diff options
Diffstat (limited to 'thirdparty/thekla_atlas/nvmath/Matrix.cpp')
-rw-r--r-- | thirdparty/thekla_atlas/nvmath/Matrix.cpp | 441 |
1 files changed, 0 insertions, 441 deletions
diff --git a/thirdparty/thekla_atlas/nvmath/Matrix.cpp b/thirdparty/thekla_atlas/nvmath/Matrix.cpp deleted file mode 100644 index 29bd19f5f8..0000000000 --- a/thirdparty/thekla_atlas/nvmath/Matrix.cpp +++ /dev/null @@ -1,441 +0,0 @@ -// This code is in the public domain -- castanyo@yahoo.es - -#include "Matrix.inl" -#include "Vector.inl" - -#include "nvcore/Array.inl" - -#include <float.h> - -#if !NV_CC_MSVC && !NV_OS_ORBIS -#include <alloca.h> -#endif - -using namespace nv; - - -// Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise -// permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above; -// indx[1..n] is an output vector that records the row permutation effected by the partial -// pivoting; d is output as -1 depending on whether the number of row interchanges was even -// or odd, respectively. This routine is used in combination with lubksb to solve linear equations -// or invert a matrix. -static bool ludcmp(float **a, int n, int *indx, float *d) -{ - const float TINY = 1.0e-20f; - - float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row. - - *d = 1.0; // No row interchanges yet. - for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information. - - float big = 0.0; - for (int j = 0; j < n; j++) { - big = max(big, fabsf(a[i][j])); - } - if (big == 0) { - return false; // Singular matrix - } - - // No nonzero largest element. - vv[i] = 1.0f / big; // Save the scaling. - } - - for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method. - for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j. - float sum = a[i][j]; - for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j]; - a[i][j] = sum; - } - - int imax = -1; - float big = 0.0; // Initialize for the search for largest pivot element. - for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N - float sum = a[i][j]; // of equation (2.3.13). - for (int k = 0; k < j; k++) { - sum -= a[i][k]*a[k][j]; - } - a[i][j]=sum; - - float dum = vv[i]*fabs(sum); - if (dum >= big) { - // Is the figure of merit for the pivot better than the best so far? - big = dum; - imax = i; - } - } - nvDebugCheck(imax != -1); - - if (j != imax) { // Do we need to interchange rows? - for (int k = 0; k < n; k++) { // Yes, do so... - swap(a[imax][k], a[j][k]); - } - *d = -(*d); // ...and change the parity of d. - vv[imax]=vv[j]; // Also interchange the scale factor. - } - - indx[j]=imax; - if (a[j][j] == 0.0) a[j][j] = TINY; - - // If the pivot element is zero the matrix is singular (at least to the precision of the - // algorithm). For some applications on singular matrices, it is desirable to substitute - // TINY for zero. - if (j != n-1) { // Now, finally, divide by the pivot element. - float dum = 1.0f / a[j][j]; - for (int i = j+1; i < n; i++) a[i][j] *= dum; - } - } // Go back for the next column in the reduction. - - return true; -} - - -// Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix -// A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input -// as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector -// B, and returns with the solution vector X. a, n, and indx are not modified by this routine -// and can be left in place for successive calls with different right-hand sides b. This routine takes -// into account the possibility that b will begin with many zero elements, so it is efficient for use -// in matrix inversion. -static void lubksb(float **a, int n, int *indx, float b[]) -{ - int ii = 0; - for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become - int ip = indx[i]; // the index of the first nonvanishing element of b. We now - float sum = b[ip]; // do the forward substitution, equation (2.3.6). The - b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go. - if (ii != 0) { - for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j]; - } - else if (sum != 0.0f) { - ii = i+1; // A nonzero element was encountered, so from now on we - } - b[i] = sum; // will have to do the sums in the loop above. - } - for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7). - float sum = b[i]; - for (int j = i+1; j < n; j++) { - sum -= a[i][j]*b[j]; - } - b[i] = sum/a[i][i]; // Store a component of the solution vector X. - } // All done! -} - - -bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x) -{ - nvDebugCheck(x != NULL); - - float m[4][4]; - float *a[4] = {m[0], m[1], m[2], m[3]}; - int idx[4]; - float d; - - for (int y = 0; y < 4; y++) { - for (int x = 0; x < 4; x++) { - a[x][y] = A(x, y); - } - } - - // Create LU decomposition. - if (!ludcmp(a, 4, idx, &d)) { - // Singular matrix. - return false; - } - - // Init solution. - *x = b; - - // Do back substitution. - lubksb(a, 4, idx, x->component); - - return true; -} - -// @@ Not tested. -Matrix nv::inverseLU(const Matrix & A) -{ - Vector4 Ai[4]; - - solveLU(A, Vector4(1, 0, 0, 0), &Ai[0]); - solveLU(A, Vector4(0, 1, 0, 0), &Ai[1]); - solveLU(A, Vector4(0, 0, 1, 0), &Ai[2]); - solveLU(A, Vector4(0, 0, 0, 1), &Ai[3]); - - return Matrix(Ai[0], Ai[1], Ai[2], Ai[3]); -} - - - -bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x) -{ - nvDebugCheck(x != NULL); - - float m[3][3]; - float *a[3] = {m[0], m[1], m[2]}; - int idx[3]; - float d; - - for (int y = 0; y < 3; y++) { - for (int x = 0; x < 3; x++) { - a[x][y] = A(x, y); - } - } - - // Create LU decomposition. - if (!ludcmp(a, 3, idx, &d)) { - // Singular matrix. - return false; - } - - // Init solution. - *x = b; - - // Do back substitution. - lubksb(a, 3, idx, x->component); - - return true; -} - - -bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x) -{ - nvDebugCheck(x != NULL); - - *x = transform(inverseCramer(A), b); - - return true; // @@ Return false if determinant(A) == 0 ! -} - -bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x) -{ - nvDebugCheck(x != NULL); - - const float det = A.determinant(); - if (equal(det, 0.0f)) { // @@ Use input epsilon. - return false; - } - - Matrix3 Ai = inverseCramer(A); - - *x = transform(Ai, b); - - return true; -} - - - -// Inverse using gaussian elimination. From Jon's code. -Matrix nv::inverse(const Matrix & m) { - - Matrix A = m; - Matrix B(identity); - - int i, j, k; - float max, t, det, pivot; - - det = 1.0; - for (i=0; i<4; i++) { /* eliminate in column i, below diag */ - max = -1.; - for (k=i; k<4; k++) /* find pivot for column i */ - if (fabs(A(k, i)) > max) { - max = fabs(A(k, i)); - j = k; - } - if (max<=0.) return B; /* if no nonzero pivot, PUNT */ - if (j!=i) { /* swap rows i and j */ - for (k=i; k<4; k++) - swap(A(i, k), A(j, k)); - for (k=0; k<4; k++) - swap(B(i, k), B(j, k)); - det = -det; - } - pivot = A(i, i); - det *= pivot; - for (k=i+1; k<4; k++) /* only do elems to right of pivot */ - A(i, k) /= pivot; - for (k=0; k<4; k++) - B(i, k) /= pivot; - /* we know that A(i, i) will be set to 1, so don't bother to do it */ - - for (j=i+1; j<4; j++) { /* eliminate in rows below i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ - A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ - for (k=0; k<4; k++) - B(j, k) -= B(i, k)*t; - } - } - - /*---------- backward elimination ----------*/ - - for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ - for (j=0; j<i; j++) { /* eliminate in rows above i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=0; k<4; k++) /* subtract scaled row i from row j */ - B(j, k) -= B(i, k)*t; - } - } - - return B; -} - - -Matrix3 nv::inverse(const Matrix3 & m) { - - Matrix3 A = m; - Matrix3 B(identity); - - int i, j, k; - float max, t, det, pivot; - - det = 1.0; - for (i=0; i<3; i++) { /* eliminate in column i, below diag */ - max = -1.; - for (k=i; k<3; k++) /* find pivot for column i */ - if (fabs(A(k, i)) > max) { - max = fabs(A(k, i)); - j = k; - } - if (max<=0.) return B; /* if no nonzero pivot, PUNT */ - if (j!=i) { /* swap rows i and j */ - for (k=i; k<3; k++) - swap(A(i, k), A(j, k)); - for (k=0; k<3; k++) - swap(B(i, k), B(j, k)); - det = -det; - } - pivot = A(i, i); - det *= pivot; - for (k=i+1; k<3; k++) /* only do elems to right of pivot */ - A(i, k) /= pivot; - for (k=0; k<3; k++) - B(i, k) /= pivot; - /* we know that A(i, i) will be set to 1, so don't bother to do it */ - - for (j=i+1; j<3; j++) { /* eliminate in rows below i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=i+1; k<3; k++) /* subtract scaled row i from row j */ - A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ - for (k=0; k<3; k++) - B(j, k) -= B(i, k)*t; - } - } - - /*---------- backward elimination ----------*/ - - for (i=3-1; i>0; i--) { /* eliminate in column i, above diag */ - for (j=0; j<i; j++) { /* eliminate in rows above i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=0; k<3; k++) /* subtract scaled row i from row j */ - B(j, k) -= B(i, k)*t; - } - } - - return B; -} - - - - - -#if 0 - -// Copyright (C) 1999-2004 Michael Garland. -// -// Permission is hereby granted, free of charge, to any person obtaining a -// copy of this software and associated documentation files (the -// "Software"), to deal in the Software without restriction, including -// without limitation the rights to use, copy, modify, merge, publish, -// distribute, and/or sell copies of the Software, and to permit persons -// to whom the Software is furnished to do so, provided that the above -// copyright notice(s) and this permission notice appear in all copies of -// the Software and that both the above copyright notice(s) and this -// permission notice appear in supporting documentation. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT -// OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR -// HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL -// INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING -// FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, -// NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION -// WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. -// -// Except as contained in this notice, the name of a copyright holder -// shall not be used in advertising or otherwise to promote the sale, use -// or other dealings in this Software without prior written authorization -// of the copyright holder. - - -// Matrix inversion code for 4x4 matrices using Gaussian elimination -// with partial pivoting. This is a specialized version of a -// procedure originally due to Paul Heckbert <ph@cs.cmu.edu>. -// -// Returns determinant of A, and B=inverse(A) -// If matrix A is singular, returns 0 and leaves trash in B. -// -#define SWAP(a, b, t) {t = a; a = b; b = t;} -double invert(Mat4& B, const Mat4& m) -{ - Mat4 A = m; - int i, j, k; - double max, t, det, pivot; - - /*---------- forward elimination ----------*/ - - for (i=0; i<4; i++) /* put identity matrix in B */ - for (j=0; j<4; j++) - B(i, j) = (double)(i==j); - - det = 1.0; - for (i=0; i<4; i++) { /* eliminate in column i, below diag */ - max = -1.; - for (k=i; k<4; k++) /* find pivot for column i */ - if (fabs(A(k, i)) > max) { - max = fabs(A(k, i)); - j = k; - } - if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */ - if (j!=i) { /* swap rows i and j */ - for (k=i; k<4; k++) - SWAP(A(i, k), A(j, k), t); - for (k=0; k<4; k++) - SWAP(B(i, k), B(j, k), t); - det = -det; - } - pivot = A(i, i); - det *= pivot; - for (k=i+1; k<4; k++) /* only do elems to right of pivot */ - A(i, k) /= pivot; - for (k=0; k<4; k++) - B(i, k) /= pivot; - /* we know that A(i, i) will be set to 1, so don't bother to do it */ - - for (j=i+1; j<4; j++) { /* eliminate in rows below i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=i+1; k<4; k++) /* subtract scaled row i from row j */ - A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */ - for (k=0; k<4; k++) - B(j, k) -= B(i, k)*t; - } - } - - /*---------- backward elimination ----------*/ - - for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */ - for (j=0; j<i; j++) { /* eliminate in rows above i */ - t = A(j, i); /* we're gonna zero this guy */ - for (k=0; k<4; k++) /* subtract scaled row i from row j */ - B(j, k) -= B(i, k)*t; - } - } - - return det; -} - -#endif // 0 - - - |