summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Sparse.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Sparse.cpp')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Sparse.cpp889
1 files changed, 0 insertions, 889 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Sparse.cpp b/thirdparty/thekla_atlas/nvmath/Sparse.cpp
deleted file mode 100644
index 421e7ee022..0000000000
--- a/thirdparty/thekla_atlas/nvmath/Sparse.cpp
+++ /dev/null
@@ -1,889 +0,0 @@
-// This code is in the public domain -- Ignacio Castaņo <castanyo@yahoo.es>
-
-#include "Sparse.h"
-#include "KahanSum.h"
-
-#include "nvcore/Array.inl"
-
-#define USE_KAHAN_SUM 0
-
-
-using namespace nv;
-
-
-FullVector::FullVector(uint dim)
-{
- m_array.resize(dim);
-}
-
-FullVector::FullVector(const FullVector & v) : m_array(v.m_array)
-{
-}
-
-const FullVector & FullVector::operator=(const FullVector & v)
-{
- nvCheck(dimension() == v.dimension());
-
- m_array = v.m_array;
-
- return *this;
-}
-
-
-void FullVector::fill(float f)
-{
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] = f;
- }
-}
-
-void FullVector::operator+= (const FullVector & v)
-{
- nvDebugCheck(dimension() == v.dimension());
-
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] += v.m_array[i];
- }
-}
-
-void FullVector::operator-= (const FullVector & v)
-{
- nvDebugCheck(dimension() == v.dimension());
-
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] -= v.m_array[i];
- }
-}
-
-void FullVector::operator*= (const FullVector & v)
-{
- nvDebugCheck(dimension() == v.dimension());
-
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] *= v.m_array[i];
- }
-}
-
-void FullVector::operator+= (float f)
-{
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] += f;
- }
-}
-
-void FullVector::operator-= (float f)
-{
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] -= f;
- }
-}
-
-void FullVector::operator*= (float f)
-{
- const uint dim = dimension();
- for (uint i = 0; i < dim; i++)
- {
- m_array[i] *= f;
- }
-}
-
-
-void nv::saxpy(float a, const FullVector & x, FullVector & y)
-{
- nvDebugCheck(x.dimension() == y.dimension());
-
- const uint dim = x.dimension();
- for (uint i = 0; i < dim; i++)
- {
- y[i] += a * x[i];
- }
-}
-
-void nv::copy(const FullVector & x, FullVector & y)
-{
- nvDebugCheck(x.dimension() == y.dimension());
-
- const uint dim = x.dimension();
- for (uint i = 0; i < dim; i++)
- {
- y[i] = x[i];
- }
-}
-
-void nv::scal(float a, FullVector & x)
-{
- const uint dim = x.dimension();
- for (uint i = 0; i < dim; i++)
- {
- x[i] *= a;
- }
-}
-
-float nv::dot(const FullVector & x, const FullVector & y)
-{
- nvDebugCheck(x.dimension() == y.dimension());
-
- const uint dim = x.dimension();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < dim; i++)
- {
- kahan.add(x[i] * y[i]);
- }
- return kahan.sum();
-#else
- float sum = 0;
- for (uint i = 0; i < dim; i++)
- {
- sum += x[i] * y[i];
- }
- return sum;
-#endif
-}
-
-
-FullMatrix::FullMatrix(uint d) : m_width(d), m_height(d)
-{
- m_array.resize(d*d, 0.0f);
-}
-
-FullMatrix::FullMatrix(uint w, uint h) : m_width(w), m_height(h)
-{
- m_array.resize(w*h, 0.0f);
-}
-
-FullMatrix::FullMatrix(const FullMatrix & m) : m_width(m.m_width), m_height(m.m_height)
-{
- m_array = m.m_array;
-}
-
-const FullMatrix & FullMatrix::operator=(const FullMatrix & m)
-{
- nvCheck(width() == m.width());
- nvCheck(height() == m.height());
-
- m_array = m.m_array;
-
- return *this;
-}
-
-
-float FullMatrix::getCoefficient(uint x, uint y) const
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- return m_array[y * width() + x];
-}
-
-void FullMatrix::setCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- m_array[y * width() + x] = f;
-}
-
-void FullMatrix::addCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- m_array[y * width() + x] += f;
-}
-
-void FullMatrix::mulCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- m_array[y * width() + x] *= f;
-}
-
-float FullMatrix::dotRow(uint y, const FullVector & v) const
-{
- nvDebugCheck( v.dimension() == width() );
- nvDebugCheck( y < height() );
-
- float sum = 0;
-
- const uint count = v.dimension();
- for (uint i = 0; i < count; i++)
- {
- sum += m_array[y * count + i] * v[i];
- }
-
- return sum;
-}
-
-void FullMatrix::madRow(uint y, float alpha, FullVector & v) const
-{
- nvDebugCheck( v.dimension() == width() );
- nvDebugCheck( y < height() );
-
- const uint count = v.dimension();
- for (uint i = 0; i < count; i++)
- {
- v[i] += m_array[y * count + i];
- }
-}
-
-
-// y = M * x
-void nv::mult(const FullMatrix & M, const FullVector & x, FullVector & y)
-{
- mult(NoTransposed, M, x, y);
-}
-
-void nv::mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y)
-{
- const uint w = M.width();
- const uint h = M.height();
-
- if (TM == Transposed)
- {
- nvDebugCheck( h == x.dimension() );
- nvDebugCheck( w == y.dimension() );
-
- y.fill(0.0f);
-
- for (uint i = 0; i < h; i++)
- {
- M.madRow(i, x[i], y);
- }
- }
- else
- {
- nvDebugCheck( w == x.dimension() );
- nvDebugCheck( h == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- y[i] = M.dotRow(i, x);
- }
- }
-}
-
-// y = alpha*A*x + beta*y
-void nv::sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
-{
- sgemv(alpha, NoTransposed, A, x, beta, y);
-}
-
-void nv::sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
-{
- const uint w = A.width();
- const uint h = A.height();
-
- if (TA == Transposed)
- {
- nvDebugCheck( h == x.dimension() );
- nvDebugCheck( w == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- A.madRow(i, alpha * x[i], y);
- }
- }
- else
- {
- nvDebugCheck( w == x.dimension() );
- nvDebugCheck( h == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- y[i] = alpha * A.dotRow(i, x) + beta * y[i];
- }
- }
-}
-
-
-// Multiply a row of A by a column of B.
-static float dot(uint j, Transpose TA, const FullMatrix & A, uint i, Transpose TB, const FullMatrix & B)
-{
- const uint w = (TA == NoTransposed) ? A.width() : A.height();
- nvDebugCheck(w == ((TB == NoTransposed) ? B.height() : A.width()));
-
- float sum = 0.0f;
-
- for (uint k = 0; k < w; k++)
- {
- const float a = (TA == NoTransposed) ? A.getCoefficient(k, j) : A.getCoefficient(j, k); // @@ Move branches out of the loop?
- const float b = (TB == NoTransposed) ? B.getCoefficient(i, k) : A.getCoefficient(k, i);
- sum += a * b;
- }
-
- return sum;
-}
-
-
-// C = A * B
-void nv::mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C)
-{
- mult(NoTransposed, A, NoTransposed, B, C);
-}
-
-void nv::mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C)
-{
- sgemm(1.0f, TA, A, TB, B, 0.0f, C);
-}
-
-// C = alpha*A*B + beta*C
-void nv::sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C)
-{
- sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
-}
-
-void nv::sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C)
-{
- const uint w = C.width();
- const uint h = C.height();
-
- uint aw = (TA == NoTransposed) ? A.width() : A.height();
- uint ah = (TA == NoTransposed) ? A.height() : A.width();
- uint bw = (TB == NoTransposed) ? B.width() : B.height();
- uint bh = (TB == NoTransposed) ? B.height() : B.width();
-
- nvDebugCheck(aw == bh);
- nvDebugCheck(bw == ah);
- nvDebugCheck(w == bw);
- nvDebugCheck(h == ah);
-
- for (uint y = 0; y < h; y++)
- {
- for (uint x = 0; x < w; x++)
- {
- float c = alpha * ::dot(x, TA, A, y, TB, B) + beta * C.getCoefficient(x, y);
- C.setCoefficient(x, y, c);
- }
- }
-}
-
-
-
-
-
-/// Ctor. Init the size of the sparse matrix.
-SparseMatrix::SparseMatrix(uint d) : m_width(d)
-{
- m_array.resize(d);
-}
-
-/// Ctor. Init the size of the sparse matrix.
-SparseMatrix::SparseMatrix(uint w, uint h) : m_width(w)
-{
- m_array.resize(h);
-}
-
-SparseMatrix::SparseMatrix(const SparseMatrix & m) : m_width(m.m_width)
-{
- m_array = m.m_array;
-}
-
-const SparseMatrix & SparseMatrix::operator=(const SparseMatrix & m)
-{
- nvCheck(width() == m.width());
- nvCheck(height() == m.height());
-
- m_array = m.m_array;
-
- return *this;
-}
-
-
-// x is column, y is row
-float SparseMatrix::getCoefficient(uint x, uint y) const
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- if (m_array[y][i].x == x) return m_array[y][i].v;
- }
-
- return 0.0f;
-}
-
-void SparseMatrix::setCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- if (m_array[y][i].x == x)
- {
- m_array[y][i].v = f;
- return;
- }
- }
-
- if (f != 0.0f)
- {
- Coefficient c = { x, f };
- m_array[y].append( c );
- }
-}
-
-void SparseMatrix::addCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- if (f != 0.0f)
- {
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- if (m_array[y][i].x == x)
- {
- m_array[y][i].v += f;
- return;
- }
- }
-
- Coefficient c = { x, f };
- m_array[y].append( c );
- }
-}
-
-void SparseMatrix::mulCoefficient(uint x, uint y, float f)
-{
- nvDebugCheck( x < width() );
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- if (m_array[y][i].x == x)
- {
- m_array[y][i].v *= f;
- return;
- }
- }
-
- if (f != 0.0f)
- {
- Coefficient c = { x, f };
- m_array[y].append( c );
- }
-}
-
-
-float SparseMatrix::sumRow(uint y) const
-{
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < count; i++)
- {
- kahan.add(m_array[y][i].v);
- }
- return kahan.sum();
-#else
- float sum = 0;
- for (uint i = 0; i < count; i++)
- {
- sum += m_array[y][i].v;
- }
- return sum;
-#endif
-}
-
-float SparseMatrix::dotRow(uint y, const FullVector & v) const
-{
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < count; i++)
- {
- kahan.add(m_array[y][i].v * v[m_array[y][i].x]);
- }
- return kahan.sum();
-#else
- float sum = 0;
- for (uint i = 0; i < count; i++)
- {
- sum += m_array[y][i].v * v[m_array[y][i].x];
- }
- return sum;
-#endif
-}
-
-void SparseMatrix::madRow(uint y, float alpha, FullVector & v) const
-{
- nvDebugCheck(y < height());
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- v[m_array[y][i].x] += alpha * m_array[y][i].v;
- }
-}
-
-
-void SparseMatrix::clearRow(uint y)
-{
- nvDebugCheck( y < height() );
-
- m_array[y].clear();
-}
-
-void SparseMatrix::scaleRow(uint y, float f)
-{
- nvDebugCheck( y < height() );
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- m_array[y][i].v *= f;
- }
-}
-
-void SparseMatrix::normalizeRow(uint y)
-{
- nvDebugCheck( y < height() );
-
- float norm = 0.0f;
-
- const uint count = m_array[y].count();
- for (uint i = 0; i < count; i++)
- {
- float f = m_array[y][i].v;
- norm += f * f;
- }
-
- scaleRow(y, 1.0f / sqrtf(norm));
-}
-
-
-void SparseMatrix::clearColumn(uint x)
-{
- nvDebugCheck(x < width());
-
- for (uint y = 0; y < height(); y++)
- {
- const uint count = m_array[y].count();
- for (uint e = 0; e < count; e++)
- {
- if (m_array[y][e].x == x)
- {
- m_array[y][e].v = 0.0f;
- break;
- }
- }
- }
-}
-
-void SparseMatrix::scaleColumn(uint x, float f)
-{
- nvDebugCheck(x < width());
-
- for (uint y = 0; y < height(); y++)
- {
- const uint count = m_array[y].count();
- for (uint e = 0; e < count; e++)
- {
- if (m_array[y][e].x == x)
- {
- m_array[y][e].v *= f;
- break;
- }
- }
- }
-}
-
-const Array<SparseMatrix::Coefficient> & SparseMatrix::getRow(uint y) const
-{
- return m_array[y];
-}
-
-
-bool SparseMatrix::isSymmetric() const
-{
- for (uint y = 0; y < height(); y++)
- {
- const uint count = m_array[y].count();
- for (uint e = 0; e < count; e++)
- {
- const uint x = m_array[y][e].x;
- if (x > y) {
- float v = m_array[y][e].v;
-
- if (!equal(getCoefficient(y, x), v)) { // @@ epsilon
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-
-// y = M * x
-void nv::mult(const SparseMatrix & M, const FullVector & x, FullVector & y)
-{
- mult(NoTransposed, M, x, y);
-}
-
-void nv::mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y)
-{
- const uint w = M.width();
- const uint h = M.height();
-
- if (TM == Transposed)
- {
- nvDebugCheck( h == x.dimension() );
- nvDebugCheck( w == y.dimension() );
-
- y.fill(0.0f);
-
- for (uint i = 0; i < h; i++)
- {
- M.madRow(i, x[i], y);
- }
- }
- else
- {
- nvDebugCheck( w == x.dimension() );
- nvDebugCheck( h == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- y[i] = M.dotRow(i, x);
- }
- }
-}
-
-// y = alpha*A*x + beta*y
-void nv::sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
-{
- sgemv(alpha, NoTransposed, A, x, beta, y);
-}
-
-void nv::sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
-{
- const uint w = A.width();
- const uint h = A.height();
-
- if (TA == Transposed)
- {
- nvDebugCheck( h == x.dimension() );
- nvDebugCheck( w == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- A.madRow(i, alpha * x[i], y);
- }
- }
- else
- {
- nvDebugCheck( w == x.dimension() );
- nvDebugCheck( h == y.dimension() );
-
- for (uint i = 0; i < h; i++)
- {
- y[i] = alpha * A.dotRow(i, x) + beta * y[i];
- }
- }
-}
-
-
-// dot y-row of A by x-column of B
-static float dotRowColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
-{
- const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
-
- const uint count = row.count();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < count; i++)
- {
- const SparseMatrix::Coefficient & c = row[i];
- kahan.add(c.v * B.getCoefficient(x, c.x));
- }
- return kahan.sum();
-#else
- float sum = 0.0f;
- for (uint i = 0; i < count; i++)
- {
- const SparseMatrix::Coefficient & c = row[i];
- sum += c.v * B.getCoefficient(x, c.x);
- }
- return sum;
-#endif
-}
-
-// dot y-row of A by x-row of B
-static float dotRowRow(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
-{
- const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
-
- const uint count = row.count();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < count; i++)
- {
- const SparseMatrix::Coefficient & c = row[i];
- kahan.add(c.v * B.getCoefficient(c.x, x));
- }
- return kahan.sum();
-#else
- float sum = 0.0f;
- for (uint i = 0; i < count; i++)
- {
- const SparseMatrix::Coefficient & c = row[i];
- sum += c.v * B.getCoefficient(c.x, x);
- }
- return sum;
-#endif
-}
-
-// dot y-column of A by x-column of B
-static float dotColumnColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
-{
- nvDebugCheck(A.height() == B.height());
-
- const uint h = A.height();
-
-#if USE_KAHAN_SUM
- KahanSum kahan;
- for (uint i = 0; i < h; i++)
- {
- kahan.add(A.getCoefficient(y, i) * B.getCoefficient(x, i));
- }
- return kahan.sum();
-#else
- float sum = 0.0f;
- for (uint i = 0; i < h; i++)
- {
- sum += A.getCoefficient(y, i) * B.getCoefficient(x, i);
- }
- return sum;
-#endif
-}
-
-
-void nv::transpose(const SparseMatrix & A, SparseMatrix & B)
-{
- nvDebugCheck(A.width() == B.height());
- nvDebugCheck(B.width() == A.height());
-
- const uint w = A.width();
- for (uint x = 0; x < w; x++)
- {
- B.clearRow(x);
- }
-
- const uint h = A.height();
- for (uint y = 0; y < h; y++)
- {
- const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
-
- const uint count = row.count();
- for (uint i = 0; i < count; i++)
- {
- const SparseMatrix::Coefficient & c = row[i];
- nvDebugCheck(c.x < w);
-
- B.setCoefficient(y, c.x, c.v);
- }
- }
-}
-
-// C = A * B
-void nv::mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C)
-{
- mult(NoTransposed, A, NoTransposed, B, C);
-}
-
-void nv::mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C)
-{
- sgemm(1.0f, TA, A, TB, B, 0.0f, C);
-}
-
-// C = alpha*A*B + beta*C
-void nv::sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C)
-{
- sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
-}
-
-void nv::sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C)
-{
- const uint w = C.width();
- const uint h = C.height();
-
- uint aw = (TA == NoTransposed) ? A.width() : A.height();
- uint ah = (TA == NoTransposed) ? A.height() : A.width();
- uint bw = (TB == NoTransposed) ? B.width() : B.height();
- uint bh = (TB == NoTransposed) ? B.height() : B.width();
-
- nvDebugCheck(aw == bh);
- nvDebugCheck(bw == ah);
- nvDebugCheck(w == bw);
- nvDebugCheck(h == ah);
-
-
- for (uint y = 0; y < h; y++)
- {
- for (uint x = 0; x < w; x++)
- {
- float c = beta * C.getCoefficient(x, y);
-
- if (TA == NoTransposed && TB == NoTransposed)
- {
- // dot y-row of A by x-column of B.
- c += alpha * dotRowColumn(y, A, x, B);
- }
- else if (TA == Transposed && TB == Transposed)
- {
- // dot y-column of A by x-row of B.
- c += alpha * dotRowColumn(x, B, y, A);
- }
- else if (TA == Transposed && TB == NoTransposed)
- {
- // dot y-column of A by x-column of B.
- c += alpha * dotColumnColumn(y, A, x, B);
- }
- else if (TA == NoTransposed && TB == Transposed)
- {
- // dot y-row of A by x-row of B.
- c += alpha * dotRowRow(y, A, x, B);
- }
-
- C.setCoefficient(x, y, c);
- }
- }
-}
-
-// C = At * A
-void nv::sqm(const SparseMatrix & A, SparseMatrix & C)
-{
- // This is quite expensive...
- mult(Transposed, A, NoTransposed, A, C);
-}