summaryrefslogtreecommitdiff
path: root/thirdparty/thekla_atlas/nvmath/Matrix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Matrix.cpp')
-rw-r--r--thirdparty/thekla_atlas/nvmath/Matrix.cpp441
1 files changed, 441 insertions, 0 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.cpp b/thirdparty/thekla_atlas/nvmath/Matrix.cpp
new file mode 100644
index 0000000000..29bd19f5f8
--- /dev/null
+++ b/thirdparty/thekla_atlas/nvmath/Matrix.cpp
@@ -0,0 +1,441 @@
+// This code is in the public domain -- castanyo@yahoo.es
+
+#include "Matrix.inl"
+#include "Vector.inl"
+
+#include "nvcore/Array.inl"
+
+#include <float.h>
+
+#if !NV_CC_MSVC && !NV_OS_ORBIS
+#include <alloca.h>
+#endif
+
+using namespace nv;
+
+
+// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
+// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
+// indx[1..n] is an output vector that records the row permutation effected by the partial
+// pivoting; d is output as -1 depending on whether the number of row interchanges was even
+// or odd, respectively. This routine is used in combination with lubksb to solve linear equations
+// or invert a matrix.
+static bool ludcmp(float **a, int n, int *indx, float *d)
+{
+ const float TINY = 1.0e-20f;
+
+ float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row.
+
+ *d = 1.0; // No row interchanges yet.
+ for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information.
+
+ float big = 0.0;
+ for (int j = 0; j < n; j++) {
+ big = max(big, fabsf(a[i][j]));
+ }
+ if (big == 0) {
+ return false; // Singular matrix
+ }
+
+ // No nonzero largest element.
+ vv[i] = 1.0f / big; // Save the scaling.
+ }
+
+ for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method.
+ for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j.
+ float sum = a[i][j];
+ for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j];
+ a[i][j] = sum;
+ }
+
+ int imax = -1;
+ float big = 0.0; // Initialize for the search for largest pivot element.
+ for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N
+ float sum = a[i][j]; // of equation (2.3.13).
+ for (int k = 0; k < j; k++) {
+ sum -= a[i][k]*a[k][j];
+ }
+ a[i][j]=sum;
+
+ float dum = vv[i]*fabs(sum);
+ if (dum >= big) {
+ // Is the figure of merit for the pivot better than the best so far?
+ big = dum;
+ imax = i;
+ }
+ }
+ nvDebugCheck(imax != -1);
+
+ if (j != imax) { // Do we need to interchange rows?
+ for (int k = 0; k < n; k++) { // Yes, do so...
+ swap(a[imax][k], a[j][k]);
+ }
+ *d = -(*d); // ...and change the parity of d.
+ vv[imax]=vv[j]; // Also interchange the scale factor.
+ }
+
+ indx[j]=imax;
+ if (a[j][j] == 0.0) a[j][j] = TINY;
+
+ // If the pivot element is zero the matrix is singular (at least to the precision of the
+ // algorithm). For some applications on singular matrices, it is desirable to substitute
+ // TINY for zero.
+ if (j != n-1) { // Now, finally, divide by the pivot element.
+ float dum = 1.0f / a[j][j];
+ for (int i = j+1; i < n; i++) a[i][j] *= dum;
+ }
+ } // Go back for the next column in the reduction.
+
+ return true;
+}
+
+
+// Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix
+// A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
+// as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
+// B, and returns with the solution vector X. a, n, and indx are not modified by this routine
+// and can be left in place for successive calls with different right-hand sides b. This routine takes
+// into account the possibility that b will begin with many zero elements, so it is efficient for use
+// in matrix inversion.
+static void lubksb(float **a, int n, int *indx, float b[])
+{
+ int ii = 0;
+ for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become
+ int ip = indx[i]; // the index of the first nonvanishing element of b. We now
+ float sum = b[ip]; // do the forward substitution, equation (2.3.6). The
+ b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go.
+ if (ii != 0) {
+ for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j];
+ }
+ else if (sum != 0.0f) {
+ ii = i+1; // A nonzero element was encountered, so from now on we
+ }
+ b[i] = sum; // will have to do the sums in the loop above.
+ }
+ for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7).
+ float sum = b[i];
+ for (int j = i+1; j < n; j++) {
+ sum -= a[i][j]*b[j];
+ }
+ b[i] = sum/a[i][i]; // Store a component of the solution vector X.
+ } // All done!
+}
+
+
+bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ float m[4][4];
+ float *a[4] = {m[0], m[1], m[2], m[3]};
+ int idx[4];
+ float d;
+
+ for (int y = 0; y < 4; y++) {
+ for (int x = 0; x < 4; x++) {
+ a[x][y] = A(x, y);
+ }
+ }
+
+ // Create LU decomposition.
+ if (!ludcmp(a, 4, idx, &d)) {
+ // Singular matrix.
+ return false;
+ }
+
+ // Init solution.
+ *x = b;
+
+ // Do back substitution.
+ lubksb(a, 4, idx, x->component);
+
+ return true;
+}
+
+// @@ Not tested.
+Matrix nv::inverseLU(const Matrix & A)
+{
+ Vector4 Ai[4];
+
+ solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]);
+ solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]);
+ solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]);
+ solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]);
+
+ return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]);
+}
+
+
+
+bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ float m[3][3];
+ float *a[3] = {m[0], m[1], m[2]};
+ int idx[3];
+ float d;
+
+ for (int y = 0; y < 3; y++) {
+ for (int x = 0; x < 3; x++) {
+ a[x][y] = A(x, y);
+ }
+ }
+
+ // Create LU decomposition.
+ if (!ludcmp(a, 3, idx, &d)) {
+ // Singular matrix.
+ return false;
+ }
+
+ // Init solution.
+ *x = b;
+
+ // Do back substitution.
+ lubksb(a, 3, idx, x->component);
+
+ return true;
+}
+
+
+bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ *x = transform(inverseCramer(A), b);
+
+ return true; // @@ Return false if determinant(A) == 0 !
+}
+
+bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x)
+{
+ nvDebugCheck(x != NULL);
+
+ const float det = A.determinant();
+ if (equal(det, 0.0f)) { // @@ Use input epsilon.
+ return false;
+ }
+
+ Matrix3 Ai = inverseCramer(A);
+
+ *x = transform(Ai, b);
+
+ return true;
+}
+
+
+
+// Inverse using gaussian elimination. From Jon's code.
+Matrix nv::inverse(const Matrix & m) {
+
+ Matrix A = m;
+ Matrix B(identity);
+
+ int i, j, k;
+ float max, t, det, pivot;
+
+ det = 1.0;
+ for (i=0; i<4; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<4; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return B; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<4; k++)
+ swap(A(i, k), A(j, k));
+ for (k=0; k<4; k++)
+ swap(B(i, k), B(j, k));
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<4; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<4; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<4; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<4; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<4; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return B;
+}
+
+
+Matrix3 nv::inverse(const Matrix3 & m) {
+
+ Matrix3 A = m;
+ Matrix3 B(identity);
+
+ int i, j, k;
+ float max, t, det, pivot;
+
+ det = 1.0;
+ for (i=0; i<3; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<3; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return B; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<3; k++)
+ swap(A(i, k), A(j, k));
+ for (k=0; k<3; k++)
+ swap(B(i, k), B(j, k));
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<3; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<3; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<3; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<3; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<3; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<3; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return B;
+}
+
+
+
+
+
+#if 0
+
+// Copyright (C) 1999-2004 Michael Garland.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the
+// "Software"), to deal in the Software without restriction, including
+// without limitation the rights to use, copy, modify, merge, publish,
+// distribute, and/or sell copies of the Software, and to permit persons
+// to whom the Software is furnished to do so, provided that the above
+// copyright notice(s) and this permission notice appear in all copies of
+// the Software and that both the above copyright notice(s) and this
+// permission notice appear in supporting documentation.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
+// OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+// HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
+// INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
+// FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
+// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
+// WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+//
+// Except as contained in this notice, the name of a copyright holder
+// shall not be used in advertising or otherwise to promote the sale, use
+// or other dealings in this Software without prior written authorization
+// of the copyright holder.
+
+
+// Matrix inversion code for 4x4 matrices using Gaussian elimination
+// with partial pivoting. This is a specialized version of a
+// procedure originally due to Paul Heckbert <ph@cs.cmu.edu>.
+//
+// Returns determinant of A, and B=inverse(A)
+// If matrix A is singular, returns 0 and leaves trash in B.
+//
+#define SWAP(a, b, t) {t = a; a = b; b = t;}
+double invert(Mat4& B, const Mat4& m)
+{
+ Mat4 A = m;
+ int i, j, k;
+ double max, t, det, pivot;
+
+ /*---------- forward elimination ----------*/
+
+ for (i=0; i<4; i++) /* put identity matrix in B */
+ for (j=0; j<4; j++)
+ B(i, j) = (double)(i==j);
+
+ det = 1.0;
+ for (i=0; i<4; i++) { /* eliminate in column i, below diag */
+ max = -1.;
+ for (k=i; k<4; k++) /* find pivot for column i */
+ if (fabs(A(k, i)) > max) {
+ max = fabs(A(k, i));
+ j = k;
+ }
+ if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */
+ if (j!=i) { /* swap rows i and j */
+ for (k=i; k<4; k++)
+ SWAP(A(i, k), A(j, k), t);
+ for (k=0; k<4; k++)
+ SWAP(B(i, k), B(j, k), t);
+ det = -det;
+ }
+ pivot = A(i, i);
+ det *= pivot;
+ for (k=i+1; k<4; k++) /* only do elems to right of pivot */
+ A(i, k) /= pivot;
+ for (k=0; k<4; k++)
+ B(i, k) /= pivot;
+ /* we know that A(i, i) will be set to 1, so don't bother to do it */
+
+ for (j=i+1; j<4; j++) { /* eliminate in rows below i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
+ A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
+ for (k=0; k<4; k++)
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ /*---------- backward elimination ----------*/
+
+ for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
+ for (j=0; j<i; j++) { /* eliminate in rows above i */
+ t = A(j, i); /* we're gonna zero this guy */
+ for (k=0; k<4; k++) /* subtract scaled row i from row j */
+ B(j, k) -= B(i, k)*t;
+ }
+ }
+
+ return det;
+}
+
+#endif // 0
+
+
+