diff options
Diffstat (limited to 'thirdparty/recastnavigation/Recast/Source/RecastContour.cpp')
-rw-r--r-- | thirdparty/recastnavigation/Recast/Source/RecastContour.cpp | 1105 |
1 files changed, 1105 insertions, 0 deletions
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp new file mode 100644 index 0000000000..277ab01501 --- /dev/null +++ b/thirdparty/recastnavigation/Recast/Source/RecastContour.cpp @@ -0,0 +1,1105 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#define _USE_MATH_DEFINES +#include <math.h> +#include <string.h> +#include <stdio.h> +#include <stdlib.h> +#include "Recast.h" +#include "RecastAlloc.h" +#include "RecastAssert.h" + + +static int getCornerHeight(int x, int y, int i, int dir, + const rcCompactHeightfield& chf, + bool& isBorderVertex) +{ + const rcCompactSpan& s = chf.spans[i]; + int ch = (int)s.y; + int dirp = (dir+1) & 0x3; + + unsigned int regs[4] = {0,0,0,0}; + + // Combine region and area codes in order to prevent + // border vertices which are in between two areas to be removed. + regs[0] = chf.spans[i].reg | (chf.areas[i] << 16); + + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); + const rcCompactSpan& as = chf.spans[ai]; + ch = rcMax(ch, (int)as.y); + regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16); + if (rcGetCon(as, dirp) != RC_NOT_CONNECTED) + { + const int ax2 = ax + rcGetDirOffsetX(dirp); + const int ay2 = ay + rcGetDirOffsetY(dirp); + const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp); + const rcCompactSpan& as2 = chf.spans[ai2]; + ch = rcMax(ch, (int)as2.y); + regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); + } + } + if (rcGetCon(s, dirp) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dirp); + const int ay = y + rcGetDirOffsetY(dirp); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp); + const rcCompactSpan& as = chf.spans[ai]; + ch = rcMax(ch, (int)as.y); + regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16); + if (rcGetCon(as, dir) != RC_NOT_CONNECTED) + { + const int ax2 = ax + rcGetDirOffsetX(dir); + const int ay2 = ay + rcGetDirOffsetY(dir); + const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir); + const rcCompactSpan& as2 = chf.spans[ai2]; + ch = rcMax(ch, (int)as2.y); + regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); + } + } + + // Check if the vertex is special edge vertex, these vertices will be removed later. + for (int j = 0; j < 4; ++j) + { + const int a = j; + const int b = (j+1) & 0x3; + const int c = (j+2) & 0x3; + const int d = (j+3) & 0x3; + + // The vertex is a border vertex there are two same exterior cells in a row, + // followed by two interior cells and none of the regions are out of bounds. + const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b]; + const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0; + const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); + const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0; + if (twoSameExts && twoInts && intsSameArea && noZeros) + { + isBorderVertex = true; + break; + } + } + + return ch; +} + +static void walkContour(int x, int y, int i, + rcCompactHeightfield& chf, + unsigned char* flags, rcIntArray& points) +{ + // Choose the first non-connected edge + unsigned char dir = 0; + while ((flags[i] & (1 << dir)) == 0) + dir++; + + unsigned char startDir = dir; + int starti = i; + + const unsigned char area = chf.areas[i]; + + int iter = 0; + while (++iter < 40000) + { + if (flags[i] & (1 << dir)) + { + // Choose the edge corner + bool isBorderVertex = false; + bool isAreaBorder = false; + int px = x; + int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex); + int pz = y; + switch(dir) + { + case 0: pz++; break; + case 1: px++; pz++; break; + case 2: px++; break; + } + int r = 0; + const rcCompactSpan& s = chf.spans[i]; + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); + r = (int)chf.spans[ai].reg; + if (area != chf.areas[ai]) + isAreaBorder = true; + } + if (isBorderVertex) + r |= RC_BORDER_VERTEX; + if (isAreaBorder) + r |= RC_AREA_BORDER; + points.push(px); + points.push(py); + points.push(pz); + points.push(r); + + flags[i] &= ~(1 << dir); // Remove visited edges + dir = (dir+1) & 0x3; // Rotate CW + } + else + { + int ni = -1; + const int nx = x + rcGetDirOffsetX(dir); + const int ny = y + rcGetDirOffsetY(dir); + const rcCompactSpan& s = chf.spans[i]; + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; + ni = (int)nc.index + rcGetCon(s, dir); + } + if (ni == -1) + { + // Should not happen. + return; + } + x = nx; + y = ny; + i = ni; + dir = (dir+3) & 0x3; // Rotate CCW + } + + if (starti == i && startDir == dir) + { + break; + } + } +} + +static float distancePtSeg(const int x, const int z, + const int px, const int pz, + const int qx, const int qz) +{ + float pqx = (float)(qx - px); + float pqz = (float)(qz - pz); + float dx = (float)(x - px); + float dz = (float)(z - pz); + float d = pqx*pqx + pqz*pqz; + float t = pqx*dx + pqz*dz; + if (d > 0) + t /= d; + if (t < 0) + t = 0; + else if (t > 1) + t = 1; + + dx = px + t*pqx - x; + dz = pz + t*pqz - z; + + return dx*dx + dz*dz; +} + +static void simplifyContour(rcIntArray& points, rcIntArray& simplified, + const float maxError, const int maxEdgeLen, const int buildFlags) +{ + // Add initial points. + bool hasConnections = false; + for (int i = 0; i < points.size(); i += 4) + { + if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0) + { + hasConnections = true; + break; + } + } + + if (hasConnections) + { + // The contour has some portals to other regions. + // Add a new point to every location where the region changes. + for (int i = 0, ni = points.size()/4; i < ni; ++i) + { + int ii = (i+1) % ni; + const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK); + const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER); + if (differentRegs || areaBorders) + { + simplified.push(points[i*4+0]); + simplified.push(points[i*4+1]); + simplified.push(points[i*4+2]); + simplified.push(i); + } + } + } + + if (simplified.size() == 0) + { + // If there is no connections at all, + // create some initial points for the simplification process. + // Find lower-left and upper-right vertices of the contour. + int llx = points[0]; + int lly = points[1]; + int llz = points[2]; + int lli = 0; + int urx = points[0]; + int ury = points[1]; + int urz = points[2]; + int uri = 0; + for (int i = 0; i < points.size(); i += 4) + { + int x = points[i+0]; + int y = points[i+1]; + int z = points[i+2]; + if (x < llx || (x == llx && z < llz)) + { + llx = x; + lly = y; + llz = z; + lli = i/4; + } + if (x > urx || (x == urx && z > urz)) + { + urx = x; + ury = y; + urz = z; + uri = i/4; + } + } + simplified.push(llx); + simplified.push(lly); + simplified.push(llz); + simplified.push(lli); + + simplified.push(urx); + simplified.push(ury); + simplified.push(urz); + simplified.push(uri); + } + + // Add points until all raw points are within + // error tolerance to the simplified shape. + const int pn = points.size()/4; + for (int i = 0; i < simplified.size()/4; ) + { + int ii = (i+1) % (simplified.size()/4); + + int ax = simplified[i*4+0]; + int az = simplified[i*4+2]; + int ai = simplified[i*4+3]; + + int bx = simplified[ii*4+0]; + int bz = simplified[ii*4+2]; + int bi = simplified[ii*4+3]; + + // Find maximum deviation from the segment. + float maxd = 0; + int maxi = -1; + int ci, cinc, endi; + + // Traverse the segment in lexilogical order so that the + // max deviation is calculated similarly when traversing + // opposite segments. + if (bx > ax || (bx == ax && bz > az)) + { + cinc = 1; + ci = (ai+cinc) % pn; + endi = bi; + } + else + { + cinc = pn-1; + ci = (bi+cinc) % pn; + endi = ai; + rcSwap(ax, bx); + rcSwap(az, bz); + } + + // Tessellate only outer edges or edges between areas. + if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 || + (points[ci*4+3] & RC_AREA_BORDER)) + { + while (ci != endi) + { + float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz); + if (d > maxd) + { + maxd = d; + maxi = ci; + } + ci = (ci+cinc) % pn; + } + } + + + // If the max deviation is larger than accepted error, + // add new point, else continue to next segment. + if (maxi != -1 && maxd > (maxError*maxError)) + { + // Add space for the new point. + simplified.resize(simplified.size()+4); + const int n = simplified.size()/4; + for (int j = n-1; j > i; --j) + { + simplified[j*4+0] = simplified[(j-1)*4+0]; + simplified[j*4+1] = simplified[(j-1)*4+1]; + simplified[j*4+2] = simplified[(j-1)*4+2]; + simplified[j*4+3] = simplified[(j-1)*4+3]; + } + // Add the point. + simplified[(i+1)*4+0] = points[maxi*4+0]; + simplified[(i+1)*4+1] = points[maxi*4+1]; + simplified[(i+1)*4+2] = points[maxi*4+2]; + simplified[(i+1)*4+3] = maxi; + } + else + { + ++i; + } + } + + // Split too long edges. + if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0) + { + for (int i = 0; i < simplified.size()/4; ) + { + const int ii = (i+1) % (simplified.size()/4); + + const int ax = simplified[i*4+0]; + const int az = simplified[i*4+2]; + const int ai = simplified[i*4+3]; + + const int bx = simplified[ii*4+0]; + const int bz = simplified[ii*4+2]; + const int bi = simplified[ii*4+3]; + + // Find maximum deviation from the segment. + int maxi = -1; + int ci = (ai+1) % pn; + + // Tessellate only outer edges or edges between areas. + bool tess = false; + // Wall edges. + if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0) + tess = true; + // Edges between areas. + if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER)) + tess = true; + + if (tess) + { + int dx = bx - ax; + int dz = bz - az; + if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) + { + // Round based on the segments in lexilogical order so that the + // max tesselation is consistent regardles in which direction + // segments are traversed. + const int n = bi < ai ? (bi+pn - ai) : (bi - ai); + if (n > 1) + { + if (bx > ax || (bx == ax && bz > az)) + maxi = (ai + n/2) % pn; + else + maxi = (ai + (n+1)/2) % pn; + } + } + } + + // If the max deviation is larger than accepted error, + // add new point, else continue to next segment. + if (maxi != -1) + { + // Add space for the new point. + simplified.resize(simplified.size()+4); + const int n = simplified.size()/4; + for (int j = n-1; j > i; --j) + { + simplified[j*4+0] = simplified[(j-1)*4+0]; + simplified[j*4+1] = simplified[(j-1)*4+1]; + simplified[j*4+2] = simplified[(j-1)*4+2]; + simplified[j*4+3] = simplified[(j-1)*4+3]; + } + // Add the point. + simplified[(i+1)*4+0] = points[maxi*4+0]; + simplified[(i+1)*4+1] = points[maxi*4+1]; + simplified[(i+1)*4+2] = points[maxi*4+2]; + simplified[(i+1)*4+3] = maxi; + } + else + { + ++i; + } + } + } + + for (int i = 0; i < simplified.size()/4; ++i) + { + // The edge vertex flag is take from the current raw point, + // and the neighbour region is take from the next raw point. + const int ai = (simplified[i*4+3]+1) % pn; + const int bi = simplified[i*4+3]; + simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX); + } + +} + +static int calcAreaOfPolygon2D(const int* verts, const int nverts) +{ + int area = 0; + for (int i = 0, j = nverts-1; i < nverts; j=i++) + { + const int* vi = &verts[i*4]; + const int* vj = &verts[j*4]; + area += vi[0] * vj[2] - vj[0] * vi[2]; + } + return (area+1) / 2; +} + +// TODO: these are the same as in RecastMesh.cpp, consider using the same. +// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). +inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } +inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } + +inline int area2(const int* a, const int* b, const int* c) +{ + return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); +} + +// Exclusive or: true iff exactly one argument is true. +// The arguments are negated to ensure that they are 0/1 +// values. Then the bitwise Xor operator may apply. +// (This idea is due to Michael Baldwin.) +inline bool xorb(bool x, bool y) +{ + return !x ^ !y; +} + +// Returns true iff c is strictly to the left of the directed +// line through a to b. +inline bool left(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) < 0; +} + +inline bool leftOn(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) <= 0; +} + +inline bool collinear(const int* a, const int* b, const int* c) +{ + return area2(a, b, c) == 0; +} + +// Returns true iff ab properly intersects cd: they share +// a point interior to both segments. The properness of the +// intersection is ensured by using strict leftness. +static bool intersectProp(const int* a, const int* b, const int* c, const int* d) +{ + // Eliminate improper cases. + if (collinear(a,b,c) || collinear(a,b,d) || + collinear(c,d,a) || collinear(c,d,b)) + return false; + + return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); +} + +// Returns T iff (a,b,c) are collinear and point c lies +// on the closed segement ab. +static bool between(const int* a, const int* b, const int* c) +{ + if (!collinear(a, b, c)) + return false; + // If ab not vertical, check betweenness on x; else on y. + if (a[0] != b[0]) + return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); + else + return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); +} + +// Returns true iff segments ab and cd intersect, properly or improperly. +static bool intersect(const int* a, const int* b, const int* c, const int* d) +{ + if (intersectProp(a, b, c, d)) + return true; + else if (between(a, b, c) || between(a, b, d) || + between(c, d, a) || between(c, d, b)) + return true; + else + return false; +} + +static bool vequal(const int* a, const int* b) +{ + return a[0] == b[0] && a[2] == b[2]; +} + +static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts) +{ + // For each edge (k,k+1) of P + for (int k = 0; k < n; k++) + { + int k1 = next(k, n); + // Skip edges incident to i. + if (i == k || i == k1) + continue; + const int* p0 = &verts[k * 4]; + const int* p1 = &verts[k1 * 4]; + if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) + continue; + + if (intersect(d0, d1, p0, p1)) + return true; + } + return false; +} + +static bool inCone(int i, int n, const int* verts, const int* pj) +{ + const int* pi = &verts[i * 4]; + const int* pi1 = &verts[next(i, n) * 4]; + const int* pin1 = &verts[prev(i, n) * 4]; + + // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. + if (leftOn(pin1, pi, pi1)) + return left(pi, pj, pin1) && left(pj, pi, pi1); + // Assume (i-1,i,i+1) not collinear. + // else P[i] is reflex. + return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); +} + + +static void removeDegenerateSegments(rcIntArray& simplified) +{ + // Remove adjacent vertices which are equal on xz-plane, + // or else the triangulator will get confused. + int npts = simplified.size()/4; + for (int i = 0; i < npts; ++i) + { + int ni = next(i, npts); + + if (vequal(&simplified[i*4], &simplified[ni*4])) + { + // Degenerate segment, remove. + for (int j = i; j < simplified.size()/4-1; ++j) + { + simplified[j*4+0] = simplified[(j+1)*4+0]; + simplified[j*4+1] = simplified[(j+1)*4+1]; + simplified[j*4+2] = simplified[(j+1)*4+2]; + simplified[j*4+3] = simplified[(j+1)*4+3]; + } + simplified.resize(simplified.size()-4); + npts--; + } + } +} + + +static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) +{ + const int maxVerts = ca.nverts + cb.nverts + 2; + int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM); + if (!verts) + return false; + + int nv = 0; + + // Copy contour A. + for (int i = 0; i <= ca.nverts; ++i) + { + int* dst = &verts[nv*4]; + const int* src = &ca.verts[((ia+i)%ca.nverts)*4]; + dst[0] = src[0]; + dst[1] = src[1]; + dst[2] = src[2]; + dst[3] = src[3]; + nv++; + } + + // Copy contour B + for (int i = 0; i <= cb.nverts; ++i) + { + int* dst = &verts[nv*4]; + const int* src = &cb.verts[((ib+i)%cb.nverts)*4]; + dst[0] = src[0]; + dst[1] = src[1]; + dst[2] = src[2]; + dst[3] = src[3]; + nv++; + } + + rcFree(ca.verts); + ca.verts = verts; + ca.nverts = nv; + + rcFree(cb.verts); + cb.verts = 0; + cb.nverts = 0; + + return true; +} + +struct rcContourHole +{ + rcContour* contour; + int minx, minz, leftmost; +}; + +struct rcContourRegion +{ + rcContour* outline; + rcContourHole* holes; + int nholes; +}; + +struct rcPotentialDiagonal +{ + int vert; + int dist; +}; + +// Finds the lowest leftmost vertex of a contour. +static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) +{ + *minx = contour->verts[0]; + *minz = contour->verts[2]; + *leftmost = 0; + for (int i = 1; i < contour->nverts; i++) + { + const int x = contour->verts[i*4+0]; + const int z = contour->verts[i*4+2]; + if (x < *minx || (x == *minx && z < *minz)) + { + *minx = x; + *minz = z; + *leftmost = i; + } + } +} + +static int compareHoles(const void* va, const void* vb) +{ + const rcContourHole* a = (const rcContourHole*)va; + const rcContourHole* b = (const rcContourHole*)vb; + if (a->minx == b->minx) + { + if (a->minz < b->minz) + return -1; + if (a->minz > b->minz) + return 1; + } + else + { + if (a->minx < b->minx) + return -1; + if (a->minx > b->minx) + return 1; + } + return 0; +} + + +static int compareDiagDist(const void* va, const void* vb) +{ + const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; + const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; + if (a->dist < b->dist) + return -1; + if (a->dist > b->dist) + return 1; + return 0; +} + + +static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) +{ + // Sort holes from left to right. + for (int i = 0; i < region.nholes; i++) + findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); + + qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); + + int maxVerts = region.outline->nverts; + for (int i = 0; i < region.nholes; i++) + maxVerts += region.holes[i].contour->nverts; + + rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP)); + if (!diags) + { + ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts); + return; + } + + rcContour* outline = region.outline; + + // Merge holes into the outline one by one. + for (int i = 0; i < region.nholes; i++) + { + rcContour* hole = region.holes[i].contour; + + int index = -1; + int bestVertex = region.holes[i].leftmost; + for (int iter = 0; iter < hole->nverts; iter++) + { + // Find potential diagonals. + // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline. + // ..o j-1 + // | + // | * best + // | + // j o-----o j+1 + // : + int ndiags = 0; + const int* corner = &hole->verts[bestVertex*4]; + for (int j = 0; j < outline->nverts; j++) + { + if (inCone(j, outline->nverts, outline->verts, corner)) + { + int dx = outline->verts[j*4+0] - corner[0]; + int dz = outline->verts[j*4+2] - corner[2]; + diags[ndiags].vert = j; + diags[ndiags].dist = dx*dx + dz*dz; + ndiags++; + } + } + // Sort potential diagonals by distance, we want to make the connection as short as possible. + qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); + + // Find a diagonal that is not intersecting the outline not the remaining holes. + index = -1; + for (int j = 0; j < ndiags; j++) + { + const int* pt = &outline->verts[diags[j].vert*4]; + bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts); + for (int k = i; k < region.nholes && !intersect; k++) + intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); + if (!intersect) + { + index = diags[j].vert; + break; + } + } + // If found non-intersecting diagonal, stop looking. + if (index != -1) + break; + // All the potential diagonals for the current vertex were intersecting, try next vertex. + bestVertex = (bestVertex + 1) % hole->nverts; + } + + if (index == -1) + { + ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole); + continue; + } + if (!mergeContours(*region.outline, *hole, index, bestVertex)) + { + ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole); + continue; + } + } +} + + +/// @par +/// +/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen +/// parameters control how closely the simplified contours will match the raw contours. +/// +/// Simplified contours are generated such that the vertices for portals between areas match up. +/// (They are considered mandatory vertices.) +/// +/// Setting @p maxEdgeLength to zero will disabled the edge length feature. +/// +/// See the #rcConfig documentation for more information on the configuration parameters. +/// +/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig +bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, + const float maxError, const int maxEdgeLen, + rcContourSet& cset, const int buildFlags) +{ + rcAssert(ctx); + + const int w = chf.width; + const int h = chf.height; + const int borderSize = chf.borderSize; + + rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS); + + rcVcopy(cset.bmin, chf.bmin); + rcVcopy(cset.bmax, chf.bmax); + if (borderSize > 0) + { + // If the heightfield was build with bordersize, remove the offset. + const float pad = borderSize*chf.cs; + cset.bmin[0] += pad; + cset.bmin[2] += pad; + cset.bmax[0] -= pad; + cset.bmax[2] -= pad; + } + cset.cs = chf.cs; + cset.ch = chf.ch; + cset.width = chf.width - chf.borderSize*2; + cset.height = chf.height - chf.borderSize*2; + cset.borderSize = chf.borderSize; + cset.maxError = maxError; + + int maxContours = rcMax((int)chf.maxRegions, 8); + cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); + if (!cset.conts) + return false; + cset.nconts = 0; + + rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); + if (!flags) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount); + return false; + } + + ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); + + // Mark boundaries. + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + unsigned char res = 0; + const rcCompactSpan& s = chf.spans[i]; + if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG)) + { + flags[i] = 0; + continue; + } + for (int dir = 0; dir < 4; ++dir) + { + unsigned short r = 0; + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + r = chf.spans[ai].reg; + } + if (r == chf.spans[i].reg) + res |= (1 << dir); + } + flags[i] = res ^ 0xf; // Inverse, mark non connected edges. + } + } + } + + ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); + + rcIntArray verts(256); + rcIntArray simplified(64); + + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (flags[i] == 0 || flags[i] == 0xf) + { + flags[i] = 0; + continue; + } + const unsigned short reg = chf.spans[i].reg; + if (!reg || (reg & RC_BORDER_REG)) + continue; + const unsigned char area = chf.areas[i]; + + verts.resize(0); + simplified.resize(0); + + ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); + walkContour(x, y, i, chf, flags, verts); + ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); + + ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); + simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); + removeDegenerateSegments(simplified); + ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); + + + // Store region->contour remap info. + // Create contour. + if (simplified.size()/4 >= 3) + { + if (cset.nconts >= maxContours) + { + // Allocate more contours. + // This happens when a region has holes. + const int oldMax = maxContours; + maxContours *= 2; + rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); + for (int j = 0; j < cset.nconts; ++j) + { + newConts[j] = cset.conts[j]; + // Reset source pointers to prevent data deletion. + cset.conts[j].verts = 0; + cset.conts[j].rverts = 0; + } + rcFree(cset.conts); + cset.conts = newConts; + + ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); + } + + rcContour* cont = &cset.conts[cset.nconts++]; + + cont->nverts = simplified.size()/4; + cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); + if (!cont->verts) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts); + return false; + } + memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); + if (borderSize > 0) + { + // If the heightfield was build with bordersize, remove the offset. + for (int j = 0; j < cont->nverts; ++j) + { + int* v = &cont->verts[j*4]; + v[0] -= borderSize; + v[2] -= borderSize; + } + } + + cont->nrverts = verts.size()/4; + cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); + if (!cont->rverts) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts); + return false; + } + memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); + if (borderSize > 0) + { + // If the heightfield was build with bordersize, remove the offset. + for (int j = 0; j < cont->nrverts; ++j) + { + int* v = &cont->rverts[j*4]; + v[0] -= borderSize; + v[2] -= borderSize; + } + } + + cont->reg = reg; + cont->area = area; + } + } + } + } + + // Merge holes if needed. + if (cset.nconts > 0) + { + // Calculate winding of all polygons. + rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP)); + if (!winding) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); + return false; + } + int nholes = 0; + for (int i = 0; i < cset.nconts; ++i) + { + rcContour& cont = cset.conts[i]; + // If the contour is wound backwards, it is a hole. + winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; + if (winding[i] < 0) + nholes++; + } + + if (nholes > 0) + { + // Collect outline contour and holes contours per region. + // We assume that there is one outline and multiple holes. + const int nregions = chf.maxRegions+1; + rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP)); + if (!regions) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); + return false; + } + memset(regions, 0, sizeof(rcContourRegion)*nregions); + + rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP)); + if (!holes) + { + ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); + return false; + } + memset(holes, 0, sizeof(rcContourHole)*cset.nconts); + + for (int i = 0; i < cset.nconts; ++i) + { + rcContour& cont = cset.conts[i]; + // Positively would contours are outlines, negative holes. + if (winding[i] > 0) + { + if (regions[cont.reg].outline) + ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); + regions[cont.reg].outline = &cont; + } + else + { + regions[cont.reg].nholes++; + } + } + int index = 0; + for (int i = 0; i < nregions; i++) + { + if (regions[i].nholes > 0) + { + regions[i].holes = &holes[index]; + index += regions[i].nholes; + regions[i].nholes = 0; + } + } + for (int i = 0; i < cset.nconts; ++i) + { + rcContour& cont = cset.conts[i]; + rcContourRegion& reg = regions[cont.reg]; + if (winding[i] < 0) + reg.holes[reg.nholes++].contour = &cont; + } + + // Finally merge each regions holes into the outline. + for (int i = 0; i < nregions; i++) + { + rcContourRegion& reg = regions[i]; + if (!reg.nholes) continue; + + if (reg.outline) + { + mergeRegionHoles(ctx, reg); + } + else + { + // The region does not have an outline. + // This can happen if the contour becaomes selfoverlapping because of + // too aggressive simplification settings. + ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i); + } + } + } + + } + + return true; +} |