summaryrefslogtreecommitdiff
path: root/thirdparty/rvo2/src
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/rvo2/src')
-rw-r--r--thirdparty/rvo2/src/API.h45
-rw-r--r--thirdparty/rvo2/src/Agent.cpp425
-rw-r--r--thirdparty/rvo2/src/Agent.h121
-rw-r--r--thirdparty/rvo2/src/Definitions.h55
-rw-r--r--thirdparty/rvo2/src/KdTree.cpp152
-rw-r--r--thirdparty/rvo2/src/KdTree.h124
-rw-r--r--thirdparty/rvo2/src/Vector3.h335
7 files changed, 1257 insertions, 0 deletions
diff --git a/thirdparty/rvo2/src/API.h b/thirdparty/rvo2/src/API.h
new file mode 100644
index 0000000000..c64efb452c
--- /dev/null
+++ b/thirdparty/rvo2/src/API.h
@@ -0,0 +1,45 @@
+/*
+ * API.h
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+/**
+ * \file API.h
+ * \brief Contains definitions related to Microsoft Windows.
+ */
+
+#ifndef RVO_API_H_
+#define RVO_API_H_
+
+// -- GODOT start --
+#define RVO_API
+// -- GODOT end --
+
+#endif /* RVO_API_H_ */
diff --git a/thirdparty/rvo2/src/Agent.cpp b/thirdparty/rvo2/src/Agent.cpp
new file mode 100644
index 0000000000..851d780758
--- /dev/null
+++ b/thirdparty/rvo2/src/Agent.cpp
@@ -0,0 +1,425 @@
+/*
+ * Agent.cpp
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+#include "Agent.h"
+
+#include <algorithm>
+#include <cmath>
+
+#include "Definitions.h"
+#include "KdTree.h"
+
+namespace RVO {
+/**
+ * \brief A sufficiently small positive number.
+ */
+const float RVO_EPSILON = 0.00001f;
+
+/**
+ * \brief Defines a directed line.
+ */
+class Line {
+public:
+ /**
+ * \brief The direction of the directed line.
+ */
+ Vector3 direction;
+
+ /**
+ * \brief A point on the directed line.
+ */
+ Vector3 point;
+};
+
+/**
+ * \brief Solves a one-dimensional linear program on a specified line subject to linear constraints defined by planes and a spherical constraint.
+ * \param planes Planes defining the linear constraints.
+ * \param planeNo The plane on which the line lies.
+ * \param line The line on which the 1-d linear program is solved
+ * \param radius The radius of the spherical constraint.
+ * \param optVelocity The optimization velocity.
+ * \param directionOpt True if the direction should be optimized.
+ * \param result A reference to the result of the linear program.
+ * \return True if successful.
+ */
+bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
+
+/**
+ * \brief Solves a two-dimensional linear program on a specified plane subject to linear constraints defined by planes and a spherical constraint.
+ * \param planes Planes defining the linear constraints.
+ * \param planeNo The plane on which the 2-d linear program is solved
+ * \param radius The radius of the spherical constraint.
+ * \param optVelocity The optimization velocity.
+ * \param directionOpt True if the direction should be optimized.
+ * \param result A reference to the result of the linear program.
+ * \return True if successful.
+ */
+bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
+
+/**
+ * \brief Solves a three-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
+ * \param planes Planes defining the linear constraints.
+ * \param radius The radius of the spherical constraint.
+ * \param optVelocity The optimization velocity.
+ * \param directionOpt True if the direction should be optimized.
+ * \param result A reference to the result of the linear program.
+ * \return The number of the plane it fails on, and the number of planes if successful.
+ */
+size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
+
+/**
+ * \brief Solves a four-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
+ * \param planes Planes defining the linear constraints.
+ * \param beginPlane The plane on which the 3-d linear program failed.
+ * \param radius The radius of the spherical constraint.
+ * \param result A reference to the result of the linear program.
+ */
+void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
+
+Agent::Agent() :
+ id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) {}
+
+void Agent::computeNeighbors(KdTree *kdTree_) {
+ agentNeighbors_.clear();
+ if (maxNeighbors_ > 0) {
+ kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
+ }
+}
+
+#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
+void Agent::computeNewVelocity(float timeStep) {
+ orcaPlanes_.clear();
+ const float invTimeHorizon = 1.0f / timeHorizon_;
+
+ /* Create agent ORCA planes. */
+ for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
+ const Agent *const other = agentNeighbors_[i].second;
+
+ Vector3 relativePosition = other->position_ - position_;
+ Vector3 relativeVelocity = velocity_ - other->velocity_;
+ const float combinedRadius = radius_ + other->radius_;
+
+ // This is a Godot feature that allow the agents to avoid the collision
+ // by moving only on the horizontal plane relative to the player velocity.
+ if (ignore_y_) {
+ // Skip if these are in two different heights
+ if (ABS(relativePosition[1]) > combinedRadius * 2) {
+ continue;
+ }
+ relativePosition[1] = 0;
+ relativeVelocity[1] = 0;
+ }
+
+ const float distSq = absSq(relativePosition);
+ const float combinedRadiusSq = sqr(combinedRadius);
+
+ Plane plane;
+ Vector3 u;
+
+ if (distSq > combinedRadiusSq) {
+ /* No collision. */
+ const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
+ /* Vector from cutoff center to relative velocity. */
+ const float wLengthSq = absSq(w);
+
+ const float dotProduct = w * relativePosition;
+
+ if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) {
+ /* Project on cut-off circle. */
+ const float wLength = std::sqrt(wLengthSq);
+ const Vector3 unitW = w / wLength;
+
+ plane.normal = unitW;
+ u = (combinedRadius * invTimeHorizon - wLength) * unitW;
+ } else {
+ /* Project on cone. */
+ const float a = distSq;
+ const float b = relativePosition * relativeVelocity;
+ const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
+ const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
+ const Vector3 w = relativeVelocity - t * relativePosition;
+ const float wLength = abs(w);
+ const Vector3 unitW = w / wLength;
+
+ plane.normal = unitW;
+ u = (combinedRadius * t - wLength) * unitW;
+ }
+ } else {
+ /* Collision. */
+ const float invTimeStep = 1.0f / timeStep;
+ const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
+ const float wLength = abs(w);
+ const Vector3 unitW = w / wLength;
+
+ plane.normal = unitW;
+ u = (combinedRadius * invTimeStep - wLength) * unitW;
+ }
+
+ plane.point = velocity_ + 0.5f * u;
+ orcaPlanes_.push_back(plane);
+ }
+
+ const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
+
+ if (planeFail < orcaPlanes_.size()) {
+ linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
+ }
+
+ if (ignore_y_) {
+ // Not 100% necessary, but better to have.
+ newVelocity_[1] = prefVelocity_[1];
+ }
+}
+
+void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq) {
+ if (this != agent) {
+ const float distSq = absSq(position_ - agent->position_);
+
+ if (distSq < rangeSq) {
+ if (agentNeighbors_.size() < maxNeighbors_) {
+ agentNeighbors_.push_back(std::make_pair(distSq, agent));
+ }
+
+ size_t i = agentNeighbors_.size() - 1;
+
+ while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
+ agentNeighbors_[i] = agentNeighbors_[i - 1];
+ --i;
+ }
+
+ agentNeighbors_[i] = std::make_pair(distSq, agent);
+
+ if (agentNeighbors_.size() == maxNeighbors_) {
+ rangeSq = agentNeighbors_.back().first;
+ }
+ }
+ }
+}
+
+bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
+ const float dotProduct = line.point * line.direction;
+ const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
+
+ if (discriminant < 0.0f) {
+ /* Max speed sphere fully invalidates line. */
+ return false;
+ }
+
+ const float sqrtDiscriminant = std::sqrt(discriminant);
+ float tLeft = -dotProduct - sqrtDiscriminant;
+ float tRight = -dotProduct + sqrtDiscriminant;
+
+ for (size_t i = 0; i < planeNo; ++i) {
+ const float numerator = (planes[i].point - line.point) * planes[i].normal;
+ const float denominator = line.direction * planes[i].normal;
+
+ if (sqr(denominator) <= RVO_EPSILON) {
+ /* Lines line is (almost) parallel to plane i. */
+ if (numerator > 0.0f) {
+ return false;
+ } else {
+ continue;
+ }
+ }
+
+ const float t = numerator / denominator;
+
+ if (denominator >= 0.0f) {
+ /* Plane i bounds line on the left. */
+ tLeft = std::max(tLeft, t);
+ } else {
+ /* Plane i bounds line on the right. */
+ tRight = std::min(tRight, t);
+ }
+
+ if (tLeft > tRight) {
+ return false;
+ }
+ }
+
+ if (directionOpt) {
+ /* Optimize direction. */
+ if (optVelocity * line.direction > 0.0f) {
+ /* Take right extreme. */
+ result = line.point + tRight * line.direction;
+ } else {
+ /* Take left extreme. */
+ result = line.point + tLeft * line.direction;
+ }
+ } else {
+ /* Optimize closest point. */
+ const float t = line.direction * (optVelocity - line.point);
+
+ if (t < tLeft) {
+ result = line.point + tLeft * line.direction;
+ } else if (t > tRight) {
+ result = line.point + tRight * line.direction;
+ } else {
+ result = line.point + t * line.direction;
+ }
+ }
+
+ return true;
+}
+
+bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
+ const float planeDist = planes[planeNo].point * planes[planeNo].normal;
+ const float planeDistSq = sqr(planeDist);
+ const float radiusSq = sqr(radius);
+
+ if (planeDistSq > radiusSq) {
+ /* Max speed sphere fully invalidates plane planeNo. */
+ return false;
+ }
+
+ const float planeRadiusSq = radiusSq - planeDistSq;
+
+ const Vector3 planeCenter = planeDist * planes[planeNo].normal;
+
+ if (directionOpt) {
+ /* Project direction optVelocity on plane planeNo. */
+ const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
+ const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
+
+ if (planeOptVelocityLengthSq <= RVO_EPSILON) {
+ result = planeCenter;
+ } else {
+ result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
+ }
+ } else {
+ /* Project point optVelocity on plane planeNo. */
+ result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
+
+ /* If outside planeCircle, project on planeCircle. */
+ if (absSq(result) > radiusSq) {
+ const Vector3 planeResult = result - planeCenter;
+ const float planeResultLengthSq = absSq(planeResult);
+ result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
+ }
+ }
+
+ for (size_t i = 0; i < planeNo; ++i) {
+ if (planes[i].normal * (planes[i].point - result) > 0.0f) {
+ /* Result does not satisfy constraint i. Compute new optimal result. */
+ /* Compute intersection line of plane i and plane planeNo. */
+ Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
+
+ if (absSq(crossProduct) <= RVO_EPSILON) {
+ /* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
+ return false;
+ }
+
+ Line line;
+ line.direction = normalize(crossProduct);
+ const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
+ line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
+
+ if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
+ if (directionOpt) {
+ /* Optimize direction. Note that the optimization velocity is of unit length in this case. */
+ result = optVelocity * radius;
+ } else if (absSq(optVelocity) > sqr(radius)) {
+ /* Optimize closest point and outside circle. */
+ result = normalize(optVelocity) * radius;
+ } else {
+ /* Optimize closest point and inside circle. */
+ result = optVelocity;
+ }
+
+ for (size_t i = 0; i < planes.size(); ++i) {
+ if (planes[i].normal * (planes[i].point - result) > 0.0f) {
+ /* Result does not satisfy constraint i. Compute new optimal result. */
+ const Vector3 tempResult = result;
+
+ if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
+ result = tempResult;
+ return i;
+ }
+ }
+ }
+
+ return planes.size();
+}
+
+void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result) {
+ float distance = 0.0f;
+
+ for (size_t i = beginPlane; i < planes.size(); ++i) {
+ if (planes[i].normal * (planes[i].point - result) > distance) {
+ /* Result does not satisfy constraint of plane i. */
+ std::vector<Plane> projPlanes;
+
+ for (size_t j = 0; j < i; ++j) {
+ Plane plane;
+
+ const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
+
+ if (absSq(crossProduct) <= RVO_EPSILON) {
+ /* Plane i and plane j are (almost) parallel. */
+ if (planes[i].normal * planes[j].normal > 0.0f) {
+ /* Plane i and plane j point in the same direction. */
+ continue;
+ } else {
+ /* Plane i and plane j point in opposite direction. */
+ plane.point = 0.5f * (planes[i].point + planes[j].point);
+ }
+ } else {
+ /* Plane.point is point on line of intersection between plane i and plane j. */
+ const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
+ plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
+ }
+
+ plane.normal = normalize(planes[j].normal - planes[i].normal);
+ projPlanes.push_back(plane);
+ }
+
+ const Vector3 tempResult = result;
+
+ if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) {
+ /* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
+ result = tempResult;
+ }
+
+ distance = planes[i].normal * (planes[i].point - result);
+ }
+ }
+}
+} // namespace RVO
diff --git a/thirdparty/rvo2/src/Agent.h b/thirdparty/rvo2/src/Agent.h
new file mode 100644
index 0000000000..16f75a08f6
--- /dev/null
+++ b/thirdparty/rvo2/src/Agent.h
@@ -0,0 +1,121 @@
+/*
+ * Agent.h
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+/**
+ * \file Agent.h
+ * \brief Contains the Agent class.
+ */
+#ifndef RVO_AGENT_H_
+#define RVO_AGENT_H_
+
+#include "API.h"
+
+#include <cstddef>
+#include <utility>
+#include <vector>
+
+#include "Vector3.h"
+
+// Note: Slightly modified to work better in Godot.
+// - The agent can be created by anyone.
+// - The simulator pointer is removed.
+// - The update function is removed.
+// - The compute velocity function now need the timeStep.
+// - Moved the `Plane` class here.
+// - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane.
+namespace RVO {
+/**
+ * \brief Defines a plane.
+ */
+class Plane {
+public:
+ /**
+ * \brief A point on the plane.
+ */
+ Vector3 point;
+
+ /**
+ * \brief The normal to the plane.
+ */
+ Vector3 normal;
+};
+
+/**
+ * \brief Defines an agent in the simulation.
+ */
+class Agent {
+
+public:
+ /**
+ * \brief Constructs an agent instance.
+ * \param sim The simulator instance.
+ */
+ explicit Agent();
+
+ /**
+ * \brief Computes the neighbors of this agent.
+ */
+ void computeNeighbors(class KdTree *kdTree_);
+
+ /**
+ * \brief Computes the new velocity of this agent.
+ */
+ void computeNewVelocity(float timeStep);
+
+ /**
+ * \brief Inserts an agent neighbor into the set of neighbors of this agent.
+ * \param agent A pointer to the agent to be inserted.
+ * \param rangeSq The squared range around this agent.
+ */
+ void insertAgentNeighbor(const Agent *agent, float &rangeSq);
+
+ Vector3 newVelocity_;
+ Vector3 position_;
+ Vector3 prefVelocity_;
+ Vector3 velocity_;
+ size_t id_;
+ size_t maxNeighbors_;
+ float maxSpeed_;
+ float neighborDist_;
+ float radius_;
+ float timeHorizon_;
+ std::vector<std::pair<float, const Agent *> > agentNeighbors_;
+ std::vector<Plane> orcaPlanes_;
+ /// This is a godot feature that allows the Agent to avoid collision by mooving
+ /// on the horizontal plane.
+ bool ignore_y_;
+
+ friend class KdTree;
+};
+} // namespace RVO
+
+#endif /* RVO_AGENT_H_ */
diff --git a/thirdparty/rvo2/src/Definitions.h b/thirdparty/rvo2/src/Definitions.h
new file mode 100644
index 0000000000..a73aca9908
--- /dev/null
+++ b/thirdparty/rvo2/src/Definitions.h
@@ -0,0 +1,55 @@
+/*
+ * Definitions.h
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+/**
+ * \file Definitions.h
+ * \brief Contains functions and constants used in multiple classes.
+ */
+
+#ifndef RVO_DEFINITIONS_H_
+#define RVO_DEFINITIONS_H_
+
+#include "API.h"
+
+namespace RVO {
+ /**
+ * \brief Computes the square of a float.
+ * \param scalar The float to be squared.
+ * \return The square of the float.
+ */
+ inline float sqr(float scalar)
+ {
+ return scalar * scalar;
+ }
+}
+
+#endif /* RVO_DEFINITIONS_H_ */
diff --git a/thirdparty/rvo2/src/KdTree.cpp b/thirdparty/rvo2/src/KdTree.cpp
new file mode 100644
index 0000000000..bc224614f0
--- /dev/null
+++ b/thirdparty/rvo2/src/KdTree.cpp
@@ -0,0 +1,152 @@
+/*
+ * KdTree.cpp
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+#include "KdTree.h"
+
+#include <algorithm>
+
+#include "Agent.h"
+#include "Definitions.h"
+
+namespace RVO {
+const size_t RVO_MAX_LEAF_SIZE = 10;
+
+KdTree::KdTree() {}
+
+void KdTree::buildAgentTree(std::vector<Agent *> agents) {
+ agents_.swap(agents);
+
+ if (!agents_.empty()) {
+ agentTree_.resize(2 * agents_.size() - 1);
+ buildAgentTreeRecursive(0, agents_.size(), 0);
+ }
+}
+
+void KdTree::buildAgentTreeRecursive(size_t begin, size_t end, size_t node) {
+ agentTree_[node].begin = begin;
+ agentTree_[node].end = end;
+ agentTree_[node].minCoord = agents_[begin]->position_;
+ agentTree_[node].maxCoord = agents_[begin]->position_;
+
+ for (size_t i = begin + 1; i < end; ++i) {
+ agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
+ agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
+ agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
+ agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
+ agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
+ agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
+ }
+
+ if (end - begin > RVO_MAX_LEAF_SIZE) {
+ /* No leaf node. */
+ size_t coord;
+
+ if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
+ coord = 0;
+ } else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
+ coord = 1;
+ } else {
+ coord = 2;
+ }
+
+ const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
+
+ size_t left = begin;
+
+ size_t right = end;
+
+ while (left < right) {
+ while (left < right && agents_[left]->position_[coord] < splitValue) {
+ ++left;
+ }
+
+ while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
+ --right;
+ }
+
+ if (left < right) {
+ std::swap(agents_[left], agents_[right - 1]);
+ ++left;
+ --right;
+ }
+ }
+
+ size_t leftSize = left - begin;
+
+ if (leftSize == 0) {
+ ++leftSize;
+ ++left;
+ ++right;
+ }
+
+ agentTree_[node].left = node + 1;
+ agentTree_[node].right = node + 2 * leftSize;
+
+ buildAgentTreeRecursive(begin, left, agentTree_[node].left);
+ buildAgentTreeRecursive(left, end, agentTree_[node].right);
+ }
+}
+
+void KdTree::computeAgentNeighbors(Agent *agent, float rangeSq) const {
+ queryAgentTreeRecursive(agent, rangeSq, 0);
+}
+
+void KdTree::queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const {
+ if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) {
+ for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
+ agent->insertAgentNeighbor(agents_[i], rangeSq);
+ }
+ } else {
+ const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2]));
+
+ const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2]));
+
+ if (distSqLeft < distSqRight) {
+ if (distSqLeft < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
+
+ if (distSqRight < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
+ }
+ }
+ } else {
+ if (distSqRight < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
+
+ if (distSqLeft < rangeSq) {
+ queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
+ }
+ }
+ }
+ }
+}
+} // namespace RVO
diff --git a/thirdparty/rvo2/src/KdTree.h b/thirdparty/rvo2/src/KdTree.h
new file mode 100644
index 0000000000..1dbad00ea4
--- /dev/null
+++ b/thirdparty/rvo2/src/KdTree.h
@@ -0,0 +1,124 @@
+/*
+ * KdTree.h
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+/**
+ * \file KdTree.h
+ * \brief Contains the KdTree class.
+ */
+#ifndef RVO_KD_TREE_H_
+#define RVO_KD_TREE_H_
+
+#include "API.h"
+
+#include <cstddef>
+#include <vector>
+
+#include "Vector3.h"
+
+// Note: Slightly modified to work better with Godot.
+// - Removed `sim_`.
+// - KdTree things are public
+namespace RVO {
+class Agent;
+class RVOSimulator;
+
+/**
+ * \brief Defines <i>k</i>d-trees for agents in the simulation.
+ */
+class KdTree {
+public:
+ /**
+ * \brief Defines an agent <i>k</i>d-tree node.
+ */
+ class AgentTreeNode {
+ public:
+ /**
+ * \brief The beginning node number.
+ */
+ size_t begin;
+
+ /**
+ * \brief The ending node number.
+ */
+ size_t end;
+
+ /**
+ * \brief The left node number.
+ */
+ size_t left;
+
+ /**
+ * \brief The right node number.
+ */
+ size_t right;
+
+ /**
+ * \brief The maximum coordinates.
+ */
+ Vector3 maxCoord;
+
+ /**
+ * \brief The minimum coordinates.
+ */
+ Vector3 minCoord;
+ };
+
+ /**
+ * \brief Constructs a <i>k</i>d-tree instance.
+ * \param sim The simulator instance.
+ */
+ explicit KdTree();
+
+ /**
+ * \brief Builds an agent <i>k</i>d-tree.
+ */
+ void buildAgentTree(std::vector<Agent *> agents);
+
+ void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
+
+ /**
+ * \brief Computes the agent neighbors of the specified agent.
+ * \param agent A pointer to the agent for which agent neighbors are to be computed.
+ * \param rangeSq The squared range around the agent.
+ */
+ void computeAgentNeighbors(Agent *agent, float rangeSq) const;
+
+ void queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const;
+
+ std::vector<Agent *> agents_;
+ std::vector<AgentTreeNode> agentTree_;
+
+ friend class Agent;
+ friend class RVOSimulator;
+};
+} // namespace RVO
+
+#endif /* RVO_KD_TREE_H_ */
diff --git a/thirdparty/rvo2/src/Vector3.h b/thirdparty/rvo2/src/Vector3.h
new file mode 100644
index 0000000000..8c8835c865
--- /dev/null
+++ b/thirdparty/rvo2/src/Vector3.h
@@ -0,0 +1,335 @@
+/*
+ * Vector3.h
+ * RVO2-3D Library
+ *
+ * Copyright 2008 University of North Carolina at Chapel Hill
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * Please send all bug reports to <geom@cs.unc.edu>.
+ *
+ * The authors may be contacted via:
+ *
+ * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha
+ * Dept. of Computer Science
+ * 201 S. Columbia St.
+ * Frederick P. Brooks, Jr. Computer Science Bldg.
+ * Chapel Hill, N.C. 27599-3175
+ * United States of America
+ *
+ * <http://gamma.cs.unc.edu/RVO2/>
+ */
+
+/**
+ * \file Vector3.h
+ * \brief Contains the Vector3 class.
+ */
+#ifndef RVO_VECTOR3_H_
+#define RVO_VECTOR3_H_
+
+#include "API.h"
+
+#include <cmath>
+#include <cstddef>
+#include <ostream>
+
+namespace RVO {
+ /**
+ * \brief Defines a three-dimensional vector.
+ */
+ class Vector3 {
+ public:
+ /**
+ * \brief Constructs and initializes a three-dimensional vector instance to zero.
+ */
+ RVO_API inline Vector3()
+ {
+ val_[0] = 0.0f;
+ val_[1] = 0.0f;
+ val_[2] = 0.0f;
+ }
+
+ /**
+ * \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
+ * \param val The three-element array containing the xyz-coordinates.
+ */
+ RVO_API inline explicit Vector3(const float val[3])
+ {
+ val_[0] = val[0];
+ val_[1] = val[1];
+ val_[2] = val[2];
+ }
+
+ /**
+ * \brief Constructs and initializes a three-dimensional vector from the specified xyz-coordinates.
+ * \param x The x-coordinate of the three-dimensional vector.
+ * \param y The y-coordinate of the three-dimensional vector.
+ * \param z The z-coordinate of the three-dimensional vector.
+ */
+ RVO_API inline Vector3(float x, float y, float z)
+ {
+ val_[0] = x;
+ val_[1] = y;
+ val_[2] = z;
+ }
+
+ /**
+ * \brief Returns the x-coordinate of this three-dimensional vector.
+ * \return The x-coordinate of the three-dimensional vector.
+ */
+ RVO_API inline float x() const { return val_[0]; }
+
+ /**
+ * \brief Returns the y-coordinate of this three-dimensional vector.
+ * \return The y-coordinate of the three-dimensional vector.
+ */
+ RVO_API inline float y() const { return val_[1]; }
+
+ /**
+ * \brief Returns the z-coordinate of this three-dimensional vector.
+ * \return The z-coordinate of the three-dimensional vector.
+ */
+ RVO_API inline float z() const { return val_[2]; }
+
+ /**
+ * \brief Returns the specified coordinate of this three-dimensional vector.
+ * \param i The coordinate that should be returned (0 <= i < 3).
+ * \return The specified coordinate of the three-dimensional vector.
+ */
+ RVO_API inline float operator[](size_t i) const { return val_[i]; }
+
+ /**
+ * \brief Returns a reference to the specified coordinate of this three-dimensional vector.
+ * \param i The coordinate to which a reference should be returned (0 <= i < 3).
+ * \return A reference to the specified coordinate of the three-dimensional vector.
+ */
+ RVO_API inline float &operator[](size_t i) { return val_[i]; }
+
+ /**
+ * \brief Computes the negation of this three-dimensional vector.
+ * \return The negation of this three-dimensional vector.
+ */
+ RVO_API inline Vector3 operator-() const
+ {
+ return Vector3(-val_[0], -val_[1], -val_[2]);
+ }
+
+ /**
+ * \brief Computes the dot product of this three-dimensional vector with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which the dot product should be computed.
+ * \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
+ */
+ RVO_API inline float operator*(const Vector3 &vector) const
+ {
+ return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
+ }
+
+ /**
+ * \brief Computes the scalar multiplication of this three-dimensional vector with the specified scalar value.
+ * \param scalar The scalar value with which the scalar multiplication should be computed.
+ * \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
+ */
+ RVO_API inline Vector3 operator*(float scalar) const
+ {
+ return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
+ }
+
+ /**
+ * \brief Computes the scalar division of this three-dimensional vector with the specified scalar value.
+ * \param scalar The scalar value with which the scalar division should be computed.
+ * \return The scalar division of this three-dimensional vector with a specified scalar value.
+ */
+ RVO_API inline Vector3 operator/(float scalar) const
+ {
+ const float invScalar = 1.0f / scalar;
+
+ return Vector3(val_[0] * invScalar, val_[1] * invScalar, val_[2] * invScalar);
+ }
+
+ /**
+ * \brief Computes the vector sum of this three-dimensional vector with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which the vector sum should be computed.
+ * \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
+ */
+ RVO_API inline Vector3 operator+(const Vector3 &vector) const
+ {
+ return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
+ }
+
+ /**
+ * \brief Computes the vector difference of this three-dimensional vector with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which the vector difference should be computed.
+ * \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
+ */
+ RVO_API inline Vector3 operator-(const Vector3 &vector) const
+ {
+ return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
+ }
+
+ /**
+ * \brief Tests this three-dimensional vector for equality with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which to test for equality.
+ * \return True if the three-dimensional vectors are equal.
+ */
+ RVO_API inline bool operator==(const Vector3 &vector) const
+ {
+ return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
+ }
+
+ /**
+ * \brief Tests this three-dimensional vector for inequality with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which to test for inequality.
+ * \return True if the three-dimensional vectors are not equal.
+ */
+ RVO_API inline bool operator!=(const Vector3 &vector) const
+ {
+ return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
+ }
+
+ /**
+ * \brief Sets the value of this three-dimensional vector to the scalar multiplication of itself with the specified scalar value.
+ * \param scalar The scalar value with which the scalar multiplication should be computed.
+ * \return A reference to this three-dimensional vector.
+ */
+ RVO_API inline Vector3 &operator*=(float scalar)
+ {
+ val_[0] *= scalar;
+ val_[1] *= scalar;
+ val_[2] *= scalar;
+
+ return *this;
+ }
+
+ /**
+ * \brief Sets the value of this three-dimensional vector to the scalar division of itself with the specified scalar value.
+ * \param scalar The scalar value with which the scalar division should be computed.
+ * \return A reference to this three-dimensional vector.
+ */
+ RVO_API inline Vector3 &operator/=(float scalar)
+ {
+ const float invScalar = 1.0f / scalar;
+
+ val_[0] *= invScalar;
+ val_[1] *= invScalar;
+ val_[2] *= invScalar;
+
+ return *this;
+ }
+
+ /**
+ * \brief Sets the value of this three-dimensional vector to the vector
+ * sum of itself with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which the vector sum should be computed.
+ * \return A reference to this three-dimensional vector.
+ */
+ RVO_API inline Vector3 &operator+=(const Vector3 &vector)
+ {
+ val_[0] += vector[0];
+ val_[1] += vector[1];
+ val_[2] += vector[2];
+
+ return *this;
+ }
+
+ /**
+ * \brief Sets the value of this three-dimensional vector to the vector difference of itself with the specified three-dimensional vector.
+ * \param vector The three-dimensional vector with which the vector difference should be computed.
+ * \return A reference to this three-dimensional vector.
+ */
+ RVO_API inline Vector3 &operator-=(const Vector3 &vector)
+ {
+ val_[0] -= vector[0];
+ val_[1] -= vector[1];
+ val_[2] -= vector[2];
+
+ return *this;
+ }
+
+ private:
+ float val_[3];
+ };
+
+
+ /**
+ * \relates Vector3
+ * \brief Computes the scalar multiplication of the specified three-dimensional vector with the specified scalar value.
+ * \param scalar The scalar value with which the scalar multiplication should be computed.
+ * \param vector The three-dimensional vector with which the scalar multiplication should be computed.
+ * \return The scalar multiplication of the three-dimensional vector with the scalar value.
+ */
+ inline Vector3 operator*(float scalar, const Vector3 &vector)
+ {
+ return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
+ }
+
+ /**
+ * \relates Vector3
+ * \brief Computes the cross product of the specified three-dimensional vectors.
+ * \param vector1 The first vector with which the cross product should be computed.
+ * \param vector2 The second vector with which the cross product should be computed.
+ * \return The cross product of the two specified vectors.
+ */
+ inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
+ {
+ return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
+ }
+
+ /**
+ * \relates Vector3
+ * \brief Inserts the specified three-dimensional vector into the specified output stream.
+ * \param os The output stream into which the three-dimensional vector should be inserted.
+ * \param vector The three-dimensional vector which to insert into the output stream.
+ * \return A reference to the output stream.
+ */
+ inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
+ {
+ os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
+
+ return os;
+ }
+
+ /**
+ * \relates Vector3
+ * \brief Computes the length of a specified three-dimensional vector.
+ * \param vector The three-dimensional vector whose length is to be computed.
+ * \return The length of the three-dimensional vector.
+ */
+ inline float abs(const Vector3 &vector)
+ {
+ return std::sqrt(vector * vector);
+ }
+
+ /**
+ * \relates Vector3
+ * \brief Computes the squared length of a specified three-dimensional vector.
+ * \param vector The three-dimensional vector whose squared length is to be computed.
+ * \return The squared length of the three-dimensional vector.
+ */
+ inline float absSq(const Vector3 &vector)
+ {
+ return vector * vector;
+ }
+
+ /**
+ * \relates Vector3
+ * \brief Computes the normalization of the specified three-dimensional vector.
+ * \param vector The three-dimensional vector whose normalization is to be computed.
+ * \return The normalization of the three-dimensional vector.
+ */
+ inline Vector3 normalize(const Vector3 &vector)
+ {
+ return vector / abs(vector);
+ }
+}
+
+#endif