summaryrefslogtreecommitdiff
path: root/thirdparty/rvo2/Vector3.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/rvo2/Vector3.h')
-rw-r--r--thirdparty/rvo2/Vector3.h66
1 files changed, 33 insertions, 33 deletions
diff --git a/thirdparty/rvo2/Vector3.h b/thirdparty/rvo2/Vector3.h
index 8c8835c865..f44e311f29 100644
--- a/thirdparty/rvo2/Vector3.h
+++ b/thirdparty/rvo2/Vector3.h
@@ -8,7 +8,7 @@
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
- * http://www.apache.org/licenses/LICENSE-2.0
+ * https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
@@ -27,32 +27,32 @@
* Chapel Hill, N.C. 27599-3175
* United States of America
*
- * <http://gamma.cs.unc.edu/RVO2/>
+ * <https://gamma.cs.unc.edu/RVO2/>
*/
/**
* \file Vector3.h
* \brief Contains the Vector3 class.
*/
-#ifndef RVO_VECTOR3_H_
-#define RVO_VECTOR3_H_
-
-#include "API.h"
+#ifndef RVO3D_VECTOR3_H_
+#define RVO3D_VECTOR3_H_
#include <cmath>
#include <cstddef>
#include <ostream>
+#define RVO3D_EXPORT
+
namespace RVO {
/**
* \brief Defines a three-dimensional vector.
*/
- class Vector3 {
+ class RVO3D_EXPORT Vector3 {
public:
/**
* \brief Constructs and initializes a three-dimensional vector instance to zero.
*/
- RVO_API inline Vector3()
+ inline Vector3()
{
val_[0] = 0.0f;
val_[1] = 0.0f;
@@ -63,7 +63,7 @@ namespace RVO {
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.
*/
- RVO_API inline explicit Vector3(const float val[3])
+ inline explicit Vector3(const float val[3])
{
val_[0] = val[0];
val_[1] = val[1];
@@ -76,7 +76,7 @@ namespace RVO {
* \param y The y-coordinate of the three-dimensional vector.
* \param z The z-coordinate of the three-dimensional vector.
*/
- RVO_API inline Vector3(float x, float y, float z)
+ inline Vector3(float x, float y, float z)
{
val_[0] = x;
val_[1] = y;
@@ -87,39 +87,39 @@ namespace RVO {
* \brief Returns the x-coordinate of this three-dimensional vector.
* \return The x-coordinate of the three-dimensional vector.
*/
- RVO_API inline float x() const { return val_[0]; }
+ inline float x() const { return val_[0]; }
/**
* \brief Returns the y-coordinate of this three-dimensional vector.
* \return The y-coordinate of the three-dimensional vector.
*/
- RVO_API inline float y() const { return val_[1]; }
+ inline float y() const { return val_[1]; }
/**
* \brief Returns the z-coordinate of this three-dimensional vector.
* \return The z-coordinate of the three-dimensional vector.
*/
- RVO_API inline float z() const { return val_[2]; }
+ inline float z() const { return val_[2]; }
/**
* \brief Returns the specified coordinate of this three-dimensional vector.
* \param i The coordinate that should be returned (0 <= i < 3).
* \return The specified coordinate of the three-dimensional vector.
*/
- RVO_API inline float operator[](size_t i) const { return val_[i]; }
+ inline float operator[](size_t i) const { return val_[i]; }
/**
* \brief Returns a reference to the specified coordinate of this three-dimensional vector.
* \param i The coordinate to which a reference should be returned (0 <= i < 3).
* \return A reference to the specified coordinate of the three-dimensional vector.
*/
- RVO_API inline float &operator[](size_t i) { return val_[i]; }
+ inline float &operator[](size_t i) { return val_[i]; }
/**
* \brief Computes the negation of this three-dimensional vector.
* \return The negation of this three-dimensional vector.
*/
- RVO_API inline Vector3 operator-() const
+ inline Vector3 operator-() const
{
return Vector3(-val_[0], -val_[1], -val_[2]);
}
@@ -129,7 +129,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the dot product should be computed.
* \return The dot product of this three-dimensional vector with a specified three-dimensional vector.
*/
- RVO_API inline float operator*(const Vector3 &vector) const
+ inline float operator*(const Vector3 &vector) const
{
return val_[0] * vector[0] + val_[1] * vector[1] + val_[2] * vector[2];
}
@@ -139,7 +139,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return The scalar multiplication of this three-dimensional vector with a specified scalar value.
*/
- RVO_API inline Vector3 operator*(float scalar) const
+ inline Vector3 operator*(float scalar) const
{
return Vector3(val_[0] * scalar, val_[1] * scalar, val_[2] * scalar);
}
@@ -149,7 +149,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar division should be computed.
* \return The scalar division of this three-dimensional vector with a specified scalar value.
*/
- RVO_API inline Vector3 operator/(float scalar) const
+ inline Vector3 operator/(float scalar) const
{
const float invScalar = 1.0f / scalar;
@@ -161,7 +161,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return The vector sum of this three-dimensional vector with a specified three-dimensional vector.
*/
- RVO_API inline Vector3 operator+(const Vector3 &vector) const
+ inline Vector3 operator+(const Vector3 &vector) const
{
return Vector3(val_[0] + vector[0], val_[1] + vector[1], val_[2] + vector[2]);
}
@@ -171,7 +171,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return The vector difference of this three-dimensional vector with a specified three-dimensional vector.
*/
- RVO_API inline Vector3 operator-(const Vector3 &vector) const
+ inline Vector3 operator-(const Vector3 &vector) const
{
return Vector3(val_[0] - vector[0], val_[1] - vector[1], val_[2] - vector[2]);
}
@@ -181,7 +181,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which to test for equality.
* \return True if the three-dimensional vectors are equal.
*/
- RVO_API inline bool operator==(const Vector3 &vector) const
+ inline bool operator==(const Vector3 &vector) const
{
return val_[0] == vector[0] && val_[1] == vector[1] && val_[2] == vector[2];
}
@@ -191,7 +191,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which to test for inequality.
* \return True if the three-dimensional vectors are not equal.
*/
- RVO_API inline bool operator!=(const Vector3 &vector) const
+ inline bool operator!=(const Vector3 &vector) const
{
return val_[0] != vector[0] || val_[1] != vector[1] || val_[2] != vector[2];
}
@@ -201,7 +201,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar multiplication should be computed.
* \return A reference to this three-dimensional vector.
*/
- RVO_API inline Vector3 &operator*=(float scalar)
+ inline Vector3 &operator*=(float scalar)
{
val_[0] *= scalar;
val_[1] *= scalar;
@@ -215,7 +215,7 @@ namespace RVO {
* \param scalar The scalar value with which the scalar division should be computed.
* \return A reference to this three-dimensional vector.
*/
- RVO_API inline Vector3 &operator/=(float scalar)
+ inline Vector3 &operator/=(float scalar)
{
const float invScalar = 1.0f / scalar;
@@ -232,7 +232,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector sum should be computed.
* \return A reference to this three-dimensional vector.
*/
- RVO_API inline Vector3 &operator+=(const Vector3 &vector)
+ inline Vector3 &operator+=(const Vector3 &vector)
{
val_[0] += vector[0];
val_[1] += vector[1];
@@ -246,7 +246,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the vector difference should be computed.
* \return A reference to this three-dimensional vector.
*/
- RVO_API inline Vector3 &operator-=(const Vector3 &vector)
+ inline Vector3 &operator-=(const Vector3 &vector)
{
val_[0] -= vector[0];
val_[1] -= vector[1];
@@ -267,7 +267,7 @@ namespace RVO {
* \param vector The three-dimensional vector with which the scalar multiplication should be computed.
* \return The scalar multiplication of the three-dimensional vector with the scalar value.
*/
- inline Vector3 operator*(float scalar, const Vector3 &vector)
+ RVO3D_EXPORT inline Vector3 operator*(float scalar, const Vector3 &vector)
{
return Vector3(scalar * vector[0], scalar * vector[1], scalar * vector[2]);
}
@@ -279,7 +279,7 @@ namespace RVO {
* \param vector2 The second vector with which the cross product should be computed.
* \return The cross product of the two specified vectors.
*/
- inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
+ RVO3D_EXPORT inline Vector3 cross(const Vector3 &vector1, const Vector3 &vector2)
{
return Vector3(vector1[1] * vector2[2] - vector1[2] * vector2[1], vector1[2] * vector2[0] - vector1[0] * vector2[2], vector1[0] * vector2[1] - vector1[1] * vector2[0]);
}
@@ -291,7 +291,7 @@ namespace RVO {
* \param vector The three-dimensional vector which to insert into the output stream.
* \return A reference to the output stream.
*/
- inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
+ RVO3D_EXPORT inline std::ostream &operator<<(std::ostream &os, const Vector3 &vector)
{
os << "(" << vector[0] << "," << vector[1] << "," << vector[2] << ")";
@@ -304,7 +304,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose length is to be computed.
* \return The length of the three-dimensional vector.
*/
- inline float abs(const Vector3 &vector)
+ RVO3D_EXPORT inline float abs(const Vector3 &vector)
{
return std::sqrt(vector * vector);
}
@@ -315,7 +315,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose squared length is to be computed.
* \return The squared length of the three-dimensional vector.
*/
- inline float absSq(const Vector3 &vector)
+ RVO3D_EXPORT inline float absSq(const Vector3 &vector)
{
return vector * vector;
}
@@ -326,7 +326,7 @@ namespace RVO {
* \param vector The three-dimensional vector whose normalization is to be computed.
* \return The normalization of the three-dimensional vector.
*/
- inline Vector3 normalize(const Vector3 &vector)
+ RVO3D_EXPORT inline Vector3 normalize(const Vector3 &vector)
{
return vector / abs(vector);
}