diff options
Diffstat (limited to 'thirdparty/recastnavigation/Recast/Source/RecastArea.cpp')
-rw-r--r-- | thirdparty/recastnavigation/Recast/Source/RecastArea.cpp | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp b/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp new file mode 100644 index 0000000000..97139cf996 --- /dev/null +++ b/thirdparty/recastnavigation/Recast/Source/RecastArea.cpp @@ -0,0 +1,591 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <float.h> +#define _USE_MATH_DEFINES +#include <math.h> +#include <string.h> +#include <stdlib.h> +#include <stdio.h> +#include "Recast.h" +#include "RecastAlloc.h" +#include "RecastAssert.h" + +/// @par +/// +/// Basically, any spans that are closer to a boundary or obstruction than the specified radius +/// are marked as unwalkable. +/// +/// This method is usually called immediately after the heightfield has been built. +/// +/// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius +bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + const int w = chf.width; + const int h = chf.height; + + rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA); + + unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); + if (!dist) + { + ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", chf.spanCount); + return false; + } + + // Init distance. + memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount); + + // Mark boundary cells. + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + if (chf.areas[i] == RC_NULL_AREA) + { + dist[i] = 0; + } + else + { + const rcCompactSpan& s = chf.spans[i]; + int nc = 0; + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int nx = x + rcGetDirOffsetX(dir); + const int ny = y + rcGetDirOffsetY(dir); + const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir); + if (chf.areas[nidx] != RC_NULL_AREA) + { + nc++; + } + } + } + // At least one missing neighbour. + if (nc != 4) + dist[i] = 0; + } + } + } + } + + unsigned char nd; + + // Pass 1 + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + + if (rcGetCon(s, 0) != RC_NOT_CONNECTED) + { + // (-1,0) + const int ax = x + rcGetDirOffsetX(0); + const int ay = y + rcGetDirOffsetY(0); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); + const rcCompactSpan& as = chf.spans[ai]; + nd = (unsigned char)rcMin((int)dist[ai]+2, 255); + if (nd < dist[i]) + dist[i] = nd; + + // (-1,-1) + if (rcGetCon(as, 3) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(3); + const int aay = ay + rcGetDirOffsetY(3); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); + nd = (unsigned char)rcMin((int)dist[aai]+3, 255); + if (nd < dist[i]) + dist[i] = nd; + } + } + if (rcGetCon(s, 3) != RC_NOT_CONNECTED) + { + // (0,-1) + const int ax = x + rcGetDirOffsetX(3); + const int ay = y + rcGetDirOffsetY(3); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); + const rcCompactSpan& as = chf.spans[ai]; + nd = (unsigned char)rcMin((int)dist[ai]+2, 255); + if (nd < dist[i]) + dist[i] = nd; + + // (1,-1) + if (rcGetCon(as, 2) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(2); + const int aay = ay + rcGetDirOffsetY(2); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); + nd = (unsigned char)rcMin((int)dist[aai]+3, 255); + if (nd < dist[i]) + dist[i] = nd; + } + } + } + } + } + + // Pass 2 + for (int y = h-1; y >= 0; --y) + { + for (int x = w-1; x >= 0; --x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + + if (rcGetCon(s, 2) != RC_NOT_CONNECTED) + { + // (1,0) + const int ax = x + rcGetDirOffsetX(2); + const int ay = y + rcGetDirOffsetY(2); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); + const rcCompactSpan& as = chf.spans[ai]; + nd = (unsigned char)rcMin((int)dist[ai]+2, 255); + if (nd < dist[i]) + dist[i] = nd; + + // (1,1) + if (rcGetCon(as, 1) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(1); + const int aay = ay + rcGetDirOffsetY(1); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); + nd = (unsigned char)rcMin((int)dist[aai]+3, 255); + if (nd < dist[i]) + dist[i] = nd; + } + } + if (rcGetCon(s, 1) != RC_NOT_CONNECTED) + { + // (0,1) + const int ax = x + rcGetDirOffsetX(1); + const int ay = y + rcGetDirOffsetY(1); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); + const rcCompactSpan& as = chf.spans[ai]; + nd = (unsigned char)rcMin((int)dist[ai]+2, 255); + if (nd < dist[i]) + dist[i] = nd; + + // (-1,1) + if (rcGetCon(as, 0) != RC_NOT_CONNECTED) + { + const int aax = ax + rcGetDirOffsetX(0); + const int aay = ay + rcGetDirOffsetY(0); + const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); + nd = (unsigned char)rcMin((int)dist[aai]+3, 255); + if (nd < dist[i]) + dist[i] = nd; + } + } + } + } + } + + const unsigned char thr = (unsigned char)(radius*2); + for (int i = 0; i < chf.spanCount; ++i) + if (dist[i] < thr) + chf.areas[i] = RC_NULL_AREA; + + rcFree(dist); + + return true; +} + +static void insertSort(unsigned char* a, const int n) +{ + int i, j; + for (i = 1; i < n; i++) + { + const unsigned char value = a[i]; + for (j = i - 1; j >= 0 && a[j] > value; j--) + a[j+1] = a[j]; + a[j+1] = value; + } +} + +/// @par +/// +/// This filter is usually applied after applying area id's using functions +/// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea. +/// +/// @see rcCompactHeightfield +bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + const int w = chf.width; + const int h = chf.height; + + rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA); + + unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); + if (!areas) + { + ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).", chf.spanCount); + return false; + } + + // Init distance. + memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount); + + for (int y = 0; y < h; ++y) + { + for (int x = 0; x < w; ++x) + { + const rcCompactCell& c = chf.cells[x+y*w]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + const rcCompactSpan& s = chf.spans[i]; + if (chf.areas[i] == RC_NULL_AREA) + { + areas[i] = chf.areas[i]; + continue; + } + + unsigned char nei[9]; + for (int j = 0; j < 9; ++j) + nei[j] = chf.areas[i]; + + for (int dir = 0; dir < 4; ++dir) + { + if (rcGetCon(s, dir) != RC_NOT_CONNECTED) + { + const int ax = x + rcGetDirOffsetX(dir); + const int ay = y + rcGetDirOffsetY(dir); + const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); + if (chf.areas[ai] != RC_NULL_AREA) + nei[dir*2+0] = chf.areas[ai]; + + const rcCompactSpan& as = chf.spans[ai]; + const int dir2 = (dir+1) & 0x3; + if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) + { + const int ax2 = ax + rcGetDirOffsetX(dir2); + const int ay2 = ay + rcGetDirOffsetY(dir2); + const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); + if (chf.areas[ai2] != RC_NULL_AREA) + nei[dir*2+1] = chf.areas[ai2]; + } + } + } + insertSort(nei, 9); + areas[i] = nei[4]; + } + } + } + + memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount); + + rcFree(areas); + + return true; +} + +/// @par +/// +/// The value of spacial parameters are in world units. +/// +/// @see rcCompactHeightfield, rcMedianFilterWalkableArea +void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, + rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA); + + int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); + int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); + int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); + int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); + int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); + int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); + + if (maxx < 0) return; + if (minx >= chf.width) return; + if (maxz < 0) return; + if (minz >= chf.height) return; + + if (minx < 0) minx = 0; + if (maxx >= chf.width) maxx = chf.width-1; + if (minz < 0) minz = 0; + if (maxz >= chf.height) maxz = chf.height-1; + + for (int z = minz; z <= maxz; ++z) + { + for (int x = minx; x <= maxx; ++x) + { + const rcCompactCell& c = chf.cells[x+z*chf.width]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + rcCompactSpan& s = chf.spans[i]; + if ((int)s.y >= miny && (int)s.y <= maxy) + { + if (chf.areas[i] != RC_NULL_AREA) + chf.areas[i] = areaId; + } + } + } + } +} + + +static int pointInPoly(int nvert, const float* verts, const float* p) +{ + int i, j, c = 0; + for (i = 0, j = nvert-1; i < nvert; j = i++) + { + const float* vi = &verts[i*3]; + const float* vj = &verts[j*3]; + if (((vi[2] > p[2]) != (vj[2] > p[2])) && + (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) + c = !c; + } + return c; +} + +/// @par +/// +/// The value of spacial parameters are in world units. +/// +/// The y-values of the polygon vertices are ignored. So the polygon is effectively +/// projected onto the xz-plane at @p hmin, then extruded to @p hmax. +/// +/// @see rcCompactHeightfield, rcMedianFilterWalkableArea +void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, + const float hmin, const float hmax, unsigned char areaId, + rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA); + + float bmin[3], bmax[3]; + rcVcopy(bmin, verts); + rcVcopy(bmax, verts); + for (int i = 1; i < nverts; ++i) + { + rcVmin(bmin, &verts[i*3]); + rcVmax(bmax, &verts[i*3]); + } + bmin[1] = hmin; + bmax[1] = hmax; + + int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); + int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); + int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); + int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); + int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); + int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); + + if (maxx < 0) return; + if (minx >= chf.width) return; + if (maxz < 0) return; + if (minz >= chf.height) return; + + if (minx < 0) minx = 0; + if (maxx >= chf.width) maxx = chf.width-1; + if (minz < 0) minz = 0; + if (maxz >= chf.height) maxz = chf.height-1; + + + // TODO: Optimize. + for (int z = minz; z <= maxz; ++z) + { + for (int x = minx; x <= maxx; ++x) + { + const rcCompactCell& c = chf.cells[x+z*chf.width]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + rcCompactSpan& s = chf.spans[i]; + if (chf.areas[i] == RC_NULL_AREA) + continue; + if ((int)s.y >= miny && (int)s.y <= maxy) + { + float p[3]; + p[0] = chf.bmin[0] + (x+0.5f)*chf.cs; + p[1] = 0; + p[2] = chf.bmin[2] + (z+0.5f)*chf.cs; + + if (pointInPoly(nverts, verts, p)) + { + chf.areas[i] = areaId; + } + } + } + } + } +} + +int rcOffsetPoly(const float* verts, const int nverts, const float offset, + float* outVerts, const int maxOutVerts) +{ + const float MITER_LIMIT = 1.20f; + + int n = 0; + + for (int i = 0; i < nverts; i++) + { + const int a = (i+nverts-1) % nverts; + const int b = i; + const int c = (i+1) % nverts; + const float* va = &verts[a*3]; + const float* vb = &verts[b*3]; + const float* vc = &verts[c*3]; + float dx0 = vb[0] - va[0]; + float dy0 = vb[2] - va[2]; + float d0 = dx0*dx0 + dy0*dy0; + if (d0 > 1e-6f) + { + d0 = 1.0f/rcSqrt(d0); + dx0 *= d0; + dy0 *= d0; + } + float dx1 = vc[0] - vb[0]; + float dy1 = vc[2] - vb[2]; + float d1 = dx1*dx1 + dy1*dy1; + if (d1 > 1e-6f) + { + d1 = 1.0f/rcSqrt(d1); + dx1 *= d1; + dy1 *= d1; + } + const float dlx0 = -dy0; + const float dly0 = dx0; + const float dlx1 = -dy1; + const float dly1 = dx1; + float cross = dx1*dy0 - dx0*dy1; + float dmx = (dlx0 + dlx1) * 0.5f; + float dmy = (dly0 + dly1) * 0.5f; + float dmr2 = dmx*dmx + dmy*dmy; + bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f; + if (dmr2 > 1e-6f) + { + const float scale = 1.0f / dmr2; + dmx *= scale; + dmy *= scale; + } + + if (bevel && cross < 0.0f) + { + if (n+2 >= maxOutVerts) + return 0; + float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f; + outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset; + outVerts[n*3+1] = vb[1]; + outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset; + n++; + outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset; + outVerts[n*3+1] = vb[1]; + outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset; + n++; + } + else + { + if (n+1 >= maxOutVerts) + return 0; + outVerts[n*3+0] = vb[0] - dmx*offset; + outVerts[n*3+1] = vb[1]; + outVerts[n*3+2] = vb[2] - dmy*offset; + n++; + } + } + + return n; +} + + +/// @par +/// +/// The value of spacial parameters are in world units. +/// +/// @see rcCompactHeightfield, rcMedianFilterWalkableArea +void rcMarkCylinderArea(rcContext* ctx, const float* pos, + const float r, const float h, unsigned char areaId, + rcCompactHeightfield& chf) +{ + rcAssert(ctx); + + rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA); + + float bmin[3], bmax[3]; + bmin[0] = pos[0] - r; + bmin[1] = pos[1]; + bmin[2] = pos[2] - r; + bmax[0] = pos[0] + r; + bmax[1] = pos[1] + h; + bmax[2] = pos[2] + r; + const float r2 = r*r; + + int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); + int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); + int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); + int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); + int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); + int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); + + if (maxx < 0) return; + if (minx >= chf.width) return; + if (maxz < 0) return; + if (minz >= chf.height) return; + + if (minx < 0) minx = 0; + if (maxx >= chf.width) maxx = chf.width-1; + if (minz < 0) minz = 0; + if (maxz >= chf.height) maxz = chf.height-1; + + + for (int z = minz; z <= maxz; ++z) + { + for (int x = minx; x <= maxx; ++x) + { + const rcCompactCell& c = chf.cells[x+z*chf.width]; + for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) + { + rcCompactSpan& s = chf.spans[i]; + + if (chf.areas[i] == RC_NULL_AREA) + continue; + + if ((int)s.y >= miny && (int)s.y <= maxy) + { + const float sx = chf.bmin[0] + (x+0.5f)*chf.cs; + const float sz = chf.bmin[2] + (z+0.5f)*chf.cs; + const float dx = sx - pos[0]; + const float dz = sz - pos[2]; + + if (dx*dx + dz*dz < r2) + { + chf.areas[i] = areaId; + } + } + } + } + } +} |