diff options
Diffstat (limited to 'thirdparty/squish/maths.cpp')
-rw-r--r-- | thirdparty/squish/maths.cpp | 426 |
1 files changed, 229 insertions, 197 deletions
diff --git a/thirdparty/squish/maths.cpp b/thirdparty/squish/maths.cpp index 59818a4d2b..4fa0bcfb35 100644 --- a/thirdparty/squish/maths.cpp +++ b/thirdparty/squish/maths.cpp @@ -1,227 +1,259 @@ /* ----------------------------------------------------------------------------- - Copyright (c) 2006 Simon Brown si@sjbrown.co.uk - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - "Software"), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS - OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. - IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY - CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, - TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE - SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - + Copyright (c) 2006 Simon Brown si@sjbrown.co.uk + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + -------------------------------------------------------------------------- */ - + /*! @file - The symmetric eigensystem solver algorithm is from - http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf + The symmetric eigensystem solver algorithm is from + http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf */ #include "maths.h" +#include "simd.h" #include <cfloat> namespace squish { Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights ) { - // compute the centroid - float total = 0.0f; - Vec3 centroid( 0.0f ); - for( int i = 0; i < n; ++i ) - { - total += weights[i]; - centroid += weights[i]*points[i]; - } - centroid /= total; - - // accumulate the covariance matrix - Sym3x3 covariance( 0.0f ); - for( int i = 0; i < n; ++i ) - { - Vec3 a = points[i] - centroid; - Vec3 b = weights[i]*a; - - covariance[0] += a.X()*b.X(); - covariance[1] += a.X()*b.Y(); - covariance[2] += a.X()*b.Z(); - covariance[3] += a.Y()*b.Y(); - covariance[4] += a.Y()*b.Z(); - covariance[5] += a.Z()*b.Z(); - } - - // return it - return covariance; + // compute the centroid + float total = 0.0f; + Vec3 centroid( 0.0f ); + for( int i = 0; i < n; ++i ) + { + total += weights[i]; + centroid += weights[i]*points[i]; + } + if( total > FLT_EPSILON ) + centroid /= total; + + // accumulate the covariance matrix + Sym3x3 covariance( 0.0f ); + for( int i = 0; i < n; ++i ) + { + Vec3 a = points[i] - centroid; + Vec3 b = weights[i]*a; + + covariance[0] += a.X()*b.X(); + covariance[1] += a.X()*b.Y(); + covariance[2] += a.X()*b.Z(); + covariance[3] += a.Y()*b.Y(); + covariance[4] += a.Y()*b.Z(); + covariance[5] += a.Z()*b.Z(); + } + + // return it + return covariance; } +#if 0 + static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue ) { - // compute M - Sym3x3 m; - m[0] = matrix[0] - evalue; - m[1] = matrix[1]; - m[2] = matrix[2]; - m[3] = matrix[3] - evalue; - m[4] = matrix[4]; - m[5] = matrix[5] - evalue; - - // compute U - Sym3x3 u; - u[0] = m[3]*m[5] - m[4]*m[4]; - u[1] = m[2]*m[4] - m[1]*m[5]; - u[2] = m[1]*m[4] - m[2]*m[3]; - u[3] = m[0]*m[5] - m[2]*m[2]; - u[4] = m[1]*m[2] - m[4]*m[0]; - u[5] = m[0]*m[3] - m[1]*m[1]; - - // find the largest component - float mc = std::fabs( u[0] ); - int mi = 0; - for( int i = 1; i < 6; ++i ) - { - float c = std::fabs( u[i] ); - if( c > mc ) - { - mc = c; - mi = i; - } - } - - // pick the column with this component - switch( mi ) - { - case 0: - return Vec3( u[0], u[1], u[2] ); - - case 1: - case 3: - return Vec3( u[1], u[3], u[4] ); - - default: - return Vec3( u[2], u[4], u[5] ); - } + // compute M + Sym3x3 m; + m[0] = matrix[0] - evalue; + m[1] = matrix[1]; + m[2] = matrix[2]; + m[3] = matrix[3] - evalue; + m[4] = matrix[4]; + m[5] = matrix[5] - evalue; + + // compute U + Sym3x3 u; + u[0] = m[3]*m[5] - m[4]*m[4]; + u[1] = m[2]*m[4] - m[1]*m[5]; + u[2] = m[1]*m[4] - m[2]*m[3]; + u[3] = m[0]*m[5] - m[2]*m[2]; + u[4] = m[1]*m[2] - m[4]*m[0]; + u[5] = m[0]*m[3] - m[1]*m[1]; + + // find the largest component + float mc = std::fabs( u[0] ); + int mi = 0; + for( int i = 1; i < 6; ++i ) + { + float c = std::fabs( u[i] ); + if( c > mc ) + { + mc = c; + mi = i; + } + } + + // pick the column with this component + switch( mi ) + { + case 0: + return Vec3( u[0], u[1], u[2] ); + + case 1: + case 3: + return Vec3( u[1], u[3], u[4] ); + + default: + return Vec3( u[2], u[4], u[5] ); + } } static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue ) { - // compute M - Sym3x3 m; - m[0] = matrix[0] - evalue; - m[1] = matrix[1]; - m[2] = matrix[2]; - m[3] = matrix[3] - evalue; - m[4] = matrix[4]; - m[5] = matrix[5] - evalue; - - // find the largest component - float mc = std::fabs( m[0] ); - int mi = 0; - for( int i = 1; i < 6; ++i ) - { - float c = std::fabs( m[i] ); - if( c > mc ) - { - mc = c; - mi = i; - } - } - - // pick the first eigenvector based on this index - switch( mi ) - { - case 0: - case 1: - return Vec3( -m[1], m[0], 0.0f ); - - case 2: - return Vec3( m[2], 0.0f, -m[0] ); - - case 3: - case 4: - return Vec3( 0.0f, -m[4], m[3] ); - - default: - return Vec3( 0.0f, -m[5], m[4] ); - } + // compute M + Sym3x3 m; + m[0] = matrix[0] - evalue; + m[1] = matrix[1]; + m[2] = matrix[2]; + m[3] = matrix[3] - evalue; + m[4] = matrix[4]; + m[5] = matrix[5] - evalue; + + // find the largest component + float mc = std::fabs( m[0] ); + int mi = 0; + for( int i = 1; i < 6; ++i ) + { + float c = std::fabs( m[i] ); + if( c > mc ) + { + mc = c; + mi = i; + } + } + + // pick the first eigenvector based on this index + switch( mi ) + { + case 0: + case 1: + return Vec3( -m[1], m[0], 0.0f ); + + case 2: + return Vec3( m[2], 0.0f, -m[0] ); + + case 3: + case 4: + return Vec3( 0.0f, -m[4], m[3] ); + + default: + return Vec3( 0.0f, -m[5], m[4] ); + } } Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) { - // compute the cubic coefficients - float c0 = matrix[0]*matrix[3]*matrix[5] - + 2.0f*matrix[1]*matrix[2]*matrix[4] - - matrix[0]*matrix[4]*matrix[4] - - matrix[3]*matrix[2]*matrix[2] - - matrix[5]*matrix[1]*matrix[1]; - float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5] - - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4]; - float c2 = matrix[0] + matrix[3] + matrix[5]; - - // compute the quadratic coefficients - float a = c1 - ( 1.0f/3.0f )*c2*c2; - float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0; - - // compute the root count check - float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a; - - // test the multiplicity - if( FLT_EPSILON < Q ) - { - // only one root, which implies we have a multiple of the identity + // compute the cubic coefficients + float c0 = matrix[0]*matrix[3]*matrix[5] + + 2.0f*matrix[1]*matrix[2]*matrix[4] + - matrix[0]*matrix[4]*matrix[4] + - matrix[3]*matrix[2]*matrix[2] + - matrix[5]*matrix[1]*matrix[1]; + float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5] + - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4]; + float c2 = matrix[0] + matrix[3] + matrix[5]; + + // compute the quadratic coefficients + float a = c1 - ( 1.0f/3.0f )*c2*c2; + float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0; + + // compute the root count check + float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a; + + // test the multiplicity + if( FLT_EPSILON < Q ) + { + // only one root, which implies we have a multiple of the identity return Vec3( 1.0f ); - } - else if( Q < -FLT_EPSILON ) - { - // three distinct roots - float theta = std::atan2( std::sqrt( -Q ), -0.5f*b ); - float rho = std::sqrt( 0.25f*b*b - Q ); - - float rt = std::pow( rho, 1.0f/3.0f ); - float ct = std::cos( theta/3.0f ); - float st = std::sin( theta/3.0f ); - - float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct; - float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st ); - float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st ); - - // pick the larger - if( std::fabs( l2 ) > std::fabs( l1 ) ) - l1 = l2; - if( std::fabs( l3 ) > std::fabs( l1 ) ) - l1 = l3; - - // get the eigenvector - return GetMultiplicity1Evector( matrix, l1 ); - } - else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON ) - { - // two roots - float rt; - if( b < 0.0f ) - rt = -std::pow( -0.5f*b, 1.0f/3.0f ); - else - rt = std::pow( 0.5f*b, 1.0f/3.0f ); - - float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated - float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt; - - // get the eigenvector - if( std::fabs( l1 ) > std::fabs( l2 ) ) - return GetMultiplicity2Evector( matrix, l1 ); - else - return GetMultiplicity1Evector( matrix, l2 ); - } + } + else if( Q < -FLT_EPSILON ) + { + // three distinct roots + float theta = std::atan2( std::sqrt( -Q ), -0.5f*b ); + float rho = std::sqrt( 0.25f*b*b - Q ); + + float rt = std::pow( rho, 1.0f/3.0f ); + float ct = std::cos( theta/3.0f ); + float st = std::sin( theta/3.0f ); + + float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct; + float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st ); + float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st ); + + // pick the larger + if( std::fabs( l2 ) > std::fabs( l1 ) ) + l1 = l2; + if( std::fabs( l3 ) > std::fabs( l1 ) ) + l1 = l3; + + // get the eigenvector + return GetMultiplicity1Evector( matrix, l1 ); + } + else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON ) + { + // two roots + float rt; + if( b < 0.0f ) + rt = -std::pow( -0.5f*b, 1.0f/3.0f ); + else + rt = std::pow( 0.5f*b, 1.0f/3.0f ); + + float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated + float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt; + + // get the eigenvector + if( std::fabs( l1 ) > std::fabs( l2 ) ) + return GetMultiplicity2Evector( matrix, l1 ); + else + return GetMultiplicity1Evector( matrix, l2 ); + } } +#else + +#define POWER_ITERATION_COUNT 8 + +Vec3 ComputePrincipleComponent( Sym3x3 const& matrix ) +{ + Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f ); + Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f ); + Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f ); + Vec4 v = VEC4_CONST( 1.0f ); + for( int i = 0; i < POWER_ITERATION_COUNT; ++i ) + { + // matrix multiply + Vec4 w = row0*v.SplatX(); + w = MultiplyAdd(row1, v.SplatY(), w); + w = MultiplyAdd(row2, v.SplatZ(), w); + + // get max component from xyz in all channels + Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ())); + + // divide through and advance + v = w*Reciprocal(a); + } + return v.GetVec3(); +} + +#endif + } // namespace squish |