summaryrefslogtreecommitdiff
path: root/thirdparty/squish/maths.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/squish/maths.cpp')
-rw-r--r--thirdparty/squish/maths.cpp426
1 files changed, 229 insertions, 197 deletions
diff --git a/thirdparty/squish/maths.cpp b/thirdparty/squish/maths.cpp
index 59818a4d2b..4fa0bcfb35 100644
--- a/thirdparty/squish/maths.cpp
+++ b/thirdparty/squish/maths.cpp
@@ -1,227 +1,259 @@
/* -----------------------------------------------------------------------------
- Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
-
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
-
- The above copyright notice and this permission notice shall be included
- in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
+ Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ "Software"), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be included
+ in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
-------------------------------------------------------------------------- */
-
+
/*! @file
- The symmetric eigensystem solver algorithm is from
- http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
+ The symmetric eigensystem solver algorithm is from
+ http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
*/
#include "maths.h"
+#include "simd.h"
#include <cfloat>
namespace squish {
Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights )
{
- // compute the centroid
- float total = 0.0f;
- Vec3 centroid( 0.0f );
- for( int i = 0; i < n; ++i )
- {
- total += weights[i];
- centroid += weights[i]*points[i];
- }
- centroid /= total;
-
- // accumulate the covariance matrix
- Sym3x3 covariance( 0.0f );
- for( int i = 0; i < n; ++i )
- {
- Vec3 a = points[i] - centroid;
- Vec3 b = weights[i]*a;
-
- covariance[0] += a.X()*b.X();
- covariance[1] += a.X()*b.Y();
- covariance[2] += a.X()*b.Z();
- covariance[3] += a.Y()*b.Y();
- covariance[4] += a.Y()*b.Z();
- covariance[5] += a.Z()*b.Z();
- }
-
- // return it
- return covariance;
+ // compute the centroid
+ float total = 0.0f;
+ Vec3 centroid( 0.0f );
+ for( int i = 0; i < n; ++i )
+ {
+ total += weights[i];
+ centroid += weights[i]*points[i];
+ }
+ if( total > FLT_EPSILON )
+ centroid /= total;
+
+ // accumulate the covariance matrix
+ Sym3x3 covariance( 0.0f );
+ for( int i = 0; i < n; ++i )
+ {
+ Vec3 a = points[i] - centroid;
+ Vec3 b = weights[i]*a;
+
+ covariance[0] += a.X()*b.X();
+ covariance[1] += a.X()*b.Y();
+ covariance[2] += a.X()*b.Z();
+ covariance[3] += a.Y()*b.Y();
+ covariance[4] += a.Y()*b.Z();
+ covariance[5] += a.Z()*b.Z();
+ }
+
+ // return it
+ return covariance;
}
+#if 0
+
static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
{
- // compute M
- Sym3x3 m;
- m[0] = matrix[0] - evalue;
- m[1] = matrix[1];
- m[2] = matrix[2];
- m[3] = matrix[3] - evalue;
- m[4] = matrix[4];
- m[5] = matrix[5] - evalue;
-
- // compute U
- Sym3x3 u;
- u[0] = m[3]*m[5] - m[4]*m[4];
- u[1] = m[2]*m[4] - m[1]*m[5];
- u[2] = m[1]*m[4] - m[2]*m[3];
- u[3] = m[0]*m[5] - m[2]*m[2];
- u[4] = m[1]*m[2] - m[4]*m[0];
- u[5] = m[0]*m[3] - m[1]*m[1];
-
- // find the largest component
- float mc = std::fabs( u[0] );
- int mi = 0;
- for( int i = 1; i < 6; ++i )
- {
- float c = std::fabs( u[i] );
- if( c > mc )
- {
- mc = c;
- mi = i;
- }
- }
-
- // pick the column with this component
- switch( mi )
- {
- case 0:
- return Vec3( u[0], u[1], u[2] );
-
- case 1:
- case 3:
- return Vec3( u[1], u[3], u[4] );
-
- default:
- return Vec3( u[2], u[4], u[5] );
- }
+ // compute M
+ Sym3x3 m;
+ m[0] = matrix[0] - evalue;
+ m[1] = matrix[1];
+ m[2] = matrix[2];
+ m[3] = matrix[3] - evalue;
+ m[4] = matrix[4];
+ m[5] = matrix[5] - evalue;
+
+ // compute U
+ Sym3x3 u;
+ u[0] = m[3]*m[5] - m[4]*m[4];
+ u[1] = m[2]*m[4] - m[1]*m[5];
+ u[2] = m[1]*m[4] - m[2]*m[3];
+ u[3] = m[0]*m[5] - m[2]*m[2];
+ u[4] = m[1]*m[2] - m[4]*m[0];
+ u[5] = m[0]*m[3] - m[1]*m[1];
+
+ // find the largest component
+ float mc = std::fabs( u[0] );
+ int mi = 0;
+ for( int i = 1; i < 6; ++i )
+ {
+ float c = std::fabs( u[i] );
+ if( c > mc )
+ {
+ mc = c;
+ mi = i;
+ }
+ }
+
+ // pick the column with this component
+ switch( mi )
+ {
+ case 0:
+ return Vec3( u[0], u[1], u[2] );
+
+ case 1:
+ case 3:
+ return Vec3( u[1], u[3], u[4] );
+
+ default:
+ return Vec3( u[2], u[4], u[5] );
+ }
}
static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
{
- // compute M
- Sym3x3 m;
- m[0] = matrix[0] - evalue;
- m[1] = matrix[1];
- m[2] = matrix[2];
- m[3] = matrix[3] - evalue;
- m[4] = matrix[4];
- m[5] = matrix[5] - evalue;
-
- // find the largest component
- float mc = std::fabs( m[0] );
- int mi = 0;
- for( int i = 1; i < 6; ++i )
- {
- float c = std::fabs( m[i] );
- if( c > mc )
- {
- mc = c;
- mi = i;
- }
- }
-
- // pick the first eigenvector based on this index
- switch( mi )
- {
- case 0:
- case 1:
- return Vec3( -m[1], m[0], 0.0f );
-
- case 2:
- return Vec3( m[2], 0.0f, -m[0] );
-
- case 3:
- case 4:
- return Vec3( 0.0f, -m[4], m[3] );
-
- default:
- return Vec3( 0.0f, -m[5], m[4] );
- }
+ // compute M
+ Sym3x3 m;
+ m[0] = matrix[0] - evalue;
+ m[1] = matrix[1];
+ m[2] = matrix[2];
+ m[3] = matrix[3] - evalue;
+ m[4] = matrix[4];
+ m[5] = matrix[5] - evalue;
+
+ // find the largest component
+ float mc = std::fabs( m[0] );
+ int mi = 0;
+ for( int i = 1; i < 6; ++i )
+ {
+ float c = std::fabs( m[i] );
+ if( c > mc )
+ {
+ mc = c;
+ mi = i;
+ }
+ }
+
+ // pick the first eigenvector based on this index
+ switch( mi )
+ {
+ case 0:
+ case 1:
+ return Vec3( -m[1], m[0], 0.0f );
+
+ case 2:
+ return Vec3( m[2], 0.0f, -m[0] );
+
+ case 3:
+ case 4:
+ return Vec3( 0.0f, -m[4], m[3] );
+
+ default:
+ return Vec3( 0.0f, -m[5], m[4] );
+ }
}
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
{
- // compute the cubic coefficients
- float c0 = matrix[0]*matrix[3]*matrix[5]
- + 2.0f*matrix[1]*matrix[2]*matrix[4]
- - matrix[0]*matrix[4]*matrix[4]
- - matrix[3]*matrix[2]*matrix[2]
- - matrix[5]*matrix[1]*matrix[1];
- float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
- - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
- float c2 = matrix[0] + matrix[3] + matrix[5];
-
- // compute the quadratic coefficients
- float a = c1 - ( 1.0f/3.0f )*c2*c2;
- float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
-
- // compute the root count check
- float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
-
- // test the multiplicity
- if( FLT_EPSILON < Q )
- {
- // only one root, which implies we have a multiple of the identity
+ // compute the cubic coefficients
+ float c0 = matrix[0]*matrix[3]*matrix[5]
+ + 2.0f*matrix[1]*matrix[2]*matrix[4]
+ - matrix[0]*matrix[4]*matrix[4]
+ - matrix[3]*matrix[2]*matrix[2]
+ - matrix[5]*matrix[1]*matrix[1];
+ float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
+ - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
+ float c2 = matrix[0] + matrix[3] + matrix[5];
+
+ // compute the quadratic coefficients
+ float a = c1 - ( 1.0f/3.0f )*c2*c2;
+ float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
+
+ // compute the root count check
+ float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
+
+ // test the multiplicity
+ if( FLT_EPSILON < Q )
+ {
+ // only one root, which implies we have a multiple of the identity
return Vec3( 1.0f );
- }
- else if( Q < -FLT_EPSILON )
- {
- // three distinct roots
- float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
- float rho = std::sqrt( 0.25f*b*b - Q );
-
- float rt = std::pow( rho, 1.0f/3.0f );
- float ct = std::cos( theta/3.0f );
- float st = std::sin( theta/3.0f );
-
- float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
- float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
- float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
-
- // pick the larger
- if( std::fabs( l2 ) > std::fabs( l1 ) )
- l1 = l2;
- if( std::fabs( l3 ) > std::fabs( l1 ) )
- l1 = l3;
-
- // get the eigenvector
- return GetMultiplicity1Evector( matrix, l1 );
- }
- else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
- {
- // two roots
- float rt;
- if( b < 0.0f )
- rt = -std::pow( -0.5f*b, 1.0f/3.0f );
- else
- rt = std::pow( 0.5f*b, 1.0f/3.0f );
-
- float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
- float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
-
- // get the eigenvector
- if( std::fabs( l1 ) > std::fabs( l2 ) )
- return GetMultiplicity2Evector( matrix, l1 );
- else
- return GetMultiplicity1Evector( matrix, l2 );
- }
+ }
+ else if( Q < -FLT_EPSILON )
+ {
+ // three distinct roots
+ float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
+ float rho = std::sqrt( 0.25f*b*b - Q );
+
+ float rt = std::pow( rho, 1.0f/3.0f );
+ float ct = std::cos( theta/3.0f );
+ float st = std::sin( theta/3.0f );
+
+ float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
+ float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
+ float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
+
+ // pick the larger
+ if( std::fabs( l2 ) > std::fabs( l1 ) )
+ l1 = l2;
+ if( std::fabs( l3 ) > std::fabs( l1 ) )
+ l1 = l3;
+
+ // get the eigenvector
+ return GetMultiplicity1Evector( matrix, l1 );
+ }
+ else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
+ {
+ // two roots
+ float rt;
+ if( b < 0.0f )
+ rt = -std::pow( -0.5f*b, 1.0f/3.0f );
+ else
+ rt = std::pow( 0.5f*b, 1.0f/3.0f );
+
+ float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
+ float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
+
+ // get the eigenvector
+ if( std::fabs( l1 ) > std::fabs( l2 ) )
+ return GetMultiplicity2Evector( matrix, l1 );
+ else
+ return GetMultiplicity1Evector( matrix, l2 );
+ }
}
+#else
+
+#define POWER_ITERATION_COUNT 8
+
+Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
+{
+ Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f );
+ Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f );
+ Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f );
+ Vec4 v = VEC4_CONST( 1.0f );
+ for( int i = 0; i < POWER_ITERATION_COUNT; ++i )
+ {
+ // matrix multiply
+ Vec4 w = row0*v.SplatX();
+ w = MultiplyAdd(row1, v.SplatY(), w);
+ w = MultiplyAdd(row2, v.SplatZ(), w);
+
+ // get max component from xyz in all channels
+ Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ()));
+
+ // divide through and advance
+ v = w*Reciprocal(a);
+ }
+ return v.GetVec3();
+}
+
+#endif
+
} // namespace squish