summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Quaternion.h')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Quaternion.h213
1 files changed, 0 insertions, 213 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Quaternion.h b/thirdparty/thekla_atlas/nvmath/Quaternion.h
deleted file mode 100644
index dc5219e5e4..0000000000
--- a/thirdparty/thekla_atlas/nvmath/Quaternion.h
+++ /dev/null
@@ -1,213 +0,0 @@
-// This code is in the public domain -- castano@gmail.com
-
-#pragma once
-#ifndef NV_MATH_QUATERNION_H
-#define NV_MATH_QUATERNION_H
-
-#include "nvmath/nvmath.h"
-#include "nvmath/Vector.inl" // @@ Do not include inl files from header files.
-#include "nvmath/Matrix.h"
-
-namespace nv
-{
-
- class NVMATH_CLASS Quaternion
- {
- public:
- typedef Quaternion const & Arg;
-
- Quaternion();
- explicit Quaternion(float f);
- Quaternion(float x, float y, float z, float w);
- Quaternion(Vector4::Arg v);
-
- const Quaternion & operator=(Quaternion::Arg v);
-
- Vector4 asVector() const;
-
- union {
- struct {
- float x, y, z, w;
- };
- float component[4];
- };
- };
-
- inline Quaternion::Quaternion() {}
- inline Quaternion::Quaternion(float f) : x(f), y(f), z(f), w(f) {}
- inline Quaternion::Quaternion(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
- inline Quaternion::Quaternion(Vector4::Arg v) : x(v.x), y(v.y), z(v.z), w(v.w) {}
-
- // @@ Move all these to Quaternion.inl!
-
- inline const Quaternion & Quaternion::operator=(Quaternion::Arg v) {
- x = v.x;
- y = v.y;
- z = v.z;
- w = v.w;
- return *this;
- }
-
- inline Vector4 Quaternion::asVector() const { return Vector4(x, y, z, w); }
-
- inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
- {
- return Quaternion(
- + a.x*b.w + a.y*b.z - a.z*b.y + a.w*b.x,
- - a.x*b.z + a.y*b.w + a.z*b.x + a.w*b.y,
- + a.x*b.y - a.y*b.x + a.z*b.w + a.w*b.z,
- - a.x*b.x - a.y*b.y - a.z*b.z + a.w*b.w);
- }
-
- inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
- {
- return Quaternion(
- + a.y*b.z - a.z*b.y + a.w*b.x,
- - a.x*b.z + a.z*b.x + a.w*b.y,
- + a.x*b.y - a.y*b.x + a.w*b.z,
- - a.x*b.x - a.y*b.y - a.z*b.z );
- }
-
- inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
- {
- return Quaternion(
- + a.x*b.w + a.y*b.z - a.z*b.y,
- - a.x*b.z + a.y*b.w + a.z*b.x,
- + a.x*b.y - a.y*b.x + a.z*b.w,
- - a.x*b.x - a.y*b.y - a.z*b.z);
- }
-
- inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
- {
- return mul(a, b);
- }
-
- inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
- {
- return mul(a, b);
- }
-
- inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
- {
- return mul(a, b);
- }
-
-
- inline Quaternion scale(Quaternion::Arg q, float s)
- {
- return scale(q.asVector(), s);
- }
- inline Quaternion operator *(Quaternion::Arg q, float s)
- {
- return scale(q, s);
- }
- inline Quaternion operator *(float s, Quaternion::Arg q)
- {
- return scale(q, s);
- }
-
- inline Quaternion scale(Quaternion::Arg q, Vector4::Arg s)
- {
- return scale(q.asVector(), s);
- }
- /*inline Quaternion operator *(Quaternion::Arg q, Vector4::Arg s)
- {
- return scale(q, s);
- }
- inline Quaternion operator *(Vector4::Arg s, Quaternion::Arg q)
- {
- return scale(q, s);
- }*/
-
- inline Quaternion conjugate(Quaternion::Arg q)
- {
- return scale(q, Vector4(-1, -1, -1, 1));
- }
-
- inline float length(Quaternion::Arg q)
- {
- return length(q.asVector());
- }
-
- inline bool isNormalized(Quaternion::Arg q, float epsilon = NV_NORMAL_EPSILON)
- {
- return equal(length(q), 1, epsilon);
- }
-
- inline Quaternion normalize(Quaternion::Arg q, float epsilon = NV_EPSILON)
- {
- float l = length(q);
- nvDebugCheck(!isZero(l, epsilon));
- Quaternion n = scale(q, 1.0f / l);
- nvDebugCheck(isNormalized(n));
- return n;
- }
-
- inline Quaternion inverse(Quaternion::Arg q)
- {
- return conjugate(normalize(q));
- }
-
- /// Create a rotation quaternion for @a angle alpha around normal vector @a v.
- inline Quaternion axisAngle(Vector3::Arg v, float alpha)
- {
- float s = sinf(alpha * 0.5f);
- float c = cosf(alpha * 0.5f);
- return Quaternion(Vector4(v * s, c));
- }
-
- inline Vector3 imag(Quaternion::Arg q)
- {
- return q.asVector().xyz();
- }
-
- inline float real(Quaternion::Arg q)
- {
- return q.w;
- }
-
-
- /// Transform vector.
- inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
- {
- //Quaternion t = q * v * conjugate(q);
- //return imag(t);
-
- // Faster method by Fabian Giesen and others:
- // http://molecularmusings.wordpress.com/2013/05/24/a-faster-quaternion-vector-multiplication/
- // http://mollyrocket.com/forums/viewtopic.php?t=833&sid=3a84e00a70ccb046cfc87ac39881a3d0
-
- Vector3 t = 2 * cross(imag(q), v);
- return v + q.w * t + cross(imag(q), t);
- }
-
- // @@ Not tested.
- // From Insomniac's Mike Day:
- // http://www.insomniacgames.com/converting-a-rotation-matrix-to-a-quaternion/
- inline Quaternion fromMatrix(const Matrix & m) {
- if (m(2, 2) < 0) {
- if (m(0, 0) < m(1,1)) {
- float t = 1 - m(0, 0) - m(1, 1) - m(2, 2);
- return Quaternion(t, m(0,1)+m(1,0), m(2,0)+m(0,2), m(1,2)-m(2,1));
- }
- else {
- float t = 1 - m(0, 0) + m(1, 1) - m(2, 2);
- return Quaternion(t, m(0,1) + m(1,0), m(1,2) + m(2,1), m(2,0) - m(0,2));
- }
- }
- else {
- if (m(0, 0) < -m(1, 1)) {
- float t = 1 - m(0, 0) - m(1, 1) + m(2, 2);
- return Quaternion(t, m(2,0) + m(0,2), m(1,2) + m(2,1), m(0,1) - m(1,0));
- }
- else {
- float t = 1 + m(0, 0) + m(1, 1) + m(2, 2);
- return Quaternion(t, m(1,2) - m(2,1), m(2,0) - m(0,2), m(0,1) - m(1,0));
- }
- }
- }
-
-
-} // nv namespace
-
-#endif // NV_MATH_QUATERNION_H