diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Matrix.inl')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Matrix.inl | 1274 |
1 files changed, 1274 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.inl b/thirdparty/thekla_atlas/nvmath/Matrix.inl new file mode 100644 index 0000000000..c0d99d9fe0 --- /dev/null +++ b/thirdparty/thekla_atlas/nvmath/Matrix.inl @@ -0,0 +1,1274 @@ +// This code is in the public domain -- castanyo@yahoo.es + +#pragma once +#ifndef NV_MATH_MATRIX_INL +#define NV_MATH_MATRIX_INL + +#include "Matrix.h" + +namespace nv +{ + inline Matrix3::Matrix3() {} + + inline Matrix3::Matrix3(float f) + { + for(int i = 0; i < 9; i++) { + m_data[i] = f; + } + } + + inline Matrix3::Matrix3(identity_t) + { + for(int i = 0; i < 3; i++) { + for(int j = 0; j < 3; j++) { + m_data[3*j+i] = (i == j) ? 1.0f : 0.0f; + } + } + } + + inline Matrix3::Matrix3(const Matrix3 & m) + { + for(int i = 0; i < 9; i++) { + m_data[i] = m.m_data[i]; + } + } + + inline Matrix3::Matrix3(Vector3::Arg v0, Vector3::Arg v1, Vector3::Arg v2) + { + m_data[0] = v0.x; m_data[1] = v0.y; m_data[2] = v0.z; + m_data[3] = v1.x; m_data[4] = v1.y; m_data[5] = v1.z; + m_data[6] = v2.x; m_data[7] = v2.y; m_data[8] = v2.z; + } + + inline float Matrix3::data(uint idx) const + { + nvDebugCheck(idx < 9); + return m_data[idx]; + } + inline float & Matrix3::data(uint idx) + { + nvDebugCheck(idx < 9); + return m_data[idx]; + } + inline float Matrix3::get(uint row, uint col) const + { + nvDebugCheck(row < 3 && col < 3); + return m_data[col * 3 + row]; + } + inline float Matrix3::operator()(uint row, uint col) const + { + nvDebugCheck(row < 3 && col < 3); + return m_data[col * 3 + row]; + } + inline float & Matrix3::operator()(uint row, uint col) + { + nvDebugCheck(row < 3 && col < 3); + return m_data[col * 3 + row]; + } + + inline Vector3 Matrix3::row(uint i) const + { + nvDebugCheck(i < 3); + return Vector3(get(i, 0), get(i, 1), get(i, 2)); + } + inline Vector3 Matrix3::column(uint i) const + { + nvDebugCheck(i < 3); + return Vector3(get(0, i), get(1, i), get(2, i)); + } + + inline void Matrix3::operator*=(float s) + { + for(int i = 0; i < 9; i++) { + m_data[i] *= s; + } + } + + inline void Matrix3::operator/=(float s) + { + float is = 1.0f /s; + for(int i = 0; i < 9; i++) { + m_data[i] *= is; + } + } + + inline void Matrix3::operator+=(const Matrix3 & m) + { + for(int i = 0; i < 9; i++) { + m_data[i] += m.m_data[i]; + } + } + + inline void Matrix3::operator-=(const Matrix3 & m) + { + for(int i = 0; i < 9; i++) { + m_data[i] -= m.m_data[i]; + } + } + + inline Matrix3 operator+(const Matrix3 & a, const Matrix3 & b) + { + Matrix3 m = a; + m += b; + return m; + } + + inline Matrix3 operator-(const Matrix3 & a, const Matrix3 & b) + { + Matrix3 m = a; + m -= b; + return m; + } + + inline Matrix3 operator*(const Matrix3 & a, float s) + { + Matrix3 m = a; + m *= s; + return m; + } + + inline Matrix3 operator*(float s, const Matrix3 & a) + { + Matrix3 m = a; + m *= s; + return m; + } + + inline Matrix3 operator/(const Matrix3 & a, float s) + { + Matrix3 m = a; + m /= s; + return m; + } + + inline Matrix3 mul(const Matrix3 & a, const Matrix3 & b) + { + Matrix3 m; + + for(int i = 0; i < 3; i++) { + const float ai0 = a(i,0), ai1 = a(i,1), ai2 = a(i,2); + m(i, 0) = ai0 * b(0,0) + ai1 * b(1,0) + ai2 * b(2,0); + m(i, 1) = ai0 * b(0,1) + ai1 * b(1,1) + ai2 * b(2,1); + m(i, 2) = ai0 * b(0,2) + ai1 * b(1,2) + ai2 * b(2,2); + } + + return m; + } + + inline Matrix3 operator*(const Matrix3 & a, const Matrix3 & b) + { + return mul(a, b); + } + + // Transform the given 3d vector with the given matrix. + inline Vector3 transform(const Matrix3 & m, const Vector3 & p) + { + return Vector3( + p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), + p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), + p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); + } + + inline void Matrix3::scale(float s) + { + for (int i = 0; i < 9; i++) { + m_data[i] *= s; + } + } + + inline void Matrix3::scale(Vector3::Arg s) + { + m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; + m_data[3] *= s.y; m_data[4] *= s.y; m_data[5] *= s.y; + m_data[6] *= s.z; m_data[7] *= s.z; m_data[8] *= s.z; + } + + inline float Matrix3::determinant() const + { + return + get(0,0) * get(1,1) * get(2,2) + + get(0,1) * get(1,2) * get(2,0) + + get(0,2) * get(1,0) * get(2,1) - + get(0,2) * get(1,1) * get(2,0) - + get(0,1) * get(1,0) * get(2,2) - + get(0,0) * get(1,2) * get(2,1); + } + + // Inverse using Cramer's rule. + inline Matrix3 inverseCramer(const Matrix3 & m) + { + const float det = m.determinant(); + if (equal(det, 0.0f, 0.0f)) { + return Matrix3(0); + } + + Matrix3 r; + + r.data(0) = - m.data(5) * m.data(7) + m.data(4) * m.data(8); + r.data(1) = + m.data(5) * m.data(6) - m.data(3) * m.data(8); + r.data(2) = - m.data(4) * m.data(6) + m.data(3) * m.data(7); + + r.data(3) = + m.data(2) * m.data(7) - m.data(1) * m.data(8); + r.data(4) = - m.data(2) * m.data(6) + m.data(0) * m.data(8); + r.data(5) = + m.data(1) * m.data(6) - m.data(0) * m.data(7); + + r.data(6) = - m.data(2) * m.data(4) + m.data(1) * m.data(5); + r.data(7) = + m.data(2) * m.data(3) - m.data(0) * m.data(5); + r.data(8) = - m.data(1) * m.data(3) + m.data(0) * m.data(4); + + r.scale(1.0f / det); + + return r; + } + + + + inline Matrix::Matrix() + { + } + + inline Matrix::Matrix(float f) + { + for(int i = 0; i < 16; i++) { + m_data[i] = 0.0f; + } + } + + inline Matrix::Matrix(identity_t) + { + for(int i = 0; i < 4; i++) { + for(int j = 0; j < 4; j++) { + m_data[4*j+i] = (i == j) ? 1.0f : 0.0f; + } + } + } + + inline Matrix::Matrix(const Matrix & m) + { + for(int i = 0; i < 16; i++) { + m_data[i] = m.m_data[i]; + } + } + + inline Matrix::Matrix(const Matrix3 & m) + { + for(int i = 0; i < 3; i++) { + for(int j = 0; j < 3; j++) { + operator()(i, j) = m.get(i, j); + } + } + for(int i = 0; i < 4; i++) { + operator()(3, i) = 0; + operator()(i, 3) = 0; + } + } + + inline Matrix::Matrix(Vector4::Arg v0, Vector4::Arg v1, Vector4::Arg v2, Vector4::Arg v3) + { + m_data[ 0] = v0.x; m_data[ 1] = v0.y; m_data[ 2] = v0.z; m_data[ 3] = v0.w; + m_data[ 4] = v1.x; m_data[ 5] = v1.y; m_data[ 6] = v1.z; m_data[ 7] = v1.w; + m_data[ 8] = v2.x; m_data[ 9] = v2.y; m_data[10] = v2.z; m_data[11] = v2.w; + m_data[12] = v3.x; m_data[13] = v3.y; m_data[14] = v3.z; m_data[15] = v3.w; + } + + /*inline Matrix::Matrix(const float m[]) + { + for(int i = 0; i < 16; i++) { + m_data[i] = m[i]; + } + }*/ + + + // Accessors + inline float Matrix::data(uint idx) const + { + nvDebugCheck(idx < 16); + return m_data[idx]; + } + inline float & Matrix::data(uint idx) + { + nvDebugCheck(idx < 16); + return m_data[idx]; + } + inline float Matrix::get(uint row, uint col) const + { + nvDebugCheck(row < 4 && col < 4); + return m_data[col * 4 + row]; + } + inline float Matrix::operator()(uint row, uint col) const + { + nvDebugCheck(row < 4 && col < 4); + return m_data[col * 4 + row]; + } + inline float & Matrix::operator()(uint row, uint col) + { + nvDebugCheck(row < 4 && col < 4); + return m_data[col * 4 + row]; + } + + inline const float * Matrix::ptr() const + { + return m_data; + } + + inline Vector4 Matrix::row(uint i) const + { + nvDebugCheck(i < 4); + return Vector4(get(i, 0), get(i, 1), get(i, 2), get(i, 3)); + } + + inline Vector4 Matrix::column(uint i) const + { + nvDebugCheck(i < 4); + return Vector4(get(0, i), get(1, i), get(2, i), get(3, i)); + } + + inline void Matrix::zero() + { + m_data[0] = 0; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; + m_data[4] = 0; m_data[5] = 0; m_data[6] = 0; m_data[7] = 0; + m_data[8] = 0; m_data[9] = 0; m_data[10] = 0; m_data[11] = 0; + m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 0; + } + + inline void Matrix::identity() + { + m_data[0] = 1; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; + m_data[4] = 0; m_data[5] = 1; m_data[6] = 0; m_data[7] = 0; + m_data[8] = 0; m_data[9] = 0; m_data[10] = 1; m_data[11] = 0; + m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 1; + } + + // Apply scale. + inline void Matrix::scale(float s) + { + m_data[0] *= s; m_data[1] *= s; m_data[2] *= s; m_data[3] *= s; + m_data[4] *= s; m_data[5] *= s; m_data[6] *= s; m_data[7] *= s; + m_data[8] *= s; m_data[9] *= s; m_data[10] *= s; m_data[11] *= s; + m_data[12] *= s; m_data[13] *= s; m_data[14] *= s; m_data[15] *= s; + } + + // Apply scale. + inline void Matrix::scale(Vector3::Arg s) + { + m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; m_data[3] *= s.x; + m_data[4] *= s.y; m_data[5] *= s.y; m_data[6] *= s.y; m_data[7] *= s.y; + m_data[8] *= s.z; m_data[9] *= s.z; m_data[10] *= s.z; m_data[11] *= s.z; + } + + // Apply translation. + inline void Matrix::translate(Vector3::Arg t) + { + m_data[12] = m_data[0] * t.x + m_data[4] * t.y + m_data[8] * t.z + m_data[12]; + m_data[13] = m_data[1] * t.x + m_data[5] * t.y + m_data[9] * t.z + m_data[13]; + m_data[14] = m_data[2] * t.x + m_data[6] * t.y + m_data[10] * t.z + m_data[14]; + m_data[15] = m_data[3] * t.x + m_data[7] * t.y + m_data[11] * t.z + m_data[15]; + } + + Matrix rotation(float theta, float v0, float v1, float v2); + + // Apply rotation. + inline void Matrix::rotate(float theta, float v0, float v1, float v2) + { + Matrix R(rotation(theta, v0, v1, v2)); + apply(R); + } + + // Apply transform. + inline void Matrix::apply(Matrix::Arg m) + { + nvDebugCheck(this != &m); + + for(int i = 0; i < 4; i++) { + const float ai0 = get(i,0), ai1 = get(i,1), ai2 = get(i,2), ai3 = get(i,3); + m_data[0 + i] = ai0 * m(0,0) + ai1 * m(1,0) + ai2 * m(2,0) + ai3 * m(3,0); + m_data[4 + i] = ai0 * m(0,1) + ai1 * m(1,1) + ai2 * m(2,1) + ai3 * m(3,1); + m_data[8 + i] = ai0 * m(0,2) + ai1 * m(1,2) + ai2 * m(2,2) + ai3 * m(3,2); + m_data[12+ i] = ai0 * m(0,3) + ai1 * m(1,3) + ai2 * m(2,3) + ai3 * m(3,3); + } + } + + // Get scale matrix. + inline Matrix scale(Vector3::Arg s) + { + Matrix m(identity); + m(0,0) = s.x; + m(1,1) = s.y; + m(2,2) = s.z; + return m; + } + + // Get scale matrix. + inline Matrix scale(float s) + { + Matrix m(identity); + m(0,0) = m(1,1) = m(2,2) = s; + return m; + } + + // Get translation matrix. + inline Matrix translation(Vector3::Arg t) + { + Matrix m(identity); + m(0,3) = t.x; + m(1,3) = t.y; + m(2,3) = t.z; + return m; + } + + // Get rotation matrix. + inline Matrix rotation(float theta, float v0, float v1, float v2) + { + float cost = cosf(theta); + float sint = sinf(theta); + + Matrix m(identity); + + if( 1 == v0 && 0 == v1 && 0 == v2 ) { + m(1,1) = cost; m(2,1) = -sint; + m(1,2) = sint; m(2,2) = cost; + } + else if( 0 == v0 && 1 == v1 && 0 == v2 ) { + m(0,0) = cost; m(2,0) = sint; + m(1,2) = -sint; m(2,2) = cost; + } + else if( 0 == v0 && 0 == v1 && 1 == v2 ) { + m(0,0) = cost; m(1,0) = -sint; + m(0,1) = sint; m(1,1) = cost; + } + else { + float a2, b2, c2; + a2 = v0 * v0; + b2 = v1 * v1; + c2 = v2 * v2; + + float iscale = 1.0f / sqrtf(a2 + b2 + c2); + v0 *= iscale; + v1 *= iscale; + v2 *= iscale; + + float abm, acm, bcm; + float mcos, asin, bsin, csin; + mcos = 1.0f - cost; + abm = v0 * v1 * mcos; + acm = v0 * v2 * mcos; + bcm = v1 * v2 * mcos; + asin = v0 * sint; + bsin = v1 * sint; + csin = v2 * sint; + m(0,0) = a2 * mcos + cost; + m(1,0) = abm - csin; + m(2,0) = acm + bsin; + m(3,0) = abm + csin; + m(1,1) = b2 * mcos + cost; + m(2,1) = bcm - asin; + m(3,1) = acm - bsin; + m(1,2) = bcm + asin; + m(2,2) = c2 * mcos + cost; + } + return m; + } + + //Matrix rotation(float yaw, float pitch, float roll); + //Matrix skew(float angle, Vector3::Arg v1, Vector3::Arg v2); + + // Get frustum matrix. + inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) + { + Matrix m(0.0f); + + float doubleznear = 2.0f * zNear; + float one_deltax = 1.0f / (xmax - xmin); + float one_deltay = 1.0f / (ymax - ymin); + float one_deltaz = 1.0f / (zFar - zNear); + + m(0,0) = doubleznear * one_deltax; + m(1,1) = doubleznear * one_deltay; + m(0,2) = (xmax + xmin) * one_deltax; + m(1,2) = (ymax + ymin) * one_deltay; + m(2,2) = -(zFar + zNear) * one_deltaz; + m(3,2) = -1.0f; + m(2,3) = -(zFar * doubleznear) * one_deltaz; + + return m; + } + + // Get inverse frustum matrix. + inline Matrix frustumInverse(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) + { + Matrix m(0.0f); + + float one_doubleznear = 1.0f / (2.0f * zNear); + float one_doubleznearzfar = 1.0f / (2.0f * zNear * zFar); + + m(0,0) = (xmax - xmin) * one_doubleznear; + m(0,3) = (xmax + xmin) * one_doubleznear; + m(1,1) = (ymax - ymin) * one_doubleznear; + m(1,3) = (ymax + ymin) * one_doubleznear; + m(2,3) = -1; + m(3,2) = -(zFar - zNear) * one_doubleznearzfar; + m(3,3) = (zFar + zNear) * one_doubleznearzfar; + + return m; + } + + // Get infinite frustum matrix. + inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear) + { + Matrix m(0.0f); + + float doubleznear = 2.0f * zNear; + float one_deltax = 1.0f / (xmax - xmin); + float one_deltay = 1.0f / (ymax - ymin); + float nudge = 1.0; // 0.999; + + m(0,0) = doubleznear * one_deltax; + m(1,1) = doubleznear * one_deltay; + m(0,2) = (xmax + xmin) * one_deltax; + m(1,2) = (ymax + ymin) * one_deltay; + m(2,2) = -1.0f * nudge; + m(3,2) = -1.0f; + m(2,3) = -doubleznear * nudge; + + return m; + } + + // Get perspective matrix. + inline Matrix perspective(float fovy, float aspect, float zNear, float zFar) + { + float xmax = zNear * tan(fovy / 2); + float xmin = -xmax; + + float ymax = xmax / aspect; + float ymin = -ymax; + + return frustum(xmin, xmax, ymin, ymax, zNear, zFar); + } + + // Get inverse perspective matrix. + inline Matrix perspectiveInverse(float fovy, float aspect, float zNear, float zFar) + { + float xmax = zNear * tan(fovy / 2); + float xmin = -xmax; + + float ymax = xmax / aspect; + float ymin = -ymax; + + return frustumInverse(xmin, xmax, ymin, ymax, zNear, zFar); + } + + // Get infinite perspective matrix. + inline Matrix perspective(float fovy, float aspect, float zNear) + { + float x = zNear * tan(fovy / 2); + float y = x / aspect; + return frustum( -x, x, -y, y, zNear ); + } + + // Get matrix determinant. + inline float Matrix::determinant() const + { + return + m_data[3] * m_data[6] * m_data[ 9] * m_data[12] - m_data[2] * m_data[7] * m_data[ 9] * m_data[12] - m_data[3] * m_data[5] * m_data[10] * m_data[12] + m_data[1] * m_data[7] * m_data[10] * m_data[12] + + m_data[2] * m_data[5] * m_data[11] * m_data[12] - m_data[1] * m_data[6] * m_data[11] * m_data[12] - m_data[3] * m_data[6] * m_data[ 8] * m_data[13] + m_data[2] * m_data[7] * m_data[ 8] * m_data[13] + + m_data[3] * m_data[4] * m_data[10] * m_data[13] - m_data[0] * m_data[7] * m_data[10] * m_data[13] - m_data[2] * m_data[4] * m_data[11] * m_data[13] + m_data[0] * m_data[6] * m_data[11] * m_data[13] + + m_data[3] * m_data[5] * m_data[ 8] * m_data[14] - m_data[1] * m_data[7] * m_data[ 8] * m_data[14] - m_data[3] * m_data[4] * m_data[ 9] * m_data[14] + m_data[0] * m_data[7] * m_data[ 9] * m_data[14] + + m_data[1] * m_data[4] * m_data[11] * m_data[14] - m_data[0] * m_data[5] * m_data[11] * m_data[14] - m_data[2] * m_data[5] * m_data[ 8] * m_data[15] + m_data[1] * m_data[6] * m_data[ 8] * m_data[15] + + m_data[2] * m_data[4] * m_data[ 9] * m_data[15] - m_data[0] * m_data[6] * m_data[ 9] * m_data[15] - m_data[1] * m_data[4] * m_data[10] * m_data[15] + m_data[0] * m_data[5] * m_data[10] * m_data[15]; + } + + inline Matrix transpose(Matrix::Arg m) + { + Matrix r; + for (int i = 0; i < 4; i++) + { + for (int j = 0; j < 4; j++) + { + r(i, j) = m(j, i); + } + } + return r; + } + + // Inverse using Cramer's rule. + inline Matrix inverseCramer(Matrix::Arg m) + { + Matrix r; + r.data( 0) = m.data(6)*m.data(11)*m.data(13) - m.data(7)*m.data(10)*m.data(13) + m.data(7)*m.data(9)*m.data(14) - m.data(5)*m.data(11)*m.data(14) - m.data(6)*m.data(9)*m.data(15) + m.data(5)*m.data(10)*m.data(15); + r.data( 1) = m.data(3)*m.data(10)*m.data(13) - m.data(2)*m.data(11)*m.data(13) - m.data(3)*m.data(9)*m.data(14) + m.data(1)*m.data(11)*m.data(14) + m.data(2)*m.data(9)*m.data(15) - m.data(1)*m.data(10)*m.data(15); + r.data( 2) = m.data(2)*m.data( 7)*m.data(13) - m.data(3)*m.data( 6)*m.data(13) + m.data(3)*m.data(5)*m.data(14) - m.data(1)*m.data( 7)*m.data(14) - m.data(2)*m.data(5)*m.data(15) + m.data(1)*m.data( 6)*m.data(15); + r.data( 3) = m.data(3)*m.data( 6)*m.data( 9) - m.data(2)*m.data( 7)*m.data( 9) - m.data(3)*m.data(5)*m.data(10) + m.data(1)*m.data( 7)*m.data(10) + m.data(2)*m.data(5)*m.data(11) - m.data(1)*m.data( 6)*m.data(11); + r.data( 4) = m.data(7)*m.data(10)*m.data(12) - m.data(6)*m.data(11)*m.data(12) - m.data(7)*m.data(8)*m.data(14) + m.data(4)*m.data(11)*m.data(14) + m.data(6)*m.data(8)*m.data(15) - m.data(4)*m.data(10)*m.data(15); + r.data( 5) = m.data(2)*m.data(11)*m.data(12) - m.data(3)*m.data(10)*m.data(12) + m.data(3)*m.data(8)*m.data(14) - m.data(0)*m.data(11)*m.data(14) - m.data(2)*m.data(8)*m.data(15) + m.data(0)*m.data(10)*m.data(15); + r.data( 6) = m.data(3)*m.data( 6)*m.data(12) - m.data(2)*m.data( 7)*m.data(12) - m.data(3)*m.data(4)*m.data(14) + m.data(0)*m.data( 7)*m.data(14) + m.data(2)*m.data(4)*m.data(15) - m.data(0)*m.data( 6)*m.data(15); + r.data( 7) = m.data(2)*m.data( 7)*m.data( 8) - m.data(3)*m.data( 6)*m.data( 8) + m.data(3)*m.data(4)*m.data(10) - m.data(0)*m.data( 7)*m.data(10) - m.data(2)*m.data(4)*m.data(11) + m.data(0)*m.data( 6)*m.data(11); + r.data( 8) = m.data(5)*m.data(11)*m.data(12) - m.data(7)*m.data( 9)*m.data(12) + m.data(7)*m.data(8)*m.data(13) - m.data(4)*m.data(11)*m.data(13) - m.data(5)*m.data(8)*m.data(15) + m.data(4)*m.data( 9)*m.data(15); + r.data( 9) = m.data(3)*m.data( 9)*m.data(12) - m.data(1)*m.data(11)*m.data(12) - m.data(3)*m.data(8)*m.data(13) + m.data(0)*m.data(11)*m.data(13) + m.data(1)*m.data(8)*m.data(15) - m.data(0)*m.data( 9)*m.data(15); + r.data(10) = m.data(1)*m.data( 7)*m.data(12) - m.data(3)*m.data( 5)*m.data(12) + m.data(3)*m.data(4)*m.data(13) - m.data(0)*m.data( 7)*m.data(13) - m.data(1)*m.data(4)*m.data(15) + m.data(0)*m.data( 5)*m.data(15); + r.data(11) = m.data(3)*m.data( 5)*m.data( 8) - m.data(1)*m.data( 7)*m.data( 8) - m.data(3)*m.data(4)*m.data( 9) + m.data(0)*m.data( 7)*m.data( 9) + m.data(1)*m.data(4)*m.data(11) - m.data(0)*m.data( 5)*m.data(11); + r.data(12) = m.data(6)*m.data( 9)*m.data(12) - m.data(5)*m.data(10)*m.data(12) - m.data(6)*m.data(8)*m.data(13) + m.data(4)*m.data(10)*m.data(13) + m.data(5)*m.data(8)*m.data(14) - m.data(4)*m.data( 9)*m.data(14); + r.data(13) = m.data(1)*m.data(10)*m.data(12) - m.data(2)*m.data( 9)*m.data(12) + m.data(2)*m.data(8)*m.data(13) - m.data(0)*m.data(10)*m.data(13) - m.data(1)*m.data(8)*m.data(14) + m.data(0)*m.data( 9)*m.data(14); + r.data(14) = m.data(2)*m.data( 5)*m.data(12) - m.data(1)*m.data( 6)*m.data(12) - m.data(2)*m.data(4)*m.data(13) + m.data(0)*m.data( 6)*m.data(13) + m.data(1)*m.data(4)*m.data(14) - m.data(0)*m.data( 5)*m.data(14); + r.data(15) = m.data(1)*m.data( 6)*m.data( 8) - m.data(2)*m.data( 5)*m.data( 8) + m.data(2)*m.data(4)*m.data( 9) - m.data(0)*m.data( 6)*m.data( 9) - m.data(1)*m.data(4)*m.data(10) + m.data(0)*m.data( 5)*m.data(10); + r.scale(1.0f / m.determinant()); + return r; + } + + inline Matrix isometryInverse(Matrix::Arg m) + { + Matrix r(identity); + + // transposed 3x3 upper left matrix + for (int i = 0; i < 3; i++) + { + for (int j = 0; j < 3; j++) + { + r(i, j) = m(j, i); + } + } + + // translate by the negative offsets + r.translate(-Vector3(m.data(12), m.data(13), m.data(14))); + + return r; + } + + // Transform the given 3d point with the given matrix. + inline Vector3 transformPoint(Matrix::Arg m, Vector3::Arg p) + { + return Vector3( + p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + m(0,3), + p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + m(1,3), + p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + m(2,3)); + } + + // Transform the given 3d vector with the given matrix. + inline Vector3 transformVector(Matrix::Arg m, Vector3::Arg p) + { + return Vector3( + p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), + p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), + p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); + } + + // Transform the given 4d vector with the given matrix. + inline Vector4 transform(Matrix::Arg m, Vector4::Arg p) + { + return Vector4( + p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + p.w * m(0,3), + p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + p.w * m(1,3), + p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + p.w * m(2,3), + p.x * m(3,0) + p.y * m(3,1) + p.z * m(3,2) + p.w * m(3,3)); + } + + inline Matrix mul(Matrix::Arg a, Matrix::Arg b) + { + // @@ Is this the right order? mul(a, b) = b * a + Matrix m = a; + m.apply(b); + return m; + } + + inline void Matrix::operator+=(const Matrix & m) + { + for(int i = 0; i < 16; i++) { + m_data[i] += m.m_data[i]; + } + } + + inline void Matrix::operator-=(const Matrix & m) + { + for(int i = 0; i < 16; i++) { + m_data[i] -= m.m_data[i]; + } + } + + inline Matrix operator+(const Matrix & a, const Matrix & b) + { + Matrix m = a; + m += b; + return m; + } + + inline Matrix operator-(const Matrix & a, const Matrix & b) + { + Matrix m = a; + m -= b; + return m; + } + + +} // nv namespace + + +#if 0 // old code. +/** @name Special matrices. */ +//@{ +/** Generate a translation matrix. */ +void TranslationMatrix(const Vec3 & v) { + data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0; + data[4] = 0; data[5] = 1; data[6] = 0; data[7] = 0; + data[8] = 0; data[9] = 0; data[10] = 1; data[11] = 0; + data[12] = v.x; data[13] = v.y; data[14] = v.z; data[15] = 1; +} + +/** Rotate theta degrees around v. */ +void RotationMatrix( float theta, float v0, float v1, float v2 ) { + float cost = cos(theta); + float sint = sin(theta); + + if( 1 == v0 && 0 == v1 && 0 == v2 ) { + data[0] = 1.0f; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; + data[4] = 0.0f; data[5] = cost; data[6] = -sint;data[7] = 0.0f; + data[8] = 0.0f; data[9] = sint; data[10] = cost;data[11] = 0.0f; + data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; + } + else if( 0 == v0 && 1 == v1 && 0 == v2 ) { + data[0] = cost; data[1] = 0.0f; data[2] = sint; data[3] = 0.0f; + data[4] = 0.0f; data[5] = 1.0f; data[6] = 0.0f; data[7] = 0.0f; + data[8] = -sint;data[9] = 0.0f;data[10] = cost; data[11] = 0.0f; + data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; + } + else if( 0 == v0 && 0 == v1 && 1 == v2 ) { + data[0] = cost; data[1] = -sint;data[2] = 0.0f; data[3] = 0.0f; + data[4] = sint; data[5] = cost; data[6] = 0.0f; data[7] = 0.0f; + data[8] = 0.0f; data[9] = 0.0f; data[10] = 1.0f;data[11] = 0.0f; + data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; + } + else { + //we need scale a,b,c to unit length. + float a2, b2, c2; + a2 = v0 * v0; + b2 = v1 * v1; + c2 = v2 * v2; + + float iscale = 1.0f / sqrtf(a2 + b2 + c2); + v0 *= iscale; + v1 *= iscale; + v2 *= iscale; + + float abm, acm, bcm; + float mcos, asin, bsin, csin; + mcos = 1.0f - cost; + abm = v0 * v1 * mcos; + acm = v0 * v2 * mcos; + bcm = v1 * v2 * mcos; + asin = v0 * sint; + bsin = v1 * sint; + csin = v2 * sint; + data[0] = a2 * mcos + cost; + data[1] = abm - csin; + data[2] = acm + bsin; + data[3] = abm + csin; + data[4] = 0.0f; + data[5] = b2 * mcos + cost; + data[6] = bcm - asin; + data[7] = acm - bsin; + data[8] = 0.0f; + data[9] = bcm + asin; + data[10] = c2 * mcos + cost; + data[11] = 0.0f; + data[12] = 0.0f; + data[13] = 0.0f; + data[14] = 0.0f; + data[15] = 1.0f; + } +} + +/* +void SkewMatrix(float angle, const Vec3 & v1, const Vec3 & v2) { +v1.Normalize(); +v2.Normalize(); + +Vec3 v3; +v3.Cross(v1, v2); +v3.Normalize(); + +// Get skew factor. +float costheta = Vec3DotProduct(v1, v2); +float sintheta = Real.Sqrt(1 - costheta * costheta); +float skew = tan(Trig.DegreesToRadians(angle) + acos(sintheta)) * sintheta - costheta; + +// Build orthonormal matrix. +v1 = FXVector3.Cross(v3, v2); +v1.Normalize(); + +Matrix R = Matrix::Identity; +R[0, 0] = v3.X; // Not sure this is in the correct order... +R[1, 0] = v3.Y; +R[2, 0] = v3.Z; +R[0, 1] = v1.X; +R[1, 1] = v1.Y; +R[2, 1] = v1.Z; +R[0, 2] = v2.X; +R[1, 2] = v2.Y; +R[2, 2] = v2.Z; + +// Build skew matrix. +Matrix S = Matrix::Identity; +S[2, 1] = -skew; + +// Return skew transform. +return R * S * R.Transpose; // Not sure this is in the correct order... +} +*/ + +/** +* Generate rotation matrix for the euler angles. This is the same as computing +* 3 rotation matrices and multiplying them together in our custom order. +* +* @todo Have to recompute this code for our new convention. +**/ +void RotationMatrix( float yaw, float pitch, float roll ) { + float sy = sin(yaw+ToRadian(90)); + float cy = cos(yaw+ToRadian(90)); + float sp = sin(pitch-ToRadian(90)); + float cp = cos(pitch-ToRadian(90)); + float sr = sin(roll); + float cr = cos(roll); + + data[0] = cr*cy + sr*sp*sy; + data[1] = cp*sy; + data[2] = -sr*cy + cr*sp*sy; + data[3] = 0; + + data[4] = -cr*sy + sr*sp*cy; + data[5] = cp*cy; + data[6] = sr*sy + cr*sp*cy; + data[7] = 0; + + data[8] = sr*cp; + data[9] = -sp; + data[10] = cr*cp; + data[11] = 0; + + data[12] = 0; + data[13] = 0; + data[14] = 0; + data[15] = 1; +} + +/** Create a frustum matrix with the far plane at the infinity. */ +void Frustum( float xmin, float xmax, float ymin, float ymax, float zNear, float zFar ) { + float one_deltax, one_deltay, one_deltaz, doubleznear; + + doubleznear = 2.0f * zNear; + one_deltax = 1.0f / (xmax - xmin); + one_deltay = 1.0f / (ymax - ymin); + one_deltaz = 1.0f / (zFar - zNear); + + data[0] = (float)(doubleznear * one_deltax); + data[1] = 0.0f; + data[2] = 0.0f; + data[3] = 0.0f; + data[4] = 0.0f; + data[5] = (float)(doubleznear * one_deltay); + data[6] = 0.f; + data[7] = 0.f; + data[8] = (float)((xmax + xmin) * one_deltax); + data[9] = (float)((ymax + ymin) * one_deltay); + data[10] = (float)(-(zFar + zNear) * one_deltaz); + data[11] = -1.f; + data[12] = 0.f; + data[13] = 0.f; + data[14] = (float)(-(zFar * doubleznear) * one_deltaz); + data[15] = 0.f; +} + +/** Create a frustum matrix with the far plane at the infinity. */ +void FrustumInf( float xmin, float xmax, float ymin, float ymax, float zNear ) { + float one_deltax, one_deltay, doubleznear, nudge; + + doubleznear = 2.0f * zNear; + one_deltax = 1.0f / (xmax - xmin); + one_deltay = 1.0f / (ymax - ymin); + nudge = 1.0; // 0.999; + + data[0] = doubleznear * one_deltax; + data[1] = 0.0f; + data[2] = 0.0f; + data[3] = 0.0f; + + data[4] = 0.0f; + data[5] = doubleznear * one_deltay; + data[6] = 0.f; + data[7] = 0.f; + + data[8] = (xmax + xmin) * one_deltax; + data[9] = (ymax + ymin) * one_deltay; + data[10] = -1.0f * nudge; + data[11] = -1.0f; + + data[12] = 0.f; + data[13] = 0.f; + data[14] = -doubleznear * nudge; + data[15] = 0.f; +} + +/** Create an inverse frustum matrix with the far plane at the infinity. */ +void FrustumInfInv( float left, float right, float bottom, float top, float zNear ) { + // this matrix is wrong (not tested floatly) I think it should be transposed. + data[0] = (right - left) / (2 * zNear); + data[1] = 0; + data[2] = 0; + data[3] = (right + left) / (2 * zNear); + data[4] = 0; + data[5] = (top - bottom) / (2 * zNear); + data[6] = 0; + data[7] = (top + bottom) / (2 * zNear); + data[8] = 0; + data[9] = 0; + data[10] = 0; + data[11] = -1; + data[12] = 0; + data[13] = 0; + data[14] = -1 / (2 * zNear); + data[15] = 1 / (2 * zNear); +} + +/** Create an homogeneous projection matrix. */ +void Perspective( float fov, float aspect, float zNear, float zFar ) { + float xmin, xmax, ymin, ymax; + + xmax = zNear * tan( fov/2 ); + xmin = -xmax; + + ymax = xmax / aspect; + ymin = -ymax; + + Frustum(xmin, xmax, ymin, ymax, zNear, zFar); +} + +/** Create a projection matrix with the far plane at the infinity. */ +void PerspectiveInf( float fov, float aspect, float zNear ) { + float x = zNear * tan( fov/2 ); + float y = x / aspect; + FrustumInf( -x, x, -y, y, zNear ); +} + +/** Create an inverse projection matrix with far plane at the infinity. */ +void PerspectiveInfInv( float fov, float aspect, float zNear ) { + float x = zNear * tan( fov/2 ); + float y = x / aspect; + FrustumInfInv( -x, x, -y, y, zNear ); +} + +/** Build bone matrix from quatertion and offset. */ +void BoneMatrix(const Quat & q, const Vec3 & offset) { + float x2, y2, z2, xx, xy, xz, yy, yz, zz, wx, wy, wz; + + // calculate coefficients + x2 = q.x + q.x; + y2 = q.y + q.y; + z2 = q.z + q.z; + + xx = q.x * x2; xy = q.x * y2; xz = q.x * z2; + yy = q.y * y2; yz = q.y * z2; zz = q.z * z2; + wx = q.w * x2; wy = q.w * y2; wz = q.w * z2; + + data[0] = 1.0f - (yy + zz); + data[1] = xy - wz; + data[2] = xz + wy; + data[3] = 0.0f; + + data[4] = xy + wz; + data[5] = 1.0f - (xx + zz); + data[6] = yz - wx; + data[7] = 0.0f; + + data[8] = xz - wy; + data[9] = yz + wx; + data[10] = 1.0f - (xx + yy); + data[11] = 0.0f; + + data[12] = offset.x; + data[13] = offset.y; + data[14] = offset.z; + data[15] = 1.0f; +} + +//@} + + +/** @name Transformations: */ +//@{ + +/** Apply a general scale. */ +void Scale( float x, float y, float z ) { + data[0] *= x; data[4] *= y; data[8] *= z; + data[1] *= x; data[5] *= y; data[9] *= z; + data[2] *= x; data[6] *= y; data[10] *= z; + data[3] *= x; data[7] *= y; data[11] *= z; +} + +/** Apply a rotation of theta degrees around the axis v*/ +void Rotate( float theta, const Vec3 & v ) { + Matrix b; + b.RotationMatrix( theta, v[0], v[1], v[2] ); + Multiply4x3( b ); +} + +/** Apply a rotation of theta degrees around the axis v*/ +void Rotate( float theta, float v0, float v1, float v2 ) { + Matrix b; + b.RotationMatrix( theta, v0, v1, v2 ); + Multiply4x3( b ); +} + +/** +* Translate the matrix by t. This is the same as multiplying by a +* translation matrix with the given offset. +* this = T * this +*/ +void Translate( const Vec3 &t ) { + data[12] = data[0] * t.x + data[4] * t.y + data[8] * t.z + data[12]; + data[13] = data[1] * t.x + data[5] * t.y + data[9] * t.z + data[13]; + data[14] = data[2] * t.x + data[6] * t.y + data[10] * t.z + data[14]; + data[15] = data[3] * t.x + data[7] * t.y + data[11] * t.z + data[15]; +} + +/** +* Translate the matrix by x, y, z. This is the same as multiplying by a +* translation matrix with the given offsets. +*/ +void Translate( float x, float y, float z ) { + data[12] = data[0] * x + data[4] * y + data[8] * z + data[12]; + data[13] = data[1] * x + data[5] * y + data[9] * z + data[13]; + data[14] = data[2] * x + data[6] * y + data[10] * z + data[14]; + data[15] = data[3] * x + data[7] * y + data[11] * z + data[15]; +} + +/** Compute the transposed matrix. */ +void Transpose() { + piSwap(data[1], data[4]); + piSwap(data[2], data[8]); + piSwap(data[6], data[9]); + piSwap(data[3], data[12]); + piSwap(data[7], data[13]); + piSwap(data[11], data[14]); +} + +/** Compute the inverse of a rigid-body/isometry/orthonormal matrix. */ +void IsometryInverse() { + // transposed 3x3 upper left matrix + piSwap(data[1], data[4]); + piSwap(data[2], data[8]); + piSwap(data[6], data[9]); + + // translate by the negative offsets + Vec3 v(-data[12], -data[13], -data[14]); + data[12] = data[13] = data[14] = 0; + Translate(v); +} + +/** Compute the inverse of the affine portion of this matrix. */ +void AffineInverse() { + data[12] = data[13] = data[14] = 0; + Transpose(); +} +//@} + +/** @name Matrix operations: */ +//@{ + +/** Return the determinant of this matrix. */ +float Determinant() const { + return data[0] * data[5] * data[10] * data[15] + + data[1] * data[6] * data[11] * data[12] + + data[2] * data[7] * data[ 8] * data[13] + + data[3] * data[4] * data[ 9] * data[14] - + data[3] * data[6] * data[ 9] * data[12] - + data[2] * data[5] * data[ 8] * data[15] - + data[1] * data[4] * data[11] * data[14] - + data[0] * data[7] * data[10] * data[12]; +} + + +/** Standard matrix product: this *= B. */ +void Multiply4x4( const Matrix & restrict B ) { + Multiply4x4(*this, B); +} + +/** Standard matrix product: this = A * B. this != B*/ +void Multiply4x4( const Matrix & A, const Matrix & restrict B ) { + piDebugCheck(this != &B); + + for(int i = 0; i < 4; i++) { + const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); + GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); + GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); + GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); + GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); + } + + /* Unrolled but does not allow this == A + data[0] = A.data[0] * B.data[0] + A.data[4] * B.data[1] + A.data[8] * B.data[2] + A.data[12] * B.data[3]; + data[1] = A.data[1] * B.data[0] + A.data[5] * B.data[1] + A.data[9] * B.data[2] + A.data[13] * B.data[3]; + data[2] = A.data[2] * B.data[0] + A.data[6] * B.data[1] + A.data[10] * B.data[2] + A.data[14] * B.data[3]; + data[3] = A.data[3] * B.data[0] + A.data[7] * B.data[1] + A.data[11] * B.data[2] + A.data[15] * B.data[3]; + data[4] = A.data[0] * B.data[4] + A.data[4] * B.data[5] + A.data[8] * B.data[6] + A.data[12] * B.data[7]; + data[5] = A.data[1] * B.data[4] + A.data[5] * B.data[5] + A.data[9] * B.data[6] + A.data[13] * B.data[7]; + data[6] = A.data[2] * B.data[4] + A.data[6] * B.data[5] + A.data[10] * B.data[6] + A.data[14] * B.data[7]; + data[7] = A.data[3] * B.data[4] + A.data[7] * B.data[5] + A.data[11] * B.data[6] + A.data[15] * B.data[7]; + data[8] = A.data[0] * B.data[8] + A.data[4] * B.data[9] + A.data[8] * B.data[10] + A.data[12] * B.data[11]; + data[9] = A.data[1] * B.data[8] + A.data[5] * B.data[9] + A.data[9] * B.data[10] + A.data[13] * B.data[11]; + data[10]= A.data[2] * B.data[8] + A.data[6] * B.data[9] + A.data[10] * B.data[10] + A.data[14] * B.data[11]; + data[11]= A.data[3] * B.data[8] + A.data[7] * B.data[9] + A.data[11] * B.data[10] + A.data[15] * B.data[11]; + data[12]= A.data[0] * B.data[12] + A.data[4] * B.data[13] + A.data[8] * B.data[14] + A.data[12] * B.data[15]; + data[13]= A.data[1] * B.data[12] + A.data[5] * B.data[13] + A.data[9] * B.data[14] + A.data[13] * B.data[15]; + data[14]= A.data[2] * B.data[12] + A.data[6] * B.data[13] + A.data[10] * B.data[14] + A.data[14] * B.data[15]; + data[15]= A.data[3] * B.data[12] + A.data[7] * B.data[13] + A.data[11] * B.data[14] + A.data[15] * B.data[15]; + */ +} + +/** Standard matrix product: this *= B. */ +void Multiply4x3( const Matrix & restrict B ) { + Multiply4x3(*this, B); +} + +/** Standard product of matrices, where the last row is [0 0 0 1]. */ +void Multiply4x3( const Matrix & A, const Matrix & restrict B ) { + piDebugCheck(this != &B); + + for(int i = 0; i < 3; i++) { + const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); + GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); + GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); + GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); + GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); + } + data[3] = 0.0f; data[7] = 0.0f; data[11] = 0.0f; data[15] = 1.0f; + + /* Unrolled but does not allow this == A + data[0] = a.data[0] * b.data[0] + a.data[4] * b.data[1] + a.data[8] * b.data[2] + a.data[12] * b.data[3]; + data[1] = a.data[1] * b.data[0] + a.data[5] * b.data[1] + a.data[9] * b.data[2] + a.data[13] * b.data[3]; + data[2] = a.data[2] * b.data[0] + a.data[6] * b.data[1] + a.data[10] * b.data[2] + a.data[14] * b.data[3]; + data[3] = 0.0f; + data[4] = a.data[0] * b.data[4] + a.data[4] * b.data[5] + a.data[8] * b.data[6] + a.data[12] * b.data[7]; + data[5] = a.data[1] * b.data[4] + a.data[5] * b.data[5] + a.data[9] * b.data[6] + a.data[13] * b.data[7]; + data[6] = a.data[2] * b.data[4] + a.data[6] * b.data[5] + a.data[10] * b.data[6] + a.data[14] * b.data[7]; + data[7] = 0.0f; + data[8] = a.data[0] * b.data[8] + a.data[4] * b.data[9] + a.data[8] * b.data[10] + a.data[12] * b.data[11]; + data[9] = a.data[1] * b.data[8] + a.data[5] * b.data[9] + a.data[9] * b.data[10] + a.data[13] * b.data[11]; + data[10]= a.data[2] * b.data[8] + a.data[6] * b.data[9] + a.data[10] * b.data[10] + a.data[14] * b.data[11]; + data[11]= 0.0f; + data[12]= a.data[0] * b.data[12] + a.data[4] * b.data[13] + a.data[8] * b.data[14] + a.data[12] * b.data[15]; + data[13]= a.data[1] * b.data[12] + a.data[5] * b.data[13] + a.data[9] * b.data[14] + a.data[13] * b.data[15]; + data[14]= a.data[2] * b.data[12] + a.data[6] * b.data[13] + a.data[10] * b.data[14] + a.data[14] * b.data[15]; + data[15]= 1.0f; + */ +} +//@} + + +/** @name Vector operations: */ +//@{ + +/** Transform 3d vector (w=0). */ +void TransformVec3(const Vec3 & restrict orig, Vec3 * restrict dest) const { + piDebugCheck(&orig != dest); + dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8]; + dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9]; + dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10]; +} +/** Transform 3d vector by the transpose (w=0). */ +void TransformVec3T(const Vec3 & restrict orig, Vec3 * restrict dest) const { + piDebugCheck(&orig != dest); + dest->x = orig.x * data[0] + orig.y * data[1] + orig.z * data[2]; + dest->y = orig.x * data[4] + orig.y * data[5] + orig.z * data[6]; + dest->z = orig.x * data[8] + orig.y * data[9] + orig.z * data[10]; +} + +/** Transform a 3d homogeneous vector, where the fourth coordinate is assumed to be 1. */ +void TransformPoint(const Vec3 & restrict orig, Vec3 * restrict dest) const { + piDebugCheck(&orig != dest); + dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; + dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; + dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; +} + +/** Transform a point, normalize it, and return w. */ +float TransformPointAndNormalize(const Vec3 & restrict orig, Vec3 * restrict dest) const { + piDebugCheck(&orig != dest); + float w; + dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; + dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; + dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; + w = 1 / (orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]); + *dest *= w; + return w; +} + +/** Transform a point and return w. */ +float TransformPointReturnW(const Vec3 & restrict orig, Vec3 * restrict dest) const { + piDebugCheck(&orig != dest); + dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; + dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; + dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; + return orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; +} + +/** Transform a normalized 3d point by a 4d matrix and return the resulting 4d vector. */ +void TransformVec4(const Vec3 & orig, Vec4 * dest) const { + dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; + dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; + dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; + dest->w = orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; +} +//@} + +/** @name Matrix analysis. */ +//@{ + +/** Get the ZYZ euler angles from the matrix. Assumes the matrix is orthonormal. */ +void GetEulerAnglesZYZ(float * s, float * t, float * r) const { + if( GetElem(2,2) < 1.0f ) { + if( GetElem(2,2) > -1.0f ) { + // cs*ct*cr-ss*sr -ss*ct*cr-cs*sr st*cr + // cs*ct*sr+ss*cr -ss*ct*sr+cs*cr st*sr + // -cs*st ss*st ct + *s = atan2(GetElem(1,2), -GetElem(0,2)); + *t = acos(GetElem(2,2)); + *r = atan2(GetElem(2,1), GetElem(2,0)); + } + else { + // -c(s-r) s(s-r) 0 + // s(s-r) c(s-r) 0 + // 0 0 -1 + *s = atan2(GetElem(0, 1), -GetElem(0, 0)); // = s-r + *t = PI; + *r = 0; + } + } + else { + // c(s+r) -s(s+r) 0 + // s(s+r) c(s+r) 0 + // 0 0 1 + *s = atan2(GetElem(0, 1), GetElem(0, 0)); // = s+r + *t = 0; + *r = 0; + } +} + +//@} + +MATHLIB_API friend PiStream & operator<< ( PiStream & s, Matrix & m ); + +/** Print to debug output. */ +void Print() const { + piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[0], data[4], data[8], data[12] ); + piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[1], data[5], data[9], data[13] ); + piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[2], data[6], data[10], data[14] ); + piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[3], data[7], data[11], data[15] ); +} + + +public: + + float data[16]; + +}; +#endif + + +#endif // NV_MATH_MATRIX_INL |