summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Quaternion.h')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Quaternion.h213
1 files changed, 213 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Quaternion.h b/thirdparty/thekla_atlas/nvmath/Quaternion.h
new file mode 100644
index 0000000000..dc5219e5e4
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Quaternion.h
@@ -0,0 +1,213 @@
+// This code is in the public domain -- castano@gmail.com
+
+#pragma once
+#ifndef NV_MATH_QUATERNION_H
+#define NV_MATH_QUATERNION_H
+
+#include "nvmath/nvmath.h"
+#include "nvmath/Vector.inl" // @@ Do not include inl files from header files.
+#include "nvmath/Matrix.h"
+
+namespace nv
+{
+
+ class NVMATH_CLASS Quaternion
+ {
+ public:
+ typedef Quaternion const & Arg;
+
+ Quaternion();
+ explicit Quaternion(float f);
+ Quaternion(float x, float y, float z, float w);
+ Quaternion(Vector4::Arg v);
+
+ const Quaternion & operator=(Quaternion::Arg v);
+
+ Vector4 asVector() const;
+
+ union {
+ struct {
+ float x, y, z, w;
+ };
+ float component[4];
+ };
+ };
+
+ inline Quaternion::Quaternion() {}
+ inline Quaternion::Quaternion(float f) : x(f), y(f), z(f), w(f) {}
+ inline Quaternion::Quaternion(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
+ inline Quaternion::Quaternion(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
+
+ // @@ Move all these to Quaternion.inl!
+
+ inline const Quaternion & Quaternion::operator=(Quaternion::Arg v) {
+ x = v.x;
+ y = v.y;
+ z = v.z;
+ w = v.w;
+ return *this;
+ }
+
+ inline Vector4 Quaternion::asVector() const { return Vector4(x, y, z, w); }
+
+ inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
+ {
+ return Quaternion(
+ + a.x*b.w + a.y*b.z - a.z*b.y + a.w*b.x,
+ - a.x*b.z + a.y*b.w + a.z*b.x + a.w*b.y,
+ + a.x*b.y - a.y*b.x + a.z*b.w + a.w*b.z,
+ - a.x*b.x - a.y*b.y - a.z*b.z + a.w*b.w);
+ }
+
+ inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
+ {
+ return Quaternion(
+ + a.y*b.z - a.z*b.y + a.w*b.x,
+ - a.x*b.z + a.z*b.x + a.w*b.y,
+ + a.x*b.y - a.y*b.x + a.w*b.z,
+ - a.x*b.x - a.y*b.y - a.z*b.z );
+ }
+
+ inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
+ {
+ return Quaternion(
+ + a.x*b.w + a.y*b.z - a.z*b.y,
+ - a.x*b.z + a.y*b.w + a.z*b.x,
+ + a.x*b.y - a.y*b.x + a.z*b.w,
+ - a.x*b.x - a.y*b.y - a.z*b.z);
+ }
+
+ inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
+ {
+ return mul(a, b);
+ }
+
+ inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
+ {
+ return mul(a, b);
+ }
+
+ inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
+ {
+ return mul(a, b);
+ }
+
+
+ inline Quaternion scale(Quaternion::Arg q, float s)
+ {
+ return scale(q.asVector(), s);
+ }
+ inline Quaternion operator *(Quaternion::Arg q, float s)
+ {
+ return scale(q, s);
+ }
+ inline Quaternion operator *(float s, Quaternion::Arg q)
+ {
+ return scale(q, s);
+ }
+
+ inline Quaternion scale(Quaternion::Arg q, Vector4::Arg s)
+ {
+ return scale(q.asVector(), s);
+ }
+ /*inline Quaternion operator *(Quaternion::Arg q, Vector4::Arg s)
+ {
+ return scale(q, s);
+ }
+ inline Quaternion operator *(Vector4::Arg s, Quaternion::Arg q)
+ {
+ return scale(q, s);
+ }*/
+
+ inline Quaternion conjugate(Quaternion::Arg q)
+ {
+ return scale(q, Vector4(-1, -1, -1, 1));
+ }
+
+ inline float length(Quaternion::Arg q)
+ {
+ return length(q.asVector());
+ }
+
+ inline bool isNormalized(Quaternion::Arg q, float epsilon = NV_NORMAL_EPSILON)
+ {
+ return equal(length(q), 1, epsilon);
+ }
+
+ inline Quaternion normalize(Quaternion::Arg q, float epsilon = NV_EPSILON)
+ {
+ float l = length(q);
+ nvDebugCheck(!isZero(l, epsilon));
+ Quaternion n = scale(q, 1.0f / l);
+ nvDebugCheck(isNormalized(n));
+ return n;
+ }
+
+ inline Quaternion inverse(Quaternion::Arg q)
+ {
+ return conjugate(normalize(q));
+ }
+
+ /// Create a rotation quaternion for @a angle alpha around normal vector @a v.
+ inline Quaternion axisAngle(Vector3::Arg v, float alpha)
+ {
+ float s = sinf(alpha * 0.5f);
+ float c = cosf(alpha * 0.5f);
+ return Quaternion(Vector4(v * s, c));
+ }
+
+ inline Vector3 imag(Quaternion::Arg q)
+ {
+ return q.asVector().xyz();
+ }
+
+ inline float real(Quaternion::Arg q)
+ {
+ return q.w;
+ }
+
+
+ /// Transform vector.
+ inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
+ {
+ //Quaternion t = q * v * conjugate(q);
+ //return imag(t);
+
+ // Faster method by Fabian Giesen and others:
+ // http://molecularmusings.wordpress.com/2013/05/24/a-faster-quaternion-vector-multiplication/
+ // http://mollyrocket.com/forums/viewtopic.php?t=833&sid=3a84e00a70ccb046cfc87ac39881a3d0
+
+ Vector3 t = 2 * cross(imag(q), v);
+ return v + q.w * t + cross(imag(q), t);
+ }
+
+ // @@ Not tested.
+ // From Insomniac's Mike Day:
+ // http://www.insomniacgames.com/converting-a-rotation-matrix-to-a-quaternion/
+ inline Quaternion fromMatrix(const Matrix & m) {
+ if (m(2, 2) < 0) {
+ if (m(0, 0) < m(1,1)) {
+ float t = 1 - m(0, 0) - m(1, 1) - m(2, 2);
+ return Quaternion(t, m(0,1)+m(1,0), m(2,0)+m(0,2), m(1,2)-m(2,1));
+ }
+ else {
+ float t = 1 - m(0, 0) + m(1, 1) - m(2, 2);
+ return Quaternion(t, m(0,1) + m(1,0), m(1,2) + m(2,1), m(2,0) - m(0,2));
+ }
+ }
+ else {
+ if (m(0, 0) < -m(1, 1)) {
+ float t = 1 - m(0, 0) - m(1, 1) + m(2, 2);
+ return Quaternion(t, m(2,0) + m(0,2), m(1,2) + m(2,1), m(0,1) - m(1,0));
+ }
+ else {
+ float t = 1 + m(0, 0) + m(1, 1) + m(2, 2);
+ return Quaternion(t, m(1,2) - m(2,1), m(2,0) - m(0,2), m(0,1) - m(1,0));
+ }
+ }
+ }
+
+
+} // nv namespace
+
+#endif // NV_MATH_QUATERNION_H