summaryrefslogtreecommitdiff
path: root/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp')
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp1462
1 files changed, 1462 insertions, 0 deletions
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
new file mode 100644
index 0000000000..f953132f74
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
@@ -0,0 +1,1462 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#include <float.h>
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+
+static const unsigned RC_UNSET_HEIGHT = 0xffff;
+
+struct rcHeightPatch
+{
+ inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
+ inline ~rcHeightPatch() { rcFree(data); }
+ unsigned short* data;
+ int xmin, ymin, width, height;
+};
+
+
+inline float vdot2(const float* a, const float* b)
+{
+ return a[0]*b[0] + a[2]*b[2];
+}
+
+inline float vdistSq2(const float* p, const float* q)
+{
+ const float dx = q[0] - p[0];
+ const float dy = q[2] - p[2];
+ return dx*dx + dy*dy;
+}
+
+inline float vdist2(const float* p, const float* q)
+{
+ return sqrtf(vdistSq2(p,q));
+}
+
+inline float vcross2(const float* p1, const float* p2, const float* p3)
+{
+ const float u1 = p2[0] - p1[0];
+ const float v1 = p2[2] - p1[2];
+ const float u2 = p3[0] - p1[0];
+ const float v2 = p3[2] - p1[2];
+ return u1 * v2 - v1 * u2;
+}
+
+static bool circumCircle(const float* p1, const float* p2, const float* p3,
+ float* c, float& r)
+{
+ static const float EPS = 1e-6f;
+ // Calculate the circle relative to p1, to avoid some precision issues.
+ const float v1[3] = {0,0,0};
+ float v2[3], v3[3];
+ rcVsub(v2, p2,p1);
+ rcVsub(v3, p3,p1);
+
+ const float cp = vcross2(v1, v2, v3);
+ if (fabsf(cp) > EPS)
+ {
+ const float v1Sq = vdot2(v1,v1);
+ const float v2Sq = vdot2(v2,v2);
+ const float v3Sq = vdot2(v3,v3);
+ c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
+ c[1] = 0;
+ c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
+ r = vdist2(c, v1);
+ rcVadd(c, c, p1);
+ return true;
+ }
+
+ rcVcopy(c, p1);
+ r = 0;
+ return false;
+}
+
+static float distPtTri(const float* p, const float* a, const float* b, const float* c)
+{
+ float v0[3], v1[3], v2[3];
+ rcVsub(v0, c,a);
+ rcVsub(v1, b,a);
+ rcVsub(v2, p,a);
+
+ const float dot00 = vdot2(v0, v0);
+ const float dot01 = vdot2(v0, v1);
+ const float dot02 = vdot2(v0, v2);
+ const float dot11 = vdot2(v1, v1);
+ const float dot12 = vdot2(v1, v2);
+
+ // Compute barycentric coordinates
+ const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
+ const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
+
+ // If point lies inside the triangle, return interpolated y-coord.
+ static const float EPS = 1e-4f;
+ if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
+ {
+ const float y = a[1] + v0[1]*u + v1[1]*v;
+ return fabsf(y-p[1]);
+ }
+ return FLT_MAX;
+}
+
+static float distancePtSeg(const float* pt, const float* p, const float* q)
+{
+ float pqx = q[0] - p[0];
+ float pqy = q[1] - p[1];
+ float pqz = q[2] - p[2];
+ float dx = pt[0] - p[0];
+ float dy = pt[1] - p[1];
+ float dz = pt[2] - p[2];
+ float d = pqx*pqx + pqy*pqy + pqz*pqz;
+ float t = pqx*dx + pqy*dy + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = p[0] + t*pqx - pt[0];
+ dy = p[1] + t*pqy - pt[1];
+ dz = p[2] + t*pqz - pt[2];
+
+ return dx*dx + dy*dy + dz*dz;
+}
+
+static float distancePtSeg2d(const float* pt, const float* p, const float* q)
+{
+ float pqx = q[0] - p[0];
+ float pqz = q[2] - p[2];
+ float dx = pt[0] - p[0];
+ float dz = pt[2] - p[2];
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = p[0] + t*pqx - pt[0];
+ dz = p[2] + t*pqz - pt[2];
+
+ return dx*dx + dz*dz;
+}
+
+static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
+{
+ float dmin = FLT_MAX;
+ for (int i = 0; i < ntris; ++i)
+ {
+ const float* va = &verts[tris[i*4+0]*3];
+ const float* vb = &verts[tris[i*4+1]*3];
+ const float* vc = &verts[tris[i*4+2]*3];
+ float d = distPtTri(p, va,vb,vc);
+ if (d < dmin)
+ dmin = d;
+ }
+ if (dmin == FLT_MAX) return -1;
+ return dmin;
+}
+
+static float distToPoly(int nvert, const float* verts, const float* p)
+{
+
+ float dmin = FLT_MAX;
+ int i, j, c = 0;
+ for (i = 0, j = nvert-1; i < nvert; j = i++)
+ {
+ const float* vi = &verts[i*3];
+ const float* vj = &verts[j*3];
+ if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
+ (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
+ c = !c;
+ dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
+ }
+ return c ? -dmin : dmin;
+}
+
+
+static unsigned short getHeight(const float fx, const float fy, const float fz,
+ const float /*cs*/, const float ics, const float ch,
+ const int radius, const rcHeightPatch& hp)
+{
+ int ix = (int)floorf(fx*ics + 0.01f);
+ int iz = (int)floorf(fz*ics + 0.01f);
+ ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
+ iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
+ unsigned short h = hp.data[ix+iz*hp.width];
+ if (h == RC_UNSET_HEIGHT)
+ {
+ // Special case when data might be bad.
+ // Walk adjacent cells in a spiral up to 'radius', and look
+ // for a pixel which has a valid height.
+ int x = 1, z = 0, dx = 1, dz = 0;
+ int maxSize = radius * 2 + 1;
+ int maxIter = maxSize * maxSize - 1;
+
+ int nextRingIterStart = 8;
+ int nextRingIters = 16;
+
+ float dmin = FLT_MAX;
+ for (int i = 0; i < maxIter; i++)
+ {
+ const int nx = ix + x;
+ const int nz = iz + z;
+
+ if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
+ {
+ const unsigned short nh = hp.data[nx + nz*hp.width];
+ if (nh != RC_UNSET_HEIGHT)
+ {
+ const float d = fabsf(nh*ch - fy);
+ if (d < dmin)
+ {
+ h = nh;
+ dmin = d;
+ }
+ }
+ }
+
+ // We are searching in a grid which looks approximately like this:
+ // __________
+ // |2 ______ 2|
+ // | |1 __ 1| |
+ // | | |__| | |
+ // | |______| |
+ // |__________|
+ // We want to find the best height as close to the center cell as possible. This means that
+ // if we find a height in one of the neighbor cells to the center, we don't want to
+ // expand further out than the 8 neighbors - we want to limit our search to the closest
+ // of these "rings", but the best height in the ring.
+ // For example, the center is just 1 cell. We checked that at the entrance to the function.
+ // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
+ // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
+ // can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
+ // Here we detect if we are about to enter the next ring, and if we are and we have found
+ // a height, we abort the search.
+ if (i + 1 == nextRingIterStart)
+ {
+ if (h != RC_UNSET_HEIGHT)
+ break;
+
+ nextRingIterStart += nextRingIters;
+ nextRingIters += 8;
+ }
+
+ if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
+ {
+ int tmp = dx;
+ dx = -dz;
+ dz = tmp;
+ }
+ x += dx;
+ z += dz;
+ }
+ }
+ return h;
+}
+
+
+enum EdgeValues
+{
+ EV_UNDEF = -1,
+ EV_HULL = -2,
+};
+
+static int findEdge(const int* edges, int nedges, int s, int t)
+{
+ for (int i = 0; i < nedges; i++)
+ {
+ const int* e = &edges[i*4];
+ if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
+ return i;
+ }
+ return EV_UNDEF;
+}
+
+static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
+{
+ if (nedges >= maxEdges)
+ {
+ ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
+ return EV_UNDEF;
+ }
+
+ // Add edge if not already in the triangulation.
+ int e = findEdge(edges, nedges, s, t);
+ if (e == EV_UNDEF)
+ {
+ int* edge = &edges[nedges*4];
+ edge[0] = s;
+ edge[1] = t;
+ edge[2] = l;
+ edge[3] = r;
+ return nedges++;
+ }
+ else
+ {
+ return EV_UNDEF;
+ }
+}
+
+static void updateLeftFace(int* e, int s, int t, int f)
+{
+ if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
+ e[2] = f;
+ else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
+ e[3] = f;
+}
+
+static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
+{
+ const float a1 = vcross2(a, b, d);
+ const float a2 = vcross2(a, b, c);
+ if (a1*a2 < 0.0f)
+ {
+ float a3 = vcross2(c, d, a);
+ float a4 = a3 + a2 - a1;
+ if (a3 * a4 < 0.0f)
+ return 1;
+ }
+ return 0;
+}
+
+static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
+{
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int s0 = edges[i*4+0];
+ const int t0 = edges[i*4+1];
+ // Same or connected edges do not overlap.
+ if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
+ continue;
+ if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
+ return true;
+ }
+ return false;
+}
+
+static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
+{
+ static const float EPS = 1e-5f;
+
+ int* edge = &edges[e*4];
+
+ // Cache s and t.
+ int s,t;
+ if (edge[2] == EV_UNDEF)
+ {
+ s = edge[0];
+ t = edge[1];
+ }
+ else if (edge[3] == EV_UNDEF)
+ {
+ s = edge[1];
+ t = edge[0];
+ }
+ else
+ {
+ // Edge already completed.
+ return;
+ }
+
+ // Find best point on left of edge.
+ int pt = npts;
+ float c[3] = {0,0,0};
+ float r = -1;
+ for (int u = 0; u < npts; ++u)
+ {
+ if (u == s || u == t) continue;
+ if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
+ {
+ if (r < 0)
+ {
+ // The circle is not updated yet, do it now.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ continue;
+ }
+ const float d = vdist2(c, &pts[u*3]);
+ const float tol = 0.001f;
+ if (d > r*(1+tol))
+ {
+ // Outside current circumcircle, skip.
+ continue;
+ }
+ else if (d < r*(1-tol))
+ {
+ // Inside safe circumcircle, update circle.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ }
+ else
+ {
+ // Inside epsilon circum circle, do extra tests to make sure the edge is valid.
+ // s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
+ if (overlapEdges(pts, edges, nedges, s,u))
+ continue;
+ if (overlapEdges(pts, edges, nedges, t,u))
+ continue;
+ // Edge is valid.
+ pt = u;
+ circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
+ }
+ }
+ }
+
+ // Add new triangle or update edge info if s-t is on hull.
+ if (pt < npts)
+ {
+ // Update face information of edge being completed.
+ updateLeftFace(&edges[e*4], s, t, nfaces);
+
+ // Add new edge or update face info of old edge.
+ e = findEdge(edges, nedges, pt, s);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
+ else
+ updateLeftFace(&edges[e*4], pt, s, nfaces);
+
+ // Add new edge or update face info of old edge.
+ e = findEdge(edges, nedges, t, pt);
+ if (e == EV_UNDEF)
+ addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
+ else
+ updateLeftFace(&edges[e*4], t, pt, nfaces);
+
+ nfaces++;
+ }
+ else
+ {
+ updateLeftFace(&edges[e*4], s, t, EV_HULL);
+ }
+}
+
+static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
+ const int nhull, const int* hull,
+ rcIntArray& tris, rcIntArray& edges)
+{
+ int nfaces = 0;
+ int nedges = 0;
+ const int maxEdges = npts*10;
+ edges.resize(maxEdges*4);
+
+ for (int i = 0, j = nhull-1; i < nhull; j=i++)
+ addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
+
+ int currentEdge = 0;
+ while (currentEdge < nedges)
+ {
+ if (edges[currentEdge*4+2] == EV_UNDEF)
+ completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
+ if (edges[currentEdge*4+3] == EV_UNDEF)
+ completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
+ currentEdge++;
+ }
+
+ // Create tris
+ tris.resize(nfaces*4);
+ for (int i = 0; i < nfaces*4; ++i)
+ tris[i] = -1;
+
+ for (int i = 0; i < nedges; ++i)
+ {
+ const int* e = &edges[i*4];
+ if (e[3] >= 0)
+ {
+ // Left face
+ int* t = &tris[e[3]*4];
+ if (t[0] == -1)
+ {
+ t[0] = e[0];
+ t[1] = e[1];
+ }
+ else if (t[0] == e[1])
+ t[2] = e[0];
+ else if (t[1] == e[0])
+ t[2] = e[1];
+ }
+ if (e[2] >= 0)
+ {
+ // Right
+ int* t = &tris[e[2]*4];
+ if (t[0] == -1)
+ {
+ t[0] = e[1];
+ t[1] = e[0];
+ }
+ else if (t[0] == e[0])
+ t[2] = e[1];
+ else if (t[1] == e[1])
+ t[2] = e[0];
+ }
+ }
+
+ for (int i = 0; i < tris.size()/4; ++i)
+ {
+ int* t = &tris[i*4];
+ if (t[0] == -1 || t[1] == -1 || t[2] == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
+ t[0] = tris[tris.size()-4];
+ t[1] = tris[tris.size()-3];
+ t[2] = tris[tris.size()-2];
+ t[3] = tris[tris.size()-1];
+ tris.resize(tris.size()-4);
+ --i;
+ }
+ }
+}
+
+// Calculate minimum extend of the polygon.
+static float polyMinExtent(const float* verts, const int nverts)
+{
+ float minDist = FLT_MAX;
+ for (int i = 0; i < nverts; i++)
+ {
+ const int ni = (i+1) % nverts;
+ const float* p1 = &verts[i*3];
+ const float* p2 = &verts[ni*3];
+ float maxEdgeDist = 0;
+ for (int j = 0; j < nverts; j++)
+ {
+ if (j == i || j == ni) continue;
+ float d = distancePtSeg2d(&verts[j*3], p1,p2);
+ maxEdgeDist = rcMax(maxEdgeDist, d);
+ }
+ minDist = rcMin(minDist, maxEdgeDist);
+ }
+ return rcSqrt(minDist);
+}
+
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, rcIntArray& tris)
+{
+ int start = 0, left = 1, right = nhull-1;
+
+ // Start from an ear with shortest perimeter.
+ // This tends to favor well formed triangles as starting point.
+ float dmin = 0;
+ for (int i = 0; i < nhull; i++)
+ {
+ int pi = prev(i, nhull);
+ int ni = next(i, nhull);
+ const float* pv = &verts[hull[pi]*3];
+ const float* cv = &verts[hull[i]*3];
+ const float* nv = &verts[hull[ni]*3];
+ const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
+ if (d < dmin)
+ {
+ start = i;
+ left = ni;
+ right = pi;
+ dmin = d;
+ }
+ }
+
+ // Add first triangle
+ tris.push(hull[start]);
+ tris.push(hull[left]);
+ tris.push(hull[right]);
+ tris.push(0);
+
+ // Triangulate the polygon by moving left or right,
+ // depending on which triangle has shorter perimeter.
+ // This heuristic was chose emprically, since it seems
+ // handle tesselated straight edges well.
+ while (next(left, nhull) != right)
+ {
+ // Check to see if se should advance left or right.
+ int nleft = next(left, nhull);
+ int nright = prev(right, nhull);
+
+ const float* cvleft = &verts[hull[left]*3];
+ const float* nvleft = &verts[hull[nleft]*3];
+ const float* cvright = &verts[hull[right]*3];
+ const float* nvright = &verts[hull[nright]*3];
+ const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
+ const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
+
+ if (dleft < dright)
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nleft]);
+ tris.push(hull[right]);
+ tris.push(0);
+ left = nleft;
+ }
+ else
+ {
+ tris.push(hull[left]);
+ tris.push(hull[nright]);
+ tris.push(hull[right]);
+ tris.push(0);
+ right = nright;
+ }
+ }
+}
+
+
+inline float getJitterX(const int i)
+{
+ return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
+}
+
+inline float getJitterY(const int i)
+{
+ return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
+}
+
+static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
+ const float sampleDist, const float sampleMaxError,
+ const int heightSearchRadius, const rcCompactHeightfield& chf,
+ const rcHeightPatch& hp, float* verts, int& nverts,
+ rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
+{
+ static const int MAX_VERTS = 127;
+ static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
+ static const int MAX_VERTS_PER_EDGE = 32;
+ float edge[(MAX_VERTS_PER_EDGE+1)*3];
+ int hull[MAX_VERTS];
+ int nhull = 0;
+
+ nverts = nin;
+
+ for (int i = 0; i < nin; ++i)
+ rcVcopy(&verts[i*3], &in[i*3]);
+
+ edges.resize(0);
+ tris.resize(0);
+
+ const float cs = chf.cs;
+ const float ics = 1.0f/cs;
+
+ // Calculate minimum extents of the polygon based on input data.
+ float minExtent = polyMinExtent(verts, nverts);
+
+ // Tessellate outlines.
+ // This is done in separate pass in order to ensure
+ // seamless height values across the ply boundaries.
+ if (sampleDist > 0)
+ {
+ for (int i = 0, j = nin-1; i < nin; j=i++)
+ {
+ const float* vj = &in[j*3];
+ const float* vi = &in[i*3];
+ bool swapped = false;
+ // Make sure the segments are always handled in same order
+ // using lexological sort or else there will be seams.
+ if (fabsf(vj[0]-vi[0]) < 1e-6f)
+ {
+ if (vj[2] > vi[2])
+ {
+ rcSwap(vj,vi);
+ swapped = true;
+ }
+ }
+ else
+ {
+ if (vj[0] > vi[0])
+ {
+ rcSwap(vj,vi);
+ swapped = true;
+ }
+ }
+ // Create samples along the edge.
+ float dx = vi[0] - vj[0];
+ float dy = vi[1] - vj[1];
+ float dz = vi[2] - vj[2];
+ float d = sqrtf(dx*dx + dz*dz);
+ int nn = 1 + (int)floorf(d/sampleDist);
+ if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
+ if (nverts+nn >= MAX_VERTS)
+ nn = MAX_VERTS-1-nverts;
+
+ for (int k = 0; k <= nn; ++k)
+ {
+ float u = (float)k/(float)nn;
+ float* pos = &edge[k*3];
+ pos[0] = vj[0] + dx*u;
+ pos[1] = vj[1] + dy*u;
+ pos[2] = vj[2] + dz*u;
+ pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
+ }
+ // Simplify samples.
+ int idx[MAX_VERTS_PER_EDGE] = {0,nn};
+ int nidx = 2;
+ for (int k = 0; k < nidx-1; )
+ {
+ const int a = idx[k];
+ const int b = idx[k+1];
+ const float* va = &edge[a*3];
+ const float* vb = &edge[b*3];
+ // Find maximum deviation along the segment.
+ float maxd = 0;
+ int maxi = -1;
+ for (int m = a+1; m < b; ++m)
+ {
+ float dev = distancePtSeg(&edge[m*3],va,vb);
+ if (dev > maxd)
+ {
+ maxd = dev;
+ maxi = m;
+ }
+ }
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1 && maxd > rcSqr(sampleMaxError))
+ {
+ for (int m = nidx; m > k; --m)
+ idx[m] = idx[m-1];
+ idx[k+1] = maxi;
+ nidx++;
+ }
+ else
+ {
+ ++k;
+ }
+ }
+
+ hull[nhull++] = j;
+ // Add new vertices.
+ if (swapped)
+ {
+ for (int k = nidx-2; k > 0; --k)
+ {
+ rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
+ hull[nhull++] = nverts;
+ nverts++;
+ }
+ }
+ else
+ {
+ for (int k = 1; k < nidx-1; ++k)
+ {
+ rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
+ hull[nhull++] = nverts;
+ nverts++;
+ }
+ }
+ }
+ }
+
+ // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
+ if (minExtent < sampleDist*2)
+ {
+ triangulateHull(nverts, verts, nhull, hull, tris);
+ return true;
+ }
+
+ // Tessellate the base mesh.
+ // We're using the triangulateHull instead of delaunayHull as it tends to
+ // create a bit better triangulation for long thin triangles when there
+ // are no internal points.
+ triangulateHull(nverts, verts, nhull, hull, tris);
+
+ if (tris.size() == 0)
+ {
+ // Could not triangulate the poly, make sure there is some valid data there.
+ ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
+ return true;
+ }
+
+ if (sampleDist > 0)
+ {
+ // Create sample locations in a grid.
+ float bmin[3], bmax[3];
+ rcVcopy(bmin, in);
+ rcVcopy(bmax, in);
+ for (int i = 1; i < nin; ++i)
+ {
+ rcVmin(bmin, &in[i*3]);
+ rcVmax(bmax, &in[i*3]);
+ }
+ int x0 = (int)floorf(bmin[0]/sampleDist);
+ int x1 = (int)ceilf(bmax[0]/sampleDist);
+ int z0 = (int)floorf(bmin[2]/sampleDist);
+ int z1 = (int)ceilf(bmax[2]/sampleDist);
+ samples.resize(0);
+ for (int z = z0; z < z1; ++z)
+ {
+ for (int x = x0; x < x1; ++x)
+ {
+ float pt[3];
+ pt[0] = x*sampleDist;
+ pt[1] = (bmax[1]+bmin[1])*0.5f;
+ pt[2] = z*sampleDist;
+ // Make sure the samples are not too close to the edges.
+ if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
+ samples.push(x);
+ samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
+ samples.push(z);
+ samples.push(0); // Not added
+ }
+ }
+
+ // Add the samples starting from the one that has the most
+ // error. The procedure stops when all samples are added
+ // or when the max error is within treshold.
+ const int nsamples = samples.size()/4;
+ for (int iter = 0; iter < nsamples; ++iter)
+ {
+ if (nverts >= MAX_VERTS)
+ break;
+
+ // Find sample with most error.
+ float bestpt[3] = {0,0,0};
+ float bestd = 0;
+ int besti = -1;
+ for (int i = 0; i < nsamples; ++i)
+ {
+ const int* s = &samples[i*4];
+ if (s[3]) continue; // skip added.
+ float pt[3];
+ // The sample location is jittered to get rid of some bad triangulations
+ // which are cause by symmetrical data from the grid structure.
+ pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
+ pt[1] = s[1]*chf.ch;
+ pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
+ float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
+ if (d < 0) continue; // did not hit the mesh.
+ if (d > bestd)
+ {
+ bestd = d;
+ besti = i;
+ rcVcopy(bestpt,pt);
+ }
+ }
+ // If the max error is within accepted threshold, stop tesselating.
+ if (bestd <= sampleMaxError || besti == -1)
+ break;
+ // Mark sample as added.
+ samples[besti*4+3] = 1;
+ // Add the new sample point.
+ rcVcopy(&verts[nverts*3],bestpt);
+ nverts++;
+
+ // Create new triangulation.
+ // TODO: Incremental add instead of full rebuild.
+ edges.resize(0);
+ tris.resize(0);
+ delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
+ }
+ }
+
+ const int ntris = tris.size()/4;
+ if (ntris > MAX_TRIS)
+ {
+ tris.resize(MAX_TRIS*4);
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
+ }
+
+ return true;
+}
+
+static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& array)
+{
+ // Note: Reads to the compact heightfield are offset by border size (bs)
+ // since border size offset is already removed from the polymesh vertices.
+
+ static const int offset[9*2] =
+ {
+ 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
+ };
+
+ // Find cell closest to a poly vertex
+ int startCellX = 0, startCellY = 0, startSpanIndex = -1;
+ int dmin = RC_UNSET_HEIGHT;
+ for (int j = 0; j < npoly && dmin > 0; ++j)
+ {
+ for (int k = 0; k < 9 && dmin > 0; ++k)
+ {
+ const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
+ const int ay = (int)verts[poly[j]*3+1];
+ const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
+ if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
+ az < hp.ymin || az >= hp.ymin+hp.height)
+ continue;
+
+ const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ int d = rcAbs(ay - (int)s.y);
+ if (d < dmin)
+ {
+ startCellX = ax;
+ startCellY = az;
+ startSpanIndex = i;
+ dmin = d;
+ }
+ }
+ }
+ }
+
+ rcAssert(startSpanIndex != -1);
+ // Find center of the polygon
+ int pcx = 0, pcy = 0;
+ for (int j = 0; j < npoly; ++j)
+ {
+ pcx += (int)verts[poly[j]*3+0];
+ pcy += (int)verts[poly[j]*3+2];
+ }
+ pcx /= npoly;
+ pcy /= npoly;
+
+ // Use seeds array as a stack for DFS
+ array.resize(0);
+ array.push(startCellX);
+ array.push(startCellY);
+ array.push(startSpanIndex);
+
+ int dirs[] = { 0, 1, 2, 3 };
+ memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
+ // DFS to move to the center. Note that we need a DFS here and can not just move
+ // directly towards the center without recording intermediate nodes, even though the polygons
+ // are convex. In very rare we can get stuck due to contour simplification if we do not
+ // record nodes.
+ int cx = -1, cy = -1, ci = -1;
+ while (true)
+ {
+ if (array.size() < 3)
+ {
+ ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
+ break;
+ }
+
+ ci = array.pop();
+ cy = array.pop();
+ cx = array.pop();
+
+ if (cx == pcx && cy == pcy)
+ break;
+
+ // If we are already at the correct X-position, prefer direction
+ // directly towards the center in the Y-axis; otherwise prefer
+ // direction in the X-axis
+ int directDir;
+ if (cx == pcx)
+ directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
+ else
+ directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
+
+ // Push the direct dir last so we start with this on next iteration
+ rcSwap(dirs[directDir], dirs[3]);
+
+ const rcCompactSpan& cs = chf.spans[ci];
+ for (int i = 0; i < 4; i++)
+ {
+ int dir = dirs[i];
+ if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
+ continue;
+
+ int newX = cx + rcGetDirOffsetX(dir);
+ int newY = cy + rcGetDirOffsetY(dir);
+
+ int hpx = newX - hp.xmin;
+ int hpy = newY - hp.ymin;
+ if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
+ continue;
+
+ if (hp.data[hpx+hpy*hp.width] != 0)
+ continue;
+
+ hp.data[hpx+hpy*hp.width] = 1;
+ array.push(newX);
+ array.push(newY);
+ array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
+ }
+
+ rcSwap(dirs[directDir], dirs[3]);
+ }
+
+ array.resize(0);
+ // getHeightData seeds are given in coordinates with borders
+ array.push(cx+bs);
+ array.push(cy+bs);
+ array.push(ci);
+
+ memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+ const rcCompactSpan& cs = chf.spans[ci];
+ hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
+}
+
+
+static void push3(rcIntArray& queue, int v1, int v2, int v3)
+{
+ queue.resize(queue.size() + 3);
+ queue[queue.size() - 3] = v1;
+ queue[queue.size() - 2] = v2;
+ queue[queue.size() - 1] = v3;
+}
+
+static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
+ const unsigned short* poly, const int npoly,
+ const unsigned short* verts, const int bs,
+ rcHeightPatch& hp, rcIntArray& queue,
+ int region)
+{
+ // Note: Reads to the compact heightfield are offset by border size (bs)
+ // since border size offset is already removed from the polymesh vertices.
+
+ queue.resize(0);
+ // Set all heights to RC_UNSET_HEIGHT.
+ memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
+
+ bool empty = true;
+
+ // We cannot sample from this poly if it was created from polys
+ // of different regions. If it was then it could potentially be overlapping
+ // with polys of that region and the heights sampled here could be wrong.
+ if (region != RC_MULTIPLE_REGS)
+ {
+ // Copy the height from the same region, and mark region borders
+ // as seed points to fill the rest.
+ for (int hy = 0; hy < hp.height; hy++)
+ {
+ int y = hp.ymin + hy + bs;
+ for (int hx = 0; hx < hp.width; hx++)
+ {
+ int x = hp.xmin + hx + bs;
+ const rcCompactCell& c = chf.cells[x + y*chf.width];
+ for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
+ {
+ const rcCompactSpan& s = chf.spans[i];
+ if (s.reg == region)
+ {
+ // Store height
+ hp.data[hx + hy*hp.width] = s.y;
+ empty = false;
+
+ // If any of the neighbours is not in same region,
+ // add the current location as flood fill start
+ bool border = false;
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+ if (as.reg != region)
+ {
+ border = true;
+ break;
+ }
+ }
+ }
+ if (border)
+ push3(queue, x, y, i);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // if the polygon does not contain any points from the current region (rare, but happens)
+ // or if it could potentially be overlapping polygons of the same region,
+ // then use the center as the seed point.
+ if (empty)
+ seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
+
+ static const int RETRACT_SIZE = 256;
+ int head = 0;
+
+ // We assume the seed is centered in the polygon, so a BFS to collect
+ // height data will ensure we do not move onto overlapping polygons and
+ // sample wrong heights.
+ while (head*3 < queue.size())
+ {
+ int cx = queue[head*3+0];
+ int cy = queue[head*3+1];
+ int ci = queue[head*3+2];
+ head++;
+ if (head >= RETRACT_SIZE)
+ {
+ head = 0;
+ if (queue.size() > RETRACT_SIZE*3)
+ memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
+ queue.resize(queue.size()-RETRACT_SIZE*3);
+ }
+
+ const rcCompactSpan& cs = chf.spans[ci];
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
+
+ const int ax = cx + rcGetDirOffsetX(dir);
+ const int ay = cy + rcGetDirOffsetY(dir);
+ const int hx = ax - hp.xmin - bs;
+ const int hy = ay - hp.ymin - bs;
+
+ if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
+ continue;
+
+ if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
+ continue;
+
+ const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+
+ hp.data[hx + hy*hp.width] = as.y;
+
+ push3(queue, ax, ay, ai);
+ }
+ }
+}
+
+static unsigned char getEdgeFlags(const float* va, const float* vb,
+ const float* vpoly, const int npoly)
+{
+ // Return true if edge (va,vb) is part of the polygon.
+ static const float thrSqr = rcSqr(0.001f);
+ for (int i = 0, j = npoly-1; i < npoly; j=i++)
+ {
+ if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
+ distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
+ return 1;
+ }
+ return 0;
+}
+
+static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
+ const float* vpoly, const int npoly)
+{
+ unsigned char flags = 0;
+ flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
+ flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
+ flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
+ return flags;
+}
+
+/// @par
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
+bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
+ const float sampleDist, const float sampleMaxError,
+ rcPolyMeshDetail& dmesh)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
+
+ if (mesh.nverts == 0 || mesh.npolys == 0)
+ return true;
+
+ const int nvp = mesh.nvp;
+ const float cs = mesh.cs;
+ const float ch = mesh.ch;
+ const float* orig = mesh.bmin;
+ const int borderSize = mesh.borderSize;
+ const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
+
+ rcIntArray edges(64);
+ rcIntArray tris(512);
+ rcIntArray arr(512);
+ rcIntArray samples(512);
+ float verts[256*3];
+ rcHeightPatch hp;
+ int nPolyVerts = 0;
+ int maxhw = 0, maxhh = 0;
+
+ rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
+ if (!bounds)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
+ return false;
+ }
+ rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
+ if (!poly)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
+ return false;
+ }
+
+ // Find max size for a polygon area.
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ const unsigned short* p = &mesh.polys[i*nvp*2];
+ int& xmin = bounds[i*4+0];
+ int& xmax = bounds[i*4+1];
+ int& ymin = bounds[i*4+2];
+ int& ymax = bounds[i*4+3];
+ xmin = chf.width;
+ xmax = 0;
+ ymin = chf.height;
+ ymax = 0;
+ for (int j = 0; j < nvp; ++j)
+ {
+ if(p[j] == RC_MESH_NULL_IDX) break;
+ const unsigned short* v = &mesh.verts[p[j]*3];
+ xmin = rcMin(xmin, (int)v[0]);
+ xmax = rcMax(xmax, (int)v[0]);
+ ymin = rcMin(ymin, (int)v[2]);
+ ymax = rcMax(ymax, (int)v[2]);
+ nPolyVerts++;
+ }
+ xmin = rcMax(0,xmin-1);
+ xmax = rcMin(chf.width,xmax+1);
+ ymin = rcMax(0,ymin-1);
+ ymax = rcMin(chf.height,ymax+1);
+ if (xmin >= xmax || ymin >= ymax) continue;
+ maxhw = rcMax(maxhw, xmax-xmin);
+ maxhh = rcMax(maxhh, ymax-ymin);
+ }
+
+ hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
+ if (!hp.data)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
+ return false;
+ }
+
+ dmesh.nmeshes = mesh.npolys;
+ dmesh.nverts = 0;
+ dmesh.ntris = 0;
+ dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
+ if (!dmesh.meshes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
+ return false;
+ }
+
+ int vcap = nPolyVerts+nPolyVerts/2;
+ int tcap = vcap*2;
+
+ dmesh.nverts = 0;
+ dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
+ if (!dmesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
+ return false;
+ }
+ dmesh.ntris = 0;
+ dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
+ if (!dmesh.tris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
+ return false;
+ }
+
+ for (int i = 0; i < mesh.npolys; ++i)
+ {
+ const unsigned short* p = &mesh.polys[i*nvp*2];
+
+ // Store polygon vertices for processing.
+ int npoly = 0;
+ for (int j = 0; j < nvp; ++j)
+ {
+ if(p[j] == RC_MESH_NULL_IDX) break;
+ const unsigned short* v = &mesh.verts[p[j]*3];
+ poly[j*3+0] = v[0]*cs;
+ poly[j*3+1] = v[1]*ch;
+ poly[j*3+2] = v[2]*cs;
+ npoly++;
+ }
+
+ // Get the height data from the area of the polygon.
+ hp.xmin = bounds[i*4+0];
+ hp.ymin = bounds[i*4+2];
+ hp.width = bounds[i*4+1]-bounds[i*4+0];
+ hp.height = bounds[i*4+3]-bounds[i*4+2];
+ getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
+
+ // Build detail mesh.
+ int nverts = 0;
+ if (!buildPolyDetail(ctx, poly, npoly,
+ sampleDist, sampleMaxError,
+ heightSearchRadius, chf, hp,
+ verts, nverts, tris,
+ edges, samples))
+ {
+ return false;
+ }
+
+ // Move detail verts to world space.
+ for (int j = 0; j < nverts; ++j)
+ {
+ verts[j*3+0] += orig[0];
+ verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
+ verts[j*3+2] += orig[2];
+ }
+ // Offset poly too, will be used to flag checking.
+ for (int j = 0; j < npoly; ++j)
+ {
+ poly[j*3+0] += orig[0];
+ poly[j*3+1] += orig[1];
+ poly[j*3+2] += orig[2];
+ }
+
+ // Store detail submesh.
+ const int ntris = tris.size()/4;
+
+ dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
+ dmesh.meshes[i*4+1] = (unsigned int)nverts;
+ dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
+ dmesh.meshes[i*4+3] = (unsigned int)ntris;
+
+ // Store vertices, allocate more memory if necessary.
+ if (dmesh.nverts+nverts > vcap)
+ {
+ while (dmesh.nverts+nverts > vcap)
+ vcap += 256;
+
+ float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
+ if (!newv)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
+ return false;
+ }
+ if (dmesh.nverts)
+ memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
+ rcFree(dmesh.verts);
+ dmesh.verts = newv;
+ }
+ for (int j = 0; j < nverts; ++j)
+ {
+ dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
+ dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
+ dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
+ dmesh.nverts++;
+ }
+
+ // Store triangles, allocate more memory if necessary.
+ if (dmesh.ntris+ntris > tcap)
+ {
+ while (dmesh.ntris+ntris > tcap)
+ tcap += 256;
+ unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
+ if (!newt)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
+ return false;
+ }
+ if (dmesh.ntris)
+ memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
+ rcFree(dmesh.tris);
+ dmesh.tris = newt;
+ }
+ for (int j = 0; j < ntris; ++j)
+ {
+ const int* t = &tris[j*4];
+ dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
+ dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
+ dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
+ dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
+ dmesh.ntris++;
+ }
+ }
+
+ return true;
+}
+
+/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
+bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
+{
+ rcAssert(ctx);
+
+ rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
+
+ int maxVerts = 0;
+ int maxTris = 0;
+ int maxMeshes = 0;
+
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ if (!meshes[i]) continue;
+ maxVerts += meshes[i]->nverts;
+ maxTris += meshes[i]->ntris;
+ maxMeshes += meshes[i]->nmeshes;
+ }
+
+ mesh.nmeshes = 0;
+ mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
+ if (!mesh.meshes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
+ return false;
+ }
+
+ mesh.ntris = 0;
+ mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
+ if (!mesh.tris)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
+ return false;
+ }
+
+ mesh.nverts = 0;
+ mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
+ if (!mesh.verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
+ return false;
+ }
+
+ // Merge datas.
+ for (int i = 0; i < nmeshes; ++i)
+ {
+ rcPolyMeshDetail* dm = meshes[i];
+ if (!dm) continue;
+ for (int j = 0; j < dm->nmeshes; ++j)
+ {
+ unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
+ unsigned int* src = &dm->meshes[j*4];
+ dst[0] = (unsigned int)mesh.nverts+src[0];
+ dst[1] = src[1];
+ dst[2] = (unsigned int)mesh.ntris+src[2];
+ dst[3] = src[3];
+ mesh.nmeshes++;
+ }
+
+ for (int k = 0; k < dm->nverts; ++k)
+ {
+ rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
+ mesh.nverts++;
+ }
+ for (int k = 0; k < dm->ntris; ++k)
+ {
+ mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
+ mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
+ mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
+ mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
+ mesh.ntris++;
+ }
+ }
+
+ return true;
+}