summaryrefslogtreecommitdiff
path: root/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/recastnavigation/Recast/Source/RecastContour.cpp')
-rw-r--r--thirdparty/recastnavigation/Recast/Source/RecastContour.cpp1105
1 files changed, 1105 insertions, 0 deletions
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
new file mode 100644
index 0000000000..277ab01501
--- /dev/null
+++ b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp
@@ -0,0 +1,1105 @@
+//
+// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+// 3. This notice may not be removed or altered from any source distribution.
+//
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include "Recast.h"
+#include "RecastAlloc.h"
+#include "RecastAssert.h"
+
+
+static int getCornerHeight(int x, int y, int i, int dir,
+ const rcCompactHeightfield& chf,
+ bool& isBorderVertex)
+{
+ const rcCompactSpan& s = chf.spans[i];
+ int ch = (int)s.y;
+ int dirp = (dir+1) & 0x3;
+
+ unsigned int regs[4] = {0,0,0,0};
+
+ // Combine region and area codes in order to prevent
+ // border vertices which are in between two areas to be removed.
+ regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
+
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ const rcCompactSpan& as = chf.spans[ai];
+ ch = rcMax(ch, (int)as.y);
+ regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
+ if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dirp);
+ const int ay2 = ay + rcGetDirOffsetY(dirp);
+ const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
+ const rcCompactSpan& as2 = chf.spans[ai2];
+ ch = rcMax(ch, (int)as2.y);
+ regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
+ }
+ }
+ if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dirp);
+ const int ay = y + rcGetDirOffsetY(dirp);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
+ const rcCompactSpan& as = chf.spans[ai];
+ ch = rcMax(ch, (int)as.y);
+ regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
+ if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax2 = ax + rcGetDirOffsetX(dir);
+ const int ay2 = ay + rcGetDirOffsetY(dir);
+ const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
+ const rcCompactSpan& as2 = chf.spans[ai2];
+ ch = rcMax(ch, (int)as2.y);
+ regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
+ }
+ }
+
+ // Check if the vertex is special edge vertex, these vertices will be removed later.
+ for (int j = 0; j < 4; ++j)
+ {
+ const int a = j;
+ const int b = (j+1) & 0x3;
+ const int c = (j+2) & 0x3;
+ const int d = (j+3) & 0x3;
+
+ // The vertex is a border vertex there are two same exterior cells in a row,
+ // followed by two interior cells and none of the regions are out of bounds.
+ const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
+ const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
+ const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
+ const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
+ if (twoSameExts && twoInts && intsSameArea && noZeros)
+ {
+ isBorderVertex = true;
+ break;
+ }
+ }
+
+ return ch;
+}
+
+static void walkContour(int x, int y, int i,
+ rcCompactHeightfield& chf,
+ unsigned char* flags, rcIntArray& points)
+{
+ // Choose the first non-connected edge
+ unsigned char dir = 0;
+ while ((flags[i] & (1 << dir)) == 0)
+ dir++;
+
+ unsigned char startDir = dir;
+ int starti = i;
+
+ const unsigned char area = chf.areas[i];
+
+ int iter = 0;
+ while (++iter < 40000)
+ {
+ if (flags[i] & (1 << dir))
+ {
+ // Choose the edge corner
+ bool isBorderVertex = false;
+ bool isAreaBorder = false;
+ int px = x;
+ int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
+ int pz = y;
+ switch(dir)
+ {
+ case 0: pz++; break;
+ case 1: px++; pz++; break;
+ case 2: px++; break;
+ }
+ int r = 0;
+ const rcCompactSpan& s = chf.spans[i];
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
+ r = (int)chf.spans[ai].reg;
+ if (area != chf.areas[ai])
+ isAreaBorder = true;
+ }
+ if (isBorderVertex)
+ r |= RC_BORDER_VERTEX;
+ if (isAreaBorder)
+ r |= RC_AREA_BORDER;
+ points.push(px);
+ points.push(py);
+ points.push(pz);
+ points.push(r);
+
+ flags[i] &= ~(1 << dir); // Remove visited edges
+ dir = (dir+1) & 0x3; // Rotate CW
+ }
+ else
+ {
+ int ni = -1;
+ const int nx = x + rcGetDirOffsetX(dir);
+ const int ny = y + rcGetDirOffsetY(dir);
+ const rcCompactSpan& s = chf.spans[i];
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
+ ni = (int)nc.index + rcGetCon(s, dir);
+ }
+ if (ni == -1)
+ {
+ // Should not happen.
+ return;
+ }
+ x = nx;
+ y = ny;
+ i = ni;
+ dir = (dir+3) & 0x3; // Rotate CCW
+ }
+
+ if (starti == i && startDir == dir)
+ {
+ break;
+ }
+ }
+}
+
+static float distancePtSeg(const int x, const int z,
+ const int px, const int pz,
+ const int qx, const int qz)
+{
+ float pqx = (float)(qx - px);
+ float pqz = (float)(qz - pz);
+ float dx = (float)(x - px);
+ float dz = (float)(z - pz);
+ float d = pqx*pqx + pqz*pqz;
+ float t = pqx*dx + pqz*dz;
+ if (d > 0)
+ t /= d;
+ if (t < 0)
+ t = 0;
+ else if (t > 1)
+ t = 1;
+
+ dx = px + t*pqx - x;
+ dz = pz + t*pqz - z;
+
+ return dx*dx + dz*dz;
+}
+
+static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
+ const float maxError, const int maxEdgeLen, const int buildFlags)
+{
+ // Add initial points.
+ bool hasConnections = false;
+ for (int i = 0; i < points.size(); i += 4)
+ {
+ if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
+ {
+ hasConnections = true;
+ break;
+ }
+ }
+
+ if (hasConnections)
+ {
+ // The contour has some portals to other regions.
+ // Add a new point to every location where the region changes.
+ for (int i = 0, ni = points.size()/4; i < ni; ++i)
+ {
+ int ii = (i+1) % ni;
+ const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
+ const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
+ if (differentRegs || areaBorders)
+ {
+ simplified.push(points[i*4+0]);
+ simplified.push(points[i*4+1]);
+ simplified.push(points[i*4+2]);
+ simplified.push(i);
+ }
+ }
+ }
+
+ if (simplified.size() == 0)
+ {
+ // If there is no connections at all,
+ // create some initial points for the simplification process.
+ // Find lower-left and upper-right vertices of the contour.
+ int llx = points[0];
+ int lly = points[1];
+ int llz = points[2];
+ int lli = 0;
+ int urx = points[0];
+ int ury = points[1];
+ int urz = points[2];
+ int uri = 0;
+ for (int i = 0; i < points.size(); i += 4)
+ {
+ int x = points[i+0];
+ int y = points[i+1];
+ int z = points[i+2];
+ if (x < llx || (x == llx && z < llz))
+ {
+ llx = x;
+ lly = y;
+ llz = z;
+ lli = i/4;
+ }
+ if (x > urx || (x == urx && z > urz))
+ {
+ urx = x;
+ ury = y;
+ urz = z;
+ uri = i/4;
+ }
+ }
+ simplified.push(llx);
+ simplified.push(lly);
+ simplified.push(llz);
+ simplified.push(lli);
+
+ simplified.push(urx);
+ simplified.push(ury);
+ simplified.push(urz);
+ simplified.push(uri);
+ }
+
+ // Add points until all raw points are within
+ // error tolerance to the simplified shape.
+ const int pn = points.size()/4;
+ for (int i = 0; i < simplified.size()/4; )
+ {
+ int ii = (i+1) % (simplified.size()/4);
+
+ int ax = simplified[i*4+0];
+ int az = simplified[i*4+2];
+ int ai = simplified[i*4+3];
+
+ int bx = simplified[ii*4+0];
+ int bz = simplified[ii*4+2];
+ int bi = simplified[ii*4+3];
+
+ // Find maximum deviation from the segment.
+ float maxd = 0;
+ int maxi = -1;
+ int ci, cinc, endi;
+
+ // Traverse the segment in lexilogical order so that the
+ // max deviation is calculated similarly when traversing
+ // opposite segments.
+ if (bx > ax || (bx == ax && bz > az))
+ {
+ cinc = 1;
+ ci = (ai+cinc) % pn;
+ endi = bi;
+ }
+ else
+ {
+ cinc = pn-1;
+ ci = (bi+cinc) % pn;
+ endi = ai;
+ rcSwap(ax, bx);
+ rcSwap(az, bz);
+ }
+
+ // Tessellate only outer edges or edges between areas.
+ if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
+ (points[ci*4+3] & RC_AREA_BORDER))
+ {
+ while (ci != endi)
+ {
+ float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
+ if (d > maxd)
+ {
+ maxd = d;
+ maxi = ci;
+ }
+ ci = (ci+cinc) % pn;
+ }
+ }
+
+
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1 && maxd > (maxError*maxError))
+ {
+ // Add space for the new point.
+ simplified.resize(simplified.size()+4);
+ const int n = simplified.size()/4;
+ for (int j = n-1; j > i; --j)
+ {
+ simplified[j*4+0] = simplified[(j-1)*4+0];
+ simplified[j*4+1] = simplified[(j-1)*4+1];
+ simplified[j*4+2] = simplified[(j-1)*4+2];
+ simplified[j*4+3] = simplified[(j-1)*4+3];
+ }
+ // Add the point.
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
+ }
+ else
+ {
+ ++i;
+ }
+ }
+
+ // Split too long edges.
+ if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
+ {
+ for (int i = 0; i < simplified.size()/4; )
+ {
+ const int ii = (i+1) % (simplified.size()/4);
+
+ const int ax = simplified[i*4+0];
+ const int az = simplified[i*4+2];
+ const int ai = simplified[i*4+3];
+
+ const int bx = simplified[ii*4+0];
+ const int bz = simplified[ii*4+2];
+ const int bi = simplified[ii*4+3];
+
+ // Find maximum deviation from the segment.
+ int maxi = -1;
+ int ci = (ai+1) % pn;
+
+ // Tessellate only outer edges or edges between areas.
+ bool tess = false;
+ // Wall edges.
+ if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
+ tess = true;
+ // Edges between areas.
+ if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
+ tess = true;
+
+ if (tess)
+ {
+ int dx = bx - ax;
+ int dz = bz - az;
+ if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
+ {
+ // Round based on the segments in lexilogical order so that the
+ // max tesselation is consistent regardles in which direction
+ // segments are traversed.
+ const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
+ if (n > 1)
+ {
+ if (bx > ax || (bx == ax && bz > az))
+ maxi = (ai + n/2) % pn;
+ else
+ maxi = (ai + (n+1)/2) % pn;
+ }
+ }
+ }
+
+ // If the max deviation is larger than accepted error,
+ // add new point, else continue to next segment.
+ if (maxi != -1)
+ {
+ // Add space for the new point.
+ simplified.resize(simplified.size()+4);
+ const int n = simplified.size()/4;
+ for (int j = n-1; j > i; --j)
+ {
+ simplified[j*4+0] = simplified[(j-1)*4+0];
+ simplified[j*4+1] = simplified[(j-1)*4+1];
+ simplified[j*4+2] = simplified[(j-1)*4+2];
+ simplified[j*4+3] = simplified[(j-1)*4+3];
+ }
+ // Add the point.
+ simplified[(i+1)*4+0] = points[maxi*4+0];
+ simplified[(i+1)*4+1] = points[maxi*4+1];
+ simplified[(i+1)*4+2] = points[maxi*4+2];
+ simplified[(i+1)*4+3] = maxi;
+ }
+ else
+ {
+ ++i;
+ }
+ }
+ }
+
+ for (int i = 0; i < simplified.size()/4; ++i)
+ {
+ // The edge vertex flag is take from the current raw point,
+ // and the neighbour region is take from the next raw point.
+ const int ai = (simplified[i*4+3]+1) % pn;
+ const int bi = simplified[i*4+3];
+ simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
+ }
+
+}
+
+static int calcAreaOfPolygon2D(const int* verts, const int nverts)
+{
+ int area = 0;
+ for (int i = 0, j = nverts-1; i < nverts; j=i++)
+ {
+ const int* vi = &verts[i*4];
+ const int* vj = &verts[j*4];
+ area += vi[0] * vj[2] - vj[0] * vi[2];
+ }
+ return (area+1) / 2;
+}
+
+// TODO: these are the same as in RecastMesh.cpp, consider using the same.
+// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
+inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
+inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
+
+inline int area2(const int* a, const int* b, const int* c)
+{
+ return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
+}
+
+// Exclusive or: true iff exactly one argument is true.
+// The arguments are negated to ensure that they are 0/1
+// values. Then the bitwise Xor operator may apply.
+// (This idea is due to Michael Baldwin.)
+inline bool xorb(bool x, bool y)
+{
+ return !x ^ !y;
+}
+
+// Returns true iff c is strictly to the left of the directed
+// line through a to b.
+inline bool left(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) < 0;
+}
+
+inline bool leftOn(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) <= 0;
+}
+
+inline bool collinear(const int* a, const int* b, const int* c)
+{
+ return area2(a, b, c) == 0;
+}
+
+// Returns true iff ab properly intersects cd: they share
+// a point interior to both segments. The properness of the
+// intersection is ensured by using strict leftness.
+static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
+{
+ // Eliminate improper cases.
+ if (collinear(a,b,c) || collinear(a,b,d) ||
+ collinear(c,d,a) || collinear(c,d,b))
+ return false;
+
+ return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
+}
+
+// Returns T iff (a,b,c) are collinear and point c lies
+// on the closed segement ab.
+static bool between(const int* a, const int* b, const int* c)
+{
+ if (!collinear(a, b, c))
+ return false;
+ // If ab not vertical, check betweenness on x; else on y.
+ if (a[0] != b[0])
+ return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
+ else
+ return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
+}
+
+// Returns true iff segments ab and cd intersect, properly or improperly.
+static bool intersect(const int* a, const int* b, const int* c, const int* d)
+{
+ if (intersectProp(a, b, c, d))
+ return true;
+ else if (between(a, b, c) || between(a, b, d) ||
+ between(c, d, a) || between(c, d, b))
+ return true;
+ else
+ return false;
+}
+
+static bool vequal(const int* a, const int* b)
+{
+ return a[0] == b[0] && a[2] == b[2];
+}
+
+static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
+{
+ // For each edge (k,k+1) of P
+ for (int k = 0; k < n; k++)
+ {
+ int k1 = next(k, n);
+ // Skip edges incident to i.
+ if (i == k || i == k1)
+ continue;
+ const int* p0 = &verts[k * 4];
+ const int* p1 = &verts[k1 * 4];
+ if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
+ continue;
+
+ if (intersect(d0, d1, p0, p1))
+ return true;
+ }
+ return false;
+}
+
+static bool inCone(int i, int n, const int* verts, const int* pj)
+{
+ const int* pi = &verts[i * 4];
+ const int* pi1 = &verts[next(i, n) * 4];
+ const int* pin1 = &verts[prev(i, n) * 4];
+
+ // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
+ if (leftOn(pin1, pi, pi1))
+ return left(pi, pj, pin1) && left(pj, pi, pi1);
+ // Assume (i-1,i,i+1) not collinear.
+ // else P[i] is reflex.
+ return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
+}
+
+
+static void removeDegenerateSegments(rcIntArray& simplified)
+{
+ // Remove adjacent vertices which are equal on xz-plane,
+ // or else the triangulator will get confused.
+ int npts = simplified.size()/4;
+ for (int i = 0; i < npts; ++i)
+ {
+ int ni = next(i, npts);
+
+ if (vequal(&simplified[i*4], &simplified[ni*4]))
+ {
+ // Degenerate segment, remove.
+ for (int j = i; j < simplified.size()/4-1; ++j)
+ {
+ simplified[j*4+0] = simplified[(j+1)*4+0];
+ simplified[j*4+1] = simplified[(j+1)*4+1];
+ simplified[j*4+2] = simplified[(j+1)*4+2];
+ simplified[j*4+3] = simplified[(j+1)*4+3];
+ }
+ simplified.resize(simplified.size()-4);
+ npts--;
+ }
+ }
+}
+
+
+static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
+{
+ const int maxVerts = ca.nverts + cb.nverts + 2;
+ int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
+ if (!verts)
+ return false;
+
+ int nv = 0;
+
+ // Copy contour A.
+ for (int i = 0; i <= ca.nverts; ++i)
+ {
+ int* dst = &verts[nv*4];
+ const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
+ dst[0] = src[0];
+ dst[1] = src[1];
+ dst[2] = src[2];
+ dst[3] = src[3];
+ nv++;
+ }
+
+ // Copy contour B
+ for (int i = 0; i <= cb.nverts; ++i)
+ {
+ int* dst = &verts[nv*4];
+ const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
+ dst[0] = src[0];
+ dst[1] = src[1];
+ dst[2] = src[2];
+ dst[3] = src[3];
+ nv++;
+ }
+
+ rcFree(ca.verts);
+ ca.verts = verts;
+ ca.nverts = nv;
+
+ rcFree(cb.verts);
+ cb.verts = 0;
+ cb.nverts = 0;
+
+ return true;
+}
+
+struct rcContourHole
+{
+ rcContour* contour;
+ int minx, minz, leftmost;
+};
+
+struct rcContourRegion
+{
+ rcContour* outline;
+ rcContourHole* holes;
+ int nholes;
+};
+
+struct rcPotentialDiagonal
+{
+ int vert;
+ int dist;
+};
+
+// Finds the lowest leftmost vertex of a contour.
+static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
+{
+ *minx = contour->verts[0];
+ *minz = contour->verts[2];
+ *leftmost = 0;
+ for (int i = 1; i < contour->nverts; i++)
+ {
+ const int x = contour->verts[i*4+0];
+ const int z = contour->verts[i*4+2];
+ if (x < *minx || (x == *minx && z < *minz))
+ {
+ *minx = x;
+ *minz = z;
+ *leftmost = i;
+ }
+ }
+}
+
+static int compareHoles(const void* va, const void* vb)
+{
+ const rcContourHole* a = (const rcContourHole*)va;
+ const rcContourHole* b = (const rcContourHole*)vb;
+ if (a->minx == b->minx)
+ {
+ if (a->minz < b->minz)
+ return -1;
+ if (a->minz > b->minz)
+ return 1;
+ }
+ else
+ {
+ if (a->minx < b->minx)
+ return -1;
+ if (a->minx > b->minx)
+ return 1;
+ }
+ return 0;
+}
+
+
+static int compareDiagDist(const void* va, const void* vb)
+{
+ const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
+ const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
+ if (a->dist < b->dist)
+ return -1;
+ if (a->dist > b->dist)
+ return 1;
+ return 0;
+}
+
+
+static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
+{
+ // Sort holes from left to right.
+ for (int i = 0; i < region.nholes; i++)
+ findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
+
+ qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
+
+ int maxVerts = region.outline->nverts;
+ for (int i = 0; i < region.nholes; i++)
+ maxVerts += region.holes[i].contour->nverts;
+
+ rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
+ if (!diags)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
+ return;
+ }
+
+ rcContour* outline = region.outline;
+
+ // Merge holes into the outline one by one.
+ for (int i = 0; i < region.nholes; i++)
+ {
+ rcContour* hole = region.holes[i].contour;
+
+ int index = -1;
+ int bestVertex = region.holes[i].leftmost;
+ for (int iter = 0; iter < hole->nverts; iter++)
+ {
+ // Find potential diagonals.
+ // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
+ // ..o j-1
+ // |
+ // | * best
+ // |
+ // j o-----o j+1
+ // :
+ int ndiags = 0;
+ const int* corner = &hole->verts[bestVertex*4];
+ for (int j = 0; j < outline->nverts; j++)
+ {
+ if (inCone(j, outline->nverts, outline->verts, corner))
+ {
+ int dx = outline->verts[j*4+0] - corner[0];
+ int dz = outline->verts[j*4+2] - corner[2];
+ diags[ndiags].vert = j;
+ diags[ndiags].dist = dx*dx + dz*dz;
+ ndiags++;
+ }
+ }
+ // Sort potential diagonals by distance, we want to make the connection as short as possible.
+ qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
+
+ // Find a diagonal that is not intersecting the outline not the remaining holes.
+ index = -1;
+ for (int j = 0; j < ndiags; j++)
+ {
+ const int* pt = &outline->verts[diags[j].vert*4];
+ bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
+ for (int k = i; k < region.nholes && !intersect; k++)
+ intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
+ if (!intersect)
+ {
+ index = diags[j].vert;
+ break;
+ }
+ }
+ // If found non-intersecting diagonal, stop looking.
+ if (index != -1)
+ break;
+ // All the potential diagonals for the current vertex were intersecting, try next vertex.
+ bestVertex = (bestVertex + 1) % hole->nverts;
+ }
+
+ if (index == -1)
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
+ continue;
+ }
+ if (!mergeContours(*region.outline, *hole, index, bestVertex))
+ {
+ ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
+ continue;
+ }
+ }
+}
+
+
+/// @par
+///
+/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
+/// parameters control how closely the simplified contours will match the raw contours.
+///
+/// Simplified contours are generated such that the vertices for portals between areas match up.
+/// (They are considered mandatory vertices.)
+///
+/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
+///
+/// See the #rcConfig documentation for more information on the configuration parameters.
+///
+/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
+bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
+ const float maxError, const int maxEdgeLen,
+ rcContourSet& cset, const int buildFlags)
+{
+ rcAssert(ctx);
+
+ const int w = chf.width;
+ const int h = chf.height;
+ const int borderSize = chf.borderSize;
+
+ rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
+
+ rcVcopy(cset.bmin, chf.bmin);
+ rcVcopy(cset.bmax, chf.bmax);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ const float pad = borderSize*chf.cs;
+ cset.bmin[0] += pad;
+ cset.bmin[2] += pad;
+ cset.bmax[0] -= pad;
+ cset.bmax[2] -= pad;
+ }
+ cset.cs = chf.cs;
+ cset.ch = chf.ch;
+ cset.width = chf.width - chf.borderSize*2;
+ cset.height = chf.height - chf.borderSize*2;
+ cset.borderSize = chf.borderSize;
+ cset.maxError = maxError;
+
+ int maxContours = rcMax((int)chf.maxRegions, 8);
+ cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
+ if (!cset.conts)
+ return false;
+ cset.nconts = 0;
+
+ rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
+ if (!flags)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
+ return false;
+ }
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ // Mark boundaries.
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ unsigned char res = 0;
+ const rcCompactSpan& s = chf.spans[i];
+ if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
+ {
+ flags[i] = 0;
+ continue;
+ }
+ for (int dir = 0; dir < 4; ++dir)
+ {
+ unsigned short r = 0;
+ if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
+ {
+ const int ax = x + rcGetDirOffsetX(dir);
+ const int ay = y + rcGetDirOffsetY(dir);
+ const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
+ r = chf.spans[ai].reg;
+ }
+ if (r == chf.spans[i].reg)
+ res |= (1 << dir);
+ }
+ flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
+ }
+ }
+ }
+
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ rcIntArray verts(256);
+ rcIntArray simplified(64);
+
+ for (int y = 0; y < h; ++y)
+ {
+ for (int x = 0; x < w; ++x)
+ {
+ const rcCompactCell& c = chf.cells[x+y*w];
+ for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
+ {
+ if (flags[i] == 0 || flags[i] == 0xf)
+ {
+ flags[i] = 0;
+ continue;
+ }
+ const unsigned short reg = chf.spans[i].reg;
+ if (!reg || (reg & RC_BORDER_REG))
+ continue;
+ const unsigned char area = chf.areas[i];
+
+ verts.resize(0);
+ simplified.resize(0);
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+ walkContour(x, y, i, chf, flags, verts);
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
+
+ ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
+ simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
+ removeDegenerateSegments(simplified);
+ ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
+
+
+ // Store region->contour remap info.
+ // Create contour.
+ if (simplified.size()/4 >= 3)
+ {
+ if (cset.nconts >= maxContours)
+ {
+ // Allocate more contours.
+ // This happens when a region has holes.
+ const int oldMax = maxContours;
+ maxContours *= 2;
+ rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
+ for (int j = 0; j < cset.nconts; ++j)
+ {
+ newConts[j] = cset.conts[j];
+ // Reset source pointers to prevent data deletion.
+ cset.conts[j].verts = 0;
+ cset.conts[j].rverts = 0;
+ }
+ rcFree(cset.conts);
+ cset.conts = newConts;
+
+ ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
+ }
+
+ rcContour* cont = &cset.conts[cset.nconts++];
+
+ cont->nverts = simplified.size()/4;
+ cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
+ if (!cont->verts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
+ return false;
+ }
+ memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ for (int j = 0; j < cont->nverts; ++j)
+ {
+ int* v = &cont->verts[j*4];
+ v[0] -= borderSize;
+ v[2] -= borderSize;
+ }
+ }
+
+ cont->nrverts = verts.size()/4;
+ cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
+ if (!cont->rverts)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
+ return false;
+ }
+ memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
+ if (borderSize > 0)
+ {
+ // If the heightfield was build with bordersize, remove the offset.
+ for (int j = 0; j < cont->nrverts; ++j)
+ {
+ int* v = &cont->rverts[j*4];
+ v[0] -= borderSize;
+ v[2] -= borderSize;
+ }
+ }
+
+ cont->reg = reg;
+ cont->area = area;
+ }
+ }
+ }
+ }
+
+ // Merge holes if needed.
+ if (cset.nconts > 0)
+ {
+ // Calculate winding of all polygons.
+ rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
+ if (!winding)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
+ return false;
+ }
+ int nholes = 0;
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // If the contour is wound backwards, it is a hole.
+ winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
+ if (winding[i] < 0)
+ nholes++;
+ }
+
+ if (nholes > 0)
+ {
+ // Collect outline contour and holes contours per region.
+ // We assume that there is one outline and multiple holes.
+ const int nregions = chf.maxRegions+1;
+ rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
+ if (!regions)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
+ return false;
+ }
+ memset(regions, 0, sizeof(rcContourRegion)*nregions);
+
+ rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
+ if (!holes)
+ {
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
+ return false;
+ }
+ memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
+
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ // Positively would contours are outlines, negative holes.
+ if (winding[i] > 0)
+ {
+ if (regions[cont.reg].outline)
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
+ regions[cont.reg].outline = &cont;
+ }
+ else
+ {
+ regions[cont.reg].nholes++;
+ }
+ }
+ int index = 0;
+ for (int i = 0; i < nregions; i++)
+ {
+ if (regions[i].nholes > 0)
+ {
+ regions[i].holes = &holes[index];
+ index += regions[i].nholes;
+ regions[i].nholes = 0;
+ }
+ }
+ for (int i = 0; i < cset.nconts; ++i)
+ {
+ rcContour& cont = cset.conts[i];
+ rcContourRegion& reg = regions[cont.reg];
+ if (winding[i] < 0)
+ reg.holes[reg.nholes++].contour = &cont;
+ }
+
+ // Finally merge each regions holes into the outline.
+ for (int i = 0; i < nregions; i++)
+ {
+ rcContourRegion& reg = regions[i];
+ if (!reg.nholes) continue;
+
+ if (reg.outline)
+ {
+ mergeRegionHoles(ctx, reg);
+ }
+ else
+ {
+ // The region does not have an outline.
+ // This can happen if the contour becaomes selfoverlapping because of
+ // too aggressive simplification settings.
+ ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
+ }
+ }
+ }
+
+ }
+
+ return true;
+}