max.x) best_max.x = x;
+
+ float y = dot(Vector2(-best_axis.y, best_axis.x), point);
+ if (y < best_min.y) best_min.y = y;
+ if (y > best_max.y) best_max.y = y;
+ }
+
+ *majorAxis = best_axis;
+ *minorAxis = Vector2(-best_axis.y, best_axis.x);
+ *minCorner = best_min;
+ *maxCorner = best_max;
+
+#else
+ // Approximate implementation: try 16 different directions and keep the best.
+
+ const uint N = 16;
+ Vector2 axis[N];
+
+ float minAngle = 0;
+ float maxAngle = PI / 2;
+
+ int best;
+ Vector2 mins[N];
+ Vector2 maxs[N];
+
+ const int iterationCount = 1;
+ for (int j = 0; j < iterationCount; j++)
+ {
+ // Init predefined directions.
+ for (int i = 0; i < N; i++)
+ {
+ float angle = lerp(minAngle, maxAngle, float(i)/N);
+ axis[i].set(cosf(angle), sinf(angle));
+ }
+
+ // Compute box for each direction.
+ for (int i = 0; i < N; i++)
+ {
+ mins[i].set(FLT_MAX, FLT_MAX);
+ maxs[i].set(-FLT_MAX, -FLT_MAX);
+ }
+
+ for (uint p = 0; p < points.count(); p++)
+ {
+ Vector2 point = points[p];
+
+ for (int i = 0; i < N; i++)
+ {
+ float x = dot(axis[i], point);
+ if (x < mins[i].x) mins[i].x = x;
+ if (x > maxs[i].x) maxs[i].x = x;
+
+ float y = dot(Vector2(-axis[i].y, axis[i].x), point);
+ if (y < mins[i].y) mins[i].y = y;
+ if (y > maxs[i].y) maxs[i].y = y;
+ }
+ }
+
+ // Find box with minimum area.
+ best = -1;
+ int second_best = -1;
+ float best_area = FLT_MAX;
+ float second_best_area = FLT_MAX;
+
+ for (int i = 0; i < N; i++)
+ {
+ float area = (maxs[i].x - mins[i].x) * (maxs[i].y - mins[i].y);
+
+ if (area < best_area)
+ {
+ second_best_area = best_area;
+ second_best = best;
+
+ best_area = area;
+ best = i;
+ }
+ else if (area < second_best_area)
+ {
+ second_best_area = area;
+ second_best = i;
+ }
+ }
+ nvDebugCheck(best != -1);
+ nvDebugCheck(second_best != -1);
+ nvDebugCheck(best != second_best);
+
+ if (j != iterationCount-1)
+ {
+ // Handle wrap-around during the first iteration.
+ if (j == 0) {
+ if (best == 0 && second_best == N-1) best = N;
+ if (best == N-1 && second_best == 0) second_best = N;
+ }
+
+ if (best < second_best) swap(best, second_best);
+
+ // Update angles.
+ float deltaAngle = (maxAngle - minAngle) / N;
+ maxAngle = minAngle + (best - 0.5f) * deltaAngle;
+ minAngle = minAngle + (second_best + 0.5f) * deltaAngle;
+ }
+ }
+
+ // Compute major and minor axis, and origin.
+ *majorAxis = axis[best];
+ *minorAxis = Vector2(-axis[best].y, axis[best].x);
+ *origin = mins[best];
+
+ // @@ If the parameterization is invalid, we could have an interior vertex outside the boundary.
+ // @@ In that case the returned bounding box would be incorrect. Compute updated bounds here.
+ /*for (uint p = 0; p < points.count(); p++)
+ {
+ Vector2 point = points[p];
+
+ for (int i = 0; i < N; i++)
+ {
+ float x = dot(*majorAxis, point);
+ float y = dot(*minorAxis, point);
+ }
+ }*/
+#endif
+
+ return true;
+}
+
+
+void AtlasPacker::packCharts(int quality, float texelsPerUnit, bool blockAligned, bool conservative)
+{
+ const uint chartCount = m_atlas->chartCount();
+ if (chartCount == 0) return;
+
+ Array<float> chartOrderArray;
+ chartOrderArray.resize(chartCount);
+
+ Array<Vector2> chartExtents;
+ chartExtents.resize(chartCount);
+
+ float meshArea = 0;
+ for (uint c = 0; c < chartCount; c++)
+ {
+ Chart * chart = m_atlas->chartAt(c);
+
+ if (!chart->isVertexMapped() && !chart->isDisk()) {
+ chartOrderArray[c] = 0;
+
+ // Skip non-disks.
+ continue;
+ }
+
+ Vector2 extents(0.0f);
+
+ if (chart->isVertexMapped()) {
+ // Let's assume vertex maps are arranged in a rectangle.
+ //HalfEdge::Mesh * mesh = chart->chartMesh();
+
+ // Arrange vertices in a rectangle.
+ extents.x = float(chart->vertexMapWidth);
+ extents.y = float(chart->vertexMapHeight);
+ }
+ else {
+ // Compute surface area to sort charts.
+ float chartArea = chart->computeSurfaceArea();
+ meshArea += chartArea;
+ //chartOrderArray[c] = chartArea;
+
+ // Compute chart scale
+ float parametricArea = fabs(chart->computeParametricArea()); // @@ There doesn't seem to be anything preventing parametric area to be negative.
+ if (parametricArea < NV_EPSILON) {
+ // When the parametric area is too small we use a rough approximation to prevent divisions by very small numbers.
+ Vector2 bounds = chart->computeParametricBounds();
+ parametricArea = bounds.x * bounds.y;
+ }
+ float scale = (chartArea / parametricArea) * texelsPerUnit;
+ if (parametricArea == 0) // < NV_EPSILON)
+ {
+ scale = 0;
+ }
+ nvCheck(isFinite(scale));
+
+ // Compute bounding box of chart.
+ Vector2 majorAxis, minorAxis, origin, end;
+ if (!computeBoundingBox(chart, &majorAxis, &minorAxis, &origin, &end)) {
+ m_atlas->setFailed();
+ return;
+ }
+
+ nvCheck(isFinite(majorAxis) && isFinite(minorAxis) && isFinite(origin));
+
+ // Sort charts by perimeter. @@ This is sometimes producing somewhat unexpected results. Is this right?
+ //chartOrderArray[c] = ((end.x - origin.x) + (end.y - origin.y)) * scale;
+
+ // Translate, rotate and scale vertices. Compute extents.
+ HalfEdge::Mesh * mesh = chart->chartMesh();
+ const uint vertexCount = mesh->vertexCount();
+ for (uint i = 0; i < vertexCount; i++)
+ {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(i);
+
+ //Vector2 t = vertex->tex - origin;
+ Vector2 tmp;
+ tmp.x = dot(vertex->tex, majorAxis);
+ tmp.y = dot(vertex->tex, minorAxis);
+ tmp -= origin;
+ tmp *= scale;
+ if (tmp.x < 0 || tmp.y < 0) {
+ nvDebug("tmp: %f %f\n", tmp.x, tmp.y);
+ nvDebug("scale: %f\n", scale);
+ nvDebug("origin: %f %f\n", origin.x, origin.y);
+ nvDebug("majorAxis: %f %f\n", majorAxis.x, majorAxis.y);
+ nvDebug("minorAxis: %f %f\n", minorAxis.x, minorAxis.y);
+ nvDebugBreak();
+ }
+ //nvCheck(tmp.x >= 0 && tmp.y >= 0);
+
+ vertex->tex = tmp;
+
+ nvCheck(isFinite(vertex->tex.x) && isFinite(vertex->tex.y));
+
+ extents = max(extents, tmp);
+ }
+ nvDebugCheck(extents.x >= 0 && extents.y >= 0);
+
+ // Limit chart size.
+ if (extents.x > 1024 || extents.y > 1024) {
+ float limit = max(extents.x, extents.y);
+
+ scale = 1024 / (limit + 1);
+
+ for (uint i = 0; i < vertexCount; i++)
+ {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(i);
+ vertex->tex *= scale;
+ }
+
+ extents *= scale;
+
+ nvDebugCheck(extents.x <= 1024 && extents.y <= 1024);
+ }
+
+
+ // Scale the charts to use the entire texel area available. So, if the width is 0.1 we could scale it to 1 without increasing the lightmap usage and making a better
+ // use of it. In many cases this also improves the look of the seams, since vertices on the chart boundaries have more chances of being aligned with the texel centers.
+
+ float scale_x = 1.0f;
+ float scale_y = 1.0f;
+
+ float divide_x = 1.0f;
+ float divide_y = 1.0f;
+
+ if (extents.x > 0) {
+ int cw = ftoi_ceil(extents.x);
+
+ if (blockAligned) {
+ // Align all chart extents to 4x4 blocks, but taking padding into account.
+ if (conservative) {
+ cw = align(cw + 2, 4) - 2;
+ }
+ else {
+ cw = align(cw + 1, 4) - 1;
+ }
+ }
+
+ scale_x = (float(cw) - NV_EPSILON);
+ divide_x = extents.x;
+ extents.x = float(cw);
+ }
+
+ if (extents.y > 0) {
+ int ch = ftoi_ceil(extents.y);
+
+ if (blockAligned) {
+ // Align all chart extents to 4x4 blocks, but taking padding into account.
+ if (conservative) {
+ ch = align(ch + 2, 4) - 2;
+ }
+ else {
+ ch = align(ch + 1, 4) - 1;
+ }
+ }
+
+ scale_y = (float(ch) - NV_EPSILON);
+ divide_y = extents.y;
+ extents.y = float(ch);
+ }
+
+ for (uint v = 0; v < vertexCount; v++) {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(v);
+
+ vertex->tex.x /= divide_x;
+ vertex->tex.y /= divide_y;
+ vertex->tex.x *= scale_x;
+ vertex->tex.y *= scale_y;
+
+ nvCheck(isFinite(vertex->tex.x) && isFinite(vertex->tex.y));
+ }
+ }
+
+ chartExtents[c] = extents;
+
+ // Sort charts by perimeter.
+ chartOrderArray[c] = extents.x + extents.y;
+ }
+
+ // @@ We can try to improve compression of small charts by sorting them by proximity like we do with vertex samples.
+ // @@ How to do that? One idea: compute chart centroid, insert into grid, compute morton index of the cell, sort based on morton index.
+ // @@ We would sort by morton index, first, then quantize the chart sizes, so that all small charts have the same size, and sort by size preserving the morton order.
+
+ //nvDebug("Sorting charts.\n");
+
+ // Sort charts by area.
+ m_radix.sort(chartOrderArray);
+ const uint32 * ranks = m_radix.ranks();
+
+ // Estimate size of the map based on the mesh surface area and given texel scale.
+ float texelCount = meshArea * square(texelsPerUnit) / 0.75f; // Assume 75% utilization.
+ if (texelCount < 1) texelCount = 1;
+ uint approximateExtent = nextPowerOfTwo(uint(sqrtf(texelCount)));
+
+ //nvDebug("Init bitmap.\n");
+
+ // @@ Pack all charts smaller than a texel into a compact rectangle.
+ // @@ Start considering only 1x1 charts. Extend to 1xn charts later.
+
+ /*for (uint i = 0; i < chartCount; i++)
+ {
+ uint c = ranks[chartCount - i - 1]; // largest chart first
+
+ Chart * chart = m_atlas->chartAt(c);
+
+ if (!chart->isDisk()) continue;
+
+ if (iceil(chartExtents[c].x) == 1 && iceil(chartExtents[c].x) == 1) {
+ // @@ Add to
+ }
+ }*/
+
+
+
+ // Init bit map.
+ m_bitmap.clearAll();
+ if (approximateExtent > m_bitmap.width()) {
+ m_bitmap.resize(approximateExtent, approximateExtent, false);
+ m_debug_bitmap.resize(approximateExtent, approximateExtent);
+ m_debug_bitmap.fill(Color32(0,0,0,0));
+ }
+
+
+ int w = 0;
+ int h = 0;
+
+#if 1
+ // Add sorted charts to bitmap.
+ for (uint i = 0; i < chartCount; i++)
+ {
+ uint c = ranks[chartCount - i - 1]; // largest chart first
+
+ Chart * chart = m_atlas->chartAt(c);
+
+ if (!chart->isVertexMapped() && !chart->isDisk()) continue;
+
+ //float scale_x = 1;
+ //float scale_y = 1;
+
+ BitMap chart_bitmap;
+
+ if (chart->isVertexMapped()) {
+ // Init all bits to 1.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x), ftoi_ceil(chartExtents[c].y), /*initValue=*/true);
+
+ // @@ Another alternative would be to try to map each vertex to a different texel trying to fill all the available unused texels.
+ }
+ else {
+ // @@ Add special cases for dot and line charts. @@ Lightmap rasterizer also needs to handle these special cases.
+ // @@ We could also have a special case for chart quads. If the quad surface <= 4 texels, align vertices with texel centers and do not add padding. May be very useful for foliage.
+
+ // @@ In general we could reduce the padding of all charts by one texel by using a rasterizer that takes into account the 2-texel footprint of the tent bilinear filter. For example,
+ // if we have a chart that is less than 1 texel wide currently we add one texel to the left and one texel to the right creating a 3-texel-wide bitmap. However, if we know that the
+ // chart is only 1 texel wide we could align it so that it only touches the footprint of two texels:
+
+ // | | <- Touches texels 0, 1 and 2.
+ // | | <- Only touches texels 0 and 1.
+ // \ \ / \ / /
+ // \ X X /
+ // \ / \ / \ /
+ // V V V
+ // 0 1 2
+
+ if (conservative) {
+ // Init all bits to 0.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x) + 2, ftoi_ceil(chartExtents[c].y) + 2, /*initValue=*/false); // + 2 to add padding on both sides.
+
+ // Rasterize chart and dilate.
+ drawChartBitmapDilate(chart, &chart_bitmap, /*padding=*/1);
+ }
+ else {
+ // Init all bits to 0.
+ chart_bitmap.resize(ftoi_ceil(chartExtents[c].x) + 1, ftoi_ceil(chartExtents[c].y) + 1, /*initValue=*/false); // Add half a texels on each side.
+
+ // Rasterize chart and dilate.
+ drawChartBitmap(chart, &chart_bitmap, Vector2(1), Vector2(0.5));
+ }
+ }
+
+ int best_x, best_y;
+ int best_cw, best_ch; // Includes padding now.
+ int best_r;
+ findChartLocation(quality, &chart_bitmap, chartExtents[c], w, h, &best_x, &best_y, &best_cw, &best_ch, &best_r);
+
+ /*if (w < best_x + best_cw || h < best_y + best_ch)
+ {
+ nvDebug("Resize extents to (%d, %d).\n", best_x + best_cw, best_y + best_ch);
+ }*/
+
+ // Update parametric extents.
+ w = max(w, best_x + best_cw);
+ h = max(h, best_y + best_ch);
+
+ w = align(w, 4);
+ h = align(h, 4);
+
+ // Resize bitmap if necessary.
+ if (uint(w) > m_bitmap.width() || uint(h) > m_bitmap.height())
+ {
+ //nvDebug("Resize bitmap (%d, %d).\n", nextPowerOfTwo(w), nextPowerOfTwo(h));
+ m_bitmap.resize(nextPowerOfTwo(U32(w)), nextPowerOfTwo(U32(h)), false);
+ m_debug_bitmap.resize(nextPowerOfTwo(U32(w)), nextPowerOfTwo(U32(h)));
+ }
+
+ //nvDebug("Add chart at (%d, %d).\n", best_x, best_y);
+
+ addChart(&chart_bitmap, w, h, best_x, best_y, best_r, /*debugOutput=*/NULL);
+
+ // IC: Output chart again to debug bitmap.
+ if (chart->isVertexMapped()) {
+ addChart(&chart_bitmap, w, h, best_x, best_y, best_r, &m_debug_bitmap);
+ }
+ else {
+ addChart(chart, w, h, best_x, best_y, best_r, &m_debug_bitmap);
+ }
+
+ //float best_angle = 2 * PI * best_r;
+
+ // Translate and rotate chart texture coordinates.
+ HalfEdge::Mesh * mesh = chart->chartMesh();
+ const uint vertexCount = mesh->vertexCount();
+ for (uint v = 0; v < vertexCount; v++)
+ {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(v);
+
+ Vector2 t = vertex->tex;
+ if (best_r) swap(t.x, t.y);
+ //vertex->tex.x = best_x + t.x * cosf(best_angle) - t.y * sinf(best_angle);
+ //vertex->tex.y = best_y + t.x * sinf(best_angle) + t.y * cosf(best_angle);
+
+ vertex->tex.x = best_x + t.x + 0.5f;
+ vertex->tex.y = best_y + t.y + 0.5f;
+
+ nvCheck(vertex->tex.x >= 0 && vertex->tex.y >= 0);
+ nvCheck(isFinite(vertex->tex.x) && isFinite(vertex->tex.y));
+ }
+
+#if DEBUG_OUTPUT && 0
+ StringBuilder fileName;
+ fileName.format("debug_packer_%d.tga", i);
+ //outputDebugBitmap(fileName.str(), m_bitmap, w, h);
+ outputDebugImage(fileName.str(), m_debug_bitmap, w, h);
+#endif
+ }
+
+#else // 0
+
+ // Add sorted charts to bitmap.
+ for (uint i = 0; i < chartCount; i++)
+ {
+ uint c = ranks[chartCount - i - 1]; // largest chart first
+
+ Chart * chart = m_atlas->chartAt(c);
+
+ if (!chart->isDisk()) continue;
+
+ Vector2 scale(1, 1);
+
+#if 0 // old method.
+ //m_padding_x = 2*padding;
+ //m_padding_y = 2*padding;
+#else
+ //m_padding_x = 0; //padding;
+ //m_padding_y = 0; //padding;
+#endif
+
+ int bw = ftoi_ceil(chartExtents[c].x + 1);
+ int bh = ftoi_ceil(chartExtents[c].y + 1);
+
+ if (chartExtents[c].x < 1.0f) {
+ scale.x = 0.01f; // @@ Ideally we would like to scale it to 0, but then our rasterizer would not touch any pixels.
+ bw = 1;
+ }
+ if (chartExtents[c].y < 1.0f) {
+ scale.y = 0.01f;
+ bh = 1;
+ }
+
+ //BitMap chart_bitmap(iceil(chartExtents[c].x) + 1 + m_padding_x * 2, iceil(chartExtents[c].y) + 1 + m_padding_y * 2);
+ //BitMap chart_bitmap(ftoi_ceil(chartExtents[c].x/2)*2, ftoi_ceil(chartExtents[c].y/2)*2);
+ BitMap chart_bitmap(bw, bh);
+ chart_bitmap.clearAll();
+
+ Vector2 offset;
+ offset.x = 0; // (chart_bitmap.width() - chartExtents[c].x) * 0.5f;
+ offset.y = 0; // (chart_bitmap.height() - chartExtents[c].y) * 0.5f;
+
+ drawChartBitmap(chart, &chart_bitmap, scale, offset);
+
+ int best_x, best_y;
+ int best_cw, best_ch;
+ int best_r;
+ findChartLocation(quality, &chart_bitmap, chartExtents[c], w, h, &best_x, &best_y, &best_cw, &best_ch, &best_r);
+
+ /*if (w < best_x + best_cw || h < best_y + best_ch)
+ {
+ nvDebug("Resize extents to (%d, %d).\n", best_x + best_cw, best_y + best_ch);
+ }*/
+
+ // Update parametric extents.
+ w = max(w, best_x + best_cw);
+ h = max(h, best_y + best_ch);
+
+ // Resize bitmap if necessary.
+ if (uint(w) > m_bitmap.width() || uint(h) > m_bitmap.height())
+ {
+ //nvDebug("Resize bitmap (%d, %d).\n", nextPowerOfTwo(w), nextPowerOfTwo(h));
+ m_bitmap.resize(nextPowerOfTwo(w), nextPowerOfTwo(h), false);
+ m_debug_bitmap.resize(nextPowerOfTwo(w), nextPowerOfTwo(h));
+ }
+
+ //nvDebug("Add chart at (%d, %d).\n", best_x, best_y);
+
+#if 0 // old method.
+#if _DEBUG
+ checkCanAddChart(chart, w, h, best_x, best_y, best_r);
+#endif
+
+ // Add chart.
+ addChart(chart, w, h, best_x, best_y, best_r);
+#else
+ // Add chart reusing its bitmap.
+ addChart(&chart_bitmap, w, h, best_x, best_y, best_r);
+#endif
+
+ //float best_angle = 2 * PI * best_r;
+
+ // Translate and rotate chart texture coordinates.
+ HalfEdge::Mesh * mesh = chart->chartMesh();
+ const uint vertexCount = mesh->vertexCount();
+ for (uint v = 0; v < vertexCount; v++)
+ {
+ HalfEdge::Vertex * vertex = mesh->vertexAt(v);
+
+ Vector2 t = vertex->tex * scale + offset;
+ if (best_r) swap(t.x, t.y);
+ //vertex->tex.x = best_x + t.x * cosf(best_angle) - t.y * sinf(best_angle);
+ //vertex->tex.y = best_y + t.x * sinf(best_angle) + t.y * cosf(best_angle);
+ vertex->tex.x = best_x + t.x + 0.5f;
+ vertex->tex.y = best_y + t.y + 0.5f;
+
+ nvCheck(vertex->tex.x >= 0 && vertex->tex.y >= 0);
+ }
+
+#if DEBUG_OUTPUT && 0
+ StringBuilder fileName;
+ fileName.format("debug_packer_%d.tga", i);
+ //outputDebugBitmap(fileName.str(), m_bitmap, w, h);
+ outputDebugImage(fileName.str(), m_debug_bitmap, w, h);
+#endif
+ }
+
+#endif // 0
+
+ //w -= padding - 1; // Leave one pixel border!
+ //h -= padding - 1;
+
+ m_width = max(0, w);
+ m_height = max(0, h);
+
+ nvCheck(isAligned(m_width, 4));
+ nvCheck(isAligned(m_height, 4));
+
+ m_debug_bitmap.resize(m_width, m_height);
+ m_debug_bitmap.setFormat(Image::Format_ARGB);
+
+#if DEBUG_OUTPUT
+ //outputDebugBitmap("debug_packer_final.tga", m_bitmap, w, h);
+ //outputDebugImage("debug_packer_final.tga", m_debug_bitmap, w, h);
+ ImageIO::save("debug_packer_final.tga", &m_debug_bitmap);
+#endif
+}
+
+
+// IC: Brute force is slow, and random may take too much time to converge. We start inserting large charts in a small atlas. Using brute force is lame, because most of the space
+// is occupied at this point. At the end we have many small charts and a large atlas with sparse holes. Finding those holes randomly is slow. A better approach would be to
+// start stacking large charts as if they were tetris pieces. Once charts get small try to place them randomly. It may be interesting to try a intermediate strategy, first try
+// along one axis and then try exhaustively along that axis.
+void AtlasPacker::findChartLocation(int quality, const BitMap * bitmap, Vector2::Arg extents, int w, int h, int * best_x, int * best_y, int * best_w, int * best_h, int * best_r)
+{
+ int attempts = 256;
+ if (quality == 1) attempts = 4096;
+ if (quality == 2) attempts = 2048;
+ if (quality == 3) attempts = 1024;
+ if (quality == 4) attempts = 512;
+
+ if (quality == 0 || w*h < attempts)
+ {
+ findChartLocation_bruteForce(bitmap, extents, w, h, best_x, best_y, best_w, best_h, best_r);
+ }
+ else
+ {
+ findChartLocation_random(bitmap, extents, w, h, best_x, best_y, best_w, best_h, best_r, attempts);
+ }
+}
+
+#define BLOCK_SIZE 4
+
+void AtlasPacker::findChartLocation_bruteForce(const BitMap * bitmap, Vector2::Arg extents, int w, int h, int * best_x, int * best_y, int * best_w, int * best_h, int * best_r)
+{
+ int best_metric = INT_MAX;
+
+ // Try two different orientations.
+ for (int r = 0; r < 2; r++)
+ {
+ int cw = bitmap->width();
+ int ch = bitmap->height();
+ if (r & 1) swap(cw, ch);
+
+ for (int y = 0; y <= h + 1; y += BLOCK_SIZE) // + 1 to extend atlas in case atlas full.
+ {
+ for (int x = 0; x <= w + 1; x += BLOCK_SIZE) // + 1 not really necessary here.
+ {
+ // Early out.
+ int area = max(w, x+cw) * max(h, y+ch);
+ //int perimeter = max(w, x+cw) + max(h, y+ch);
+ int extents = max(max(w, x+cw), max(h, y+ch));
+
+ int metric = extents*extents + area;
+
+ if (metric > best_metric) {
+ continue;
+ }
+ if (metric == best_metric && max(x, y) >= max(*best_x, *best_y)) {
+ // If metric is the same, pick the one closest to the origin.
+ continue;
+ }
+
+ if (canAddChart(bitmap, w, h, x, y, r))
+ {
+ best_metric = metric;
+ *best_x = x;
+ *best_y = y;
+ *best_w = cw;
+ *best_h = ch;
+ *best_r = r;
+
+ if (area == w*h)
+ {
+ // Chart is completely inside, do not look at any other location.
+ goto done;
+ }
+ }
+ }
+ }
+ }
+
+done:
+ nvDebugCheck (best_metric != INT_MAX);
+}
+
+
+void AtlasPacker::findChartLocation_random(const BitMap * bitmap, Vector2::Arg extents, int w, int h, int * best_x, int * best_y, int * best_w, int * best_h, int * best_r, int minTrialCount)
+{
+ int best_metric = INT_MAX;
+
+ for (int i = 0; i < minTrialCount || best_metric == INT_MAX; i++)
+ {
+ int r = m_rand.getRange(1);
+ int x = m_rand.getRange(w + 1); // + 1 to extend atlas in case atlas full. We may want to use a higher number to increase probability of extending atlas.
+ int y = m_rand.getRange(h + 1); // + 1 to extend atlas in case atlas full.
+
+ x = align(x, BLOCK_SIZE);
+ y = align(y, BLOCK_SIZE);
+
+ int cw = bitmap->width();
+ int ch = bitmap->height();
+ if (r & 1) swap(cw, ch);
+
+ // Early out.
+ int area = max(w, x+cw) * max(h, y+ch);
+ //int perimeter = max(w, x+cw) + max(h, y+ch);
+ int extents = max(max(w, x+cw), max(h, y+ch));
+
+ int metric = extents*extents + area;
+
+ if (metric > best_metric) {
+ continue;
+ }
+ if (metric == best_metric && min(x, y) > min(*best_x, *best_y)) {
+ // If metric is the same, pick the one closest to the origin.
+ continue;
+ }
+
+ if (canAddChart(bitmap, w, h, x, y, r))
+ {
+ best_metric = metric;
+ *best_x = x;
+ *best_y = y;
+ *best_w = cw;
+ *best_h = ch;
+ *best_r = r;
+
+ if (area == w*h)
+ {
+ // Chart is completely inside, do not look at any other location.
+ break;
+ }
+ }
+ }
+}
+
+
+void AtlasPacker::drawChartBitmapDilate(const Chart * chart, BitMap * bitmap, int padding)
+{
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ const Vector2 extents = Vector2(float(w), float(h));
+
+ // Rasterize chart faces, check that all bits are not set.
+ const uint faceCount = chart->faceCount();
+ for (uint f = 0; f < faceCount; f++)
+ {
+ const HalfEdge::Face * face = chart->chartMesh()->faceAt(f);
+
+ Vector2 vertices[4];
+
+ uint edgeCount = 0;
+ for (HalfEdge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
+ {
+ if (edgeCount < 4)
+ {
+ vertices[edgeCount] = it.vertex()->tex + Vector2(0.5) + Vector2(float(padding), float(padding));
+ }
+ edgeCount++;
+ }
+
+ if (edgeCount == 3)
+ {
+ Raster::drawTriangle(Raster::Mode_Antialiased, extents, true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ else
+ {
+ Raster::drawQuad(Raster::Mode_Antialiased, extents, true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ }
+
+ // Expand chart by padding pixels. (dilation)
+ BitMap tmp(w, h);
+ for (int i = 0; i < padding; i++) {
+ tmp.clearAll();
+
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ bool b = bitmap->bitAt(x, y);
+ if (!b) {
+ if (x > 0) {
+ b |= bitmap->bitAt(x - 1, y);
+ if (y > 0) b |= bitmap->bitAt(x - 1, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x - 1, y + 1);
+ }
+ if (y > 0) b |= bitmap->bitAt(x, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x, y + 1);
+ if (x < w-1) {
+ b |= bitmap->bitAt(x + 1, y);
+ if (y > 0) b |= bitmap->bitAt(x + 1, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x + 1, y + 1);
+ }
+ }
+ if (b) tmp.setBitAt(x, y);
+ }
+ }
+
+ swap(tmp, *bitmap);
+ }
+}
+
+
+void AtlasPacker::drawChartBitmap(const Chart * chart, BitMap * bitmap, const Vector2 & scale, const Vector2 & offset)
+{
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+ const Vector2 extents = Vector2(float(w), float(h));
+
+ static const Vector2 pad[4] = {
+ Vector2(-0.5, -0.5),
+ Vector2(0.5, -0.5),
+ Vector2(-0.5, 0.5),
+ Vector2(0.5, 0.5)
+ };
+ /*static const Vector2 pad[4] = {
+ Vector2(-1, -1),
+ Vector2(1, -1),
+ Vector2(-1, 1),
+ Vector2(1, 1)
+ };*/
+
+ // Rasterize 4 times to add proper padding.
+ for (int i = 0; i < 4; i++) {
+
+ // Rasterize chart faces, check that all bits are not set.
+ const uint faceCount = chart->chartMesh()->faceCount();
+ for (uint f = 0; f < faceCount; f++)
+ {
+ const HalfEdge::Face * face = chart->chartMesh()->faceAt(f);
+
+ Vector2 vertices[4];
+
+ uint edgeCount = 0;
+ for (HalfEdge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
+ {
+ if (edgeCount < 4)
+ {
+ vertices[edgeCount] = it.vertex()->tex * scale + offset + pad[i];
+ nvCheck(ftoi_ceil(vertices[edgeCount].x) >= 0);
+ nvCheck(ftoi_ceil(vertices[edgeCount].y) >= 0);
+ nvCheck(ftoi_ceil(vertices[edgeCount].x) <= w);
+ nvCheck(ftoi_ceil(vertices[edgeCount].y) <= h);
+ }
+ edgeCount++;
+ }
+
+ if (edgeCount == 3)
+ {
+ Raster::drawTriangle(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ else
+ {
+ Raster::drawQuad(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::setBitsCallback, bitmap);
+ }
+ }
+ }
+
+ // @@ This only allows us to expand the size in texel intervals.
+ /*if (m_padding_x != 0 && m_padding_y != 0)*/ {
+
+ // Expand chart by padding pixels. (dilation)
+ BitMap tmp(w, h);
+ //for (int i = 0; i < 1; i++) {
+ tmp.clearAll();
+
+ for (int y = 0; y < h; y++) {
+ for (int x = 0; x < w; x++) {
+ bool b = bitmap->bitAt(x, y);
+ if (!b) {
+ if (x > 0) {
+ b |= bitmap->bitAt(x - 1, y);
+ if (y > 0) b |= bitmap->bitAt(x - 1, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x - 1, y + 1);
+ }
+ if (y > 0) b |= bitmap->bitAt(x, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x, y + 1);
+ if (x < w-1) {
+ b |= bitmap->bitAt(x + 1, y);
+ if (y > 0) b |= bitmap->bitAt(x + 1, y - 1);
+ if (y < h-1) b |= bitmap->bitAt(x + 1, y + 1);
+ }
+ }
+ if (b) tmp.setBitAt(x, y);
+ }
+ }
+
+ swap(tmp, *bitmap);
+ //}
+ }
+}
+
+bool AtlasPacker::canAddChart(const BitMap * bitmap, int atlas_w, int atlas_h, int offset_x, int offset_y, int r)
+{
+ nvDebugCheck(r == 0 || r == 1);
+
+ // Check whether the two bitmaps overlap.
+
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+
+ if (r == 0) {
+ for (int y = 0; y < h; y++) {
+ int yy = y + offset_y;
+ if (yy >= 0) {
+ for (int x = 0; x < w; x++) {
+ int xx = x + offset_x;
+ if (xx >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (m_bitmap.bitAt(xx, yy)) return false;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ else if (r == 1) {
+ for (int y = 0; y < h; y++) {
+ int xx = y + offset_x;
+ if (xx >= 0) {
+ for (int x = 0; x < w; x++) {
+ int yy = x + offset_y;
+ if (yy >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (m_bitmap.bitAt(xx, yy)) return false;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+#if 0
+void AtlasPacker::checkCanAddChart(const Chart * chart, int w, int h, int x, int y, int r)
+{
+ nvDebugCheck(r == 0 || r == 1);
+ Vector2 extents = Vector2(float(w), float(h));
+ Vector2 offset = Vector2(float(x), float(y));
+
+ // Rasterize chart faces, set bits.
+ const uint faceCount = chart->faceCount();
+ for (uint f = 0; f < faceCount; f++)
+ {
+ const HalfEdge::Face * face = chart->chartMesh()->faceAt(f);
+
+ Vector2 vertices[4];
+
+ uint edgeCount = 0;
+ for (HalfEdge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
+ {
+ if (edgeCount < 4)
+ {
+ Vector2 t = it.vertex()->tex;
+ if (r == 1) swap(t.x, t.y);
+ vertices[edgeCount] = t + offset;
+ }
+ edgeCount++;
+ }
+
+ if (edgeCount == 3)
+ {
+ Raster::drawTriangle(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::checkBitsCallback, &m_bitmap);
+ }
+ else
+ {
+ Raster::drawQuad(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, AtlasPacker::checkBitsCallback, &m_bitmap);
+ }
+ }
+}
+#endif // 0
+
+
+static Color32 chartColor = Color32(0);
+static void selectRandomColor(MTRand & rand) {
+ // Pick random color for this chart. @@ Select random hue, but fixed saturation/luminance?
+ chartColor.r = 128 + rand.getRange(127);
+ chartColor.g = 128 + rand.getRange(127);
+ chartColor.b = 128 + rand.getRange(127);
+ chartColor.a = 255;
+}
+static bool debugDrawCallback(void * param, int x, int y, Vector3::Arg, Vector3::Arg, Vector3::Arg, float area)
+{
+ Image * image = (Image *)param;
+
+ if (area > 0.0) {
+ Color32 c = image->pixel(x, y);
+ c.r = chartColor.r;
+ c.g = chartColor.g;
+ c.b = chartColor.b;
+ c.a += U8(ftoi_round(0.5f * area * 255));
+ image->pixel(x, y) = c;
+ }
+
+ return true;
+}
+
+void AtlasPacker::addChart(const Chart * chart, int w, int h, int x, int y, int r, Image * debugOutput)
+{
+ nvDebugCheck(r == 0 || r == 1);
+
+ nvDebugCheck(debugOutput != NULL);
+ selectRandomColor(m_rand);
+
+ Vector2 extents = Vector2(float(w), float(h));
+ Vector2 offset = Vector2(float(x), float(y)) + Vector2(0.5);
+
+ // Rasterize chart faces, set bits.
+ const uint faceCount = chart->faceCount();
+ for (uint f = 0; f < faceCount; f++)
+ {
+ const HalfEdge::Face * face = chart->chartMesh()->faceAt(f);
+
+ Vector2 vertices[4];
+
+ uint edgeCount = 0;
+ for (HalfEdge::Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
+ {
+ if (edgeCount < 4)
+ {
+ Vector2 t = it.vertex()->tex;
+ if (r == 1) swap(t.x, t.y);
+ vertices[edgeCount] = t + offset;
+ }
+ edgeCount++;
+ }
+
+ if (edgeCount == 3)
+ {
+ Raster::drawTriangle(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, debugDrawCallback, debugOutput);
+ }
+ else
+ {
+ Raster::drawQuad(Raster::Mode_Antialiased, extents, /*enableScissors=*/true, vertices, debugDrawCallback, debugOutput);
+ }
+ }
+}
+
+
+void AtlasPacker::addChart(const BitMap * bitmap, int atlas_w, int atlas_h, int offset_x, int offset_y, int r, Image * debugOutput)
+{
+ nvDebugCheck(r == 0 || r == 1);
+
+ // Check whether the two bitmaps overlap.
+
+ const int w = bitmap->width();
+ const int h = bitmap->height();
+
+ if (debugOutput != NULL) {
+ selectRandomColor(m_rand);
+ }
+
+ if (r == 0) {
+ for (int y = 0; y < h; y++) {
+ int yy = y + offset_y;
+ if (yy >= 0) {
+ for (int x = 0; x < w; x++) {
+ int xx = x + offset_x;
+ if (xx >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (debugOutput) debugOutput->pixel(xx, yy) = chartColor;
+ else {
+ nvDebugCheck(m_bitmap.bitAt(xx, yy) == false);
+ m_bitmap.setBitAt(xx, yy);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ else if (r == 1) {
+ for (int y = 0; y < h; y++) {
+ int xx = y + offset_x;
+ if (xx >= 0) {
+ for (int x = 0; x < w; x++) {
+ int yy = x + offset_y;
+ if (yy >= 0) {
+ if (bitmap->bitAt(x, y)) {
+ if (xx < atlas_w && yy < atlas_h) {
+ if (debugOutput) debugOutput->pixel(xx, yy) = chartColor;
+ else {
+ nvDebugCheck(m_bitmap.bitAt(xx, yy) == false);
+ m_bitmap.setBitAt(xx, yy);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+
+
+/*static*/ bool AtlasPacker::checkBitsCallback(void * param, int x, int y, Vector3::Arg, Vector3::Arg, Vector3::Arg, float)
+{
+ BitMap * bitmap = (BitMap * )param;
+
+ nvDebugCheck(bitmap->bitAt(x, y) == false);
+
+ return true;
+}
+
+/*static*/ bool AtlasPacker::setBitsCallback(void * param, int x, int y, Vector3::Arg, Vector3::Arg, Vector3::Arg, float area)
+{
+ BitMap * bitmap = (BitMap * )param;
+
+ if (area > 0.0) {
+ bitmap->setBitAt(x, y);
+ }
+
+ return true;
+}
+
+
+
+float AtlasPacker::computeAtlasUtilization() const {
+ const uint w = m_width;
+ const uint h = m_height;
+ nvDebugCheck(w <= m_bitmap.width());
+ nvDebugCheck(h <= m_bitmap.height());
+
+ uint count = 0;
+ for (uint y = 0; y < h; y++) {
+ for (uint x = 0; x < w; x++) {
+ count += m_bitmap.bitAt(x, y);
+ }
+ }
+
+ return float(count) / (w * h);
+}