summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/ftoi.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/ftoi.h')
-rw-r--r--thirdparty/thekla_atlas/nvmath/ftoi.h261
1 files changed, 261 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/ftoi.h b/thirdparty/thekla_atlas/nvmath/ftoi.h
new file mode 100644
index 0000000000..182c56d1c3
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/ftoi.h
@@ -0,0 +1,261 @@
+// This code is in the public domain -- castano@gmail.com
+
+#pragma once
+#ifndef NV_MATH_FTOI_H
+#define NV_MATH_FTOI_H
+
+#include "nvmath/nvmath.h"
+
+#include <math.h>
+
+namespace nv
+{
+ // Optimized float to int conversions. See:
+ // http://cbloomrants.blogspot.com/2009/01/01-17-09-float-to-int.html
+ // http://www.stereopsis.com/sree/fpu2006.html
+ // http://assemblyrequired.crashworks.org/2009/01/12/why-you-should-never-cast-floats-to-ints/
+ // http://chrishecker.com/Miscellaneous_Technical_Articles#Floating_Point
+
+
+ union DoubleAnd64 {
+ uint64 i;
+ double d;
+ };
+
+ static const double floatutil_xs_doublemagic = (6755399441055744.0); // 2^52 * 1.5
+ static const double floatutil_xs_doublemagicdelta = (1.5e-8); // almost .5f = .5f + 1e^(number of exp bit)
+ static const double floatutil_xs_doublemagicroundeps = (0.5f - floatutil_xs_doublemagicdelta); // almost .5f = .5f - 1e^(number of exp bit)
+
+ NV_FORCEINLINE int ftoi_round_xs(double val, double magic) {
+#if 1
+ DoubleAnd64 dunion;
+ dunion.d = val + magic;
+ return (int32) dunion.i; // just cast to grab the bottom bits
+#else
+ val += magic;
+ return ((int*)&val)[0]; // @@ Assumes little endian.
+#endif
+ }
+
+ NV_FORCEINLINE int ftoi_round_xs(float val) {
+ return ftoi_round_xs(val, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_floor_xs(float val) {
+ return ftoi_round_xs(val - floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_ceil_xs(float val) {
+ return ftoi_round_xs(val + floatutil_xs_doublemagicroundeps, floatutil_xs_doublemagic);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc_xs(float val) {
+ return (val<0) ? ftoi_ceil_xs(val) : ftoi_floor_xs(val);
+ }
+
+// -- GODOT start --
+//#if NV_CPU_X86 || NV_CPU_X86_64
+#if NV_USE_SSE
+// -- GODOT end --
+
+ NV_FORCEINLINE int ftoi_round_sse(float f) {
+ return _mm_cvt_ss2si(_mm_set_ss(f));
+ }
+
+ NV_FORCEINLINE int ftoi_trunc_sse(float f) {
+ return _mm_cvtt_ss2si(_mm_set_ss(f));
+ }
+
+#endif
+
+
+
+#if NV_USE_SSE
+
+ NV_FORCEINLINE int ftoi_round(float val) {
+ return ftoi_round_sse(val);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc(float f) {
+ return ftoi_trunc_sse(f);
+ }
+
+ // We can probably do better than this. See for example:
+ // http://dss.stephanierct.com/DevBlog/?p=8
+ NV_FORCEINLINE int ftoi_floor(float val) {
+ return ftoi_round(floorf(val));
+ }
+
+ NV_FORCEINLINE int ftoi_ceil(float val) {
+ return ftoi_round(ceilf(val));
+ }
+
+#else
+
+ // In theory this should work with any double floating point math implementation, but it appears that MSVC produces incorrect code
+ // when SSE2 is targeted and fast math is enabled (/arch:SSE2 & /fp:fast). These problems go away with /fp:precise, which is the default mode.
+
+ NV_FORCEINLINE int ftoi_round(float val) {
+ return ftoi_round_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_floor(float val) {
+ return ftoi_floor_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_ceil(float val) {
+ return ftoi_ceil_xs(val);
+ }
+
+ NV_FORCEINLINE int ftoi_trunc(float f) {
+ return ftoi_trunc_xs(f);
+ }
+
+#endif
+
+
+ inline void test_ftoi() {
+
+ // Round to nearest integer.
+ nvCheck(ftoi_round(0.1f) == 0);
+ nvCheck(ftoi_round(0.6f) == 1);
+ nvCheck(ftoi_round(-0.2f) == 0);
+ nvCheck(ftoi_round(-0.7f) == -1);
+ nvCheck(ftoi_round(10.1f) == 10);
+ nvCheck(ftoi_round(10.6f) == 11);
+ nvCheck(ftoi_round(-90.1f) == -90);
+ nvCheck(ftoi_round(-90.6f) == -91);
+
+ nvCheck(ftoi_round(0) == 0);
+ nvCheck(ftoi_round(1) == 1);
+ nvCheck(ftoi_round(-1) == -1);
+
+ nvCheck(ftoi_round(0.5f) == 0); // How are midpoints rounded? Bankers rounding.
+ nvCheck(ftoi_round(1.5f) == 2);
+ nvCheck(ftoi_round(2.5f) == 2);
+ nvCheck(ftoi_round(3.5f) == 4);
+ nvCheck(ftoi_round(4.5f) == 4);
+ nvCheck(ftoi_round(-0.5f) == 0);
+ nvCheck(ftoi_round(-1.5f) == -2);
+
+
+ // Truncation (round down if > 0, round up if < 0).
+ nvCheck(ftoi_trunc(0.1f) == 0);
+ nvCheck(ftoi_trunc(0.6f) == 0);
+ nvCheck(ftoi_trunc(-0.2f) == 0);
+ nvCheck(ftoi_trunc(-0.7f) == 0); // @@ When using /arch:SSE2 in Win32, msvc produce wrong code for this one. It is skipping the addition.
+ nvCheck(ftoi_trunc(1.99f) == 1);
+ nvCheck(ftoi_trunc(-1.2f) == -1);
+
+ // Floor (round down).
+ nvCheck(ftoi_floor(0.1f) == 0);
+ nvCheck(ftoi_floor(0.6f) == 0);
+ nvCheck(ftoi_floor(-0.2f) == -1);
+ nvCheck(ftoi_floor(-0.7f) == -1);
+ nvCheck(ftoi_floor(1.99f) == 1);
+ nvCheck(ftoi_floor(-1.2f) == -2);
+
+ nvCheck(ftoi_floor(0) == 0);
+ nvCheck(ftoi_floor(1) == 1);
+ nvCheck(ftoi_floor(-1) == -1);
+ nvCheck(ftoi_floor(2) == 2);
+ nvCheck(ftoi_floor(-2) == -2);
+
+ // Ceil (round up).
+ nvCheck(ftoi_ceil(0.1f) == 1);
+ nvCheck(ftoi_ceil(0.6f) == 1);
+ nvCheck(ftoi_ceil(-0.2f) == 0);
+ nvCheck(ftoi_ceil(-0.7f) == 0);
+ nvCheck(ftoi_ceil(1.99f) == 2);
+ nvCheck(ftoi_ceil(-1.2f) == -1);
+
+ nvCheck(ftoi_ceil(0) == 0);
+ nvCheck(ftoi_ceil(1) == 1);
+ nvCheck(ftoi_ceil(-1) == -1);
+ nvCheck(ftoi_ceil(2) == 2);
+ nvCheck(ftoi_ceil(-2) == -2);
+ }
+
+
+
+
+
+ // Safe versions using standard casts.
+
+ inline int iround(float f)
+ {
+ return ftoi_round(f);
+ //return int(floorf(f + 0.5f));
+ }
+
+ inline int iround(double f)
+ {
+ return int(::floor(f + 0.5));
+ }
+
+ inline int ifloor(float f)
+ {
+ return ftoi_floor(f);
+ //return int(floorf(f));
+ }
+
+ inline int iceil(float f)
+ {
+ return int(ceilf(f));
+ }
+
+
+
+ // I'm always confused about which quantizer to use. I think we should choose a quantizer based on how the values are expanded later and this is generally using the 'exact endpoints' rule.
+ // Some notes from cbloom: http://cbloomrants.blogspot.com/2011/07/07-26-11-pixel-int-to-float-options.html
+
+ // Quantize a float in the [0,1] range, using exact end points or uniform bins.
+ inline float quantizeFloat(float x, uint bits, bool exactEndPoints = true) {
+ nvDebugCheck(bits <= 16);
+
+ float range = float(1 << bits);
+ if (exactEndPoints) {
+ return floorf(x * (range-1) + 0.5f) / (range-1);
+ }
+ else {
+ return (floorf(x * range) + 0.5f) / range;
+ }
+ }
+
+
+ // This is the most common rounding mode:
+ //
+ // 0 1 2 3
+ // |___|_______|_______|___|
+ // 0 1
+ //
+ // You get that if you take the unit floating point number multiply by 'N-1' and round to nearest. That is, `i = round(f * (N-1))`.
+ // You reconstruct the original float dividing by 'N-1': `f = i / (N-1)`
+
+
+ // 0 1 2 3
+ // |_____|_____|_____|_____|
+ // 0 1
+
+ /*enum BinningMode {
+ RoundMode_ExactEndPoints,
+ RoundMode_UniformBins,
+ };*/
+
+ template <int N>
+ inline uint unitFloatToFixed(float f) {
+ return ftoi_round(f * ((1<<N)-1));
+ }
+
+ inline uint8 unitFloatToFixed8(float f) {
+ return (uint8)unitFloatToFixed<8>(f);
+ }
+
+ inline uint16 unitFloatToFixed16(float f) {
+ return (uint16)unitFloatToFixed<16>(f);
+ }
+
+
+} // nv
+
+#endif // NV_MATH_FTOI_H