diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/ftoi.h')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/ftoi.h | 261 |
1 files changed, 261 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/ftoi.h b/thirdparty/thekla_atlas/nvmath/ftoi.h new file mode 100644 index 0000000000..182c56d1c3 --- /dev/null +++ b/thirdparty/thekla_atlas/nvmath/ftoi.h @@ -0,0 +1,261 @@ +// This code is in the public domain -- castano@gmail.com + +#pragma once +#ifndef NV_MATH_FTOI_H +#define NV_MATH_FTOI_H + +#include "nvmath/nvmath.h" + +#include <math.h> + +namespace nv +{ + // Optimized float to int conversions. See: + // http://cbloomrants.blogspot.com/2009/01/01-17-09-float-to-int.html + // http://www.stereopsis.com/sree/fpu2006.html + // http://assemblyrequired.crashworks.org/2009/01/12/why-you-should-never-cast-floats-to-ints/ + // http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point + + + union DoubleAnd64 { + uint64 i; + double d; + }; + + static const double floatutil_xs_doublemagic = (6755399441055744.0); // 2^52 * 1.5 + static const double floatutil_xs_doublemagicdelta = (1.5e-8); // almost .5f = .5f + 1e^(number of exp bit) + static const double floatutil_xs_doublemagicroundeps = (0.5f - floatutil_xs_doublemagicdelta); // almost .5f = .5f - 1e^(number of exp bit) + + NV_FORCEINLINE int ftoi_round_xs(double val, double magic) { +#if 1 + DoubleAnd64 dunion; + dunion.d = val + magic; + return (int32) dunion.i; // just cast to grab the bottom bits +#else + val += magic; + return ((int*)&val)[0]; // @@ Assumes little endian. +#endif + } + + NV_FORCEINLINE int ftoi_round_xs(float val) { + return ftoi_round_xs(val, floatutil_xs_doublemagic); + } + + NV_FORCEINLINE int ftoi_floor_xs(float val) { + return ftoi_round_xs(val - floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic); + } + + NV_FORCEINLINE int ftoi_ceil_xs(float val) { + return ftoi_round_xs(val + floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic); + } + + NV_FORCEINLINE int ftoi_trunc_xs(float val) { + return (val<0) ? ftoi_ceil_xs(val) : ftoi_floor_xs(val); + } + +// -- GODOT start -- +//#if NV_CPU_X86 || NV_CPU_X86_64 +#if NV_USE_SSE +// -- GODOT end -- + + NV_FORCEINLINE int ftoi_round_sse(float f) { + return _mm_cvt_ss2si(_mm_set_ss(f)); + } + + NV_FORCEINLINE int ftoi_trunc_sse(float f) { + return _mm_cvtt_ss2si(_mm_set_ss(f)); + } + +#endif + + + +#if NV_USE_SSE + + NV_FORCEINLINE int ftoi_round(float val) { + return ftoi_round_sse(val); + } + + NV_FORCEINLINE int ftoi_trunc(float f) { + return ftoi_trunc_sse(f); + } + + // We can probably do better than this. See for example: + // http://dss.stephanierct.com/DevBlog/?p=8 + NV_FORCEINLINE int ftoi_floor(float val) { + return ftoi_round(floorf(val)); + } + + NV_FORCEINLINE int ftoi_ceil(float val) { + return ftoi_round(ceilf(val)); + } + +#else + + // In theory this should work with any double floating point math implementation, but it appears that MSVC produces incorrect code + // when SSE2 is targeted and fast math is enabled (/arch:SSE2 & /fp:fast). These problems go away with /fp:precise, which is the default mode. + + NV_FORCEINLINE int ftoi_round(float val) { + return ftoi_round_xs(val); + } + + NV_FORCEINLINE int ftoi_floor(float val) { + return ftoi_floor_xs(val); + } + + NV_FORCEINLINE int ftoi_ceil(float val) { + return ftoi_ceil_xs(val); + } + + NV_FORCEINLINE int ftoi_trunc(float f) { + return ftoi_trunc_xs(f); + } + +#endif + + + inline void test_ftoi() { + + // Round to nearest integer. + nvCheck(ftoi_round(0.1f) == 0); + nvCheck(ftoi_round(0.6f) == 1); + nvCheck(ftoi_round(-0.2f) == 0); + nvCheck(ftoi_round(-0.7f) == -1); + nvCheck(ftoi_round(10.1f) == 10); + nvCheck(ftoi_round(10.6f) == 11); + nvCheck(ftoi_round(-90.1f) == -90); + nvCheck(ftoi_round(-90.6f) == -91); + + nvCheck(ftoi_round(0) == 0); + nvCheck(ftoi_round(1) == 1); + nvCheck(ftoi_round(-1) == -1); + + nvCheck(ftoi_round(0.5f) == 0); // How are midpoints rounded? Bankers rounding. + nvCheck(ftoi_round(1.5f) == 2); + nvCheck(ftoi_round(2.5f) == 2); + nvCheck(ftoi_round(3.5f) == 4); + nvCheck(ftoi_round(4.5f) == 4); + nvCheck(ftoi_round(-0.5f) == 0); + nvCheck(ftoi_round(-1.5f) == -2); + + + // Truncation (round down if > 0, round up if < 0). + nvCheck(ftoi_trunc(0.1f) == 0); + nvCheck(ftoi_trunc(0.6f) == 0); + nvCheck(ftoi_trunc(-0.2f) == 0); + nvCheck(ftoi_trunc(-0.7f) == 0); // @@ When using /arch:SSE2 in Win32, msvc produce wrong code for this one. It is skipping the addition. + nvCheck(ftoi_trunc(1.99f) == 1); + nvCheck(ftoi_trunc(-1.2f) == -1); + + // Floor (round down). + nvCheck(ftoi_floor(0.1f) == 0); + nvCheck(ftoi_floor(0.6f) == 0); + nvCheck(ftoi_floor(-0.2f) == -1); + nvCheck(ftoi_floor(-0.7f) == -1); + nvCheck(ftoi_floor(1.99f) == 1); + nvCheck(ftoi_floor(-1.2f) == -2); + + nvCheck(ftoi_floor(0) == 0); + nvCheck(ftoi_floor(1) == 1); + nvCheck(ftoi_floor(-1) == -1); + nvCheck(ftoi_floor(2) == 2); + nvCheck(ftoi_floor(-2) == -2); + + // Ceil (round up). + nvCheck(ftoi_ceil(0.1f) == 1); + nvCheck(ftoi_ceil(0.6f) == 1); + nvCheck(ftoi_ceil(-0.2f) == 0); + nvCheck(ftoi_ceil(-0.7f) == 0); + nvCheck(ftoi_ceil(1.99f) == 2); + nvCheck(ftoi_ceil(-1.2f) == -1); + + nvCheck(ftoi_ceil(0) == 0); + nvCheck(ftoi_ceil(1) == 1); + nvCheck(ftoi_ceil(-1) == -1); + nvCheck(ftoi_ceil(2) == 2); + nvCheck(ftoi_ceil(-2) == -2); + } + + + + + + // Safe versions using standard casts. + + inline int iround(float f) + { + return ftoi_round(f); + //return int(floorf(f + 0.5f)); + } + + inline int iround(double f) + { + return int(::floor(f + 0.5)); + } + + inline int ifloor(float f) + { + return ftoi_floor(f); + //return int(floorf(f)); + } + + inline int iceil(float f) + { + return int(ceilf(f)); + } + + + + // I'm always confused about which quantizer to use. I think we should choose a quantizer based on how the values are expanded later and this is generally using the 'exact endpoints' rule. + // Some notes from cbloom: http://cbloomrants.blogspot.com/2011/07/07-26-11-pixel-int-to-float-options.html + + // Quantize a float in the [0,1] range, using exact end points or uniform bins. + inline float quantizeFloat(float x, uint bits, bool exactEndPoints = true) { + nvDebugCheck(bits <= 16); + + float range = float(1 << bits); + if (exactEndPoints) { + return floorf(x * (range-1) + 0.5f) / (range-1); + } + else { + return (floorf(x * range) + 0.5f) / range; + } + } + + + // This is the most common rounding mode: + // + // 0 1 2 3 + // |___|_______|_______|___| + // 0 1 + // + // You get that if you take the unit floating point number multiply by 'N-1' and round to nearest. That is, `i = round(f * (N-1))`. + // You reconstruct the original float dividing by 'N-1': `f = i / (N-1)` + + + // 0 1 2 3 + // |_____|_____|_____|_____| + // 0 1 + + /*enum BinningMode { + RoundMode_ExactEndPoints, + RoundMode_UniformBins, + };*/ + + template <int N> + inline uint unitFloatToFixed(float f) { + return ftoi_round(f * ((1<<N)-1)); + } + + inline uint8 unitFloatToFixed8(float f) { + return (uint8)unitFloatToFixed<8>(f); + } + + inline uint16 unitFloatToFixed16(float f) { + return (uint16)unitFloatToFixed<16>(f); + } + + +} // nv + +#endif // NV_MATH_FTOI_H |