summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Sparse.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Sparse.h')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sparse.h204
1 files changed, 204 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Sparse.h b/thirdparty/thekla_atlas/nvmath/Sparse.h
new file mode 100644
index 0000000000..6b03ed51f3
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Sparse.h
@@ -0,0 +1,204 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#pragma once
+#ifndef NV_MATH_SPARSE_H
+#define NV_MATH_SPARSE_H
+
+#include "nvmath.h"
+#include "nvcore/Array.h"
+
+
+// Full and sparse vector and matrix classes. BLAS subset.
+
+namespace nv
+{
+ class FullVector;
+ class FullMatrix;
+ class SparseMatrix;
+
+
+ /// Fixed size vector class.
+ class FullVector
+ {
+ public:
+
+ FullVector(uint dim);
+ FullVector(const FullVector & v);
+
+ const FullVector & operator=(const FullVector & v);
+
+ uint dimension() const { return m_array.count(); }
+
+ const float & operator[]( uint index ) const { return m_array[index]; }
+ float & operator[] ( uint index ) { return m_array[index]; }
+
+ void fill(float f);
+
+ void operator+= (const FullVector & v);
+ void operator-= (const FullVector & v);
+ void operator*= (const FullVector & v);
+
+ void operator+= (float f);
+ void operator-= (float f);
+ void operator*= (float f);
+
+
+ private:
+
+ Array<float> m_array;
+
+ };
+
+ // Pseudo-BLAS interface.
+ NVMATH_API void saxpy(float a, const FullVector & x, FullVector & y); // y = a * x + y
+ NVMATH_API void copy(const FullVector & x, FullVector & y);
+ NVMATH_API void scal(float a, FullVector & x);
+ NVMATH_API float dot(const FullVector & x, const FullVector & y);
+
+
+ enum Transpose
+ {
+ NoTransposed = 0,
+ Transposed = 1
+ };
+
+ /// Full matrix class.
+ class FullMatrix
+ {
+ public:
+
+ FullMatrix(uint d);
+ FullMatrix(uint w, uint h);
+ FullMatrix(const FullMatrix & m);
+
+ const FullMatrix & operator=(const FullMatrix & m);
+
+ uint width() const { return m_width; }
+ uint height() const { return m_height; }
+ bool isSquare() const { return m_width == m_height; }
+
+ float getCoefficient(uint x, uint y) const;
+
+ void setCoefficient(uint x, uint y, float f);
+ void addCoefficient(uint x, uint y, float f);
+ void mulCoefficient(uint x, uint y, float f);
+
+ float dotRow(uint y, const FullVector & v) const;
+ void madRow(uint y, float alpha, FullVector & v) const;
+
+ protected:
+
+ bool isValid() const {
+ return m_array.size() == (m_width * m_height);
+ }
+
+ private:
+
+ const uint m_width;
+ const uint m_height;
+ Array<float> m_array;
+
+ };
+
+ NVMATH_API void mult(const FullMatrix & M, const FullVector & x, FullVector & y);
+ NVMATH_API void mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y);
+
+ // y = alpha*A*x + beta*y
+ NVMATH_API void sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
+ NVMATH_API void sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
+
+ NVMATH_API void mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C);
+ NVMATH_API void mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C);
+
+ // C = alpha*A*B + beta*C
+ NVMATH_API void sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C);
+ NVMATH_API void sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C);
+
+
+ /**
+ * Sparse matrix class. The matrix is assumed to be sparse and to have
+ * very few non-zero elements, for this reason it's stored in indexed
+ * format. To multiply column vectors efficiently, the matrix stores
+ * the elements in indexed-column order, there is a list of indexed
+ * elements for each row of the matrix. As with the FullVector the
+ * dimension of the matrix is constant.
+ **/
+ class SparseMatrix
+ {
+ friend class FullMatrix;
+ public:
+
+ // An element of the sparse array.
+ struct Coefficient {
+ uint x; // column
+ float v; // value
+ };
+
+
+ public:
+
+ SparseMatrix(uint d);
+ SparseMatrix(uint w, uint h);
+ SparseMatrix(const SparseMatrix & m);
+
+ const SparseMatrix & operator=(const SparseMatrix & m);
+
+
+ uint width() const { return m_width; }
+ uint height() const { return m_array.count(); }
+ bool isSquare() const { return width() == height(); }
+
+ float getCoefficient(uint x, uint y) const; // x is column, y is row
+
+ void setCoefficient(uint x, uint y, float f);
+ void addCoefficient(uint x, uint y, float f);
+ void mulCoefficient(uint x, uint y, float f);
+
+ float sumRow(uint y) const;
+ float dotRow(uint y, const FullVector & v) const;
+ void madRow(uint y, float alpha, FullVector & v) const;
+
+ void clearRow(uint y);
+ void scaleRow(uint y, float f);
+ void normalizeRow(uint y);
+
+ void clearColumn(uint x);
+ void scaleColumn(uint x, float f);
+
+ const Array<Coefficient> & getRow(uint y) const;
+
+ bool isSymmetric() const;
+
+ private:
+
+ /// Number of columns.
+ const uint m_width;
+
+ /// Array of matrix elements.
+ Array< Array<Coefficient> > m_array;
+
+ };
+
+ NVMATH_API void transpose(const SparseMatrix & A, SparseMatrix & B);
+
+ NVMATH_API void mult(const SparseMatrix & M, const FullVector & x, FullVector & y);
+ NVMATH_API void mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y);
+
+ // y = alpha*A*x + beta*y
+ NVMATH_API void sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
+ NVMATH_API void sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
+
+ NVMATH_API void mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C);
+ NVMATH_API void mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C);
+
+ // C = alpha*A*B + beta*C
+ NVMATH_API void sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C);
+ NVMATH_API void sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C);
+
+ // C = At * A
+ NVMATH_API void sqm(const SparseMatrix & A, SparseMatrix & C);
+
+} // nv namespace
+
+
+#endif // NV_MATH_SPARSE_H