diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Matrix.inl')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Matrix.inl | 1274 |
1 files changed, 0 insertions, 1274 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.inl b/thirdparty/thekla_atlas/nvmath/Matrix.inl deleted file mode 100644 index c0d99d9fe0..0000000000 --- a/thirdparty/thekla_atlas/nvmath/Matrix.inl +++ /dev/null @@ -1,1274 +0,0 @@ -// This code is in the public domain -- castanyo@yahoo.es - -#pragma once -#ifndef NV_MATH_MATRIX_INL -#define NV_MATH_MATRIX_INL - -#include "Matrix.h" - -namespace nv -{ - inline Matrix3::Matrix3() {} - - inline Matrix3::Matrix3(float f) - { - for(int i = 0; i < 9; i++) { - m_data[i] = f; - } - } - - inline Matrix3::Matrix3(identity_t) - { - for(int i = 0; i < 3; i++) { - for(int j = 0; j < 3; j++) { - m_data[3*j+i] = (i == j) ? 1.0f : 0.0f; - } - } - } - - inline Matrix3::Matrix3(const Matrix3 & m) - { - for(int i = 0; i < 9; i++) { - m_data[i] = m.m_data[i]; - } - } - - inline Matrix3::Matrix3(Vector3::Arg v0, Vector3::Arg v1, Vector3::Arg v2) - { - m_data[0] = v0.x; m_data[1] = v0.y; m_data[2] = v0.z; - m_data[3] = v1.x; m_data[4] = v1.y; m_data[5] = v1.z; - m_data[6] = v2.x; m_data[7] = v2.y; m_data[8] = v2.z; - } - - inline float Matrix3::data(uint idx) const - { - nvDebugCheck(idx < 9); - return m_data[idx]; - } - inline float & Matrix3::data(uint idx) - { - nvDebugCheck(idx < 9); - return m_data[idx]; - } - inline float Matrix3::get(uint row, uint col) const - { - nvDebugCheck(row < 3 && col < 3); - return m_data[col * 3 + row]; - } - inline float Matrix3::operator()(uint row, uint col) const - { - nvDebugCheck(row < 3 && col < 3); - return m_data[col * 3 + row]; - } - inline float & Matrix3::operator()(uint row, uint col) - { - nvDebugCheck(row < 3 && col < 3); - return m_data[col * 3 + row]; - } - - inline Vector3 Matrix3::row(uint i) const - { - nvDebugCheck(i < 3); - return Vector3(get(i, 0), get(i, 1), get(i, 2)); - } - inline Vector3 Matrix3::column(uint i) const - { - nvDebugCheck(i < 3); - return Vector3(get(0, i), get(1, i), get(2, i)); - } - - inline void Matrix3::operator*=(float s) - { - for(int i = 0; i < 9; i++) { - m_data[i] *= s; - } - } - - inline void Matrix3::operator/=(float s) - { - float is = 1.0f /s; - for(int i = 0; i < 9; i++) { - m_data[i] *= is; - } - } - - inline void Matrix3::operator+=(const Matrix3 & m) - { - for(int i = 0; i < 9; i++) { - m_data[i] += m.m_data[i]; - } - } - - inline void Matrix3::operator-=(const Matrix3 & m) - { - for(int i = 0; i < 9; i++) { - m_data[i] -= m.m_data[i]; - } - } - - inline Matrix3 operator+(const Matrix3 & a, const Matrix3 & b) - { - Matrix3 m = a; - m += b; - return m; - } - - inline Matrix3 operator-(const Matrix3 & a, const Matrix3 & b) - { - Matrix3 m = a; - m -= b; - return m; - } - - inline Matrix3 operator*(const Matrix3 & a, float s) - { - Matrix3 m = a; - m *= s; - return m; - } - - inline Matrix3 operator*(float s, const Matrix3 & a) - { - Matrix3 m = a; - m *= s; - return m; - } - - inline Matrix3 operator/(const Matrix3 & a, float s) - { - Matrix3 m = a; - m /= s; - return m; - } - - inline Matrix3 mul(const Matrix3 & a, const Matrix3 & b) - { - Matrix3 m; - - for(int i = 0; i < 3; i++) { - const float ai0 = a(i,0), ai1 = a(i,1), ai2 = a(i,2); - m(i, 0) = ai0 * b(0,0) + ai1 * b(1,0) + ai2 * b(2,0); - m(i, 1) = ai0 * b(0,1) + ai1 * b(1,1) + ai2 * b(2,1); - m(i, 2) = ai0 * b(0,2) + ai1 * b(1,2) + ai2 * b(2,2); - } - - return m; - } - - inline Matrix3 operator*(const Matrix3 & a, const Matrix3 & b) - { - return mul(a, b); - } - - // Transform the given 3d vector with the given matrix. - inline Vector3 transform(const Matrix3 & m, const Vector3 & p) - { - return Vector3( - p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), - p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), - p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); - } - - inline void Matrix3::scale(float s) - { - for (int i = 0; i < 9; i++) { - m_data[i] *= s; - } - } - - inline void Matrix3::scale(Vector3::Arg s) - { - m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; - m_data[3] *= s.y; m_data[4] *= s.y; m_data[5] *= s.y; - m_data[6] *= s.z; m_data[7] *= s.z; m_data[8] *= s.z; - } - - inline float Matrix3::determinant() const - { - return - get(0,0) * get(1,1) * get(2,2) + - get(0,1) * get(1,2) * get(2,0) + - get(0,2) * get(1,0) * get(2,1) - - get(0,2) * get(1,1) * get(2,0) - - get(0,1) * get(1,0) * get(2,2) - - get(0,0) * get(1,2) * get(2,1); - } - - // Inverse using Cramer's rule. - inline Matrix3 inverseCramer(const Matrix3 & m) - { - const float det = m.determinant(); - if (equal(det, 0.0f, 0.0f)) { - return Matrix3(0); - } - - Matrix3 r; - - r.data(0) = - m.data(5) * m.data(7) + m.data(4) * m.data(8); - r.data(1) = + m.data(5) * m.data(6) - m.data(3) * m.data(8); - r.data(2) = - m.data(4) * m.data(6) + m.data(3) * m.data(7); - - r.data(3) = + m.data(2) * m.data(7) - m.data(1) * m.data(8); - r.data(4) = - m.data(2) * m.data(6) + m.data(0) * m.data(8); - r.data(5) = + m.data(1) * m.data(6) - m.data(0) * m.data(7); - - r.data(6) = - m.data(2) * m.data(4) + m.data(1) * m.data(5); - r.data(7) = + m.data(2) * m.data(3) - m.data(0) * m.data(5); - r.data(8) = - m.data(1) * m.data(3) + m.data(0) * m.data(4); - - r.scale(1.0f / det); - - return r; - } - - - - inline Matrix::Matrix() - { - } - - inline Matrix::Matrix(float f) - { - for(int i = 0; i < 16; i++) { - m_data[i] = 0.0f; - } - } - - inline Matrix::Matrix(identity_t) - { - for(int i = 0; i < 4; i++) { - for(int j = 0; j < 4; j++) { - m_data[4*j+i] = (i == j) ? 1.0f : 0.0f; - } - } - } - - inline Matrix::Matrix(const Matrix & m) - { - for(int i = 0; i < 16; i++) { - m_data[i] = m.m_data[i]; - } - } - - inline Matrix::Matrix(const Matrix3 & m) - { - for(int i = 0; i < 3; i++) { - for(int j = 0; j < 3; j++) { - operator()(i, j) = m.get(i, j); - } - } - for(int i = 0; i < 4; i++) { - operator()(3, i) = 0; - operator()(i, 3) = 0; - } - } - - inline Matrix::Matrix(Vector4::Arg v0, Vector4::Arg v1, Vector4::Arg v2, Vector4::Arg v3) - { - m_data[ 0] = v0.x; m_data[ 1] = v0.y; m_data[ 2] = v0.z; m_data[ 3] = v0.w; - m_data[ 4] = v1.x; m_data[ 5] = v1.y; m_data[ 6] = v1.z; m_data[ 7] = v1.w; - m_data[ 8] = v2.x; m_data[ 9] = v2.y; m_data[10] = v2.z; m_data[11] = v2.w; - m_data[12] = v3.x; m_data[13] = v3.y; m_data[14] = v3.z; m_data[15] = v3.w; - } - - /*inline Matrix::Matrix(const float m[]) - { - for(int i = 0; i < 16; i++) { - m_data[i] = m[i]; - } - }*/ - - - // Accessors - inline float Matrix::data(uint idx) const - { - nvDebugCheck(idx < 16); - return m_data[idx]; - } - inline float & Matrix::data(uint idx) - { - nvDebugCheck(idx < 16); - return m_data[idx]; - } - inline float Matrix::get(uint row, uint col) const - { - nvDebugCheck(row < 4 && col < 4); - return m_data[col * 4 + row]; - } - inline float Matrix::operator()(uint row, uint col) const - { - nvDebugCheck(row < 4 && col < 4); - return m_data[col * 4 + row]; - } - inline float & Matrix::operator()(uint row, uint col) - { - nvDebugCheck(row < 4 && col < 4); - return m_data[col * 4 + row]; - } - - inline const float * Matrix::ptr() const - { - return m_data; - } - - inline Vector4 Matrix::row(uint i) const - { - nvDebugCheck(i < 4); - return Vector4(get(i, 0), get(i, 1), get(i, 2), get(i, 3)); - } - - inline Vector4 Matrix::column(uint i) const - { - nvDebugCheck(i < 4); - return Vector4(get(0, i), get(1, i), get(2, i), get(3, i)); - } - - inline void Matrix::zero() - { - m_data[0] = 0; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; - m_data[4] = 0; m_data[5] = 0; m_data[6] = 0; m_data[7] = 0; - m_data[8] = 0; m_data[9] = 0; m_data[10] = 0; m_data[11] = 0; - m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 0; - } - - inline void Matrix::identity() - { - m_data[0] = 1; m_data[1] = 0; m_data[2] = 0; m_data[3] = 0; - m_data[4] = 0; m_data[5] = 1; m_data[6] = 0; m_data[7] = 0; - m_data[8] = 0; m_data[9] = 0; m_data[10] = 1; m_data[11] = 0; - m_data[12] = 0; m_data[13] = 0; m_data[14] = 0; m_data[15] = 1; - } - - // Apply scale. - inline void Matrix::scale(float s) - { - m_data[0] *= s; m_data[1] *= s; m_data[2] *= s; m_data[3] *= s; - m_data[4] *= s; m_data[5] *= s; m_data[6] *= s; m_data[7] *= s; - m_data[8] *= s; m_data[9] *= s; m_data[10] *= s; m_data[11] *= s; - m_data[12] *= s; m_data[13] *= s; m_data[14] *= s; m_data[15] *= s; - } - - // Apply scale. - inline void Matrix::scale(Vector3::Arg s) - { - m_data[0] *= s.x; m_data[1] *= s.x; m_data[2] *= s.x; m_data[3] *= s.x; - m_data[4] *= s.y; m_data[5] *= s.y; m_data[6] *= s.y; m_data[7] *= s.y; - m_data[8] *= s.z; m_data[9] *= s.z; m_data[10] *= s.z; m_data[11] *= s.z; - } - - // Apply translation. - inline void Matrix::translate(Vector3::Arg t) - { - m_data[12] = m_data[0] * t.x + m_data[4] * t.y + m_data[8] * t.z + m_data[12]; - m_data[13] = m_data[1] * t.x + m_data[5] * t.y + m_data[9] * t.z + m_data[13]; - m_data[14] = m_data[2] * t.x + m_data[6] * t.y + m_data[10] * t.z + m_data[14]; - m_data[15] = m_data[3] * t.x + m_data[7] * t.y + m_data[11] * t.z + m_data[15]; - } - - Matrix rotation(float theta, float v0, float v1, float v2); - - // Apply rotation. - inline void Matrix::rotate(float theta, float v0, float v1, float v2) - { - Matrix R(rotation(theta, v0, v1, v2)); - apply(R); - } - - // Apply transform. - inline void Matrix::apply(Matrix::Arg m) - { - nvDebugCheck(this != &m); - - for(int i = 0; i < 4; i++) { - const float ai0 = get(i,0), ai1 = get(i,1), ai2 = get(i,2), ai3 = get(i,3); - m_data[0 + i] = ai0 * m(0,0) + ai1 * m(1,0) + ai2 * m(2,0) + ai3 * m(3,0); - m_data[4 + i] = ai0 * m(0,1) + ai1 * m(1,1) + ai2 * m(2,1) + ai3 * m(3,1); - m_data[8 + i] = ai0 * m(0,2) + ai1 * m(1,2) + ai2 * m(2,2) + ai3 * m(3,2); - m_data[12+ i] = ai0 * m(0,3) + ai1 * m(1,3) + ai2 * m(2,3) + ai3 * m(3,3); - } - } - - // Get scale matrix. - inline Matrix scale(Vector3::Arg s) - { - Matrix m(identity); - m(0,0) = s.x; - m(1,1) = s.y; - m(2,2) = s.z; - return m; - } - - // Get scale matrix. - inline Matrix scale(float s) - { - Matrix m(identity); - m(0,0) = m(1,1) = m(2,2) = s; - return m; - } - - // Get translation matrix. - inline Matrix translation(Vector3::Arg t) - { - Matrix m(identity); - m(0,3) = t.x; - m(1,3) = t.y; - m(2,3) = t.z; - return m; - } - - // Get rotation matrix. - inline Matrix rotation(float theta, float v0, float v1, float v2) - { - float cost = cosf(theta); - float sint = sinf(theta); - - Matrix m(identity); - - if( 1 == v0 && 0 == v1 && 0 == v2 ) { - m(1,1) = cost; m(2,1) = -sint; - m(1,2) = sint; m(2,2) = cost; - } - else if( 0 == v0 && 1 == v1 && 0 == v2 ) { - m(0,0) = cost; m(2,0) = sint; - m(1,2) = -sint; m(2,2) = cost; - } - else if( 0 == v0 && 0 == v1 && 1 == v2 ) { - m(0,0) = cost; m(1,0) = -sint; - m(0,1) = sint; m(1,1) = cost; - } - else { - float a2, b2, c2; - a2 = v0 * v0; - b2 = v1 * v1; - c2 = v2 * v2; - - float iscale = 1.0f / sqrtf(a2 + b2 + c2); - v0 *= iscale; - v1 *= iscale; - v2 *= iscale; - - float abm, acm, bcm; - float mcos, asin, bsin, csin; - mcos = 1.0f - cost; - abm = v0 * v1 * mcos; - acm = v0 * v2 * mcos; - bcm = v1 * v2 * mcos; - asin = v0 * sint; - bsin = v1 * sint; - csin = v2 * sint; - m(0,0) = a2 * mcos + cost; - m(1,0) = abm - csin; - m(2,0) = acm + bsin; - m(3,0) = abm + csin; - m(1,1) = b2 * mcos + cost; - m(2,1) = bcm - asin; - m(3,1) = acm - bsin; - m(1,2) = bcm + asin; - m(2,2) = c2 * mcos + cost; - } - return m; - } - - //Matrix rotation(float yaw, float pitch, float roll); - //Matrix skew(float angle, Vector3::Arg v1, Vector3::Arg v2); - - // Get frustum matrix. - inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) - { - Matrix m(0.0f); - - float doubleznear = 2.0f * zNear; - float one_deltax = 1.0f / (xmax - xmin); - float one_deltay = 1.0f / (ymax - ymin); - float one_deltaz = 1.0f / (zFar - zNear); - - m(0,0) = doubleznear * one_deltax; - m(1,1) = doubleznear * one_deltay; - m(0,2) = (xmax + xmin) * one_deltax; - m(1,2) = (ymax + ymin) * one_deltay; - m(2,2) = -(zFar + zNear) * one_deltaz; - m(3,2) = -1.0f; - m(2,3) = -(zFar * doubleznear) * one_deltaz; - - return m; - } - - // Get inverse frustum matrix. - inline Matrix frustumInverse(float xmin, float xmax, float ymin, float ymax, float zNear, float zFar) - { - Matrix m(0.0f); - - float one_doubleznear = 1.0f / (2.0f * zNear); - float one_doubleznearzfar = 1.0f / (2.0f * zNear * zFar); - - m(0,0) = (xmax - xmin) * one_doubleznear; - m(0,3) = (xmax + xmin) * one_doubleznear; - m(1,1) = (ymax - ymin) * one_doubleznear; - m(1,3) = (ymax + ymin) * one_doubleznear; - m(2,3) = -1; - m(3,2) = -(zFar - zNear) * one_doubleznearzfar; - m(3,3) = (zFar + zNear) * one_doubleznearzfar; - - return m; - } - - // Get infinite frustum matrix. - inline Matrix frustum(float xmin, float xmax, float ymin, float ymax, float zNear) - { - Matrix m(0.0f); - - float doubleznear = 2.0f * zNear; - float one_deltax = 1.0f / (xmax - xmin); - float one_deltay = 1.0f / (ymax - ymin); - float nudge = 1.0; // 0.999; - - m(0,0) = doubleznear * one_deltax; - m(1,1) = doubleznear * one_deltay; - m(0,2) = (xmax + xmin) * one_deltax; - m(1,2) = (ymax + ymin) * one_deltay; - m(2,2) = -1.0f * nudge; - m(3,2) = -1.0f; - m(2,3) = -doubleznear * nudge; - - return m; - } - - // Get perspective matrix. - inline Matrix perspective(float fovy, float aspect, float zNear, float zFar) - { - float xmax = zNear * tan(fovy / 2); - float xmin = -xmax; - - float ymax = xmax / aspect; - float ymin = -ymax; - - return frustum(xmin, xmax, ymin, ymax, zNear, zFar); - } - - // Get inverse perspective matrix. - inline Matrix perspectiveInverse(float fovy, float aspect, float zNear, float zFar) - { - float xmax = zNear * tan(fovy / 2); - float xmin = -xmax; - - float ymax = xmax / aspect; - float ymin = -ymax; - - return frustumInverse(xmin, xmax, ymin, ymax, zNear, zFar); - } - - // Get infinite perspective matrix. - inline Matrix perspective(float fovy, float aspect, float zNear) - { - float x = zNear * tan(fovy / 2); - float y = x / aspect; - return frustum( -x, x, -y, y, zNear ); - } - - // Get matrix determinant. - inline float Matrix::determinant() const - { - return - m_data[3] * m_data[6] * m_data[ 9] * m_data[12] - m_data[2] * m_data[7] * m_data[ 9] * m_data[12] - m_data[3] * m_data[5] * m_data[10] * m_data[12] + m_data[1] * m_data[7] * m_data[10] * m_data[12] + - m_data[2] * m_data[5] * m_data[11] * m_data[12] - m_data[1] * m_data[6] * m_data[11] * m_data[12] - m_data[3] * m_data[6] * m_data[ 8] * m_data[13] + m_data[2] * m_data[7] * m_data[ 8] * m_data[13] + - m_data[3] * m_data[4] * m_data[10] * m_data[13] - m_data[0] * m_data[7] * m_data[10] * m_data[13] - m_data[2] * m_data[4] * m_data[11] * m_data[13] + m_data[0] * m_data[6] * m_data[11] * m_data[13] + - m_data[3] * m_data[5] * m_data[ 8] * m_data[14] - m_data[1] * m_data[7] * m_data[ 8] * m_data[14] - m_data[3] * m_data[4] * m_data[ 9] * m_data[14] + m_data[0] * m_data[7] * m_data[ 9] * m_data[14] + - m_data[1] * m_data[4] * m_data[11] * m_data[14] - m_data[0] * m_data[5] * m_data[11] * m_data[14] - m_data[2] * m_data[5] * m_data[ 8] * m_data[15] + m_data[1] * m_data[6] * m_data[ 8] * m_data[15] + - m_data[2] * m_data[4] * m_data[ 9] * m_data[15] - m_data[0] * m_data[6] * m_data[ 9] * m_data[15] - m_data[1] * m_data[4] * m_data[10] * m_data[15] + m_data[0] * m_data[5] * m_data[10] * m_data[15]; - } - - inline Matrix transpose(Matrix::Arg m) - { - Matrix r; - for (int i = 0; i < 4; i++) - { - for (int j = 0; j < 4; j++) - { - r(i, j) = m(j, i); - } - } - return r; - } - - // Inverse using Cramer's rule. - inline Matrix inverseCramer(Matrix::Arg m) - { - Matrix r; - r.data( 0) = m.data(6)*m.data(11)*m.data(13) - m.data(7)*m.data(10)*m.data(13) + m.data(7)*m.data(9)*m.data(14) - m.data(5)*m.data(11)*m.data(14) - m.data(6)*m.data(9)*m.data(15) + m.data(5)*m.data(10)*m.data(15); - r.data( 1) = m.data(3)*m.data(10)*m.data(13) - m.data(2)*m.data(11)*m.data(13) - m.data(3)*m.data(9)*m.data(14) + m.data(1)*m.data(11)*m.data(14) + m.data(2)*m.data(9)*m.data(15) - m.data(1)*m.data(10)*m.data(15); - r.data( 2) = m.data(2)*m.data( 7)*m.data(13) - m.data(3)*m.data( 6)*m.data(13) + m.data(3)*m.data(5)*m.data(14) - m.data(1)*m.data( 7)*m.data(14) - m.data(2)*m.data(5)*m.data(15) + m.data(1)*m.data( 6)*m.data(15); - r.data( 3) = m.data(3)*m.data( 6)*m.data( 9) - m.data(2)*m.data( 7)*m.data( 9) - m.data(3)*m.data(5)*m.data(10) + m.data(1)*m.data( 7)*m.data(10) + m.data(2)*m.data(5)*m.data(11) - m.data(1)*m.data( 6)*m.data(11); - r.data( 4) = m.data(7)*m.data(10)*m.data(12) - m.data(6)*m.data(11)*m.data(12) - m.data(7)*m.data(8)*m.data(14) + m.data(4)*m.data(11)*m.data(14) + m.data(6)*m.data(8)*m.data(15) - m.data(4)*m.data(10)*m.data(15); - r.data( 5) = m.data(2)*m.data(11)*m.data(12) - m.data(3)*m.data(10)*m.data(12) + m.data(3)*m.data(8)*m.data(14) - m.data(0)*m.data(11)*m.data(14) - m.data(2)*m.data(8)*m.data(15) + m.data(0)*m.data(10)*m.data(15); - r.data( 6) = m.data(3)*m.data( 6)*m.data(12) - m.data(2)*m.data( 7)*m.data(12) - m.data(3)*m.data(4)*m.data(14) + m.data(0)*m.data( 7)*m.data(14) + m.data(2)*m.data(4)*m.data(15) - m.data(0)*m.data( 6)*m.data(15); - r.data( 7) = m.data(2)*m.data( 7)*m.data( 8) - m.data(3)*m.data( 6)*m.data( 8) + m.data(3)*m.data(4)*m.data(10) - m.data(0)*m.data( 7)*m.data(10) - m.data(2)*m.data(4)*m.data(11) + m.data(0)*m.data( 6)*m.data(11); - r.data( 8) = m.data(5)*m.data(11)*m.data(12) - m.data(7)*m.data( 9)*m.data(12) + m.data(7)*m.data(8)*m.data(13) - m.data(4)*m.data(11)*m.data(13) - m.data(5)*m.data(8)*m.data(15) + m.data(4)*m.data( 9)*m.data(15); - r.data( 9) = m.data(3)*m.data( 9)*m.data(12) - m.data(1)*m.data(11)*m.data(12) - m.data(3)*m.data(8)*m.data(13) + m.data(0)*m.data(11)*m.data(13) + m.data(1)*m.data(8)*m.data(15) - m.data(0)*m.data( 9)*m.data(15); - r.data(10) = m.data(1)*m.data( 7)*m.data(12) - m.data(3)*m.data( 5)*m.data(12) + m.data(3)*m.data(4)*m.data(13) - m.data(0)*m.data( 7)*m.data(13) - m.data(1)*m.data(4)*m.data(15) + m.data(0)*m.data( 5)*m.data(15); - r.data(11) = m.data(3)*m.data( 5)*m.data( 8) - m.data(1)*m.data( 7)*m.data( 8) - m.data(3)*m.data(4)*m.data( 9) + m.data(0)*m.data( 7)*m.data( 9) + m.data(1)*m.data(4)*m.data(11) - m.data(0)*m.data( 5)*m.data(11); - r.data(12) = m.data(6)*m.data( 9)*m.data(12) - m.data(5)*m.data(10)*m.data(12) - m.data(6)*m.data(8)*m.data(13) + m.data(4)*m.data(10)*m.data(13) + m.data(5)*m.data(8)*m.data(14) - m.data(4)*m.data( 9)*m.data(14); - r.data(13) = m.data(1)*m.data(10)*m.data(12) - m.data(2)*m.data( 9)*m.data(12) + m.data(2)*m.data(8)*m.data(13) - m.data(0)*m.data(10)*m.data(13) - m.data(1)*m.data(8)*m.data(14) + m.data(0)*m.data( 9)*m.data(14); - r.data(14) = m.data(2)*m.data( 5)*m.data(12) - m.data(1)*m.data( 6)*m.data(12) - m.data(2)*m.data(4)*m.data(13) + m.data(0)*m.data( 6)*m.data(13) + m.data(1)*m.data(4)*m.data(14) - m.data(0)*m.data( 5)*m.data(14); - r.data(15) = m.data(1)*m.data( 6)*m.data( 8) - m.data(2)*m.data( 5)*m.data( 8) + m.data(2)*m.data(4)*m.data( 9) - m.data(0)*m.data( 6)*m.data( 9) - m.data(1)*m.data(4)*m.data(10) + m.data(0)*m.data( 5)*m.data(10); - r.scale(1.0f / m.determinant()); - return r; - } - - inline Matrix isometryInverse(Matrix::Arg m) - { - Matrix r(identity); - - // transposed 3x3 upper left matrix - for (int i = 0; i < 3; i++) - { - for (int j = 0; j < 3; j++) - { - r(i, j) = m(j, i); - } - } - - // translate by the negative offsets - r.translate(-Vector3(m.data(12), m.data(13), m.data(14))); - - return r; - } - - // Transform the given 3d point with the given matrix. - inline Vector3 transformPoint(Matrix::Arg m, Vector3::Arg p) - { - return Vector3( - p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + m(0,3), - p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + m(1,3), - p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + m(2,3)); - } - - // Transform the given 3d vector with the given matrix. - inline Vector3 transformVector(Matrix::Arg m, Vector3::Arg p) - { - return Vector3( - p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2), - p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2), - p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2)); - } - - // Transform the given 4d vector with the given matrix. - inline Vector4 transform(Matrix::Arg m, Vector4::Arg p) - { - return Vector4( - p.x * m(0,0) + p.y * m(0,1) + p.z * m(0,2) + p.w * m(0,3), - p.x * m(1,0) + p.y * m(1,1) + p.z * m(1,2) + p.w * m(1,3), - p.x * m(2,0) + p.y * m(2,1) + p.z * m(2,2) + p.w * m(2,3), - p.x * m(3,0) + p.y * m(3,1) + p.z * m(3,2) + p.w * m(3,3)); - } - - inline Matrix mul(Matrix::Arg a, Matrix::Arg b) - { - // @@ Is this the right order? mul(a, b) = b * a - Matrix m = a; - m.apply(b); - return m; - } - - inline void Matrix::operator+=(const Matrix & m) - { - for(int i = 0; i < 16; i++) { - m_data[i] += m.m_data[i]; - } - } - - inline void Matrix::operator-=(const Matrix & m) - { - for(int i = 0; i < 16; i++) { - m_data[i] -= m.m_data[i]; - } - } - - inline Matrix operator+(const Matrix & a, const Matrix & b) - { - Matrix m = a; - m += b; - return m; - } - - inline Matrix operator-(const Matrix & a, const Matrix & b) - { - Matrix m = a; - m -= b; - return m; - } - - -} // nv namespace - - -#if 0 // old code. -/** @name Special matrices. */ -//@{ -/** Generate a translation matrix. */ -void TranslationMatrix(const Vec3 & v) { - data[0] = 1; data[1] = 0; data[2] = 0; data[3] = 0; - data[4] = 0; data[5] = 1; data[6] = 0; data[7] = 0; - data[8] = 0; data[9] = 0; data[10] = 1; data[11] = 0; - data[12] = v.x; data[13] = v.y; data[14] = v.z; data[15] = 1; -} - -/** Rotate theta degrees around v. */ -void RotationMatrix( float theta, float v0, float v1, float v2 ) { - float cost = cos(theta); - float sint = sin(theta); - - if( 1 == v0 && 0 == v1 && 0 == v2 ) { - data[0] = 1.0f; data[1] = 0.0f; data[2] = 0.0f; data[3] = 0.0f; - data[4] = 0.0f; data[5] = cost; data[6] = -sint;data[7] = 0.0f; - data[8] = 0.0f; data[9] = sint; data[10] = cost;data[11] = 0.0f; - data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; - } - else if( 0 == v0 && 1 == v1 && 0 == v2 ) { - data[0] = cost; data[1] = 0.0f; data[2] = sint; data[3] = 0.0f; - data[4] = 0.0f; data[5] = 1.0f; data[6] = 0.0f; data[7] = 0.0f; - data[8] = -sint;data[9] = 0.0f;data[10] = cost; data[11] = 0.0f; - data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; - } - else if( 0 == v0 && 0 == v1 && 1 == v2 ) { - data[0] = cost; data[1] = -sint;data[2] = 0.0f; data[3] = 0.0f; - data[4] = sint; data[5] = cost; data[6] = 0.0f; data[7] = 0.0f; - data[8] = 0.0f; data[9] = 0.0f; data[10] = 1.0f;data[11] = 0.0f; - data[12] = 0.0f;data[13] = 0.0f;data[14] = 0.0f;data[15] = 1.0f; - } - else { - //we need scale a,b,c to unit length. - float a2, b2, c2; - a2 = v0 * v0; - b2 = v1 * v1; - c2 = v2 * v2; - - float iscale = 1.0f / sqrtf(a2 + b2 + c2); - v0 *= iscale; - v1 *= iscale; - v2 *= iscale; - - float abm, acm, bcm; - float mcos, asin, bsin, csin; - mcos = 1.0f - cost; - abm = v0 * v1 * mcos; - acm = v0 * v2 * mcos; - bcm = v1 * v2 * mcos; - asin = v0 * sint; - bsin = v1 * sint; - csin = v2 * sint; - data[0] = a2 * mcos + cost; - data[1] = abm - csin; - data[2] = acm + bsin; - data[3] = abm + csin; - data[4] = 0.0f; - data[5] = b2 * mcos + cost; - data[6] = bcm - asin; - data[7] = acm - bsin; - data[8] = 0.0f; - data[9] = bcm + asin; - data[10] = c2 * mcos + cost; - data[11] = 0.0f; - data[12] = 0.0f; - data[13] = 0.0f; - data[14] = 0.0f; - data[15] = 1.0f; - } -} - -/* -void SkewMatrix(float angle, const Vec3 & v1, const Vec3 & v2) { -v1.Normalize(); -v2.Normalize(); - -Vec3 v3; -v3.Cross(v1, v2); -v3.Normalize(); - -// Get skew factor. -float costheta = Vec3DotProduct(v1, v2); -float sintheta = Real.Sqrt(1 - costheta * costheta); -float skew = tan(Trig.DegreesToRadians(angle) + acos(sintheta)) * sintheta - costheta; - -// Build orthonormal matrix. -v1 = FXVector3.Cross(v3, v2); -v1.Normalize(); - -Matrix R = Matrix::Identity; -R[0, 0] = v3.X; // Not sure this is in the correct order... -R[1, 0] = v3.Y; -R[2, 0] = v3.Z; -R[0, 1] = v1.X; -R[1, 1] = v1.Y; -R[2, 1] = v1.Z; -R[0, 2] = v2.X; -R[1, 2] = v2.Y; -R[2, 2] = v2.Z; - -// Build skew matrix. -Matrix S = Matrix::Identity; -S[2, 1] = -skew; - -// Return skew transform. -return R * S * R.Transpose; // Not sure this is in the correct order... -} -*/ - -/** -* Generate rotation matrix for the euler angles. This is the same as computing -* 3 rotation matrices and multiplying them together in our custom order. -* -* @todo Have to recompute this code for our new convention. -**/ -void RotationMatrix( float yaw, float pitch, float roll ) { - float sy = sin(yaw+ToRadian(90)); - float cy = cos(yaw+ToRadian(90)); - float sp = sin(pitch-ToRadian(90)); - float cp = cos(pitch-ToRadian(90)); - float sr = sin(roll); - float cr = cos(roll); - - data[0] = cr*cy + sr*sp*sy; - data[1] = cp*sy; - data[2] = -sr*cy + cr*sp*sy; - data[3] = 0; - - data[4] = -cr*sy + sr*sp*cy; - data[5] = cp*cy; - data[6] = sr*sy + cr*sp*cy; - data[7] = 0; - - data[8] = sr*cp; - data[9] = -sp; - data[10] = cr*cp; - data[11] = 0; - - data[12] = 0; - data[13] = 0; - data[14] = 0; - data[15] = 1; -} - -/** Create a frustum matrix with the far plane at the infinity. */ -void Frustum( float xmin, float xmax, float ymin, float ymax, float zNear, float zFar ) { - float one_deltax, one_deltay, one_deltaz, doubleznear; - - doubleznear = 2.0f * zNear; - one_deltax = 1.0f / (xmax - xmin); - one_deltay = 1.0f / (ymax - ymin); - one_deltaz = 1.0f / (zFar - zNear); - - data[0] = (float)(doubleznear * one_deltax); - data[1] = 0.0f; - data[2] = 0.0f; - data[3] = 0.0f; - data[4] = 0.0f; - data[5] = (float)(doubleznear * one_deltay); - data[6] = 0.f; - data[7] = 0.f; - data[8] = (float)((xmax + xmin) * one_deltax); - data[9] = (float)((ymax + ymin) * one_deltay); - data[10] = (float)(-(zFar + zNear) * one_deltaz); - data[11] = -1.f; - data[12] = 0.f; - data[13] = 0.f; - data[14] = (float)(-(zFar * doubleznear) * one_deltaz); - data[15] = 0.f; -} - -/** Create a frustum matrix with the far plane at the infinity. */ -void FrustumInf( float xmin, float xmax, float ymin, float ymax, float zNear ) { - float one_deltax, one_deltay, doubleznear, nudge; - - doubleznear = 2.0f * zNear; - one_deltax = 1.0f / (xmax - xmin); - one_deltay = 1.0f / (ymax - ymin); - nudge = 1.0; // 0.999; - - data[0] = doubleznear * one_deltax; - data[1] = 0.0f; - data[2] = 0.0f; - data[3] = 0.0f; - - data[4] = 0.0f; - data[5] = doubleznear * one_deltay; - data[6] = 0.f; - data[7] = 0.f; - - data[8] = (xmax + xmin) * one_deltax; - data[9] = (ymax + ymin) * one_deltay; - data[10] = -1.0f * nudge; - data[11] = -1.0f; - - data[12] = 0.f; - data[13] = 0.f; - data[14] = -doubleznear * nudge; - data[15] = 0.f; -} - -/** Create an inverse frustum matrix with the far plane at the infinity. */ -void FrustumInfInv( float left, float right, float bottom, float top, float zNear ) { - // this matrix is wrong (not tested floatly) I think it should be transposed. - data[0] = (right - left) / (2 * zNear); - data[1] = 0; - data[2] = 0; - data[3] = (right + left) / (2 * zNear); - data[4] = 0; - data[5] = (top - bottom) / (2 * zNear); - data[6] = 0; - data[7] = (top + bottom) / (2 * zNear); - data[8] = 0; - data[9] = 0; - data[10] = 0; - data[11] = -1; - data[12] = 0; - data[13] = 0; - data[14] = -1 / (2 * zNear); - data[15] = 1 / (2 * zNear); -} - -/** Create an homogeneous projection matrix. */ -void Perspective( float fov, float aspect, float zNear, float zFar ) { - float xmin, xmax, ymin, ymax; - - xmax = zNear * tan( fov/2 ); - xmin = -xmax; - - ymax = xmax / aspect; - ymin = -ymax; - - Frustum(xmin, xmax, ymin, ymax, zNear, zFar); -} - -/** Create a projection matrix with the far plane at the infinity. */ -void PerspectiveInf( float fov, float aspect, float zNear ) { - float x = zNear * tan( fov/2 ); - float y = x / aspect; - FrustumInf( -x, x, -y, y, zNear ); -} - -/** Create an inverse projection matrix with far plane at the infinity. */ -void PerspectiveInfInv( float fov, float aspect, float zNear ) { - float x = zNear * tan( fov/2 ); - float y = x / aspect; - FrustumInfInv( -x, x, -y, y, zNear ); -} - -/** Build bone matrix from quatertion and offset. */ -void BoneMatrix(const Quat & q, const Vec3 & offset) { - float x2, y2, z2, xx, xy, xz, yy, yz, zz, wx, wy, wz; - - // calculate coefficients - x2 = q.x + q.x; - y2 = q.y + q.y; - z2 = q.z + q.z; - - xx = q.x * x2; xy = q.x * y2; xz = q.x * z2; - yy = q.y * y2; yz = q.y * z2; zz = q.z * z2; - wx = q.w * x2; wy = q.w * y2; wz = q.w * z2; - - data[0] = 1.0f - (yy + zz); - data[1] = xy - wz; - data[2] = xz + wy; - data[3] = 0.0f; - - data[4] = xy + wz; - data[5] = 1.0f - (xx + zz); - data[6] = yz - wx; - data[7] = 0.0f; - - data[8] = xz - wy; - data[9] = yz + wx; - data[10] = 1.0f - (xx + yy); - data[11] = 0.0f; - - data[12] = offset.x; - data[13] = offset.y; - data[14] = offset.z; - data[15] = 1.0f; -} - -//@} - - -/** @name Transformations: */ -//@{ - -/** Apply a general scale. */ -void Scale( float x, float y, float z ) { - data[0] *= x; data[4] *= y; data[8] *= z; - data[1] *= x; data[5] *= y; data[9] *= z; - data[2] *= x; data[6] *= y; data[10] *= z; - data[3] *= x; data[7] *= y; data[11] *= z; -} - -/** Apply a rotation of theta degrees around the axis v*/ -void Rotate( float theta, const Vec3 & v ) { - Matrix b; - b.RotationMatrix( theta, v[0], v[1], v[2] ); - Multiply4x3( b ); -} - -/** Apply a rotation of theta degrees around the axis v*/ -void Rotate( float theta, float v0, float v1, float v2 ) { - Matrix b; - b.RotationMatrix( theta, v0, v1, v2 ); - Multiply4x3( b ); -} - -/** -* Translate the matrix by t. This is the same as multiplying by a -* translation matrix with the given offset. -* this = T * this -*/ -void Translate( const Vec3 &t ) { - data[12] = data[0] * t.x + data[4] * t.y + data[8] * t.z + data[12]; - data[13] = data[1] * t.x + data[5] * t.y + data[9] * t.z + data[13]; - data[14] = data[2] * t.x + data[6] * t.y + data[10] * t.z + data[14]; - data[15] = data[3] * t.x + data[7] * t.y + data[11] * t.z + data[15]; -} - -/** -* Translate the matrix by x, y, z. This is the same as multiplying by a -* translation matrix with the given offsets. -*/ -void Translate( float x, float y, float z ) { - data[12] = data[0] * x + data[4] * y + data[8] * z + data[12]; - data[13] = data[1] * x + data[5] * y + data[9] * z + data[13]; - data[14] = data[2] * x + data[6] * y + data[10] * z + data[14]; - data[15] = data[3] * x + data[7] * y + data[11] * z + data[15]; -} - -/** Compute the transposed matrix. */ -void Transpose() { - piSwap(data[1], data[4]); - piSwap(data[2], data[8]); - piSwap(data[6], data[9]); - piSwap(data[3], data[12]); - piSwap(data[7], data[13]); - piSwap(data[11], data[14]); -} - -/** Compute the inverse of a rigid-body/isometry/orthonormal matrix. */ -void IsometryInverse() { - // transposed 3x3 upper left matrix - piSwap(data[1], data[4]); - piSwap(data[2], data[8]); - piSwap(data[6], data[9]); - - // translate by the negative offsets - Vec3 v(-data[12], -data[13], -data[14]); - data[12] = data[13] = data[14] = 0; - Translate(v); -} - -/** Compute the inverse of the affine portion of this matrix. */ -void AffineInverse() { - data[12] = data[13] = data[14] = 0; - Transpose(); -} -//@} - -/** @name Matrix operations: */ -//@{ - -/** Return the determinant of this matrix. */ -float Determinant() const { - return data[0] * data[5] * data[10] * data[15] + - data[1] * data[6] * data[11] * data[12] + - data[2] * data[7] * data[ 8] * data[13] + - data[3] * data[4] * data[ 9] * data[14] - - data[3] * data[6] * data[ 9] * data[12] - - data[2] * data[5] * data[ 8] * data[15] - - data[1] * data[4] * data[11] * data[14] - - data[0] * data[7] * data[10] * data[12]; -} - - -/** Standard matrix product: this *= B. */ -void Multiply4x4( const Matrix & restrict B ) { - Multiply4x4(*this, B); -} - -/** Standard matrix product: this = A * B. this != B*/ -void Multiply4x4( const Matrix & A, const Matrix & restrict B ) { - piDebugCheck(this != &B); - - for(int i = 0; i < 4; i++) { - const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); - GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); - GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); - GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); - GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); - } - - /* Unrolled but does not allow this == A - data[0] = A.data[0] * B.data[0] + A.data[4] * B.data[1] + A.data[8] * B.data[2] + A.data[12] * B.data[3]; - data[1] = A.data[1] * B.data[0] + A.data[5] * B.data[1] + A.data[9] * B.data[2] + A.data[13] * B.data[3]; - data[2] = A.data[2] * B.data[0] + A.data[6] * B.data[1] + A.data[10] * B.data[2] + A.data[14] * B.data[3]; - data[3] = A.data[3] * B.data[0] + A.data[7] * B.data[1] + A.data[11] * B.data[2] + A.data[15] * B.data[3]; - data[4] = A.data[0] * B.data[4] + A.data[4] * B.data[5] + A.data[8] * B.data[6] + A.data[12] * B.data[7]; - data[5] = A.data[1] * B.data[4] + A.data[5] * B.data[5] + A.data[9] * B.data[6] + A.data[13] * B.data[7]; - data[6] = A.data[2] * B.data[4] + A.data[6] * B.data[5] + A.data[10] * B.data[6] + A.data[14] * B.data[7]; - data[7] = A.data[3] * B.data[4] + A.data[7] * B.data[5] + A.data[11] * B.data[6] + A.data[15] * B.data[7]; - data[8] = A.data[0] * B.data[8] + A.data[4] * B.data[9] + A.data[8] * B.data[10] + A.data[12] * B.data[11]; - data[9] = A.data[1] * B.data[8] + A.data[5] * B.data[9] + A.data[9] * B.data[10] + A.data[13] * B.data[11]; - data[10]= A.data[2] * B.data[8] + A.data[6] * B.data[9] + A.data[10] * B.data[10] + A.data[14] * B.data[11]; - data[11]= A.data[3] * B.data[8] + A.data[7] * B.data[9] + A.data[11] * B.data[10] + A.data[15] * B.data[11]; - data[12]= A.data[0] * B.data[12] + A.data[4] * B.data[13] + A.data[8] * B.data[14] + A.data[12] * B.data[15]; - data[13]= A.data[1] * B.data[12] + A.data[5] * B.data[13] + A.data[9] * B.data[14] + A.data[13] * B.data[15]; - data[14]= A.data[2] * B.data[12] + A.data[6] * B.data[13] + A.data[10] * B.data[14] + A.data[14] * B.data[15]; - data[15]= A.data[3] * B.data[12] + A.data[7] * B.data[13] + A.data[11] * B.data[14] + A.data[15] * B.data[15]; - */ -} - -/** Standard matrix product: this *= B. */ -void Multiply4x3( const Matrix & restrict B ) { - Multiply4x3(*this, B); -} - -/** Standard product of matrices, where the last row is [0 0 0 1]. */ -void Multiply4x3( const Matrix & A, const Matrix & restrict B ) { - piDebugCheck(this != &B); - - for(int i = 0; i < 3; i++) { - const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3); - GetElem(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); - GetElem(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); - GetElem(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); - GetElem(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); - } - data[3] = 0.0f; data[7] = 0.0f; data[11] = 0.0f; data[15] = 1.0f; - - /* Unrolled but does not allow this == A - data[0] = a.data[0] * b.data[0] + a.data[4] * b.data[1] + a.data[8] * b.data[2] + a.data[12] * b.data[3]; - data[1] = a.data[1] * b.data[0] + a.data[5] * b.data[1] + a.data[9] * b.data[2] + a.data[13] * b.data[3]; - data[2] = a.data[2] * b.data[0] + a.data[6] * b.data[1] + a.data[10] * b.data[2] + a.data[14] * b.data[3]; - data[3] = 0.0f; - data[4] = a.data[0] * b.data[4] + a.data[4] * b.data[5] + a.data[8] * b.data[6] + a.data[12] * b.data[7]; - data[5] = a.data[1] * b.data[4] + a.data[5] * b.data[5] + a.data[9] * b.data[6] + a.data[13] * b.data[7]; - data[6] = a.data[2] * b.data[4] + a.data[6] * b.data[5] + a.data[10] * b.data[6] + a.data[14] * b.data[7]; - data[7] = 0.0f; - data[8] = a.data[0] * b.data[8] + a.data[4] * b.data[9] + a.data[8] * b.data[10] + a.data[12] * b.data[11]; - data[9] = a.data[1] * b.data[8] + a.data[5] * b.data[9] + a.data[9] * b.data[10] + a.data[13] * b.data[11]; - data[10]= a.data[2] * b.data[8] + a.data[6] * b.data[9] + a.data[10] * b.data[10] + a.data[14] * b.data[11]; - data[11]= 0.0f; - data[12]= a.data[0] * b.data[12] + a.data[4] * b.data[13] + a.data[8] * b.data[14] + a.data[12] * b.data[15]; - data[13]= a.data[1] * b.data[12] + a.data[5] * b.data[13] + a.data[9] * b.data[14] + a.data[13] * b.data[15]; - data[14]= a.data[2] * b.data[12] + a.data[6] * b.data[13] + a.data[10] * b.data[14] + a.data[14] * b.data[15]; - data[15]= 1.0f; - */ -} -//@} - - -/** @name Vector operations: */ -//@{ - -/** Transform 3d vector (w=0). */ -void TransformVec3(const Vec3 & restrict orig, Vec3 * restrict dest) const { - piDebugCheck(&orig != dest); - dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8]; - dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9]; - dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10]; -} -/** Transform 3d vector by the transpose (w=0). */ -void TransformVec3T(const Vec3 & restrict orig, Vec3 * restrict dest) const { - piDebugCheck(&orig != dest); - dest->x = orig.x * data[0] + orig.y * data[1] + orig.z * data[2]; - dest->y = orig.x * data[4] + orig.y * data[5] + orig.z * data[6]; - dest->z = orig.x * data[8] + orig.y * data[9] + orig.z * data[10]; -} - -/** Transform a 3d homogeneous vector, where the fourth coordinate is assumed to be 1. */ -void TransformPoint(const Vec3 & restrict orig, Vec3 * restrict dest) const { - piDebugCheck(&orig != dest); - dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; - dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; - dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; -} - -/** Transform a point, normalize it, and return w. */ -float TransformPointAndNormalize(const Vec3 & restrict orig, Vec3 * restrict dest) const { - piDebugCheck(&orig != dest); - float w; - dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; - dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; - dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; - w = 1 / (orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]); - *dest *= w; - return w; -} - -/** Transform a point and return w. */ -float TransformPointReturnW(const Vec3 & restrict orig, Vec3 * restrict dest) const { - piDebugCheck(&orig != dest); - dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; - dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; - dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; - return orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; -} - -/** Transform a normalized 3d point by a 4d matrix and return the resulting 4d vector. */ -void TransformVec4(const Vec3 & orig, Vec4 * dest) const { - dest->x = orig.x * data[0] + orig.y * data[4] + orig.z * data[8] + data[12]; - dest->y = orig.x * data[1] + orig.y * data[5] + orig.z * data[9] + data[13]; - dest->z = orig.x * data[2] + orig.y * data[6] + orig.z * data[10] + data[14]; - dest->w = orig.x * data[3] + orig.y * data[7] + orig.z * data[11] + data[15]; -} -//@} - -/** @name Matrix analysis. */ -//@{ - -/** Get the ZYZ euler angles from the matrix. Assumes the matrix is orthonormal. */ -void GetEulerAnglesZYZ(float * s, float * t, float * r) const { - if( GetElem(2,2) < 1.0f ) { - if( GetElem(2,2) > -1.0f ) { - // cs*ct*cr-ss*sr -ss*ct*cr-cs*sr st*cr - // cs*ct*sr+ss*cr -ss*ct*sr+cs*cr st*sr - // -cs*st ss*st ct - *s = atan2(GetElem(1,2), -GetElem(0,2)); - *t = acos(GetElem(2,2)); - *r = atan2(GetElem(2,1), GetElem(2,0)); - } - else { - // -c(s-r) s(s-r) 0 - // s(s-r) c(s-r) 0 - // 0 0 -1 - *s = atan2(GetElem(0, 1), -GetElem(0, 0)); // = s-r - *t = PI; - *r = 0; - } - } - else { - // c(s+r) -s(s+r) 0 - // s(s+r) c(s+r) 0 - // 0 0 1 - *s = atan2(GetElem(0, 1), GetElem(0, 0)); // = s+r - *t = 0; - *r = 0; - } -} - -//@} - -MATHLIB_API friend PiStream & operator<< ( PiStream & s, Matrix & m ); - -/** Print to debug output. */ -void Print() const { - piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[0], data[4], data[8], data[12] ); - piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[1], data[5], data[9], data[13] ); - piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[2], data[6], data[10], data[14] ); - piDebug( "[ %5.2f %5.2f %5.2f %5.2f ]\n", data[3], data[7], data[11], data[15] ); -} - - -public: - - float data[16]; - -}; -#endif - - -#endif // NV_MATH_MATRIX_INL |