diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Matrix.cpp')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Matrix.cpp | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.cpp b/thirdparty/thekla_atlas/nvmath/Matrix.cpp new file mode 100644 index 0000000000..29bd19f5f8 --- /dev/null +++ b/thirdparty/thekla_atlas/nvmath/Matrix.cpp @@ -0,0 +1,441 @@ +// This code is in the public domain -- castanyo@yahoo.es + +#include "Matrix.inl" +#include "Vector.inl" + +#include "nvcore/Array.inl" + +#include <float.h> + +#if !NV_CC_MSVC && !NV_OS_ORBIS +#include <alloca.h> +#endif + +using namespace nv; + + +// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise +// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above; +// indx[1..n] is an output vector that records the row permutation effected by the partial +// pivoting; d is output as -1 depending on whether the number of row interchanges was even +// or odd, respectively. This routine is used in combination with lubksb to solve linear equations +// or invert a matrix. +static bool ludcmp(float **a, int n, int *indx, float *d) +{ + const float TINY = 1.0e-20f; + + float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row. + + *d = 1.0; // No row interchanges yet. + for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information. + + float big = 0.0; + for (int j = 0; j < n; j++) { + big = max(big, fabsf(a[i][j])); + } + if (big == 0) { + return false; // Singular matrix + } + + // No nonzero largest element. + vv[i] = 1.0f / big; // Save the scaling. + } + + for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method. + for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j. + float sum = a[i][j]; + for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j]; + a[i][j] = sum; + } + + int imax = -1; + float big = 0.0; // Initialize for the search for largest pivot element. + for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N + float sum = a[i][j]; // of equation (2.3.13). + for (int k = 0; k < j; k++) { + sum -= a[i][k]*a[k][j]; + } + a[i][j]=sum; + + float dum = vv[i]*fabs(sum); + if (dum >= big) { + // Is the figure of merit for the pivot better than the best so far? + big = dum; + imax = i; + } + } + nvDebugCheck(imax != -1); + + if (j != imax) { // Do we need to interchange rows? + for (int k = 0; k < n; k++) { // Yes, do so... + swap(a[imax][k], a[j][k]); + } + *d = -(*d); // ...and change the parity of d. + vv[imax]=vv[j]; // Also interchange the scale factor. + } + + indx[j]=imax; + if (a[j][j] == 0.0) a[j][j] = TINY; + + // If the pivot element is zero the matrix is singular (at least to the precision of the + // algorithm). For some applications on singular matrices, it is desirable to substitute + // TINY for zero. + if (j != n-1) { // Now, finally, divide by the pivot element. + float dum = 1.0f / a[j][j]; + for (int i = j+1; i < n; i++) a[i][j] *= dum; + } + } // Go back for the next column in the reduction. + + return true; +} + + +// Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix +// A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input +// as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector +// B, and returns with the solution vector X. a, n, and indx are not modified by this routine +// and can be left in place for successive calls with different right-hand sides b. This routine takes +// into account the possibility that b will begin with many zero elements, so it is efficient for use +// in matrix inversion. +static void lubksb(float **a, int n, int *indx, float b[]) +{ + int ii = 0; + for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become + int ip = indx[i]; // the index of the first nonvanishing element of b. We now + float sum = b[ip]; // do the forward substitution, equation (2.3.6). The + b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go. + if (ii != 0) { + for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j]; + } + else if (sum != 0.0f) { + ii = i+1; // A nonzero element was encountered, so from now on we + } + b[i] = sum; // will have to do the sums in the loop above. + } + for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7). + float sum = b[i]; + for (int j = i+1; j < n; j++) { + sum -= a[i][j]*b[j]; + } + b[i] = sum/a[i][i]; // Store a component of the solution vector X. + } // All done! +} + + +bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x) +{ + nvDebugCheck(x != NULL); + + float m[4][4]; + float *a[4] = {m[0], m[1], m[2], m[3]}; + int idx[4]; + float d; + + for (int y = 0; y < 4; y++) { + for (int x = 0; x < 4; x++) { + a[x][y] = A(x, y); + } + } + + // Create LU decomposition. + if (!ludcmp(a, 4, idx, &d)) { + // Singular matrix. + return false; + } + + // Init solution. + *x = b; + + // Do back substitution. + lubksb(a, 4, idx, x->component); + + return true; +} + +// @@ Not tested. +Matrix nv::inverseLU(const Matrix & A) +{ + Vector4 Ai[4]; + + solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]); + solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]); + solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]); + solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]); + + return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]); +} + + + +bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x) +{ + nvDebugCheck(x != NULL); + + float m[3][3]; + float *a[3] = {m[0], m[1], m[2]}; + int idx[3]; + float d; + + for (int y = 0; y < 3; y++) { + for (int x = 0; x < 3; x++) { + a[x][y] = A(x, y); + } + } + + // Create LU decomposition. + if (!ludcmp(a, 3, idx, &d)) { + // Singular matrix. + return false; + } + + // Init solution. + *x = b; + + // Do back substitution. + lubksb(a, 3, idx, x->component); + + return true; +} + + +bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x) +{ + nvDebugCheck(x != NULL); + + *x = transform(inverseCramer(A), b); + + return true; // @@ Return false if determinant(A) == 0 ! +} + +bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x) +{ + nvDebugCheck(x != NULL); + + const float det = A.determinant(); + if (equal(det, 0.0f)) { // @@ Use input epsilon. + return false; + } + + Matrix3 Ai = inverseCramer(A); + + *x = transform(Ai, b); + + return true; +} + + + +// Inverse using gaussian elimination. From Jon's code. +Matrix nv::inverse(const Matrix & m) { + + Matrix A = m; + Matrix B(identity); + + int i, j, k; + float max, t, det, pivot; + + det = 1.0; + for (i=0; i<4; i++) { /* eliminate in column i, below diag */ + max = -1.; + for (k=i; k<4; k++) /* find pivot for column i */ + if (fabs(A(k, i)) > max) { + max = fabs(A(k, i)); + j = k; + } + if (max<=0.) return B; /* if no nonzero pivot, PUNT */ + if (j!=i) { /* swap rows i and j */ + for (k=i; k<4; k++) + swap(A(i, k), A(j, k)); + for (k=0; k<4; k++) + swap(B(i, k), B(j, k)); + det = -det; + } + pivot = A(i, i); + det *= pivot; + for (k=i+1; k<4; k++) /* only do elems to right of pivot */ + A(i, k) /= pivot; + for (k=0; k<4; k++) + B(i, k) /= pivot; + /* we know that A(i, i) will be set to 1, so don't bother to do it */ + + for (j=i+1; j<4; j++) { /* eliminate in rows below i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ + A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ + for (k=0; k<4; k++) + B(j, k) -= B(i, k)*t; + } + } + + /*---------- backward elimination ----------*/ + + for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ + for (j=0; j<i; j++) { /* eliminate in rows above i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=0; k<4; k++) /* subtract scaled row i from row j */ + B(j, k) -= B(i, k)*t; + } + } + + return B; +} + + +Matrix3 nv::inverse(const Matrix3 & m) { + + Matrix3 A = m; + Matrix3 B(identity); + + int i, j, k; + float max, t, det, pivot; + + det = 1.0; + for (i=0; i<3; i++) { /* eliminate in column i, below diag */ + max = -1.; + for (k=i; k<3; k++) /* find pivot for column i */ + if (fabs(A(k, i)) > max) { + max = fabs(A(k, i)); + j = k; + } + if (max<=0.) return B; /* if no nonzero pivot, PUNT */ + if (j!=i) { /* swap rows i and j */ + for (k=i; k<3; k++) + swap(A(i, k), A(j, k)); + for (k=0; k<3; k++) + swap(B(i, k), B(j, k)); + det = -det; + } + pivot = A(i, i); + det *= pivot; + for (k=i+1; k<3; k++) /* only do elems to right of pivot */ + A(i, k) /= pivot; + for (k=0; k<3; k++) + B(i, k) /= pivot; + /* we know that A(i, i) will be set to 1, so don't bother to do it */ + + for (j=i+1; j<3; j++) { /* eliminate in rows below i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=i+1; k<3; k++) /* subtract scaled row i from row j */ + A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ + for (k=0; k<3; k++) + B(j, k) -= B(i, k)*t; + } + } + + /*---------- backward elimination ----------*/ + + for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */ + for (j=0; j<i; j++) { /* eliminate in rows above i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=0; k<3; k++) /* subtract scaled row i from row j */ + B(j, k) -= B(i, k)*t; + } + } + + return B; +} + + + + + +#if 0 + +// Copyright (C) 1999-2004 Michael Garland. +// +// Permission is hereby granted, free of charge, to any person obtaining a +// copy of this software and associated documentation files (the +// "Software"), to deal in the Software without restriction, including +// without limitation the rights to use, copy, modify, merge, publish, +// distribute, and/or sell copies of the Software, and to permit persons +// to whom the Software is furnished to do so, provided that the above +// copyright notice(s) and this permission notice appear in all copies of +// the Software and that both the above copyright notice(s) and this +// permission notice appear in supporting documentation. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT +// OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR +// HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL +// INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING +// FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, +// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION +// WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. +// +// Except as contained in this notice, the name of a copyright holder +// shall not be used in advertising or otherwise to promote the sale, use +// or other dealings in this Software without prior written authorization +// of the copyright holder. + + +// Matrix inversion code for 4x4 matrices using Gaussian elimination +// with partial pivoting. This is a specialized version of a +// procedure originally due to Paul Heckbert <ph@cs.cmu.edu>. +// +// Returns determinant of A, and B=inverse(A) +// If matrix A is singular, returns 0 and leaves trash in B. +// +#define SWAP(a, b, t) {t = a; a = b; b = t;} +double invert(Mat4& B, const Mat4& m) +{ + Mat4 A = m; + int i, j, k; + double max, t, det, pivot; + + /*---------- forward elimination ----------*/ + + for (i=0; i<4; i++) /* put identity matrix in B */ + for (j=0; j<4; j++) + B(i, j) = (double)(i==j); + + det = 1.0; + for (i=0; i<4; i++) { /* eliminate in column i, below diag */ + max = -1.; + for (k=i; k<4; k++) /* find pivot for column i */ + if (fabs(A(k, i)) > max) { + max = fabs(A(k, i)); + j = k; + } + if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */ + if (j!=i) { /* swap rows i and j */ + for (k=i; k<4; k++) + SWAP(A(i, k), A(j, k), t); + for (k=0; k<4; k++) + SWAP(B(i, k), B(j, k), t); + det = -det; + } + pivot = A(i, i); + det *= pivot; + for (k=i+1; k<4; k++) /* only do elems to right of pivot */ + A(i, k) /= pivot; + for (k=0; k<4; k++) + B(i, k) /= pivot; + /* we know that A(i, i) will be set to 1, so don't bother to do it */ + + for (j=i+1; j<4; j++) { /* eliminate in rows below i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ + A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ + for (k=0; k<4; k++) + B(j, k) -= B(i, k)*t; + } + } + + /*---------- backward elimination ----------*/ + + for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ + for (j=0; j<i; j++) { /* eliminate in rows above i */ + t = A(j, i); /* we're gonna zero this guy */ + for (k=0; k<4; k++) /* subtract scaled row i from row j */ + B(j, k) -= B(i, k)*t; + } + } + + return det; +} + +#endif // 0 + + + |