diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Vector.inl')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Vector.inl | 919 |
1 files changed, 0 insertions, 919 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Vector.inl b/thirdparty/thekla_atlas/nvmath/Vector.inl deleted file mode 100644 index bcaec7bf2a..0000000000 --- a/thirdparty/thekla_atlas/nvmath/Vector.inl +++ /dev/null @@ -1,919 +0,0 @@ -// This code is in the public domain -- castanyo@yahoo.es - -#pragma once -#ifndef NV_MATH_VECTOR_INL -#define NV_MATH_VECTOR_INL - -#include "Vector.h" -#include "nvcore/Utils.h" // min, max -#include "nvcore/Hash.h" // hash - -namespace nv -{ - - // Helpers to convert vector types. Assume T has x,y members and 2 argument constructor. - //template <typename T> T to(Vector2::Arg v) { return T(v.x, v.y); } - - // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor. - //template <typename T> T to(Vector3::Arg v) { return T(v.x, v.y, v.z); } - - // Helpers to convert vector types. Assume T has x,y,z members and 3 argument constructor. - //template <typename T> T to(Vector4::Arg v) { return T(v.x, v.y, v.z, v.w); } - - - // Vector2 - inline Vector2::Vector2() {} - inline Vector2::Vector2(float f) : x(f), y(f) {} - inline Vector2::Vector2(float x, float y) : x(x), y(y) {} - inline Vector2::Vector2(Vector2::Arg v) : x(v.x), y(v.y) {} - - inline const Vector2 & Vector2::operator=(Vector2::Arg v) - { - x = v.x; - y = v.y; - return *this; - } - - inline const float * Vector2::ptr() const - { - return &x; - } - - inline void Vector2::set(float x, float y) - { - this->x = x; - this->y = y; - } - - inline Vector2 Vector2::operator-() const - { - return Vector2(-x, -y); - } - - inline void Vector2::operator+=(Vector2::Arg v) - { - x += v.x; - y += v.y; - } - - inline void Vector2::operator-=(Vector2::Arg v) - { - x -= v.x; - y -= v.y; - } - - inline void Vector2::operator*=(float s) - { - x *= s; - y *= s; - } - - inline void Vector2::operator*=(Vector2::Arg v) - { - x *= v.x; - y *= v.y; - } - - inline bool operator==(Vector2::Arg a, Vector2::Arg b) - { - return a.x == b.x && a.y == b.y; - } - inline bool operator!=(Vector2::Arg a, Vector2::Arg b) - { - return a.x != b.x || a.y != b.y; - } - - - // Vector3 - inline Vector3::Vector3() {} - inline Vector3::Vector3(float f) : x(f), y(f), z(f) {} - inline Vector3::Vector3(float x, float y, float z) : x(x), y(y), z(z) {} - inline Vector3::Vector3(Vector2::Arg v, float z) : x(v.x), y(v.y), z(z) {} - inline Vector3::Vector3(Vector3::Arg v) : x(v.x), y(v.y), z(v.z) {} - - inline const Vector3 & Vector3::operator=(Vector3::Arg v) - { - x = v.x; - y = v.y; - z = v.z; - return *this; - } - - - inline Vector2 Vector3::xy() const - { - return Vector2(x, y); - } - - inline const float * Vector3::ptr() const - { - return &x; - } - - inline void Vector3::set(float x, float y, float z) - { - this->x = x; - this->y = y; - this->z = z; - } - - inline Vector3 Vector3::operator-() const - { - return Vector3(-x, -y, -z); - } - - inline void Vector3::operator+=(Vector3::Arg v) - { - x += v.x; - y += v.y; - z += v.z; - } - - inline void Vector3::operator-=(Vector3::Arg v) - { - x -= v.x; - y -= v.y; - z -= v.z; - } - - inline void Vector3::operator*=(float s) - { - x *= s; - y *= s; - z *= s; - } - - inline void Vector3::operator/=(float s) - { - float is = 1.0f / s; - x *= is; - y *= is; - z *= is; - } - - inline void Vector3::operator*=(Vector3::Arg v) - { - x *= v.x; - y *= v.y; - z *= v.z; - } - - inline void Vector3::operator/=(Vector3::Arg v) - { - x /= v.x; - y /= v.y; - z /= v.z; - } - - inline bool operator==(Vector3::Arg a, Vector3::Arg b) - { - return a.x == b.x && a.y == b.y && a.z == b.z; - } - inline bool operator!=(Vector3::Arg a, Vector3::Arg b) - { - return a.x != b.x || a.y != b.y || a.z != b.z; - } - - - // Vector4 - inline Vector4::Vector4() {} - inline Vector4::Vector4(float f) : x(f), y(f), z(f), w(f) {} - inline Vector4::Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {} - inline Vector4::Vector4(Vector2::Arg v, float z, float w) : x(v.x), y(v.y), z(z), w(w) {} - inline Vector4::Vector4(Vector2::Arg v, Vector2::Arg u) : x(v.x), y(v.y), z(u.x), w(u.y) {} - inline Vector4::Vector4(Vector3::Arg v, float w) : x(v.x), y(v.y), z(v.z), w(w) {} - inline Vector4::Vector4(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {} - - inline const Vector4 & Vector4::operator=(const Vector4 & v) - { - x = v.x; - y = v.y; - z = v.z; - w = v.w; - return *this; - } - - inline Vector2 Vector4::xy() const - { - return Vector2(x, y); - } - - inline Vector2 Vector4::zw() const - { - return Vector2(z, w); - } - - inline Vector3 Vector4::xyz() const - { - return Vector3(x, y, z); - } - - inline const float * Vector4::ptr() const - { - return &x; - } - - inline void Vector4::set(float x, float y, float z, float w) - { - this->x = x; - this->y = y; - this->z = z; - this->w = w; - } - - inline Vector4 Vector4::operator-() const - { - return Vector4(-x, -y, -z, -w); - } - - inline void Vector4::operator+=(Vector4::Arg v) - { - x += v.x; - y += v.y; - z += v.z; - w += v.w; - } - - inline void Vector4::operator-=(Vector4::Arg v) - { - x -= v.x; - y -= v.y; - z -= v.z; - w -= v.w; - } - - inline void Vector4::operator*=(float s) - { - x *= s; - y *= s; - z *= s; - w *= s; - } - - inline void Vector4::operator/=(float s) - { - x /= s; - y /= s; - z /= s; - w /= s; - } - - inline void Vector4::operator*=(Vector4::Arg v) - { - x *= v.x; - y *= v.y; - z *= v.z; - w *= v.w; - } - - inline void Vector4::operator/=(Vector4::Arg v) - { - x /= v.x; - y /= v.y; - z /= v.z; - w /= v.w; - } - - inline bool operator==(Vector4::Arg a, Vector4::Arg b) - { - return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w; - } - inline bool operator!=(Vector4::Arg a, Vector4::Arg b) - { - return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w; - } - - - - // Functions - - - // Vector2 - - inline Vector2 add(Vector2::Arg a, Vector2::Arg b) - { - return Vector2(a.x + b.x, a.y + b.y); - } - inline Vector2 operator+(Vector2::Arg a, Vector2::Arg b) - { - return add(a, b); - } - - inline Vector2 sub(Vector2::Arg a, Vector2::Arg b) - { - return Vector2(a.x - b.x, a.y - b.y); - } - inline Vector2 operator-(Vector2::Arg a, Vector2::Arg b) - { - return sub(a, b); - } - - inline Vector2 scale(Vector2::Arg v, float s) - { - return Vector2(v.x * s, v.y * s); - } - - inline Vector2 scale(Vector2::Arg v, Vector2::Arg s) - { - return Vector2(v.x * s.x, v.y * s.y); - } - - inline Vector2 operator*(Vector2::Arg v, float s) - { - return scale(v, s); - } - - inline Vector2 operator*(Vector2::Arg v1, Vector2::Arg v2) - { - return Vector2(v1.x*v2.x, v1.y*v2.y); - } - - inline Vector2 operator*(float s, Vector2::Arg v) - { - return scale(v, s); - } - - inline Vector2 operator/(Vector2::Arg v, float s) - { - return scale(v, 1.0f/s); - } - - inline Vector2 lerp(Vector2::Arg v1, Vector2::Arg v2, float t) - { - const float s = 1.0f - t; - return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y); - } - - inline float dot(Vector2::Arg a, Vector2::Arg b) - { - return a.x * b.x + a.y * b.y; - } - - inline float lengthSquared(Vector2::Arg v) - { - return v.x * v.x + v.y * v.y; - } - - inline float length(Vector2::Arg v) - { - return sqrtf(lengthSquared(v)); - } - - inline float distance(Vector2::Arg a, Vector2::Arg b) - { - return length(a - b); - } - - inline float inverseLength(Vector2::Arg v) - { - return 1.0f / sqrtf(lengthSquared(v)); - } - - inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON) - { - return equal(length(v), 1, epsilon); - } - - inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON) - { - float l = length(v); - nvDebugCheck(!isZero(l, epsilon)); - Vector2 n = scale(v, 1.0f / l); - nvDebugCheck(isNormalized(n)); - return n; - } - - inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON) - { - float l = length(v); - if (isZero(l, epsilon)) { - return fallback; - } - return scale(v, 1.0f / l); - } - - // Safe, branchless normalization from Andy Firth. All error checking ommitted. - // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ - inline Vector2 normalizeFast(Vector2::Arg v) - { - const float very_small_float = 1.0e-037f; - float l = very_small_float + length(v); - return scale(v, 1.0f / l); - } - - inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON) - { - return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon); - } - - inline Vector2 min(Vector2::Arg a, Vector2::Arg b) - { - return Vector2(min(a.x, b.x), min(a.y, b.y)); - } - - inline Vector2 max(Vector2::Arg a, Vector2::Arg b) - { - return Vector2(max(a.x, b.x), max(a.y, b.y)); - } - - inline Vector2 clamp(Vector2::Arg v, float min, float max) - { - return Vector2(clamp(v.x, min, max), clamp(v.y, min, max)); - } - - inline Vector2 saturate(Vector2::Arg v) - { - return Vector2(saturate(v.x), saturate(v.y)); - } - - inline bool isFinite(Vector2::Arg v) - { - return isFinite(v.x) && isFinite(v.y); - } - - inline Vector2 validate(Vector2::Arg v, Vector2::Arg fallback = Vector2(0.0f)) - { - if (!isFinite(v)) return fallback; - Vector2 vf = v; - nv::floatCleanup(vf.component, 2); - return vf; - } - - // Note, this is the area scaled by 2! - inline float triangleArea(Vector2::Arg v0, Vector2::Arg v1) - { - return (v0.x * v1.y - v0.y * v1.x); // * 0.5f; - } - inline float triangleArea(Vector2::Arg a, Vector2::Arg b, Vector2::Arg c) - { - // IC: While it may be appealing to use the following expression: - //return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f; - - // That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point - // numbers and the results becomes very unstable and dependent on the order of the factors. - - // Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result - // in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of - // the triangle. - - //return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f; - return triangleArea(a-c, b-c); - } - - - template <> - inline uint hash(const Vector2 & v, uint h) - { - return sdbmFloatHash(v.component, 2, h); - } - - - - // Vector3 - - inline Vector3 add(Vector3::Arg a, Vector3::Arg b) - { - return Vector3(a.x + b.x, a.y + b.y, a.z + b.z); - } - inline Vector3 add(Vector3::Arg a, float b) - { - return Vector3(a.x + b, a.y + b, a.z + b); - } - inline Vector3 operator+(Vector3::Arg a, Vector3::Arg b) - { - return add(a, b); - } - inline Vector3 operator+(Vector3::Arg a, float b) - { - return add(a, b); - } - - inline Vector3 sub(Vector3::Arg a, Vector3::Arg b) - { - return Vector3(a.x - b.x, a.y - b.y, a.z - b.z); - } - inline Vector3 sub(Vector3::Arg a, float b) - { - return Vector3(a.x - b, a.y - b, a.z - b); - } - inline Vector3 operator-(Vector3::Arg a, Vector3::Arg b) - { - return sub(a, b); - } - inline Vector3 operator-(Vector3::Arg a, float b) - { - return sub(a, b); - } - - inline Vector3 cross(Vector3::Arg a, Vector3::Arg b) - { - return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); - } - - inline Vector3 scale(Vector3::Arg v, float s) - { - return Vector3(v.x * s, v.y * s, v.z * s); - } - - inline Vector3 scale(Vector3::Arg v, Vector3::Arg s) - { - return Vector3(v.x * s.x, v.y * s.y, v.z * s.z); - } - - inline Vector3 operator*(Vector3::Arg v, float s) - { - return scale(v, s); - } - - inline Vector3 operator*(float s, Vector3::Arg v) - { - return scale(v, s); - } - - inline Vector3 operator*(Vector3::Arg v, Vector3::Arg s) - { - return scale(v, s); - } - - inline Vector3 operator/(Vector3::Arg v, float s) - { - return scale(v, 1.0f/s); - } - - /*inline Vector3 add_scaled(Vector3::Arg a, Vector3::Arg b, float s) - { - return Vector3(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s); - }*/ - - inline Vector3 lerp(Vector3::Arg v1, Vector3::Arg v2, float t) - { - const float s = 1.0f - t; - return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z); - } - - inline float dot(Vector3::Arg a, Vector3::Arg b) - { - return a.x * b.x + a.y * b.y + a.z * b.z; - } - - inline float lengthSquared(Vector3::Arg v) - { - return v.x * v.x + v.y * v.y + v.z * v.z; - } - - inline float length(Vector3::Arg v) - { - return sqrtf(lengthSquared(v)); - } - - inline float distance(Vector3::Arg a, Vector3::Arg b) - { - return length(a - b); - } - - inline float distanceSquared(Vector3::Arg a, Vector3::Arg b) - { - return lengthSquared(a - b); - } - - inline float inverseLength(Vector3::Arg v) - { - return 1.0f / sqrtf(lengthSquared(v)); - } - - inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON) - { - return equal(length(v), 1, epsilon); - } - - inline Vector3 normalize(Vector3::Arg v, float epsilon = NV_EPSILON) - { - float l = length(v); - nvDebugCheck(!isZero(l, epsilon)); - Vector3 n = scale(v, 1.0f / l); - nvDebugCheck(isNormalized(n)); - return n; - } - - inline Vector3 normalizeSafe(Vector3::Arg v, Vector3::Arg fallback, float epsilon = NV_EPSILON) - { - float l = length(v); - if (isZero(l, epsilon)) { - return fallback; - } - return scale(v, 1.0f / l); - } - - // Safe, branchless normalization from Andy Firth. All error checking ommitted. - // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ - inline Vector3 normalizeFast(Vector3::Arg v) - { - const float very_small_float = 1.0e-037f; - float l = very_small_float + length(v); - return scale(v, 1.0f / l); - } - - inline bool equal(Vector3::Arg v1, Vector3::Arg v2, float epsilon = NV_EPSILON) - { - return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon); - } - - inline Vector3 min(Vector3::Arg a, Vector3::Arg b) - { - return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z)); - } - - inline Vector3 max(Vector3::Arg a, Vector3::Arg b) - { - return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)); - } - - inline Vector3 clamp(Vector3::Arg v, float min, float max) - { - return Vector3(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max)); - } - - inline Vector3 saturate(Vector3::Arg v) - { - return Vector3(saturate(v.x), saturate(v.y), saturate(v.z)); - } - - inline Vector3 floor(Vector3::Arg v) - { - return Vector3(floorf(v.x), floorf(v.y), floorf(v.z)); - } - - inline Vector3 ceil(Vector3::Arg v) - { - return Vector3(ceilf(v.x), ceilf(v.y), ceilf(v.z)); - } - - inline bool isFinite(Vector3::Arg v) - { - return isFinite(v.x) && isFinite(v.y) && isFinite(v.z); - } - - inline Vector3 validate(Vector3::Arg v, Vector3::Arg fallback = Vector3(0.0f)) - { - if (!isFinite(v)) return fallback; - Vector3 vf = v; - nv::floatCleanup(vf.component, 3); - return vf; - } - - inline Vector3 reflect(Vector3::Arg v, Vector3::Arg n) - { - return v - (2 * dot(v, n)) * n; - } - - template <> - inline uint hash(const Vector3 & v, uint h) - { - return sdbmFloatHash(v.component, 3, h); - } - - - // Vector4 - - inline Vector4 add(Vector4::Arg a, Vector4::Arg b) - { - return Vector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); - } - inline Vector4 operator+(Vector4::Arg a, Vector4::Arg b) - { - return add(a, b); - } - - inline Vector4 sub(Vector4::Arg a, Vector4::Arg b) - { - return Vector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); - } - inline Vector4 operator-(Vector4::Arg a, Vector4::Arg b) - { - return sub(a, b); - } - - inline Vector4 scale(Vector4::Arg v, float s) - { - return Vector4(v.x * s, v.y * s, v.z * s, v.w * s); - } - - inline Vector4 scale(Vector4::Arg v, Vector4::Arg s) - { - return Vector4(v.x * s.x, v.y * s.y, v.z * s.z, v.w * s.w); - } - - inline Vector4 operator*(Vector4::Arg v, float s) - { - return scale(v, s); - } - - inline Vector4 operator*(float s, Vector4::Arg v) - { - return scale(v, s); - } - - inline Vector4 operator*(Vector4::Arg v, Vector4::Arg s) - { - return scale(v, s); - } - - inline Vector4 operator/(Vector4::Arg v, float s) - { - return scale(v, 1.0f/s); - } - - /*inline Vector4 add_scaled(Vector4::Arg a, Vector4::Arg b, float s) - { - return Vector4(a.x + b.x * s, a.y + b.y * s, a.z + b.z * s, a.w + b.w * s); - }*/ - - inline Vector4 lerp(Vector4::Arg v1, Vector4::Arg v2, float t) - { - const float s = 1.0f - t; - return Vector4(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z, v1.w * s + t * v2.w); - } - - inline float dot(Vector4::Arg a, Vector4::Arg b) - { - return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; - } - - inline float lengthSquared(Vector4::Arg v) - { - return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; - } - - inline float length(Vector4::Arg v) - { - return sqrtf(lengthSquared(v)); - } - - inline float inverseLength(Vector4::Arg v) - { - return 1.0f / sqrtf(lengthSquared(v)); - } - - inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON) - { - return equal(length(v), 1, epsilon); - } - - inline Vector4 normalize(Vector4::Arg v, float epsilon = NV_EPSILON) - { - float l = length(v); - nvDebugCheck(!isZero(l, epsilon)); - Vector4 n = scale(v, 1.0f / l); - nvDebugCheck(isNormalized(n)); - return n; - } - - inline Vector4 normalizeSafe(Vector4::Arg v, Vector4::Arg fallback, float epsilon = NV_EPSILON) - { - float l = length(v); - if (isZero(l, epsilon)) { - return fallback; - } - return scale(v, 1.0f / l); - } - - // Safe, branchless normalization from Andy Firth. All error checking ommitted. - // http://altdevblogaday.com/2011/08/21/practical-flt-point-tricks/ - inline Vector4 normalizeFast(Vector4::Arg v) - { - const float very_small_float = 1.0e-037f; - float l = very_small_float + length(v); - return scale(v, 1.0f / l); - } - - inline bool equal(Vector4::Arg v1, Vector4::Arg v2, float epsilon = NV_EPSILON) - { - return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon) && equal(v1.z, v2.z, epsilon) && equal(v1.w, v2.w, epsilon); - } - - inline Vector4 min(Vector4::Arg a, Vector4::Arg b) - { - return Vector4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w)); - } - - inline Vector4 max(Vector4::Arg a, Vector4::Arg b) - { - return Vector4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w)); - } - - inline Vector4 clamp(Vector4::Arg v, float min, float max) - { - return Vector4(clamp(v.x, min, max), clamp(v.y, min, max), clamp(v.z, min, max), clamp(v.w, min, max)); - } - - inline Vector4 saturate(Vector4::Arg v) - { - return Vector4(saturate(v.x), saturate(v.y), saturate(v.z), saturate(v.w)); - } - - inline bool isFinite(Vector4::Arg v) - { - return isFinite(v.x) && isFinite(v.y) && isFinite(v.z) && isFinite(v.w); - } - - inline Vector4 validate(Vector4::Arg v, Vector4::Arg fallback = Vector4(0.0f)) - { - if (!isFinite(v)) return fallback; - Vector4 vf = v; - nv::floatCleanup(vf.component, 4); - return vf; - } - - template <> - inline uint hash(const Vector4 & v, uint h) - { - return sdbmFloatHash(v.component, 4, h); - } - - -#if NV_OS_IOS // LLVM is not happy with implicit conversion of immediate constants to float - - //int: - - inline Vector2 scale(Vector2::Arg v, int s) - { - return Vector2(v.x * s, v.y * s); - } - - inline Vector2 operator*(Vector2::Arg v, int s) - { - return scale(v, s); - } - - inline Vector2 operator*(int s, Vector2::Arg v) - { - return scale(v, s); - } - - inline Vector2 operator/(Vector2::Arg v, int s) - { - return scale(v, 1.0f/s); - } - - inline Vector3 scale(Vector3::Arg v, int s) - { - return Vector3(v.x * s, v.y * s, v.z * s); - } - - inline Vector3 operator*(Vector3::Arg v, int s) - { - return scale(v, s); - } - - inline Vector3 operator*(int s, Vector3::Arg v) - { - return scale(v, s); - } - - inline Vector3 operator/(Vector3::Arg v, int s) - { - return scale(v, 1.0f/s); - } - - inline Vector4 scale(Vector4::Arg v, int s) - { - return Vector4(v.x * s, v.y * s, v.z * s, v.w * s); - } - - inline Vector4 operator*(Vector4::Arg v, int s) - { - return scale(v, s); - } - - inline Vector4 operator*(int s, Vector4::Arg v) - { - return scale(v, s); - } - - inline Vector4 operator/(Vector4::Arg v, int s) - { - return scale(v, 1.0f/s); - } - - //double: - - inline Vector3 operator*(Vector3::Arg v, double s) - { - return scale(v, (float)s); - } - - inline Vector3 operator*(double s, Vector3::Arg v) - { - return scale(v, (float)s); - } - - inline Vector3 operator/(Vector3::Arg v, double s) - { - return scale(v, 1.f/((float)s)); - } - -#endif //NV_OS_IOS - -} // nv namespace - -#endif // NV_MATH_VECTOR_INL |