diff options
Diffstat (limited to 'thirdparty/opus')
223 files changed, 10439 insertions, 6900 deletions
diff --git a/thirdparty/opus/analysis.c b/thirdparty/opus/analysis.c index 663431a436..cb46dec582 100644 --- a/thirdparty/opus/analysis.c +++ b/thirdparty/opus/analysis.c @@ -29,20 +29,29 @@ #include "config.h" #endif +#define ANALYSIS_C + +#include <stdio.h> + +#include "mathops.h" #include "kiss_fft.h" #include "celt.h" #include "modes.h" #include "arch.h" #include "quant_bands.h" -#include <stdio.h> #include "analysis.h" #include "mlp.h" #include "stack_alloc.h" +#include "float_cast.h" #ifndef M_PI #define M_PI 3.141592653 #endif +#ifndef DISABLE_FLOAT_API + +#define TRANSITION_PENALTY 10 + static const float dct_table[128] = { 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, @@ -96,52 +105,118 @@ static const float analysis_window[240] = { }; static const int tbands[NB_TBANDS+1] = { - 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120 -}; - -static const int extra_bands[NB_TOT_BANDS+1] = { - 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120, 160, 200 + 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 }; -/*static const float tweight[NB_TBANDS+1] = { - .3, .4, .5, .6, .7, .8, .9, 1., 1., 1., 1., 1., 1., 1., .8, .7, .6, .5 -};*/ - #define NB_TONAL_SKIP_BANDS 9 -#define cA 0.43157974f -#define cB 0.67848403f -#define cC 0.08595542f -#define cE ((float)M_PI/2) -static OPUS_INLINE float fast_atan2f(float y, float x) { - float x2, y2; - /* Should avoid underflow on the values we'll get */ - if (ABS16(x)+ABS16(y)<1e-9f) +static opus_val32 silk_resampler_down2_hp( + opus_val32 *S, /* I/O State vector [ 2 ] */ + opus_val32 *out, /* O Output signal [ floor(len/2) ] */ + const opus_val32 *in, /* I Input signal [ len ] */ + int inLen /* I Number of input samples */ +) +{ + int k, len2 = inLen/2; + opus_val32 in32, out32, out32_hp, Y, X; + opus_val64 hp_ener = 0; + /* Internal variables and state are in Q10 format */ + for( k = 0; k < len2; k++ ) { + /* Convert to Q10 */ + in32 = in[ 2 * k ]; + + /* All-pass section for even input sample */ + Y = SUB32( in32, S[ 0 ] ); + X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); + out32 = ADD32( S[ 0 ], X ); + S[ 0 ] = ADD32( in32, X ); + out32_hp = out32; + /* Convert to Q10 */ + in32 = in[ 2 * k + 1 ]; + + /* All-pass section for odd input sample, and add to output of previous section */ + Y = SUB32( in32, S[ 1 ] ); + X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); + out32 = ADD32( out32, S[ 1 ] ); + out32 = ADD32( out32, X ); + S[ 1 ] = ADD32( in32, X ); + + Y = SUB32( -in32, S[ 2 ] ); + X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); + out32_hp = ADD32( out32_hp, S[ 2 ] ); + out32_hp = ADD32( out32_hp, X ); + S[ 2 ] = ADD32( -in32, X ); + + hp_ener += out32_hp*(opus_val64)out32_hp; + /* Add, convert back to int16 and store to output */ + out[ k ] = HALF32(out32); + } +#ifdef FIXED_POINT + /* len2 can be up to 480, so we shift by 8 more to make it fit. */ + hp_ener = hp_ener >> (2*SIG_SHIFT + 8); +#endif + return (opus_val32)hp_ener; +} + +static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) +{ + VARDECL(opus_val32, tmp); + opus_val32 scale; + int j; + opus_val32 ret = 0; + SAVE_STACK; + + if (subframe==0) return 0; + if (Fs == 48000) { - x*=1e12f; - y*=1e12f; + subframe *= 2; + offset *= 2; + } else if (Fs == 16000) { + subframe = subframe*2/3; + offset = offset*2/3; } - x2 = x*x; - y2 = y*y; - if(x2<y2){ - float den = (y2 + cB*x2) * (y2 + cC*x2); - if (den!=0) - return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); - else - return (y<0 ? -cE : cE); - }else{ - float den = (x2 + cB*y2) * (x2 + cC*y2); - if (den!=0) - return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); - else - return (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); + ALLOC(tmp, subframe, opus_val32); + + downmix(_x, tmp, subframe, offset, c1, c2, C); +#ifdef FIXED_POINT + scale = (1<<SIG_SHIFT); +#else + scale = 1.f/32768; +#endif + if (c2==-2) + scale /= C; + else if (c2>-1) + scale /= 2; + for (j=0;j<subframe;j++) + tmp[j] *= scale; + if (Fs == 48000) + { + ret = silk_resampler_down2_hp(S, y, tmp, subframe); + } else if (Fs == 24000) { + OPUS_COPY(y, tmp, subframe); + } else if (Fs == 16000) { + VARDECL(opus_val32, tmp3x); + ALLOC(tmp3x, 3*subframe, opus_val32); + /* Don't do this at home! This resampler is horrible and it's only (barely) + usable for the purpose of the analysis because we don't care about all + the aliasing between 8 kHz and 12 kHz. */ + for (j=0;j<subframe;j++) + { + tmp3x[3*j] = tmp[j]; + tmp3x[3*j+1] = tmp[j]; + tmp3x[3*j+2] = tmp[j]; + } + silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); } + RESTORE_STACK; + return ret; } -void tonality_analysis_init(TonalityAnalysisState *tonal) +void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) { /* Initialize reusable fields. */ tonal->arch = opus_select_arch(); + tonal->Fs = Fs; /* Clear remaining fields. */ tonality_analysis_reset(tonal); } @@ -157,15 +232,34 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int { int pos; int curr_lookahead; - float psum; + float tonality_max; + float tonality_avg; + int tonality_count; int i; + int pos0; + float prob_avg; + float prob_count; + float prob_min, prob_max; + float vad_prob; + int mpos, vpos; + int bandwidth_span; pos = tonal->read_pos; curr_lookahead = tonal->write_pos-tonal->read_pos; if (curr_lookahead<0) curr_lookahead += DETECT_SIZE; - if (len > 480 && pos != tonal->write_pos) + tonal->read_subframe += len/(tonal->Fs/400); + while (tonal->read_subframe>=8) + { + tonal->read_subframe -= 8; + tonal->read_pos++; + } + if (tonal->read_pos>=DETECT_SIZE) + tonal->read_pos-=DETECT_SIZE; + + /* On long frames, look at the second analysis window rather than the first. */ + if (len > tonal->Fs/50 && pos != tonal->write_pos) { pos++; if (pos==DETECT_SIZE) @@ -175,33 +269,178 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int pos--; if (pos<0) pos = DETECT_SIZE-1; + pos0 = pos; OPUS_COPY(info_out, &tonal->info[pos], 1); - tonal->read_subframe += len/120; - while (tonal->read_subframe>=4) + if (!info_out->valid) + return; + tonality_max = tonality_avg = info_out->tonality; + tonality_count = 1; + /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */ + bandwidth_span = 6; + /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ + for (i=0;i<3;i++) { - tonal->read_subframe -= 4; - tonal->read_pos++; + pos++; + if (pos==DETECT_SIZE) + pos = 0; + if (pos == tonal->write_pos) + break; + tonality_max = MAX32(tonality_max, tonal->info[pos].tonality); + tonality_avg += tonal->info[pos].tonality; + tonality_count++; + info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); + bandwidth_span--; } - if (tonal->read_pos>=DETECT_SIZE) - tonal->read_pos-=DETECT_SIZE; + pos = pos0; + /* Look back in time to see if any has a wider bandwidth than the current frame. */ + for (i=0;i<bandwidth_span;i++) + { + pos--; + if (pos < 0) + pos = DETECT_SIZE-1; + if (pos == tonal->write_pos) + break; + info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); + } + info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f); + + mpos = vpos = pos0; + /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and + ~1 frame delay in the VAD prob. */ + if (curr_lookahead > 15) + { + mpos += 5; + if (mpos>=DETECT_SIZE) + mpos -= DETECT_SIZE; + vpos += 1; + if (vpos>=DETECT_SIZE) + vpos -= DETECT_SIZE; + } + + /* The following calculations attempt to minimize a "badness function" + for the transition. When switching from speech to music, the badness + of switching at frame k is + b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) + where + v_i is the activity probability (VAD) at frame i, + p_i is the music probability at frame i + T is the probability threshold for switching + S is the penalty for switching during active audio rather than silence + the current frame has index i=0 + + Rather than apply badness to directly decide when to switch, what we compute + instead is the threshold for which the optimal switching point is now. When + considering whether to switch now (frame 0) or at frame k, we have: + S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) + which gives us: + T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i ) + We take the min threshold across all positive values of k (up to the maximum + amount of lookahead we have) to give us the threshold for which the current + frame is the optimal switch point. + + The last step is that we need to consider whether we want to switch at all. + For that we use the average of the music probability over the entire window. + If the threshold is higher than that average we're not going to + switch, so we compute a min with the average as well. The result of all these + min operations is music_prob_min, which gives the threshold for switching to music + if we're currently encoding for speech. + + We do the exact opposite to compute music_prob_max which is used for switching + from music to speech. + */ + prob_min = 1.f; + prob_max = 0.f; + vad_prob = tonal->info[vpos].activity_probability; + prob_count = MAX16(.1f, vad_prob); + prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob; + while (1) + { + float pos_vad; + mpos++; + if (mpos==DETECT_SIZE) + mpos = 0; + if (mpos == tonal->write_pos) + break; + vpos++; + if (vpos==DETECT_SIZE) + vpos = 0; + if (vpos == tonal->write_pos) + break; + pos_vad = tonal->info[vpos].activity_probability; + prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min); + prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max); + prob_count += MAX16(.1f, pos_vad); + prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob; + } + info_out->music_prob = prob_avg/prob_count; + prob_min = MIN16(prob_avg/prob_count, prob_min); + prob_max = MAX16(prob_avg/prob_count, prob_max); + prob_min = MAX16(prob_min, 0.f); + prob_max = MIN16(prob_max, 1.f); + + /* If we don't have enough look-ahead, do our best to make a decent decision. */ + if (curr_lookahead < 10) + { + float pmin, pmax; + pmin = prob_min; + pmax = prob_max; + pos = pos0; + /* Look for min/max in the past. */ + for (i=0;i<IMIN(tonal->count-1, 15);i++) + { + pos--; + if (pos < 0) + pos = DETECT_SIZE-1; + pmin = MIN16(pmin, tonal->info[pos].music_prob); + pmax = MAX16(pmax, tonal->info[pos].music_prob); + } + /* Bias against switching on active audio. */ + pmin = MAX16(0.f, pmin - .1f*vad_prob); + pmax = MIN16(1.f, pmax + .1f*vad_prob); + prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min); + prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max); + } + info_out->music_prob_min = prob_min; + info_out->music_prob_max = prob_max; - /* Compensate for the delay in the features themselves. - FIXME: Need a better estimate the 10 I just made up */ - curr_lookahead = IMAX(curr_lookahead-10, 0); - - psum=0; - /* Summing the probability of transition patterns that involve music at - time (DETECT_SIZE-curr_lookahead-1) */ - for (i=0;i<DETECT_SIZE-curr_lookahead;i++) - psum += tonal->pmusic[i]; - for (;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i]; - psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence; - /*printf("%f %f %f\n", psum, info_out->music_prob, info_out->tonality);*/ - - info_out->music_prob = psum; + /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */ } +static const float std_feature_bias[9] = { + 5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f, + 2.163313f, 1.260756f, 1.116868f, 1.918795f +}; + +#define LEAKAGE_OFFSET 2.5f +#define LEAKAGE_SLOPE 2.f + +#ifdef FIXED_POINT +/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to + compensate for that in the energy. */ +#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT))) +#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e)) +#else +#define SCALE_ENER(e) (e) +#endif + +#ifdef FIXED_POINT +static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth) +{ + int silence = 0; + opus_val32 sample_max = 0; +#ifdef MLP_TRAINING + return 0; +#endif + sample_max = celt_maxabs32(pcm, frame_size*channels); + + silence = (sample_max == 0); + (void)lsb_depth; + return silence; +} +#else +#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth) +#endif + static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) { int i, b; @@ -230,24 +469,50 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt float alpha, alphaE, alphaE2; float frame_loudness; float bandwidth_mask; + int is_masked[NB_TBANDS+1]; int bandwidth=0; float maxE = 0; float noise_floor; int remaining; AnalysisInfo *info; + float hp_ener; + float tonality2[240]; + float midE[8]; + float spec_variability=0; + float band_log2[NB_TBANDS+1]; + float leakage_from[NB_TBANDS+1]; + float leakage_to[NB_TBANDS+1]; + float layer_out[MAX_NEURONS]; + float below_max_pitch; + float above_max_pitch; + int is_silence; SAVE_STACK; - tonal->last_transition++; - alpha = 1.f/IMIN(20, 1+tonal->count); - alphaE = 1.f/IMIN(50, 1+tonal->count); - alphaE2 = 1.f/IMIN(1000, 1+tonal->count); + if (!tonal->initialized) + { + tonal->mem_fill = 240; + tonal->initialized = 1; + } + alpha = 1.f/IMIN(10, 1+tonal->count); + alphaE = 1.f/IMIN(25, 1+tonal->count); + /* Noise floor related decay for bandwidth detection: -2.2 dB/second */ + alphaE2 = 1.f/IMIN(100, 1+tonal->count); + if (tonal->count <= 1) alphaE2 = 1; + + if (tonal->Fs == 48000) + { + /* len and offset are now at 24 kHz. */ + len/= 2; + offset /= 2; + } else if (tonal->Fs == 16000) { + len = 3*len/2; + offset = 3*offset/2; + } - if (tonal->count<4) - tonal->music_prob = .5; kfft = celt_mode->mdct.kfft[0]; - if (tonal->count==0) - tonal->mem_fill = 240; - downmix(x, &tonal->inmem[tonal->mem_fill], IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C); + tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x, + &tonal->inmem[tonal->mem_fill], tonal->downmix_state, + IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) { tonal->mem_fill += len; @@ -255,10 +520,13 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt RESTORE_STACK; return; } + hp_ener = tonal->hp_ener_accum; info = &tonal->info[tonal->write_pos++]; if (tonal->write_pos>=DETECT_SIZE) tonal->write_pos-=DETECT_SIZE; + is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth); + ALLOC(in, 480, kiss_fft_cpx); ALLOC(out, 480, kiss_fft_cpx); ALLOC(tonality, 240, float); @@ -273,8 +541,20 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); - downmix(x, &tonal->inmem[240], remaining, offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C); + tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x, + &tonal->inmem[240], tonal->downmix_state, remaining, + offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); tonal->mem_fill = 240 + remaining; + if (is_silence) + { + /* On silence, copy the previous analysis. */ + int prev_pos = tonal->write_pos-2; + if (prev_pos < 0) + prev_pos += DETECT_SIZE; + OPUS_COPY(info, &tonal->info[prev_pos], 1); + RESTORE_STACK; + return; + } opus_fft(kfft, in, out, tonal->arch); #ifndef FIXED_POINT /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ @@ -305,24 +585,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt d_angle2 = angle2 - angle; d2_angle2 = d_angle2 - d_angle; - mod1 = d2_angle - (float)floor(.5+d2_angle); + mod1 = d2_angle - (float)float2int(d2_angle); noisiness[i] = ABS16(mod1); mod1 *= mod1; mod1 *= mod1; - mod2 = d2_angle2 - (float)floor(.5+d2_angle2); + mod2 = d2_angle2 - (float)float2int(d2_angle2); noisiness[i] += ABS16(mod2); mod2 *= mod2; mod2 *= mod2; - avg_mod = .25f*(d2A[i]+2.f*mod1+mod2); + avg_mod = .25f*(d2A[i]+mod1+2*mod2); + /* This introduces an extra delay of 2 frames in the detection. */ tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; + /* No delay on this detection, but it's less reliable. */ + tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; A[i] = angle2; dA[i] = d_angle2; d2A[i] = mod2; } - + for (i=2;i<N2-1;i++) + { + float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); + tonality[i] = .9f*MAX32(tonality[i], tt-.1f); + } frame_tonality = 0; max_frame_tonality = 0; /*tw_sum = 0;*/ @@ -339,6 +626,22 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } relativeE = 0; frame_loudness = 0; + /* The energy of the very first band is special because of DC. */ + { + float E = 0; + float X1r, X2r; + X1r = 2*(float)out[0].r; + X2r = 2*(float)out[0].i; + E = X1r*X1r + X2r*X2r; + for (i=1;i<4;i++) + { + float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; + E += binE; + } + E = SCALE_ENER(E); + band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f); + } for (b=0;b<NB_TBANDS;b++) { float E=0, tE=0, nE=0; @@ -348,12 +651,9 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; -#ifdef FIXED_POINT - /* FIXME: It's probably best to change the BFCC filter initial state instead */ - binE *= 5.55e-17f; -#endif + binE = SCALE_ENER(binE); E += binE; - tE += binE*tonality[i]; + tE += binE*MAX32(0, tonality[i]); nE += binE*2.f*(.5f-noisiness[i]); } #ifndef FIXED_POINT @@ -371,14 +671,27 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt frame_loudness += (float)sqrt(E+1e-10f); logE[b] = (float)log(E+1e-10f); - tonal->lowE[b] = MIN32(logE[b], tonal->lowE[b]+.01f); - tonal->highE[b] = MAX32(logE[b], tonal->highE[b]-.1f); - if (tonal->highE[b] < tonal->lowE[b]+1.f) + band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f); + tonal->logE[tonal->E_count][b] = logE[b]; + if (tonal->count==0) + tonal->highE[b] = tonal->lowE[b] = logE[b]; + if (tonal->highE[b] > tonal->lowE[b] + 7.5) { - tonal->highE[b]+=.5f; - tonal->lowE[b]-=.5f; + if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) + tonal->highE[b] -= .01f; + else + tonal->lowE[b] += .01f; } - relativeE += (logE[b]-tonal->lowE[b])/(1e-15f+tonal->highE[b]-tonal->lowE[b]); + if (logE[b] > tonal->highE[b]) + { + tonal->highE[b] = logE[b]; + tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); + } else if (logE[b] < tonal->lowE[b]) + { + tonal->lowE[b] = logE[b]; + tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); + } + relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b])); L1=L2=0; for (i=0;i<NB_FRAMES;i++) @@ -410,45 +723,135 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->prev_band_tonality[b] = band_tonality[b]; } + leakage_from[0] = band_log2[0]; + leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET; + for (b=1;b<NB_TBANDS+1;b++) + { + float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4; + leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]); + leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET); + } + for (b=NB_TBANDS-2;b>=0;b--) + { + float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4; + leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]); + leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]); + } + celt_assert(NB_TBANDS+1 <= LEAK_BANDS); + for (b=0;b<NB_TBANDS+1;b++) + { + /* leak_boost[] is made up of two terms. The first, based on leakage_to[], + represents the boost needed to overcome the amount of analysis leakage + cause in a weaker band b by louder neighbouring bands. + The second, based on leakage_from[], applies to a loud band b for + which the quantization noise causes synthesis leakage to the weaker + neighbouring bands. */ + float boost = MAX16(0, leakage_to[b] - band_log2[b]) + + MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET)); + info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost)); + } + for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0; + + for (i=0;i<NB_FRAMES;i++) + { + int j; + float mindist = 1e15f; + for (j=0;j<NB_FRAMES;j++) + { + int k; + float dist=0; + for (k=0;k<NB_TBANDS;k++) + { + float tmp; + tmp = tonal->logE[i][k] - tonal->logE[j][k]; + dist += tmp*tmp; + } + if (j!=i) + mindist = MIN32(mindist, dist); + } + spec_variability += mindist; + } + spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS); bandwidth_mask = 0; bandwidth = 0; maxE = 0; noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); -#ifdef FIXED_POINT - noise_floor *= 1<<(15+SIG_SHIFT); -#endif noise_floor *= noise_floor; - for (b=0;b<NB_TOT_BANDS;b++) + below_max_pitch=0; + above_max_pitch=0; + for (b=0;b<NB_TBANDS;b++) { float E=0; + float Em; int band_start, band_end; /* Keep a margin of 300 Hz for aliasing */ - band_start = extra_bands[b]; - band_end = extra_bands[b+1]; + band_start = tbands[b]; + band_end = tbands[b+1]; for (i=band_start;i<band_end;i++) { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; E += binE; } + E = SCALE_ENER(E); maxE = MAX32(maxE, E); + if (band_start < 64) + { + below_max_pitch += E; + } else { + above_max_pitch += E; + } tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); - E = MAX32(E, tonal->meanE[b]); - /* Use a simple follower with 13 dB/Bark slope for spreading function */ - bandwidth_mask = MAX32(.05f*bandwidth_mask, E); + Em = MAX32(E, tonal->meanE[b]); /* Consider the band "active" only if all these conditions are met: - 1) less than 10 dB below the simple follower - 2) less than 90 dB below the peak band (maximal masking possible considering + 1) less than 90 dB below the peak band (maximal masking possible considering both the ATH and the loudness-dependent slope of the spreading function) - 3) above the PCM quantization noise floor + 2) above the PCM quantization noise floor + We use b+1 because the first CELT band isn't included in tbands[] */ - if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start)) - bandwidth = b; + if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start))) + bandwidth = b+1; + /* Check if the band is masked (see below). */ + is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask; + /* Use a simple follower with 13 dB/Bark slope for spreading function. */ + bandwidth_mask = MAX32(.05f*bandwidth_mask, E); } + /* Special case for the last two bands, for which we don't have spectrum but only + the energy above 12 kHz. The difficulty here is that the high-pass we use + leaks some LF energy, so we need to increase the threshold without accidentally cutting + off the band. */ + if (tonal->Fs == 48000) { + float noise_ratio; + float Em; + float E = hp_ener*(1.f/(60*60)); + noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f; + +#ifdef FIXED_POINT + /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ + E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE); +#endif + above_max_pitch += E; + tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); + Em = MAX32(E, tonal->meanE[b]); + if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160) + bandwidth = 20; + /* Check if the band is masked (see below). */ + is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask; + } + if (above_max_pitch > below_max_pitch) + info->max_pitch_ratio = below_max_pitch/above_max_pitch; + else + info->max_pitch_ratio = 1; + /* In some cases, resampling aliasing can create a small amount of energy in the first band + being cut. So if the last band is masked, we don't include it. */ + if (bandwidth == 20 && is_masked[NB_TBANDS]) + bandwidth-=2; + else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1]) + bandwidth--; if (tonal->count<=2) bandwidth = 20; frame_loudness = 20*(float)log10(frame_loudness); - tonal->Etracker = MAX32(tonal->Etracker-.03f, frame_loudness); + tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); tonal->lowECount *= (1-alphaE); if (frame_loudness < tonal->Etracker-30) tonal->lowECount += alphaE; @@ -460,11 +863,18 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt sum += dct_table[i*16+b]*logE[b]; BFCC[i] = sum; } + for (i=0;i<8;i++) + { + float sum=0; + for (b=0;b<16;b++) + sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]); + midE[i] = sum; + } frame_stationarity /= NB_TBANDS; relativeE /= NB_TBANDS; if (tonal->count<10) - relativeE = .5; + relativeE = .5f; frame_noisiness /= NB_TBANDS; #if 1 info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; @@ -479,7 +889,7 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt info->tonality_slope = slope; tonal->E_count = (tonal->E_count+1)%NB_FRAMES; - tonal->count++; + tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); info->tonality = frame_tonality; for (i=0;i<4;i++) @@ -498,6 +908,8 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt for (i=0;i<9;i++) tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; } + for (i=0;i<4;i++) + features[i] = BFCC[i]-midE[i]; for (i=0;i<8;i++) { @@ -507,136 +919,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->mem[i] = BFCC[i]; } for (i=0;i<9;i++) - features[11+i] = (float)sqrt(tonal->std[i]); - features[20] = info->tonality; - features[21] = info->activity; - features[22] = frame_stationarity; - features[23] = info->tonality_slope; - features[24] = tonal->lowECount; - -#ifndef DISABLE_FLOAT_API - mlp_process(&net, features, frame_probs); - frame_probs[0] = .5f*(frame_probs[0]+1); - /* Curve fitting between the MLP probability and the actual probability */ - frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10); - /* Probability of active audio (as opposed to silence) */ - frame_probs[1] = .5f*frame_probs[1]+.5f; - /* Consider that silence has a 50-50 probability. */ - frame_probs[0] = frame_probs[1]*frame_probs[0] + (1-frame_probs[1])*.5f; - - /*printf("%f %f ", frame_probs[0], frame_probs[1]);*/ - { - /* Probability of state transition */ - float tau; - /* Represents independence of the MLP probabilities, where - beta=1 means fully independent. */ - float beta; - /* Denormalized probability of speech (p0) and music (p1) after update */ - float p0, p1; - /* Probabilities for "all speech" and "all music" */ - float s0, m0; - /* Probability sum for renormalisation */ - float psum; - /* Instantaneous probability of speech and music, with beta pre-applied. */ - float speech0; - float music0; - float p, q; - - /* One transition every 3 minutes of active audio */ - tau = .00005f*frame_probs[1]; - /* Adapt beta based on how "unexpected" the new prob is */ - p = MAX16(.05f,MIN16(.95f,frame_probs[0])); - q = MAX16(.05f,MIN16(.95f,tonal->music_prob)); - beta = .01f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p)); - /* p0 and p1 are the probabilities of speech and music at this frame - using only information from previous frame and applying the - state transition model */ - p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau; - p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau; - /* We apply the current probability with exponent beta to work around - the fact that the probability estimates aren't independent. */ - p0 *= (float)pow(1-frame_probs[0], beta); - p1 *= (float)pow(frame_probs[0], beta); - /* Normalise the probabilities to get the Marokv probability of music. */ - tonal->music_prob = p1/(p0+p1); - info->music_prob = tonal->music_prob; - - /* This chunk of code deals with delayed decision. */ - psum=1e-20f; - /* Instantaneous probability of speech and music, with beta pre-applied. */ - speech0 = (float)pow(1-frame_probs[0], beta); - music0 = (float)pow(frame_probs[0], beta); - if (tonal->count==1) - { - tonal->pspeech[0]=.5; - tonal->pmusic [0]=.5; - } - /* Updated probability of having only speech (s0) or only music (m0), - before considering the new observation. */ - s0 = tonal->pspeech[0] + tonal->pspeech[1]; - m0 = tonal->pmusic [0] + tonal->pmusic [1]; - /* Updates s0 and m0 with instantaneous probability. */ - tonal->pspeech[0] = s0*(1-tau)*speech0; - tonal->pmusic [0] = m0*(1-tau)*music0; - /* Propagate the transition probabilities */ - for (i=1;i<DETECT_SIZE-1;i++) - { - tonal->pspeech[i] = tonal->pspeech[i+1]*speech0; - tonal->pmusic [i] = tonal->pmusic [i+1]*music0; - } - /* Probability that the latest frame is speech, when all the previous ones were music. */ - tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0; - /* Probability that the latest frame is music, when all the previous ones were speech. */ - tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0; - - /* Renormalise probabilities to 1 */ - for (i=0;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i] + tonal->pmusic[i]; - psum = 1.f/psum; - for (i=0;i<DETECT_SIZE;i++) - { - tonal->pspeech[i] *= psum; - tonal->pmusic [i] *= psum; - } - psum = tonal->pmusic[0]; - for (i=1;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i]; - - /* Estimate our confidence in the speech/music decisions */ - if (frame_probs[1]>.75) - { - if (tonal->music_prob>.9) - { - float adapt; - adapt = 1.f/(++tonal->music_confidence_count); - tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500); - tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence); - } - if (tonal->music_prob<.1) - { - float adapt; - adapt = 1.f/(++tonal->speech_confidence_count); - tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500); - tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence); - } - } else { - if (tonal->music_confidence_count==0) - tonal->music_confidence = .9f; - if (tonal->speech_confidence_count==0) - tonal->speech_confidence = .1f; - } - } - if (tonal->last_music != (tonal->music_prob>.5f)) - tonal->last_transition=0; - tonal->last_music = tonal->music_prob>.5f; -#else - info->music_prob = 0; -#endif - /*for (i=0;i<25;i++) + features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; + features[18] = spec_variability - 0.78f; + features[20] = info->tonality - 0.154723f; + features[21] = info->activity - 0.724643f; + features[22] = frame_stationarity - 0.743717f; + features[23] = info->tonality_slope + 0.069216f; + features[24] = tonal->lowECount - 0.067930f; + + compute_dense(&layer0, layer_out, features); + compute_gru(&layer1, tonal->rnn_state, layer_out); + compute_dense(&layer2, frame_probs, tonal->rnn_state); + + /* Probability of speech or music vs noise */ + info->activity_probability = frame_probs[1]; + info->music_prob = frame_probs[0]; + + /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/ +#ifdef MLP_TRAINING + for (i=0;i<25;i++) printf("%f ", features[i]); - printf("\n");*/ + printf("\n"); +#endif info->bandwidth = bandwidth; + tonal->prev_bandwidth = bandwidth; /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ info->noisiness = frame_noisiness; info->valid = 1; @@ -650,23 +957,25 @@ void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, co int offset; int pcm_len; + analysis_frame_size -= analysis_frame_size&1; if (analysis_pcm != NULL) { /* Avoid overflow/wrap-around of the analysis buffer */ - analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/100, analysis_frame_size); + analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); pcm_len = analysis_frame_size - analysis->analysis_offset; offset = analysis->analysis_offset; - do { - tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(480, pcm_len), offset, c1, c2, C, lsb_depth, downmix); - offset += 480; - pcm_len -= 480; - } while (pcm_len>0); + while (pcm_len>0) { + tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); + offset += Fs/50; + pcm_len -= Fs/50; + } analysis->analysis_offset = analysis_frame_size; analysis->analysis_offset -= frame_size; } - analysis_info->valid = 0; tonality_get_info(analysis, analysis_info, frame_size); } + +#endif /* DISABLE_FLOAT_API */ diff --git a/thirdparty/opus/analysis.h b/thirdparty/opus/analysis.h index 9eae56a525..0b66555f21 100644 --- a/thirdparty/opus/analysis.h +++ b/thirdparty/opus/analysis.h @@ -30,16 +30,24 @@ #include "celt.h" #include "opus_private.h" +#include "mlp.h" #define NB_FRAMES 8 #define NB_TBANDS 18 -#define NB_TOT_BANDS 21 -#define ANALYSIS_BUF_SIZE 720 /* 15 ms at 48 kHz */ +#define ANALYSIS_BUF_SIZE 720 /* 30 ms at 24 kHz */ -#define DETECT_SIZE 200 +/* At that point we can stop counting frames because it no longer matters. */ +#define ANALYSIS_COUNT_MAX 10000 + +#define DETECT_SIZE 100 + +/* Uncomment this to print the MLP features on stdout. */ +/*#define MLP_TRAINING*/ typedef struct { int arch; + int application; + opus_int32 Fs; #define TONALITY_ANALYSIS_RESET_START angle float angle[240]; float d_angle[240]; @@ -48,35 +56,27 @@ typedef struct { int mem_fill; /* number of usable samples in the buffer */ float prev_band_tonality[NB_TBANDS]; float prev_tonality; + int prev_bandwidth; float E[NB_FRAMES][NB_TBANDS]; + float logE[NB_FRAMES][NB_TBANDS]; float lowE[NB_TBANDS]; float highE[NB_TBANDS]; - float meanE[NB_TOT_BANDS]; + float meanE[NB_TBANDS+1]; float mem[32]; float cmean[8]; float std[9]; - float music_prob; float Etracker; float lowECount; int E_count; - int last_music; - int last_transition; int count; - float subframe_mem[3]; int analysis_offset; - /** Probability of having speech for time i to DETECT_SIZE-1 (and music before). - pspeech[0] is the probability that all frames in the window are speech. */ - float pspeech[DETECT_SIZE]; - /** Probability of having music for time i to DETECT_SIZE-1 (and speech before). - pmusic[0] is the probability that all frames in the window are music. */ - float pmusic[DETECT_SIZE]; - float speech_confidence; - float music_confidence; - int speech_confidence_count; - int music_confidence_count; int write_pos; int read_pos; int read_subframe; + float hp_ener_accum; + int initialized; + float rnn_state[MAX_NEURONS]; + opus_val32 downmix_state[3]; AnalysisInfo info[DETECT_SIZE]; } TonalityAnalysisState; @@ -86,7 +86,7 @@ typedef struct { * not be repeated every analysis step. No allocated memory is retained * by the state struct, so no cleanup call is required. */ -void tonality_analysis_init(TonalityAnalysisState *analysis); +void tonality_analysis_init(TonalityAnalysisState *analysis, opus_int32 Fs); /** Reset a TonalityAnalysisState stuct. * diff --git a/thirdparty/opus/celt/_kiss_fft_guts.h b/thirdparty/opus/celt/_kiss_fft_guts.h index 5e3d58fd66..17392b3e90 100644 --- a/thirdparty/opus/celt/_kiss_fft_guts.h +++ b/thirdparty/opus/celt/_kiss_fft_guts.h @@ -58,12 +58,12 @@ # define S_MUL(a,b) MULT16_32_Q15(b, a) # define C_MUL(m,a,b) \ - do{ (m).r = SUB32(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \ - (m).i = ADD32(S_MUL((a).r,(b).i) , S_MUL((a).i,(b).r)); }while(0) + do{ (m).r = SUB32_ovflw(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \ + (m).i = ADD32_ovflw(S_MUL((a).r,(b).i) , S_MUL((a).i,(b).r)); }while(0) # define C_MULC(m,a,b) \ - do{ (m).r = ADD32(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \ - (m).i = SUB32(S_MUL((a).i,(b).r) , S_MUL((a).r,(b).i)); }while(0) + do{ (m).r = ADD32_ovflw(S_MUL((a).r,(b).r) , S_MUL((a).i,(b).i)); \ + (m).i = SUB32_ovflw(S_MUL((a).i,(b).r) , S_MUL((a).r,(b).i)); }while(0) # define C_MULBYSCALAR( c, s ) \ do{ (c).r = S_MUL( (c).r , s ) ;\ @@ -77,17 +77,17 @@ DIVSCALAR( (c).i , div); }while (0) #define C_ADD( res, a,b)\ - do {(res).r=ADD32((a).r,(b).r); (res).i=ADD32((a).i,(b).i); \ + do {(res).r=ADD32_ovflw((a).r,(b).r); (res).i=ADD32_ovflw((a).i,(b).i); \ }while(0) #define C_SUB( res, a,b)\ - do {(res).r=SUB32((a).r,(b).r); (res).i=SUB32((a).i,(b).i); \ + do {(res).r=SUB32_ovflw((a).r,(b).r); (res).i=SUB32_ovflw((a).i,(b).i); \ }while(0) #define C_ADDTO( res , a)\ - do {(res).r = ADD32((res).r, (a).r); (res).i = ADD32((res).i,(a).i);\ + do {(res).r = ADD32_ovflw((res).r, (a).r); (res).i = ADD32_ovflw((res).i,(a).i);\ }while(0) #define C_SUBFROM( res , a)\ - do {(res).r = ADD32((res).r,(a).r); (res).i = SUB32((res).i,(a).i); \ + do {(res).r = ADD32_ovflw((res).r,(a).r); (res).i = SUB32_ovflw((res).i,(a).i); \ }while(0) #if defined(OPUS_ARM_INLINE_ASM) diff --git a/thirdparty/opus/celt/arch.h b/thirdparty/opus/celt/arch.h index 8ceab5fe10..08b07db598 100644 --- a/thirdparty/opus/celt/arch.h +++ b/thirdparty/opus/celt/arch.h @@ -46,25 +46,50 @@ # endif # endif +#if OPUS_GNUC_PREREQ(3, 0) +#define opus_likely(x) (__builtin_expect(!!(x), 1)) +#define opus_unlikely(x) (__builtin_expect(!!(x), 0)) +#else +#define opus_likely(x) (!!(x)) +#define opus_unlikely(x) (!!(x)) +#endif + #define CELT_SIG_SCALE 32768.f -#define celt_fatal(str) _celt_fatal(str, __FILE__, __LINE__); -#ifdef ENABLE_ASSERTIONS +#define CELT_FATAL(str) celt_fatal(str, __FILE__, __LINE__); + +#if defined(ENABLE_ASSERTIONS) || defined(ENABLE_HARDENING) +#ifdef __GNUC__ +__attribute__((noreturn)) +#endif +void celt_fatal(const char *str, const char *file, int line); + +#if defined(CELT_C) && !defined(OVERRIDE_celt_fatal) #include <stdio.h> #include <stdlib.h> #ifdef __GNUC__ __attribute__((noreturn)) #endif -static OPUS_INLINE void _celt_fatal(const char *str, const char *file, int line) +void celt_fatal(const char *str, const char *file, int line) { fprintf (stderr, "Fatal (internal) error in %s, line %d: %s\n", file, line, str); abort(); } -#define celt_assert(cond) {if (!(cond)) {celt_fatal("assertion failed: " #cond);}} -#define celt_assert2(cond, message) {if (!(cond)) {celt_fatal("assertion failed: " #cond "\n" message);}} +#endif + +#define celt_assert(cond) {if (!(cond)) {CELT_FATAL("assertion failed: " #cond);}} +#define celt_assert2(cond, message) {if (!(cond)) {CELT_FATAL("assertion failed: " #cond "\n" message);}} +#define MUST_SUCCEED(call) celt_assert((call) == OPUS_OK) #else #define celt_assert(cond) #define celt_assert2(cond, message) +#define MUST_SUCCEED(call) do {if((call) != OPUS_OK) {RESTORE_STACK; return OPUS_INTERNAL_ERROR;} } while (0) +#endif + +#if defined(ENABLE_ASSERTIONS) +#define celt_sig_assert(cond) {if (!(cond)) {CELT_FATAL("signal assertion failed: " #cond);}} +#else +#define celt_sig_assert(cond) #endif #define IMUL32(a,b) ((a)*(b)) @@ -93,14 +118,20 @@ static OPUS_INLINE void _celt_fatal(const char *str, const char *file, int line) typedef opus_int16 opus_val16; typedef opus_int32 opus_val32; +typedef opus_int64 opus_val64; typedef opus_val32 celt_sig; typedef opus_val16 celt_norm; typedef opus_val32 celt_ener; +#define celt_isnan(x) 0 + #define Q15ONE 32767 #define SIG_SHIFT 12 +/* Safe saturation value for 32-bit signals. Should be less than + 2^31*(1-0.85) to avoid blowing up on DC at deemphasis.*/ +#define SIG_SAT (300000000) #define NORM_SCALING 16384 @@ -129,7 +160,7 @@ static OPUS_INLINE opus_int16 SAT16(opus_int32 x) { #ifdef OPUS_ARM_PRESUME_AARCH64_NEON_INTR #include "arm/fixed_arm64.h" -#elif OPUS_ARM_INLINE_EDSP +#elif defined (OPUS_ARM_INLINE_EDSP) #include "arm/fixed_armv5e.h" #elif defined (OPUS_ARM_INLINE_ASM) #include "arm/fixed_armv4.h" @@ -147,6 +178,7 @@ static OPUS_INLINE opus_int16 SAT16(opus_int32 x) { typedef float opus_val16; typedef float opus_val32; +typedef float opus_val64; typedef float celt_sig; typedef float celt_norm; @@ -186,6 +218,7 @@ static OPUS_INLINE int celt_isnan(float x) #define NEG16(x) (-(x)) #define NEG32(x) (-(x)) +#define NEG32_ovflw(x) (-(x)) #define EXTRACT16(x) (x) #define EXTEND32(x) (x) #define SHR16(a,shift) (a) @@ -202,6 +235,7 @@ static OPUS_INLINE int celt_isnan(float x) #define SATURATE16(x) (x) #define ROUND16(a,shift) (a) +#define SROUND16(a,shift) (a) #define HALF16(x) (.5f*(x)) #define HALF32(x) (.5f*(x)) @@ -209,6 +243,8 @@ static OPUS_INLINE int celt_isnan(float x) #define SUB16(a,b) ((a)-(b)) #define ADD32(a,b) ((a)+(b)) #define SUB32(a,b) ((a)-(b)) +#define ADD32_ovflw(a,b) ((a)+(b)) +#define SUB32_ovflw(a,b) ((a)-(b)) #define MULT16_16_16(a,b) ((a)*(b)) #define MULT16_16(a,b) ((opus_val32)(a)*(opus_val32)(b)) #define MAC16_16(c,a,b) ((c)+(opus_val32)(a)*(opus_val32)(b)) @@ -243,9 +279,9 @@ static OPUS_INLINE int celt_isnan(float x) #ifndef GLOBAL_STACK_SIZE #ifdef FIXED_POINT -#define GLOBAL_STACK_SIZE 100000 +#define GLOBAL_STACK_SIZE 120000 #else -#define GLOBAL_STACK_SIZE 100000 +#define GLOBAL_STACK_SIZE 120000 #endif #endif diff --git a/thirdparty/opus/celt/arm/arm2gnu.pl b/thirdparty/opus/celt/arm/arm2gnu.pl index 6c922ac819..a2895f7445 100755 --- a/thirdparty/opus/celt/arm/arm2gnu.pl +++ b/thirdparty/opus/celt/arm/arm2gnu.pl @@ -164,11 +164,11 @@ while (<>) { $prefix = ""; if ($proc) { - $prefix = $prefix.sprintf("\t.type\t%s, %%function; ",$proc) unless ($apple); + $prefix = $prefix.sprintf("\t.type\t%s, %%function", $proc) unless ($apple); # Make sure we $prefix isn't empty here (for the $apple case). # We handle mangling the label here, make sure it doesn't match # the label handling below (if $prefix would be empty). - $prefix = "; "; + $prefix = $prefix."; "; push(@proc_stack, $proc); s/^[A-Za-z_\.]\w+/$symprefix$&:/; } diff --git a/thirdparty/opus/celt/arm/arm_celt_map.c b/thirdparty/opus/celt/arm/arm_celt_map.c index 4d4d069a86..ca988b66f5 100644 --- a/thirdparty/opus/celt/arm/arm_celt_map.c +++ b/thirdparty/opus/celt/arm/arm_celt_map.c @@ -35,12 +35,29 @@ #if defined(OPUS_HAVE_RTCD) +# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR) +opus_val32 (*const CELT_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y, int N) = { + celt_inner_prod_c, /* ARMv4 */ + celt_inner_prod_c, /* EDSP */ + celt_inner_prod_c, /* Media */ + celt_inner_prod_neon /* NEON */ +}; + +void (*const DUAL_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02, + int N, opus_val32 *xy1, opus_val32 *xy2) = { + dual_inner_prod_c, /* ARMv4 */ + dual_inner_prod_c, /* EDSP */ + dual_inner_prod_c, /* Media */ + dual_inner_prod_neon /* NEON */ +}; +# endif + # if defined(FIXED_POINT) # if ((defined(OPUS_ARM_MAY_HAVE_NEON) && !defined(OPUS_ARM_PRESUME_NEON)) || \ (defined(OPUS_ARM_MAY_HAVE_MEDIA) && !defined(OPUS_ARM_PRESUME_MEDIA)) || \ (defined(OPUS_ARM_MAY_HAVE_EDSP) && !defined(OPUS_ARM_PRESUME_EDSP))) opus_val32 (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *, - const opus_val16 *, opus_val32 *, int , int) = { + const opus_val16 *, opus_val32 *, int, int, int) = { celt_pitch_xcorr_c, /* ARMv4 */ MAY_HAVE_EDSP(celt_pitch_xcorr), /* EDSP */ MAY_HAVE_MEDIA(celt_pitch_xcorr), /* Media */ @@ -51,7 +68,7 @@ opus_val32 (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *, # else /* !FIXED_POINT */ # if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR) void (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *, - const opus_val16 *, opus_val32 *, int, int) = { + const opus_val16 *, opus_val32 *, int, int, int) = { celt_pitch_xcorr_c, /* ARMv4 */ celt_pitch_xcorr_c, /* EDSP */ celt_pitch_xcorr_c, /* Media */ diff --git a/thirdparty/opus/celt/arm/celt_ne10_fft.c b/thirdparty/opus/celt/arm/celt_fft_ne10.c index 42d96a7117..ea5fd7808b 100644 --- a/thirdparty/opus/celt/arm/celt_ne10_fft.c +++ b/thirdparty/opus/celt/arm/celt_fft_ne10.c @@ -1,7 +1,7 @@ /* Copyright (c) 2015 Xiph.Org Foundation Written by Viswanath Puttagunta */ /** - @file celt_ne10_fft.c + @file celt_fft_ne10.c @brief ARM Neon optimizations for fft using NE10 library */ @@ -36,7 +36,6 @@ #endif #endif -#include <NE10_init.h> #include <NE10_dsp.h> #include "os_support.h" #include "kiss_fft.h" diff --git a/thirdparty/opus/celt/arm/celt_ne10_mdct.c b/thirdparty/opus/celt/arm/celt_mdct_ne10.c index 293c3efd7a..3531d02d10 100644 --- a/thirdparty/opus/celt/arm/celt_ne10_mdct.c +++ b/thirdparty/opus/celt/arm/celt_mdct_ne10.c @@ -1,7 +1,7 @@ /* Copyright (c) 2015 Xiph.Org Foundation Written by Viswanath Puttagunta */ /** - @file celt_ne10_mdct.c + @file celt_mdct_ne10.c @brief ARM Neon optimizations for mdct using NE10 library */ diff --git a/thirdparty/opus/celt/arm/celt_neon_intr.c b/thirdparty/opus/celt/arm/celt_neon_intr.c index 47bbe3dc22..effda769d0 100644 --- a/thirdparty/opus/celt/arm/celt_neon_intr.c +++ b/thirdparty/opus/celt/arm/celt_neon_intr.c @@ -191,121 +191,21 @@ static void xcorr_kernel_neon_float(const float32_t *x, const float32_t *y, vst1q_f32(sum, SUMM); } -/* - * Function: xcorr_kernel_neon_float_process1 - * --------------------------------- - * Computes single correlation values and stores in *sum - */ -static void xcorr_kernel_neon_float_process1(const float32_t *x, - const float32_t *y, float32_t *sum, int len) { - float32x4_t XX[4]; - float32x4_t YY[4]; - float32x2_t XX_2; - float32x2_t YY_2; - float32x4_t SUMM; - float32x2_t SUMM_2[2]; - const float32_t *xi = x; - const float32_t *yi = y; - - SUMM = vdupq_n_f32(0); - - /* Work on 16 values per iteration */ - while (len >= 16) { - XX[0] = vld1q_f32(xi); - xi += 4; - XX[1] = vld1q_f32(xi); - xi += 4; - XX[2] = vld1q_f32(xi); - xi += 4; - XX[3] = vld1q_f32(xi); - xi += 4; - - YY[0] = vld1q_f32(yi); - yi += 4; - YY[1] = vld1q_f32(yi); - yi += 4; - YY[2] = vld1q_f32(yi); - yi += 4; - YY[3] = vld1q_f32(yi); - yi += 4; - - SUMM = vmlaq_f32(SUMM, YY[0], XX[0]); - SUMM = vmlaq_f32(SUMM, YY[1], XX[1]); - SUMM = vmlaq_f32(SUMM, YY[2], XX[2]); - SUMM = vmlaq_f32(SUMM, YY[3], XX[3]); - len -= 16; - } - - /* Work on 8 values */ - if (len >= 8) { - XX[0] = vld1q_f32(xi); - xi += 4; - XX[1] = vld1q_f32(xi); - xi += 4; - - YY[0] = vld1q_f32(yi); - yi += 4; - YY[1] = vld1q_f32(yi); - yi += 4; - - SUMM = vmlaq_f32(SUMM, YY[0], XX[0]); - SUMM = vmlaq_f32(SUMM, YY[1], XX[1]); - len -= 8; - } - - /* Work on 4 values */ - if (len >= 4) { - XX[0] = vld1q_f32(xi); - xi += 4; - YY[0] = vld1q_f32(yi); - yi += 4; - SUMM = vmlaq_f32(SUMM, YY[0], XX[0]); - len -= 4; - } - - /* Start accumulating results */ - SUMM_2[0] = vget_low_f32(SUMM); - if (len >= 2) { - /* While at it, consume 2 more values if available */ - XX_2 = vld1_f32(xi); - xi += 2; - YY_2 = vld1_f32(yi); - yi += 2; - SUMM_2[0] = vmla_f32(SUMM_2[0], YY_2, XX_2); - len -= 2; - } - SUMM_2[1] = vget_high_f32(SUMM); - SUMM_2[0] = vadd_f32(SUMM_2[0], SUMM_2[1]); - SUMM_2[0] = vpadd_f32(SUMM_2[0], SUMM_2[0]); - /* Ok, now we have result accumulated in SUMM_2[0].0 */ - - if (len > 0) { - /* Case when you have one value left */ - XX_2 = vld1_dup_f32(xi); - YY_2 = vld1_dup_f32(yi); - SUMM_2[0] = vmla_f32(SUMM_2[0], XX_2, YY_2); - } - - vst1_lane_f32(sum, SUMM_2[0], 0); -} - void celt_pitch_xcorr_float_neon(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch) { + opus_val32 *xcorr, int len, int max_pitch, int arch) { int i; + (void)arch; celt_assert(max_pitch > 0); - celt_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0); + celt_sig_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0); for (i = 0; i < (max_pitch-3); i += 4) { xcorr_kernel_neon_float((const float32_t *)_x, (const float32_t *)_y+i, (float32_t *)xcorr+i, len); } - /* In case max_pitch isn't multiple of 4 - * compute single correlation value per iteration - */ + /* In case max_pitch isn't a multiple of 4, do non-unrolled version. */ for (; i < max_pitch; i++) { - xcorr_kernel_neon_float_process1((const float32_t *)_x, - (const float32_t *)_y+i, (float32_t *)xcorr+i, len); + xcorr[i] = celt_inner_prod_neon(_x, _y+i, len); } } #endif diff --git a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S b/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S deleted file mode 100644 index 5b2ee55a10..0000000000 --- a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm-gnu.S +++ /dev/null @@ -1,551 +0,0 @@ - .syntax unified -@ Copyright (c) 2007-2008 CSIRO -@ Copyright (c) 2007-2009 Xiph.Org Foundation -@ Copyright (c) 2013 Parrot -@ Written by Aurélien Zanelli -@ -@ Redistribution and use in source and binary forms, with or without -@ modification, are permitted provided that the following conditions -@ are met: -@ -@ - Redistributions of source code must retain the above copyright -@ notice, this list of conditions and the following disclaimer. -@ -@ - Redistributions in binary form must reproduce the above copyright -@ notice, this list of conditions and the following disclaimer in the -@ documentation and/or other materials provided with the distribution. -@ -@ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -@ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -@ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -@ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -@ OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -@ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -@ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -@ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -@ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - .text; .p2align 2; .arch armv7-a - .fpu neon - .object_arch armv4t - - .include "celt/arm/armopts-gnu.S" - - .if OPUS_ARM_MAY_HAVE_EDSP - .global celt_pitch_xcorr_edsp - .endif - - .if OPUS_ARM_MAY_HAVE_NEON - .global celt_pitch_xcorr_neon - .endif - - .if OPUS_ARM_MAY_HAVE_NEON - -@ Compute sum[k]=sum(x[j]*y[j+k],j=0...len-1), k=0...3 -; xcorr_kernel_neon: @ PROC -xcorr_kernel_neon_start: - @ input: - @ r3 = int len - @ r4 = opus_val16 *x - @ r5 = opus_val16 *y - @ q0 = opus_val32 sum[4] - @ output: - @ q0 = opus_val32 sum[4] - @ preserved: r0-r3, r6-r11, d2, q4-q7, q9-q15 - @ internal usage: - @ r12 = int j - @ d3 = y_3|y_2|y_1|y_0 - @ q2 = y_B|y_A|y_9|y_8|y_7|y_6|y_5|y_4 - @ q3 = x_7|x_6|x_5|x_4|x_3|x_2|x_1|x_0 - @ q8 = scratch - @ - @ Load y[0...3] - @ This requires len>0 to always be valid (which we assert in the C code). - VLD1.16 {d5}, [r5]! - SUBS r12, r3, #8 - BLE xcorr_kernel_neon_process4 -@ Process 8 samples at a time. -@ This loop loads one y value more than we actually need. Therefore we have to -@ stop as soon as there are 8 or fewer samples left (instead of 7), to avoid -@ reading past the end of the array. -xcorr_kernel_neon_process8: - @ This loop has 19 total instructions (10 cycles to issue, minimum), with - @ - 2 cycles of ARM insrtuctions, - @ - 10 cycles of load/store/byte permute instructions, and - @ - 9 cycles of data processing instructions. - @ On a Cortex A8, we dual-issue the maximum amount (9 cycles) between the - @ latter two categories, meaning the whole loop should run in 10 cycles per - @ iteration, barring cache misses. - @ - @ Load x[0...7] - VLD1.16 {d6, d7}, [r4]! - @ Unlike VMOV, VAND is a data processsing instruction (and doesn't get - @ assembled to VMOV, like VORR would), so it dual-issues with the prior VLD1. - VAND d3, d5, d5 - SUBS r12, r12, #8 - @ Load y[4...11] - VLD1.16 {d4, d5}, [r5]! - VMLAL.S16 q0, d3, d6[0] - VEXT.16 d16, d3, d4, #1 - VMLAL.S16 q0, d4, d7[0] - VEXT.16 d17, d4, d5, #1 - VMLAL.S16 q0, d16, d6[1] - VEXT.16 d16, d3, d4, #2 - VMLAL.S16 q0, d17, d7[1] - VEXT.16 d17, d4, d5, #2 - VMLAL.S16 q0, d16, d6[2] - VEXT.16 d16, d3, d4, #3 - VMLAL.S16 q0, d17, d7[2] - VEXT.16 d17, d4, d5, #3 - VMLAL.S16 q0, d16, d6[3] - VMLAL.S16 q0, d17, d7[3] - BGT xcorr_kernel_neon_process8 -@ Process 4 samples here if we have > 4 left (still reading one extra y value). -xcorr_kernel_neon_process4: - ADDS r12, r12, #4 - BLE xcorr_kernel_neon_process2 - @ Load x[0...3] - VLD1.16 d6, [r4]! - @ Use VAND since it's a data processing instruction again. - VAND d4, d5, d5 - SUB r12, r12, #4 - @ Load y[4...7] - VLD1.16 d5, [r5]! - VMLAL.S16 q0, d4, d6[0] - VEXT.16 d16, d4, d5, #1 - VMLAL.S16 q0, d16, d6[1] - VEXT.16 d16, d4, d5, #2 - VMLAL.S16 q0, d16, d6[2] - VEXT.16 d16, d4, d5, #3 - VMLAL.S16 q0, d16, d6[3] -@ Process 2 samples here if we have > 2 left (still reading one extra y value). -xcorr_kernel_neon_process2: - ADDS r12, r12, #2 - BLE xcorr_kernel_neon_process1 - @ Load x[0...1] - VLD2.16 {d6[],d7[]}, [r4]! - @ Use VAND since it's a data processing instruction again. - VAND d4, d5, d5 - SUB r12, r12, #2 - @ Load y[4...5] - VLD1.32 {d5[]}, [r5]! - VMLAL.S16 q0, d4, d6 - VEXT.16 d16, d4, d5, #1 - @ Replace bottom copy of {y5,y4} in d5 with {y3,y2} from d4, using VSRI - @ instead of VEXT, since it's a data-processing instruction. - VSRI.64 d5, d4, #32 - VMLAL.S16 q0, d16, d7 -@ Process 1 sample using the extra y value we loaded above. -xcorr_kernel_neon_process1: - @ Load next *x - VLD1.16 {d6[]}, [r4]! - ADDS r12, r12, #1 - @ y[0...3] are left in d5 from prior iteration(s) (if any) - VMLAL.S16 q0, d5, d6 - MOVLE pc, lr -@ Now process 1 last sample, not reading ahead. - @ Load last *y - VLD1.16 {d4[]}, [r5]! - VSRI.64 d4, d5, #16 - @ Load last *x - VLD1.16 {d6[]}, [r4]! - VMLAL.S16 q0, d4, d6 - MOV pc, lr - .size xcorr_kernel_neon, .-xcorr_kernel_neon @ ENDP - -@ opus_val32 celt_pitch_xcorr_neon(opus_val16 *_x, opus_val16 *_y, -@ opus_val32 *xcorr, int len, int max_pitch) -; celt_pitch_xcorr_neon: @ PROC - @ input: - @ r0 = opus_val16 *_x - @ r1 = opus_val16 *_y - @ r2 = opus_val32 *xcorr - @ r3 = int len - @ output: - @ r0 = int maxcorr - @ internal usage: - @ r4 = opus_val16 *x (for xcorr_kernel_neon()) - @ r5 = opus_val16 *y (for xcorr_kernel_neon()) - @ r6 = int max_pitch - @ r12 = int j - @ q15 = int maxcorr[4] (q15 is not used by xcorr_kernel_neon()) - STMFD sp!, {r4-r6, lr} - LDR r6, [sp, #16] - VMOV.S32 q15, #1 - @ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done - SUBS r6, r6, #4 - BLT celt_pitch_xcorr_neon_process4_done -celt_pitch_xcorr_neon_process4: - @ xcorr_kernel_neon parameters: - @ r3 = len, r4 = _x, r5 = _y, q0 = {0, 0, 0, 0} - MOV r4, r0 - MOV r5, r1 - VEOR q0, q0, q0 - @ xcorr_kernel_neon only modifies r4, r5, r12, and q0...q3. - @ So we don't save/restore any other registers. - BL xcorr_kernel_neon_start - SUBS r6, r6, #4 - VST1.32 {q0}, [r2]! - @ _y += 4 - ADD r1, r1, #8 - VMAX.S32 q15, q15, q0 - @ if (max_pitch < 4) goto celt_pitch_xcorr_neon_process4_done - BGE celt_pitch_xcorr_neon_process4 -@ We have less than 4 sums left to compute. -celt_pitch_xcorr_neon_process4_done: - ADDS r6, r6, #4 - @ Reduce maxcorr to a single value - VMAX.S32 d30, d30, d31 - VPMAX.S32 d30, d30, d30 - @ if (max_pitch <= 0) goto celt_pitch_xcorr_neon_done - BLE celt_pitch_xcorr_neon_done -@ Now compute each remaining sum one at a time. -celt_pitch_xcorr_neon_process_remaining: - MOV r4, r0 - MOV r5, r1 - VMOV.I32 q0, #0 - SUBS r12, r3, #8 - BLT celt_pitch_xcorr_neon_process_remaining4 -@ Sum terms 8 at a time. -celt_pitch_xcorr_neon_process_remaining_loop8: - @ Load x[0...7] - VLD1.16 {q1}, [r4]! - @ Load y[0...7] - VLD1.16 {q2}, [r5]! - SUBS r12, r12, #8 - VMLAL.S16 q0, d4, d2 - VMLAL.S16 q0, d5, d3 - BGE celt_pitch_xcorr_neon_process_remaining_loop8 -@ Sum terms 4 at a time. -celt_pitch_xcorr_neon_process_remaining4: - ADDS r12, r12, #4 - BLT celt_pitch_xcorr_neon_process_remaining4_done - @ Load x[0...3] - VLD1.16 {d2}, [r4]! - @ Load y[0...3] - VLD1.16 {d3}, [r5]! - SUB r12, r12, #4 - VMLAL.S16 q0, d3, d2 -celt_pitch_xcorr_neon_process_remaining4_done: - @ Reduce the sum to a single value. - VADD.S32 d0, d0, d1 - VPADDL.S32 d0, d0 - ADDS r12, r12, #4 - BLE celt_pitch_xcorr_neon_process_remaining_loop_done -@ Sum terms 1 at a time. -celt_pitch_xcorr_neon_process_remaining_loop1: - VLD1.16 {d2[]}, [r4]! - VLD1.16 {d3[]}, [r5]! - SUBS r12, r12, #1 - VMLAL.S16 q0, d2, d3 - BGT celt_pitch_xcorr_neon_process_remaining_loop1 -celt_pitch_xcorr_neon_process_remaining_loop_done: - VST1.32 {d0[0]}, [r2]! - VMAX.S32 d30, d30, d0 - SUBS r6, r6, #1 - @ _y++ - ADD r1, r1, #2 - @ if (--max_pitch > 0) goto celt_pitch_xcorr_neon_process_remaining - BGT celt_pitch_xcorr_neon_process_remaining -celt_pitch_xcorr_neon_done: - VMOV.32 r0, d30[0] - LDMFD sp!, {r4-r6, pc} - .size celt_pitch_xcorr_neon, .-celt_pitch_xcorr_neon @ ENDP - - .endif - - .if OPUS_ARM_MAY_HAVE_EDSP - -@ This will get used on ARMv7 devices without NEON, so it has been optimized -@ to take advantage of dual-issuing where possible. -; xcorr_kernel_edsp: @ PROC -xcorr_kernel_edsp_start: - @ input: - @ r3 = int len - @ r4 = opus_val16 *_x (must be 32-bit aligned) - @ r5 = opus_val16 *_y (must be 32-bit aligned) - @ r6...r9 = opus_val32 sum[4] - @ output: - @ r6...r9 = opus_val32 sum[4] - @ preserved: r0-r5 - @ internal usage - @ r2 = int j - @ r12,r14 = opus_val16 x[4] - @ r10,r11 = opus_val16 y[4] - STMFD sp!, {r2,r4,r5,lr} - LDR r10, [r5], #4 @ Load y[0...1] - SUBS r2, r3, #4 @ j = len-4 - LDR r11, [r5], #4 @ Load y[2...3] - BLE xcorr_kernel_edsp_process4_done - LDR r12, [r4], #4 @ Load x[0...1] - @ Stall -xcorr_kernel_edsp_process4: - @ The multiplies must issue from pipeline 0, and can't dual-issue with each - @ other. Every other instruction here dual-issues with a multiply, and is - @ thus "free". There should be no stalls in the body of the loop. - SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_0,y_0) - LDR r14, [r4], #4 @ Load x[2...3] - SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x_0,y_1) - SUBS r2, r2, #4 @ j-=4 - SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_0,y_2) - SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x_0,y_3) - SMLATT r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x_1,y_1) - LDR r10, [r5], #4 @ Load y[4...5] - SMLATB r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],x_1,y_2) - SMLATT r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x_1,y_3) - SMLATB r9, r12, r10, r9 @ sum[3] = MAC16_16(sum[3],x_1,y_4) - LDRGT r12, [r4], #4 @ Load x[0...1] - SMLABB r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_2,y_2) - SMLABT r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x_2,y_3) - SMLABB r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_2,y_4) - SMLABT r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x_2,y_5) - SMLATT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],x_3,y_3) - LDR r11, [r5], #4 @ Load y[6...7] - SMLATB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],x_3,y_4) - SMLATT r8, r14, r10, r8 @ sum[2] = MAC16_16(sum[2],x_3,y_5) - SMLATB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],x_3,y_6) - BGT xcorr_kernel_edsp_process4 -xcorr_kernel_edsp_process4_done: - ADDS r2, r2, #4 - BLE xcorr_kernel_edsp_done - LDRH r12, [r4], #2 @ r12 = *x++ - SUBS r2, r2, #1 @ j-- - @ Stall - SMLABB r6, r12, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_0) - LDRHGT r14, [r4], #2 @ r14 = *x++ - SMLABT r7, r12, r10, r7 @ sum[1] = MAC16_16(sum[1],x,y_1) - SMLABB r8, r12, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_2) - SMLABT r9, r12, r11, r9 @ sum[3] = MAC16_16(sum[3],x,y_3) - BLE xcorr_kernel_edsp_done - SMLABT r6, r14, r10, r6 @ sum[0] = MAC16_16(sum[0],x,y_1) - SUBS r2, r2, #1 @ j-- - SMLABB r7, r14, r11, r7 @ sum[1] = MAC16_16(sum[1],x,y_2) - LDRH r10, [r5], #2 @ r10 = y_4 = *y++ - SMLABT r8, r14, r11, r8 @ sum[2] = MAC16_16(sum[2],x,y_3) - LDRHGT r12, [r4], #2 @ r12 = *x++ - SMLABB r9, r14, r10, r9 @ sum[3] = MAC16_16(sum[3],x,y_4) - BLE xcorr_kernel_edsp_done - SMLABB r6, r12, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_2) - CMP r2, #1 @ j-- - SMLABT r7, r12, r11, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_3) - LDRH r2, [r5], #2 @ r2 = y_5 = *y++ - SMLABB r8, r12, r10, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_4) - LDRHGT r14, [r4] @ r14 = *x - SMLABB r9, r12, r2, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_5) - BLE xcorr_kernel_edsp_done - SMLABT r6, r14, r11, r6 @ sum[0] = MAC16_16(sum[0],tmp,y_3) - LDRH r11, [r5] @ r11 = y_6 = *y - SMLABB r7, r14, r10, r7 @ sum[1] = MAC16_16(sum[1],tmp,y_4) - SMLABB r8, r14, r2, r8 @ sum[2] = MAC16_16(sum[2],tmp,y_5) - SMLABB r9, r14, r11, r9 @ sum[3] = MAC16_16(sum[3],tmp,y_6) -xcorr_kernel_edsp_done: - LDMFD sp!, {r2,r4,r5,pc} - .size xcorr_kernel_edsp, .-xcorr_kernel_edsp @ ENDP - -; celt_pitch_xcorr_edsp: @ PROC - @ input: - @ r0 = opus_val16 *_x (must be 32-bit aligned) - @ r1 = opus_val16 *_y (only needs to be 16-bit aligned) - @ r2 = opus_val32 *xcorr - @ r3 = int len - @ output: - @ r0 = maxcorr - @ internal usage - @ r4 = opus_val16 *x - @ r5 = opus_val16 *y - @ r6 = opus_val32 sum0 - @ r7 = opus_val32 sum1 - @ r8 = opus_val32 sum2 - @ r9 = opus_val32 sum3 - @ r1 = int max_pitch - @ r12 = int j - STMFD sp!, {r4-r11, lr} - MOV r5, r1 - LDR r1, [sp, #36] - MOV r4, r0 - TST r5, #3 - @ maxcorr = 1 - MOV r0, #1 - BEQ celt_pitch_xcorr_edsp_process1u_done -@ Compute one sum at the start to make y 32-bit aligned. - SUBS r12, r3, #4 - @ r14 = sum = 0 - MOV r14, #0 - LDRH r8, [r5], #2 - BLE celt_pitch_xcorr_edsp_process1u_loop4_done - LDR r6, [r4], #4 - MOV r8, r8, LSL #16 -celt_pitch_xcorr_edsp_process1u_loop4: - LDR r9, [r5], #4 - SMLABT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0) - LDR r7, [r4], #4 - SMLATB r14, r6, r9, r14 @ sum = MAC16_16(sum, x_1, y_1) - LDR r8, [r5], #4 - SMLABT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2) - SUBS r12, r12, #4 @ j-=4 - SMLATB r14, r7, r8, r14 @ sum = MAC16_16(sum, x_3, y_3) - LDRGT r6, [r4], #4 - BGT celt_pitch_xcorr_edsp_process1u_loop4 - MOV r8, r8, LSR #16 -celt_pitch_xcorr_edsp_process1u_loop4_done: - ADDS r12, r12, #4 -celt_pitch_xcorr_edsp_process1u_loop1: - LDRHGE r6, [r4], #2 - @ Stall - SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y) - SUBSGE r12, r12, #1 - LDRHGT r8, [r5], #2 - BGT celt_pitch_xcorr_edsp_process1u_loop1 - @ Restore _x - SUB r4, r4, r3, LSL #1 - @ Restore and advance _y - SUB r5, r5, r3, LSL #1 - @ maxcorr = max(maxcorr, sum) - CMP r0, r14 - ADD r5, r5, #2 - MOVLT r0, r14 - SUBS r1, r1, #1 - @ xcorr[i] = sum - STR r14, [r2], #4 - BLE celt_pitch_xcorr_edsp_done -celt_pitch_xcorr_edsp_process1u_done: - @ if (max_pitch < 4) goto celt_pitch_xcorr_edsp_process2 - SUBS r1, r1, #4 - BLT celt_pitch_xcorr_edsp_process2 -celt_pitch_xcorr_edsp_process4: - @ xcorr_kernel_edsp parameters: - @ r3 = len, r4 = _x, r5 = _y, r6...r9 = sum[4] = {0, 0, 0, 0} - MOV r6, #0 - MOV r7, #0 - MOV r8, #0 - MOV r9, #0 - BL xcorr_kernel_edsp_start @ xcorr_kernel_edsp(_x, _y+i, xcorr+i, len) - @ maxcorr = max(maxcorr, sum0, sum1, sum2, sum3) - CMP r0, r6 - @ _y+=4 - ADD r5, r5, #8 - MOVLT r0, r6 - CMP r0, r7 - MOVLT r0, r7 - CMP r0, r8 - MOVLT r0, r8 - CMP r0, r9 - MOVLT r0, r9 - STMIA r2!, {r6-r9} - SUBS r1, r1, #4 - BGE celt_pitch_xcorr_edsp_process4 -celt_pitch_xcorr_edsp_process2: - ADDS r1, r1, #2 - BLT celt_pitch_xcorr_edsp_process1a - SUBS r12, r3, #4 - @ {r10, r11} = {sum0, sum1} = {0, 0} - MOV r10, #0 - MOV r11, #0 - LDR r8, [r5], #4 - BLE celt_pitch_xcorr_edsp_process2_loop_done - LDR r6, [r4], #4 - LDR r9, [r5], #4 -celt_pitch_xcorr_edsp_process2_loop4: - SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0) - LDR r7, [r4], #4 - SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1) - SUBS r12, r12, #4 @ j-=4 - SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1) - LDR r8, [r5], #4 - SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2) - LDRGT r6, [r4], #4 - SMLABB r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_2, y_2) - SMLABT r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_2, y_3) - SMLATT r10, r7, r9, r10 @ sum0 = MAC16_16(sum0, x_3, y_3) - LDRGT r9, [r5], #4 - SMLATB r11, r7, r8, r11 @ sum1 = MAC16_16(sum1, x_3, y_4) - BGT celt_pitch_xcorr_edsp_process2_loop4 -celt_pitch_xcorr_edsp_process2_loop_done: - ADDS r12, r12, #2 - BLE celt_pitch_xcorr_edsp_process2_1 - LDR r6, [r4], #4 - @ Stall - SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0) - LDR r9, [r5], #4 - SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1) - SUB r12, r12, #2 - SMLATT r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_1, y_1) - MOV r8, r9 - SMLATB r11, r6, r9, r11 @ sum1 = MAC16_16(sum1, x_1, y_2) -celt_pitch_xcorr_edsp_process2_1: - LDRH r6, [r4], #2 - ADDS r12, r12, #1 - @ Stall - SMLABB r10, r6, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_0) - LDRHGT r7, [r4], #2 - SMLABT r11, r6, r8, r11 @ sum1 = MAC16_16(sum1, x_0, y_1) - BLE celt_pitch_xcorr_edsp_process2_done - LDRH r9, [r5], #2 - SMLABT r10, r7, r8, r10 @ sum0 = MAC16_16(sum0, x_0, y_1) - SMLABB r11, r7, r9, r11 @ sum1 = MAC16_16(sum1, x_0, y_2) -celt_pitch_xcorr_edsp_process2_done: - @ Restore _x - SUB r4, r4, r3, LSL #1 - @ Restore and advance _y - SUB r5, r5, r3, LSL #1 - @ maxcorr = max(maxcorr, sum0) - CMP r0, r10 - ADD r5, r5, #2 - MOVLT r0, r10 - SUB r1, r1, #2 - @ maxcorr = max(maxcorr, sum1) - CMP r0, r11 - @ xcorr[i] = sum - STR r10, [r2], #4 - MOVLT r0, r11 - STR r11, [r2], #4 -celt_pitch_xcorr_edsp_process1a: - ADDS r1, r1, #1 - BLT celt_pitch_xcorr_edsp_done - SUBS r12, r3, #4 - @ r14 = sum = 0 - MOV r14, #0 - BLT celt_pitch_xcorr_edsp_process1a_loop_done - LDR r6, [r4], #4 - LDR r8, [r5], #4 - LDR r7, [r4], #4 - LDR r9, [r5], #4 -celt_pitch_xcorr_edsp_process1a_loop4: - SMLABB r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0) - SUBS r12, r12, #4 @ j-=4 - SMLATT r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1) - LDRGE r6, [r4], #4 - SMLABB r14, r7, r9, r14 @ sum = MAC16_16(sum, x_2, y_2) - LDRGE r8, [r5], #4 - SMLATT r14, r7, r9, r14 @ sum = MAC16_16(sum, x_3, y_3) - LDRGE r7, [r4], #4 - LDRGE r9, [r5], #4 - BGE celt_pitch_xcorr_edsp_process1a_loop4 -celt_pitch_xcorr_edsp_process1a_loop_done: - ADDS r12, r12, #2 - LDRGE r6, [r4], #4 - LDRGE r8, [r5], #4 - @ Stall - SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_0, y_0) - SUBGE r12, r12, #2 - SMLATTGE r14, r6, r8, r14 @ sum = MAC16_16(sum, x_1, y_1) - ADDS r12, r12, #1 - LDRHGE r6, [r4], #2 - LDRHGE r8, [r5], #2 - @ Stall - SMLABBGE r14, r6, r8, r14 @ sum = MAC16_16(sum, *x, *y) - @ maxcorr = max(maxcorr, sum) - CMP r0, r14 - @ xcorr[i] = sum - STR r14, [r2], #4 - MOVLT r0, r14 -celt_pitch_xcorr_edsp_done: - LDMFD sp!, {r4-r11, pc} - .size celt_pitch_xcorr_edsp, .-celt_pitch_xcorr_edsp @ ENDP - - .endif - -@ END: - .section .note.GNU-stack,"",%progbits diff --git a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm.s b/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm.s index f96e0a88bb..6e873afc37 100644 --- a/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm.s +++ b/thirdparty/opus/celt/arm/celt_pitch_xcorr_arm.s @@ -153,7 +153,7 @@ xcorr_kernel_neon_process1 ENDP ; opus_val32 celt_pitch_xcorr_neon(opus_val16 *_x, opus_val16 *_y, -; opus_val32 *xcorr, int len, int max_pitch) +; opus_val32 *xcorr, int len, int max_pitch, int arch) celt_pitch_xcorr_neon PROC ; input: ; r0 = opus_val16 *_x @@ -168,6 +168,8 @@ celt_pitch_xcorr_neon PROC ; r6 = int max_pitch ; r12 = int j ; q15 = int maxcorr[4] (q15 is not used by xcorr_kernel_neon()) + ; ignored: + ; int arch STMFD sp!, {r4-r6, lr} LDR r6, [sp, #16] VMOV.S32 q15, #1 @@ -358,6 +360,8 @@ celt_pitch_xcorr_edsp PROC ; r9 = opus_val32 sum3 ; r1 = int max_pitch ; r12 = int j + ; ignored: + ; int arch STMFD sp!, {r4-r11, lr} MOV r5, r1 LDR r1, [sp, #36] diff --git a/thirdparty/opus/celt/arm/fft_arm.h b/thirdparty/opus/celt/arm/fft_arm.h index 0cb55d8e22..0b78175f3a 100644 --- a/thirdparty/opus/celt/arm/fft_arm.h +++ b/thirdparty/opus/celt/arm/fft_arm.h @@ -34,7 +34,6 @@ #if !defined(FFT_ARM_H) #define FFT_ARM_H -#include "config.h" #include "kiss_fft.h" #if defined(HAVE_ARM_NE10) diff --git a/thirdparty/opus/celt/arm/fixed_armv4.h b/thirdparty/opus/celt/arm/fixed_armv4.h index efb3b1896a..d84888a772 100644 --- a/thirdparty/opus/celt/arm/fixed_armv4.h +++ b/thirdparty/opus/celt/arm/fixed_armv4.h @@ -37,7 +37,7 @@ static OPUS_INLINE opus_val32 MULT16_32_Q16_armv4(opus_val16 a, opus_val32 b) "#MULT16_32_Q16\n\t" "smull %0, %1, %2, %3\n\t" : "=&r"(rd_lo), "=&r"(rd_hi) - : "%r"(b),"r"(a<<16) + : "%r"(b),"r"(SHL32(a,16)) ); return rd_hi; } @@ -54,10 +54,10 @@ static OPUS_INLINE opus_val32 MULT16_32_Q15_armv4(opus_val16 a, opus_val32 b) "#MULT16_32_Q15\n\t" "smull %0, %1, %2, %3\n\t" : "=&r"(rd_lo), "=&r"(rd_hi) - : "%r"(b), "r"(a<<16) + : "%r"(b), "r"(SHL32(a,16)) ); /*We intentionally don't OR in the high bit of rd_lo for speed.*/ - return rd_hi<<1; + return SHL32(rd_hi,1); } #define MULT16_32_Q15(a, b) (MULT16_32_Q15_armv4(a, b)) diff --git a/thirdparty/opus/celt/arm/fixed_armv5e.h b/thirdparty/opus/celt/arm/fixed_armv5e.h index 36a6321101..6bf73cbace 100644 --- a/thirdparty/opus/celt/arm/fixed_armv5e.h +++ b/thirdparty/opus/celt/arm/fixed_armv5e.h @@ -59,7 +59,7 @@ static OPUS_INLINE opus_val32 MULT16_32_Q15_armv5e(opus_val16 a, opus_val32 b) : "=r"(res) : "r"(b), "r"(a) ); - return res<<1; + return SHL32(res,1); } #define MULT16_32_Q15(a, b) (MULT16_32_Q15_armv5e(a, b)) @@ -76,7 +76,7 @@ static OPUS_INLINE opus_val32 MAC16_32_Q15_armv5e(opus_val32 c, opus_val16 a, "#MAC16_32_Q15\n\t" "smlawb %0, %1, %2, %3;\n" : "=r"(res) - : "r"(b<<1), "r"(a), "r"(c) + : "r"(SHL32(b,1)), "r"(a), "r"(c) ); return res; } diff --git a/thirdparty/opus/celt/arm/mdct_arm.h b/thirdparty/opus/celt/arm/mdct_arm.h index 49cbb44576..14200bac4b 100644 --- a/thirdparty/opus/celt/arm/mdct_arm.h +++ b/thirdparty/opus/celt/arm/mdct_arm.h @@ -33,7 +33,6 @@ #if !defined(MDCT_ARM_H) #define MDCT_ARM_H -#include "config.h" #include "mdct.h" #if defined(HAVE_ARM_NE10) diff --git a/thirdparty/opus/celt/arm/pitch_arm.h b/thirdparty/opus/celt/arm/pitch_arm.h index 14331169ee..bed8b04eac 100644 --- a/thirdparty/opus/celt/arm/pitch_arm.h +++ b/thirdparty/opus/celt/arm/pitch_arm.h @@ -30,11 +30,47 @@ # include "armcpu.h" +# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) +opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N); +void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, + const opus_val16 *y02, int N, opus_val32 *xy1, opus_val32 *xy2); + +# if !defined(OPUS_HAVE_RTCD) && defined(OPUS_ARM_PRESUME_NEON) +# define OVERRIDE_CELT_INNER_PROD (1) +# define OVERRIDE_DUAL_INNER_PROD (1) +# define celt_inner_prod(x, y, N, arch) ((void)(arch), PRESUME_NEON(celt_inner_prod)(x, y, N)) +# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((void)(arch), PRESUME_NEON(dual_inner_prod)(x, y01, y02, N, xy1, xy2)) +# endif +# endif + +# if !defined(OVERRIDE_CELT_INNER_PROD) +# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern opus_val32 (*const CELT_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, const opus_val16 *y, int N); +# define OVERRIDE_CELT_INNER_PROD (1) +# define celt_inner_prod(x, y, N, arch) ((*CELT_INNER_PROD_IMPL[(arch)&OPUS_ARCHMASK])(x, y, N)) +# elif defined(OPUS_ARM_PRESUME_NEON_INTR) +# define OVERRIDE_CELT_INNER_PROD (1) +# define celt_inner_prod(x, y, N, arch) ((void)(arch), celt_inner_prod_neon(x, y, N)) +# endif +# endif + +# if !defined(OVERRIDE_DUAL_INNER_PROD) +# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern void (*const DUAL_INNER_PROD_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *x, + const opus_val16 *y01, const opus_val16 *y02, int N, opus_val32 *xy1, opus_val32 *xy2); +# define OVERRIDE_DUAL_INNER_PROD (1) +# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((*DUAL_INNER_PROD_IMPL[(arch)&OPUS_ARCHMASK])(x, y01, y02, N, xy1, xy2)) +# elif defined(OPUS_ARM_PRESUME_NEON_INTR) +# define OVERRIDE_DUAL_INNER_PROD (1) +# define dual_inner_prod(x, y01, y02, N, xy1, xy2, arch) ((void)(arch), dual_inner_prod_neon(x, y01, y02, N, xy1, xy2)) +# endif +# endif + # if defined(FIXED_POINT) # if defined(OPUS_ARM_MAY_HAVE_NEON) opus_val32 celt_pitch_xcorr_neon(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch); + opus_val32 *xcorr, int len, int max_pitch, int arch); # endif # if defined(OPUS_ARM_MAY_HAVE_MEDIA) @@ -43,7 +79,7 @@ opus_val32 celt_pitch_xcorr_neon(const opus_val16 *_x, const opus_val16 *_y, # if defined(OPUS_ARM_MAY_HAVE_EDSP) opus_val32 celt_pitch_xcorr_edsp(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch); + opus_val32 *xcorr, int len, int max_pitch, int arch); # endif # if defined(OPUS_HAVE_RTCD) && \ @@ -52,18 +88,17 @@ opus_val32 celt_pitch_xcorr_edsp(const opus_val16 *_x, const opus_val16 *_y, (defined(OPUS_ARM_MAY_HAVE_EDSP) && !defined(OPUS_ARM_PRESUME_EDSP))) extern opus_val32 (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *, - const opus_val16 *, opus_val32 *, int, int); + const opus_val16 *, opus_val32 *, int, int, int); # define OVERRIDE_PITCH_XCORR (1) # define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \ ((*CELT_PITCH_XCORR_IMPL[(arch)&OPUS_ARCHMASK])(_x, _y, \ - xcorr, len, max_pitch)) + xcorr, len, max_pitch, arch)) # elif defined(OPUS_ARM_PRESUME_EDSP) || \ defined(OPUS_ARM_PRESUME_MEDIA) || \ defined(OPUS_ARM_PRESUME_NEON) # define OVERRIDE_PITCH_XCORR (1) -# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \ - ((void)(arch),PRESUME_NEON(celt_pitch_xcorr)(_x, _y, xcorr, len, max_pitch)) +# define celt_pitch_xcorr (PRESUME_NEON(celt_pitch_xcorr)) # endif @@ -99,25 +134,24 @@ extern void (*const XCORR_KERNEL_IMPL[OPUS_ARCHMASK + 1])( /* Float case */ #if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) void celt_pitch_xcorr_float_neon(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch); + opus_val32 *xcorr, int len, int max_pitch, int arch); #endif # if defined(OPUS_HAVE_RTCD) && \ (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) extern void (*const CELT_PITCH_XCORR_IMPL[OPUS_ARCHMASK+1])(const opus_val16 *, - const opus_val16 *, opus_val32 *, int, int); + const opus_val16 *, opus_val32 *, int, int, int); # define OVERRIDE_PITCH_XCORR (1) # define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \ ((*CELT_PITCH_XCORR_IMPL[(arch)&OPUS_ARCHMASK])(_x, _y, \ - xcorr, len, max_pitch)) + xcorr, len, max_pitch, arch)) # elif defined(OPUS_ARM_PRESUME_NEON_INTR) # define OVERRIDE_PITCH_XCORR (1) -# define celt_pitch_xcorr(_x, _y, xcorr, len, max_pitch, arch) \ - ((void)(arch),celt_pitch_xcorr_float_neon(_x, _y, xcorr, len, max_pitch)) +# define celt_pitch_xcorr celt_pitch_xcorr_float_neon # endif diff --git a/thirdparty/opus/celt/arm/pitch_neon_intr.c b/thirdparty/opus/celt/arm/pitch_neon_intr.c new file mode 100644 index 0000000000..1ac38c433a --- /dev/null +++ b/thirdparty/opus/celt/arm/pitch_neon_intr.c @@ -0,0 +1,290 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <arm_neon.h> +#include "pitch.h" + +#ifdef FIXED_POINT + +opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N) +{ + int i; + opus_val32 xy; + int16x8_t x_s16x8, y_s16x8; + int32x4_t xy_s32x4 = vdupq_n_s32(0); + int64x2_t xy_s64x2; + int64x1_t xy_s64x1; + + for (i = 0; i < N - 7; i += 8) { + x_s16x8 = vld1q_s16(&x[i]); + y_s16x8 = vld1q_s16(&y[i]); + xy_s32x4 = vmlal_s16(xy_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y_s16x8)); + xy_s32x4 = vmlal_s16(xy_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y_s16x8)); + } + + if (N - i >= 4) { + const int16x4_t x_s16x4 = vld1_s16(&x[i]); + const int16x4_t y_s16x4 = vld1_s16(&y[i]); + xy_s32x4 = vmlal_s16(xy_s32x4, x_s16x4, y_s16x4); + i += 4; + } + + xy_s64x2 = vpaddlq_s32(xy_s32x4); + xy_s64x1 = vadd_s64(vget_low_s64(xy_s64x2), vget_high_s64(xy_s64x2)); + xy = vget_lane_s32(vreinterpret_s32_s64(xy_s64x1), 0); + + for (; i < N; i++) { + xy = MAC16_16(xy, x[i], y[i]); + } + +#ifdef OPUS_CHECK_ASM + celt_assert(celt_inner_prod_c(x, y, N) == xy); +#endif + + return xy; +} + +void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02, + int N, opus_val32 *xy1, opus_val32 *xy2) +{ + int i; + opus_val32 xy01, xy02; + int16x8_t x_s16x8, y01_s16x8, y02_s16x8; + int32x4_t xy01_s32x4 = vdupq_n_s32(0); + int32x4_t xy02_s32x4 = vdupq_n_s32(0); + int64x2_t xy01_s64x2, xy02_s64x2; + int64x1_t xy01_s64x1, xy02_s64x1; + + for (i = 0; i < N - 7; i += 8) { + x_s16x8 = vld1q_s16(&x[i]); + y01_s16x8 = vld1q_s16(&y01[i]); + y02_s16x8 = vld1q_s16(&y02[i]); + xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y01_s16x8)); + xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y02_s16x8)); + xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y01_s16x8)); + xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y02_s16x8)); + } + + if (N - i >= 4) { + const int16x4_t x_s16x4 = vld1_s16(&x[i]); + const int16x4_t y01_s16x4 = vld1_s16(&y01[i]); + const int16x4_t y02_s16x4 = vld1_s16(&y02[i]); + xy01_s32x4 = vmlal_s16(xy01_s32x4, x_s16x4, y01_s16x4); + xy02_s32x4 = vmlal_s16(xy02_s32x4, x_s16x4, y02_s16x4); + i += 4; + } + + xy01_s64x2 = vpaddlq_s32(xy01_s32x4); + xy02_s64x2 = vpaddlq_s32(xy02_s32x4); + xy01_s64x1 = vadd_s64(vget_low_s64(xy01_s64x2), vget_high_s64(xy01_s64x2)); + xy02_s64x1 = vadd_s64(vget_low_s64(xy02_s64x2), vget_high_s64(xy02_s64x2)); + xy01 = vget_lane_s32(vreinterpret_s32_s64(xy01_s64x1), 0); + xy02 = vget_lane_s32(vreinterpret_s32_s64(xy02_s64x1), 0); + + for (; i < N; i++) { + xy01 = MAC16_16(xy01, x[i], y01[i]); + xy02 = MAC16_16(xy02, x[i], y02[i]); + } + *xy1 = xy01; + *xy2 = xy02; + +#ifdef OPUS_CHECK_ASM + { + opus_val32 xy1_c, xy2_c; + dual_inner_prod_c(x, y01, y02, N, &xy1_c, &xy2_c); + celt_assert(xy1_c == *xy1); + celt_assert(xy2_c == *xy2); + } +#endif +} + +#else /* !FIXED_POINT */ + +/* ========================================================================== */ + +#ifdef OPUS_CHECK_ASM + +/* This part of code simulates floating-point NEON operations. */ + +/* celt_inner_prod_neon_float_c_simulation() simulates the floating-point */ +/* operations of celt_inner_prod_neon(), and both functions should have bit */ +/* exact output. */ +static opus_val32 celt_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y, int N) +{ + int i; + opus_val32 xy, xy0 = 0, xy1 = 0, xy2 = 0, xy3 = 0; + for (i = 0; i < N - 3; i += 4) { + xy0 = MAC16_16(xy0, x[i + 0], y[i + 0]); + xy1 = MAC16_16(xy1, x[i + 1], y[i + 1]); + xy2 = MAC16_16(xy2, x[i + 2], y[i + 2]); + xy3 = MAC16_16(xy3, x[i + 3], y[i + 3]); + } + xy0 += xy2; + xy1 += xy3; + xy = xy0 + xy1; + for (; i < N; i++) { + xy = MAC16_16(xy, x[i], y[i]); + } + return xy; +} + +/* dual_inner_prod_neon_float_c_simulation() simulates the floating-point */ +/* operations of dual_inner_prod_neon(), and both functions should have bit */ +/* exact output. */ +static void dual_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02, + int N, opus_val32 *xy1, opus_val32 *xy2) +{ + int i; + opus_val32 xy01, xy02, xy01_0 = 0, xy01_1 = 0, xy01_2 = 0, xy01_3 = 0, xy02_0 = 0, xy02_1 = 0, xy02_2 = 0, xy02_3 = 0; + for (i = 0; i < N - 3; i += 4) { + xy01_0 = MAC16_16(xy01_0, x[i + 0], y01[i + 0]); + xy01_1 = MAC16_16(xy01_1, x[i + 1], y01[i + 1]); + xy01_2 = MAC16_16(xy01_2, x[i + 2], y01[i + 2]); + xy01_3 = MAC16_16(xy01_3, x[i + 3], y01[i + 3]); + xy02_0 = MAC16_16(xy02_0, x[i + 0], y02[i + 0]); + xy02_1 = MAC16_16(xy02_1, x[i + 1], y02[i + 1]); + xy02_2 = MAC16_16(xy02_2, x[i + 2], y02[i + 2]); + xy02_3 = MAC16_16(xy02_3, x[i + 3], y02[i + 3]); + } + xy01_0 += xy01_2; + xy02_0 += xy02_2; + xy01_1 += xy01_3; + xy02_1 += xy02_3; + xy01 = xy01_0 + xy01_1; + xy02 = xy02_0 + xy02_1; + for (; i < N; i++) { + xy01 = MAC16_16(xy01, x[i], y01[i]); + xy02 = MAC16_16(xy02, x[i], y02[i]); + } + *xy1 = xy01; + *xy2 = xy02; +} + +#endif /* OPUS_CHECK_ASM */ + +/* ========================================================================== */ + +opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N) +{ + int i; + opus_val32 xy; + float32x4_t xy_f32x4 = vdupq_n_f32(0); + float32x2_t xy_f32x2; + + for (i = 0; i < N - 7; i += 8) { + float32x4_t x_f32x4, y_f32x4; + x_f32x4 = vld1q_f32(&x[i]); + y_f32x4 = vld1q_f32(&y[i]); + xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4); + x_f32x4 = vld1q_f32(&x[i + 4]); + y_f32x4 = vld1q_f32(&y[i + 4]); + xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4); + } + + if (N - i >= 4) { + const float32x4_t x_f32x4 = vld1q_f32(&x[i]); + const float32x4_t y_f32x4 = vld1q_f32(&y[i]); + xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4); + i += 4; + } + + xy_f32x2 = vadd_f32(vget_low_f32(xy_f32x4), vget_high_f32(xy_f32x4)); + xy_f32x2 = vpadd_f32(xy_f32x2, xy_f32x2); + xy = vget_lane_f32(xy_f32x2, 0); + + for (; i < N; i++) { + xy = MAC16_16(xy, x[i], y[i]); + } + +#ifdef OPUS_CHECK_ASM + celt_assert(ABS32(celt_inner_prod_neon_float_c_simulation(x, y, N) - xy) <= VERY_SMALL); +#endif + + return xy; +} + +void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02, + int N, opus_val32 *xy1, opus_val32 *xy2) +{ + int i; + opus_val32 xy01, xy02; + float32x4_t xy01_f32x4 = vdupq_n_f32(0); + float32x4_t xy02_f32x4 = vdupq_n_f32(0); + float32x2_t xy01_f32x2, xy02_f32x2; + + for (i = 0; i < N - 7; i += 8) { + float32x4_t x_f32x4, y01_f32x4, y02_f32x4; + x_f32x4 = vld1q_f32(&x[i]); + y01_f32x4 = vld1q_f32(&y01[i]); + y02_f32x4 = vld1q_f32(&y02[i]); + xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4); + xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4); + x_f32x4 = vld1q_f32(&x[i + 4]); + y01_f32x4 = vld1q_f32(&y01[i + 4]); + y02_f32x4 = vld1q_f32(&y02[i + 4]); + xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4); + xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4); + } + + if (N - i >= 4) { + const float32x4_t x_f32x4 = vld1q_f32(&x[i]); + const float32x4_t y01_f32x4 = vld1q_f32(&y01[i]); + const float32x4_t y02_f32x4 = vld1q_f32(&y02[i]); + xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4); + xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4); + i += 4; + } + + xy01_f32x2 = vadd_f32(vget_low_f32(xy01_f32x4), vget_high_f32(xy01_f32x4)); + xy02_f32x2 = vadd_f32(vget_low_f32(xy02_f32x4), vget_high_f32(xy02_f32x4)); + xy01_f32x2 = vpadd_f32(xy01_f32x2, xy01_f32x2); + xy02_f32x2 = vpadd_f32(xy02_f32x2, xy02_f32x2); + xy01 = vget_lane_f32(xy01_f32x2, 0); + xy02 = vget_lane_f32(xy02_f32x2, 0); + + for (; i < N; i++) { + xy01 = MAC16_16(xy01, x[i], y01[i]); + xy02 = MAC16_16(xy02, x[i], y02[i]); + } + *xy1 = xy01; + *xy2 = xy02; + +#ifdef OPUS_CHECK_ASM + { + opus_val32 xy1_c, xy2_c; + dual_inner_prod_neon_float_c_simulation(x, y01, y02, N, &xy1_c, &xy2_c); + celt_assert(ABS32(xy1_c - *xy1) <= VERY_SMALL); + celt_assert(ABS32(xy2_c - *xy2) <= VERY_SMALL); + } +#endif +} + +#endif /* FIXED_POINT */ diff --git a/thirdparty/opus/celt/bands.c b/thirdparty/opus/celt/bands.c index 87eaa6c031..2702963c37 100644 --- a/thirdparty/opus/celt/bands.c +++ b/thirdparty/opus/celt/bands.c @@ -65,19 +65,19 @@ opus_uint32 celt_lcg_rand(opus_uint32 seed) /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness with this approximation is important because it has an impact on the bit allocation */ -static opus_int16 bitexact_cos(opus_int16 x) +opus_int16 bitexact_cos(opus_int16 x) { opus_int32 tmp; opus_int16 x2; tmp = (4096+((opus_int32)(x)*(x)))>>13; - celt_assert(tmp<=32767); + celt_sig_assert(tmp<=32767); x2 = tmp; x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); - celt_assert(x2<=32766); + celt_sig_assert(x2<=32766); return 1+x2; } -static int bitexact_log2tan(int isin,int icos) +int bitexact_log2tan(int isin,int icos) { int lc; int ls; @@ -92,10 +92,11 @@ static int bitexact_log2tan(int isin,int icos) #ifdef FIXED_POINT /* Compute the amplitude (sqrt energy) in each of the bands */ -void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) { int i, c, N; const opus_int16 *eBands = m->eBands; + (void)arch; N = m->shortMdctSize<<LM; c=0; do { for (i=0;i<end;i++) @@ -155,7 +156,7 @@ void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, cel #else /* FIXED_POINT */ /* Compute the amplitude (sqrt energy) in each of the bands */ -void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch) { int i, c, N; const opus_int16 *eBands = m->eBands; @@ -164,7 +165,7 @@ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *band for (i=0;i<end;i++) { opus_val32 sum; - sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); + sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch); bandE[i+c*m->nbEBands] = celt_sqrt(sum); /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ } @@ -224,9 +225,9 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, #endif j=M*eBands[i]; band_end = M*eBands[i+1]; - lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6)); + lg = SATURATE16(ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],6))); #ifndef FIXED_POINT - g = celt_exp2(lg); + g = celt_exp2(MIN32(32.f, lg)); #else /* Handle the integer part of the log energy */ shift = 16-(lg>>DB_SHIFT); @@ -241,12 +242,12 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, /* Handle extreme gains with negative shift. */ if (shift<0) { - /* For shift < -2 we'd be likely to overflow, so we're capping - the gain here. This shouldn't happen unless the bitstream is - already corrupted. */ - if (shift < -2) + /* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're + capping the gain here, which is equivalent to a cap of 18 on lg. + This shouldn't trigger unless the bitstream is already corrupted. */ + if (shift <= -2) { - g = 32767; + g = 16384; shift = -2; } do { @@ -281,7 +282,7 @@ void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_mas N0 = m->eBands[i+1]-m->eBands[i]; /* depth in 1/8 bits */ - celt_assert(pulses[i]>=0); + celt_sig_assert(pulses[i]>=0); depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; #ifdef FIXED_POINT @@ -360,6 +361,30 @@ void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_mas } } +/* Compute the weights to use for optimizing normalized distortion across + channels. We use the amplitude to weight square distortion, which means + that we use the square root of the value we would have been using if we + wanted to minimize the MSE in the non-normalized domain. This roughly + corresponds to some quick-and-dirty perceptual experiments I ran to + measure inter-aural masking (there doesn't seem to be any published data + on the topic). */ +static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2]) +{ + celt_ener minE; +#ifdef FIXED_POINT + int shift; +#endif + minE = MIN32(Ex, Ey); + /* Adjustment to make the weights a bit more conservative. */ + Ex = ADD32(Ex, minE/3); + Ey = ADD32(Ey, minE/3); +#ifdef FIXED_POINT + shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14; +#endif + w[0] = VSHR32(Ex, shift); + w[1] = VSHR32(Ey, shift); +} + static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) { int i = bandID; @@ -453,7 +478,7 @@ static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT /* Decide whether we should spread the pulses in the current frame */ int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, int last_decision, int *hf_average, int *tapset_decision, int update_hf, - int end, int C, int M) + int end, int C, int M, const int *spread_weight) { int i, c, N0; int sum = 0, nbBands=0; @@ -494,8 +519,8 @@ int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, if (i>m->nbEBands-4) hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); - sum += tmp*256; - nbBands++; + sum += tmp*spread_weight[i]; + nbBands+=spread_weight[i]; } } while (++c<C); @@ -519,7 +544,7 @@ int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ celt_assert(nbBands>0); /* end has to be non-zero */ celt_assert(sum>=0); - sum = celt_udiv(sum, nbBands); + sum = celt_udiv((opus_int32)sum<<8, nbBands); /* Recursive averaging */ sum = (sum+*average)>>1; *average = sum; @@ -647,6 +672,7 @@ static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) struct band_ctx { int encode; + int resynth; const CELTMode *m; int i; int intensity; @@ -657,6 +683,9 @@ struct band_ctx { const celt_ener *bandE; opus_uint32 seed; int arch; + int theta_round; + int disable_inv; + int avoid_split_noise; }; struct split_ctx { @@ -714,8 +743,35 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, if (qn!=1) { if (encode) - itheta = (itheta*(opus_int32)qn+8192)>>14; - + { + if (!stereo || ctx->theta_round == 0) + { + itheta = (itheta*(opus_int32)qn+8192)>>14; + if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn) + { + /* Check if the selected value of theta will cause the bit allocation + to inject noise on one side. If so, make sure the energy of that side + is zero. */ + int unquantized = celt_udiv((opus_int32)itheta*16384, qn); + imid = bitexact_cos((opus_int16)unquantized); + iside = bitexact_cos((opus_int16)(16384-unquantized)); + delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); + if (delta > *b) + itheta = qn; + else if (delta < -*b) + itheta = 0; + } + } else { + int down; + /* Bias quantization towards itheta=0 and itheta=16384. */ + int bias = itheta > 8192 ? 32767/qn : -32767/qn; + down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14)); + if (ctx->theta_round < 0) + itheta = down; + else + itheta = down+1; + } + } /* Entropy coding of the angle. We use a uniform pdf for the time split, a step for stereo, and a triangular one for the rest. */ if (stereo && N>2) @@ -793,7 +849,7 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, } else if (stereo) { if (encode) { - inv = itheta > 8192; + inv = itheta > 8192 && !ctx->disable_inv; if (inv) { int j; @@ -810,6 +866,9 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, inv = ec_dec_bit_logp(ec, 2); } else inv = 0; + /* inv flag override to avoid problems with downmixing. */ + if (ctx->disable_inv) + inv = 0; itheta = 0; } qalloc = ec_tell_frac(ec) - tell; @@ -845,11 +904,6 @@ static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, celt_norm *lowband_out) { -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !ctx->encode; -#endif int c; int stereo; celt_norm *x = X; @@ -874,7 +928,7 @@ static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, ctx->remaining_bits -= 1<<BITRES; b-=1<<BITRES; } - if (resynth) + if (ctx->resynth) x[0] = sign ? -NORM_SCALING : NORM_SCALING; x = Y; } while (++c<1+stereo); @@ -899,11 +953,6 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, int B0=B; opus_val16 mid=0, side=0; unsigned cm=0; -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !ctx->encode; -#endif celt_norm *Y=NULL; int encode; const CELTMode *m; @@ -935,8 +984,7 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, fill = (fill&1)|(fill<<1); B = (B+1)>>1; - compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, - LM, 0, &fill); + compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill); imid = sctx.imid; iside = sctx.iside; delta = sctx.delta; @@ -970,24 +1018,20 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, rebalance = ctx->remaining_bits; if (mbits >= sbits) { - cm = quant_partition(ctx, X, N, mbits, B, - lowband, LM, + cm = quant_partition(ctx, X, N, mbits, B, lowband, LM, MULT16_16_P15(gain,mid), fill); rebalance = mbits - (rebalance-ctx->remaining_bits); if (rebalance > 3<<BITRES && itheta!=0) sbits += rebalance - (3<<BITRES); - cm |= quant_partition(ctx, Y, N, sbits, B, - next_lowband2, LM, + cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); } else { - cm = quant_partition(ctx, Y, N, sbits, B, - next_lowband2, LM, + cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM, MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); rebalance = sbits - (rebalance-ctx->remaining_bits); if (rebalance > 3<<BITRES && itheta!=16384) mbits += rebalance - (3<<BITRES); - cm |= quant_partition(ctx, X, N, mbits, B, - lowband, LM, + cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM, MULT16_16_P15(gain,mid), fill); } } else { @@ -1012,18 +1056,14 @@ static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, /* Finally do the actual quantization */ if (encode) { - cm = alg_quant(X, N, K, spread, B, ec -#ifdef RESYNTH - , gain -#endif - ); + cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch); } else { cm = alg_unquant(X, N, K, spread, B, ec, gain); } } else { /* If there's no pulse, fill the band anyway */ int j; - if (resynth) + if (ctx->resynth) { unsigned cm_mask; /* B can be as large as 16, so this shift might overflow an int on a @@ -1080,11 +1120,6 @@ static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, int recombine=0; int longBlocks; unsigned cm=0; -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !ctx->encode; -#endif int k; int encode; int tf_change; @@ -1151,11 +1186,10 @@ static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); } - cm = quant_partition(ctx, X, N, b, B, lowband, - LM, gain, fill); + cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill); /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (resynth) + if (ctx->resynth) { /* Undo the sample reorganization going from time order to frequency order */ if (B0>1) @@ -1208,11 +1242,6 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm int inv = 0; opus_val16 mid=0, side=0; unsigned cm=0; -#ifdef RESYNTH - int resynth = 1; -#else - int resynth = !ctx->encode; -#endif int mbits, sbits, delta; int itheta; int qalloc; @@ -1232,8 +1261,7 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm orig_fill = fill; - compute_theta(ctx, &sctx, X, Y, N, &b, B, B, - LM, 1, &fill); + compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill); inv = sctx.inv; imid = sctx.imid; iside = sctx.iside; @@ -1281,13 +1309,13 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm sign = 1-2*sign; /* We use orig_fill here because we want to fold the side, but if itheta==16384, we'll have cleared the low bits of fill. */ - cm = quant_band(ctx, x2, N, mbits, B, lowband, - LM, lowband_out, Q15ONE, lowband_scratch, orig_fill); + cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q15ONE, + lowband_scratch, orig_fill); /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), and there's no need to worry about mixing with the other channel. */ y2[0] = -sign*x2[1]; y2[1] = sign*x2[0]; - if (resynth) + if (ctx->resynth) { celt_norm tmp; X[0] = MULT16_16_Q15(mid, X[0]); @@ -1314,38 +1342,32 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm { /* In stereo mode, we do not apply a scaling to the mid because we need the normalized mid for folding later. */ - cm = quant_band(ctx, X, N, mbits, B, - lowband, LM, lowband_out, - Q15ONE, lowband_scratch, fill); + cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE, + lowband_scratch, fill); rebalance = mbits - (rebalance-ctx->remaining_bits); if (rebalance > 3<<BITRES && itheta!=0) sbits += rebalance - (3<<BITRES); /* For a stereo split, the high bits of fill are always zero, so no folding will be done to the side. */ - cm |= quant_band(ctx, Y, N, sbits, B, - NULL, LM, NULL, - side, NULL, fill>>B); + cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); } else { /* For a stereo split, the high bits of fill are always zero, so no folding will be done to the side. */ - cm = quant_band(ctx, Y, N, sbits, B, - NULL, LM, NULL, - side, NULL, fill>>B); + cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B); rebalance = sbits - (rebalance-ctx->remaining_bits); if (rebalance > 3<<BITRES && itheta!=16384) mbits += rebalance - (3<<BITRES); /* In stereo mode, we do not apply a scaling to the mid because we need the normalized mid for folding later. */ - cm |= quant_band(ctx, X, N, mbits, B, - lowband, LM, lowband_out, - Q15ONE, lowband_scratch, fill); + cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE, + lowband_scratch, fill); } } /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (resynth) + if (ctx->resynth) { if (N!=2) stereo_merge(X, Y, mid, N, ctx->arch); @@ -1359,19 +1381,38 @@ static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm return cm; } +static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo) +{ + int n1, n2; + const opus_int16 * OPUS_RESTRICT eBands = m->eBands; + n1 = M*(eBands[start+1]-eBands[start]); + n2 = M*(eBands[start+2]-eBands[start+1]); + /* Duplicate enough of the first band folding data to be able to fold the second band. + Copies no data for CELT-only mode. */ + OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1); + if (dual_stereo) + OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1); +} void quant_all_bands(int encode, const CELTMode *m, int start, int end, celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses, int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, - opus_uint32 *seed, int arch) + opus_uint32 *seed, int complexity, int arch, int disable_inv) { int i; opus_int32 remaining_bits; const opus_int16 * OPUS_RESTRICT eBands = m->eBands; celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; VARDECL(celt_norm, _norm); + VARDECL(celt_norm, _lowband_scratch); + VARDECL(celt_norm, X_save); + VARDECL(celt_norm, Y_save); + VARDECL(celt_norm, X_save2); + VARDECL(celt_norm, Y_save2); + VARDECL(celt_norm, norm_save2); + int resynth_alloc; celt_norm *lowband_scratch; int B; int M; @@ -1379,10 +1420,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, int update_lowband = 1; int C = Y_ != NULL ? 2 : 1; int norm_offset; + int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8; #ifdef RESYNTH int resynth = 1; #else - int resynth = !encode; + int resynth = !encode || theta_rdo; #endif struct band_ctx ctx; SAVE_STACK; @@ -1395,9 +1437,24 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); norm = _norm; norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; - /* We can use the last band as scratch space because we don't need that - scratch space for the last band. */ - lowband_scratch = X_+M*eBands[m->nbEBands-1]; + + /* For decoding, we can use the last band as scratch space because we don't need that + scratch space for the last band and we don't care about the data there until we're + decoding the last band. */ + if (encode && resynth) + resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]); + else + resynth_alloc = ALLOC_NONE; + ALLOC(_lowband_scratch, resynth_alloc, celt_norm); + if (encode && resynth) + lowband_scratch = _lowband_scratch; + else + lowband_scratch = X_+M*eBands[m->nbEBands-1]; + ALLOC(X_save, resynth_alloc, celt_norm); + ALLOC(Y_save, resynth_alloc, celt_norm); + ALLOC(X_save2, resynth_alloc, celt_norm); + ALLOC(Y_save2, resynth_alloc, celt_norm); + ALLOC(norm_save2, resynth_alloc, celt_norm); lowband_offset = 0; ctx.bandE = bandE; @@ -1408,6 +1465,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, ctx.seed = *seed; ctx.spread = spread; ctx.arch = arch; + ctx.disable_inv = disable_inv; + ctx.resynth = resynth; + ctx.theta_round = 0; + /* Avoid injecting noise in the first band on transients. */ + ctx.avoid_split_noise = B > 1; for (i=start;i<end;i++) { opus_int32 tell; @@ -1430,6 +1492,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, else Y = NULL; N = M*eBands[i+1]-M*eBands[i]; + celt_assert(N > 0); tell = ec_tell_frac(ec); /* Compute how many bits we want to allocate to this band */ @@ -1445,8 +1508,15 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, b = 0; } +#ifndef DISABLE_UPDATE_DRAFT + if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0)) + lowband_offset = i; + if (i == start+1) + special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); +#else if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) lowband_offset = i; +#endif tf_change = tf_res[i]; ctx.tf_change = tf_change; @@ -1457,7 +1527,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, Y = norm; lowband_scratch = NULL; } - if (i==end-1) + if (last && !theta_rdo) lowband_scratch = NULL; /* Get a conservative estimate of the collapse_mask's for the bands we're @@ -1472,7 +1542,11 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, fold_start = lowband_offset; while(M*eBands[--fold_start] > effective_lowband+norm_offset); fold_end = lowband_offset-1; +#ifndef DISABLE_UPDATE_DRAFT + while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N); +#else while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); +#endif x_cm = y_cm = 0; fold_i = fold_start; do { x_cm |= collapse_masks[fold_i*C+0]; @@ -1505,13 +1579,79 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, } else { if (Y!=NULL) { - x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, - effective_lowband != -1 ? norm+effective_lowband : NULL, LM, - last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); + if (theta_rdo && i < intensity) + { + ec_ctx ec_save, ec_save2; + struct band_ctx ctx_save, ctx_save2; + opus_val32 dist0, dist1; + unsigned cm, cm2; + int nstart_bytes, nend_bytes, save_bytes; + unsigned char *bytes_buf; + unsigned char bytes_save[1275]; + opus_val16 w[2]; + compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w); + /* Make a copy. */ + cm = x_cm|y_cm; + ec_save = *ec; + ctx_save = ctx; + OPUS_COPY(X_save, X, N); + OPUS_COPY(Y_save, Y, N); + /* Encode and round down. */ + ctx.theta_round = -1; + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); + dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); + + /* Save first result. */ + cm2 = x_cm; + ec_save2 = *ec; + ctx_save2 = ctx; + OPUS_COPY(X_save2, X, N); + OPUS_COPY(Y_save2, Y, N); + if (!last) + OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N); + nstart_bytes = ec_save.offs; + nend_bytes = ec_save.storage; + bytes_buf = ec_save.buf+nstart_bytes; + save_bytes = nend_bytes-nstart_bytes; + OPUS_COPY(bytes_save, bytes_buf, save_bytes); + + /* Restore */ + *ec = ec_save; + ctx = ctx_save; + OPUS_COPY(X, X_save, N); + OPUS_COPY(Y, Y_save, N); +#ifndef DISABLE_UPDATE_DRAFT + if (i == start+1) + special_hybrid_folding(m, norm, norm2, start, M, dual_stereo); +#endif + /* Encode and round up. */ + ctx.theta_round = 1; + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm); + dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch)); + if (dist0 >= dist1) { + x_cm = cm2; + *ec = ec_save2; + ctx = ctx_save2; + OPUS_COPY(X, X_save2, N); + OPUS_COPY(Y, Y_save2, N); + if (!last) + OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N); + OPUS_COPY(bytes_buf, bytes_save, save_bytes); + } + } else { + ctx.theta_round = 0; + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, + effective_lowband != -1 ? norm+effective_lowband : NULL, LM, + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); + } } else { x_cm = quant_band(&ctx, X, N, b, B, effective_lowband != -1 ? norm+effective_lowband : NULL, LM, - last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); } y_cm = x_cm; } @@ -1521,6 +1661,9 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, /* Update the folding position only as long as we have 1 bit/sample depth. */ update_lowband = b>(N<<BITRES); + /* We only need to avoid noise on a split for the first band. After that, we + have folding. */ + ctx.avoid_split_noise = 0; } *seed = ctx.seed; diff --git a/thirdparty/opus/celt/bands.h b/thirdparty/opus/celt/bands.h index e8bef4bad0..422b32cf75 100644 --- a/thirdparty/opus/celt/bands.h +++ b/thirdparty/opus/celt/bands.h @@ -36,12 +36,15 @@ #include "entdec.h" #include "rate.h" +opus_int16 bitexact_cos(opus_int16 x); +int bitexact_log2tan(int isin,int icos); + /** Compute the amplitude (sqrt energy) in each of the bands * @param m Mode data * @param X Spectrum * @param bandE Square root of the energy for each band (returned) */ -void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM); +void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch); /*void compute_noise_energies(const CELTMode *m, const celt_sig *X, const opus_val16 *tonality, celt_ener *bandE);*/ @@ -69,7 +72,7 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, int last_decision, int *hf_average, int *tapset_decision, int update_hf, - int end, int C, int M); + int end, int C, int M, const int *spread_weight); #ifdef MEASURE_NORM_MSE void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C); @@ -105,7 +108,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end, const celt_ener *bandE, int *pulses, int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int M, int codedBands, opus_uint32 *seed, - int arch); + int complexity, int arch, int disable_inv); void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, int start, diff --git a/thirdparty/opus/celt/celt.c b/thirdparty/opus/celt/celt.c index b121c51a1f..9ce234695c 100644 --- a/thirdparty/opus/celt/celt.c +++ b/thirdparty/opus/celt/celt.c @@ -111,26 +111,31 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N, t = MAC16_32_Q16(x[i], g10, x2); t = MAC16_32_Q16(t, g11, ADD32(x1,x3)); t = MAC16_32_Q16(t, g12, ADD32(x0,x4)); + t = SATURATE(t, SIG_SAT); y[i] = t; x4=SHL32(x[i-T+3],1); t = MAC16_32_Q16(x[i+1], g10, x1); t = MAC16_32_Q16(t, g11, ADD32(x0,x2)); t = MAC16_32_Q16(t, g12, ADD32(x4,x3)); + t = SATURATE(t, SIG_SAT); y[i+1] = t; x3=SHL32(x[i-T+4],1); t = MAC16_32_Q16(x[i+2], g10, x0); t = MAC16_32_Q16(t, g11, ADD32(x4,x1)); t = MAC16_32_Q16(t, g12, ADD32(x3,x2)); + t = SATURATE(t, SIG_SAT); y[i+2] = t; x2=SHL32(x[i-T+5],1); t = MAC16_32_Q16(x[i+3], g10, x4); t = MAC16_32_Q16(t, g11, ADD32(x3,x0)); t = MAC16_32_Q16(t, g12, ADD32(x2,x1)); + t = SATURATE(t, SIG_SAT); y[i+3] = t; x1=SHL32(x[i-T+6],1); t = MAC16_32_Q16(x[i+4], g10, x3); t = MAC16_32_Q16(t, g11, ADD32(x2,x4)); t = MAC16_32_Q16(t, g12, ADD32(x1,x0)); + t = SATURATE(t, SIG_SAT); y[i+4] = t; } #ifdef CUSTOM_MODES @@ -141,6 +146,7 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N, t = MAC16_32_Q16(x[i], g10, x2); t = MAC16_32_Q16(t, g11, ADD32(x1,x3)); t = MAC16_32_Q16(t, g12, ADD32(x0,x4)); + t = SATURATE(t, SIG_SAT); y[i] = t; x4=x3; x3=x2; @@ -169,6 +175,7 @@ void comb_filter_const_c(opus_val32 *y, opus_val32 *x, int T, int N, + MULT16_32_Q15(g10,x2) + MULT16_32_Q15(g11,ADD32(x1,x3)) + MULT16_32_Q15(g12,ADD32(x0,x4)); + y[i] = SATURATE(y[i], SIG_SAT); x4=x3; x3=x2; x2=x1; @@ -200,6 +207,10 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N, OPUS_MOVE(y, x, N); return; } + /* When the gain is zero, T0 and/or T1 is set to zero. We need + to have then be at least 2 to avoid processing garbage data. */ + T0 = IMAX(T0, COMBFILTER_MINPERIOD); + T1 = IMAX(T1, COMBFILTER_MINPERIOD); g00 = MULT16_16_P15(g0, gains[tapset0][0]); g01 = MULT16_16_P15(g0, gains[tapset0][1]); g02 = MULT16_16_P15(g0, gains[tapset0][2]); @@ -225,6 +236,7 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N, + MULT16_32_Q15(MULT16_16_Q15(f,g10),x2) + MULT16_32_Q15(MULT16_16_Q15(f,g11),ADD32(x1,x3)) + MULT16_32_Q15(MULT16_16_Q15(f,g12),ADD32(x0,x4)); + y[i] = SATURATE(y[i], SIG_SAT); x4=x3; x3=x2; x2=x1; @@ -244,11 +256,16 @@ void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N, } #endif /* OVERRIDE_comb_filter */ +/* TF change table. Positive values mean better frequency resolution (longer + effective window), whereas negative values mean better time resolution + (shorter effective window). The second index is computed as: + 4*isTransient + 2*tf_select + per_band_flag */ const signed char tf_select_table[4][8] = { - {0, -1, 0, -1, 0,-1, 0,-1}, - {0, -1, 0, -2, 1, 0, 1,-1}, - {0, -2, 0, -3, 2, 0, 1,-1}, - {0, -2, 0, -3, 3, 0, 1,-1}, + /*isTransient=0 isTransient=1 */ + {0, -1, 0, -1, 0,-1, 0,-1}, /* 2.5 ms */ + {0, -1, 0, -2, 1, 0, 1,-1}, /* 5 ms */ + {0, -2, 0, -3, 2, 0, 1,-1}, /* 10 ms */ + {0, -2, 0, -3, 3, 0, 1,-1}, /* 20 ms */ }; diff --git a/thirdparty/opus/celt/celt.h b/thirdparty/opus/celt/celt.h index d1f7eb690d..24b6b2b520 100644 --- a/thirdparty/opus/celt/celt.h +++ b/thirdparty/opus/celt/celt.h @@ -50,6 +50,8 @@ extern "C" { #define CELTDecoder OpusCustomDecoder #define CELTMode OpusCustomMode +#define LEAK_BANDS 19 + typedef struct { int valid; float tonality; @@ -57,17 +59,27 @@ typedef struct { float noisiness; float activity; float music_prob; - int bandwidth; -}AnalysisInfo; + float music_prob_min; + float music_prob_max; + int bandwidth; + float activity_probability; + float max_pitch_ratio; + /* Store as Q6 char to save space. */ + unsigned char leak_boost[LEAK_BANDS]; +} AnalysisInfo; + +typedef struct { + int signalType; + int offset; +} SILKInfo; #define __celt_check_mode_ptr_ptr(ptr) ((ptr) + ((ptr) - (const CELTMode**)(ptr))) #define __celt_check_analysis_ptr(ptr) ((ptr) + ((ptr) - (const AnalysisInfo*)(ptr))) -/* Encoder/decoder Requests */ +#define __celt_check_silkinfo_ptr(ptr) ((ptr) + ((ptr) - (const SILKInfo*)(ptr))) -/* Expose this option again when variable framesize actually works */ -#define OPUS_FRAMESIZE_VARIABLE 5010 /**< Optimize the frame size dynamically */ +/* Encoder/decoder Requests */ #define CELT_SET_PREDICTION_REQUEST 10002 @@ -116,6 +128,9 @@ typedef struct { #define OPUS_SET_ENERGY_MASK_REQUEST 10026 #define OPUS_SET_ENERGY_MASK(x) OPUS_SET_ENERGY_MASK_REQUEST, __opus_check_val16_ptr(x) +#define CELT_SET_SILK_INFO_REQUEST 10028 +#define CELT_SET_SILK_INFO(x) CELT_SET_SILK_INFO_REQUEST, __celt_check_silkinfo_ptr(x) + /* Encoder stuff */ int celt_encoder_get_size(int channels); @@ -194,6 +209,13 @@ static OPUS_INLINE int fromOpus(unsigned char c) extern const signed char tf_select_table[4][8]; +#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS) +void validate_celt_decoder(CELTDecoder *st); +#define VALIDATE_CELT_DECODER(st) validate_celt_decoder(st) +#else +#define VALIDATE_CELT_DECODER(st) +#endif + int resampling_factor(opus_int32 rate); void celt_preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, diff --git a/thirdparty/opus/celt/celt_decoder.c b/thirdparty/opus/celt/celt_decoder.c index b978bb34d1..e6efce9358 100644 --- a/thirdparty/opus/celt/celt_decoder.c +++ b/thirdparty/opus/celt/celt_decoder.c @@ -51,6 +51,14 @@ #include "celt_lpc.h" #include "vq.h" +/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save + CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The + current value corresponds to a pitch of 66.67 Hz. */ +#define PLC_PITCH_LAG_MAX (720) +/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a + pitch of 480 Hz. */ +#define PLC_PITCH_LAG_MIN (100) + #if defined(SMALL_FOOTPRINT) && defined(FIXED_POINT) #define NORM_ALIASING_HACK #endif @@ -73,6 +81,7 @@ struct OpusCustomDecoder { int downsample; int start, end; int signalling; + int disable_inv; int arch; /* Everything beyond this point gets cleared on a reset */ @@ -100,6 +109,38 @@ struct OpusCustomDecoder { /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */ }; +#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS) +/* Make basic checks on the CELT state to ensure we don't end + up writing all over memory. */ +void validate_celt_decoder(CELTDecoder *st) +{ +#ifndef CUSTOM_MODES + celt_assert(st->mode == opus_custom_mode_create(48000, 960, NULL)); + celt_assert(st->overlap == 120); +#endif + celt_assert(st->channels == 1 || st->channels == 2); + celt_assert(st->stream_channels == 1 || st->stream_channels == 2); + celt_assert(st->downsample > 0); + celt_assert(st->start == 0 || st->start == 17); + celt_assert(st->start < st->end); + celt_assert(st->end <= 21); +#ifdef OPUS_ARCHMASK + celt_assert(st->arch >= 0); + celt_assert(st->arch <= OPUS_ARCHMASK); +#endif + celt_assert(st->last_pitch_index <= PLC_PITCH_LAG_MAX); + celt_assert(st->last_pitch_index >= PLC_PITCH_LAG_MIN || st->last_pitch_index == 0); + celt_assert(st->postfilter_period < MAX_PERIOD); + celt_assert(st->postfilter_period >= COMBFILTER_MINPERIOD || st->postfilter_period == 0); + celt_assert(st->postfilter_period_old < MAX_PERIOD); + celt_assert(st->postfilter_period_old >= COMBFILTER_MINPERIOD || st->postfilter_period_old == 0); + celt_assert(st->postfilter_tapset <= 2); + celt_assert(st->postfilter_tapset >= 0); + celt_assert(st->postfilter_tapset_old <= 2); + celt_assert(st->postfilter_tapset_old >= 0); +} +#endif + int celt_decoder_get_size(int channels) { const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); @@ -163,6 +204,11 @@ OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMod st->start = 0; st->end = st->mode->effEBands; st->signalling = 1; +#ifndef DISABLE_UPDATE_DRAFT + st->disable_inv = channels == 1; +#else + st->disable_inv = 0; +#endif st->arch = opus_select_arch(); opus_custom_decoder_ctl(st, OPUS_RESET_STATE); @@ -177,6 +223,36 @@ void opus_custom_decoder_destroy(CELTDecoder *st) } #endif /* CUSTOM_MODES */ +#ifndef CUSTOM_MODES +/* Special case for stereo with no downsampling and no accumulation. This is + quite common and we can make it faster by processing both channels in the + same loop, reducing overhead due to the dependency loop in the IIR filter. */ +static void deemphasis_stereo_simple(celt_sig *in[], opus_val16 *pcm, int N, const opus_val16 coef0, + celt_sig *mem) +{ + celt_sig * OPUS_RESTRICT x0; + celt_sig * OPUS_RESTRICT x1; + celt_sig m0, m1; + int j; + x0=in[0]; + x1=in[1]; + m0 = mem[0]; + m1 = mem[1]; + for (j=0;j<N;j++) + { + celt_sig tmp0, tmp1; + /* Add VERY_SMALL to x[] first to reduce dependency chain. */ + tmp0 = x0[j] + VERY_SMALL + m0; + tmp1 = x1[j] + VERY_SMALL + m1; + m0 = MULT16_32_Q15(coef0, tmp0); + m1 = MULT16_32_Q15(coef0, tmp1); + pcm[2*j ] = SCALEOUT(SIG2WORD16(tmp0)); + pcm[2*j+1] = SCALEOUT(SIG2WORD16(tmp1)); + } + mem[0] = m0; + mem[1] = m1; +} +#endif #ifndef RESYNTH static @@ -190,6 +266,14 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c opus_val16 coef0; VARDECL(celt_sig, scratch); SAVE_STACK; +#ifndef CUSTOM_MODES + /* Short version for common case. */ + if (downsample == 1 && C == 2 && !accum) + { + deemphasis_stereo_simple(in, pcm, N, coef[0], mem); + return; + } +#endif #ifndef FIXED_POINT (void)accum; celt_assert(accum==0); @@ -225,7 +309,7 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c /* Shortcut for the standard (non-custom modes) case */ for (j=0;j<N;j++) { - celt_sig tmp = x[j] + m + VERY_SMALL; + celt_sig tmp = x[j] + VERY_SMALL + m; m = MULT16_32_Q15(coef0, tmp); scratch[j] = tmp; } @@ -246,7 +330,7 @@ void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, c { for (j=0;j<N;j++) { - celt_sig tmp = x[j] + m + VERY_SMALL; + celt_sig tmp = x[j] + VERY_SMALL + m; m = MULT16_32_Q15(coef0, tmp); y[j*C] = SCALEOUT(SIG2WORD16(tmp)); } @@ -333,7 +417,7 @@ void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[], denormalise_bands(mode, X+N, freq2, oldBandE+nbEBands, start, effEnd, M, downsample, silence); for (i=0;i<N;i++) - freq[i] = HALF32(ADD32(freq[i],freq2[i])); + freq[i] = ADD32(HALF32(freq[i]), HALF32(freq2[i])); for (b=0;b<B;b++) clt_mdct_backward(&mode->mdct, &freq[b], out_syn[0]+NB*b, mode->window, overlap, shift, B, arch); } else { @@ -345,6 +429,12 @@ void celt_synthesis(const CELTMode *mode, celt_norm *X, celt_sig * out_syn[], clt_mdct_backward(&mode->mdct, &freq[b], out_syn[c]+NB*b, mode->window, overlap, shift, B, arch); } while (++c<CC); } + /* Saturate IMDCT output so that we can't overflow in the pitch postfilter + or in the */ + c=0; do { + for (i=0;i<N;i++) + out_syn[c][i] = SATURATE(out_syn[c][i], SIG_SAT); + } while (++c<CC); RESTORE_STACK; } @@ -387,14 +477,6 @@ static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, } } -/* The maximum pitch lag to allow in the pitch-based PLC. It's possible to save - CPU time in the PLC pitch search by making this smaller than MAX_PERIOD. The - current value corresponds to a pitch of 66.67 Hz. */ -#define PLC_PITCH_LAG_MAX (720) -/* The minimum pitch lag to allow in the pitch-based PLC. This corresponds to a - pitch of 480 Hz. */ -#define PLC_PITCH_LAG_MIN (100) - static int celt_plc_pitch_search(celt_sig *decode_mem[2], int C, int arch) { int pitch_index; @@ -504,12 +586,15 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) celt_synthesis(mode, X, out_syn, oldBandE, start, effEnd, C, C, 0, LM, st->downsample, 0, st->arch); } else { + int exc_length; /* Pitch-based PLC */ const opus_val16 *window; + opus_val16 *exc; opus_val16 fade = Q15ONE; int pitch_index; VARDECL(opus_val32, etmp); - VARDECL(opus_val16, exc); + VARDECL(opus_val16, _exc); + VARDECL(opus_val16, fir_tmp); if (loss_count == 0) { @@ -519,8 +604,14 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) fade = QCONST16(.8f,15); } + /* We want the excitation for 2 pitch periods in order to look for a + decaying signal, but we can't get more than MAX_PERIOD. */ + exc_length = IMIN(2*pitch_index, MAX_PERIOD); + ALLOC(etmp, overlap, opus_val32); - ALLOC(exc, MAX_PERIOD, opus_val16); + ALLOC(_exc, MAX_PERIOD+LPC_ORDER, opus_val16); + ALLOC(fir_tmp, exc_length, opus_val16); + exc = _exc+LPC_ORDER; window = mode->window; c=0; do { opus_val16 decay; @@ -529,13 +620,11 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) celt_sig *buf; int extrapolation_offset; int extrapolation_len; - int exc_length; int j; buf = decode_mem[c]; - for (i=0;i<MAX_PERIOD;i++) { - exc[i] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD+i], SIG_SHIFT); - } + for (i=0;i<MAX_PERIOD+LPC_ORDER;i++) + exc[i-LPC_ORDER] = ROUND16(buf[DECODE_BUFFER_SIZE-MAX_PERIOD-LPC_ORDER+i], SIG_SHIFT); if (loss_count == 0) { @@ -561,22 +650,32 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) #endif } _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER); +#ifdef FIXED_POINT + /* For fixed-point, apply bandwidth expansion until we can guarantee that + no overflow can happen in the IIR filter. This means: + 32768*sum(abs(filter)) < 2^31 */ + while (1) { + opus_val16 tmp=Q15ONE; + opus_val32 sum=QCONST16(1., SIG_SHIFT); + for (i=0;i<LPC_ORDER;i++) + sum += ABS16(lpc[c*LPC_ORDER+i]); + if (sum < 65535) break; + for (i=0;i<LPC_ORDER;i++) + { + tmp = MULT16_16_Q15(QCONST16(.99f,15), tmp); + lpc[c*LPC_ORDER+i] = MULT16_16_Q15(lpc[c*LPC_ORDER+i], tmp); + } + } +#endif } - /* We want the excitation for 2 pitch periods in order to look for a - decaying signal, but we can't get more than MAX_PERIOD. */ - exc_length = IMIN(2*pitch_index, MAX_PERIOD); /* Initialize the LPC history with the samples just before the start of the region for which we're computing the excitation. */ { - opus_val16 lpc_mem[LPC_ORDER]; - for (i=0;i<LPC_ORDER;i++) - { - lpc_mem[i] = - ROUND16(buf[DECODE_BUFFER_SIZE-exc_length-1-i], SIG_SHIFT); - } - /* Compute the excitation for exc_length samples before the loss. */ + /* Compute the excitation for exc_length samples before the loss. We need the copy + because celt_fir() cannot filter in-place. */ celt_fir(exc+MAX_PERIOD-exc_length, lpc+c*LPC_ORDER, - exc+MAX_PERIOD-exc_length, exc_length, LPC_ORDER, lpc_mem, st->arch); + fir_tmp, exc_length, LPC_ORDER, st->arch); + OPUS_COPY(exc+MAX_PERIOD-exc_length, fir_tmp, exc_length); } /* Check if the waveform is decaying, and if so how fast. @@ -630,9 +729,8 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) tmp = ROUND16( buf[DECODE_BUFFER_SIZE-MAX_PERIOD-N+extrapolation_offset+j], SIG_SHIFT); - S1 += SHR32(MULT16_16(tmp, tmp), 8); + S1 += SHR32(MULT16_16(tmp, tmp), 10); } - { opus_val16 lpc_mem[LPC_ORDER]; /* Copy the last decoded samples (prior to the overlap region) to @@ -644,6 +742,10 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) celt_iir(buf+DECODE_BUFFER_SIZE-N, lpc+c*LPC_ORDER, buf+DECODE_BUFFER_SIZE-N, extrapolation_len, LPC_ORDER, lpc_mem, st->arch); +#ifdef FIXED_POINT + for (i=0; i < extrapolation_len; i++) + buf[DECODE_BUFFER_SIZE-N+i] = SATURATE(buf[DECODE_BUFFER_SIZE-N+i], SIG_SAT); +#endif } /* Check if the synthesis energy is higher than expected, which can @@ -654,7 +756,7 @@ static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, int N, int LM) for (i=0;i<extrapolation_len;i++) { opus_val16 tmp = ROUND16(buf[DECODE_BUFFER_SIZE-N+i], SIG_SHIFT); - S2 += SHR32(MULT16_16(tmp, tmp), 8); + S2 += SHR32(MULT16_16(tmp, tmp), 10); } /* This checks for an "explosion" in the synthesis. */ #ifdef FIXED_POINT @@ -762,6 +864,7 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat const opus_int16 *eBands; ALLOC_STACK; + VALIDATE_CELT_DECODER(st); mode = st->mode; nbEBands = mode->nbEBands; overlap = mode->overlap; @@ -956,7 +1059,7 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat ALLOC(pulses, nbEBands, int); ALLOC(fine_priority, nbEBands, int); - codedBands = compute_allocation(mode, start, end, offsets, cap, + codedBands = clt_compute_allocation(mode, start, end, offsets, cap, alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, fine_quant, fine_priority, C, LM, dec, 0, 0, 0); @@ -979,7 +1082,8 @@ int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat quant_all_bands(0, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks, NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res, - len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, st->arch); + len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng, 0, + st->arch, st->disable_inv); if (anti_collapse_rsv > 0) { @@ -1234,6 +1338,26 @@ int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...) *value=st->rng; } break; + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if(value<0 || value>1) + { + goto bad_arg; + } + st->disable_inv = value; + } + break; + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + *value = st->disable_inv; + } + break; default: goto bad_request; } diff --git a/thirdparty/opus/celt/celt_encoder.c b/thirdparty/opus/celt/celt_encoder.c index 3ee7a4d3f7..44cb0850ab 100644 --- a/thirdparty/opus/celt/celt_encoder.c +++ b/thirdparty/opus/celt/celt_encoder.c @@ -73,8 +73,8 @@ struct OpusCustomEncoder { int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ int loss_rate; int lsb_depth; - int variable_duration; int lfe; + int disable_inv; int arch; /* Everything beyond this point gets cleared on a reset */ @@ -98,6 +98,7 @@ struct OpusCustomEncoder { #endif int consec_transient; AnalysisInfo analysis; + SILKInfo silk_info; opus_val32 preemph_memE[2]; opus_val32 preemph_memD[2]; @@ -123,6 +124,7 @@ struct OpusCustomEncoder { /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */ /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */ /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */ + /* opus_val16 energyError[], Size = channels*mode->nbEBands */ }; int celt_encoder_get_size(int channels) @@ -136,9 +138,10 @@ OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int int size = sizeof(struct CELTEncoder) + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ - + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ + + 4*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ /* opus_val16 oldLogE[channels*mode->nbEBands]; */ /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ + /* opus_val16 energyError[channels*mode->nbEBands]; */ return size; } @@ -178,7 +181,6 @@ static int opus_custom_encoder_init_arch(CELTEncoder *st, const CELTMode *mode, st->start = 0; st->end = st->mode->effEBands; st->signalling = 1; - st->arch = arch; st->constrained_vbr = 1; @@ -223,7 +225,8 @@ void opus_custom_encoder_destroy(CELTEncoder *st) static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, - opus_val16 *tf_estimate, int *tf_chan) + opus_val16 *tf_estimate, int *tf_chan, int allow_weak_transients, + int *weak_transient) { int i; VARDECL(opus_val16, tmp); @@ -233,6 +236,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int int c; opus_val16 tf_max; int len2; + /* Forward masking: 6.7 dB/ms. */ +#ifdef FIXED_POINT + int forward_shift = 4; +#else + opus_val16 forward_decay = QCONST16(.0625f,15); +#endif /* Table of 6*64/x, trained on real data to minimize the average error */ static const unsigned char inv_table[128] = { 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, @@ -247,6 +256,19 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int SAVE_STACK; ALLOC(tmp, len, opus_val16); + *weak_transient = 0; + /* For lower bitrates, let's be more conservative and have a forward masking + decay of 3.3 dB/ms. This avoids having to code transients at very low + bitrate (mostly for hybrid), which can result in unstable energy and/or + partial collapse. */ + if (allow_weak_transients) + { +#ifdef FIXED_POINT + forward_shift = 5; +#else + forward_decay = QCONST16(.03125f,15); +#endif + } len2=len/2; for (c=0;c<C;c++) { @@ -269,7 +291,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int mem0 = mem1 + y - 2*x; mem1 = x - .5f*y; #endif - tmp[i] = EXTRACT16(SHR32(y,2)); + tmp[i] = SROUND16(y, 2); /*printf("%f ", tmp[i]);*/ } /*printf("\n");*/ @@ -280,7 +302,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int /* Normalize tmp to max range */ { int shift=0; - shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); + shift = 14-celt_ilog2(MAX16(1, celt_maxabs16(tmp, len))); if (shift!=0) { for (i=0;i<len;i++) @@ -299,9 +321,9 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int mean += x2; #ifdef FIXED_POINT /* FIXME: Use PSHR16() instead */ - tmp[i] = mem0 + PSHR32(x2-mem0,4); + tmp[i] = mem0 + PSHR32(x2-mem0,forward_shift); #else - tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); + tmp[i] = mem0 + MULT16_16_P15(forward_decay,x2-mem0); #endif mem0 = tmp[i]; } @@ -311,6 +333,7 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int /* Backward pass to compute the pre-echo threshold */ for (i=len2-1;i>=0;i--) { + /* Backward masking: 13.9 dB/ms. */ #ifdef FIXED_POINT /* FIXME: Use PSHR16() instead */ tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); @@ -339,6 +362,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int /* Compute harmonic mean discarding the unreliable boundaries The data is smooth, so we only take 1/4th of the samples */ unmask=0; + /* We should never see NaNs here. If we find any, then something really bad happened and we better abort + before it does any damage later on. If these asserts are disabled (no hardening), then the table + lookup a few lines below (id = ...) is likely to crash dur to an out-of-bounds read. DO NOT FIX + that crash on NaN since it could result in a worse issue later on. */ + celt_assert(!celt_isnan(tmp[0])); + celt_assert(!celt_isnan(norm)); for (i=12;i<len2-5;i+=4) { int id; @@ -359,7 +388,12 @@ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int } } is_transient = mask_metric>200; - + /* For low bitrates, define "weak transients" that need to be + handled differently to avoid partial collapse. */ + if (allow_weak_transients && is_transient && mask_metric<600) { + is_transient = 0; + *weak_transient = 1; + } /* Arbitrary metric for VBR boost */ tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ @@ -549,7 +583,7 @@ static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias static int tf_analysis(const CELTMode *m, int len, int isTransient, int *tf_res, int lambda, celt_norm *X, int N0, int LM, - int *tf_sum, opus_val16 tf_estimate, int tf_chan) + opus_val16 tf_estimate, int tf_chan, int *importance) { int i; VARDECL(int, metric); @@ -574,7 +608,6 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient, ALLOC(path0, len, int); ALLOC(path1, len, int); - *tf_sum = 0; for (i=0;i<len;i++) { int k, N; @@ -629,27 +662,26 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient, metric[i] = 2*best_level; else metric[i] = -2*best_level; - *tf_sum += (isTransient ? LM : 0) - metric[i]/2; /* For bands that can't be split to -1, set the metric to the half-way point to avoid biasing the decision */ if (narrow && (metric[i]==0 || metric[i]==-2*LM)) metric[i]-=1; - /*printf("%d ", metric[i]);*/ + /*printf("%d ", metric[i]/2 + (!isTransient)*LM);*/ } /*printf("\n");*/ /* Search for the optimal tf resolution, including tf_select */ tf_select = 0; for (sel=0;sel<2;sel++) { - cost0 = 0; - cost1 = isTransient ? 0 : lambda; + cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+0]); + cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*sel+1]) + (isTransient ? 0 : lambda); for (i=1;i<len;i++) { int curr0, curr1; curr0 = IMIN(cost0, cost1 + lambda); curr1 = IMIN(cost0 + lambda, cost1); - cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); - cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); + cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); + cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); } cost0 = IMIN(cost0, cost1); selcost[sel]=cost0; @@ -658,8 +690,8 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient, * If tests confirm it's useful for non-transients, we could allow it. */ if (selcost[1]<selcost[0] && isTransient) tf_select=1; - cost0 = 0; - cost1 = isTransient ? 0 : lambda; + cost0 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); + cost1 = importance[0]*abs(metric[0]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]) + (isTransient ? 0 : lambda); /* Viterbi forward pass */ for (i=1;i<len;i++) { @@ -687,8 +719,8 @@ static int tf_analysis(const CELTMode *m, int len, int isTransient, curr1 = from1; path1[i]= 1; } - cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); - cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); + cost0 = curr0 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); + cost1 = curr1 + importance[i]*abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); } tf_res[len-1] = cost0 < cost1 ? 0 : 1; /* Viterbi backward pass to check the decisions */ @@ -754,7 +786,7 @@ static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, const opus_val16 *bandLogE, int end, int LM, int C, int N0, AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, - int intensity, opus_val16 surround_trim, int arch) + int intensity, opus_val16 surround_trim, opus_int32 equiv_rate, int arch) { int i; opus_val32 diff=0; @@ -762,6 +794,14 @@ static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, int trim_index; opus_val16 trim = QCONST16(5.f, 8); opus_val16 logXC, logXC2; + /* At low bitrate, reducing the trim seems to help. At higher bitrates, it's less + clear what's best, so we're keeping it as it was before, at least for now. */ + if (equiv_rate < 64000) { + trim = QCONST16(4.f, 8); + } else if (equiv_rate < 80000) { + opus_int32 frac = (equiv_rate-64000) >> 10; + trim = QCONST16(4.f, 8) + QCONST16(1.f/16.f, 8)*frac; + } if (C==2) { opus_val16 sum = 0; /* Q10 */ @@ -809,7 +849,7 @@ static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, } while (++c<C); diff /= C*(end-1); /*printf("%f\n", diff);*/ - trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); + trim -= MAX32(-QCONST16(2.f, 8), MIN32(QCONST16(2.f, 8), SHR32(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); trim -= SHR16(surround_trim, DB_SHIFT-8); trim -= 2*SHR16(tf_estimate, 14-8); #ifndef DISABLE_FLOAT_API @@ -930,7 +970,8 @@ static opus_val16 median_of_3(const opus_val16 *x) static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, - int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc) + int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc, + AnalysisInfo *analysis, int *importance, int *spread_weight) { int i, c; opus_int32 tot_boost=0; @@ -956,6 +997,42 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 for (i=0;i<end;i++) maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); } while (++c<C); + { + /* Compute a really simple masking model to avoid taking into account completely masked + bands when computing the spreading decision. */ + VARDECL(opus_val16, mask); + VARDECL(opus_val16, sig); + ALLOC(mask, nbEBands, opus_val16); + ALLOC(sig, nbEBands, opus_val16); + for (i=0;i<end;i++) + mask[i] = bandLogE[i]-noise_floor[i]; + if (C==2) + { + for (i=0;i<end;i++) + mask[i] = MAX16(mask[i], bandLogE[nbEBands+i]-noise_floor[i]); + } + OPUS_COPY(sig, mask, end); + for (i=1;i<end;i++) + mask[i] = MAX16(mask[i], mask[i-1] - QCONST16(2.f, DB_SHIFT)); + for (i=end-2;i>=0;i--) + mask[i] = MAX16(mask[i], mask[i+1] - QCONST16(3.f, DB_SHIFT)); + for (i=0;i<end;i++) + { + /* Compute SMR: Mask is never more than 72 dB below the peak and never below the noise floor.*/ + opus_val16 smr = sig[i]-MAX16(MAX16(0, maxDepth-QCONST16(12.f, DB_SHIFT)), mask[i]); + /* Clamp SMR to make sure we're not shifting by something negative or too large. */ +#ifdef FIXED_POINT + /* FIXME: Use PSHR16() instead */ + int shift = -PSHR32(MAX16(-QCONST16(5.f, DB_SHIFT), MIN16(0, smr)), DB_SHIFT); +#else + int shift = IMIN(5, IMAX(0, -(int)floor(.5f + smr))); +#endif + spread_weight[i] = 32 >> shift; + } + /*for (i=0;i<end;i++) + printf("%d ", spread_weight[i]); + printf("\n");*/ + } /* Make sure that dynamic allocation can't make us bust the budget */ if (effectiveBytes > 50 && LM>=1 && !lfe) { @@ -1012,6 +1089,14 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 } for (i=start;i<end;i++) follower[i] = MAX16(follower[i], surround_dynalloc[i]); + for (i=start;i<end;i++) + { +#ifdef FIXED_POINT + importance[i] = PSHR32(13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT))), 16); +#else + importance[i] = (int)floor(.5f+13*celt_exp2(MIN16(follower[i], QCONST16(4.f, DB_SHIFT)))); +#endif + } /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ if ((!vbr || constrained_vbr)&&!isTransient) { @@ -1020,14 +1105,26 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 } for (i=start;i<end;i++) { - int width; - int boost; - int boost_bits; - if (i<8) follower[i] *= 2; if (i>=12) follower[i] = HALF16(follower[i]); + } +#ifdef DISABLE_FLOAT_API + (void)analysis; +#else + if (analysis->valid) + { + for (i=start;i<IMIN(LEAK_BANDS, end);i++) + follower[i] = follower[i] + QCONST16(1.f/64.f, DB_SHIFT)*analysis->leak_boost[i]; + } +#endif + for (i=start;i<end;i++) + { + int width; + int boost; + int boost_bits; + follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); width = C*(eBands[i+1]-eBands[i])<<LM; @@ -1042,11 +1139,11 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); boost_bits = boost*6<<BITRES; } - /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ + /* For CBR and non-transient CVBR frames, limit dynalloc to 2/3 of the bits */ if ((!vbr || (constrained_vbr&&!isTransient)) - && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) + && (tot_boost+boost_bits)>>BITRES>>3 > 2*effectiveBytes/3) { - opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3); + opus_int32 cap = ((2*effectiveBytes/3)<<BITRES<<3); offsets[i] = cap-tot_boost; tot_boost = cap; break; @@ -1055,6 +1152,9 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 tot_boost += boost_bits; } } + } else { + for (i=start;i<end;i++) + importance[i] = 13; } *tot_boost_ = tot_boost; RESTORE_STACK; @@ -1063,7 +1163,7 @@ static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, - int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) + int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes, AnalysisInfo *analysis) { int c; VARDECL(celt_sig, _pre); @@ -1119,7 +1219,12 @@ static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, gain1 = 0; pitch_index = COMBFILTER_MINPERIOD; } - +#ifndef DISABLE_FLOAT_API + if (analysis->valid) + gain1 = (opus_val16)(gain1 * analysis->max_pitch_ratio); +#else + (void)analysis; +#endif /* Gain threshold for enabling the prefilter/postfilter */ pf_threshold = QCONST16(.2f,15); @@ -1193,7 +1298,7 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, int constrained_vbr, opus_val16 stereo_saving, int tot_boost, opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth, - int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking, + int lfe, int has_surround_mask, opus_val16 surround_masking, opus_val16 temporal_vbr) { /* The target rate in 8th bits per frame */ @@ -1235,10 +1340,9 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); } /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ - target += tot_boost-(16<<LM); + target += tot_boost-(19<<LM); /* Apply transient boost, compensating for average boost. */ - tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ? - QCONST16(0.02f,14) : QCONST16(0.04f,14); + tf_calibration = QCONST16(0.044f,14); target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1); #ifndef DISABLE_FLOAT_API @@ -1249,7 +1353,7 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 float tonal; /* Tonality boost (compensating for the average). */ - tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f; + tonal = MAX16(0.f,analysis->tonality-.15f)-0.12f; tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); if (pitch_change) tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f); @@ -1279,21 +1383,11 @@ static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 /*printf("%f %d\n", maxDepth, floor_depth);*/ } - if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000)) + /* Make VBR less aggressive for constrained VBR because we can't keep a higher bitrate + for long. Needs tuning. */ + if ((!has_surround_mask||lfe) && constrained_vbr) { - opus_val16 rate_factor = Q15ONE; - if (bitrate < 64000) - { -#ifdef FIXED_POINT - rate_factor = MAX16(0,(bitrate-32000)); -#else - rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000)); -#endif - } - if (constrained_vbr) - rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); - target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); - + target = base_target + (opus_int32)MULT16_32_Q15(QCONST16(0.67f, 15), target-base_target); } if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)) @@ -1327,11 +1421,13 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, VARDECL(int, pulses); VARDECL(int, cap); VARDECL(int, offsets); + VARDECL(int, importance); + VARDECL(int, spread_weight); VARDECL(int, fine_priority); VARDECL(int, tf_res); VARDECL(unsigned char, collapse_masks); celt_sig *prefilter_mem; - opus_val16 *oldBandE, *oldLogE, *oldLogE2; + opus_val16 *oldBandE, *oldLogE, *oldLogE2, *energyError; int shortBlocks=0; int isTransient=0; const int CC = st->channels; @@ -1343,7 +1439,6 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int end; int effEnd; int codedBands; - int tf_sum; int alloc_trim; int pitch_index=COMBFILTER_MINPERIOD; opus_val16 gain1 = 0; @@ -1355,6 +1450,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, opus_int32 total_boost; opus_int32 balance; opus_int32 tell; + opus_int32 tell0_frac; int prefilter_tapset=0; int pf_on; int anti_collapse_rsv; @@ -1376,7 +1472,10 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, opus_val16 surround_masking=0; opus_val16 temporal_vbr=0; opus_val16 surround_trim = 0; - opus_int32 equiv_rate = 510000; + opus_int32 equiv_rate; + int hybrid; + int weak_transient = 0; + int enable_tf_analysis; VARDECL(opus_val16, surround_dynalloc); ALLOC_STACK; @@ -1386,6 +1485,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, eBands = mode->eBands; start = st->start; end = st->end; + hybrid = start != 0; tf_estimate = 0; if (nbCompressedBytes<2 || pcm==NULL) { @@ -1409,12 +1509,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, oldBandE = (opus_val16*)(st->in_mem+CC*(overlap+COMBFILTER_MAXPERIOD)); oldLogE = oldBandE + CC*nbEBands; oldLogE2 = oldLogE + CC*nbEBands; + energyError = oldLogE2 + CC*nbEBands; if (enc==NULL) { - tell=1; + tell0_frac=tell=1; nbFilledBytes=0; } else { + tell0_frac=ec_tell_frac(enc); tell=ec_tell(enc); nbFilledBytes=(tell+4)>>3; } @@ -1467,10 +1569,11 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, if (st->bitrate!=OPUS_BITRATE_MAX) nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); - effectiveBytes = nbCompressedBytes; + effectiveBytes = nbCompressedBytes - nbFilledBytes; } + equiv_rate = ((opus_int32)nbCompressedBytes*8*50 >> (3-LM)) - (40*C+20)*((400>>LM) - 50); if (st->bitrate != OPUS_BITRATE_MAX) - equiv_rate = st->bitrate - (40*C+20)*((400>>LM) - 50); + equiv_rate = IMIN(equiv_rate, st->bitrate - (40*C+20)*((400>>LM) - 50)); if (enc==NULL) { @@ -1558,17 +1661,17 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, { int enabled; int qg; - enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && start==0 && !silence && !st->disable_pf - && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE); + enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && !hybrid && !silence && !st->disable_pf + && st->complexity >= 5; prefilter_tapset = st->tapset_decision; - pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); + pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes, &st->analysis); if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) pitch_change = 1; if (pf_on==0) { - if(start==0 && tell+16<=total_bits) + if(!hybrid && tell+16<=total_bits) ec_enc_bit_logp(enc, 0, 1); } else { /*This block is not gated by a total bits check only because @@ -1589,8 +1692,12 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, shortBlocks = 0; if (st->complexity >= 1 && !st->lfe) { + /* Reduces the likelihood of energy instability on fricatives at low bitrate + in hybrid mode. It seems like we still want to have real transients on vowels + though (small SILK quantization offset value). */ + int allow_weak_transients = hybrid && effectiveBytes<15 && st->silk_info.signalType != 2; isTransient = transient_analysis(in, N+overlap, CC, - &tf_estimate, &tf_chan); + &tf_estimate, &tf_chan, allow_weak_transients, &weak_transient); } if (LM>0 && ec_tell(enc)+3<=total_bits) { @@ -1610,16 +1717,19 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, if (secondMdct) { compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample, st->arch); - compute_band_energies(mode, freq, bandE, effEnd, C, LM); + compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); amp2Log2(mode, effEnd, end, bandE, bandLogE2, C); for (i=0;i<C*nbEBands;i++) bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); } compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch); + /* This should catch any NaN in the CELT input. Since we're not supposed to see any (they're filtered + at the Opus layer), just abort. */ + celt_assert(!celt_isnan(freq[0]) && (C==1 || !celt_isnan(freq[N]))); if (CC==2&&C==1) tf_chan = 0; - compute_band_energies(mode, freq, bandE, effEnd, C, LM); + compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); if (st->lfe) { @@ -1634,7 +1744,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, ALLOC(surround_dynalloc, C*nbEBands, opus_val16); OPUS_CLEAR(surround_dynalloc, end); /* This computes how much masking takes place between surround channels */ - if (start==0&&st->energy_mask&&!st->lfe) + if (!hybrid&&st->energy_mask&&!st->lfe) { int mask_end; int midband; @@ -1736,14 +1846,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, /* Last chance to catch any transient we might have missed in the time-domain analysis */ - if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe) + if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe && !hybrid) { if (patch_transient_decision(bandLogE, oldBandE, nbEBands, start, end, C)) { isTransient = 1; shortBlocks = M; compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample, st->arch); - compute_band_energies(mode, freq, bandE, effEnd, C, LM); + compute_band_energies(mode, freq, bandE, effEnd, C, LM, st->arch); amp2Log2(mode, effEnd, end, bandE, bandLogE, C); /* Compensate for the scaling of short vs long mdcts */ for (i=0;i<C*nbEBands;i++) @@ -1760,31 +1870,59 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, /* Band normalisation */ normalise_bands(mode, freq, X, bandE, effEnd, C, M); + enable_tf_analysis = effectiveBytes>=15*C && !hybrid && st->complexity>=2 && !st->lfe; + + ALLOC(offsets, nbEBands, int); + ALLOC(importance, nbEBands, int); + ALLOC(spread_weight, nbEBands, int); + + maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, start, end, C, offsets, + st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, + eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc, &st->analysis, importance, spread_weight); + ALLOC(tf_res, nbEBands, int); /* Disable variable tf resolution for hybrid and at very low bitrate */ - if (effectiveBytes>=15*C && start==0 && st->complexity>=2 && !st->lfe) + if (enable_tf_analysis) { int lambda; - if (effectiveBytes<40) - lambda = 12; - else if (effectiveBytes<60) - lambda = 6; - else if (effectiveBytes<100) - lambda = 4; - else - lambda = 3; - lambda*=2; - tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); + lambda = IMAX(80, 20480/effectiveBytes + 2); + tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, tf_estimate, tf_chan, importance); for (i=effEnd;i<end;i++) tf_res[i] = tf_res[effEnd-1]; + } else if (hybrid && weak_transient) + { + /* For weak transients, we rely on the fact that improving time resolution using + TF on a long window is imperfect and will not result in an energy collapse at + low bitrate. */ + for (i=0;i<end;i++) + tf_res[i] = 1; + tf_select=0; + } else if (hybrid && effectiveBytes<15 && st->silk_info.signalType != 2) + { + /* For low bitrate hybrid, we force temporal resolution to 5 ms rather than 2.5 ms. */ + for (i=0;i<end;i++) + tf_res[i] = 0; + tf_select=isTransient; } else { - tf_sum = 0; for (i=0;i<end;i++) tf_res[i] = isTransient; tf_select=0; } ALLOC(error, C*nbEBands, opus_val16); + c=0; + do { + for (i=start;i<end;i++) + { + /* When the energy is stable, slightly bias energy quantization towards + the previous error to make the gain more stable (a constant offset is + better than fluctuations). */ + if (ABS32(SUB32(bandLogE[i+c*nbEBands], oldBandE[i+c*nbEBands])) < QCONST16(2.f, DB_SHIFT)) + { + bandLogE[i+c*nbEBands] -= MULT16_16_Q15(energyError[i+c*nbEBands], QCONST16(0.25f, 15)); + } + } + } while (++c < C); quant_coarse_energy(mode, start, end, effEnd, bandLogE, oldBandE, total_bits, error, enc, C, LM, nbAvailableBytes, st->force_intra, @@ -1798,7 +1936,15 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, { st->tapset_decision = 0; st->spread_decision = SPREAD_NORMAL; - } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || start != 0) + } else if (hybrid) + { + if (st->complexity == 0) + st->spread_decision = SPREAD_NONE; + else if (isTransient) + st->spread_decision = SPREAD_NORMAL; + else + st->spread_decision = SPREAD_AGGRESSIVE; + } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C) { if (st->complexity == 0) st->spread_decision = SPREAD_NONE; @@ -1822,7 +1968,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, { st->spread_decision = spreading_decision(mode, X, &st->tonal_average, st->spread_decision, &st->hf_average, - &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); + &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M, spread_weight); } /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ @@ -1830,11 +1976,6 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); } - ALLOC(offsets, nbEBands, int); - - maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, start, end, C, offsets, - st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, - eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc); /* For LFE, everything interesting is in the first band */ if (st->lfe) offsets[0] = IMIN(8, effectiveBytes/3); @@ -1896,12 +2037,15 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, alloc_trim = 5; if (tell+(6<<BITRES) <= total_bits - total_boost) { - if (st->lfe) + if (start > 0 || st->lfe) + { + st->stereo_saving = 0; alloc_trim = 5; - else + } else { alloc_trim = alloc_trim_analysis(mode, X, bandLogE, end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, - st->intensity, surround_trim, st->arch); + st->intensity, surround_trim, equiv_rate, st->arch); + } ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); tell = ec_tell_frac(enc); } @@ -1919,17 +2063,36 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. The CELT allocator will just not be able to use more than that anyway. */ nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); - base_target = vbr_rate - ((40*C+20)<<BITRES); + if (!hybrid) + { + base_target = vbr_rate - ((40*C+20)<<BITRES); + } else { + base_target = IMAX(0, vbr_rate - ((9*C+4)<<BITRES)); + } if (st->constrained_vbr) base_target += (st->vbr_offset>>lm_diff); - target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate, + if (!hybrid) + { + target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate, st->lastCodedBands, C, st->intensity, st->constrained_vbr, st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, - st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking, + st->lfe, st->energy_mask!=NULL, surround_masking, temporal_vbr); - + } else { + target = base_target; + /* Tonal frames (offset<100) need more bits than noisy (offset>100) ones. */ + if (st->silk_info.offset < 100) target += 12 << BITRES >> (3-LM); + if (st->silk_info.offset > 100) target -= 18 << BITRES >> (3-LM); + /* Boosting bitrate on transients and vowels with significant temporal + spikes. */ + target += (opus_int32)MULT16_16_Q14(tf_estimate-QCONST16(.25f,14), (50<<BITRES)); + /* If we have a strong transient, let's make sure it has enough bits to code + the first two bands, so that it can use folding rather than noise. */ + if (tf_estimate > QCONST16(.7f,14)) + target = IMAX(target, 50<<BITRES); + } /* The current offset is removed from the target and the space used so far is added*/ target=target+tell; @@ -1937,11 +2100,16 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, result in the encoder running out of bits. The margin of 2 bytes ensures that none of the bust-prevention logic in the decoder will have triggered so far. */ - min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; + min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2; + /* Take into account the 37 bits we need to have left in the packet to + signal a redundant frame in hybrid mode. Creating a shorter packet would + create an entropy coder desync. */ + if (hybrid) + min_allowed = IMAX(min_allowed, (tell0_frac+(37<<BITRES)+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)); nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); - nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; + nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes); /* By how much did we "miss" the target on that frame */ delta = target - vbr_rate; @@ -1988,7 +2156,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, st->vbr_reservoir = 0; /*printf ("+%d\n", adjust);*/ } - nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); + nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes); /*printf("%d\n", nbCompressedBytes*50*8);*/ /* This moves the raw bits to take into account the new compressed size */ ec_enc_shrink(enc, nbCompressedBytes); @@ -2023,7 +2191,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, #endif if (st->lfe) signalBandwidth = 1; - codedBands = compute_allocation(mode, start, end, offsets, cap, + codedBands = clt_compute_allocation(mode, start, end, offsets, cap, alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); if (st->lastCodedBands) @@ -2038,7 +2206,7 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, quant_all_bands(1, mode, start, end, X, C==2 ? X+N : NULL, collapse_masks, bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, - balance, enc, LM, codedBands, &st->rng, st->arch); + balance, enc, LM, codedBands, &st->rng, st->complexity, st->arch, st->disable_inv); if (anti_collapse_rsv > 0) { @@ -2049,6 +2217,14 @@ int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, ec_enc_bits(enc, anti_collapse_on, 1); } quant_energy_finalise(mode, start, end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); + OPUS_CLEAR(energyError, nbEBands*CC); + c=0; + do { + for (i=start;i<end;i++) + { + energyError[i+c*nbEBands] = MAX16(-QCONST16(0.5f, 15), MIN16(QCONST16(0.5f, 15), error[i+c*nbEBands])); + } + } while (++c < C); if (silence) { @@ -2321,10 +2497,24 @@ int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) *value=st->lsb_depth; } break; - case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); - st->variable_duration = value; + if(value<0 || value>1) + { + goto bad_arg; + } + st->disable_inv = value; + } + break; + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + *value = st->disable_inv; } break; case OPUS_RESET_STATE: @@ -2368,6 +2558,13 @@ int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) OPUS_COPY(&st->analysis, info, 1); } break; + case CELT_SET_SILK_INFO_REQUEST: + { + SILKInfo *info = va_arg(ap, SILKInfo *); + if (info) + OPUS_COPY(&st->silk_info, info, 1); + } + break; case CELT_GET_MODE_REQUEST: { const CELTMode ** value = va_arg(ap, const CELTMode**); diff --git a/thirdparty/opus/celt/celt_lpc.c b/thirdparty/opus/celt/celt_lpc.c index b410a21c5f..8ecb693ee9 100644 --- a/thirdparty/opus/celt/celt_lpc.c +++ b/thirdparty/opus/celt/celt_lpc.c @@ -89,58 +89,40 @@ int p void celt_fir_c( - const opus_val16 *_x, + const opus_val16 *x, const opus_val16 *num, - opus_val16 *_y, + opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch) { int i,j; VARDECL(opus_val16, rnum); - VARDECL(opus_val16, x); SAVE_STACK; - + celt_assert(x != y); ALLOC(rnum, ord, opus_val16); - ALLOC(x, N+ord, opus_val16); for(i=0;i<ord;i++) rnum[i] = num[ord-i-1]; - for(i=0;i<ord;i++) - x[i] = mem[ord-i-1]; - for (i=0;i<N;i++) - x[i+ord]=_x[i]; - for(i=0;i<ord;i++) - mem[i] = _x[N-i-1]; -#ifdef SMALL_FOOTPRINT - (void)arch; - for (i=0;i<N;i++) - { - opus_val32 sum = SHL32(EXTEND32(_x[i]), SIG_SHIFT); - for (j=0;j<ord;j++) - { - sum = MAC16_16(sum,rnum[j],x[i+j]); - } - _y[i] = SATURATE16(PSHR32(sum, SIG_SHIFT)); - } -#else for (i=0;i<N-3;i+=4) { - opus_val32 sum[4]={0,0,0,0}; - xcorr_kernel(rnum, x+i, sum, ord, arch); - _y[i ] = SATURATE16(ADD32(EXTEND32(_x[i ]), PSHR32(sum[0], SIG_SHIFT))); - _y[i+1] = SATURATE16(ADD32(EXTEND32(_x[i+1]), PSHR32(sum[1], SIG_SHIFT))); - _y[i+2] = SATURATE16(ADD32(EXTEND32(_x[i+2]), PSHR32(sum[2], SIG_SHIFT))); - _y[i+3] = SATURATE16(ADD32(EXTEND32(_x[i+3]), PSHR32(sum[3], SIG_SHIFT))); + opus_val32 sum[4]; + sum[0] = SHL32(EXTEND32(x[i ]), SIG_SHIFT); + sum[1] = SHL32(EXTEND32(x[i+1]), SIG_SHIFT); + sum[2] = SHL32(EXTEND32(x[i+2]), SIG_SHIFT); + sum[3] = SHL32(EXTEND32(x[i+3]), SIG_SHIFT); + xcorr_kernel(rnum, x+i-ord, sum, ord, arch); + y[i ] = ROUND16(sum[0], SIG_SHIFT); + y[i+1] = ROUND16(sum[1], SIG_SHIFT); + y[i+2] = ROUND16(sum[2], SIG_SHIFT); + y[i+3] = ROUND16(sum[3], SIG_SHIFT); } for (;i<N;i++) { - opus_val32 sum = 0; + opus_val32 sum = SHL32(EXTEND32(x[i]), SIG_SHIFT); for (j=0;j<ord;j++) - sum = MAC16_16(sum,rnum[j],x[i+j]); - _y[i] = SATURATE16(ADD32(EXTEND32(_x[i]), PSHR32(sum, SIG_SHIFT))); + sum = MAC16_16(sum,rnum[j],x[i+j-ord]); + y[i] = ROUND16(sum, SIG_SHIFT); } -#endif RESTORE_STACK; } @@ -166,7 +148,7 @@ void celt_iir(const opus_val32 *_x, { mem[j]=mem[j-1]; } - mem[0] = ROUND16(sum,SIG_SHIFT); + mem[0] = SROUND16(sum, SIG_SHIFT); _y[i] = sum; } #else @@ -195,20 +177,20 @@ void celt_iir(const opus_val32 *_x, xcorr_kernel(rden, y+i, sum, ord, arch); /* Patch up the result to compensate for the fact that this is an IIR */ - y[i+ord ] = -ROUND16(sum[0],SIG_SHIFT); + y[i+ord ] = -SROUND16(sum[0],SIG_SHIFT); _y[i ] = sum[0]; sum[1] = MAC16_16(sum[1], y[i+ord ], den[0]); - y[i+ord+1] = -ROUND16(sum[1],SIG_SHIFT); + y[i+ord+1] = -SROUND16(sum[1],SIG_SHIFT); _y[i+1] = sum[1]; sum[2] = MAC16_16(sum[2], y[i+ord+1], den[0]); sum[2] = MAC16_16(sum[2], y[i+ord ], den[1]); - y[i+ord+2] = -ROUND16(sum[2],SIG_SHIFT); + y[i+ord+2] = -SROUND16(sum[2],SIG_SHIFT); _y[i+2] = sum[2]; sum[3] = MAC16_16(sum[3], y[i+ord+2], den[0]); sum[3] = MAC16_16(sum[3], y[i+ord+1], den[1]); sum[3] = MAC16_16(sum[3], y[i+ord ], den[2]); - y[i+ord+3] = -ROUND16(sum[3],SIG_SHIFT); + y[i+ord+3] = -SROUND16(sum[3],SIG_SHIFT); _y[i+3] = sum[3]; } for (;i<N;i++) @@ -216,7 +198,7 @@ void celt_iir(const opus_val32 *_x, opus_val32 sum = _x[i]; for (j=0;j<ord;j++) sum -= MULT16_16(rden[j],y[i+j]); - y[i+ord] = ROUND16(sum,SIG_SHIFT); + y[i+ord] = SROUND16(sum,SIG_SHIFT); _y[i] = sum; } for(i=0;i<ord;i++) diff --git a/thirdparty/opus/celt/celt_lpc.h b/thirdparty/opus/celt/celt_lpc.h index 323459eb1a..a4c5fd6ea5 100644 --- a/thirdparty/opus/celt/celt_lpc.h +++ b/thirdparty/opus/celt/celt_lpc.h @@ -45,12 +45,11 @@ void celt_fir_c( opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch); #if !defined(OVERRIDE_CELT_FIR) -#define celt_fir(x, num, y, N, ord, mem, arch) \ - (celt_fir_c(x, num, y, N, ord, mem, arch)) +#define celt_fir(x, num, y, N, ord, arch) \ + (celt_fir_c(x, num, y, N, ord, arch)) #endif void celt_iir(const opus_val32 *x, diff --git a/thirdparty/opus/celt/cwrs.c b/thirdparty/opus/celt/cwrs.c index 9722f0ac86..a552e4f0fb 100644 --- a/thirdparty/opus/celt/cwrs.c +++ b/thirdparty/opus/celt/cwrs.c @@ -482,7 +482,7 @@ static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){ k0=_k; q=row[_n]; if(q>_i){ - celt_assert(p>q); + celt_sig_assert(p>q); _k=_n; do p=CELT_PVQ_U_ROW[--_k][_n]; while(p>_i); diff --git a/thirdparty/opus/celt/entcode.h b/thirdparty/opus/celt/entcode.h index 13d6c84ef0..3763e3f284 100644 --- a/thirdparty/opus/celt/entcode.h +++ b/thirdparty/opus/celt/entcode.h @@ -122,7 +122,7 @@ opus_uint32 ec_tell_frac(ec_ctx *_this); /* Tested exhaustively for all n and for 1<=d<=256 */ static OPUS_INLINE opus_uint32 celt_udiv(opus_uint32 n, opus_uint32 d) { - celt_assert(d>0); + celt_sig_assert(d>0); #ifdef USE_SMALL_DIV_TABLE if (d>256) return n/d; @@ -138,7 +138,7 @@ static OPUS_INLINE opus_uint32 celt_udiv(opus_uint32 n, opus_uint32 d) { } static OPUS_INLINE opus_int32 celt_sudiv(opus_int32 n, opus_int32 d) { - celt_assert(d>0); + celt_sig_assert(d>0); #ifdef USE_SMALL_DIV_TABLE if (n<0) return -(opus_int32)celt_udiv(-n, d); diff --git a/thirdparty/opus/celt/entdec.h b/thirdparty/opus/celt/entdec.h index d8ab318730..025fc1870d 100644 --- a/thirdparty/opus/celt/entdec.h +++ b/thirdparty/opus/celt/entdec.h @@ -85,7 +85,7 @@ int ec_dec_icdf(ec_dec *_this,const unsigned char *_icdf,unsigned _ftb); The bits must have been encoded with ec_enc_uint(). No call to ec_dec_update() is necessary after this call. _ft: The number of integers that can be decoded (one more than the max). - This must be at least one, and no more than 2**32-1. + This must be at least 2, and no more than 2**32-1. Return: The decoded bits.*/ opus_uint32 ec_dec_uint(ec_dec *_this,opus_uint32 _ft); diff --git a/thirdparty/opus/celt/entenc.h b/thirdparty/opus/celt/entenc.h index 796bc4d572..f502eaf662 100644 --- a/thirdparty/opus/celt/entenc.h +++ b/thirdparty/opus/celt/entenc.h @@ -67,7 +67,7 @@ void ec_enc_icdf(ec_enc *_this,int _s,const unsigned char *_icdf,unsigned _ftb); /*Encodes a raw unsigned integer in the stream. _fl: The integer to encode. _ft: The number of integers that can be encoded (one more than the max). - This must be at least one, and no more than 2**32-1.*/ + This must be at least 2, and no more than 2**32-1.*/ void ec_enc_uint(ec_enc *_this,opus_uint32 _fl,opus_uint32 _ft); /*Encodes a sequence of raw bits in the stream. diff --git a/thirdparty/opus/celt/fixed_c5x.h b/thirdparty/opus/celt/fixed_c5x.h new file mode 100644 index 0000000000..ea95a998c3 --- /dev/null +++ b/thirdparty/opus/celt/fixed_c5x.h @@ -0,0 +1,79 @@ +/* Copyright (C) 2003 Jean-Marc Valin */ +/** + @file fixed_c5x.h + @brief Fixed-point operations for the TI C5x DSP family +*/ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifndef FIXED_C5X_H +#define FIXED_C5X_H + +#include "dsplib.h" + +#undef IMUL32 +static OPUS_INLINE long IMUL32(long i, long j) +{ + long ac0, ac1; + ac0 = _lmpy(i>>16,j); + ac1 = ac0 + _lmpy(i,j>>16); + return _lmpyu(i,j) + (ac1<<16); +} + +#undef MAX16 +#define MAX16(a,b) _max(a,b) + +#undef MIN16 +#define MIN16(a,b) _min(a,b) + +#undef MAX32 +#define MAX32(a,b) _lmax(a,b) + +#undef MIN32 +#define MIN32(a,b) _lmin(a,b) + +#undef VSHR32 +#define VSHR32(a, shift) _lshl(a,-(shift)) + +#undef MULT16_16_Q15 +#define MULT16_16_Q15(a,b) (_smpy(a,b)) + +#undef MULT16_16SU +#define MULT16_16SU(a,b) _lmpysu(a,b) + +#undef MULT_16_16 +#define MULT_16_16(a,b) _lmpy(a,b) + +/* FIXME: This is technically incorrect and is bound to cause problems. Is there any cleaner solution? */ +#undef MULT16_32_Q15 +#define MULT16_32_Q15(a,b) ADD32(SHL(MULT16_16((a),SHR((b),16)),1), SHR(MULT16_16SU((a),(b)),15)) + +#define celt_ilog2(x) (30 - _lnorm(x)) +#define OVERRIDE_CELT_ILOG2 + +#define celt_maxabs16(x, len) MAX32(EXTEND32(maxval((DATA *)x, len)),-EXTEND32(minval((DATA *)x, len))) +#define OVERRIDE_CELT_MAXABS16 + +#endif /* FIXED_C5X_H */ diff --git a/thirdparty/opus/celt/fixed_c6x.h b/thirdparty/opus/celt/fixed_c6x.h new file mode 100644 index 0000000000..bb6ad92780 --- /dev/null +++ b/thirdparty/opus/celt/fixed_c6x.h @@ -0,0 +1,70 @@ +/* Copyright (C) 2008 CSIRO */ +/** + @file fixed_c6x.h + @brief Fixed-point operations for the TI C6x DSP family +*/ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifndef FIXED_C6X_H +#define FIXED_C6X_H + +#undef MULT16_16SU +#define MULT16_16SU(a,b) _mpysu(a,b) + +#undef MULT_16_16 +#define MULT_16_16(a,b) _mpy(a,b) + +#define celt_ilog2(x) (30 - _norm(x)) +#define OVERRIDE_CELT_ILOG2 + +#undef MULT16_32_Q15 +#define MULT16_32_Q15(a,b) (_mpylill(a, b) >> 15) + +#if 0 +#include "dsplib.h" + +#undef MAX16 +#define MAX16(a,b) _max(a,b) + +#undef MIN16 +#define MIN16(a,b) _min(a,b) + +#undef MAX32 +#define MAX32(a,b) _lmax(a,b) + +#undef MIN32 +#define MIN32(a,b) _lmin(a,b) + +#undef VSHR32 +#define VSHR32(a, shift) _lshl(a,-(shift)) + +#undef MULT16_16_Q15 +#define MULT16_16_Q15(a,b) (_smpy(a,b)) + +#define celt_maxabs16(x, len) MAX32(EXTEND32(maxval((DATA *)x, len)),-EXTEND32(minval((DATA *)x, len))) +#define OVERRIDE_CELT_MAXABS16 + +#endif /* FIXED_C6X_H */ diff --git a/thirdparty/opus/celt/fixed_debug.h b/thirdparty/opus/celt/fixed_debug.h index d28227f5dc..f435295234 100644 --- a/thirdparty/opus/celt/fixed_debug.h +++ b/thirdparty/opus/celt/fixed_debug.h @@ -59,6 +59,14 @@ extern opus_int64 celt_mips; #define SHR(a,b) SHR32(a,b) #define PSHR(a,b) PSHR32(a,b) +/** Add two 32-bit values, ignore any overflows */ +#define ADD32_ovflw(a,b) (celt_mips+=2,(opus_val32)((opus_uint32)(a)+(opus_uint32)(b))) +/** Subtract two 32-bit values, ignore any overflows */ +#define SUB32_ovflw(a,b) (celt_mips+=2,(opus_val32)((opus_uint32)(a)-(opus_uint32)(b))) +/* Avoid MSVC warning C4146: unary minus operator applied to unsigned type */ +/** Negate 32-bit value, ignore any overflows */ +#define NEG32_ovflw(a) (celt_mips+=2,(opus_val32)(0-(opus_uint32)(a))) + static OPUS_INLINE short NEG16(int x) { int res; @@ -227,12 +235,11 @@ static OPUS_INLINE int SHL32_(opus_int64 a, int shift, char *file, int line) #define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift))) #define ROUND16(x,a) (celt_mips--,EXTRACT16(PSHR32((x),(a)))) +#define SROUND16(x,a) (celt_mips--,EXTRACT16(SATURATE(PSHR32(x,a), 32767))); + #define HALF16(x) (SHR16(x,1)) #define HALF32(x) (SHR32(x,1)) -//#define SHR(a,shift) ((a) >> (shift)) -//#define SHL(a,shift) ((a) << (shift)) - #define ADD16(a, b) ADD16_(a, b, __FILE__, __LINE__) static OPUS_INLINE short ADD16_(int a, int b, char *file, int line) { diff --git a/thirdparty/opus/celt/fixed_generic.h b/thirdparty/opus/celt/fixed_generic.h index 1cfd6d6989..5f4abda76e 100644 --- a/thirdparty/opus/celt/fixed_generic.h +++ b/thirdparty/opus/celt/fixed_generic.h @@ -104,6 +104,9 @@ /** Shift by a and round-to-neareast 32-bit value. Result is a 16-bit value */ #define ROUND16(x,a) (EXTRACT16(PSHR32((x),(a)))) +/** Shift by a and round-to-neareast 32-bit value. Result is a saturated 16-bit value */ +#define SROUND16(x,a) EXTRACT16(SATURATE(PSHR32(x,a), 32767)); + /** Divide by two */ #define HALF16(x) (SHR16(x,1)) #define HALF32(x) (SHR32(x,1)) @@ -117,6 +120,14 @@ /** Subtract two 32-bit values */ #define SUB32(a,b) ((opus_val32)(a)-(opus_val32)(b)) +/** Add two 32-bit values, ignore any overflows */ +#define ADD32_ovflw(a,b) ((opus_val32)((opus_uint32)(a)+(opus_uint32)(b))) +/** Subtract two 32-bit values, ignore any overflows */ +#define SUB32_ovflw(a,b) ((opus_val32)((opus_uint32)(a)-(opus_uint32)(b))) +/* Avoid MSVC warning C4146: unary minus operator applied to unsigned type */ +/** Negate 32-bit value, ignore any overflows */ +#define NEG32_ovflw(a) ((opus_val32)(0-(opus_uint32)(a))) + /** 16x16 multiplication where the result fits in 16 bits */ #define MULT16_16_16(a,b) ((((opus_val16)(a))*((opus_val16)(b)))) diff --git a/thirdparty/opus/celt/float_cast.h b/thirdparty/opus/celt/float_cast.h index ed5a39b543..889dae965f 100644 --- a/thirdparty/opus/celt/float_cast.h +++ b/thirdparty/opus/celt/float_cast.h @@ -61,7 +61,13 @@ ** the config.h file. */ -#if (HAVE_LRINTF) +/* With GCC, when SSE is available, the fastest conversion is cvtss2si. */ +#if defined(__GNUC__) && defined(__SSE__) + +#include <xmmintrin.h> +static OPUS_INLINE opus_int32 float2int(float x) {return _mm_cvt_ss2si(_mm_set_ss(x));} + +#elif defined(HAVE_LRINTF) /* These defines enable functionality introduced with the 1999 ISO C ** standard. They must be defined before the inclusion of math.h to @@ -90,10 +96,10 @@ #include <math.h> #define float2int(x) lrint(x) -#elif (defined(_MSC_VER) && _MSC_VER >= 1400) && defined (_M_X64) +#elif (defined(_MSC_VER) && _MSC_VER >= 1400) && (defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 1)) #include <xmmintrin.h> - __inline long int float2int(float value) + static __inline long int float2int(float value) { return _mm_cvtss_si32(_mm_load_ss(&value)); } @@ -104,7 +110,7 @@ ** Therefore implement OPUS_INLINE versions of these functions here. */ - __inline long int + static __inline long int float2int (float flt) { int intgr; diff --git a/thirdparty/opus/celt/kiss_fft.c b/thirdparty/opus/celt/kiss_fft.c index 1f8fd05321..83775165d8 100644 --- a/thirdparty/opus/celt/kiss_fft.c +++ b/thirdparty/opus/celt/kiss_fft.c @@ -82,8 +82,8 @@ static void kf_bfly2( C_SUB( Fout2[0] , Fout[0] , t ); C_ADDTO( Fout[0] , t ); - t.r = S_MUL(Fout2[1].r+Fout2[1].i, tw); - t.i = S_MUL(Fout2[1].i-Fout2[1].r, tw); + t.r = S_MUL(ADD32_ovflw(Fout2[1].r, Fout2[1].i), tw); + t.i = S_MUL(SUB32_ovflw(Fout2[1].i, Fout2[1].r), tw); C_SUB( Fout2[1] , Fout[1] , t ); C_ADDTO( Fout[1] , t ); @@ -92,8 +92,8 @@ static void kf_bfly2( C_SUB( Fout2[2] , Fout[2] , t ); C_ADDTO( Fout[2] , t ); - t.r = S_MUL(Fout2[3].i-Fout2[3].r, tw); - t.i = S_MUL(-Fout2[3].i-Fout2[3].r, tw); + t.r = S_MUL(SUB32_ovflw(Fout2[3].i, Fout2[3].r), tw); + t.i = S_MUL(NEG32_ovflw(ADD32_ovflw(Fout2[3].i, Fout2[3].r)), tw); C_SUB( Fout2[3] , Fout[3] , t ); C_ADDTO( Fout[3] , t ); Fout += 8; @@ -126,10 +126,10 @@ static void kf_bfly4( C_ADDTO( *Fout , scratch1 ); C_SUB( scratch1 , Fout[1] , Fout[3] ); - Fout[1].r = scratch0.r + scratch1.i; - Fout[1].i = scratch0.i - scratch1.r; - Fout[3].r = scratch0.r - scratch1.i; - Fout[3].i = scratch0.i + scratch1.r; + Fout[1].r = ADD32_ovflw(scratch0.r, scratch1.i); + Fout[1].i = SUB32_ovflw(scratch0.i, scratch1.r); + Fout[3].r = SUB32_ovflw(scratch0.r, scratch1.i); + Fout[3].i = ADD32_ovflw(scratch0.i, scratch1.r); Fout+=4; } } else { @@ -160,10 +160,10 @@ static void kf_bfly4( tw3 += fstride*3; C_ADDTO( *Fout , scratch[3] ); - Fout[m].r = scratch[5].r + scratch[4].i; - Fout[m].i = scratch[5].i - scratch[4].r; - Fout[m3].r = scratch[5].r - scratch[4].i; - Fout[m3].i = scratch[5].i + scratch[4].r; + Fout[m].r = ADD32_ovflw(scratch[5].r, scratch[4].i); + Fout[m].i = SUB32_ovflw(scratch[5].i, scratch[4].r); + Fout[m3].r = SUB32_ovflw(scratch[5].r, scratch[4].i); + Fout[m3].i = ADD32_ovflw(scratch[5].i, scratch[4].r); ++Fout; } } @@ -212,18 +212,18 @@ static void kf_bfly3( tw1 += fstride; tw2 += fstride*2; - Fout[m].r = Fout->r - HALF_OF(scratch[3].r); - Fout[m].i = Fout->i - HALF_OF(scratch[3].i); + Fout[m].r = SUB32_ovflw(Fout->r, HALF_OF(scratch[3].r)); + Fout[m].i = SUB32_ovflw(Fout->i, HALF_OF(scratch[3].i)); C_MULBYSCALAR( scratch[0] , epi3.i ); C_ADDTO(*Fout,scratch[3]); - Fout[m2].r = Fout[m].r + scratch[0].i; - Fout[m2].i = Fout[m].i - scratch[0].r; + Fout[m2].r = ADD32_ovflw(Fout[m].r, scratch[0].i); + Fout[m2].i = SUB32_ovflw(Fout[m].i, scratch[0].r); - Fout[m].r -= scratch[0].i; - Fout[m].i += scratch[0].r; + Fout[m].r = SUB32_ovflw(Fout[m].r, scratch[0].i); + Fout[m].i = ADD32_ovflw(Fout[m].i, scratch[0].r); ++Fout; } while(--k); @@ -282,22 +282,22 @@ static void kf_bfly5( C_ADD( scratch[8],scratch[2],scratch[3]); C_SUB( scratch[9],scratch[2],scratch[3]); - Fout0->r += scratch[7].r + scratch[8].r; - Fout0->i += scratch[7].i + scratch[8].i; + Fout0->r = ADD32_ovflw(Fout0->r, ADD32_ovflw(scratch[7].r, scratch[8].r)); + Fout0->i = ADD32_ovflw(Fout0->i, ADD32_ovflw(scratch[7].i, scratch[8].i)); - scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r); - scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r); + scratch[5].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,ya.r), S_MUL(scratch[8].r,yb.r))); + scratch[5].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,ya.r), S_MUL(scratch[8].i,yb.r))); - scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i); - scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i); + scratch[6].r = ADD32_ovflw(S_MUL(scratch[10].i,ya.i), S_MUL(scratch[9].i,yb.i)); + scratch[6].i = NEG32_ovflw(ADD32_ovflw(S_MUL(scratch[10].r,ya.i), S_MUL(scratch[9].r,yb.i))); C_SUB(*Fout1,scratch[5],scratch[6]); C_ADD(*Fout4,scratch[5],scratch[6]); - scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r); - scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r); - scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i); - scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i); + scratch[11].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,yb.r), S_MUL(scratch[8].r,ya.r))); + scratch[11].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,yb.r), S_MUL(scratch[8].i,ya.r))); + scratch[12].r = SUB32_ovflw(S_MUL(scratch[9].i,ya.i), S_MUL(scratch[10].i,yb.i)); + scratch[12].i = SUB32_ovflw(S_MUL(scratch[10].r,yb.i), S_MUL(scratch[9].r,ya.i)); C_ADD(*Fout2,scratch[11],scratch[12]); C_SUB(*Fout3,scratch[11],scratch[12]); diff --git a/thirdparty/opus/celt/mathops.c b/thirdparty/opus/celt/mathops.c index 21a01f52e4..6ee9b9e101 100644 --- a/thirdparty/opus/celt/mathops.c +++ b/thirdparty/opus/celt/mathops.c @@ -38,7 +38,8 @@ #include "mathops.h" /*Compute floor(sqrt(_val)) with exact arithmetic. - This has been tested on all possible 32-bit inputs.*/ + _val must be greater than 0. + This has been tested on all possible 32-bit inputs greater than 0.*/ unsigned isqrt32(opus_uint32 _val){ unsigned b; unsigned g; @@ -182,7 +183,7 @@ opus_val32 celt_rcp(opus_val32 x) int i; opus_val16 n; opus_val16 r; - celt_assert2(x>0, "celt_rcp() only defined for positive values"); + celt_sig_assert(x>0); i = celt_ilog2(x); /* n is Q15 with range [0,1). */ n = VSHR32(x,i-15)-32768; diff --git a/thirdparty/opus/celt/mathops.h b/thirdparty/opus/celt/mathops.h index a0525a9610..5e86ff0dd2 100644 --- a/thirdparty/opus/celt/mathops.h +++ b/thirdparty/opus/celt/mathops.h @@ -38,11 +38,44 @@ #include "entcode.h" #include "os_support.h" +#define PI 3.141592653f + /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) unsigned isqrt32(opus_uint32 _val); +/* CELT doesn't need it for fixed-point, by analysis.c does. */ +#if !defined(FIXED_POINT) || defined(ANALYSIS_C) +#define cA 0.43157974f +#define cB 0.67848403f +#define cC 0.08595542f +#define cE ((float)PI/2) +static OPUS_INLINE float fast_atan2f(float y, float x) { + float x2, y2; + x2 = x*x; + y2 = y*y; + /* For very small values, we don't care about the answer, so + we can just return 0. */ + if (x2 + y2 < 1e-18f) + { + return 0; + } + if(x2<y2){ + float den = (y2 + cB*x2) * (y2 + cC*x2); + return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); + }else{ + float den = (x2 + cB*y2) * (x2 + cC*y2); + return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); + } +} +#undef cA +#undef cB +#undef cC +#undef cE +#endif + + #ifndef OVERRIDE_CELT_MAXABS16 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) { @@ -80,7 +113,6 @@ static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) #ifndef FIXED_POINT -#define PI 3.141592653f #define celt_sqrt(x) ((float)sqrt(x)) #define celt_rsqrt(x) (1.f/celt_sqrt(x)) #define celt_rsqrt_norm(x) (celt_rsqrt(x)) @@ -147,7 +179,7 @@ static OPUS_INLINE float celt_exp2(float x) /** Integer log in base2. Undefined for zero and negative numbers */ static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) { - celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); + celt_sig_assert(x>0); return EC_ILOG(x)-1; } #endif diff --git a/thirdparty/opus/celt/mdct.c b/thirdparty/opus/celt/mdct.c index 5315ad11a3..5c6dab5b75 100644 --- a/thirdparty/opus/celt/mdct.c +++ b/thirdparty/opus/celt/mdct.c @@ -270,8 +270,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca int rev; kiss_fft_scalar yr, yi; rev = *bitrev++; - yr = S_MUL(*xp2, t[i]) + S_MUL(*xp1, t[N4+i]); - yi = S_MUL(*xp1, t[i]) - S_MUL(*xp2, t[N4+i]); + yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i])); + yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i])); /* We swap real and imag because we use an FFT instead of an IFFT. */ yp[2*rev+1] = yr; yp[2*rev] = yi; @@ -301,8 +301,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca t0 = t[i]; t1 = t[N4+i]; /* We'd scale up by 2 here, but instead it's done when mixing the windows */ - yr = S_MUL(re,t0) + S_MUL(im,t1); - yi = S_MUL(re,t1) - S_MUL(im,t0); + yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1)); + yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0)); /* We swap real and imag because we're using an FFT instead of an IFFT. */ re = yp1[1]; im = yp1[0]; @@ -312,8 +312,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca t0 = t[(N4-i-1)]; t1 = t[(N2-i-1)]; /* We'd scale up by 2 here, but instead it's done when mixing the windows */ - yr = S_MUL(re,t0) + S_MUL(im,t1); - yi = S_MUL(re,t1) - S_MUL(im,t0); + yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1)); + yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0)); yp1[0] = yr; yp0[1] = yi; yp0 += 2; @@ -333,8 +333,8 @@ void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_sca kiss_fft_scalar x1, x2; x1 = *xp1; x2 = *yp1; - *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1); - *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1); + *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1)); + *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1)); wp1++; wp2--; } diff --git a/thirdparty/opus/celt/mips/celt_mipsr1.h b/thirdparty/opus/celt/mips/celt_mipsr1.h index e85661a661..c332fe0471 100644 --- a/thirdparty/opus/celt/mips/celt_mipsr1.h +++ b/thirdparty/opus/celt/mips/celt_mipsr1.h @@ -53,6 +53,7 @@ #include "celt_lpc.h" #include "vq.h" +#define OVERRIDE_COMB_FILTER_CONST #define OVERRIDE_comb_filter void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N, opus_val16 g0, opus_val16 g1, int tapset0, int tapset1, diff --git a/thirdparty/opus/celt/mips/vq_mipsr1.h b/thirdparty/opus/celt/mips/vq_mipsr1.h index 54cef86133..f26a33e755 100644 --- a/thirdparty/opus/celt/mips/vq_mipsr1.h +++ b/thirdparty/opus/celt/mips/vq_mipsr1.h @@ -36,11 +36,6 @@ #include "mathops.h" #include "arch.h" -static unsigned extract_collapse_mask(int *iy, int N, int B); -static void normalise_residual(int * OPUS_RESTRICT iy, celt_norm * OPUS_RESTRICT X, int N, opus_val32 Ryy, opus_val16 gain); -static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread); -static void renormalise_vector_mips(celt_norm *X, int N, opus_val16 gain, int arch); - #define OVERRIDE_vq_exp_rotation1 static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s) { @@ -69,11 +64,7 @@ static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_ } #define OVERRIDE_renormalise_vector - -#define renormalise_vector(X, N, gain, arch) \ - (renormalise_vector_mips(X, N, gain, arch)) - -void renormalise_vector_mips(celt_norm *X, int N, opus_val16 gain, int arch) +void renormalise_vector(celt_norm *X, int N, opus_val16 gain, int arch) { int i; #ifdef FIXED_POINT diff --git a/thirdparty/opus/celt/modes.c b/thirdparty/opus/celt/modes.c index 911686e905..390c5e8aeb 100644 --- a/thirdparty/opus/celt/modes.c +++ b/thirdparty/opus/celt/modes.c @@ -427,7 +427,7 @@ void opus_custom_mode_destroy(CELTMode *mode) } #endif /* CUSTOM_MODES_ONLY */ opus_free((opus_int16*)mode->eBands); - opus_free((opus_int16*)mode->allocVectors); + opus_free((unsigned char*)mode->allocVectors); opus_free((opus_val16*)mode->window); opus_free((opus_int16*)mode->logN); diff --git a/thirdparty/opus/celt/pitch.c b/thirdparty/opus/celt/pitch.c index bf46e7d562..872582a48a 100644 --- a/thirdparty/opus/celt/pitch.c +++ b/thirdparty/opus/celt/pitch.c @@ -102,11 +102,9 @@ static void find_best_pitch(opus_val32 *xcorr, opus_val16 *y, int len, } } -static void celt_fir5(const opus_val16 *x, +static void celt_fir5(opus_val16 *x, const opus_val16 *num, - opus_val16 *y, - int N, - opus_val16 *mem) + int N) { int i; opus_val16 num0, num1, num2, num3, num4; @@ -116,11 +114,11 @@ static void celt_fir5(const opus_val16 *x, num2=num[2]; num3=num[3]; num4=num[4]; - mem0=mem[0]; - mem1=mem[1]; - mem2=mem[2]; - mem3=mem[3]; - mem4=mem[4]; + mem0=0; + mem1=0; + mem2=0; + mem3=0; + mem4=0; for (i=0;i<N;i++) { opus_val32 sum = SHL32(EXTEND32(x[i]), SIG_SHIFT); @@ -134,13 +132,8 @@ static void celt_fir5(const opus_val16 *x, mem2 = mem1; mem1 = mem0; mem0 = x[i]; - y[i] = ROUND16(sum, SIG_SHIFT); + x[i] = ROUND16(sum, SIG_SHIFT); } - mem[0]=mem0; - mem[1]=mem1; - mem[2]=mem2; - mem[3]=mem3; - mem[4]=mem4; } @@ -150,7 +143,7 @@ void pitch_downsample(celt_sig * OPUS_RESTRICT x[], opus_val16 * OPUS_RESTRICT x int i; opus_val32 ac[5]; opus_val16 tmp=Q15ONE; - opus_val16 lpc[4], mem[5]={0,0,0,0,0}; + opus_val16 lpc[4]; opus_val16 lpc2[5]; opus_val16 c1 = QCONST16(.8f,15); #ifdef FIXED_POINT @@ -211,7 +204,7 @@ void pitch_downsample(celt_sig * OPUS_RESTRICT x[], opus_val16 * OPUS_RESTRICT x lpc2[2] = lpc[2] + MULT16_16_Q15(c1,lpc[1]); lpc2[3] = lpc[3] + MULT16_16_Q15(c1,lpc[2]); lpc2[4] = MULT16_16_Q15(c1,lpc[3]); - celt_fir5(x_lp, lpc2, x_lp, len>>1, mem); + celt_fir5(x_lp, lpc2, len>>1); } /* Pure C implementation. */ @@ -220,13 +213,8 @@ opus_val32 #else void #endif -#if defined(OVERRIDE_PITCH_XCORR) celt_pitch_xcorr_c(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch) -#else -celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y, opus_val32 *xcorr, int len, int max_pitch, int arch) -#endif { #if 0 /* This is a simple version of the pitch correlation that should work @@ -261,15 +249,11 @@ celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y, opus_val32 maxcorr=1; #endif celt_assert(max_pitch>0); - celt_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0); + celt_sig_assert((((unsigned char *)_x-(unsigned char *)NULL)&3)==0); for (i=0;i<max_pitch-3;i+=4) { opus_val32 sum[4]={0,0,0,0}; -#if defined(OVERRIDE_PITCH_XCORR) - xcorr_kernel_c(_x, _y+i, sum, len); -#else xcorr_kernel(_x, _y+i, sum, len, arch); -#endif xcorr[i]=sum[0]; xcorr[i+1]=sum[1]; xcorr[i+2]=sum[2]; @@ -285,11 +269,7 @@ celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y, for (;i<max_pitch;i++) { opus_val32 sum; -#if defined(OVERRIDE_PITCH_XCORR) - sum = celt_inner_prod_c(_x, _y+i, len); -#else sum = celt_inner_prod(_x, _y+i, len, arch); -#endif xcorr[i] = sum; #ifdef FIXED_POINT maxcorr = MAX32(maxcorr, sum); @@ -378,7 +358,7 @@ void pitch_search(const opus_val16 * OPUS_RESTRICT x_lp, opus_val16 * OPUS_RESTR for (j=0;j<len>>1;j++) sum += SHR32(MULT16_16(x_lp[j],y[i+j]), shift); #else - sum = celt_inner_prod_c(x_lp, y+i, len>>1); + sum = celt_inner_prod(x_lp, y+i, len>>1, arch); #endif xcorr[i] = MAX32(-1, sum); #ifdef FIXED_POINT @@ -424,7 +404,7 @@ static opus_val16 compute_pitch_gain(opus_val32 xy, opus_val32 xx, opus_val32 yy sx = celt_ilog2(xx)-14; sy = celt_ilog2(yy)-14; shift = sx + sy; - x2y2 = MULT16_16_Q14(VSHR32(xx, sx), VSHR32(yy, sy)); + x2y2 = SHR32(MULT16_16(VSHR32(xx, sx), VSHR32(yy, sy)), 14); if (shift & 1) { if (x2y2 < 32768) { diff --git a/thirdparty/opus/celt/pitch.h b/thirdparty/opus/celt/pitch.h index d3503532a0..e425f56aea 100644 --- a/thirdparty/opus/celt/pitch.h +++ b/thirdparty/opus/celt/pitch.h @@ -46,8 +46,7 @@ #include "mips/pitch_mipsr1.h" #endif -#if ((defined(OPUS_ARM_ASM) && defined(FIXED_POINT)) \ - || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) +#if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) # include "arm/pitch_arm.h" #endif @@ -184,17 +183,10 @@ opus_val32 void #endif celt_pitch_xcorr_c(const opus_val16 *_x, const opus_val16 *_y, - opus_val32 *xcorr, int len, int max_pitch); - -#if !defined(OVERRIDE_PITCH_XCORR) -#ifdef FIXED_POINT -opus_val32 -#else -void -#endif -celt_pitch_xcorr(const opus_val16 *_x, const opus_val16 *_y, opus_val32 *xcorr, int len, int max_pitch, int arch); +#ifndef OVERRIDE_PITCH_XCORR +# define celt_pitch_xcorr celt_pitch_xcorr_c #endif #endif diff --git a/thirdparty/opus/celt/quant_bands.c b/thirdparty/opus/celt/quant_bands.c index 95076e0af2..39a221eda5 100644 --- a/thirdparty/opus/celt/quant_bands.c +++ b/thirdparty/opus/celt/quant_bands.c @@ -418,6 +418,7 @@ void quant_energy_finalise(const CELTMode *m, int start, int end, opus_val16 *ol offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384); #endif oldEBands[i+c*m->nbEBands] += offset; + error[i+c*m->nbEBands] -= offset; bits_left--; } while (++c < C); } @@ -456,7 +457,7 @@ void unquant_coarse_energy(const CELTMode *m, int start, int end, opus_val16 *ol /* It would be better to express this invariant as a test on C at function entry, but that isn't enough to make the static analyzer happy. */ - celt_assert(c<2); + celt_sig_assert(c<2); tell = ec_tell(dec); if(budget-tell>=15) { @@ -547,9 +548,15 @@ void amp2Log2(const CELTMode *m, int effEnd, int end, c=0; do { for (i=0;i<effEnd;i++) + { bandLogE[i+c*m->nbEBands] = - celt_log2(SHL32(bandE[i+c*m->nbEBands],2)) + celt_log2(bandE[i+c*m->nbEBands]) - SHL16((opus_val16)eMeans[i],6); +#ifdef FIXED_POINT + /* Compensate for bandE[] being Q12 but celt_log2() taking a Q14 input. */ + bandLogE[i+c*m->nbEBands] += QCONST16(2.f, DB_SHIFT); +#endif + } for (i=effEnd;i<end;i++) bandLogE[c*m->nbEBands+i] = -QCONST16(14.f,DB_SHIFT); } while (++c < C); diff --git a/thirdparty/opus/celt/rate.c b/thirdparty/opus/celt/rate.c index 7dfa5be8a6..465e1ba26c 100644 --- a/thirdparty/opus/celt/rate.c +++ b/thirdparty/opus/celt/rate.c @@ -348,12 +348,17 @@ static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, /*This if() block is the only part of the allocation function that is not a mandatory part of the bitstream: any bands we choose to skip here must be explicitly signaled.*/ - /*Choose a threshold with some hysteresis to keep bands from - fluctuating in and out.*/ + int depth_threshold; + /*We choose a threshold with some hysteresis to keep bands from + fluctuating in and out, but we try not to fold below a certain point. */ + if (codedBands > 17) + depth_threshold = j<prev ? 7 : 9; + else + depth_threshold = 0; #ifdef FUZZING if ((rand()&0x1) == 0) #else - if (codedBands<=start+2 || (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth)) + if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth)) #endif { ec_enc_bit_logp(ec, 1, 1); @@ -524,7 +529,7 @@ static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, return codedBands; } -int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, +int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth) { int lo, hi, len, j; diff --git a/thirdparty/opus/celt/rate.h b/thirdparty/opus/celt/rate.h index 515f7687ce..fad5e412da 100644 --- a/thirdparty/opus/celt/rate.h +++ b/thirdparty/opus/celt/rate.h @@ -95,7 +95,7 @@ static OPUS_INLINE int pulses2bits(const CELTMode *m, int band, int LM, int puls @param pulses Number of pulses per band (returned) @return Total number of bits allocated */ -int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stero, +int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth); #endif diff --git a/thirdparty/opus/celt/static_modes_fixed_arm_ne10.h b/thirdparty/opus/celt/static_modes_fixed_arm_ne10.h index b8ef0cee98..7623092192 100644 --- a/thirdparty/opus/celt/static_modes_fixed_arm_ne10.h +++ b/thirdparty/opus/celt/static_modes_fixed_arm_ne10.h @@ -1,7 +1,7 @@ /* The contents of this file was automatically generated by * dump_mode_arm_ne10.c with arguments: 48000 960 * It contains static definitions for some pre-defined modes. */ -#include <NE10_init.h> +#include <NE10_types.h> #ifndef NE10_FFT_PARAMS48000_960 #define NE10_FFT_PARAMS48000_960 diff --git a/thirdparty/opus/celt/static_modes_float_arm_ne10.h b/thirdparty/opus/celt/static_modes_float_arm_ne10.h index 934a82a420..66e1abb101 100644 --- a/thirdparty/opus/celt/static_modes_float_arm_ne10.h +++ b/thirdparty/opus/celt/static_modes_float_arm_ne10.h @@ -1,7 +1,7 @@ /* The contents of this file was automatically generated by * dump_mode_arm_ne10.c with arguments: 48000 960 * It contains static definitions for some pre-defined modes. */ -#include <NE10_init.h> +#include <NE10_types.h> #ifndef NE10_FFT_PARAMS48000_960 #define NE10_FFT_PARAMS48000_960 diff --git a/thirdparty/opus/celt/tests/test_unit_cwrs32.c b/thirdparty/opus/celt/tests/test_unit_cwrs32.c deleted file mode 100644 index 36dd8af5f5..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_cwrs32.c +++ /dev/null @@ -1,161 +0,0 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation, - Gregory Maxwell - Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include <stdio.h> -#include <string.h> - -#ifndef CUSTOM_MODES -#define CUSTOM_MODES -#else -#define TEST_CUSTOM_MODES -#endif - -#define CELT_C -#include "stack_alloc.h" -#include "entenc.c" -#include "entdec.c" -#include "entcode.c" -#include "cwrs.c" -#include "mathops.c" -#include "rate.h" - -#define NMAX (240) -#define KMAX (128) - -#ifdef TEST_CUSTOM_MODES - -#define NDIMS (44) -static const int pn[NDIMS]={ - 2, 3, 4, 5, 6, 7, 8, 9, 10, - 11, 12, 13, 14, 15, 16, 18, 20, 22, - 24, 26, 28, 30, 32, 36, 40, 44, 48, - 52, 56, 60, 64, 72, 80, 88, 96, 104, - 112, 120, 128, 144, 160, 176, 192, 208 -}; -static const int pkmax[NDIMS]={ - 128, 128, 128, 128, 88, 52, 36, 26, 22, - 18, 16, 15, 13, 12, 12, 11, 10, 9, - 9, 8, 8, 7, 7, 7, 7, 6, 6, - 6, 6, 6, 5, 5, 5, 5, 5, 5, - 4, 4, 4, 4, 4, 4, 4, 4 -}; - -#else /* TEST_CUSTOM_MODES */ - -#define NDIMS (22) -static const int pn[NDIMS]={ - 2, 3, 4, 6, 8, 9, 11, 12, 16, - 18, 22, 24, 32, 36, 44, 48, 64, 72, - 88, 96, 144, 176 -}; -static const int pkmax[NDIMS]={ - 128, 128, 128, 88, 36, 26, 18, 16, 12, - 11, 9, 9, 7, 7, 6, 6, 5, 5, - 5, 5, 4, 4 -}; - -#endif - -int main(void){ - int t; - int n; - ALLOC_STACK; - for(t=0;t<NDIMS;t++){ - int pseudo; - n=pn[t]; - for(pseudo=1;pseudo<41;pseudo++) - { - int k; -#if defined(SMALL_FOOTPRINT) - opus_uint32 uu[KMAX+2U]; -#endif - opus_uint32 inc; - opus_uint32 nc; - opus_uint32 i; - k=get_pulses(pseudo); - if (k>pkmax[t])break; - printf("Testing CWRS with N=%i, K=%i...\n",n,k); -#if defined(SMALL_FOOTPRINT) - nc=ncwrs_urow(n,k,uu); -#else - nc=CELT_PVQ_V(n,k); -#endif - inc=nc/20000; - if(inc<1)inc=1; - for(i=0;i<nc;i+=inc){ -#if defined(SMALL_FOOTPRINT) - opus_uint32 u[KMAX+2U]; -#endif - int y[NMAX]; - int sy; - opus_uint32 v; - opus_uint32 ii; - int j; -#if defined(SMALL_FOOTPRINT) - memcpy(u,uu,(k+2U)*sizeof(*u)); - cwrsi(n,k,i,y,u); -#else - cwrsi(n,k,i,y); -#endif - sy=0; - for(j=0;j<n;j++)sy+=abs(y[j]); - if(sy!=k){ - fprintf(stderr,"N=%d Pulse count mismatch in cwrsi (%d!=%d).\n", - n,sy,k); - return 99; - } - /*printf("%6u of %u:",i,nc); - for(j=0;j<n;j++)printf(" %+3i",y[j]); - printf(" ->");*/ -#if defined(SMALL_FOOTPRINT) - ii=icwrs(n,k,&v,y,u); -#else - ii=icwrs(n,y); - v=CELT_PVQ_V(n,k); -#endif - if(ii!=i){ - fprintf(stderr,"Combination-index mismatch (%lu!=%lu).\n", - (long)ii,(long)i); - return 1; - } - if(v!=nc){ - fprintf(stderr,"Combination count mismatch (%lu!=%lu).\n", - (long)v,(long)nc); - return 2; - } - /*printf(" %6u\n",i);*/ - } - /*printf("\n");*/ - } - } - return 0; -} diff --git a/thirdparty/opus/celt/tests/test_unit_dft.c b/thirdparty/opus/celt/tests/test_unit_dft.c deleted file mode 100644 index 6166eb0e4f..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_dft.c +++ /dev/null @@ -1,189 +0,0 @@ -/* Copyright (c) 2008 Xiph.Org Foundation - Written by Jean-Marc Valin */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#define SKIP_CONFIG_H - -#ifndef CUSTOM_MODES -#define CUSTOM_MODES -#endif - -#include <stdio.h> - -#define CELT_C -#define TEST_UNIT_DFT_C -#include "stack_alloc.h" -#include "kiss_fft.h" -#include "kiss_fft.c" -#include "mathops.c" -#include "entcode.c" - -#if defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1) -# include "x86/x86cpu.c" -#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/armcpu.c" -# include "celt_lpc.c" -# include "pitch.c" -# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/celt_neon_intr.c" -# if defined(HAVE_ARM_NE10) -# include "mdct.c" -# include "arm/celt_ne10_fft.c" -# include "arm/celt_ne10_mdct.c" -# endif -# endif -# include "arm/arm_celt_map.c" -#endif - -#ifndef M_PI -#define M_PI 3.141592653 -#endif - -int ret = 0; - -void check(kiss_fft_cpx * in,kiss_fft_cpx * out,int nfft,int isinverse) -{ - int bin,k; - double errpow=0,sigpow=0, snr; - - for (bin=0;bin<nfft;++bin) { - double ansr = 0; - double ansi = 0; - double difr; - double difi; - - for (k=0;k<nfft;++k) { - double phase = -2*M_PI*bin*k/nfft; - double re = cos(phase); - double im = sin(phase); - if (isinverse) - im = -im; - - if (!isinverse) - { - re /= nfft; - im /= nfft; - } - - ansr += in[k].r * re - in[k].i * im; - ansi += in[k].r * im + in[k].i * re; - } - /*printf ("%d %d ", (int)ansr, (int)ansi);*/ - difr = ansr - out[bin].r; - difi = ansi - out[bin].i; - errpow += difr*difr + difi*difi; - sigpow += ansr*ansr+ansi*ansi; - } - snr = 10*log10(sigpow/errpow); - printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr ); - if (snr<60) { - printf( "** poor snr: %f ** \n", snr); - ret = 1; - } -} - -void test1d(int nfft,int isinverse,int arch) -{ - size_t buflen = sizeof(kiss_fft_cpx)*nfft; - - kiss_fft_cpx * in = (kiss_fft_cpx*)malloc(buflen); - kiss_fft_cpx * out= (kiss_fft_cpx*)malloc(buflen); - kiss_fft_state *cfg = opus_fft_alloc(nfft,0,0,arch); - int k; - - for (k=0;k<nfft;++k) { - in[k].r = (rand() % 32767) - 16384; - in[k].i = (rand() % 32767) - 16384; - } - - for (k=0;k<nfft;++k) { - in[k].r *= 32768; - in[k].i *= 32768; - } - - if (isinverse) - { - for (k=0;k<nfft;++k) { - in[k].r /= nfft; - in[k].i /= nfft; - } - } - - /*for (k=0;k<nfft;++k) printf("%d %d ", in[k].r, in[k].i);printf("\n");*/ - - if (isinverse) - opus_ifft(cfg,in,out, arch); - else - opus_fft(cfg,in,out, arch); - - /*for (k=0;k<nfft;++k) printf("%d %d ", out[k].r, out[k].i);printf("\n");*/ - - check(in,out,nfft,isinverse); - - free(in); - free(out); - opus_fft_free(cfg, arch); -} - -int main(int argc,char ** argv) -{ - ALLOC_STACK; - int arch = opus_select_arch(); - - if (argc>1) { - int k; - for (k=1;k<argc;++k) { - test1d(atoi(argv[k]),0,arch); - test1d(atoi(argv[k]),1,arch); - } - }else{ - test1d(32,0,arch); - test1d(32,1,arch); - test1d(128,0,arch); - test1d(128,1,arch); - test1d(256,0,arch); - test1d(256,1,arch); -#ifndef RADIX_TWO_ONLY - test1d(36,0,arch); - test1d(36,1,arch); - test1d(50,0,arch); - test1d(50,1,arch); - test1d(60,0,arch); - test1d(60,1,arch); - test1d(120,0,arch); - test1d(120,1,arch); - test1d(240,0,arch); - test1d(240,1,arch); - test1d(480,0,arch); - test1d(480,1,arch); -#endif - } - return ret; -} diff --git a/thirdparty/opus/celt/tests/test_unit_entropy.c b/thirdparty/opus/celt/tests/test_unit_entropy.c deleted file mode 100644 index ff9265864c..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_entropy.c +++ /dev/null @@ -1,382 +0,0 @@ -/* Copyright (c) 2007-2011 Xiph.Org Foundation, Mozilla Corporation, - Gregory Maxwell - Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include <stdlib.h> -#include <stdio.h> -#include <math.h> -#include <time.h> -#include "entcode.h" -#include "entenc.h" -#include "entdec.h" -#include <string.h> - -#include "entenc.c" -#include "entdec.c" -#include "entcode.c" - -#ifndef M_LOG2E -# define M_LOG2E 1.4426950408889634074 -#endif -#define DATA_SIZE 10000000 -#define DATA_SIZE2 10000 - -int main(int _argc,char **_argv){ - ec_enc enc; - ec_dec dec; - long nbits; - long nbits2; - double entropy; - int ft; - int ftb; - int sz; - int i; - int ret; - unsigned int sym; - unsigned int seed; - unsigned char *ptr; - const char *env_seed; - ret=0; - entropy=0; - if (_argc > 2) { - fprintf(stderr, "Usage: %s [<seed>]\n", _argv[0]); - return 1; - } - env_seed = getenv("SEED"); - if (_argc > 1) - seed = atoi(_argv[1]); - else if (env_seed) - seed = atoi(env_seed); - else - seed = time(NULL); - /*Testing encoding of raw bit values.*/ - ptr = (unsigned char *)malloc(DATA_SIZE); - ec_enc_init(&enc,ptr, DATA_SIZE); - for(ft=2;ft<1024;ft++){ - for(i=0;i<ft;i++){ - entropy+=log(ft)*M_LOG2E; - ec_enc_uint(&enc,i,ft); - } - } - /*Testing encoding of raw bit values.*/ - for(ftb=1;ftb<16;ftb++){ - for(i=0;i<(1<<ftb);i++){ - entropy+=ftb; - nbits=ec_tell(&enc); - ec_enc_bits(&enc,i,ftb); - nbits2=ec_tell(&enc); - if(nbits2-nbits!=ftb){ - fprintf(stderr,"Used %li bits to encode %i bits directly.\n", - nbits2-nbits,ftb); - ret=-1; - } - } - } - nbits=ec_tell_frac(&enc); - ec_enc_done(&enc); - fprintf(stderr, - "Encoded %0.2lf bits of entropy to %0.2lf bits (%0.3lf%% wasted).\n", - entropy,ldexp(nbits,-3),100*(nbits-ldexp(entropy,3))/nbits); - fprintf(stderr,"Packed to %li bytes.\n",(long)ec_range_bytes(&enc)); - ec_dec_init(&dec,ptr,DATA_SIZE); - for(ft=2;ft<1024;ft++){ - for(i=0;i<ft;i++){ - sym=ec_dec_uint(&dec,ft); - if(sym!=(unsigned)i){ - fprintf(stderr,"Decoded %i instead of %i with ft of %i.\n",sym,i,ft); - ret=-1; - } - } - } - for(ftb=1;ftb<16;ftb++){ - for(i=0;i<(1<<ftb);i++){ - sym=ec_dec_bits(&dec,ftb); - if(sym!=(unsigned)i){ - fprintf(stderr,"Decoded %i instead of %i with ftb of %i.\n",sym,i,ftb); - ret=-1; - } - } - } - nbits2=ec_tell_frac(&dec); - if(nbits!=nbits2){ - fprintf(stderr, - "Reported number of bits used was %0.2lf, should be %0.2lf.\n", - ldexp(nbits2,-3),ldexp(nbits,-3)); - ret=-1; - } - /*Testing an encoder bust prefers range coder data over raw bits. - This isn't a general guarantee, will only work for data that is buffered in - the encoder state and not yet stored in the user buffer, and should never - get used in practice. - It's mostly here for code coverage completeness.*/ - /*Start with a 16-bit buffer.*/ - ec_enc_init(&enc,ptr,2); - /*Write 7 raw bits.*/ - ec_enc_bits(&enc,0x55,7); - /*Write 12.3 bits of range coder data.*/ - ec_enc_uint(&enc,1,2); - ec_enc_uint(&enc,1,3); - ec_enc_uint(&enc,1,4); - ec_enc_uint(&enc,1,5); - ec_enc_uint(&enc,2,6); - ec_enc_uint(&enc,6,7); - ec_enc_done(&enc); - ec_dec_init(&dec,ptr,2); - if(!enc.error - /*The raw bits should have been overwritten by the range coder data.*/ - ||ec_dec_bits(&dec,7)!=0x05 - /*And all the range coder data should have been encoded correctly.*/ - ||ec_dec_uint(&dec,2)!=1 - ||ec_dec_uint(&dec,3)!=1 - ||ec_dec_uint(&dec,4)!=1 - ||ec_dec_uint(&dec,5)!=1 - ||ec_dec_uint(&dec,6)!=2 - ||ec_dec_uint(&dec,7)!=6){ - fprintf(stderr,"Encoder bust overwrote range coder data with raw bits.\n"); - ret=-1; - } - srand(seed); - fprintf(stderr,"Testing random streams... Random seed: %u (%.4X)\n", seed, rand() % 65536); - for(i=0;i<409600;i++){ - unsigned *data; - unsigned *tell; - unsigned tell_bits; - int j; - int zeros; - ft=rand()/((RAND_MAX>>(rand()%11U))+1U)+10; - sz=rand()/((RAND_MAX>>(rand()%9U))+1U); - data=(unsigned *)malloc(sz*sizeof(*data)); - tell=(unsigned *)malloc((sz+1)*sizeof(*tell)); - ec_enc_init(&enc,ptr,DATA_SIZE2); - zeros = rand()%13==0; - tell[0]=ec_tell_frac(&enc); - for(j=0;j<sz;j++){ - if (zeros) - data[j]=0; - else - data[j]=rand()%ft; - ec_enc_uint(&enc,data[j],ft); - tell[j+1]=ec_tell_frac(&enc); - } - if (rand()%2==0) - while(ec_tell(&enc)%8 != 0) - ec_enc_uint(&enc, rand()%2, 2); - tell_bits = ec_tell(&enc); - ec_enc_done(&enc); - if(tell_bits!=(unsigned)ec_tell(&enc)){ - fprintf(stderr,"ec_tell() changed after ec_enc_done(): %i instead of %i (Random seed: %u)\n", - ec_tell(&enc),tell_bits,seed); - ret=-1; - } - if ((tell_bits+7)/8 < ec_range_bytes(&enc)) - { - fprintf (stderr, "ec_tell() lied, there's %i bytes instead of %d (Random seed: %u)\n", - ec_range_bytes(&enc), (tell_bits+7)/8,seed); - ret=-1; - } - ec_dec_init(&dec,ptr,DATA_SIZE2); - if(ec_tell_frac(&dec)!=tell[0]){ - fprintf(stderr, - "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", - 0,ec_tell_frac(&dec),tell[0],seed); - } - for(j=0;j<sz;j++){ - sym=ec_dec_uint(&dec,ft); - if(sym!=data[j]){ - fprintf(stderr, - "Decoded %i instead of %i with ft of %i at position %i of %i (Random seed: %u).\n", - sym,data[j],ft,j,sz,seed); - ret=-1; - } - if(ec_tell_frac(&dec)!=tell[j+1]){ - fprintf(stderr, - "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", - j+1,ec_tell_frac(&dec),tell[j+1],seed); - } - } - free(tell); - free(data); - } - /*Test compatibility between multiple different encode/decode routines.*/ - for(i=0;i<409600;i++){ - unsigned *logp1; - unsigned *data; - unsigned *tell; - unsigned *enc_method; - int j; - sz=rand()/((RAND_MAX>>(rand()%9U))+1U); - logp1=(unsigned *)malloc(sz*sizeof(*logp1)); - data=(unsigned *)malloc(sz*sizeof(*data)); - tell=(unsigned *)malloc((sz+1)*sizeof(*tell)); - enc_method=(unsigned *)malloc(sz*sizeof(*enc_method)); - ec_enc_init(&enc,ptr,DATA_SIZE2); - tell[0]=ec_tell_frac(&enc); - for(j=0;j<sz;j++){ - data[j]=rand()/((RAND_MAX>>1)+1); - logp1[j]=(rand()%15)+1; - enc_method[j]=rand()/((RAND_MAX>>2)+1); - switch(enc_method[j]){ - case 0:{ - ec_encode(&enc,data[j]?(1<<logp1[j])-1:0, - (1<<logp1[j])-(data[j]?0:1),1<<logp1[j]); - }break; - case 1:{ - ec_encode_bin(&enc,data[j]?(1<<logp1[j])-1:0, - (1<<logp1[j])-(data[j]?0:1),logp1[j]); - }break; - case 2:{ - ec_enc_bit_logp(&enc,data[j],logp1[j]); - }break; - case 3:{ - unsigned char icdf[2]; - icdf[0]=1; - icdf[1]=0; - ec_enc_icdf(&enc,data[j],icdf,logp1[j]); - }break; - } - tell[j+1]=ec_tell_frac(&enc); - } - ec_enc_done(&enc); - if((ec_tell(&enc)+7U)/8U<ec_range_bytes(&enc)){ - fprintf(stderr,"tell() lied, there's %i bytes instead of %d (Random seed: %u)\n", - ec_range_bytes(&enc),(ec_tell(&enc)+7)/8,seed); - ret=-1; - } - ec_dec_init(&dec,ptr,DATA_SIZE2); - if(ec_tell_frac(&dec)!=tell[0]){ - fprintf(stderr, - "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", - 0,ec_tell_frac(&dec),tell[0],seed); - } - for(j=0;j<sz;j++){ - int fs; - int dec_method; - dec_method=rand()/((RAND_MAX>>2)+1); - switch(dec_method){ - case 0:{ - fs=ec_decode(&dec,1<<logp1[j]); - sym=fs>=(1<<logp1[j])-1; - ec_dec_update(&dec,sym?(1<<logp1[j])-1:0, - (1<<logp1[j])-(sym?0:1),1<<logp1[j]); - }break; - case 1:{ - fs=ec_decode_bin(&dec,logp1[j]); - sym=fs>=(1<<logp1[j])-1; - ec_dec_update(&dec,sym?(1<<logp1[j])-1:0, - (1<<logp1[j])-(sym?0:1),1<<logp1[j]); - }break; - case 2:{ - sym=ec_dec_bit_logp(&dec,logp1[j]); - }break; - case 3:{ - unsigned char icdf[2]; - icdf[0]=1; - icdf[1]=0; - sym=ec_dec_icdf(&dec,icdf,logp1[j]); - }break; - } - if(sym!=data[j]){ - fprintf(stderr, - "Decoded %i instead of %i with logp1 of %i at position %i of %i (Random seed: %u).\n", - sym,data[j],logp1[j],j,sz,seed); - fprintf(stderr,"Encoding method: %i, decoding method: %i\n", - enc_method[j],dec_method); - ret=-1; - } - if(ec_tell_frac(&dec)!=tell[j+1]){ - fprintf(stderr, - "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", - j+1,ec_tell_frac(&dec),tell[j+1],seed); - } - } - free(enc_method); - free(tell); - free(data); - free(logp1); - } - ec_enc_init(&enc,ptr,DATA_SIZE2); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,0,2); - ec_enc_patch_initial_bits(&enc,3,2); - if(enc.error){ - fprintf(stderr,"patch_initial_bits failed"); - ret=-1; - } - ec_enc_patch_initial_bits(&enc,0,5); - if(!enc.error){ - fprintf(stderr,"patch_initial_bits didn't fail when it should have"); - ret=-1; - } - ec_enc_done(&enc); - if(ec_range_bytes(&enc)!=1||ptr[0]!=192){ - fprintf(stderr,"Got %d when expecting 192 for patch_initial_bits",ptr[0]); - ret=-1; - } - ec_enc_init(&enc,ptr,DATA_SIZE2); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,0,1); - ec_enc_bit_logp(&enc,1,6); - ec_enc_bit_logp(&enc,0,2); - ec_enc_patch_initial_bits(&enc,0,2); - if(enc.error){ - fprintf(stderr,"patch_initial_bits failed"); - ret=-1; - } - ec_enc_done(&enc); - if(ec_range_bytes(&enc)!=2||ptr[0]!=63){ - fprintf(stderr,"Got %d when expecting 63 for patch_initial_bits",ptr[0]); - ret=-1; - } - ec_enc_init(&enc,ptr,2); - ec_enc_bit_logp(&enc,0,2); - for(i=0;i<48;i++){ - ec_enc_bits(&enc,0,1); - } - ec_enc_done(&enc); - if(!enc.error){ - fprintf(stderr,"Raw bits overfill didn't fail when it should have"); - ret=-1; - } - ec_enc_init(&enc,ptr,2); - for(i=0;i<17;i++){ - ec_enc_bits(&enc,0,1); - } - ec_enc_done(&enc); - if(!enc.error){ - fprintf(stderr,"17 raw bits encoded in two bytes"); - ret=-1; - } - free(ptr); - return ret; -} diff --git a/thirdparty/opus/celt/tests/test_unit_laplace.c b/thirdparty/opus/celt/tests/test_unit_laplace.c deleted file mode 100644 index 22951e29ee..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_laplace.c +++ /dev/null @@ -1,93 +0,0 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation - Written by Jean-Marc Valin and Timothy B. Terriberry */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include <stdio.h> -#include <stdlib.h> -#include "laplace.h" -#define CELT_C -#include "stack_alloc.h" - -#include "entenc.c" -#include "entdec.c" -#include "entcode.c" -#include "laplace.c" - -#define DATA_SIZE 40000 - -int ec_laplace_get_start_freq(int decay) -{ - opus_uint32 ft = 32768 - LAPLACE_MINP*(2*LAPLACE_NMIN+1); - int fs = (ft*(16384-decay))/(16384+decay); - return fs+LAPLACE_MINP; -} - -int main(void) -{ - int i; - int ret = 0; - ec_enc enc; - ec_dec dec; - unsigned char *ptr; - int val[10000], decay[10000]; - ALLOC_STACK; - ptr = (unsigned char *)malloc(DATA_SIZE); - ec_enc_init(&enc,ptr,DATA_SIZE); - - val[0] = 3; decay[0] = 6000; - val[1] = 0; decay[1] = 5800; - val[2] = -1; decay[2] = 5600; - for (i=3;i<10000;i++) - { - val[i] = rand()%15-7; - decay[i] = rand()%11000+5000; - } - for (i=0;i<10000;i++) - ec_laplace_encode(&enc, &val[i], - ec_laplace_get_start_freq(decay[i]), decay[i]); - - ec_enc_done(&enc); - - ec_dec_init(&dec,ec_get_buffer(&enc),ec_range_bytes(&enc)); - - for (i=0;i<10000;i++) - { - int d = ec_laplace_decode(&dec, - ec_laplace_get_start_freq(decay[i]), decay[i]); - if (d != val[i]) - { - fprintf (stderr, "Got %d instead of %d\n", d, val[i]); - ret = 1; - } - } - - free(ptr); - return ret; -} diff --git a/thirdparty/opus/celt/tests/test_unit_mathops.c b/thirdparty/opus/celt/tests/test_unit_mathops.c deleted file mode 100644 index fd3319da91..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_mathops.c +++ /dev/null @@ -1,304 +0,0 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation, Mozilla Corporation, - Gregory Maxwell - Written by Jean-Marc Valin, Gregory Maxwell, and Timothy B. Terriberry */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#ifndef CUSTOM_MODES -#define CUSTOM_MODES -#endif - -#define CELT_C - -#include <stdio.h> -#include <math.h> -#include "mathops.c" -#include "entenc.c" -#include "entdec.c" -#include "entcode.c" -#include "bands.c" -#include "quant_bands.c" -#include "laplace.c" -#include "vq.c" -#include "cwrs.c" -#include "pitch.c" -#include "celt_lpc.c" -#include "celt.c" - -#if defined(OPUS_X86_MAY_HAVE_SSE) || defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1) -# if defined(OPUS_X86_MAY_HAVE_SSE) -# include "x86/pitch_sse.c" -# endif -# if defined(OPUS_X86_MAY_HAVE_SSE2) -# include "x86/pitch_sse2.c" -# endif -# if defined(OPUS_X86_MAY_HAVE_SSE4_1) -# include "x86/pitch_sse4_1.c" -# include "x86/celt_lpc_sse.c" -# endif -# include "x86/x86_celt_map.c" -#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/armcpu.c" -# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/celt_neon_intr.c" -# if defined(HAVE_ARM_NE10) -# include "kiss_fft.c" -# include "mdct.c" -# include "arm/celt_ne10_fft.c" -# include "arm/celt_ne10_mdct.c" -# endif -# endif -# include "arm/arm_celt_map.c" -#endif - -#ifdef FIXED_POINT -#define WORD "%d" -#else -#define WORD "%f" -#endif - -int ret = 0; - -void testdiv(void) -{ - opus_int32 i; - for (i=1;i<=327670;i++) - { - double prod; - opus_val32 val; - val = celt_rcp(i); -#ifdef FIXED_POINT - prod = (1./32768./65526.)*val*i; -#else - prod = val*i; -#endif - if (fabs(prod-1) > .00025) - { - fprintf (stderr, "div failed: 1/%d="WORD" (product = %f)\n", i, val, prod); - ret = 1; - } - } -} - -void testsqrt(void) -{ - opus_int32 i; - for (i=1;i<=1000000000;i++) - { - double ratio; - opus_val16 val; - val = celt_sqrt(i); - ratio = val/sqrt(i); - if (fabs(ratio - 1) > .0005 && fabs(val-sqrt(i)) > 2) - { - fprintf (stderr, "sqrt failed: sqrt(%d)="WORD" (ratio = %f)\n", i, val, ratio); - ret = 1; - } - i+= i>>10; - } -} - -void testbitexactcos(void) -{ - int i; - opus_int32 min_d,max_d,last,chk; - chk=max_d=0; - last=min_d=32767; - for(i=64;i<=16320;i++) - { - opus_int32 d; - opus_int32 q=bitexact_cos(i); - chk ^= q*i; - d = last - q; - if (d>max_d)max_d=d; - if (d<min_d)min_d=d; - last = q; - } - if ((chk!=89408644)||(max_d!=5)||(min_d!=0)||(bitexact_cos(64)!=32767)|| - (bitexact_cos(16320)!=200)||(bitexact_cos(8192)!=23171)) - { - fprintf (stderr, "bitexact_cos failed\n"); - ret = 1; - } -} - -void testbitexactlog2tan(void) -{ - int i,fail; - opus_int32 min_d,max_d,last,chk; - fail=chk=max_d=0; - last=min_d=15059; - for(i=64;i<8193;i++) - { - opus_int32 d; - opus_int32 mid=bitexact_cos(i); - opus_int32 side=bitexact_cos(16384-i); - opus_int32 q=bitexact_log2tan(mid,side); - chk ^= q*i; - d = last - q; - if (q!=-1*bitexact_log2tan(side,mid)) - fail = 1; - if (d>max_d)max_d=d; - if (d<min_d)min_d=d; - last = q; - } - if ((chk!=15821257)||(max_d!=61)||(min_d!=-2)||fail|| - (bitexact_log2tan(32767,200)!=15059)||(bitexact_log2tan(30274,12540)!=2611)|| - (bitexact_log2tan(23171,23171)!=0)) - { - fprintf (stderr, "bitexact_log2tan failed\n"); - ret = 1; - } -} - -#ifndef FIXED_POINT -void testlog2(void) -{ - float x; - for (x=0.001;x<1677700.0;x+=(x/8.0)) - { - float error = fabs((1.442695040888963387*log(x))-celt_log2(x)); - if (error>0.0009) - { - fprintf (stderr, "celt_log2 failed: fabs((1.442695040888963387*log(x))-celt_log2(x))>0.001 (x = %f, error = %f)\n", x,error); - ret = 1; - } - } -} - -void testexp2(void) -{ - float x; - for (x=-11.0;x<24.0;x+=0.0007) - { - float error = fabs(x-(1.442695040888963387*log(celt_exp2(x)))); - if (error>0.0002) - { - fprintf (stderr, "celt_exp2 failed: fabs(x-(1.442695040888963387*log(celt_exp2(x))))>0.0005 (x = %f, error = %f)\n", x,error); - ret = 1; - } - } -} - -void testexp2log2(void) -{ - float x; - for (x=-11.0;x<24.0;x+=0.0007) - { - float error = fabs(x-(celt_log2(celt_exp2(x)))); - if (error>0.001) - { - fprintf (stderr, "celt_log2/celt_exp2 failed: fabs(x-(celt_log2(celt_exp2(x))))>0.001 (x = %f, error = %f)\n", x,error); - ret = 1; - } - } -} -#else -void testlog2(void) -{ - opus_val32 x; - for (x=8;x<1073741824;x+=(x>>3)) - { - float error = fabs((1.442695040888963387*log(x/16384.0))-celt_log2(x)/1024.0); - if (error>0.003) - { - fprintf (stderr, "celt_log2 failed: x = %ld, error = %f\n", (long)x,error); - ret = 1; - } - } -} - -void testexp2(void) -{ - opus_val16 x; - for (x=-32768;x<15360;x++) - { - float error1 = fabs(x/1024.0-(1.442695040888963387*log(celt_exp2(x)/65536.0))); - float error2 = fabs(exp(0.6931471805599453094*x/1024.0)-celt_exp2(x)/65536.0); - if (error1>0.0002&&error2>0.00004) - { - fprintf (stderr, "celt_exp2 failed: x = "WORD", error1 = %f, error2 = %f\n", x,error1,error2); - ret = 1; - } - } -} - -void testexp2log2(void) -{ - opus_val32 x; - for (x=8;x<65536;x+=(x>>3)) - { - float error = fabs(x-0.25*celt_exp2(celt_log2(x)))/16384; - if (error>0.004) - { - fprintf (stderr, "celt_log2/celt_exp2 failed: fabs(x-(celt_exp2(celt_log2(x))))>0.001 (x = %ld, error = %f)\n", (long)x,error); - ret = 1; - } - } -} - -void testilog2(void) -{ - opus_val32 x; - for (x=1;x<=268435455;x+=127) - { - opus_val32 lg; - opus_val32 y; - - lg = celt_ilog2(x); - if (lg<0 || lg>=31) - { - printf("celt_ilog2 failed: 0<=celt_ilog2(x)<31 (x = %d, celt_ilog2(x) = %d)\n",x,lg); - ret = 1; - } - y = 1<<lg; - - if (x<y || (x>>1)>=y) - { - printf("celt_ilog2 failed: 2**celt_ilog2(x)<=x<2**(celt_ilog2(x)+1) (x = %d, 2**celt_ilog2(x) = %d)\n",x,y); - ret = 1; - } - } -} -#endif - -int main(void) -{ - testbitexactcos(); - testbitexactlog2tan(); - testdiv(); - testsqrt(); - testlog2(); - testexp2(); - testexp2log2(); -#ifdef FIXED_POINT - testilog2(); -#endif - return ret; -} diff --git a/thirdparty/opus/celt/tests/test_unit_mdct.c b/thirdparty/opus/celt/tests/test_unit_mdct.c deleted file mode 100644 index 8dbb9caa2e..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_mdct.c +++ /dev/null @@ -1,230 +0,0 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation - Written by Jean-Marc Valin */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#define SKIP_CONFIG_H - -#ifndef CUSTOM_MODES -#define CUSTOM_MODES -#endif - -#include <stdio.h> - -#define CELT_C -#include "mdct.h" -#include "stack_alloc.h" - -#include "kiss_fft.c" -#include "mdct.c" -#include "mathops.c" -#include "entcode.c" - -#if defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1) -# include "x86/x86cpu.c" -#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/armcpu.c" -# include "pitch.c" -# include "celt_lpc.c" -# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/celt_neon_intr.c" -# if defined(HAVE_ARM_NE10) -# include "arm/celt_ne10_fft.c" -# include "arm/celt_ne10_mdct.c" -# endif -# endif -# include "arm/arm_celt_map.c" -#endif - -#ifndef M_PI -#define M_PI 3.141592653 -#endif - -int ret = 0; -void check(kiss_fft_scalar * in,kiss_fft_scalar * out,int nfft,int isinverse) -{ - int bin,k; - double errpow=0,sigpow=0; - double snr; - for (bin=0;bin<nfft/2;++bin) { - double ansr = 0; - double difr; - - for (k=0;k<nfft;++k) { - double phase = 2*M_PI*(k+.5+.25*nfft)*(bin+.5)/nfft; - double re = cos(phase); - - re /= nfft/4; - - ansr += in[k] * re; - } - /*printf ("%f %f\n", ansr, out[bin]);*/ - difr = ansr - out[bin]; - errpow += difr*difr; - sigpow += ansr*ansr; - } - snr = 10*log10(sigpow/errpow); - printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr ); - if (snr<60) { - printf( "** poor snr: %f **\n", snr); - ret = 1; - } -} - -void check_inv(kiss_fft_scalar * in,kiss_fft_scalar * out,int nfft,int isinverse) -{ - int bin,k; - double errpow=0,sigpow=0; - double snr; - for (bin=0;bin<nfft;++bin) { - double ansr = 0; - double difr; - - for (k=0;k<nfft/2;++k) { - double phase = 2*M_PI*(bin+.5+.25*nfft)*(k+.5)/nfft; - double re = cos(phase); - - /*re *= 2;*/ - - ansr += in[k] * re; - } - /*printf ("%f %f\n", ansr, out[bin]);*/ - difr = ansr - out[bin]; - errpow += difr*difr; - sigpow += ansr*ansr; - } - snr = 10*log10(sigpow/errpow); - printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,snr ); - if (snr<60) { - printf( "** poor snr: %f **\n", snr); - ret = 1; - } -} - - -void test1d(int nfft,int isinverse,int arch) -{ - mdct_lookup cfg; - size_t buflen = sizeof(kiss_fft_scalar)*nfft; - - kiss_fft_scalar * in = (kiss_fft_scalar*)malloc(buflen); - kiss_fft_scalar * in_copy = (kiss_fft_scalar*)malloc(buflen); - kiss_fft_scalar * out= (kiss_fft_scalar*)malloc(buflen); - opus_val16 * window= (opus_val16*)malloc(sizeof(opus_val16)*nfft/2); - int k; - - clt_mdct_init(&cfg, nfft, 0, arch); - for (k=0;k<nfft;++k) { - in[k] = (rand() % 32768) - 16384; - } - - for (k=0;k<nfft/2;++k) { - window[k] = Q15ONE; - } - for (k=0;k<nfft;++k) { - in[k] *= 32768; - } - - if (isinverse) - { - for (k=0;k<nfft;++k) { - in[k] /= nfft; - } - } - - for (k=0;k<nfft;++k) - in_copy[k] = in[k]; - /*for (k=0;k<nfft;++k) printf("%d %d ", in[k].r, in[k].i);printf("\n");*/ - - if (isinverse) - { - for (k=0;k<nfft;++k) - out[k] = 0; - clt_mdct_backward(&cfg,in,out, window, nfft/2, 0, 1, arch); - /* apply TDAC because clt_mdct_backward() no longer does that */ - for (k=0;k<nfft/4;++k) - out[nfft-k-1] = out[nfft/2+k]; - check_inv(in,out,nfft,isinverse); - } else { - clt_mdct_forward(&cfg,in,out,window, nfft/2, 0, 1, arch); - check(in_copy,out,nfft,isinverse); - } - /*for (k=0;k<nfft;++k) printf("%d %d ", out[k].r, out[k].i);printf("\n");*/ - - - free(in); - free(in_copy); - free(out); - free(window); - clt_mdct_clear(&cfg, arch); -} - -int main(int argc,char ** argv) -{ - ALLOC_STACK; - int arch = opus_select_arch(); - - if (argc>1) { - int k; - for (k=1;k<argc;++k) { - test1d(atoi(argv[k]),0,arch); - test1d(atoi(argv[k]),1,arch); - } - }else{ - test1d(32,0,arch); - test1d(32,1,arch); - test1d(256,0,arch); - test1d(256,1,arch); - test1d(512,0,arch); - test1d(512,1,arch); - test1d(1024,0,arch); - test1d(1024,1,arch); - test1d(2048,0,arch); - test1d(2048,1,arch); -#ifndef RADIX_TWO_ONLY - test1d(36,0,arch); - test1d(36,1,arch); - test1d(40,0,arch); - test1d(40,1,arch); - test1d(60,0,arch); - test1d(60,1,arch); - test1d(120,0,arch); - test1d(120,1,arch); - test1d(240,0,arch); - test1d(240,1,arch); - test1d(480,0,arch); - test1d(480,1,arch); - test1d(960,0,arch); - test1d(960,1,arch); - test1d(1920,0,arch); - test1d(1920,1,arch); -#endif - } - return ret; -} diff --git a/thirdparty/opus/celt/tests/test_unit_rotation.c b/thirdparty/opus/celt/tests/test_unit_rotation.c deleted file mode 100644 index 1080c2085d..0000000000 --- a/thirdparty/opus/celt/tests/test_unit_rotation.c +++ /dev/null @@ -1,120 +0,0 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation - Written by Jean-Marc Valin */ -/* - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - - Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - - - Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER - OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#ifndef CUSTOM_MODES -#define CUSTOM_MODES -#endif - -#define CELT_C - -#include <stdio.h> -#include <stdlib.h> -#include "vq.c" -#include "cwrs.c" -#include "entcode.c" -#include "entenc.c" -#include "entdec.c" -#include "mathops.c" -#include "bands.h" -#include "pitch.c" -#include "celt_lpc.c" -#include "celt.c" -#include <math.h> - -#if defined(OPUS_X86_MAY_HAVE_SSE) || defined(OPUS_X86_MAY_HAVE_SSE2) || defined(OPUS_X86_MAY_HAVE_SSE4_1) -# if defined(OPUS_X86_MAY_HAVE_SSE) -# include "x86/pitch_sse.c" -# endif -# if defined(OPUS_X86_MAY_HAVE_SSE2) -# include "x86/pitch_sse2.c" -# endif -# if defined(OPUS_X86_MAY_HAVE_SSE4_1) -# include "x86/pitch_sse4_1.c" -# include "x86/celt_lpc_sse.c" -# endif -# include "x86/x86_celt_map.c" -#elif defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/armcpu.c" -# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) -# include "arm/celt_neon_intr.c" -# if defined(HAVE_ARM_NE10) -# include "kiss_fft.c" -# include "mdct.c" -# include "arm/celt_ne10_fft.c" -# include "arm/celt_ne10_mdct.c" -# endif -# endif -# include "arm/arm_celt_map.c" -#endif - -#define MAX_SIZE 100 - -int ret=0; -void test_rotation(int N, int K) -{ - int i; - double err = 0, ener = 0, snr, snr0; - opus_val16 x0[MAX_SIZE]; - opus_val16 x1[MAX_SIZE]; - for (i=0;i<N;i++) - x1[i] = x0[i] = rand()%32767-16384; - exp_rotation(x1, N, 1, 1, K, SPREAD_NORMAL); - for (i=0;i<N;i++) - { - err += (x0[i]-(double)x1[i])*(x0[i]-(double)x1[i]); - ener += x0[i]*(double)x0[i]; - } - snr0 = 20*log10(ener/err); - err = ener = 0; - exp_rotation(x1, N, -1, 1, K, SPREAD_NORMAL); - for (i=0;i<N;i++) - { - err += (x0[i]-(double)x1[i])*(x0[i]-(double)x1[i]); - ener += x0[i]*(double)x0[i]; - } - snr = 20*log10(ener/err); - printf ("SNR for size %d (%d pulses) is %f (was %f without inverse)\n", N, K, snr, snr0); - if (snr < 60 || snr0 > 20) - { - fprintf(stderr, "FAIL!\n"); - ret = 1; - } -} - -int main(void) -{ - ALLOC_STACK; - test_rotation(15, 3); - test_rotation(23, 5); - test_rotation(50, 3); - test_rotation(80, 1); - return ret; -} diff --git a/thirdparty/opus/celt/vq.c b/thirdparty/opus/celt/vq.c index d29f38fd8e..8011e22548 100644 --- a/thirdparty/opus/celt/vq.c +++ b/thirdparty/opus/celt/vq.c @@ -39,6 +39,10 @@ #include "rate.h" #include "pitch.h" +#if defined(MIPSr1_ASM) +#include "mips/vq_mipsr1.h" +#endif + #ifndef OVERRIDE_vq_exp_rotation1 static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s) { @@ -67,7 +71,7 @@ static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_ } #endif /* OVERRIDE_vq_exp_rotation1 */ -static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread) +void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread) { static const int SPREAD_FACTOR[3]={15,10,5}; int i; @@ -158,42 +162,27 @@ static unsigned extract_collapse_mask(int *iy, int N, int B) return collapse_mask; } -unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc -#ifdef RESYNTH - , opus_val16 gain -#endif - ) +opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch) { VARDECL(celt_norm, y); - VARDECL(int, iy); - VARDECL(opus_val16, signx); + VARDECL(int, signx); int i, j; - opus_val16 s; int pulsesLeft; opus_val32 sum; opus_val32 xy; opus_val16 yy; - unsigned collapse_mask; SAVE_STACK; - celt_assert2(K>0, "alg_quant() needs at least one pulse"); - celt_assert2(N>1, "alg_quant() needs at least two dimensions"); - + (void)arch; ALLOC(y, N, celt_norm); - ALLOC(iy, N, int); - ALLOC(signx, N, opus_val16); - - exp_rotation(X, N, 1, B, K, spread); + ALLOC(signx, N, int); /* Get rid of the sign */ sum = 0; j=0; do { - if (X[j]>0) - signx[j]=1; - else { - signx[j]=-1; - X[j]=-X[j]; - } + signx[j] = X[j]<0; + /* OPT: Make sure the compiler doesn't use a branch on ABS16(). */ + X[j] = ABS16(X[j]); iy[j] = 0; y[j] = 0; } while (++j<N); @@ -225,7 +214,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc while (++j<N); sum = QCONST16(1.f,14); } - rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum))); +#ifdef FIXED_POINT + rcp = EXTRACT16(MULT16_32_Q16(K, celt_rcp(sum))); +#else + /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */ + rcp = EXTRACT16(MULT16_32_Q16(K+0.8f, celt_rcp(sum))); +#endif j=0; do { #ifdef FIXED_POINT /* It's really important to round *towards zero* here */ @@ -240,12 +234,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc pulsesLeft -= iy[j]; } while (++j<N); } - celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass"); + celt_sig_assert(pulsesLeft>=0); /* This should never happen, but just in case it does (e.g. on silence) we fill the first bin with pulses. */ #ifdef FIXED_POINT_DEBUG - celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass"); + celt_sig_assert(pulsesLeft<=N+3); #endif if (pulsesLeft > N+3) { @@ -256,12 +250,12 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc pulsesLeft=0; } - s = 1; for (i=0;i<pulsesLeft;i++) { + opus_val16 Rxy, Ryy; int best_id; - opus_val32 best_num = -VERY_LARGE16; - opus_val16 best_den = 0; + opus_val32 best_num; + opus_val16 best_den; #ifdef FIXED_POINT int rshift; #endif @@ -272,9 +266,22 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc /* The squared magnitude term gets added anyway, so we might as well add it outside the loop */ yy = ADD16(yy, 1); - j=0; + + /* Calculations for position 0 are out of the loop, in part to reduce + mispredicted branches (since the if condition is usually false) + in the loop. */ + /* Temporary sums of the new pulse(s) */ + Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[0])),rshift)); + /* We're multiplying y[j] by two so we don't have to do it here */ + Ryy = ADD16(yy, y[0]); + + /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that + Rxy is positive because the sign is pre-computed) */ + Rxy = MULT16_16_Q15(Rxy,Rxy); + best_den = Ryy; + best_num = Rxy; + j=1; do { - opus_val16 Rxy, Ryy; /* Temporary sums of the new pulse(s) */ Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift)); /* We're multiplying y[j] by two so we don't have to do it here */ @@ -285,8 +292,11 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc Rxy = MULT16_16_Q15(Rxy,Rxy); /* The idea is to check for num/den >= best_num/best_den, but that way we can do it without any division */ - /* OPT: Make sure to use conditional moves here */ - if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)) + /* OPT: It's not clear whether a cmov is faster than a branch here + since the condition is more often false than true and using + a cmov introduces data dependencies across iterations. The optimal + choice may be architecture-dependent. */ + if (opus_unlikely(MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))) { best_den = Ryy; best_num = Rxy; @@ -301,23 +311,47 @@ unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc /* Only now that we've made the final choice, update y/iy */ /* Multiplying y[j] by 2 so we don't have to do it everywhere else */ - y[best_id] += 2*s; + y[best_id] += 2; iy[best_id]++; } /* Put the original sign back */ j=0; do { - X[j] = MULT16_16(signx[j],X[j]); - if (signx[j] < 0) - iy[j] = -iy[j]; + /*iy[j] = signx[j] ? -iy[j] : iy[j];*/ + /* OPT: The is more likely to be compiled without a branch than the code above + but has the same performance otherwise. */ + iy[j] = (iy[j]^-signx[j]) + signx[j]; } while (++j<N); + RESTORE_STACK; + return yy; +} + +unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc, + opus_val16 gain, int resynth, int arch) +{ + VARDECL(int, iy); + opus_val16 yy; + unsigned collapse_mask; + SAVE_STACK; + + celt_assert2(K>0, "alg_quant() needs at least one pulse"); + celt_assert2(N>1, "alg_quant() needs at least two dimensions"); + + /* Covers vectorization by up to 4. */ + ALLOC(iy, N+3, int); + + exp_rotation(X, N, 1, B, K, spread); + + yy = op_pvq_search(X, iy, K, N, arch); + encode_pulses(iy, N, K, enc); -#ifdef RESYNTH - normalise_residual(iy, X, N, yy, gain); - exp_rotation(X, N, -1, B, K, spread); -#endif + if (resynth) + { + normalise_residual(iy, X, N, yy, gain); + exp_rotation(X, N, -1, B, K, spread); + } collapse_mask = extract_collapse_mask(iy, N, B); RESTORE_STACK; @@ -401,7 +435,7 @@ int stereo_itheta(const celt_norm *X, const celt_norm *Y, int stereo, int N, int /* 0.63662 = 2/pi */ itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid)); #else - itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid)); + itheta = (int)floor(.5f+16384*0.63662f*fast_atan2f(side,mid)); #endif return itheta; diff --git a/thirdparty/opus/celt/vq.h b/thirdparty/opus/celt/vq.h index 5cfcbe50ea..45ec55918e 100644 --- a/thirdparty/opus/celt/vq.h +++ b/thirdparty/opus/celt/vq.h @@ -37,10 +37,18 @@ #include "entdec.h" #include "modes.h" -#if defined(MIPSr1_ASM) -#include "mips/vq_mipsr1.h" +#if (defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(FIXED_POINT)) +#include "x86/vq_sse.h" #endif +void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread); + +opus_val16 op_pvq_search_c(celt_norm *X, int *iy, int K, int N, int arch); + +#if !defined(OVERRIDE_OP_PVQ_SEARCH) +#define op_pvq_search(x, iy, K, N, arch) \ + (op_pvq_search_c(x, iy, K, N, arch)) +#endif /** Algebraic pulse-vector quantiser. The signal x is replaced by the sum of * the pitch and a combination of pulses such that its norm is still equal @@ -51,12 +59,8 @@ * @param enc Entropy encoder state * @ret A mask indicating which blocks in the band received pulses */ -unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, - ec_enc *enc -#ifdef RESYNTH - , opus_val16 gain -#endif - ); +unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc, + opus_val16 gain, int resynth, int arch); /** Algebraic pulse decoder * @param X Decoded normalised spectrum (returned) diff --git a/thirdparty/opus/celt/x86/celt_lpc_sse.h b/thirdparty/opus/celt/x86/celt_lpc_sse.h index c5ec796ed5..7d1ecf7533 100644 --- a/thirdparty/opus/celt/x86/celt_lpc_sse.h +++ b/thirdparty/opus/celt/x86/celt_lpc_sse.h @@ -41,12 +41,11 @@ void celt_fir_sse4_1( opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch); #if defined(OPUS_X86_PRESUME_SSE4_1) -#define celt_fir(x, num, y, N, ord, mem, arch) \ - ((void)arch, celt_fir_sse4_1(x, num, y, N, ord, mem, arch)) +#define celt_fir(x, num, y, N, ord, arch) \ + ((void)arch, celt_fir_sse4_1(x, num, y, N, ord, arch)) #else @@ -56,11 +55,10 @@ extern void (*const CELT_FIR_IMPL[OPUS_ARCHMASK + 1])( opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch); -# define celt_fir(x, num, y, N, ord, mem, arch) \ - ((*CELT_FIR_IMPL[(arch) & OPUS_ARCHMASK])(x, num, y, N, ord, mem, arch)) +# define celt_fir(x, num, y, N, ord, arch) \ + ((*CELT_FIR_IMPL[(arch) & OPUS_ARCHMASK])(x, num, y, N, ord, arch)) #endif #endif diff --git a/thirdparty/opus/celt/x86/celt_lpc_sse.c b/thirdparty/opus/celt/x86/celt_lpc_sse4_1.c index 67e5592acf..5478568849 100644 --- a/thirdparty/opus/celt/x86/celt_lpc_sse.c +++ b/thirdparty/opus/celt/x86/celt_lpc_sse4_1.c @@ -40,65 +40,23 @@ #if defined(FIXED_POINT) -void celt_fir_sse4_1(const opus_val16 *_x, +void celt_fir_sse4_1(const opus_val16 *x, const opus_val16 *num, - opus_val16 *_y, + opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch) { int i,j; VARDECL(opus_val16, rnum); - VARDECL(opus_val16, x); __m128i vecNoA; opus_int32 noA ; SAVE_STACK; ALLOC(rnum, ord, opus_val16); - ALLOC(x, N+ord, opus_val16); for(i=0;i<ord;i++) rnum[i] = num[ord-i-1]; - for(i=0;i<ord;i++) - x[i] = mem[ord-i-1]; - - for (i=0;i<N-7;i+=8) - { - x[i+ord ]=_x[i ]; - x[i+ord+1]=_x[i+1]; - x[i+ord+2]=_x[i+2]; - x[i+ord+3]=_x[i+3]; - x[i+ord+4]=_x[i+4]; - x[i+ord+5]=_x[i+5]; - x[i+ord+6]=_x[i+6]; - x[i+ord+7]=_x[i+7]; - } - - for (;i<N-3;i+=4) - { - x[i+ord ]=_x[i ]; - x[i+ord+1]=_x[i+1]; - x[i+ord+2]=_x[i+2]; - x[i+ord+3]=_x[i+3]; - } - - for (;i<N;i++) - x[i+ord]=_x[i]; - - for(i=0;i<ord;i++) - mem[i] = _x[N-i-1]; -#ifdef SMALL_FOOTPRINT - for (i=0;i<N;i++) - { - opus_val32 sum = SHL32(EXTEND32(_x[i]), SIG_SHIFT); - for (j=0;j<ord;j++) - { - sum = MAC16_16(sum,rnum[j],x[i+j]); - } - _y[i] = SATURATE16(PSHR32(sum, SIG_SHIFT)); - } -#else noA = EXTEND32(1) << SIG_SHIFT >> 1; vecNoA = _mm_set_epi32(noA, noA, noA, noA); @@ -107,25 +65,24 @@ void celt_fir_sse4_1(const opus_val16 *_x, opus_val32 sums[4] = {0}; __m128i vecSum, vecX; - xcorr_kernel(rnum, x+i, sums, ord, arch); + xcorr_kernel(rnum, x+i-ord, sums, ord, arch); vecSum = _mm_loadu_si128((__m128i *)sums); vecSum = _mm_add_epi32(vecSum, vecNoA); vecSum = _mm_srai_epi32(vecSum, SIG_SHIFT); - vecX = OP_CVTEPI16_EPI32_M64(_x + i); + vecX = OP_CVTEPI16_EPI32_M64(x + i); vecSum = _mm_add_epi32(vecSum, vecX); vecSum = _mm_packs_epi32(vecSum, vecSum); - _mm_storel_epi64((__m128i *)(_y + i), vecSum); + _mm_storel_epi64((__m128i *)(y + i), vecSum); } for (;i<N;i++) { opus_val32 sum = 0; for (j=0;j<ord;j++) - sum = MAC16_16(sum, rnum[j], x[i + j]); - _y[i] = SATURATE16(ADD32(EXTEND32(_x[i]), PSHR32(sum, SIG_SHIFT))); + sum = MAC16_16(sum, rnum[j], x[i+j-ord]); + y[i] = SATURATE16(ADD32(EXTEND32(x[i]), PSHR32(sum, SIG_SHIFT))); } -#endif RESTORE_STACK; } diff --git a/thirdparty/opus/celt/tests/test_unit_types.c b/thirdparty/opus/celt/x86/vq_sse.h index 67a0fb8ed3..b4efe8f249 100644 --- a/thirdparty/opus/celt/tests/test_unit_types.c +++ b/thirdparty/opus/celt/x86/vq_sse.h @@ -1,5 +1,4 @@ -/* Copyright (c) 2008-2011 Xiph.Org Foundation - Written by Jean-Marc Valin */ +/* Copyright (c) 2016 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions @@ -25,26 +24,27 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ -#ifdef HAVE_CONFIG_H -#include "config.h" +#ifndef VQ_SSE_H +#define VQ_SSE_H + +#if defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(FIXED_POINT) +#define OVERRIDE_OP_PVQ_SEARCH + +opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch); + +#if defined(OPUS_X86_PRESUME_SSE2) +#define op_pvq_search(x, iy, K, N, arch) \ + (op_pvq_search_sse2(x, iy, K, N, arch)) + +#else + +extern opus_val16 (*const OP_PVQ_SEARCH_IMPL[OPUS_ARCHMASK + 1])( + celt_norm *_X, int *iy, int K, int N, int arch); + +# define op_pvq_search(X, iy, K, N, arch) \ + ((*OP_PVQ_SEARCH_IMPL[(arch) & OPUS_ARCHMASK])(X, iy, K, N, arch)) + +#endif #endif -#include "opus_types.h" -#include <stdio.h> - -int main(void) -{ - opus_int16 i = 1; - i <<= 14; - if (i>>14 != 1) - { - fprintf(stderr, "opus_int16 isn't 16 bits\n"); - return 1; - } - if (sizeof(opus_int16)*2 != sizeof(opus_int32)) - { - fprintf(stderr, "16*2 != 32\n"); - return 1; - } - return 0; -} +#endif diff --git a/thirdparty/opus/celt/x86/vq_sse2.c b/thirdparty/opus/celt/x86/vq_sse2.c new file mode 100644 index 0000000000..775042860d --- /dev/null +++ b/thirdparty/opus/celt/x86/vq_sse2.c @@ -0,0 +1,217 @@ +/* Copyright (c) 2007-2008 CSIRO + Copyright (c) 2007-2009 Xiph.Org Foundation + Copyright (c) 2007-2016 Jean-Marc Valin */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <xmmintrin.h> +#include <emmintrin.h> +#include "celt_lpc.h" +#include "stack_alloc.h" +#include "mathops.h" +#include "vq.h" +#include "x86cpu.h" + + +#ifndef FIXED_POINT + +opus_val16 op_pvq_search_sse2(celt_norm *_X, int *iy, int K, int N, int arch) +{ + int i, j; + int pulsesLeft; + float xy, yy; + VARDECL(celt_norm, y); + VARDECL(celt_norm, X); + VARDECL(float, signy); + __m128 signmask; + __m128 sums; + __m128i fours; + SAVE_STACK; + + (void)arch; + /* All bits set to zero, except for the sign bit. */ + signmask = _mm_set_ps1(-0.f); + fours = _mm_set_epi32(4, 4, 4, 4); + ALLOC(y, N+3, celt_norm); + ALLOC(X, N+3, celt_norm); + ALLOC(signy, N+3, float); + + OPUS_COPY(X, _X, N); + X[N] = X[N+1] = X[N+2] = 0; + sums = _mm_setzero_ps(); + for (j=0;j<N;j+=4) + { + __m128 x4, s4; + x4 = _mm_loadu_ps(&X[j]); + s4 = _mm_cmplt_ps(x4, _mm_setzero_ps()); + /* Get rid of the sign */ + x4 = _mm_andnot_ps(signmask, x4); + sums = _mm_add_ps(sums, x4); + /* Clear y and iy in case we don't do the projection. */ + _mm_storeu_ps(&y[j], _mm_setzero_ps()); + _mm_storeu_si128((__m128i*)&iy[j], _mm_setzero_si128()); + _mm_storeu_ps(&X[j], x4); + _mm_storeu_ps(&signy[j], s4); + } + sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(1, 0, 3, 2))); + sums = _mm_add_ps(sums, _mm_shuffle_ps(sums, sums, _MM_SHUFFLE(2, 3, 0, 1))); + + xy = yy = 0; + + pulsesLeft = K; + + /* Do a pre-search by projecting on the pyramid */ + if (K > (N>>1)) + { + __m128i pulses_sum; + __m128 yy4, xy4; + __m128 rcp4; + opus_val32 sum = _mm_cvtss_f32(sums); + /* If X is too small, just replace it with a pulse at 0 */ + /* Prevents infinities and NaNs from causing too many pulses + to be allocated. 64 is an approximation of infinity here. */ + if (!(sum > EPSILON && sum < 64)) + { + X[0] = QCONST16(1.f,14); + j=1; do + X[j]=0; + while (++j<N); + sums = _mm_set_ps1(1.f); + } + /* Using K+e with e < 1 guarantees we cannot get more than K pulses. */ + rcp4 = _mm_mul_ps(_mm_set_ps1((float)(K+.8)), _mm_rcp_ps(sums)); + xy4 = yy4 = _mm_setzero_ps(); + pulses_sum = _mm_setzero_si128(); + for (j=0;j<N;j+=4) + { + __m128 rx4, x4, y4; + __m128i iy4; + x4 = _mm_loadu_ps(&X[j]); + rx4 = _mm_mul_ps(x4, rcp4); + iy4 = _mm_cvttps_epi32(rx4); + pulses_sum = _mm_add_epi32(pulses_sum, iy4); + _mm_storeu_si128((__m128i*)&iy[j], iy4); + y4 = _mm_cvtepi32_ps(iy4); + xy4 = _mm_add_ps(xy4, _mm_mul_ps(x4, y4)); + yy4 = _mm_add_ps(yy4, _mm_mul_ps(y4, y4)); + /* double the y[] vector so we don't have to do it in the search loop. */ + _mm_storeu_ps(&y[j], _mm_add_ps(y4, y4)); + } + pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(1, 0, 3, 2))); + pulses_sum = _mm_add_epi32(pulses_sum, _mm_shuffle_epi32(pulses_sum, _MM_SHUFFLE(2, 3, 0, 1))); + pulsesLeft -= _mm_cvtsi128_si32(pulses_sum); + xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(1, 0, 3, 2))); + xy4 = _mm_add_ps(xy4, _mm_shuffle_ps(xy4, xy4, _MM_SHUFFLE(2, 3, 0, 1))); + xy = _mm_cvtss_f32(xy4); + yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(1, 0, 3, 2))); + yy4 = _mm_add_ps(yy4, _mm_shuffle_ps(yy4, yy4, _MM_SHUFFLE(2, 3, 0, 1))); + yy = _mm_cvtss_f32(yy4); + } + X[N] = X[N+1] = X[N+2] = -100; + y[N] = y[N+1] = y[N+2] = 100; + celt_sig_assert(pulsesLeft>=0); + + /* This should never happen, but just in case it does (e.g. on silence) + we fill the first bin with pulses. */ + if (pulsesLeft > N+3) + { + opus_val16 tmp = (opus_val16)pulsesLeft; + yy = MAC16_16(yy, tmp, tmp); + yy = MAC16_16(yy, tmp, y[0]); + iy[0] += pulsesLeft; + pulsesLeft=0; + } + + for (i=0;i<pulsesLeft;i++) + { + int best_id; + __m128 xy4, yy4; + __m128 max, max2; + __m128i count; + __m128i pos; + /* The squared magnitude term gets added anyway, so we might as well + add it outside the loop */ + yy = ADD16(yy, 1); + xy4 = _mm_load1_ps(&xy); + yy4 = _mm_load1_ps(&yy); + max = _mm_setzero_ps(); + pos = _mm_setzero_si128(); + count = _mm_set_epi32(3, 2, 1, 0); + for (j=0;j<N;j+=4) + { + __m128 x4, y4, r4; + x4 = _mm_loadu_ps(&X[j]); + y4 = _mm_loadu_ps(&y[j]); + x4 = _mm_add_ps(x4, xy4); + y4 = _mm_add_ps(y4, yy4); + y4 = _mm_rsqrt_ps(y4); + r4 = _mm_mul_ps(x4, y4); + /* Update the index of the max. */ + pos = _mm_max_epi16(pos, _mm_and_si128(count, _mm_castps_si128(_mm_cmpgt_ps(r4, max)))); + /* Update the max. */ + max = _mm_max_ps(max, r4); + /* Update the indices (+4) */ + count = _mm_add_epi32(count, fours); + } + /* Horizontal max */ + max2 = _mm_max_ps(max, _mm_shuffle_ps(max, max, _MM_SHUFFLE(1, 0, 3, 2))); + max2 = _mm_max_ps(max2, _mm_shuffle_ps(max2, max2, _MM_SHUFFLE(2, 3, 0, 1))); + /* Now that max2 contains the max at all positions, look at which value(s) of the + partial max is equal to the global max. */ + pos = _mm_and_si128(pos, _mm_castps_si128(_mm_cmpeq_ps(max, max2))); + pos = _mm_max_epi16(pos, _mm_unpackhi_epi64(pos, pos)); + pos = _mm_max_epi16(pos, _mm_shufflelo_epi16(pos, _MM_SHUFFLE(1, 0, 3, 2))); + best_id = _mm_cvtsi128_si32(pos); + + /* Updating the sums of the new pulse(s) */ + xy = ADD32(xy, EXTEND32(X[best_id])); + /* We're multiplying y[j] by two so we don't have to do it here */ + yy = ADD16(yy, y[best_id]); + + /* Only now that we've made the final choice, update y/iy */ + /* Multiplying y[j] by 2 so we don't have to do it everywhere else */ + y[best_id] += 2; + iy[best_id]++; + } + + /* Put the original sign back */ + for (j=0;j<N;j+=4) + { + __m128i y4; + __m128i s4; + y4 = _mm_loadu_si128((__m128i*)&iy[j]); + s4 = _mm_castps_si128(_mm_loadu_ps(&signy[j])); + y4 = _mm_xor_si128(_mm_add_epi32(y4, s4), s4); + _mm_storeu_si128((__m128i*)&iy[j], y4); + } + RESTORE_STACK; + return yy; +} + +#endif diff --git a/thirdparty/opus/celt/x86/x86_celt_map.c b/thirdparty/opus/celt/x86/x86_celt_map.c index 47ba41b9ee..d39d88edec 100644 --- a/thirdparty/opus/celt/x86/x86_celt_map.c +++ b/thirdparty/opus/celt/x86/x86_celt_map.c @@ -33,6 +33,7 @@ #include "celt_lpc.h" #include "pitch.h" #include "pitch_sse.h" +#include "vq.h" #if defined(OPUS_HAVE_RTCD) @@ -46,7 +47,6 @@ void (*const CELT_FIR_IMPL[OPUS_ARCHMASK + 1])( opus_val16 *y, int N, int ord, - opus_val16 *mem, int arch ) = { celt_fir_c, /* non-sse */ @@ -151,5 +151,17 @@ void (*const COMB_FILTER_CONST_IMPL[OPUS_ARCHMASK + 1])( #endif +#if defined(OPUS_X86_MAY_HAVE_SSE2) && !defined(OPUS_X86_PRESUME_SSE2) +opus_val16 (*const OP_PVQ_SEARCH_IMPL[OPUS_ARCHMASK + 1])( + celt_norm *_X, int *iy, int K, int N, int arch +) = { + op_pvq_search_c, /* non-sse */ + op_pvq_search_c, + MAY_HAVE_SSE2(op_pvq_search), + MAY_HAVE_SSE2(op_pvq_search), + MAY_HAVE_SSE2(op_pvq_search) +}; +#endif + #endif #endif diff --git a/thirdparty/opus/celt/x86/x86cpu.h b/thirdparty/opus/celt/x86/x86cpu.h index 04fd48aac4..1e2bf17b9b 100644 --- a/thirdparty/opus/celt/x86/x86cpu.h +++ b/thirdparty/opus/celt/x86/x86cpu.h @@ -82,7 +82,9 @@ int opus_select_arch(void); (_mm_cvtepi8_epi32(*(__m128i *)(x))) #endif -# if !defined(__OPTIMIZE__) +/* similar reasoning about the instruction sequence as in the 32-bit macro above, + */ +# if defined(__clang__) || !defined(__OPTIMIZE__) # define OP_CVTEPI16_EPI32_M64(x) \ (_mm_cvtepi16_epi32(_mm_loadl_epi64((__m128i *)(x)))) # else diff --git a/thirdparty/opus/config.h b/thirdparty/opus/config.h index 7b9c92c6a8..bb935619eb 100644 --- a/thirdparty/opus/config.h +++ b/thirdparty/opus/config.h @@ -1,5 +1,44 @@ -/* Opus configuration header */ -/* Based on the output of libopus configure script */ +/* config.h. Generated from config.h.in by configure. */ +/* config.h.in. Generated from configure.ac by autoheader. */ + +/* Get CPU Info by asm method */ +#define CPU_INFO_BY_ASM 1 + +/* Get CPU Info by c method */ +/* #undef CPU_INFO_BY_C */ + +/* Custom modes */ +/* #undef CUSTOM_MODES */ + +/* Do not build the float API */ +/* #undef DISABLE_FLOAT_API */ + +/* Disable bitstream fixes from RFC 8251 */ +/* #undef DISABLE_UPDATE_DRAFT */ + +/* Assertions */ +/* #undef ENABLE_ASSERTIONS */ + +/* Hardening */ +#define ENABLE_HARDENING 1 + +/* Debug fixed-point implementation */ +/* #undef FIXED_DEBUG */ + +/* Compile as fixed-point (for machines without a fast enough FPU) */ +/* #undef FIXED_POINT */ + +/* Float approximations */ +/* #undef FLOAT_APPROX */ + +/* Fuzzing */ +/* #undef FUZZING */ + +/* Define to 1 if you have the <alloca.h> header file. */ +/* #undef HAVE_ALLOCA_H */ + +/* NE10 library is installed on host. Make sure it is on target! */ +/* #undef HAVE_ARM_NE10 */ /* Define to 1 if you have the <dlfcn.h> header file. */ #define HAVE_DLFCN_H 1 @@ -41,6 +80,9 @@ /* Define to 1 if you have the <unistd.h> header file. */ #define HAVE_UNISTD_H 1 +/* Define to 1 if you have the `__malloc_hook' function. */ +#define HAVE___MALLOC_HOOK 1 + /* Define to the sub-directory in which libtool stores uninstalled libraries. */ #define LT_OBJDIR ".libs/" @@ -92,9 +134,80 @@ #endif // OPUS_ARM64_OPT +/* Define if binary requires Aarch64 Neon Intrinsics */ +/* #undef OPUS_ARM_PRESUME_AARCH64_NEON_INTR */ + +/* Define if binary requires EDSP instruction support */ +/* #undef OPUS_ARM_PRESUME_EDSP */ + +/* Define if binary requires ARMv6 media instruction support */ +/* #undef OPUS_ARM_PRESUME_MEDIA */ + +/* Define if binary requires NEON instruction support */ +/* #undef OPUS_ARM_PRESUME_NEON */ + +/* Define if binary requires NEON intrinsics support */ +/* #undef OPUS_ARM_PRESUME_NEON_INTR */ + /* This is a build of OPUS */ #define OPUS_BUILD /**/ +/* Run bit-exactness checks between optimized and c implementations */ +/* #undef OPUS_CHECK_ASM */ + +#ifndef OPUS_ARM_OPT +/* Use run-time CPU capabilities detection */ +#define OPUS_HAVE_RTCD 1 +#endif + +/* Compiler supports X86 AVX Intrinsics */ +/* #define OPUS_X86_MAY_HAVE_AVX */ + +/* Compiler supports X86 SSE Intrinsics */ +/* #define OPUS_X86_MAY_HAVE_SSE */ + +/* Compiler supports X86 SSE2 Intrinsics */ +/* #define OPUS_X86_MAY_HAVE_SSE2 */ + +/* Compiler supports X86 SSE4.1 Intrinsics */ +/* #define OPUS_X86_MAY_HAVE_SSE4_1 */ + +/* Define if binary requires AVX intrinsics support */ +/* #undef OPUS_X86_PRESUME_AVX */ + +/* Define if binary requires SSE intrinsics support */ +#define OPUS_X86_PRESUME_SSE 1 + +/* Define if binary requires SSE2 intrinsics support */ +#define OPUS_X86_PRESUME_SSE2 1 + +/* Define if binary requires SSE4.1 intrinsics support */ +#define OPUS_X86_PRESUME_SSE4_1 1 + +/* Define to the address where bug reports for this package should be sent. */ +#define PACKAGE_BUGREPORT "opus@xiph.org" + +/* Define to the full name of this package. */ +#define PACKAGE_NAME "opus" + +/* Define to the full name and version of this package. */ +#define PACKAGE_STRING "opus unknown" + +/* Define to the one symbol short name of this package. */ +#define PACKAGE_TARNAME "opus" + +/* Define to the home page for this package. */ +#define PACKAGE_URL "" + +/* Define to the version of this package. */ +#define PACKAGE_VERSION "unknown" + +/* Define to 1 if you have the ANSI C header files. */ +#define STDC_HEADERS 1 + +/* Make use of alloca */ +/* #undef USE_ALLOCA */ + #ifndef WIN32 /* Use C99 variable-size arrays */ #define VAR_ARRAYS 1 @@ -103,11 +216,13 @@ #define USE_ALLOCA 1 #endif +/* Define to empty if `const' does not conform to ANSI C. */ +/* #undef const */ + #ifndef OPUS_FIXED_POINT #define FLOAT_APPROX 1 #endif - /* Define to `__inline__' or `__inline' if that's what the C compiler calls it, or to nothing if 'inline' is not supported under any name. */ #ifndef __cplusplus diff --git a/thirdparty/opus/info.c b/thirdparty/opus/info.c index c36f9a9ee1..3a1a5bf75b 100644 --- a/thirdparty/opus/info.c +++ b/thirdparty/opus/info.c @@ -107,26 +107,32 @@ static int op_tags_ensure_capacity(OpusTags *_tags,size_t _ncomments){ char **user_comments; int *comment_lengths; int cur_ncomments; - char *binary_suffix_data; - int binary_suffix_len; size_t size; if(OP_UNLIKELY(_ncomments>=(size_t)INT_MAX))return OP_EFAULT; size=sizeof(*_tags->comment_lengths)*(_ncomments+1); if(size/sizeof(*_tags->comment_lengths)!=_ncomments+1)return OP_EFAULT; cur_ncomments=_tags->comments; - comment_lengths=_tags->comment_lengths; - binary_suffix_len=comment_lengths==NULL?0:comment_lengths[cur_ncomments]; + /*We only support growing. + Trimming requires cleaning up the allocated strings in the old space, and + is best handled separately if it's ever needed.*/ + OP_ASSERT(_ncomments>=(size_t)cur_ncomments); comment_lengths=(int *)_ogg_realloc(_tags->comment_lengths,size); if(OP_UNLIKELY(comment_lengths==NULL))return OP_EFAULT; - comment_lengths[_ncomments]=binary_suffix_len; + if(_tags->comment_lengths==NULL){ + OP_ASSERT(cur_ncomments==0); + comment_lengths[cur_ncomments]=0; + } + comment_lengths[_ncomments]=comment_lengths[cur_ncomments]; _tags->comment_lengths=comment_lengths; size=sizeof(*_tags->user_comments)*(_ncomments+1); if(size/sizeof(*_tags->user_comments)!=_ncomments+1)return OP_EFAULT; - user_comments=_tags->user_comments; - binary_suffix_data=user_comments==NULL?NULL:user_comments[cur_ncomments]; user_comments=(char **)_ogg_realloc(_tags->user_comments,size); if(OP_UNLIKELY(user_comments==NULL))return OP_EFAULT; - user_comments[_ncomments]=binary_suffix_data; + if(_tags->user_comments==NULL){ + OP_ASSERT(cur_ncomments==0); + user_comments[cur_ncomments]=NULL; + } + user_comments[_ncomments]=user_comments[cur_ncomments]; _tags->user_comments=user_comments; return 0; } @@ -275,28 +281,30 @@ int opus_tags_copy(OpusTags *_dst,const OpusTags *_src){ ret=opus_tags_copy_impl(&dst,_src); if(OP_UNLIKELY(ret<0))opus_tags_clear(&dst); else *_dst=*&dst; - return 0; + return ret; } int opus_tags_add(OpusTags *_tags,const char *_tag,const char *_value){ - char *comment; - int tag_len; - int value_len; - int ncomments; - int ret; + char *comment; + size_t tag_len; + size_t value_len; + int ncomments; + int ret; ncomments=_tags->comments; ret=op_tags_ensure_capacity(_tags,ncomments+1); if(OP_UNLIKELY(ret<0))return ret; tag_len=strlen(_tag); value_len=strlen(_value); /*+2 for '=' and '\0'.*/ + if(tag_len+value_len<tag_len)return OP_EFAULT; + if(tag_len+value_len>(size_t)INT_MAX-2)return OP_EFAULT; comment=(char *)_ogg_malloc(sizeof(*comment)*(tag_len+value_len+2)); if(OP_UNLIKELY(comment==NULL))return OP_EFAULT; memcpy(comment,_tag,sizeof(*comment)*tag_len); comment[tag_len]='='; memcpy(comment+tag_len+1,_value,sizeof(*comment)*(value_len+1)); _tags->user_comments[ncomments]=comment; - _tags->comment_lengths[ncomments]=tag_len+value_len+1; + _tags->comment_lengths[ncomments]=(int)(tag_len+value_len+1); _tags->comments=ncomments+1; return 0; } @@ -337,7 +345,10 @@ int opus_tags_set_binary_suffix(OpusTags *_tags, } int opus_tagcompare(const char *_tag_name,const char *_comment){ - return opus_tagncompare(_tag_name,strlen(_tag_name),_comment); + size_t tag_len; + tag_len=strlen(_tag_name); + if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return -1; + return opus_tagncompare(_tag_name,(int)tag_len,_comment); } int opus_tagncompare(const char *_tag_name,int _tag_len,const char *_comment){ @@ -348,17 +359,18 @@ int opus_tagncompare(const char *_tag_name,int _tag_len,const char *_comment){ } const char *opus_tags_query(const OpusTags *_tags,const char *_tag,int _count){ - char **user_comments; - int tag_len; - int found; - int ncomments; - int ci; + char **user_comments; + size_t tag_len; + int found; + int ncomments; + int ci; tag_len=strlen(_tag); + if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return NULL; ncomments=_tags->comments; user_comments=_tags->user_comments; found=0; for(ci=0;ci<ncomments;ci++){ - if(!opus_tagncompare(_tag,tag_len,user_comments[ci])){ + if(!opus_tagncompare(_tag,(int)tag_len,user_comments[ci])){ /*We return a pointer to the data, not a copy.*/ if(_count==found++)return user_comments[ci]+tag_len+1; } @@ -368,17 +380,18 @@ const char *opus_tags_query(const OpusTags *_tags,const char *_tag,int _count){ } int opus_tags_query_count(const OpusTags *_tags,const char *_tag){ - char **user_comments; - int tag_len; - int found; - int ncomments; - int ci; + char **user_comments; + size_t tag_len; + int found; + int ncomments; + int ci; tag_len=strlen(_tag); + if(OP_UNLIKELY(tag_len>(size_t)INT_MAX))return 0; ncomments=_tags->comments; user_comments=_tags->user_comments; found=0; for(ci=0;ci<ncomments;ci++){ - if(!opus_tagncompare(_tag,tag_len,user_comments[ci]))found++; + if(!opus_tagncompare(_tag,(int)tag_len,user_comments[ci]))found++; } return found; } @@ -403,7 +416,8 @@ static int opus_tags_get_gain(const OpusTags *_tags,int *_gain_q8, ncomments=_tags->comments; /*Look for the first valid tag with the name _tag_name and use that.*/ for(ci=0;ci<ncomments;ci++){ - if(opus_tagncompare(_tag_name,_tag_len,comments[ci])==0){ + OP_ASSERT(_tag_len<=(size_t)INT_MAX); + if(opus_tagncompare(_tag_name,(int)_tag_len,comments[ci])==0){ char *p; opus_int32 gain_q8; int negative; @@ -439,8 +453,7 @@ int opus_tags_get_track_gain(const OpusTags *_tags,int *_gain_q8){ } static int op_is_jpeg(const unsigned char *_buf,size_t _buf_sz){ - return _buf_sz>=11&&memcmp(_buf,"\xFF\xD8\xFF\xE0",4)==0 - &&(_buf[4]<<8|_buf[5])>=16&&memcmp(_buf+6,"JFIF",5)==0; + return _buf_sz>=3&&memcmp(_buf,"\xFF\xD8\xFF",3)==0; } /*Tries to extract the width, height, bits per pixel, and palette size of a diff --git a/thirdparty/opus/internal.h b/thirdparty/opus/internal.h index ee48ea34c9..9ac17e028f 100644 --- a/thirdparty/opus/internal.h +++ b/thirdparty/opus/internal.h @@ -136,6 +136,9 @@ struct OggOpusLink{ that end-trimming calculations work properly. This is only valid for seekable sources.*/ opus_int64 end_offset; + /*The total duration of all prior links. + This is always zero for non-seekable sources.*/ + ogg_int64_t pcm_file_offset; /*The granule position of the last sample. This is only valid for seekable sources.*/ ogg_int64_t pcm_end; @@ -150,23 +153,25 @@ struct OggOpusLink{ }; struct OggOpusFile{ - /*The callbacks used to access the data source.*/ + /*The callbacks used to access the stream.*/ OpusFileCallbacks callbacks; - /*A FILE *, memory bufer, etc.*/ - void *source; - /*Whether or not we can seek with this data source.*/ + /*A FILE *, memory buffer, etc.*/ + void *stream; + /*Whether or not we can seek with this stream.*/ int seekable; /*The number of links in this chained Ogg Opus file.*/ int nlinks; /*The cached information from each link in a chained Ogg Opus file. - If source isn't seekable (e.g., it's a pipe), only the current link + If stream isn't seekable (e.g., it's a pipe), only the current link appears.*/ OggOpusLink *links; /*The number of serial numbers from a single link.*/ int nserialnos; /*The capacity of the list of serial numbers from a single link.*/ int cserialnos; - /*Storage for the list of serial numbers from a single link.*/ + /*Storage for the list of serial numbers from a single link. + This is a scratch buffer used when scanning the BOS pages at the start of + each link.*/ ogg_uint32_t *serialnos; /*This is the current offset of the data processed by the ogg_sync_state. After a seek, this should be set to the target offset so that we can track @@ -174,9 +179,9 @@ struct OggOpusFile{ After a call to op_get_next_page(), this will point to the first byte after that page.*/ opus_int64 offset; - /*The total size of this data source, or -1 if it's unseekable.*/ + /*The total size of this stream, or -1 if it's unseekable.*/ opus_int64 end; - /*Used to locate pages in the data source.*/ + /*Used to locate pages in the stream.*/ ogg_sync_state oy; /*One of OP_NOTOPEN, OP_PARTOPEN, OP_OPENED, OP_STREAMSET, OP_INITSET.*/ int ready_state; @@ -227,7 +232,7 @@ struct OggOpusFile{ /*The number of valid samples in the decoded buffer.*/ int od_buffer_size; /*The type of gain offset to apply. - One of OP_HEADER_GAIN, OP_TRACK_GAIN, or OP_ABSOLUTE_GAIN.*/ + One of OP_HEADER_GAIN, OP_ALBUM_GAIN, OP_TRACK_GAIN, or OP_ABSOLUTE_GAIN.*/ int gain_type; /*The offset to apply to the gain.*/ opus_int32 gain_offset_q8; diff --git a/thirdparty/opus/mapping_matrix.c b/thirdparty/opus/mapping_matrix.c new file mode 100644 index 0000000000..31298af057 --- /dev/null +++ b/thirdparty/opus/mapping_matrix.c @@ -0,0 +1,378 @@ +/* Copyright (c) 2017 Google Inc. + Written by Andrew Allen */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "arch.h" +#include "float_cast.h" +#include "opus_private.h" +#include "opus_defines.h" +#include "mapping_matrix.h" + +#define MATRIX_INDEX(nb_rows, row, col) (nb_rows * col + row) + +opus_int32 mapping_matrix_get_size(int rows, int cols) +{ + opus_int32 size; + + /* Mapping Matrix must only support up to 255 channels in or out. + * Additionally, the total cell count must be <= 65004 octets in order + * for the matrix to be stored in an OGG header. + */ + if (rows > 255 || cols > 255) + return 0; + size = rows * (opus_int32)cols * sizeof(opus_int16); + if (size > 65004) + return 0; + + return align(sizeof(MappingMatrix)) + align(size); +} + +opus_int16 *mapping_matrix_get_data(const MappingMatrix *matrix) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (opus_int16*)(void*)((char*)matrix + align(sizeof(MappingMatrix))); +} + +void mapping_matrix_init(MappingMatrix * const matrix, + int rows, int cols, int gain, const opus_int16 *data, opus_int32 data_size) +{ + int i; + opus_int16 *ptr; + +#if !defined(ENABLE_ASSERTIONS) + (void)data_size; +#endif + celt_assert(align(data_size) == align(rows * cols * sizeof(opus_int16))); + + matrix->rows = rows; + matrix->cols = cols; + matrix->gain = gain; + ptr = mapping_matrix_get_data(matrix); + for (i = 0; i < rows * cols; i++) + { + ptr[i] = data[i]; + } +} + +#ifndef DISABLE_FLOAT_API +void mapping_matrix_multiply_channel_in_float( + const MappingMatrix *matrix, + const float *input, + int input_rows, + opus_val16 *output, + int output_row, + int output_rows, + int frame_size) +{ + /* Matrix data is ordered col-wise. */ + opus_int16* matrix_data; + int i, col; + + celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows); + + matrix_data = mapping_matrix_get_data(matrix); + + for (i = 0; i < frame_size; i++) + { + float tmp = 0; + for (col = 0; col < input_rows; col++) + { + tmp += + matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] * + input[MATRIX_INDEX(input_rows, col, i)]; + } +#if defined(FIXED_POINT) + output[output_rows * i] = FLOAT2INT16((1/32768.f)*tmp); +#else + output[output_rows * i] = (1/32768.f)*tmp; +#endif + } +} + +void mapping_matrix_multiply_channel_out_float( + const MappingMatrix *matrix, + const opus_val16 *input, + int input_row, + int input_rows, + float *output, + int output_rows, + int frame_size +) +{ + /* Matrix data is ordered col-wise. */ + opus_int16* matrix_data; + int i, row; + float input_sample; + + celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows); + + matrix_data = mapping_matrix_get_data(matrix); + + for (i = 0; i < frame_size; i++) + { +#if defined(FIXED_POINT) + input_sample = (1/32768.f)*input[input_rows * i]; +#else + input_sample = input[input_rows * i]; +#endif + for (row = 0; row < output_rows; row++) + { + float tmp = + (1/32768.f)*matrix_data[MATRIX_INDEX(matrix->rows, row, input_row)] * + input_sample; + output[MATRIX_INDEX(output_rows, row, i)] += tmp; + } + } +} +#endif /* DISABLE_FLOAT_API */ + +void mapping_matrix_multiply_channel_in_short( + const MappingMatrix *matrix, + const opus_int16 *input, + int input_rows, + opus_val16 *output, + int output_row, + int output_rows, + int frame_size) +{ + /* Matrix data is ordered col-wise. */ + opus_int16* matrix_data; + int i, col; + + celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows); + + matrix_data = mapping_matrix_get_data(matrix); + + for (i = 0; i < frame_size; i++) + { + opus_val32 tmp = 0; + for (col = 0; col < input_rows; col++) + { +#if defined(FIXED_POINT) + tmp += + ((opus_int32)matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] * + (opus_int32)input[MATRIX_INDEX(input_rows, col, i)]) >> 8; +#else + tmp += + matrix_data[MATRIX_INDEX(matrix->rows, output_row, col)] * + input[MATRIX_INDEX(input_rows, col, i)]; +#endif + } +#if defined(FIXED_POINT) + output[output_rows * i] = (opus_int16)((tmp + 64) >> 7); +#else + output[output_rows * i] = (1/(32768.f*32768.f))*tmp; +#endif + } +} + +void mapping_matrix_multiply_channel_out_short( + const MappingMatrix *matrix, + const opus_val16 *input, + int input_row, + int input_rows, + opus_int16 *output, + int output_rows, + int frame_size) +{ + /* Matrix data is ordered col-wise. */ + opus_int16* matrix_data; + int i, row; + opus_int32 input_sample; + + celt_assert(input_rows <= matrix->cols && output_rows <= matrix->rows); + + matrix_data = mapping_matrix_get_data(matrix); + + for (i = 0; i < frame_size; i++) + { +#if defined(FIXED_POINT) + input_sample = (opus_int32)input[input_rows * i]; +#else + input_sample = (opus_int32)FLOAT2INT16(input[input_rows * i]); +#endif + for (row = 0; row < output_rows; row++) + { + opus_int32 tmp = + (opus_int32)matrix_data[MATRIX_INDEX(matrix->rows, row, input_row)] * + input_sample; + output[MATRIX_INDEX(output_rows, row, i)] += (tmp + 16384) >> 15; + } + } +} + +const MappingMatrix mapping_matrix_foa_mixing = { 6, 6, 0 }; +const opus_int16 mapping_matrix_foa_mixing_data[36] = { + 16384, 0, -16384, 23170, 0, 0, 16384, 23170, + 16384, 0, 0, 0, 16384, 0, -16384, -23170, + 0, 0, 16384, -23170, 16384, 0, 0, 0, + 0, 0, 0, 0, 32767, 0, 0, 0, + 0, 0, 0, 32767 +}; + +const MappingMatrix mapping_matrix_soa_mixing = { 11, 11, 0 }; +const opus_int16 mapping_matrix_soa_mixing_data[121] = { + 10923, 7723, 13377, -13377, 11585, 9459, 7723, -16384, + -6689, 0, 0, 10923, 7723, 13377, 13377, -11585, + 9459, 7723, 16384, -6689, 0, 0, 10923, -15447, + 13377, 0, 0, -18919, 7723, 0, 13377, 0, + 0, 10923, 7723, -13377, -13377, 11585, -9459, 7723, + 16384, -6689, 0, 0, 10923, -7723, 0, 13377, + -16384, 0, -15447, 0, 9459, 0, 0, 10923, + -7723, 0, -13377, 16384, 0, -15447, 0, 9459, + 0, 0, 10923, 15447, 0, 0, 0, 0, + -15447, 0, -18919, 0, 0, 10923, 7723, -13377, + 13377, -11585, -9459, 7723, -16384, -6689, 0, 0, + 10923, -15447, -13377, 0, 0, 18919, 7723, 0, + 13377, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 32767, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 32767 +}; + +const MappingMatrix mapping_matrix_toa_mixing = { 18, 18, 0 }; +const opus_int16 mapping_matrix_toa_mixing_data[324] = { + 8208, 0, -881, 14369, 0, 0, -8192, -4163, + 13218, 0, 0, 0, 11095, -8836, -6218, 14833, + 0, 0, 8208, -10161, 881, 10161, -13218, -2944, + -8192, 2944, 0, -10488, -6218, 6248, -11095, -6248, + 0, -10488, 0, 0, 8208, 10161, 881, -10161, + -13218, 2944, -8192, -2944, 0, 10488, -6218, -6248, + -11095, 6248, 0, 10488, 0, 0, 8176, 5566, + -11552, 5566, 9681, -11205, 8192, -11205, 0, 4920, + -15158, 9756, -3334, 9756, 0, -4920, 0, 0, + 8176, 7871, 11552, 0, 0, 15846, 8192, 0, + -9681, -6958, 0, 13797, 3334, 0, -15158, 0, + 0, 0, 8176, 0, 11552, 7871, 0, 0, + 8192, 15846, 9681, 0, 0, 0, 3334, 13797, + 15158, 6958, 0, 0, 8176, 5566, -11552, -5566, + -9681, -11205, 8192, 11205, 0, 4920, 15158, 9756, + -3334, -9756, 0, 4920, 0, 0, 8208, 14369, + -881, 0, 0, -4163, -8192, 0, -13218, -14833, + 0, -8836, 11095, 0, 6218, 0, 0, 0, + 8208, 10161, 881, 10161, 13218, 2944, -8192, 2944, + 0, 10488, 6218, -6248, -11095, -6248, 0, -10488, + 0, 0, 8208, -14369, -881, 0, 0, 4163, + -8192, 0, -13218, 14833, 0, 8836, 11095, 0, + 6218, 0, 0, 0, 8208, 0, -881, -14369, + 0, 0, -8192, 4163, 13218, 0, 0, 0, + 11095, 8836, -6218, -14833, 0, 0, 8176, -5566, + -11552, 5566, -9681, 11205, 8192, -11205, 0, -4920, + 15158, -9756, -3334, 9756, 0, -4920, 0, 0, + 8176, 0, 11552, -7871, 0, 0, 8192, -15846, + 9681, 0, 0, 0, 3334, -13797, 15158, -6958, + 0, 0, 8176, -7871, 11552, 0, 0, -15846, + 8192, 0, -9681, 6958, 0, -13797, 3334, 0, + -15158, 0, 0, 0, 8176, -5566, -11552, -5566, + 9681, 11205, 8192, 11205, 0, -4920, -15158, -9756, + -3334, -9756, 0, 4920, 0, 0, 8208, -10161, + 881, -10161, 13218, -2944, -8192, -2944, 0, -10488, + 6218, 6248, -11095, 6248, 0, 10488, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 32767, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 32767 +}; + +const MappingMatrix mapping_matrix_foa_demixing = { 6, 6, 0 }; +const opus_int16 mapping_matrix_foa_demixing_data[36] = { + 16384, 16384, 16384, 16384, 0, 0, 0, 23170, + 0, -23170, 0, 0, -16384, 16384, -16384, 16384, + 0, 0, 23170, 0, -23170, 0, 0, 0, + 0, 0, 0, 0, 32767, 0, 0, 0, + 0, 0, 0, 32767 +}; + +const MappingMatrix mapping_matrix_soa_demixing = { 11, 11, 3050 }; +const opus_int16 mapping_matrix_soa_demixing_data[121] = { + 2771, 2771, 2771, 2771, 2771, 2771, 2771, 2771, + 2771, 0, 0, 10033, 10033, -20066, 10033, 14189, + 14189, -28378, 10033, -20066, 0, 0, 3393, 3393, + 3393, -3393, 0, 0, 0, -3393, -3393, 0, + 0, -17378, 17378, 0, -17378, -24576, 24576, 0, + 17378, 0, 0, 0, -14189, 14189, 0, -14189, + -28378, 28378, 0, 14189, 0, 0, 0, 2399, + 2399, -4799, -2399, 0, 0, 0, -2399, 4799, + 0, 0, 1959, 1959, 1959, 1959, -3918, -3918, + -3918, 1959, 1959, 0, 0, -4156, 4156, 0, + 4156, 0, 0, 0, -4156, 0, 0, 0, + 8192, 8192, -16384, 8192, 16384, 16384, -32768, 8192, + -16384, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 8312, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 8312 +}; + +const MappingMatrix mapping_matrix_toa_demixing = { 18, 18, 0 }; +const opus_int16 mapping_matrix_toa_demixing_data[324] = { + 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, + 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, + 0, 0, 0, -9779, 9779, 6263, 8857, 0, + 6263, 13829, 9779, -13829, 0, -6263, 0, -8857, + -6263, -9779, 0, 0, -3413, 3413, 3413, -11359, + 11359, 11359, -11359, -3413, 3413, -3413, -3413, -11359, + 11359, 11359, -11359, 3413, 0, 0, 13829, 9779, + -9779, 6263, 0, 8857, -6263, 0, 9779, 0, + -13829, 6263, -8857, 0, -6263, -9779, 0, 0, + 0, -15617, -15617, 6406, 0, 0, -6406, 0, + 15617, 0, 0, -6406, 0, 0, 6406, 15617, + 0, 0, 0, -5003, 5003, -10664, 15081, 0, + -10664, -7075, 5003, 7075, 0, 10664, 0, -15081, + 10664, -5003, 0, 0, -8176, -8176, -8176, 8208, + 8208, 8208, 8208, -8176, -8176, -8176, -8176, 8208, + 8208, 8208, 8208, -8176, 0, 0, -7075, 5003, + -5003, -10664, 0, 15081, 10664, 0, 5003, 0, + 7075, -10664, -15081, 0, 10664, -5003, 0, 0, + 15617, 0, 0, 0, -6406, 6406, 0, -15617, + 0, -15617, 15617, 0, 6406, -6406, 0, 0, + 0, 0, 0, -11393, 11393, 2993, -4233, 0, + 2993, -16112, 11393, 16112, 0, -2993, 0, 4233, + -2993, -11393, 0, 0, 0, -9974, -9974, -13617, + 0, 0, 13617, 0, 9974, 0, 0, 13617, + 0, 0, -13617, 9974, 0, 0, 0, 5579, + -5579, 10185, 14403, 0, 10185, -7890, -5579, 7890, + 0, -10185, 0, -14403, -10185, 5579, 0, 0, + 11826, -11826, -11826, -901, 901, 901, -901, 11826, + -11826, 11826, 11826, -901, 901, 901, -901, -11826, + 0, 0, -7890, -5579, 5579, 10185, 0, 14403, + -10185, 0, -5579, 0, 7890, 10185, -14403, 0, + -10185, 5579, 0, 0, -9974, 0, 0, 0, + -13617, 13617, 0, 9974, 0, 9974, -9974, 0, + 13617, -13617, 0, 0, 0, 0, 16112, -11393, + 11393, -2993, 0, 4233, 2993, 0, -11393, 0, + -16112, -2993, -4233, 0, 2993, 11393, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 32767, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 32767 +}; + diff --git a/thirdparty/opus/mapping_matrix.h b/thirdparty/opus/mapping_matrix.h new file mode 100644 index 0000000000..98bc82df3e --- /dev/null +++ b/thirdparty/opus/mapping_matrix.h @@ -0,0 +1,133 @@ +/* Copyright (c) 2017 Google Inc. + Written by Andrew Allen */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +/** + * @file mapping_matrix.h + * @brief Opus reference implementation mapping matrix API + */ + +#ifndef MAPPING_MATRIX_H +#define MAPPING_MATRIX_H + +#include "opus_types.h" +#include "opus_projection.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct MappingMatrix +{ + int rows; /* number of channels outputted from matrix. */ + int cols; /* number of channels inputted to matrix. */ + int gain; /* in dB. S7.8-format. */ + /* Matrix cell data goes here using col-wise ordering. */ +} MappingMatrix; + +opus_int32 mapping_matrix_get_size(int rows, int cols); + +opus_int16 *mapping_matrix_get_data(const MappingMatrix *matrix); + +void mapping_matrix_init( + MappingMatrix * const matrix, + int rows, + int cols, + int gain, + const opus_int16 *data, + opus_int32 data_size +); + +#ifndef DISABLE_FLOAT_API +void mapping_matrix_multiply_channel_in_float( + const MappingMatrix *matrix, + const float *input, + int input_rows, + opus_val16 *output, + int output_row, + int output_rows, + int frame_size +); + +void mapping_matrix_multiply_channel_out_float( + const MappingMatrix *matrix, + const opus_val16 *input, + int input_row, + int input_rows, + float *output, + int output_rows, + int frame_size +); +#endif /* DISABLE_FLOAT_API */ + +void mapping_matrix_multiply_channel_in_short( + const MappingMatrix *matrix, + const opus_int16 *input, + int input_rows, + opus_val16 *output, + int output_row, + int output_rows, + int frame_size +); + +void mapping_matrix_multiply_channel_out_short( + const MappingMatrix *matrix, + const opus_val16 *input, + int input_row, + int input_rows, + opus_int16 *output, + int output_rows, + int frame_size +); + +/* Pre-computed mixing and demixing matrices for 1st to 3rd-order ambisonics. + * foa: first-order ambisonics + * soa: second-order ambisonics + * toa: third-order ambisonics + */ +extern const MappingMatrix mapping_matrix_foa_mixing; +extern const opus_int16 mapping_matrix_foa_mixing_data[36]; + +extern const MappingMatrix mapping_matrix_soa_mixing; +extern const opus_int16 mapping_matrix_soa_mixing_data[121]; + +extern const MappingMatrix mapping_matrix_toa_mixing; +extern const opus_int16 mapping_matrix_toa_mixing_data[324]; + +extern const MappingMatrix mapping_matrix_foa_demixing; +extern const opus_int16 mapping_matrix_foa_demixing_data[36]; + +extern const MappingMatrix mapping_matrix_soa_demixing; +extern const opus_int16 mapping_matrix_soa_demixing_data[121]; + +extern const MappingMatrix mapping_matrix_toa_demixing; +extern const opus_int16 mapping_matrix_toa_demixing_data[324]; + +#ifdef __cplusplus +} +#endif + +#endif /* MAPPING_MATRIX_H */ diff --git a/thirdparty/opus/mlp.c b/thirdparty/opus/mlp.c index ff9e50df47..964c6a98f6 100644 --- a/thirdparty/opus/mlp.c +++ b/thirdparty/opus/mlp.c @@ -1,5 +1,5 @@ /* Copyright (c) 2008-2011 Octasic Inc. - Written by Jean-Marc Valin */ + 2012-2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions @@ -29,42 +29,13 @@ #include "config.h" #endif +#include <math.h> #include "opus_types.h" #include "opus_defines.h" - -#include <math.h> -#include "mlp.h" #include "arch.h" #include "tansig_table.h" -#define MAX_NEURONS 100 +#include "mlp.h" -#if 0 -static OPUS_INLINE opus_val16 tansig_approx(opus_val32 _x) /* Q19 */ -{ - int i; - opus_val16 xx; /* Q11 */ - /*double x, y;*/ - opus_val16 dy, yy; /* Q14 */ - /*x = 1.9073e-06*_x;*/ - if (_x>=QCONST32(8,19)) - return QCONST32(1.,14); - if (_x<=-QCONST32(8,19)) - return -QCONST32(1.,14); - xx = EXTRACT16(SHR32(_x, 8)); - /*i = lrint(25*x);*/ - i = SHR32(ADD32(1024,MULT16_16(25, xx)),11); - /*x -= .04*i;*/ - xx -= EXTRACT16(SHR32(MULT16_16(20972,i),8)); - /*x = xx*(1./2048);*/ - /*y = tansig_table[250+i];*/ - yy = tansig_table[250+i]; - /*y = yy*(1./16384);*/ - dy = 16384-MULT16_16_Q14(yy,yy); - yy = yy + MULT16_16_Q14(MULT16_16_Q11(xx,dy),(16384 - MULT16_16_Q11(yy,xx))); - return yy; -} -#else -/*extern const float tansig_table[501];*/ static OPUS_INLINE float tansig_approx(float x) { int i; @@ -92,54 +63,82 @@ static OPUS_INLINE float tansig_approx(float x) y = y + x*dy*(1 - y*x); return sign*y; } -#endif -#if 0 -void mlp_process(const MLP *m, const opus_val16 *in, opus_val16 *out) +static OPUS_INLINE float sigmoid_approx(float x) { - int j; - opus_val16 hidden[MAX_NEURONS]; - const opus_val16 *W = m->weights; - /* Copy to tmp_in */ - for (j=0;j<m->topo[1];j++) - { - int k; - opus_val32 sum = SHL32(EXTEND32(*W++),8); - for (k=0;k<m->topo[0];k++) - sum = MAC16_16(sum, in[k],*W++); - hidden[j] = tansig_approx(sum); - } - for (j=0;j<m->topo[2];j++) - { - int k; - opus_val32 sum = SHL32(EXTEND32(*W++),14); - for (k=0;k<m->topo[1];k++) - sum = MAC16_16(sum, hidden[k], *W++); - out[j] = tansig_approx(EXTRACT16(PSHR32(sum,17))); - } + return .5f + .5f*tansig_approx(.5f*x); +} + +static void gemm_accum(float *out, const opus_int8 *weights, int rows, int cols, int col_stride, const float *x) +{ + int i, j; + for (i=0;i<rows;i++) + { + for (j=0;j<cols;j++) + out[i] += weights[j*col_stride + i]*x[j]; + } } -#else -void mlp_process(const MLP *m, const float *in, float *out) + +void compute_dense(const DenseLayer *layer, float *output, const float *input) { - int j; - float hidden[MAX_NEURONS]; - const float *W = m->weights; - /* Copy to tmp_in */ - for (j=0;j<m->topo[1];j++) - { - int k; - float sum = *W++; - for (k=0;k<m->topo[0];k++) - sum = sum + in[k]**W++; - hidden[j] = tansig_approx(sum); - } - for (j=0;j<m->topo[2];j++) - { - int k; - float sum = *W++; - for (k=0;k<m->topo[1];k++) - sum = sum + hidden[k]**W++; - out[j] = tansig_approx(sum); - } + int i; + int N, M; + int stride; + M = layer->nb_inputs; + N = layer->nb_neurons; + stride = N; + for (i=0;i<N;i++) + output[i] = layer->bias[i]; + gemm_accum(output, layer->input_weights, N, M, stride, input); + for (i=0;i<N;i++) + output[i] *= WEIGHTS_SCALE; + if (layer->sigmoid) { + for (i=0;i<N;i++) + output[i] = sigmoid_approx(output[i]); + } else { + for (i=0;i<N;i++) + output[i] = tansig_approx(output[i]); + } } -#endif + +void compute_gru(const GRULayer *gru, float *state, const float *input) +{ + int i; + int N, M; + int stride; + float tmp[MAX_NEURONS]; + float z[MAX_NEURONS]; + float r[MAX_NEURONS]; + float h[MAX_NEURONS]; + M = gru->nb_inputs; + N = gru->nb_neurons; + stride = 3*N; + /* Compute update gate. */ + for (i=0;i<N;i++) + z[i] = gru->bias[i]; + gemm_accum(z, gru->input_weights, N, M, stride, input); + gemm_accum(z, gru->recurrent_weights, N, N, stride, state); + for (i=0;i<N;i++) + z[i] = sigmoid_approx(WEIGHTS_SCALE*z[i]); + + /* Compute reset gate. */ + for (i=0;i<N;i++) + r[i] = gru->bias[N + i]; + gemm_accum(r, &gru->input_weights[N], N, M, stride, input); + gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state); + for (i=0;i<N;i++) + r[i] = sigmoid_approx(WEIGHTS_SCALE*r[i]); + + /* Compute output. */ + for (i=0;i<N;i++) + h[i] = gru->bias[2*N + i]; + for (i=0;i<N;i++) + tmp[i] = state[i] * r[i]; + gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input); + gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp); + for (i=0;i<N;i++) + h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*h[i]); + for (i=0;i<N;i++) + state[i] = h[i]; +} + diff --git a/thirdparty/opus/mlp.h b/thirdparty/opus/mlp.h index 618e246e2c..d7670550fd 100644 --- a/thirdparty/opus/mlp.h +++ b/thirdparty/opus/mlp.h @@ -1,5 +1,4 @@ -/* Copyright (c) 2008-2011 Octasic Inc. - Written by Jean-Marc Valin */ +/* Copyright (c) 2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions @@ -28,16 +27,34 @@ #ifndef _MLP_H_ #define _MLP_H_ -#include "arch.h" +#include "opus_types.h" + +#define WEIGHTS_SCALE (1.f/128) + +#define MAX_NEURONS 32 typedef struct { - int layers; - const int *topo; - const float *weights; -} MLP; + const opus_int8 *bias; + const opus_int8 *input_weights; + int nb_inputs; + int nb_neurons; + int sigmoid; +} DenseLayer; + +typedef struct { + const opus_int8 *bias; + const opus_int8 *input_weights; + const opus_int8 *recurrent_weights; + int nb_inputs; + int nb_neurons; +} GRULayer; + +extern const DenseLayer layer0; +extern const GRULayer layer1; +extern const DenseLayer layer2; -extern const MLP net; +void compute_dense(const DenseLayer *layer, float *output, const float *input); -void mlp_process(const MLP *m, const float *in, float *out); +void compute_gru(const GRULayer *gru, float *state, const float *input); #endif /* _MLP_H_ */ diff --git a/thirdparty/opus/mlp_data.c b/thirdparty/opus/mlp_data.c index c2fda4e2e5..ae4178df76 100644 --- a/thirdparty/opus/mlp_data.c +++ b/thirdparty/opus/mlp_data.c @@ -1,5 +1,4 @@ -/* The contents of this file was automatically generated by mlp_train.c - It contains multi-layer perceptron (MLP) weights. */ +/*This file is automatically generated from a Keras model*/ #ifdef HAVE_CONFIG_H #include "config.h" @@ -7,103 +6,667 @@ #include "mlp.h" -/* RMS error was 0.138320, seed was 1361535663 */ +static const opus_int8 layer0_weights[800] = { + -30, -9, 2, -12, 5, -1, 8, 9, + 9, 8, -13, 18, -17, -34, -5, 17, + -11, 0, -4, 10, 2, 10, 15, -8, + 2, -1, 0, 5, 13, -3, -16, 1, + -5, 3, 7, -28, -13, 6, 36, -3, + 19, -60, -17, -28, 7, -11, -30, -7, + 2, -42, -21, -3, 6, -22, 33, -9, + 7, -30, 21, -14, 24, -11, -20, -18, + -5, -12, 12, -49, -50, -49, 16, 9, + -37, -1, 9, 34, -13, -31, -31, 12, + 16, 44, -42, 2, -9, 8, -18, -6, + 9, 36, 19, 11, 13, 12, -21, 3, + -28, -12, 3, 33, 25, -14, 11, 1, + -94, -39, 18, -12, -11, -15, -7, 49, + 52, 10, -43, 9, 57, 8, 21, -6, + 14, -15, 44, -8, 7, -30, -13, -2, + -9, 25, -2, -127, 18, -11, -52, 26, + -27, 27, 10, -10, 7, 43, 6, -24, + 41, 10, -18, -27, 10, 17, 9, 10, + -17, -10, 20, -6, 22, 55, 35, -80, + 36, 25, -24, -36, 15, 9, -19, 88, + 19, 64, -51, -35, 17, 0, -7, 41, + -16, 27, 4, 15, -1, 18, -16, 47, + -39, -54, -8, 13, -25, -20, 102, -18, + -5, 44, 11, -28, 71, 2, -51, -5, + 5, 2, -83, -9, -29, 8, 21, -53, + 58, -37, -7, 13, 38, 9, 34, -1, + -41, 21, 4, -24, -36, -33, -21, 32, + 75, -2, 1, -68, -1, 47, -29, 32, + 20, 12, -65, -87, 5, 16, -12, 24, + 40, 15, 7, 19, -26, -17, 17, 6, + -2, -37, -30, -9, 32, -127, -39, 0, + -31, -27, 4, -22, 23, -6, -77, 35, + -61, 32, -37, -24, 13, -11, -1, -40, + -3, 17, -7, 13, 11, 59, -19, 10, + 6, -18, 0, 13, 3, -6, -23, 19, + 11, -17, 13, -1, -80, 40, -53, 69, + -29, -54, 0, -4, 33, -25, -2, 38, + 35, 36, -15, 46, 2, -13, -16, -8, + -8, 12, -24, -9, -55, -5, -9, 32, + 11, 7, 12, -18, -10, -86, -38, 54, + 37, -25, 18, -43, 7, -27, -27, -54, + 13, 9, 22, 70, 6, 35, -7, 23, + -15, -44, -6, 7, -66, -85, 32, 40, + -19, -9, -7, 12, -15, 7, 2, 6, + -35, 11, 28, 0, 26, 14, 1, 1, + 4, 12, 18, 35, 22, -18, -3, 14, + -1, 7, 14, -8, -14, -3, 4, -3, + -19, -7, -1, -25, -27, 25, -26, -2, + 33, -22, -27, -25, 4, -9, 7, 21, + 26, -30, 10, -9, -20, 11, 27, 10, + 5, -18, 14, -4, 2, -17, -5, -7, + -9, -13, 15, 29, 1, -10, -16, -10, + 35, 36, -7, -22, -44, 17, 30, 22, + 21, -1, 22, -11, 32, -8, -7, 5, + -10, 5, 30, -20, 29, -20, -34, 12, + -4, -6, 6, -13, 10, -5, -68, -1, + 24, 9, 19, -24, -64, 31, 19, 27, + -26, 75, -45, 41, 39, -42, 8, 6, + 23, -30, 16, -25, 30, 34, 8, -38, + -3, 18, 16, -31, 22, -4, -9, 1, + 20, 9, 38, -32, 0, -45, 0, -6, + -13, 11, -25, -32, -22, 31, -24, -11, + -11, -4, -4, 20, -34, 22, 20, 9, + -25, 27, -5, 28, -29, 29, 6, 21, + -6, -18, 54, 4, -46, 23, 21, -14, + -31, 36, -41, -24, 4, 22, 10, 11, + 7, 36, -32, -13, -52, -17, 24, 28, + -37, -36, -1, 24, 9, -38, 35, 48, + 18, 2, -1, 45, 10, 39, 24, -38, + 13, 8, -16, 8, 25, 11, 7, -29, + -11, 7, 20, -30, -38, -45, 14, -18, + -28, -9, 65, 61, 22, -53, -38, -16, + 36, 46, 20, -39, 32, -61, -6, -6, + -36, -33, -18, -28, 56, 101, 45, 11, + -28, -23, -29, -61, 20, -47, 2, 48, + 27, -17, 1, 40, 1, 3, -51, 15, + 35, 28, 22, 35, 53, -61, -29, 12, + -6, -21, 10, 3, -20, 2, -25, 1, + -6, 31, 11, -3, 1, -10, -52, 6, + 126, -105, 122, 127, -128, 127, 127, -128, + 127, 108, 12, 127, 48, -128, -36, -128, + 127, 127, -128, -128, 127, 89, -128, 127, + -128, -128, -128, 127, 127, -128, -128, -93, + -82, 20, 125, 65, -82, 127, 38, -74, + 81, 88, -88, 79, 51, -47, -111, -26, + 14, 83, -88, -112, 24, 35, -101, 98, + -99, -48, -45, 46, 83, -60, -79, 45, + -20, -41, 9, 4, 52, 54, 93, -10, + 4, 13, 3, 123, 6, 94, -111, -69, + -14, -31, 10, 12, 53, -79, -11, -21, + -2, -44, -72, 92, 65, -57, 56, -38, + 127, -56, -128, 127, 127, -128, 86, 117, + -75, -128, 127, -19, -99, -112, 127, -128, + 127, -48, 114, 118, -128, -128, 117, -17, + -6, 121, -128, 127, -128, 82, 54, -106, + 127, 127, -33, 100, -39, -23, 18, -78, + -34, -29, -1, -30, 127, -26, 127, -128, + 126, -128, 27, -23, -79, -120, -127, 127, + 72, 66, 29, 7, -66, -56, -117, -128 +}; + +static const opus_int8 layer0_bias[32] = { + 51, -16, 1, 13, -5, -6, -16, -7, + 11, -6, 106, 26, 28, -14, 21, -29, + 7, 18, -18, -17, 21, -17, -9, 20, + -25, -3, -34, 48, 11, -13, -31, -20 +}; + +static const opus_int8 layer1_weights[2304] = { + 22, -1, -7, 7, 29, -27, -31, -17, + -13, 33, 44, -8, 11, 33, 24, 78, + 15, 19, 30, -2, -24, 5, 49, 5, + 36, 29, -14, -11, -48, -33, 21, -42, + -38, -12, 55, -37, 54, -8, 1, 36, + 17, 0, 51, 31, 59, 7, -12, 53, + 4, 32, -14, 48, 5, -10, -16, -8, + 1, -16, -56, -24, -6, 18, -2, 23, + 6, 46, -6, -10, 20, 35, -44, -15, + -49, 36, 16, 5, -7, -79, -67, 12, + 70, -3, -79, -54, -85, -24, 47, -22, + 33, 21, 69, -1, 11, 22, 14, -16, + -16, -22, -28, -11, 11, -41, 31, -26, + -33, -19, -4, 27, 32, -50, 5, -10, + -38, -22, -8, 35, -31, 1, -41, -15, + -11, 44, 28, -17, -41, -23, 17, 2, + -23, -26, -13, -13, -17, 6, 14, -31, + -25, 9, -19, 39, -8, 4, 31, -1, + -45, -11, -28, -92, -46, -15, 21, 118, + -22, 45, -51, 11, -20, -20, -15, 13, + -21, -97, -29, -32, -23, -42, 94, 1, + 23, -8, 63, -3, -46, 19, -26, 32, + -40, -74, -26, 26, -4, -13, 30, -20, + -30, -25, -14, -31, -45, -43, 4, -60, + -48, -12, -34, 2, 2, 3, 13, 15, + 11, 16, 5, 46, -9, -55, -16, -57, + 29, 14, 38, -50, -2, -44, -11, -8, + 52, -27, -38, -7, 20, 47, 17, -59, + 0, 47, 46, -63, 35, -17, 19, 33, + 68, -19, 2, 15, -16, 28, -16, -103, + 26, -35, 47, -39, -60, 30, 31, -23, + -52, -13, 116, 47, -25, 30, 40, 30, + -22, 2, 12, -27, -18, 31, -10, 27, + -8, -66, 12, 14, 4, -26, -28, -13, + 3, 13, -26, -51, 37, 5, 2, -21, + 47, 3, 13, 25, -41, -27, -8, -4, + 5, -76, -33, 28, 10, 9, -46, -74, + 19, 28, 25, 31, 54, -55, 68, 38, + -24, -32, 2, 4, 68, 11, -1, 99, + 5, 16, -2, -74, 40, 26, -26, 33, + 31, -1, -68, 14, -6, 25, 9, 29, + 60, 61, 7, -7, 0, -24, 7, 77, + 4, -1, 16, -7, 13, -15, -19, 28, + -31, -24, -16, 37, 24, 13, 30, 10, + -30, 11, 11, -10, 22, 60, 28, 45, + -3, -40, -62, -5, -102, 9, -32, -27, + -54, 21, 15, -5, 37, -43, -11, 37, + -19, 47, -64, -128, -27, -114, 21, -66, + 59, 46, -3, -12, -87, -9, 4, 19, + -113, -36, 78, 57, -26, -38, -77, -10, + 6, 6, -75, 25, -97, -11, 33, -46, + 1, 13, -21, -33, -20, 16, -6, -3, + -11, -4, -27, 38, 8, -41, -2, -33, + 18, 19, -26, 1, -29, -22, -4, -14, + -55, -11, -80, -3, 11, 34, 90, 51, + 11, 17, 43, 36, 127, -32, 29, 103, + 9, 27, 13, 64, 56, 70, -14, 3, + -12, 10, 37, 3, 12, -22, -10, 46, + 28, 10, 20, 26, -24, 18, 9, 7, + 14, 34, -5, -7, 31, -14, -56, 11, + -18, -8, -17, -7, -10, -40, 10, -33, + -32, -43, 5, 9, 11, -4, 10, 50, + -12, -5, 46, 9, 7, 1, 11, 15, + 91, -17, 7, -50, 23, 6, -30, -99, + 0, -17, 14, 8, -10, -25, -30, -69, + -62, 31, 127, 114, -23, 101, -5, -54, + -6, -22, 7, -56, 39, 18, -29, 0, + 46, 8, -79, 4, -21, 18, -32, 62, + -12, -8, -12, -58, 31, -32, 17, 6, + -24, 25, 24, 9, -4, -19, 45, 6, + 17, -14, 5, -27, 16, -4, -41, 25, + -36, 5, 15, 12, 50, 27, 25, 23, + -44, -69, -9, -19, -48, -8, 4, 12, + -6, 13, -19, -30, -36, 26, 37, -1, + -3, -30, -42, -14, -10, -20, 26, -54, + -27, -44, 4, 73, -26, 90, 32, -69, + -29, -16, 3, 103, 15, -17, 37, 24, + -23, -31, 33, -37, -64, 25, 13, -81, + -28, -32, 27, 5, -35, -23, 15, -22, + 19, -7, 9, 30, 19, -23, 27, -13, + 43, 29, -29, -6, 9, -40, -33, -33, + -32, 9, 11, -48, -8, -23, -52, 46, + 17, -22, -42, 35, -15, -41, 16, 34, + 31, -42, -19, -11, 55, 7, -39, 89, + -11, -33, 20, -14, 22, 32, 3, -17, + -6, 14, 34, 1, 55, -21, -90, -8, + 18, 27, 13, -29, 21, 15, -33, -51, + -9, -11, 4, -16, -18, 23, -4, -4, + 48, 1, 7, 29, -14, -12, -16, 17, + 35, 8, 0, -7, -2, 9, 8, 17, + -6, 53, -32, -21, -50, 5, 99, -60, + -5, -53, 10, -31, 12, -5, 7, 80, + 36, 18, -31, 9, 98, 36, -63, -35, + 4, -13, -28, -24, 28, -13, 18, 16, + -1, -18, -34, 10, 20, 7, 4, 29, + 11, 25, -7, 36, 14, 45, 24, 1, + -16, 30, 6, 35, -6, -11, -24, 13, + -1, 27, 39, 20, 48, -11, -4, -13, + 28, 11, -31, -18, 31, -29, 22, -2, + -20, -16, 5, 30, -12, -28, -3, 93, + -16, 23, 18, -29, 6, -54, -37, 28, + -3, -3, -47, -3, -36, -55, -3, 41, + -10, 47, -2, 23, 42, -7, -71, -27, + 83, -64, 7, -24, 8, 26, -17, 15, + 12, 31, -30, -38, -13, -33, -56, 4, + -17, 20, 18, 1, -30, -5, -6, -31, + -14, -37, 0, 22, 10, -30, 37, -17, + 18, 6, 5, 23, -36, -32, 14, 18, + -13, -61, -52, -69, 44, -30, 16, 18, + -4, -25, 14, 81, 26, -8, -23, -59, + 52, -104, 17, 119, -32, 26, 17, 1, + 23, 45, 29, -64, -57, -14, 73, 21, + -13, -13, 9, -68, -7, -52, 3, 24, + -39, 44, -15, 27, 14, 19, -9, -28, + -11, 5, 3, -34, -2, 2, 22, -6, + -23, 4, 3, 13, -22, -13, -10, -18, + 29, 6, 44, -13, -24, -8, 2, 30, + 14, 43, 6, 17, -73, -6, -7, 20, + -80, -7, -7, -28, 15, -69, -38, -5, + -100, -35, 15, -79, 23, 29, -18, -27, + 21, -66, -37, 8, -22, -39, 48, 4, + -13, 1, -9, 11, -29, 22, 6, -49, + 32, -14, 47, -18, -4, 44, -52, -74, + 43, 30, 23, -14, 5, 0, -27, 4, + -7, 10, -4, 10, 1, -16, 11, -18, + -2, -5, 2, -11, 0, -20, -4, 38, + 74, 59, 39, 64, -10, 26, -3, -40, + -68, 3, -30, -51, 8, -19, -27, -46, + 51, 52, 54, 36, 90, 92, 14, 13, + -5, 0, 16, -62, 16, 11, -47, -37, + -6, -5, 21, 54, -57, 32, 42, -6, + 62, -9, 16, 21, 24, 9, -10, -4, + 33, 50, 13, -15, 1, -35, -48, 18, + -11, -17, -67, -13, 21, 38, -44, 36, + -16, 29, 17, 5, -10, 18, 17, -32, + 2, 8, 22, -56, -15, -32, 40, 43, + 19, 46, -7, -100, -96, 19, 53, 24, + 21, -26, -48, -101, -82, 61, 38, -85, + -28, -34, -1, 63, -5, -5, 39, 39, + -38, 32, -12, -28, 20, 40, -8, 2, + 31, 12, -35, -13, 20, -25, 30, 8, + 3, -13, -9, -20, 2, -13, 24, 37, + -10, 33, 6, 20, -16, -24, -6, -6, + -19, -5, 22, 21, 10, 11, -4, -39, + -1, 6, 49, 41, -15, -57, 21, -62, + 77, -69, -13, 0, -74, 1, -7, -38, + -8, 6, 63, 28, 4, 26, -52, 82, + 63, 13, 45, -33, 44, -52, -65, -21, + -46, -49, 64, -17, 32, 24, 68, -39, + -16, -5, -26, 28, 5, -61, -28, 2, + 24, 11, -12, -33, 9, -37, -3, -28, + 22, -37, -12, 19, 0, -18, -2, 14, + 1, 4, 8, -9, -2, 43, -17, -2, + -66, -31, 56, -40, -87, -36, -2, -4, + -42, -45, -1, 31, -43, -15, 27, 63, + -11, 32, -10, -33, 27, -19, 4, 15, + -26, -34, 29, -4, -39, -65, 14, -20, + -21, -17, -36, 13, 59, 47, -38, -33, + 13, -37, -8, -37, -7, -6, -76, -31, + -12, -46, 7, 24, -21, -30, -14, 9, + 15, -12, -13, 47, -27, -25, -1, -39, + 0, 20, -9, 6, 7, 4, 3, 7, + 39, 50, 22, -7, 14, -20, 1, 70, + -28, 29, -41, 10, -16, -5, -28, -2, + -37, 32, -18, 17, 62, -11, -20, -50, + 36, 21, -62, -12, -56, 52, 50, 17, + 3, 48, 44, -41, -25, 3, 16, -3, + 0, 33, -6, 15, 27, 34, -25, 22, + 9, 17, -11, 36, 16, -2, 12, 21, + -52, 45, -2, -10, 46, 21, -18, 67, + -28, -13, 30, 37, 42, 16, -9, 11, + 75, 7, -64, -40, -10, 29, 57, -23, + 5, 53, -77, 3, -17, -5, 47, -55, + -35, -36, -13, 52, -53, -71, 52, -111, + -23, -26, -28, 29, -43, 55, -19, 43, + -19, 54, -12, -33, -44, -39, -19, -10, + -31, -10, 21, 38, -57, -20, 2, -25, + 8, -6, 50, 12, 15, 25, -25, 15, + -30, -6, 9, 25, 37, 19, -4, 31, + -22, 2, 4, 2, 36, 7, 3, -34, + -80, 36, -10, -2, -5, 31, -36, 49, + -70, 20, -36, 21, 24, 25, -46, -51, + 36, -58, -48, -40, -10, 55, 71, 47, + 10, -1, 1, 2, -46, -68, 16, 13, + 0, -74, -29, 73, -52, -18, -11, 7, + -44, -82, -32, -70, -28, -1, -39, -68, + -6, -41, 12, -22, -16, 40, -11, -25, + 51, -9, 21, 4, 4, -34, 7, -78, + 16, 6, -38, -30, -2, -44, 32, 0, + 22, 64, 5, -72, -2, -14, -10, -16, + -8, -25, 12, 102, -58, 37, -10, -23, + 15, 49, 7, -7, 2, -20, -32, 45, + -6, 48, 28, 30, 33, -1, 22, -6, + 30, 65, -17, 29, 74, 37, -26, -10, + 15, -24, 19, -66, 22, -10, -31, -1, + -18, -9, 11, 37, -4, 45, 5, 41, + 17, 1, 1, 24, -58, 41, 5, -51, + 14, 8, 43, 16, -10, -1, 45, 32, + -64, 3, -33, -25, -3, -27, -68, 12, + 23, -11, -13, -37, -40, 4, -21, -12, + 32, -23, -19, 76, 41, -23, -24, -44, + -65, -1, -15, 1, 71, 63, 5, 20, + -3, 21, -23, 31, -32, 18, -2, 27, + 31, 46, -5, -39, -5, -35, 18, -18, + -40, -10, 3, 12, 2, -2, -22, 40, + 5, -6, 60, 36, 3, 29, -27, 10, + 25, -54, 5, 26, 39, 35, -24, -37, + 30, -91, 28, -4, -21, -27, -39, -6, + 5, 12, -128, 38, -16, 29, -95, -29, + 82, -2, 35, 2, 12, 8, -22, 10, + 80, -47, 2, -25, -73, -79, 16, -30, + -32, -66, 48, 21, -45, -11, -47, 14, + -27, -17, -7, 15, -44, -14, -44, -26, + -32, 26, -23, 17, -7, -28, 26, -6, + 28, 6, -26, 2, 13, -14, -23, -14, + 19, 46, 16, 2, -33, -21, 28, -17, + -42, 44, -37, 1, -39, 28, 84, -46, + 15, 10, 13, -44, 72, -26, 26, 32, + -28, -12, -83, 2, 10, -30, -44, -10, + -28, 53, 45, 65, 0, -25, 57, 36, + -33, 6, 29, 44, -53, 11, 19, -2, + -27, 35, 32, 49, 4, 23, 38, 36, + 24, 10, 51, -39, 4, -7, 26, 37, + -35, 11, -47, -18, 28, 16, -35, 42, + 17, -21, -41, 28, 14, -12, 11, -45, + 7, -43, -15, 18, -5, 38, -40, -50, + -30, -21, 9, -98, 13, 12, 23, 75, + -56, -7, -3, -4, -1, -34, 12, -49, + 11, 26, -18, -28, -17, 33, 13, -14, + 40, 24, -72, -37, 10, 17, -6, 22, + 16, 16, -6, -12, -30, -14, 10, 40, + -23, 12, 15, -3, -15, 13, -56, -4, + -30, 1, -3, -17, 27, 50, -5, 64, + -36, -19, 7, 29, 22, 25, 9, -16, + -58, -69, -40, -61, -71, -14, 42, 93, + 26, 11, -6, -58, -11, 70, -52, 19, + 9, -30, -33, 11, -37, -47, -21, -22, + -40, 10, 47, 4, -23, 17, 48, 41, + -48, 14, 10, 15, 34, -23, -2, -47, + 23, -32, -13, -10, -26, -26, -4, 16, + 38, -14, 0, -12, -7, -7, 20, 44, + -1, -32, -27, -16, 4, -6, -18, 14, + 5, 4, -29, 28, 7, -7, 15, -11, + -20, -45, -36, 16, 84, 34, -59, -30, + 22, 126, 8, 68, 79, -17, 21, -68, + 37, 5, 15, 63, 49, 127, -90, 85, + 43, 7, 16, 9, 6, -45, -57, -43, + 57, 11, -23, -11, -29, 60, -26, 0, + 7, 42, -24, 10, 23, -25, 8, -7, + -40, 19, -17, 35, 4, 27, -39, -91, + 27, -36, 34, 2, 16, -24, 25, 7, + -21, 5, 17, 10, -22, -30, 9, -17, + -61, -26, 33, 21, 58, -51, -14, 69, + -38, 20, 7, 80, -4, -65, -6, -27, + 53, -12, 47, -1, -15, 1, 60, 102, + -79, -4, 12, 9, 22, 37, -8, -4, + 37, 2, -3, -15, -16, -11, -5, 19, + -6, -43, 20, -25, -18, 10, -27, 0, + -28, -27, -11, 10, -18, -2, -4, -16, + 26, 14, -6, 7, -6, 1, 53, -2, + -29, 23, 9, -30, -6, -4, -6, 56, + 70, 0, -33, -20, -17, -9, -24, 46, + -5, -105, 47, -46, -51, 20, 20, -53, + -81, -1, -7, 75, -5, -21, -65, 12, + -52, 22, -50, -12, 49, 54, 76, -81, + 10, 45, -41, -59, 18, -19, 25, 14, + -31, -53, -5, 12, 31, 84, -23, 2, + 7, 2, 10, -32, 39, -2, -12, 1, + -9, 0, -10, -11, 9, 15, -8, -2, + 2, -1, 10, 14, -5, -40, 19, -7, + -7, 26, -4, 2, 1, -27, 35, 32, + 21, -31, 26, 43, -9, 4, -32, 40, + -62, -52, 36, 22, 38, 22, 36, -96, + 6, -10, -23, -49, 15, -33, -18, -3, + 0, 41, 21, -19, 21, 23, -39, -23, + -6, 6, 47, 56, 4, 74, 0, -98, + 29, -47, -14, -36, 21, -22, 22, 16, + 13, 12, 16, -5, 13, 17, -13, -15, + 1, -34, -26, 26, 12, 32, 27, 13, + -67, 27, 2, 8, 10, 18, 16, 20, + -17, -17, 57, -64, 5, 14, 19, 31, + -18, -44, -46, -16, 4, -25, 17, -126, + -24, 39, 4, 8, 55, -25, -34, 39, + -16, 3, 9, 71, 72, -31, -55, 6, + 10, -25, 32, -85, -21, 18, -8, 15, + 12, -27, -7, 1, -21, -2, -5, 48, + -16, 18, 1, -22, -26, 16, 14, -31, + 27, -6, -15, -21, 4, -14, 18, -36 +}; + +static const opus_int8 layer1_recur_weights[1728] = { + 20, 67, -99, 12, 41, -25, 49, -44, + 35, 81, 110, 47, 34, -66, -14, 14, + -60, 34, 29, -73, 10, 41, 35, 89, + 7, -35, 22, 7, 27, -20, -6, 56, + 26, 66, 6, 33, -55, 53, 1, -21, + 14, 17, 68, 55, 59, 0, 18, -9, + 5, -41, 6, -5, -114, -12, 29, 42, + -23, 10, 81, -27, 20, -53, -30, -62, + 40, 95, 25, -4, 3, 18, -8, -15, + -29, -82, 2, -57, -3, -61, -29, -29, + 49, 2, -55, 5, -69, -99, -49, -51, + 6, -25, 12, 89, 44, -33, 5, 41, + 1, 23, -37, -37, -28, -48, 3, 4, + -41, -30, -57, -35, -39, -1, -13, -56, + -5, 50, 49, 41, -4, -4, 33, -22, + -1, 33, 34, 18, 40, -42, 12, 1, + -6, -2, 18, 17, 39, 44, 11, 65, + -60, -45, 10, 91, 21, 9, -62, -11, + 8, 69, 37, 24, -30, 21, 26, -27, + 1, -28, 24, 66, -8, 6, -71, 34, + 24, 44, 58, -78, -19, 57, 17, -60, + 1, 12, -3, -1, -40, 22, 11, -5, + 25, 12, 1, 72, 79, 7, -50, 23, + 18, 13, 21, -11, -20, 5, 77, -94, + 24, 15, 57, -51, 3, 36, 53, -1, + 4, 14, 30, -31, 22, 40, 32, -11, + -34, -36, -59, 58, 25, 21, -54, -23, + 40, 46, 18, 0, 12, 54, -96, -99, + -59, 5, 119, -38, 50, 55, 12, -16, + 67, 0, 34, 35, 39, 35, -1, 69, + 24, 27, -30, -35, -4, -70, 2, -44, + -7, -6, 19, -9, 60, 44, -21, -10, + 37, 43, -16, -3, 30, -15, -65, 31, + -55, 18, -98, 76, 64, 25, 24, -18, + -7, -68, -10, 38, 27, -60, 36, 33, + 16, 30, 34, -39, -37, 31, 12, 53, + -54, 14, -26, -49, -128, -13, -5, -22, + -11, -85, 55, -8, -51, -11, -33, -10, + -31, -76, -41, 23, 44, -40, -54, -127, + -101, 19, -23, -15, 15, 27, 58, -60, + 8, 14, -33, 1, 48, -9, -11, -123, + 3, 53, 23, 4, -28, 22, 2, -29, + -67, 36, 12, 7, 55, -21, 88, 20, + -1, -21, -17, 3, 41, 32, -10, -14, + -5, -57, 67, 57, 21, 23, -2, -27, + -73, -24, 120, 21, 18, -35, 42, -7, + 3, -45, -25, 76, -34, 50, 11, -54, + -91, 3, -113, -20, -5, 47, 15, -47, + 17, 27, -3, -26, -7, 10, 7, 74, + -40, 64, -7, -5, -24, -49, -24, -3, + -10, 27, -17, -8, -3, 14, -27, 33, + 13, 39, 28, -7, -38, 29, 16, 44, + 19, 55, -3, 9, -13, -57, 43, 43, + 31, 0, -93, -17, 19, -56, 4, -12, + -25, 37, -85, -13, -118, 33, -17, 56, + 71, -80, -4, 6, -11, -18, 47, -52, + 25, 9, 48, -107, 1, 21, 20, -3, + 10, -16, -4, 24, 17, 31, -61, -18, + -50, 24, -10, 12, 71, 26, 11, -3, + 4, 1, 0, -7, -40, 18, 38, -34, + 38, 17, 8, -34, 2, 21, 123, -32, + -26, 43, 14, -34, -1, -9, 37, -16, + 6, -17, -62, 68, 22, 17, 11, -75, + 33, -80, 62, -9, -75, 76, 36, -41, + -8, -40, -11, -71, 40, -39, 62, -49, + -81, 16, -9, -52, 52, 61, 17, -103, + -27, -10, -8, -54, -57, 21, 23, -16, + -52, 36, 18, 10, -5, 8, 15, -29, + 5, -19, -37, 8, -53, 6, 19, -37, + 38, -17, 48, 10, 0, 81, 46, 70, + -29, 101, 11, 44, -44, -3, 24, 11, + 3, 14, -9, 11, 14, -45, 13, 46, + -3, -57, 68, 44, 63, 98, 25, -28, + -23, 15, 32, -10, 53, -6, -2, -9, + -6, 16, -107, -11, -11, -28, 59, 57, + -22, 38, 42, 83, 27, 5, 29, -30, + 12, -21, -13, 31, 38, -21, 58, -10, + -10, -15, -2, -5, 11, 12, -73, -28, + -38, 22, 2, -25, 73, -52, -12, -55, + 32, -63, 21, 51, 33, 52, -26, 55, + -26, -26, 57, -32, -4, -52, -61, 21, + -33, -91, -51, 69, -90, -53, -38, -44, + 12, -76, -20, 77, -45, -7, 86, 43, + -109, -33, -105, -40, -121, -10, 0, -72, + 45, -51, -75, -49, -38, -1, -62, 18, + -1, 30, -44, -14, -10, -67, 40, -10, + -34, 46, -64, -32, 29, -13, 33, 3, + -32, -5, 28, -27, -25, 93, 24, 68, + -40, 57, 23, -3, -21, -58, 17, -39, + -17, -22, -89, 11, 18, -46, 27, 24, + 46, 127, 61, 87, 31, 127, -36, 47, + -23, 47, 127, -24, 110, 122, 30, 100, + 0, 96, -12, 6, 50, 44, -13, 73, + 4, 55, -11, -15, 49, 42, -6, 20, + -35, 58, 18, 38, 42, 72, 19, -21, + 11, 9, -37, 7, 29, 31, 16, -17, + 13, -50, 19, 5, -23, 51, -16, -5, + 4, -24, 76, 10, -53, -28, -7, -65, + 74, 40, -16, -29, 32, -16, -49, -35, + -3, 59, -96, -50, -43, -43, -61, -15, + -8, -36, -34, -33, -14, 11, -3, -39, + 4, -114, -123, -11, -49, -21, 14, -56, + 1, 43, -63, 26, 40, 18, -10, -26, + -14, -15, -35, -35, -11, 32, -44, -67, + 2, 22, 7, 3, -9, -30, -51, -28, + 28, 6, -22, 16, 34, -25, -52, -54, + -8, -6, 5, 8, 20, -16, -17, -44, + 27, 3, 31, -5, -48, -1, -3, 116, + 11, 71, -31, -47, 109, 50, -22, -12, + -57, 32, 66, 8, -25, -93, -54, -10, + 19, -76, -34, 97, 48, -36, -18, -30, + -39, -26, -12, 28, 14, 12, -12, -31, + 38, 2, 10, 4, -40, 20, 16, -61, + 2, 64, 39, 5, 15, 33, 40, -61, + -49, 93, -10, 33, 28, -11, -27, -18, + 39, -62, -6, -6, 62, 11, -8, 38, + -67, 12, 27, 39, -27, 123, -18, -6, + -65, 83, -64, 20, 19, -11, 33, 24, + 17, 56, 78, 7, -15, 54, -101, -9, + 115, -96, 50, 51, 35, 34, 27, 37, + -40, -11, 8, -36, 42, -45, 2, -23, + 0, 67, -8, -9, -13, 50, -14, -27, + 4, 0, -8, -14, 30, -9, 29, 15, + 9, -38, 37, -8, 50, -46, 54, 41, + -11, -8, -11, -26, 39, 45, 14, -26, + -17, -27, 69, 38, 39, 98, 66, 0, + 42, 123, -101, -19, -83, 117, -32, 56, + 10, 12, -88, 79, -53, 56, 63, 95, + -62, 9, 36, -13, -79, -16, 37, -46, + 35, -34, 14, 17, -54, 5, 21, -7, + 7, 63, 56, 15, 27, -76, -25, 4, + -26, -63, 28, -67, -52, 43, -47, -70, + 40, -12, 40, -66, -37, 0, 35, 37, + -53, 4, -17, -51, 11, 21, 14, -34, + -4, 24, -42, 29, 22, 7, 28, 12, + 37, 39, -39, -19, 65, -60, -50, -2, + 1, 82, 39, 19, -23, -43, -22, -67, + -35, -34, 32, 102, 81, 127, 36, 67, + -45, 1, -67, -52, -4, 35, 20, 28, + 71, 86, -35, -9, -83, -34, 12, 9, + -23, 2, 14, 28, -23, 7, -25, 45, + 7, 17, -37, 0, -19, 31, 26, 40, + -27, -16, 17, 5, -21, 23, 24, 96, + -55, 52, -19, -14, -6, 1, 50, -34, + 86, -53, 38, 2, -52, -36, -13, 60, + -85, -120, 32, 7, -12, 22, 70, -7, + -94, 38, -76, -31, -20, 15, -28, 7, + 6, 40, 53, 88, 3, 38, 18, -8, + -22, -23, 51, 37, -9, 13, -32, 25, + -21, 27, 31, 20, 18, -9, -13, 1, + 21, -24, -13, 39, 15, -11, -29, -36, + 18, 15, 8, 27, 21, -94, -1, -22, + 49, 66, -1, 6, -3, -40, -18, 6, + 28, 12, 33, -59, 62, 60, -48, 90, + -1, 108, 9, 18, -2, 27, 77, -65, + 82, -48, -38, -19, -11, 127, 50, 66, + 18, -13, -22, 60, -38, 40, -14, -26, + -13, 38, 67, 57, 30, 33, 26, 36, + 38, -17, 27, -28, 20, 12, -64, 18, + 5, -33, -27, 13, -26, 32, 35, -5, + -48, -14, 92, 43, -47, -14, 40, 11, + 51, 66, 22, -63, -16, -61, 4, -28, + 27, 20, -33, -30, -21, -29, -53, 31, + -40, 24, 43, -4, -19, 21, 67, 20, + 100, -16, -93, 78, -6, -18, -52, -37, + -9, 66, -31, -8, 26, 18, 4, 24, + -22, 17, -2, -13, 27, 0, 8, -18, + -25, 5, -21, -24, -7, 18, -93, 21, + 7, 2, -75, 69, 50, -5, -15, -17, + 60, -42, 55, 1, -4, 3, 10, 46, + 16, -13, 45, -7, -10, -44, -108, 49, + 2, -15, -64, -12, -72, 32, -38, -45, + 10, -54, 13, -13, -27, -36, -64, 58, + -62, -101, 88, -86, -71, -39, -9, -128, + 32, 15, -4, 54, -16, -39, -26, -36, + 46, 48, -64, -10, 19, 30, -13, 34, + -8, 50, 60, -22, -6, -11, -30, 5, + 50, 32, 56, 0, 25, 6, 68, 11, + -29, 45, -9, -12, 4, 1, 18, -49, + 0, -38, -19, 90, 29, 35, 51, 8, + -48, 96, -1, -12, -9, -32, -63, -65, + -7, 38, 89, 28, -85, -28, -23, -25, + -128, 56, 79, -36, 99, -6, -37, 7, + -13, -69, -46, -29, 25, 64, -21, 17, + 1, 42, -66, 1, 80, 26, -32, 21, + 15, 15, 6, 6, -10, 15, 127, 5, + 38, 27, 87, -57, -25, 11, 72, -21, + -5, 11, -13, -66, 78, 36, -3, 41, + -21, 8, -33, 23, 73, 28, 57, -25, + -5, 4, -22, -47, 15, 4, -57, -72, + 33, 1, 18, 2, 53, -71, -99, -21, + -3, -111, 108, 71, -14, 82, 25, 61, + -48, 5, 9, -51, -20, -25, -3, 14, + -33, 14, -3, -34, 22, 12, -19, -38, + -16, 2, 21, 16, 26, -31, 75, 44, + -31, 16, 26, 66, 17, -9, -22, -22, + 22, -44, 22, 27, 2, 58, -14, 10, + -73, -42, 55, -25, -61, 72, -1, 30, + -58, -25, 63, 26, -48, -40, 26, -30, + 60, 8, -17, -1, -18, -20, 43, -20, + -4, -28, 127, -106, 29, 70, 64, -27, + 39, -33, -5, -88, -40, -52, 26, 44, + -17, 23, 2, -49, 22, -9, -8, 86, + 49, -43, -60, 1, 10, 45, 36, -53, + -4, 33, 38, 48, -72, 1, 19, 21, + -65, 4, -5, -62, 27, -25, 17, -6, + 6, -45, -39, -46, 4, 26, 127, -9, + 18, -33, -18, -3, 33, 2, -5, 15, + -26, -22, -117, -63, -17, -59, 61, -74, + 7, -47, -58, -128, -67, 15, -16, -128, + 12, 2, 20, 9, -48, -40, 43, 3, + -40, -16, -38, -6, -22, -28, -16, -59, + -22, 6, -5, 11, -12, -66, -40, 27, + -62, -44, -19, 38, -3, 39, -8, 40, + -24, 13, 21, 50, -60, -22, 53, -29, + -6, 1, 22, -59, 0, 17, -39, 115 +}; -static const float weights[422] = { +static const opus_int8 layer1_bias[72] = { + -42, 20, 16, 0, 105, 60, 1, -97, + 24, 60, 18, 13, 62, 25, 127, 34, + 79, 55, 118, 127, 95, 31, -4, 87, + 21, 12, 2, -14, 18, 23, 8, 17, + -1, -8, 5, 4, 24, 37, 21, 13, + 36, 13, 17, 18, 37, 30, 33, 1, + 8, -16, -11, -5, -31, -3, -5, 0, + 6, 3, 58, -7, -1, -16, 5, -13, + 16, 10, -2, -14, 11, -4, 3, -11 +}; -/* hidden layer */ --0.0941125f, -0.302976f, -0.603555f, -0.19393f, -0.185983f, --0.601617f, -0.0465317f, -0.114563f, -0.103599f, -0.618938f, --0.317859f, -0.169949f, -0.0702885f, 0.148065f, 0.409524f, -0.548432f, 0.367649f, -0.494393f, 0.764306f, -1.83957f, -0.170849f, 12.786f, -1.08848f, -1.27284f, -16.2606f, -24.1773f, -5.57454f, -0.17276f, -0.163388f, -0.224421f, --0.0948944f, -0.0728695f, -0.26557f, -0.100283f, -0.0515459f, --0.146142f, -0.120674f, -0.180655f, 0.12857f, 0.442138f, --0.493735f, 0.167767f, 0.206699f, -0.197567f, 0.417999f, -1.50364f, -0.773341f, -10.0401f, 0.401872f, 2.97966f, -15.2165f, -1.88905f, -1.19254f, 0.0285397f, -0.00405139f, -0.0707565f, 0.00825699f, -0.0927269f, -0.010393f, -0.00428882f, --0.00489743f, -0.0709731f, -0.00255992f, 0.0395619f, 0.226424f, -0.0325231f, 0.162175f, -0.100118f, 0.485789f, 0.12697f, -0.285937f, 0.0155637f, 0.10546f, 3.05558f, 1.15059f, --1.00904f, -1.83088f, 3.31766f, -3.42516f, -0.119135f, --0.0405654f, 0.00690068f, 0.0179877f, -0.0382487f, 0.00597941f, --0.0183611f, 0.00190395f, -0.144322f, -0.0435671f, 0.000990594f, -0.221087f, 0.142405f, 0.484066f, 0.404395f, 0.511955f, --0.237255f, 0.241742f, 0.35045f, -0.699428f, 10.3993f, -2.6507f, -2.43459f, -4.18838f, 1.05928f, 1.71067f, -0.00667811f, -0.0721335f, -0.0397346f, 0.0362704f, -0.11496f, --0.0235776f, 0.0082161f, -0.0141741f, -0.0329699f, -0.0354253f, -0.00277404f, -0.290654f, -1.14767f, -0.319157f, -0.686544f, -0.36897f, 0.478899f, 0.182579f, -0.411069f, 0.881104f, --4.60683f, 1.4697f, 0.335845f, -1.81905f, -30.1699f, -5.55225f, 0.0019508f, -0.123576f, -0.0727332f, -0.0641597f, --0.0534458f, -0.108166f, -0.0937368f, -0.0697883f, -0.0275475f, --0.192309f, -0.110074f, 0.285375f, -0.405597f, 0.0926724f, --0.287881f, -0.851193f, -0.099493f, -0.233764f, -1.2852f, -1.13611f, 3.12168f, -0.0699f, -1.86216f, 2.65292f, --7.31036f, 2.44776f, -0.00111802f, -0.0632786f, -0.0376296f, --0.149851f, 0.142963f, 0.184368f, 0.123433f, 0.0756158f, -0.117312f, 0.0933395f, 0.0692163f, 0.0842592f, 0.0704683f, -0.0589963f, 0.0942205f, -0.448862f, 0.0262677f, 0.270352f, --0.262317f, 0.172586f, 2.00227f, -0.159216f, 0.038422f, -10.2073f, 4.15536f, -2.3407f, -0.0550265f, 0.00964792f, --0.141336f, 0.0274501f, 0.0343921f, -0.0487428f, 0.0950172f, --0.00775017f, -0.0372492f, -0.00548121f, -0.0663695f, 0.0960506f, --0.200008f, -0.0412827f, 0.58728f, 0.0515787f, 0.337254f, -0.855024f, 0.668371f, -0.114904f, -3.62962f, -0.467477f, --0.215472f, 2.61537f, 0.406117f, -1.36373f, 0.0425394f, -0.12208f, 0.0934502f, 0.123055f, 0.0340935f, -0.142466f, -0.035037f, -0.0490666f, 0.0733208f, 0.0576672f, 0.123984f, --0.0517194f, -0.253018f, 0.590565f, 0.145849f, 0.315185f, -0.221534f, -0.149081f, 0.216161f, -0.349575f, 24.5664f, --0.994196f, 0.614289f, -18.7905f, -2.83277f, -0.716801f, --0.347201f, 0.479515f, -0.246027f, 0.0758683f, 0.137293f, --0.17781f, 0.118751f, -0.00108329f, -0.237334f, 0.355732f, --0.12991f, -0.0547627f, -0.318576f, -0.325524f, 0.180494f, --0.0625604f, 0.141219f, 0.344064f, 0.37658f, -0.591772f, -5.8427f, -0.38075f, 0.221894f, -1.41934f, -1.87943e+06f, -1.34114f, 0.0283355f, -0.0447856f, -0.0211466f, -0.0256927f, -0.0139618f, 0.0207934f, -0.0107666f, 0.0110969f, 0.0586069f, --0.0253545f, -0.0328433f, 0.11872f, -0.216943f, 0.145748f, -0.119808f, -0.0915211f, -0.120647f, -0.0787719f, -0.143644f, --0.595116f, -1.152f, -1.25335f, -1.17092f, 4.34023f, --975268.f, -1.37033f, -0.0401123f, 0.210602f, -0.136656f, -0.135962f, -0.0523293f, 0.0444604f, 0.0143928f, 0.00412666f, --0.0193003f, 0.218452f, -0.110204f, -2.02563f, 0.918238f, --2.45362f, 1.19542f, -0.061362f, -1.92243f, 0.308111f, -0.49764f, 0.912356f, 0.209272f, -2.34525f, 2.19326f, --6.47121f, 1.69771f, -0.725123f, 0.0118929f, 0.0377944f, -0.0554003f, 0.0226452f, -0.0704421f, -0.0300309f, 0.0122978f, --0.0041782f, -0.0686612f, 0.0313115f, 0.039111f, 0.364111f, --0.0945548f, 0.0229876f, -0.17414f, 0.329795f, 0.114714f, -0.30022f, 0.106997f, 0.132355f, 5.79932f, 0.908058f, --0.905324f, -3.3561f, 0.190647f, 0.184211f, -0.673648f, -0.231807f, -0.0586222f, 0.230752f, -0.438277f, 0.245857f, --0.17215f, 0.0876383f, -0.720512f, 0.162515f, 0.0170571f, -0.101781f, 0.388477f, 1.32931f, 1.08548f, -0.936301f, --2.36958f, -6.71988f, -3.44376f, 2.13818f, 14.2318f, -4.91459f, -3.09052f, -9.69191f, -0.768234f, 1.79604f, -0.0549653f, 0.163399f, 0.0797025f, 0.0343933f, -0.0555876f, --0.00505673f, 0.0187258f, 0.0326628f, 0.0231486f, 0.15573f, -0.0476223f, -0.254824f, 1.60155f, -0.801221f, 2.55496f, -0.737629f, -1.36249f, -0.695463f, -2.44301f, -1.73188f, -3.95279f, 1.89068f, 0.486087f, -11.3343f, 3.9416e+06f, +static const opus_int8 layer2_weights[48] = { + -113, -88, 31, -128, -126, -61, 85, -35, + 118, -128, -61, 127, -128, -17, -128, 127, + 104, -9, -128, 33, 45, 127, 5, 83, + 84, -128, -85, -128, -45, 48, -53, -128, + 46, 127, -17, 125, 117, -41, -117, -91, + -127, -68, -1, -89, -80, 32, 106, 7 +}; -/* output layer */ --0.381439f, 0.12115f, -0.906927f, 2.93878f, 1.6388f, -0.882811f, 0.874344f, 1.21726f, -0.874545f, 0.321706f, -0.785055f, 0.946558f, -0.575066f, -3.46553f, 0.884905f, -0.0924047f, -9.90712f, 0.391338f, 0.160103f, -2.04954f, -4.1455f, 0.0684029f, -0.144761f, -0.285282f, 0.379244f, --1.1584f, -0.0277241f, -9.85f, -4.82386f, 3.71333f, -3.87308f, 3.52558f}; +static const opus_int8 layer2_bias[2] = { + 14, 117 +}; -static const int topo[3] = {25, 15, 2}; +const DenseLayer layer0 = { + layer0_bias, + layer0_weights, + 25, 32, 0 +}; -const MLP net = { - 3, - topo, - weights +const GRULayer layer1 = { + layer1_bias, + layer1_weights, + layer1_recur_weights, + 32, 24 }; + +const DenseLayer layer2 = { + layer2_bias, + layer2_weights, + 24, 2, 1 +}; + diff --git a/thirdparty/opus/opus.c b/thirdparty/opus/opus.c index f76f125cfa..538b5ea74e 100644 --- a/thirdparty/opus/opus.c +++ b/thirdparty/opus/opus.c @@ -107,7 +107,7 @@ OPUS_EXPORT void opus_pcm_soft_clip(float *_x, int N, int C, float *declip_mem) /* Slightly boost "a" by 2^-22. This is just enough to ensure -ffast-math does not cause output values larger than +/-1, but small enough not to matter even for 24-bit output. */ - a += a*2.4e-7; + a += a*2.4e-7f; if (x[i*C]>0) a = -a; /* Apply soft clipping */ @@ -252,7 +252,7 @@ int opus_packet_parse_impl(const unsigned char *data, opus_int32 len, /* Number of frames encoded in bits 0 to 5 */ ch = *data++; count = ch&0x3F; - if (count <= 0 || framesize*count > 5760) + if (count <= 0 || framesize*(opus_int32)count > 5760) return OPUS_INVALID_PACKET; len--; /* Padding flag is bit 6 */ diff --git a/thirdparty/opus/opus/opus.h b/thirdparty/opus/opus/opus.h index 5be73ddf4e..d282f21d25 100644 --- a/thirdparty/opus/opus/opus.h +++ b/thirdparty/opus/opus/opus.h @@ -531,7 +531,7 @@ OPUS_EXPORT int opus_packet_parse( const unsigned char *frames[48], opus_int16 size[48], int *payload_offset -) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4); +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5); /** Gets the bandwidth of an Opus packet. * @param [in] data <tt>char*</tt>: Opus packet diff --git a/thirdparty/opus/opus/opus_defines.h b/thirdparty/opus/opus/opus_defines.h index 315412dd1d..d141418b21 100644 --- a/thirdparty/opus/opus/opus_defines.h +++ b/thirdparty/opus/opus/opus_defines.h @@ -165,8 +165,13 @@ extern "C" { #define OPUS_GET_EXPERT_FRAME_DURATION_REQUEST 4041 #define OPUS_SET_PREDICTION_DISABLED_REQUEST 4042 #define OPUS_GET_PREDICTION_DISABLED_REQUEST 4043 - /* Don't use 4045, it's already taken by OPUS_GET_GAIN_REQUEST */ +#define OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST 4046 +#define OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST 4047 +#define OPUS_GET_IN_DTX_REQUEST 4049 + +/** Defines for the presence of extended APIs. */ +#define OPUS_HAVE_OPUS_PROJECTION_H /* Macros to trigger compilation errors when the wrong types are provided to a CTL */ #define __opus_check_int(x) (((void)((x) == (opus_int32)0)), (opus_int32)(x)) @@ -208,6 +213,9 @@ extern "C" { #define OPUS_FRAMESIZE_20_MS 5004 /**< Use 20 ms frames */ #define OPUS_FRAMESIZE_40_MS 5005 /**< Use 40 ms frames */ #define OPUS_FRAMESIZE_60_MS 5006 /**< Use 60 ms frames */ +#define OPUS_FRAMESIZE_80_MS 5007 /**< Use 80 ms frames */ +#define OPUS_FRAMESIZE_100_MS 5008 /**< Use 100 ms frames */ +#define OPUS_FRAMESIZE_120_MS 5009 /**< Use 120 ms frames */ /**@}*/ @@ -566,7 +574,9 @@ extern "C" { * <dt>OPUS_FRAMESIZE_20_MS</dt><dd>Use 20 ms frames.</dd> * <dt>OPUS_FRAMESIZE_40_MS</dt><dd>Use 40 ms frames.</dd> * <dt>OPUS_FRAMESIZE_60_MS</dt><dd>Use 60 ms frames.</dd> - * <dt>OPUS_FRAMESIZE_VARIABLE</dt><dd>Optimize the frame size dynamically.</dd> + * <dt>OPUS_FRAMESIZE_80_MS</dt><dd>Use 80 ms frames.</dd> + * <dt>OPUS_FRAMESIZE_100_MS</dt><dd>Use 100 ms frames.</dd> + * <dt>OPUS_FRAMESIZE_120_MS</dt><dd>Use 120 ms frames.</dd> * </dl> * @hideinitializer */ #define OPUS_SET_EXPERT_FRAME_DURATION(x) OPUS_SET_EXPERT_FRAME_DURATION_REQUEST, __opus_check_int(x) @@ -581,7 +591,9 @@ extern "C" { * <dt>OPUS_FRAMESIZE_20_MS</dt><dd>Use 20 ms frames.</dd> * <dt>OPUS_FRAMESIZE_40_MS</dt><dd>Use 40 ms frames.</dd> * <dt>OPUS_FRAMESIZE_60_MS</dt><dd>Use 60 ms frames.</dd> - * <dt>OPUS_FRAMESIZE_VARIABLE</dt><dd>Optimize the frame size dynamically.</dd> + * <dt>OPUS_FRAMESIZE_80_MS</dt><dd>Use 80 ms frames.</dd> + * <dt>OPUS_FRAMESIZE_100_MS</dt><dd>Use 100 ms frames.</dd> + * <dt>OPUS_FRAMESIZE_120_MS</dt><dd>Use 120 ms frames.</dd> * </dl> * @hideinitializer */ #define OPUS_GET_EXPERT_FRAME_DURATION(x) OPUS_GET_EXPERT_FRAME_DURATION_REQUEST, __opus_check_int_ptr(x) @@ -681,6 +693,40 @@ extern "C" { */ #define OPUS_GET_SAMPLE_RATE(x) OPUS_GET_SAMPLE_RATE_REQUEST, __opus_check_int_ptr(x) +/** If set to 1, disables the use of phase inversion for intensity stereo, + * improving the quality of mono downmixes, but slightly reducing normal + * stereo quality. Disabling phase inversion in the decoder does not comply + * with RFC 6716, although it does not cause any interoperability issue and + * is expected to become part of the Opus standard once RFC 6716 is updated + * by draft-ietf-codec-opus-update. + * @see OPUS_GET_PHASE_INVERSION_DISABLED + * @param[in] x <tt>opus_int32</tt>: Allowed values: + * <dl> + * <dt>0</dt><dd>Enable phase inversion (default).</dd> + * <dt>1</dt><dd>Disable phase inversion.</dd> + * </dl> + * @hideinitializer */ +#define OPUS_SET_PHASE_INVERSION_DISABLED(x) OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST, __opus_check_int(x) +/** Gets the encoder's configured phase inversion status. + * @see OPUS_SET_PHASE_INVERSION_DISABLED + * @param[out] x <tt>opus_int32 *</tt>: Returns one of the following values: + * <dl> + * <dt>0</dt><dd>Stereo phase inversion enabled (default).</dd> + * <dt>1</dt><dd>Stereo phase inversion disabled.</dd> + * </dl> + * @hideinitializer */ +#define OPUS_GET_PHASE_INVERSION_DISABLED(x) OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST, __opus_check_int_ptr(x) +/** Gets the DTX state of the encoder. + * Returns whether the last encoded frame was either a comfort noise update + * during DTX or not encoded because of DTX. + * @param[out] x <tt>opus_int32 *</tt>: Returns one of the following values: + * <dl> + * <dt>0</dt><dd>The encoder is not in DTX.</dd> + * <dt>1</dt><dd>The encoder is in DTX.</dd> + * </dl> + * @hideinitializer */ +#define OPUS_GET_IN_DTX(x) OPUS_GET_IN_DTX_REQUEST, __opus_check_int_ptr(x) + /**@}*/ /** @defgroup opus_decoderctls Decoder related CTLs diff --git a/thirdparty/opus/opus/opus_multistream.h b/thirdparty/opus/opus/opus_multistream.h index 3622e009fb..babcee6905 100644 --- a/thirdparty/opus/opus/opus_multistream.h +++ b/thirdparty/opus/opus/opus_multistream.h @@ -273,7 +273,7 @@ OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder *opus_multistream_surround_enc unsigned char *mapping, int application, int *error -) OPUS_ARG_NONNULL(5); +) OPUS_ARG_NONNULL(4) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6); /** Initialize a previously allocated multistream encoder state. * The memory pointed to by \a st must be at least the size returned by @@ -342,7 +342,7 @@ OPUS_EXPORT int opus_multistream_surround_encoder_init( int *coupled_streams, unsigned char *mapping, int application -) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6); +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6) OPUS_ARG_NONNULL(7); /** Encodes a multistream Opus frame. * @param st <tt>OpusMSEncoder*</tt>: Multistream encoder state. diff --git a/thirdparty/opus/opus/opus_projection.h b/thirdparty/opus/opus/opus_projection.h new file mode 100644 index 0000000000..9dabf4e85c --- /dev/null +++ b/thirdparty/opus/opus/opus_projection.h @@ -0,0 +1,568 @@ +/* Copyright (c) 2017 Google Inc. + Written by Andrew Allen */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +/** + * @file opus_projection.h + * @brief Opus projection reference API + */ + +#ifndef OPUS_PROJECTION_H +#define OPUS_PROJECTION_H + +#include "opus_multistream.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @cond OPUS_INTERNAL_DOC */ + +/** These are the actual encoder and decoder CTL ID numbers. + * They should not be used directly by applications.c + * In general, SETs should be even and GETs should be odd.*/ +/**@{*/ +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST 6001 +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST 6003 +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST 6005 +/**@}*/ + + +/** @endcond */ + +/** @defgroup opus_projection_ctls Projection specific encoder and decoder CTLs + * + * These are convenience macros that are specific to the + * opus_projection_encoder_ctl() and opus_projection_decoder_ctl() + * interface. + * The CTLs from @ref opus_genericctls, @ref opus_encoderctls, + * @ref opus_decoderctls, and @ref opus_multistream_ctls may be applied to a + * projection encoder or decoder as well. + */ +/**@{*/ + +/** Gets the gain (in dB. S7.8-format) of the demixing matrix from the encoder. + * @param[out] x <tt>opus_int32 *</tt>: Returns the gain (in dB. S7.8-format) + * of the demixing matrix. + * @hideinitializer + */ +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN(x) OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST, __opus_check_int_ptr(x) + + +/** Gets the size in bytes of the demixing matrix from the encoder. + * @param[out] x <tt>opus_int32 *</tt>: Returns the size in bytes of the + * demixing matrix. + * @hideinitializer + */ +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE(x) OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST, __opus_check_int_ptr(x) + + +/** Copies the demixing matrix to the supplied pointer location. + * @param[out] x <tt>unsigned char *</tt>: Returns the demixing matrix to the + * supplied pointer location. + * @param y <tt>opus_int32</tt>: The size in bytes of the reserved memory at the + * pointer location. + * @hideinitializer + */ +#define OPUS_PROJECTION_GET_DEMIXING_MATRIX(x,y) OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST, x, __opus_check_int(y) + + +/**@}*/ + +/** Opus projection encoder state. + * This contains the complete state of a projection Opus encoder. + * It is position independent and can be freely copied. + * @see opus_projection_ambisonics_encoder_create + */ +typedef struct OpusProjectionEncoder OpusProjectionEncoder; + + +/** Opus projection decoder state. + * This contains the complete state of a projection Opus decoder. + * It is position independent and can be freely copied. + * @see opus_projection_decoder_create + * @see opus_projection_decoder_init + */ +typedef struct OpusProjectionDecoder OpusProjectionDecoder; + + +/**\name Projection encoder functions */ +/**@{*/ + +/** Gets the size of an OpusProjectionEncoder structure. + * @param channels <tt>int</tt>: The total number of input channels to encode. + * This must be no more than 255. + * @param mapping_family <tt>int</tt>: The mapping family to use for selecting + * the appropriate projection. + * @returns The size in bytes on success, or a negative error code + * (see @ref opus_errorcodes) on error. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_projection_ambisonics_encoder_get_size( + int channels, + int mapping_family +); + + +/** Allocates and initializes a projection encoder state. + * Call opus_projection_encoder_destroy() to release + * this object when finished. + * @param Fs <tt>opus_int32</tt>: Sampling rate of the input signal (in Hz). + * This must be one of 8000, 12000, 16000, + * 24000, or 48000. + * @param channels <tt>int</tt>: Number of channels in the input signal. + * This must be at most 255. + * It may be greater than the number of + * coded channels (<code>streams + + * coupled_streams</code>). + * @param mapping_family <tt>int</tt>: The mapping family to use for selecting + * the appropriate projection. + * @param[out] streams <tt>int *</tt>: The total number of streams that will + * be encoded from the input. + * @param[out] coupled_streams <tt>int *</tt>: Number of coupled (2 channel) + * streams that will be encoded from the input. + * @param application <tt>int</tt>: The target encoder application. + * This must be one of the following: + * <dl> + * <dt>#OPUS_APPLICATION_VOIP</dt> + * <dd>Process signal for improved speech intelligibility.</dd> + * <dt>#OPUS_APPLICATION_AUDIO</dt> + * <dd>Favor faithfulness to the original input.</dd> + * <dt>#OPUS_APPLICATION_RESTRICTED_LOWDELAY</dt> + * <dd>Configure the minimum possible coding delay by disabling certain modes + * of operation.</dd> + * </dl> + * @param[out] error <tt>int *</tt>: Returns #OPUS_OK on success, or an error + * code (see @ref opus_errorcodes) on + * failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusProjectionEncoder *opus_projection_ambisonics_encoder_create( + opus_int32 Fs, + int channels, + int mapping_family, + int *streams, + int *coupled_streams, + int application, + int *error +) OPUS_ARG_NONNULL(4) OPUS_ARG_NONNULL(5); + + +/** Initialize a previously allocated projection encoder state. + * The memory pointed to by \a st must be at least the size returned by + * opus_projection_ambisonics_encoder_get_size(). + * This is intended for applications which use their own allocator instead of + * malloc. + * To reset a previously initialized state, use the #OPUS_RESET_STATE CTL. + * @see opus_projection_ambisonics_encoder_create + * @see opus_projection_ambisonics_encoder_get_size + * @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state to initialize. + * @param Fs <tt>opus_int32</tt>: Sampling rate of the input signal (in Hz). + * This must be one of 8000, 12000, 16000, + * 24000, or 48000. + * @param channels <tt>int</tt>: Number of channels in the input signal. + * This must be at most 255. + * It may be greater than the number of + * coded channels (<code>streams + + * coupled_streams</code>). + * @param streams <tt>int</tt>: The total number of streams to encode from the + * input. + * This must be no more than the number of channels. + * @param coupled_streams <tt>int</tt>: Number of coupled (2 channel) streams + * to encode. + * This must be no larger than the total + * number of streams. + * Additionally, The total number of + * encoded channels (<code>streams + + * coupled_streams</code>) must be no + * more than the number of input channels. + * @param application <tt>int</tt>: The target encoder application. + * This must be one of the following: + * <dl> + * <dt>#OPUS_APPLICATION_VOIP</dt> + * <dd>Process signal for improved speech intelligibility.</dd> + * <dt>#OPUS_APPLICATION_AUDIO</dt> + * <dd>Favor faithfulness to the original input.</dd> + * <dt>#OPUS_APPLICATION_RESTRICTED_LOWDELAY</dt> + * <dd>Configure the minimum possible coding delay by disabling certain modes + * of operation.</dd> + * </dl> + * @returns #OPUS_OK on success, or an error code (see @ref opus_errorcodes) + * on failure. + */ +OPUS_EXPORT int opus_projection_ambisonics_encoder_init( + OpusProjectionEncoder *st, + opus_int32 Fs, + int channels, + int mapping_family, + int *streams, + int *coupled_streams, + int application +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6); + + +/** Encodes a projection Opus frame. + * @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state. + * @param[in] pcm <tt>const opus_int16*</tt>: The input signal as interleaved + * samples. + * This must contain + * <code>frame_size*channels</code> + * samples. + * @param frame_size <tt>int</tt>: Number of samples per channel in the input + * signal. + * This must be an Opus frame size for the + * encoder's sampling rate. + * For example, at 48 kHz the permitted values + * are 120, 240, 480, 960, 1920, and 2880. + * Passing in a duration of less than 10 ms + * (480 samples at 48 kHz) will prevent the + * encoder from using the LPC or hybrid modes. + * @param[out] data <tt>unsigned char*</tt>: Output payload. + * This must contain storage for at + * least \a max_data_bytes. + * @param [in] max_data_bytes <tt>opus_int32</tt>: Size of the allocated + * memory for the output + * payload. This may be + * used to impose an upper limit on + * the instant bitrate, but should + * not be used as the only bitrate + * control. Use #OPUS_SET_BITRATE to + * control the bitrate. + * @returns The length of the encoded packet (in bytes) on success or a + * negative error code (see @ref opus_errorcodes) on failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_encode( + OpusProjectionEncoder *st, + const opus_int16 *pcm, + int frame_size, + unsigned char *data, + opus_int32 max_data_bytes +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4); + + +/** Encodes a projection Opus frame from floating point input. + * @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state. + * @param[in] pcm <tt>const float*</tt>: The input signal as interleaved + * samples with a normal range of + * +/-1.0. + * Samples with a range beyond +/-1.0 + * are supported but will be clipped by + * decoders using the integer API and + * should only be used if it is known + * that the far end supports extended + * dynamic range. + * This must contain + * <code>frame_size*channels</code> + * samples. + * @param frame_size <tt>int</tt>: Number of samples per channel in the input + * signal. + * This must be an Opus frame size for the + * encoder's sampling rate. + * For example, at 48 kHz the permitted values + * are 120, 240, 480, 960, 1920, and 2880. + * Passing in a duration of less than 10 ms + * (480 samples at 48 kHz) will prevent the + * encoder from using the LPC or hybrid modes. + * @param[out] data <tt>unsigned char*</tt>: Output payload. + * This must contain storage for at + * least \a max_data_bytes. + * @param [in] max_data_bytes <tt>opus_int32</tt>: Size of the allocated + * memory for the output + * payload. This may be + * used to impose an upper limit on + * the instant bitrate, but should + * not be used as the only bitrate + * control. Use #OPUS_SET_BITRATE to + * control the bitrate. + * @returns The length of the encoded packet (in bytes) on success or a + * negative error code (see @ref opus_errorcodes) on failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_encode_float( + OpusProjectionEncoder *st, + const float *pcm, + int frame_size, + unsigned char *data, + opus_int32 max_data_bytes +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4); + + +/** Frees an <code>OpusProjectionEncoder</code> allocated by + * opus_projection_ambisonics_encoder_create(). + * @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state to be freed. + */ +OPUS_EXPORT void opus_projection_encoder_destroy(OpusProjectionEncoder *st); + + +/** Perform a CTL function on a projection Opus encoder. + * + * Generally the request and subsequent arguments are generated by a + * convenience macro. + * @param st <tt>OpusProjectionEncoder*</tt>: Projection encoder state. + * @param request This and all remaining parameters should be replaced by one + * of the convenience macros in @ref opus_genericctls, + * @ref opus_encoderctls, @ref opus_multistream_ctls, or + * @ref opus_projection_ctls + * @see opus_genericctls + * @see opus_encoderctls + * @see opus_multistream_ctls + * @see opus_projection_ctls + */ +OPUS_EXPORT int opus_projection_encoder_ctl(OpusProjectionEncoder *st, int request, ...) OPUS_ARG_NONNULL(1); + + +/**@}*/ + +/**\name Projection decoder functions */ +/**@{*/ + +/** Gets the size of an <code>OpusProjectionDecoder</code> structure. + * @param channels <tt>int</tt>: The total number of output channels. + * This must be no more than 255. + * @param streams <tt>int</tt>: The total number of streams coded in the + * input. + * This must be no more than 255. + * @param coupled_streams <tt>int</tt>: Number streams to decode as coupled + * (2 channel) streams. + * This must be no larger than the total + * number of streams. + * Additionally, The total number of + * coded channels (<code>streams + + * coupled_streams</code>) must be no + * more than 255. + * @returns The size in bytes on success, or a negative error code + * (see @ref opus_errorcodes) on error. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_projection_decoder_get_size( + int channels, + int streams, + int coupled_streams +); + + +/** Allocates and initializes a projection decoder state. + * Call opus_projection_decoder_destroy() to release + * this object when finished. + * @param Fs <tt>opus_int32</tt>: Sampling rate to decode at (in Hz). + * This must be one of 8000, 12000, 16000, + * 24000, or 48000. + * @param channels <tt>int</tt>: Number of channels to output. + * This must be at most 255. + * It may be different from the number of coded + * channels (<code>streams + + * coupled_streams</code>). + * @param streams <tt>int</tt>: The total number of streams coded in the + * input. + * This must be no more than 255. + * @param coupled_streams <tt>int</tt>: Number of streams to decode as coupled + * (2 channel) streams. + * This must be no larger than the total + * number of streams. + * Additionally, The total number of + * coded channels (<code>streams + + * coupled_streams</code>) must be no + * more than 255. + * @param[in] demixing_matrix <tt>const unsigned char[demixing_matrix_size]</tt>: Demixing matrix + * that mapping from coded channels to output channels, + * as described in @ref opus_projection and + * @ref opus_projection_ctls. + * @param demixing_matrix_size <tt>opus_int32</tt>: The size in bytes of the + * demixing matrix, as + * described in @ref + * opus_projection_ctls. + * @param[out] error <tt>int *</tt>: Returns #OPUS_OK on success, or an error + * code (see @ref opus_errorcodes) on + * failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusProjectionDecoder *opus_projection_decoder_create( + opus_int32 Fs, + int channels, + int streams, + int coupled_streams, + unsigned char *demixing_matrix, + opus_int32 demixing_matrix_size, + int *error +) OPUS_ARG_NONNULL(5); + + +/** Intialize a previously allocated projection decoder state object. + * The memory pointed to by \a st must be at least the size returned by + * opus_projection_decoder_get_size(). + * This is intended for applications which use their own allocator instead of + * malloc. + * To reset a previously initialized state, use the #OPUS_RESET_STATE CTL. + * @see opus_projection_decoder_create + * @see opus_projection_deocder_get_size + * @param st <tt>OpusProjectionDecoder*</tt>: Projection encoder state to initialize. + * @param Fs <tt>opus_int32</tt>: Sampling rate to decode at (in Hz). + * This must be one of 8000, 12000, 16000, + * 24000, or 48000. + * @param channels <tt>int</tt>: Number of channels to output. + * This must be at most 255. + * It may be different from the number of coded + * channels (<code>streams + + * coupled_streams</code>). + * @param streams <tt>int</tt>: The total number of streams coded in the + * input. + * This must be no more than 255. + * @param coupled_streams <tt>int</tt>: Number of streams to decode as coupled + * (2 channel) streams. + * This must be no larger than the total + * number of streams. + * Additionally, The total number of + * coded channels (<code>streams + + * coupled_streams</code>) must be no + * more than 255. + * @param[in] demixing_matrix <tt>const unsigned char[demixing_matrix_size]</tt>: Demixing matrix + * that mapping from coded channels to output channels, + * as described in @ref opus_projection and + * @ref opus_projection_ctls. + * @param demixing_matrix_size <tt>opus_int32</tt>: The size in bytes of the + * demixing matrix, as + * described in @ref + * opus_projection_ctls. + * @returns #OPUS_OK on success, or an error code (see @ref opus_errorcodes) + * on failure. + */ +OPUS_EXPORT int opus_projection_decoder_init( + OpusProjectionDecoder *st, + opus_int32 Fs, + int channels, + int streams, + int coupled_streams, + unsigned char *demixing_matrix, + opus_int32 demixing_matrix_size +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6); + + +/** Decode a projection Opus packet. + * @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state. + * @param[in] data <tt>const unsigned char*</tt>: Input payload. + * Use a <code>NULL</code> + * pointer to indicate packet + * loss. + * @param len <tt>opus_int32</tt>: Number of bytes in payload. + * @param[out] pcm <tt>opus_int16*</tt>: Output signal, with interleaved + * samples. + * This must contain room for + * <code>frame_size*channels</code> + * samples. + * @param frame_size <tt>int</tt>: The number of samples per channel of + * available space in \a pcm. + * If this is less than the maximum packet duration + * (120 ms; 5760 for 48kHz), this function will not be capable + * of decoding some packets. In the case of PLC (data==NULL) + * or FEC (decode_fec=1), then frame_size needs to be exactly + * the duration of audio that is missing, otherwise the + * decoder will not be in the optimal state to decode the + * next incoming packet. For the PLC and FEC cases, frame_size + * <b>must</b> be a multiple of 2.5 ms. + * @param decode_fec <tt>int</tt>: Flag (0 or 1) to request that any in-band + * forward error correction data be decoded. + * If no such data is available, the frame is + * decoded as if it were lost. + * @returns Number of samples decoded on success or a negative error code + * (see @ref opus_errorcodes) on failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_decode( + OpusProjectionDecoder *st, + const unsigned char *data, + opus_int32 len, + opus_int16 *pcm, + int frame_size, + int decode_fec +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4); + + +/** Decode a projection Opus packet with floating point output. + * @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state. + * @param[in] data <tt>const unsigned char*</tt>: Input payload. + * Use a <code>NULL</code> + * pointer to indicate packet + * loss. + * @param len <tt>opus_int32</tt>: Number of bytes in payload. + * @param[out] pcm <tt>opus_int16*</tt>: Output signal, with interleaved + * samples. + * This must contain room for + * <code>frame_size*channels</code> + * samples. + * @param frame_size <tt>int</tt>: The number of samples per channel of + * available space in \a pcm. + * If this is less than the maximum packet duration + * (120 ms; 5760 for 48kHz), this function will not be capable + * of decoding some packets. In the case of PLC (data==NULL) + * or FEC (decode_fec=1), then frame_size needs to be exactly + * the duration of audio that is missing, otherwise the + * decoder will not be in the optimal state to decode the + * next incoming packet. For the PLC and FEC cases, frame_size + * <b>must</b> be a multiple of 2.5 ms. + * @param decode_fec <tt>int</tt>: Flag (0 or 1) to request that any in-band + * forward error correction data be decoded. + * If no such data is available, the frame is + * decoded as if it were lost. + * @returns Number of samples decoded on success or a negative error code + * (see @ref opus_errorcodes) on failure. + */ +OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_projection_decode_float( + OpusProjectionDecoder *st, + const unsigned char *data, + opus_int32 len, + float *pcm, + int frame_size, + int decode_fec +) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4); + + +/** Perform a CTL function on a projection Opus decoder. + * + * Generally the request and subsequent arguments are generated by a + * convenience macro. + * @param st <tt>OpusProjectionDecoder*</tt>: Projection decoder state. + * @param request This and all remaining parameters should be replaced by one + * of the convenience macros in @ref opus_genericctls, + * @ref opus_decoderctls, @ref opus_multistream_ctls, or + * @ref opus_projection_ctls. + * @see opus_genericctls + * @see opus_decoderctls + * @see opus_multistream_ctls + * @see opus_projection_ctls + */ +OPUS_EXPORT int opus_projection_decoder_ctl(OpusProjectionDecoder *st, int request, ...) OPUS_ARG_NONNULL(1); + + +/** Frees an <code>OpusProjectionDecoder</code> allocated by + * opus_projection_decoder_create(). + * @param st <tt>OpusProjectionDecoder</tt>: Projection decoder state to be freed. + */ +OPUS_EXPORT void opus_projection_decoder_destroy(OpusProjectionDecoder *st); + + +/**@}*/ + +/**@}*/ + +#ifdef __cplusplus +} +#endif + +#endif /* OPUS_PROJECTION_H */ diff --git a/thirdparty/opus/opus/opus_types.h b/thirdparty/opus/opus/opus_types.h index b28e03aea2..7cf675580f 100644 --- a/thirdparty/opus/opus/opus_types.h +++ b/thirdparty/opus/opus/opus_types.h @@ -33,14 +33,29 @@ #ifndef OPUS_TYPES_H #define OPUS_TYPES_H +#define opus_int int /* used for counters etc; at least 16 bits */ +#define opus_int64 long long +#define opus_int8 signed char + +#define opus_uint unsigned int /* used for counters etc; at least 16 bits */ +#define opus_uint64 unsigned long long +#define opus_uint8 unsigned char + /* Use the real stdint.h if it's there (taken from Paul Hsieh's pstdint.h) */ -#if (defined(__STDC__) && __STDC__ && __STDC_VERSION__ >= 199901L) || (defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H)) +#if (defined(__STDC__) && __STDC__ && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H)) #include <stdint.h> - +# undef opus_int64 +# undef opus_int8 +# undef opus_uint64 +# undef opus_uint8 + typedef int8_t opus_int8; + typedef uint8_t opus_uint8; typedef int16_t opus_int16; typedef uint16_t opus_uint16; typedef int32_t opus_int32; typedef uint32_t opus_uint32; + typedef int64_t opus_int64; + typedef uint64_t opus_uint64; #elif defined(_WIN32) # if defined(__CYGWIN__) @@ -148,12 +163,4 @@ #endif -#define opus_int int /* used for counters etc; at least 16 bits */ -#define opus_int64 long long -#define opus_int8 signed char - -#define opus_uint unsigned int /* used for counters etc; at least 16 bits */ -#define opus_uint64 unsigned long long -#define opus_uint8 unsigned char - #endif /* OPUS_TYPES_H */ diff --git a/thirdparty/opus/opus/opusfile.h b/thirdparty/opus/opus/opusfile.h index 4bf2fba926..e3a3dc8389 100644 --- a/thirdparty/opus/opus/opusfile.h +++ b/thirdparty/opus/opus/opusfile.h @@ -239,7 +239,8 @@ struct OpusHead{ -32768...32767. The <tt>libopusfile</tt> API will automatically apply this gain to the decoded output before returning it, scaling it by - <code>pow(10,output_gain/(20.0*256))</code>.*/ + <code>pow(10,output_gain/(20.0*256))</code>. + You can adjust this behavior with op_set_gain_offset().*/ int output_gain; /**The channel mapping family, in the range 0...255. Channel mapping family 0 covers mono or stereo in a single stream. @@ -1154,16 +1155,18 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_open_url(const char *_url, int *_error,...) OP_ARG_NONNULL(1); /**Open a stream using the given set of callbacks to access it. - \param _source The stream to read from (e.g., a <code>FILE *</code>). + \param _stream The stream to read from (e.g., a <code>FILE *</code>). + This value will be passed verbatim as the first + argument to all of the callbacks. \param _cb The callbacks with which to access the stream. <code><a href="#op_read_func">read()</a></code> must be implemented. <code><a href="#op_seek_func">seek()</a></code> and <code><a href="#op_tell_func">tell()</a></code> may be <code>NULL</code>, or may always return -1 to - indicate a source is unseekable, but if + indicate a stream is unseekable, but if <code><a href="#op_seek_func">seek()</a></code> is - implemented and succeeds on a particular source, then + implemented and succeeds on a particular stream, then <code><a href="#op_tell_func">tell()</a></code> must also. <code><a href="#op_close_func">close()</a></code> may @@ -1226,11 +1229,11 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_open_url(const char *_url, basic validity checks.</dd> </dl> \return A freshly opened \c OggOpusFile, or <code>NULL</code> on error. - <tt>libopusfile</tt> does <em>not</em> take ownership of the source + <tt>libopusfile</tt> does <em>not</em> take ownership of the stream if the call fails. - The calling application is responsible for closing the source if + The calling application is responsible for closing the stream if this call returns an error.*/ -OP_WARN_UNUSED_RESULT OggOpusFile *op_open_callbacks(void *_source, +OP_WARN_UNUSED_RESULT OggOpusFile *op_open_callbacks(void *_stream, const OpusFileCallbacks *_cb,const unsigned char *_initial_data, size_t _initial_bytes,int *_error) OP_ARG_NONNULL(2); @@ -1332,18 +1335,20 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_test_url(const char *_url, For new code, you are likely better off using op_test() instead, which is less resource-intensive, requires less data to succeed, and imposes a hard limit on the amount of data it examines (important for unseekable - sources, where all such data must be buffered until you are sure of the + streams, where all such data must be buffered until you are sure of the stream type). - \param _source The stream to read from (e.g., a <code>FILE *</code>). + \param _stream The stream to read from (e.g., a <code>FILE *</code>). + This value will be passed verbatim as the first + argument to all of the callbacks. \param _cb The callbacks with which to access the stream. <code><a href="#op_read_func">read()</a></code> must be implemented. <code><a href="#op_seek_func">seek()</a></code> and <code><a href="#op_tell_func">tell()</a></code> may be <code>NULL</code>, or may always return -1 to - indicate a source is unseekable, but if + indicate a stream is unseekable, but if <code><a href="#op_seek_func">seek()</a></code> is - implemented and succeeds on a particular source, then + implemented and succeeds on a particular stream, then <code><a href="#op_tell_func">tell()</a></code> must also. <code><a href="#op_close_func">close()</a></code> may @@ -1373,11 +1378,11 @@ OP_WARN_UNUSED_RESULT OggOpusFile *op_test_url(const char *_url, See op_open_callbacks() for a full list of failure codes. \return A partially opened \c OggOpusFile, or <code>NULL</code> on error. - <tt>libopusfile</tt> does <em>not</em> take ownership of the source + <tt>libopusfile</tt> does <em>not</em> take ownership of the stream if the call fails. - The calling application is responsible for closing the source if + The calling application is responsible for closing the stream if this call returns an error.*/ -OP_WARN_UNUSED_RESULT OggOpusFile *op_test_callbacks(void *_source, +OP_WARN_UNUSED_RESULT OggOpusFile *op_test_callbacks(void *_stream, const OpusFileCallbacks *_cb,const unsigned char *_initial_data, size_t _initial_bytes,int *_error) OP_ARG_NONNULL(2); @@ -1434,7 +1439,7 @@ void op_free(OggOpusFile *_of); Their documention will indicate so explicitly.*/ /*@{*/ -/**Returns whether or not the data source being read is seekable. +/**Returns whether or not the stream being read is seekable. This is true if <ol> <li>The <code><a href="#op_seek_func">seek()</a></code> and @@ -1455,9 +1460,9 @@ int op_seekable(const OggOpusFile *_of) OP_ARG_NONNULL(1); return 1. The actual number of links is not known until the stream is fully opened. \param _of The \c OggOpusFile from which to retrieve the link count. - \return For fully-open seekable sources, this returns the total number of + \return For fully-open seekable streams, this returns the total number of links in the whole stream, which will be at least 1. - For partially-open or unseekable sources, this always returns 1.*/ + For partially-open or unseekable streams, this always returns 1.*/ int op_link_count(const OggOpusFile *_of) OP_ARG_NONNULL(1); /**Get the serial number of the given link in a (possibly-chained) Ogg Opus @@ -1471,7 +1476,7 @@ int op_link_count(const OggOpusFile *_of) OP_ARG_NONNULL(1); \return The serial number of the given link. If \a _li is greater than the total number of links, this returns the serial number of the last link. - If the source is not seekable, this always returns the serial number + If the stream is not seekable, this always returns the serial number of the current link.*/ opus_uint32 op_serialno(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); @@ -1488,7 +1493,7 @@ opus_uint32 op_serialno(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); \return The channel count of the given link. If \a _li is greater than the total number of links, this returns the channel count of the last link. - If the source is not seekable, this always returns the channel count + If the stream is not seekable, this always returns the channel count of the current link.*/ int op_channel_count(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); @@ -1507,9 +1512,9 @@ int op_channel_count(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); compressed size of link \a _li if it is non-negative, or a negative value on error. The compressed size of the entire stream may be smaller than that - of the underlying source if trailing garbage was detected in the + of the underlying stream if trailing garbage was detected in the file. - \retval #OP_EINVAL The source is not seekable (so we can't know the length), + \retval #OP_EINVAL The stream is not seekable (so we can't know the length), \a _li wasn't less than the total number of links in the stream, or the stream was only partially open.*/ opus_int64 op_raw_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); @@ -1527,7 +1532,7 @@ opus_int64 op_raw_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); \return The PCM length of the entire stream if \a _li is negative, the PCM length of link \a _li if it is non-negative, or a negative value on error. - \retval #OP_EINVAL The source is not seekable (so we can't know the length), + \retval #OP_EINVAL The stream is not seekable (so we can't know the length), \a _li wasn't less than the total number of links in the stream, or the stream was only partially open.*/ ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); @@ -1575,8 +1580,8 @@ const OpusTags *op_tags(const OggOpusFile *_of,int _li) OP_ARG_NONNULL(1); \param _of The \c OggOpusFile from which to retrieve the current link index. \return The index of the current link on success, or a negative value on failure. - For seekable streams, this is a number between 0 and the value - returned by op_link_count(). + For seekable streams, this is a number between 0 (inclusive) and the + value returned by op_link_count() (exclusive). For unseekable streams, this value starts at 0 and increments by one each time a new link is encountered (even though op_link_count() always returns 1). @@ -1640,10 +1645,10 @@ ogg_int64_t op_pcm_tell(const OggOpusFile *_of) OP_ARG_NONNULL(1); /*@{*/ /**\name Functions for seeking in Opus streams - These functions let you seek in Opus streams, if the underlying source + These functions let you seek in Opus streams, if the underlying stream support it. Seeking is implemented for all built-in stream I/O routines, though some - individual sources may not be seekable (pipes, live HTTP streams, or HTTP + individual streams may not be seekable (pipes, live HTTP streams, or HTTP streams from a server that does not support <code>Range</code> requests). op_raw_seek() is the fastest: it is guaranteed to perform at most one @@ -1670,6 +1675,8 @@ ogg_int64_t op_pcm_tell(const OggOpusFile *_of) OP_ARG_NONNULL(1); packets out of the tail of the link to which it seeks. \param _of The \c OggOpusFile in which to seek. \param _byte_offset The byte position to seek to. + This must be between 0 and #op_raw_total(\a _of,\c -1) + (inclusive). \return 0 on success, or a negative error code on failure. \retval #OP_EREAD The underlying seek operation failed. \retval #OP_EINVAL The stream was only partially open, or the target was diff --git a/thirdparty/opus/opus_compare.c b/thirdparty/opus/opus_compare.c index 06c67d752f..1956e08fa5 100644 --- a/thirdparty/opus/opus_compare.c +++ b/thirdparty/opus/opus_compare.c @@ -363,6 +363,9 @@ int main(int _argc,const char **_argv){ Ef*=Ef; err+=Ef*Ef; } + free(xb); + free(X); + free(Y); err=pow(err/nframes,1.0/16); Q=100*(1-0.5*log(1+err)/log(1.13)); if(Q<0){ diff --git a/thirdparty/opus/opus_decoder.c b/thirdparty/opus/opus_decoder.c index 080bec5072..9113638a00 100644 --- a/thirdparty/opus/opus_decoder.c +++ b/thirdparty/opus/opus_decoder.c @@ -78,6 +78,26 @@ struct OpusDecoder { opus_uint32 rangeFinal; }; +#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS) +static void validate_opus_decoder(OpusDecoder *st) +{ + celt_assert(st->channels == 1 || st->channels == 2); + celt_assert(st->Fs == 48000 || st->Fs == 24000 || st->Fs == 16000 || st->Fs == 12000 || st->Fs == 8000); + celt_assert(st->DecControl.API_sampleRate == st->Fs); + celt_assert(st->DecControl.internalSampleRate == 0 || st->DecControl.internalSampleRate == 16000 || st->DecControl.internalSampleRate == 12000 || st->DecControl.internalSampleRate == 8000); + celt_assert(st->DecControl.nChannelsAPI == st->channels); + celt_assert(st->DecControl.nChannelsInternal == 0 || st->DecControl.nChannelsInternal == 1 || st->DecControl.nChannelsInternal == 2); + celt_assert(st->DecControl.payloadSize_ms == 0 || st->DecControl.payloadSize_ms == 10 || st->DecControl.payloadSize_ms == 20 || st->DecControl.payloadSize_ms == 40 || st->DecControl.payloadSize_ms == 60); +#ifdef OPUS_ARCHMASK + celt_assert(st->arch >= 0); + celt_assert(st->arch <= OPUS_ARCHMASK); +#endif + celt_assert(st->stream_channels == 1 || st->stream_channels == 2); +} +#define VALIDATE_OPUS_DECODER(st) validate_opus_decoder(st) +#else +#define VALIDATE_OPUS_DECODER(st) +#endif int opus_decoder_get_size(int channels) { @@ -104,7 +124,7 @@ int opus_decoder_init(OpusDecoder *st, opus_int32 Fs, int channels) return OPUS_BAD_ARG; OPUS_CLEAR((char*)st, opus_decoder_get_size(channels)); - /* Initialize SILK encoder */ + /* Initialize SILK decoder */ ret = silk_Get_Decoder_Size(&silkDecSizeBytes); if (ret) return OPUS_INTERNAL_ERROR; @@ -217,6 +237,7 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, int audiosize; int mode; + int bandwidth; int transition=0; int start_band; int redundancy=0; @@ -253,10 +274,12 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, { audiosize = st->frame_size; mode = st->mode; + bandwidth = st->bandwidth; ec_dec_init(&dec,(unsigned char*)data,len); } else { audiosize = frame_size; mode = st->prev_mode; + bandwidth = 0; if (mode == 0) { @@ -355,15 +378,15 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, { st->DecControl.nChannelsInternal = st->stream_channels; if( mode == MODE_SILK_ONLY ) { - if( st->bandwidth == OPUS_BANDWIDTH_NARROWBAND ) { + if( bandwidth == OPUS_BANDWIDTH_NARROWBAND ) { st->DecControl.internalSampleRate = 8000; - } else if( st->bandwidth == OPUS_BANDWIDTH_MEDIUMBAND ) { + } else if( bandwidth == OPUS_BANDWIDTH_MEDIUMBAND ) { st->DecControl.internalSampleRate = 12000; - } else if( st->bandwidth == OPUS_BANDWIDTH_WIDEBAND ) { + } else if( bandwidth == OPUS_BANDWIDTH_WIDEBAND ) { st->DecControl.internalSampleRate = 16000; } else { st->DecControl.internalSampleRate = 16000; - silk_assert( 0 ); + celt_assert( 0 ); } } else { /* Hybrid mode */ @@ -427,10 +450,26 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, if (mode != MODE_CELT_ONLY) start_band = 17; + if (redundancy) + { + transition = 0; + pcm_transition_silk_size=ALLOC_NONE; + } + + ALLOC(pcm_transition_silk, pcm_transition_silk_size, opus_val16); + + if (transition && mode != MODE_CELT_ONLY) + { + pcm_transition = pcm_transition_silk; + opus_decode_frame(st, NULL, 0, pcm_transition, IMIN(F5, audiosize), 0); + } + + + if (bandwidth) { int endband=21; - switch(st->bandwidth) + switch(bandwidth) { case OPUS_BANDWIDTH_NARROWBAND: endband = 13; @@ -445,24 +484,13 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, case OPUS_BANDWIDTH_FULLBAND: endband = 21; break; + default: + celt_assert(0); + break; } - celt_decoder_ctl(celt_dec, CELT_SET_END_BAND(endband)); - celt_decoder_ctl(celt_dec, CELT_SET_CHANNELS(st->stream_channels)); - } - - if (redundancy) - { - transition = 0; - pcm_transition_silk_size=ALLOC_NONE; - } - - ALLOC(pcm_transition_silk, pcm_transition_silk_size, opus_val16); - - if (transition && mode != MODE_CELT_ONLY) - { - pcm_transition = pcm_transition_silk; - opus_decode_frame(st, NULL, 0, pcm_transition, IMIN(F5, audiosize), 0); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_END_BAND(endband))); } + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_CHANNELS(st->stream_channels))); /* Only allocation memory for redundancy if/when needed */ redundant_audio_size = redundancy ? F5*st->channels : ALLOC_NONE; @@ -471,21 +499,21 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, /* 5 ms redundant frame for CELT->SILK*/ if (redundancy && celt_to_silk) { - celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0))); celt_decode_with_ec(celt_dec, data+len, redundancy_bytes, redundant_audio, F5, NULL, 0); - celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng))); } /* MUST be after PLC */ - celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(start_band)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(start_band))); if (mode != MODE_SILK_ONLY) { int celt_frame_size = IMIN(F20, frame_size); /* Make sure to discard any previous CELT state */ if (mode != st->prev_mode && st->prev_mode > 0 && !st->prev_redundancy) - celt_decoder_ctl(celt_dec, OPUS_RESET_STATE); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_RESET_STATE)); /* Decode CELT */ celt_ret = celt_decode_with_ec(celt_dec, decode_fec ? NULL : data, len, pcm, celt_frame_size, &dec, celt_accum); @@ -500,7 +528,7 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, do a fade-out by decoding a silence frame */ if (st->prev_mode == MODE_HYBRID && !(redundancy && celt_to_silk && st->prev_redundancy) ) { - celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0))); celt_decode_with_ec(celt_dec, silence, 2, pcm, F2_5, NULL, celt_accum); } } @@ -518,18 +546,18 @@ static int opus_decode_frame(OpusDecoder *st, const unsigned char *data, { const CELTMode *celt_mode; - celt_decoder_ctl(celt_dec, CELT_GET_MODE(&celt_mode)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_GET_MODE(&celt_mode))); window = celt_mode->window; } /* 5 ms redundant frame for SILK->CELT */ if (redundancy && !celt_to_silk) { - celt_decoder_ctl(celt_dec, OPUS_RESET_STATE); - celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_RESET_STATE)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, CELT_SET_START_BAND(0))); celt_decode_with_ec(celt_dec, data+len, redundancy_bytes, redundant_audio, F5, NULL, 0); - celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng)); + MUST_SUCCEED(celt_decoder_ctl(celt_dec, OPUS_GET_FINAL_RANGE(&redundant_rng))); smooth_fade(pcm+st->channels*(frame_size-F2_5), redundant_audio+st->channels*F2_5, pcm+st->channels*(frame_size-F2_5), F2_5, st->channels, window, st->Fs); } @@ -605,6 +633,7 @@ int opus_decode_native(OpusDecoder *st, const unsigned char *data, int packet_frame_size, packet_bandwidth, packet_mode, packet_stream_channels; /* 48 x 2.5 ms = 120 ms */ opus_int16 size[48]; + VALIDATE_OPUS_DECODER(st); if (decode_fec<0 || decode_fec>1) return OPUS_BAD_ARG; /* For FEC/PLC, frame_size has to be to have a multiple of 2.5 ms */ @@ -740,6 +769,7 @@ int opus_decode_float(OpusDecoder *st, const unsigned char *data, else return OPUS_INVALID_PACKET; } + celt_assert(st->channels == 1 || st->channels == 2); ALLOC(out, frame_size*st->channels, opus_int16); ret = opus_decode_native(st, data, len, out, frame_size, decode_fec, 0, NULL, 0); @@ -777,6 +807,7 @@ int opus_decode(OpusDecoder *st, const unsigned char *data, else return OPUS_INVALID_PACKET; } + celt_assert(st->channels == 1 || st->channels == 2); ALLOC(out, frame_size*st->channels, float); ret = opus_decode_native(st, data, len, out, frame_size, decode_fec, 0, NULL, 1); @@ -864,7 +895,7 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...) goto bad_arg; } if (st->prev_mode == MODE_CELT_ONLY) - celt_decoder_ctl(celt_dec, OPUS_GET_PITCH(value)); + ret = celt_decoder_ctl(celt_dec, OPUS_GET_PITCH(value)); else *value = st->DecControl.prevPitchLag; } @@ -891,7 +922,7 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...) break; case OPUS_GET_LAST_PACKET_DURATION_REQUEST: { - opus_uint32 *value = va_arg(ap, opus_uint32*); + opus_int32 *value = va_arg(ap, opus_int32*); if (!value) { goto bad_arg; @@ -899,6 +930,26 @@ int opus_decoder_ctl(OpusDecoder *st, int request, ...) *value = st->last_packet_duration; } break; + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if(value<0 || value>1) + { + goto bad_arg; + } + ret = celt_decoder_ctl(celt_dec, OPUS_SET_PHASE_INVERSION_DISABLED(value)); + } + break; + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + ret = celt_decoder_ctl(celt_dec, OPUS_GET_PHASE_INVERSION_DISABLED(value)); + } + break; default: /*fprintf(stderr, "unknown opus_decoder_ctl() request: %d", request);*/ ret = OPUS_UNIMPLEMENTED; diff --git a/thirdparty/opus/opus_encoder.c b/thirdparty/opus/opus_encoder.c index 9a516a884a..e98ac5b8d0 100644 --- a/thirdparty/opus/opus_encoder.c +++ b/thirdparty/opus/opus_encoder.c @@ -53,6 +53,10 @@ #define MAX_ENCODER_BUFFER 480 +#ifndef DISABLE_FLOAT_API +#define PSEUDO_SNR_THRESHOLD 316.23f /* 10^(25/10) */ +#endif + typedef struct { opus_val32 XX, XY, YY; opus_val16 smoothed_width; @@ -82,6 +86,7 @@ struct OpusEncoder { int encoder_buffer; int lfe; int arch; + int use_dtx; /* general DTX for both SILK and CELT */ #ifndef DISABLE_FLOAT_API TonalityAnalysisState analysis; #endif @@ -97,6 +102,8 @@ struct OpusEncoder { int prev_channels; int prev_framesize; int bandwidth; + /* Bandwidth determined automatically from the rate (before any other adjustment) */ + int auto_bandwidth; int silk_bw_switch; /* Sampling rate (at the API level) */ int first; @@ -105,7 +112,10 @@ struct OpusEncoder { opus_val16 delay_buffer[MAX_ENCODER_BUFFER*2]; #ifndef DISABLE_FLOAT_API int detected_bandwidth; + int nb_no_activity_frames; + opus_val32 peak_signal_energy; #endif + int nonfinal_frame; /* current frame is not the final in a packet */ opus_uint32 rangeFinal; }; @@ -113,38 +123,46 @@ struct OpusEncoder { middle (memoriless) threshold. The second column is the hysteresis (difference with the middle) */ static const opus_int32 mono_voice_bandwidth_thresholds[8] = { - 11000, 1000, /* NB<->MB */ - 14000, 1000, /* MB<->WB */ - 17000, 1000, /* WB<->SWB */ - 21000, 2000, /* SWB<->FB */ + 9000, 700, /* NB<->MB */ + 9000, 700, /* MB<->WB */ + 13500, 1000, /* WB<->SWB */ + 14000, 2000, /* SWB<->FB */ }; static const opus_int32 mono_music_bandwidth_thresholds[8] = { - 12000, 1000, /* NB<->MB */ - 15000, 1000, /* MB<->WB */ - 18000, 2000, /* WB<->SWB */ - 22000, 2000, /* SWB<->FB */ + 9000, 700, /* NB<->MB */ + 9000, 700, /* MB<->WB */ + 11000, 1000, /* WB<->SWB */ + 12000, 2000, /* SWB<->FB */ }; static const opus_int32 stereo_voice_bandwidth_thresholds[8] = { - 11000, 1000, /* NB<->MB */ - 14000, 1000, /* MB<->WB */ - 21000, 2000, /* WB<->SWB */ - 28000, 2000, /* SWB<->FB */ + 9000, 700, /* NB<->MB */ + 9000, 700, /* MB<->WB */ + 13500, 1000, /* WB<->SWB */ + 14000, 2000, /* SWB<->FB */ }; static const opus_int32 stereo_music_bandwidth_thresholds[8] = { - 12000, 1000, /* NB<->MB */ - 18000, 2000, /* MB<->WB */ - 21000, 2000, /* WB<->SWB */ - 30000, 2000, /* SWB<->FB */ + 9000, 700, /* NB<->MB */ + 9000, 700, /* MB<->WB */ + 11000, 1000, /* WB<->SWB */ + 12000, 2000, /* SWB<->FB */ }; /* Threshold bit-rates for switching between mono and stereo */ -static const opus_int32 stereo_voice_threshold = 30000; -static const opus_int32 stereo_music_threshold = 30000; +static const opus_int32 stereo_voice_threshold = 19000; +static const opus_int32 stereo_music_threshold = 17000; /* Threshold bit-rate for switching between SILK/hybrid and CELT-only */ static const opus_int32 mode_thresholds[2][2] = { /* voice */ /* music */ - { 64000, 16000}, /* mono */ - { 36000, 16000}, /* stereo */ + { 64000, 10000}, /* mono */ + { 44000, 10000}, /* stereo */ +}; + +static const opus_int32 fec_thresholds[] = { + 12000, 1000, /* NB */ + 14000, 1000, /* MB */ + 16000, 1000, /* WB */ + 20000, 1000, /* SWB */ + 22000, 1000, /* FB */ }; int opus_encoder_get_size(int channels) @@ -245,7 +263,8 @@ int opus_encoder_init(OpusEncoder* st, opus_int32 Fs, int channels, int applicat st->bandwidth = OPUS_BANDWIDTH_FULLBAND; #ifndef DISABLE_FLOAT_API - tonality_analysis_init(&st->analysis); + tonality_analysis_init(&st->analysis, st->Fs); + st->analysis.application = st->application; #endif return OPUS_OK; @@ -323,10 +342,11 @@ static void silk_biquad_float( } #endif -static void hp_cutoff(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs) +static void hp_cutoff(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs, int arch) { opus_int32 B_Q28[ 3 ], A_Q28[ 2 ]; opus_int32 Fc_Q19, r_Q28, r_Q22; + (void)arch; silk_assert( cutoff_Hz <= silk_int32_MAX / SILK_FIX_CONST( 1.5 * 3.14159 / 1000, 19 ) ); Fc_Q19 = silk_DIV32_16( silk_SMULBB( SILK_FIX_CONST( 1.5 * 3.14159 / 1000, 19 ), cutoff_Hz ), Fs/1000 ); @@ -346,9 +366,10 @@ static void hp_cutoff(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *ou A_Q28[ 1 ] = silk_SMULWW( r_Q22, r_Q22 ); #ifdef FIXED_POINT - silk_biquad_alt( in, B_Q28, A_Q28, hp_mem, out, len, channels ); - if( channels == 2 ) { - silk_biquad_alt( in+1, B_Q28, A_Q28, hp_mem+2, out+1, len, channels ); + if( channels == 1 ) { + silk_biquad_alt_stride1( in, B_Q28, A_Q28, hp_mem, out, len ); + } else { + silk_biquad_alt_stride2( in, B_Q28, A_Q28, hp_mem, out, len, arch ); } #else silk_biquad_float( in, B_Q28, A_Q28, hp_mem, out, len, channels ); @@ -364,21 +385,17 @@ static void dc_reject(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *ou int c, i; int shift; - /* Approximates -round(log2(4.*cutoff_Hz/Fs)) */ - shift=celt_ilog2(Fs/(cutoff_Hz*3)); + /* Approximates -round(log2(6.3*cutoff_Hz/Fs)) */ + shift=celt_ilog2(Fs/(cutoff_Hz*4)); for (c=0;c<channels;c++) { for (i=0;i<len;i++) { - opus_val32 x, tmp, y; - x = SHL32(EXTEND32(in[channels*i+c]), 15); - /* First stage */ - tmp = x-hp_mem[2*c]; + opus_val32 x, y; + x = SHL32(EXTEND32(in[channels*i+c]), 14); + y = x-hp_mem[2*c]; hp_mem[2*c] = hp_mem[2*c] + PSHR32(x - hp_mem[2*c], shift); - /* Second stage */ - y = tmp - hp_mem[2*c+1]; - hp_mem[2*c+1] = hp_mem[2*c+1] + PSHR32(tmp - hp_mem[2*c+1], shift); - out[channels*i+c] = EXTRACT16(SATURATE(PSHR32(y, 15), 32767)); + out[channels*i+c] = EXTRACT16(SATURATE(PSHR32(y, 14), 32767)); } } } @@ -386,24 +403,41 @@ static void dc_reject(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *ou #else static void dc_reject(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs) { - int c, i; - float coef; - - coef = 4.0f*cutoff_Hz/Fs; - for (c=0;c<channels;c++) + int i; + float coef, coef2; + coef = 6.3f*cutoff_Hz/Fs; + coef2 = 1-coef; + if (channels==2) { + float m0, m2; + m0 = hp_mem[0]; + m2 = hp_mem[2]; for (i=0;i<len;i++) { - opus_val32 x, tmp, y; - x = in[channels*i+c]; - /* First stage */ - tmp = x-hp_mem[2*c]; - hp_mem[2*c] = hp_mem[2*c] + coef*(x - hp_mem[2*c]) + VERY_SMALL; - /* Second stage */ - y = tmp - hp_mem[2*c+1]; - hp_mem[2*c+1] = hp_mem[2*c+1] + coef*(tmp - hp_mem[2*c+1]) + VERY_SMALL; - out[channels*i+c] = y; + opus_val32 x0, x1, out0, out1; + x0 = in[2*i+0]; + x1 = in[2*i+1]; + out0 = x0-m0; + out1 = x1-m2; + m0 = coef*x0 + VERY_SMALL + coef2*m0; + m2 = coef*x1 + VERY_SMALL + coef2*m2; + out[2*i+0] = out0; + out[2*i+1] = out1; } + hp_mem[0] = m0; + hp_mem[2] = m2; + } else { + float m0; + m0 = hp_mem[0]; + for (i=0;i<len;i++) + { + opus_val32 x, y; + x = in[i]; + y = x-m0; + m0 = coef*x + VERY_SMALL + coef2*m0; + out[i] = y; + } + hp_mem[0] = m0; } } #endif @@ -521,287 +555,57 @@ static opus_int32 user_bitrate_to_bitrate(OpusEncoder *st, int frame_size, int m } #ifndef DISABLE_FLOAT_API -/* Don't use more than 60 ms for the frame size analysis */ -#define MAX_DYNAMIC_FRAMESIZE 24 -/* Estimates how much the bitrate will be boosted based on the sub-frame energy */ -static float transient_boost(const float *E, const float *E_1, int LM, int maxM) -{ - int i; - int M; - float sumE=0, sumE_1=0; - float metric; - - M = IMIN(maxM, (1<<LM)+1); - for (i=0;i<M;i++) - { - sumE += E[i]; - sumE_1 += E_1[i]; - } - metric = sumE*sumE_1/(M*M); - /*if (LM==3) - printf("%f\n", metric);*/ - /*return metric>10 ? 1 : 0;*/ - /*return MAX16(0,1-exp(-.25*(metric-2.)));*/ - return MIN16(1,(float)sqrt(MAX16(0,.05f*(metric-2)))); -} - -/* Viterbi decoding trying to find the best frame size combination using look-ahead - - State numbering: - 0: unused - 1: 2.5 ms - 2: 5 ms (#1) - 3: 5 ms (#2) - 4: 10 ms (#1) - 5: 10 ms (#2) - 6: 10 ms (#3) - 7: 10 ms (#4) - 8: 20 ms (#1) - 9: 20 ms (#2) - 10: 20 ms (#3) - 11: 20 ms (#4) - 12: 20 ms (#5) - 13: 20 ms (#6) - 14: 20 ms (#7) - 15: 20 ms (#8) -*/ -static int transient_viterbi(const float *E, const float *E_1, int N, int frame_cost, int rate) -{ - int i; - float cost[MAX_DYNAMIC_FRAMESIZE][16]; - int states[MAX_DYNAMIC_FRAMESIZE][16]; - float best_cost; - int best_state; - float factor; - /* Take into account that we damp VBR in the 32 kb/s to 64 kb/s range. */ - if (rate<80) - factor=0; - else if (rate>160) - factor=1; - else - factor = (rate-80.f)/80.f; - /* Makes variable framesize less aggressive at lower bitrates, but I can't - find any valid theoretical justification for this (other than it seems - to help) */ - for (i=0;i<16;i++) - { - /* Impossible state */ - states[0][i] = -1; - cost[0][i] = 1e10; - } - for (i=0;i<4;i++) - { - cost[0][1<<i] = (frame_cost + rate*(1<<i))*(1+factor*transient_boost(E, E_1, i, N+1)); - states[0][1<<i] = i; - } - for (i=1;i<N;i++) - { - int j; - - /* Follow continuations */ - for (j=2;j<16;j++) - { - cost[i][j] = cost[i-1][j-1]; - states[i][j] = j-1; - } - - /* New frames */ - for(j=0;j<4;j++) - { - int k; - float min_cost; - float curr_cost; - states[i][1<<j] = 1; - min_cost = cost[i-1][1]; - for(k=1;k<4;k++) - { - float tmp = cost[i-1][(1<<(k+1))-1]; - if (tmp < min_cost) - { - states[i][1<<j] = (1<<(k+1))-1; - min_cost = tmp; - } - } - curr_cost = (frame_cost + rate*(1<<j))*(1+factor*transient_boost(E+i, E_1+i, j, N-i+1)); - cost[i][1<<j] = min_cost; - /* If part of the frame is outside the analysis window, only count part of the cost */ - if (N-i < (1<<j)) - cost[i][1<<j] += curr_cost*(float)(N-i)/(1<<j); - else - cost[i][1<<j] += curr_cost; - } - } - - best_state=1; - best_cost = cost[N-1][1]; - /* Find best end state (doesn't force a frame to end at N-1) */ - for (i=2;i<16;i++) - { - if (cost[N-1][i]<best_cost) - { - best_cost = cost[N-1][i]; - best_state = i; - } - } - - /* Follow transitions back */ - for (i=N-1;i>=0;i--) - { - /*printf("%d ", best_state);*/ - best_state = states[i][best_state]; - } - /*printf("%d\n", best_state);*/ - return best_state; -} - -static int optimize_framesize(const void *x, int len, int C, opus_int32 Fs, - int bitrate, opus_val16 tonality, float *mem, int buffering, - downmix_func downmix) -{ - int N; - int i; - float e[MAX_DYNAMIC_FRAMESIZE+4]; - float e_1[MAX_DYNAMIC_FRAMESIZE+3]; - opus_val32 memx; - int bestLM=0; - int subframe; - int pos; - int offset; - VARDECL(opus_val32, sub); - - subframe = Fs/400; - ALLOC(sub, subframe, opus_val32); - e[0]=mem[0]; - e_1[0]=1.f/(EPSILON+mem[0]); - if (buffering) - { - /* Consider the CELT delay when not in restricted-lowdelay */ - /* We assume the buffering is between 2.5 and 5 ms */ - offset = 2*subframe - buffering; - celt_assert(offset>=0 && offset <= subframe); - len -= offset; - e[1]=mem[1]; - e_1[1]=1.f/(EPSILON+mem[1]); - e[2]=mem[2]; - e_1[2]=1.f/(EPSILON+mem[2]); - pos = 3; - } else { - pos=1; - offset=0; - } - N=IMIN(len/subframe, MAX_DYNAMIC_FRAMESIZE); - /* Just silencing a warning, it's really initialized later */ - memx = 0; - for (i=0;i<N;i++) - { - float tmp; - opus_val32 tmpx; - int j; - tmp=EPSILON; - - downmix(x, sub, subframe, i*subframe+offset, 0, -2, C); - if (i==0) - memx = sub[0]; - for (j=0;j<subframe;j++) - { - tmpx = sub[j]; - tmp += (tmpx-memx)*(float)(tmpx-memx); - memx = tmpx; - } - e[i+pos] = tmp; - e_1[i+pos] = 1.f/tmp; - } - /* Hack to get 20 ms working with APPLICATION_AUDIO - The real problem is that the corresponding memory needs to use 1.5 ms - from this frame and 1 ms from the next frame */ - e[i+pos] = e[i+pos-1]; - if (buffering) - N=IMIN(MAX_DYNAMIC_FRAMESIZE, N+2); - bestLM = transient_viterbi(e, e_1, N, (int)((1.f+.5f*tonality)*(60*C+40)), bitrate/400); - mem[0] = e[1<<bestLM]; - if (buffering) - { - mem[1] = e[(1<<bestLM)+1]; - mem[2] = e[(1<<bestLM)+2]; - } - return bestLM; -} - -#endif - -#ifndef DISABLE_FLOAT_API #ifdef FIXED_POINT #define PCM2VAL(x) FLOAT2INT16(x) #else #define PCM2VAL(x) SCALEIN(x) #endif -void downmix_float(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C) + +void downmix_float(const void *_x, opus_val32 *y, int subframe, int offset, int c1, int c2, int C) { const float *x; - opus_val32 scale; int j; + x = (const float *)_x; for (j=0;j<subframe;j++) - sub[j] = PCM2VAL(x[(j+offset)*C+c1]); + y[j] = PCM2VAL(x[(j+offset)*C+c1]); if (c2>-1) { for (j=0;j<subframe;j++) - sub[j] += PCM2VAL(x[(j+offset)*C+c2]); + y[j] += PCM2VAL(x[(j+offset)*C+c2]); } else if (c2==-2) { int c; for (c=1;c<C;c++) { for (j=0;j<subframe;j++) - sub[j] += PCM2VAL(x[(j+offset)*C+c]); + y[j] += PCM2VAL(x[(j+offset)*C+c]); } } -#ifdef FIXED_POINT - scale = (1<<SIG_SHIFT); -#else - scale = 1.f; -#endif - if (C==-2) - scale /= C; - else - scale /= 2; - for (j=0;j<subframe;j++) - sub[j] *= scale; } #endif -void downmix_int(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C) +void downmix_int(const void *_x, opus_val32 *y, int subframe, int offset, int c1, int c2, int C) { const opus_int16 *x; - opus_val32 scale; int j; + x = (const opus_int16 *)_x; for (j=0;j<subframe;j++) - sub[j] = x[(j+offset)*C+c1]; + y[j] = x[(j+offset)*C+c1]; if (c2>-1) { for (j=0;j<subframe;j++) - sub[j] += x[(j+offset)*C+c2]; + y[j] += x[(j+offset)*C+c2]; } else if (c2==-2) { int c; for (c=1;c<C;c++) { for (j=0;j<subframe;j++) - sub[j] += x[(j+offset)*C+c]; + y[j] += x[(j+offset)*C+c]; } } -#ifdef FIXED_POINT - scale = (1<<SIG_SHIFT); -#else - scale = 1.f/32768; -#endif - if (C==-2) - scale /= C; - else - scale /= 2; - for (j=0;j<subframe;j++) - sub[j] *= scale; } opus_int32 frame_size_select(opus_int32 frame_size, int variable_duration, opus_int32 Fs) @@ -811,53 +615,24 @@ opus_int32 frame_size_select(opus_int32 frame_size, int variable_duration, opus_ return -1; if (variable_duration == OPUS_FRAMESIZE_ARG) new_size = frame_size; - else if (variable_duration == OPUS_FRAMESIZE_VARIABLE) - new_size = Fs/50; - else if (variable_duration >= OPUS_FRAMESIZE_2_5_MS && variable_duration <= OPUS_FRAMESIZE_60_MS) - new_size = IMIN(3*Fs/50, (Fs/400)<<(variable_duration-OPUS_FRAMESIZE_2_5_MS)); + else if (variable_duration >= OPUS_FRAMESIZE_2_5_MS && variable_duration <= OPUS_FRAMESIZE_120_MS) + { + if (variable_duration <= OPUS_FRAMESIZE_40_MS) + new_size = (Fs/400)<<(variable_duration-OPUS_FRAMESIZE_2_5_MS); + else + new_size = (variable_duration-OPUS_FRAMESIZE_2_5_MS-2)*Fs/50; + } else return -1; if (new_size>frame_size) return -1; - if (400*new_size!=Fs && 200*new_size!=Fs && 100*new_size!=Fs && - 50*new_size!=Fs && 25*new_size!=Fs && 50*new_size!=3*Fs) + if (400*new_size!=Fs && 200*new_size!=Fs && 100*new_size!=Fs && + 50*new_size!=Fs && 25*new_size!=Fs && 50*new_size!=3*Fs && + 50*new_size!=4*Fs && 50*new_size!=5*Fs && 50*new_size!=6*Fs) return -1; return new_size; } -opus_int32 compute_frame_size(const void *analysis_pcm, int frame_size, - int variable_duration, int C, opus_int32 Fs, int bitrate_bps, - int delay_compensation, downmix_func downmix -#ifndef DISABLE_FLOAT_API - , float *subframe_mem -#endif - ) -{ -#ifndef DISABLE_FLOAT_API - if (variable_duration == OPUS_FRAMESIZE_VARIABLE && frame_size >= Fs/200) - { - int LM = 3; - LM = optimize_framesize(analysis_pcm, frame_size, C, Fs, bitrate_bps, - 0, subframe_mem, delay_compensation, downmix); - while ((Fs/400<<LM)>frame_size) - LM--; - frame_size = (Fs/400<<LM); - } else -#else - (void)analysis_pcm; - (void)C; - (void)bitrate_bps; - (void)delay_compensation; - (void)downmix; -#endif - { - frame_size = frame_size_select(frame_size, variable_duration, Fs); - } - if (frame_size<0) - return -1; - return frame_size; -} - opus_val16 compute_stereo_width(const opus_val16 *pcm, int frame_size, opus_int32 Fs, StereoWidthState *mem) { opus_val32 xx, xy, yy; @@ -904,6 +679,12 @@ opus_val16 compute_stereo_width(const opus_val16 *pcm, int frame_size, opus_int3 xy += SHR32(pxy, 10); yy += SHR32(pyy, 10); } +#ifndef FIXED_POINT + if (!(xx < 1e9f) || celt_isnan(xx) || !(yy < 1e9f) || celt_isnan(yy)) + { + xy = xx = yy = 0; + } +#endif mem->XX += MULT16_32_Q15(short_alpha, xx-mem->XX); mem->XY += MULT16_32_Q15(short_alpha, xy-mem->XY); mem->YY += MULT16_32_Q15(short_alpha, yy-mem->YY); @@ -934,6 +715,354 @@ opus_val16 compute_stereo_width(const opus_val16 *pcm, int frame_size, opus_int3 return EXTRACT16(MIN32(Q15ONE, MULT16_16(20, mem->max_follower))); } +static int decide_fec(int useInBandFEC, int PacketLoss_perc, int last_fec, int mode, int *bandwidth, opus_int32 rate) +{ + int orig_bandwidth; + if (!useInBandFEC || PacketLoss_perc == 0 || mode == MODE_CELT_ONLY) + return 0; + orig_bandwidth = *bandwidth; + for (;;) + { + opus_int32 hysteresis; + opus_int32 LBRR_rate_thres_bps; + /* Compute threshold for using FEC at the current bandwidth setting */ + LBRR_rate_thres_bps = fec_thresholds[2*(*bandwidth - OPUS_BANDWIDTH_NARROWBAND)]; + hysteresis = fec_thresholds[2*(*bandwidth - OPUS_BANDWIDTH_NARROWBAND) + 1]; + if (last_fec == 1) LBRR_rate_thres_bps -= hysteresis; + if (last_fec == 0) LBRR_rate_thres_bps += hysteresis; + LBRR_rate_thres_bps = silk_SMULWB( silk_MUL( LBRR_rate_thres_bps, + 125 - silk_min( PacketLoss_perc, 25 ) ), SILK_FIX_CONST( 0.01, 16 ) ); + /* If loss <= 5%, we look at whether we have enough rate to enable FEC. + If loss > 5%, we decrease the bandwidth until we can enable FEC. */ + if (rate > LBRR_rate_thres_bps) + return 1; + else if (PacketLoss_perc <= 5) + return 0; + else if (*bandwidth > OPUS_BANDWIDTH_NARROWBAND) + (*bandwidth)--; + else + break; + } + /* Couldn't find any bandwidth to enable FEC, keep original bandwidth. */ + *bandwidth = orig_bandwidth; + return 0; +} + +static int compute_silk_rate_for_hybrid(int rate, int bandwidth, int frame20ms, int vbr, int fec, int channels) { + int entry; + int i; + int N; + int silk_rate; + static int rate_table[][5] = { + /* |total| |-------- SILK------------| + |-- No FEC -| |--- FEC ---| + 10ms 20ms 10ms 20ms */ + { 0, 0, 0, 0, 0}, + {12000, 10000, 10000, 11000, 11000}, + {16000, 13500, 13500, 15000, 15000}, + {20000, 16000, 16000, 18000, 18000}, + {24000, 18000, 18000, 21000, 21000}, + {32000, 22000, 22000, 28000, 28000}, + {64000, 38000, 38000, 50000, 50000} + }; + /* Do the allocation per-channel. */ + rate /= channels; + entry = 1 + frame20ms + 2*fec; + N = sizeof(rate_table)/sizeof(rate_table[0]); + for (i=1;i<N;i++) + { + if (rate_table[i][0] > rate) break; + } + if (i == N) + { + silk_rate = rate_table[i-1][entry]; + /* For now, just give 50% of the extra bits to SILK. */ + silk_rate += (rate-rate_table[i-1][0])/2; + } else { + opus_int32 lo, hi, x0, x1; + lo = rate_table[i-1][entry]; + hi = rate_table[i][entry]; + x0 = rate_table[i-1][0]; + x1 = rate_table[i][0]; + silk_rate = (lo*(x1-rate) + hi*(rate-x0))/(x1-x0); + } + if (!vbr) + { + /* Tiny boost to SILK for CBR. We should probably tune this better. */ + silk_rate += 100; + } + if (bandwidth==OPUS_BANDWIDTH_SUPERWIDEBAND) + silk_rate += 300; + silk_rate *= channels; + /* Small adjustment for stereo (calibrated for 32 kb/s, haven't tried other bitrates). */ + if (channels == 2 && rate >= 12000) + silk_rate -= 1000; + return silk_rate; +} + +/* Returns the equivalent bitrate corresponding to 20 ms frames, + complexity 10 VBR operation. */ +static opus_int32 compute_equiv_rate(opus_int32 bitrate, int channels, + int frame_rate, int vbr, int mode, int complexity, int loss) +{ + opus_int32 equiv; + equiv = bitrate; + /* Take into account overhead from smaller frames. */ + if (frame_rate > 50) + equiv -= (40*channels+20)*(frame_rate - 50); + /* CBR is about a 8% penalty for both SILK and CELT. */ + if (!vbr) + equiv -= equiv/12; + /* Complexity makes about 10% difference (from 0 to 10) in general. */ + equiv = equiv * (90+complexity)/100; + if (mode == MODE_SILK_ONLY || mode == MODE_HYBRID) + { + /* SILK complexity 0-1 uses the non-delayed-decision NSQ, which + costs about 20%. */ + if (complexity<2) + equiv = equiv*4/5; + equiv -= equiv*loss/(6*loss + 10); + } else if (mode == MODE_CELT_ONLY) { + /* CELT complexity 0-4 doesn't have the pitch filter, which costs + about 10%. */ + if (complexity<5) + equiv = equiv*9/10; + } else { + /* Mode not known yet */ + /* Half the SILK loss*/ + equiv -= equiv*loss/(12*loss + 20); + } + return equiv; +} + +#ifndef DISABLE_FLOAT_API + +int is_digital_silence(const opus_val16* pcm, int frame_size, int channels, int lsb_depth) +{ + int silence = 0; + opus_val32 sample_max = 0; +#ifdef MLP_TRAINING + return 0; +#endif + sample_max = celt_maxabs16(pcm, frame_size*channels); + +#ifdef FIXED_POINT + silence = (sample_max == 0); + (void)lsb_depth; +#else + silence = (sample_max <= (opus_val16) 1 / (1 << lsb_depth)); +#endif + + return silence; +} + +#ifdef FIXED_POINT +static opus_val32 compute_frame_energy(const opus_val16 *pcm, int frame_size, int channels, int arch) +{ + int i; + opus_val32 sample_max; + int max_shift; + int shift; + opus_val32 energy = 0; + int len = frame_size*channels; + (void)arch; + /* Max amplitude in the signal */ + sample_max = celt_maxabs16(pcm, len); + + /* Compute the right shift required in the MAC to avoid an overflow */ + max_shift = celt_ilog2(len); + shift = IMAX(0, (celt_ilog2(sample_max) << 1) + max_shift - 28); + + /* Compute the energy */ + for (i=0; i<len; i++) + energy += SHR32(MULT16_16(pcm[i], pcm[i]), shift); + + /* Normalize energy by the frame size and left-shift back to the original position */ + energy /= len; + energy = SHL32(energy, shift); + + return energy; +} +#else +static opus_val32 compute_frame_energy(const opus_val16 *pcm, int frame_size, int channels, int arch) +{ + int len = frame_size*channels; + return celt_inner_prod(pcm, pcm, len, arch)/len; +} +#endif + +/* Decides if DTX should be turned on (=1) or off (=0) */ +static int decide_dtx_mode(float activity_probability, /* probability that current frame contains speech/music */ + int *nb_no_activity_frames, /* number of consecutive frames with no activity */ + opus_val32 peak_signal_energy, /* peak energy of desired signal detected so far */ + const opus_val16 *pcm, /* input pcm signal */ + int frame_size, /* frame size */ + int channels, + int is_silence, /* only digital silence detected in this frame */ + int arch + ) +{ + opus_val32 noise_energy; + + if (!is_silence) + { + if (activity_probability < DTX_ACTIVITY_THRESHOLD) /* is noise */ + { + noise_energy = compute_frame_energy(pcm, frame_size, channels, arch); + + /* but is sufficiently quiet */ + is_silence = peak_signal_energy >= (PSEUDO_SNR_THRESHOLD * noise_energy); + } + } + + if (is_silence) + { + /* The number of consecutive DTX frames should be within the allowed bounds */ + (*nb_no_activity_frames)++; + + if (*nb_no_activity_frames > NB_SPEECH_FRAMES_BEFORE_DTX) + { + if (*nb_no_activity_frames <= (NB_SPEECH_FRAMES_BEFORE_DTX + MAX_CONSECUTIVE_DTX)) + /* Valid frame for DTX! */ + return 1; + else + (*nb_no_activity_frames) = NB_SPEECH_FRAMES_BEFORE_DTX; + } + } else + (*nb_no_activity_frames) = 0; + + return 0; +} + +#endif + +static opus_int32 encode_multiframe_packet(OpusEncoder *st, + const opus_val16 *pcm, + int nb_frames, + int frame_size, + unsigned char *data, + opus_int32 out_data_bytes, + int to_celt, + int lsb_depth, + int float_api) +{ + int i; + int ret = 0; + VARDECL(unsigned char, tmp_data); + int bak_mode, bak_bandwidth, bak_channels, bak_to_mono; + VARDECL(OpusRepacketizer, rp); + int max_header_bytes; + opus_int32 bytes_per_frame; + opus_int32 cbr_bytes; + opus_int32 repacketize_len; + int tmp_len; + ALLOC_STACK; + + /* Worst cases: + * 2 frames: Code 2 with different compressed sizes + * >2 frames: Code 3 VBR */ + max_header_bytes = nb_frames == 2 ? 3 : (2+(nb_frames-1)*2); + + if (st->use_vbr || st->user_bitrate_bps==OPUS_BITRATE_MAX) + repacketize_len = out_data_bytes; + else { + cbr_bytes = 3*st->bitrate_bps/(3*8*st->Fs/(frame_size*nb_frames)); + repacketize_len = IMIN(cbr_bytes, out_data_bytes); + } + bytes_per_frame = IMIN(1276, 1+(repacketize_len-max_header_bytes)/nb_frames); + + ALLOC(tmp_data, nb_frames*bytes_per_frame, unsigned char); + ALLOC(rp, 1, OpusRepacketizer); + opus_repacketizer_init(rp); + + bak_mode = st->user_forced_mode; + bak_bandwidth = st->user_bandwidth; + bak_channels = st->force_channels; + + st->user_forced_mode = st->mode; + st->user_bandwidth = st->bandwidth; + st->force_channels = st->stream_channels; + + bak_to_mono = st->silk_mode.toMono; + if (bak_to_mono) + st->force_channels = 1; + else + st->prev_channels = st->stream_channels; + + for (i=0;i<nb_frames;i++) + { + st->silk_mode.toMono = 0; + st->nonfinal_frame = i<(nb_frames-1); + + /* When switching from SILK/Hybrid to CELT, only ask for a switch at the last frame */ + if (to_celt && i==nb_frames-1) + st->user_forced_mode = MODE_CELT_ONLY; + + tmp_len = opus_encode_native(st, pcm+i*(st->channels*frame_size), frame_size, + tmp_data+i*bytes_per_frame, bytes_per_frame, lsb_depth, NULL, 0, 0, 0, 0, + NULL, float_api); + + if (tmp_len<0) + { + RESTORE_STACK; + return OPUS_INTERNAL_ERROR; + } + + ret = opus_repacketizer_cat(rp, tmp_data+i*bytes_per_frame, tmp_len); + + if (ret<0) + { + RESTORE_STACK; + return OPUS_INTERNAL_ERROR; + } + } + + ret = opus_repacketizer_out_range_impl(rp, 0, nb_frames, data, repacketize_len, 0, !st->use_vbr); + + if (ret<0) + { + RESTORE_STACK; + return OPUS_INTERNAL_ERROR; + } + + /* Discard configs that were forced locally for the purpose of repacketization */ + st->user_forced_mode = bak_mode; + st->user_bandwidth = bak_bandwidth; + st->force_channels = bak_channels; + st->silk_mode.toMono = bak_to_mono; + + RESTORE_STACK; + return ret; +} + +static int compute_redundancy_bytes(opus_int32 max_data_bytes, opus_int32 bitrate_bps, int frame_rate, int channels) +{ + int redundancy_bytes_cap; + int redundancy_bytes; + opus_int32 redundancy_rate; + int base_bits; + opus_int32 available_bits; + base_bits = (40*channels+20); + + /* Equivalent rate for 5 ms frames. */ + redundancy_rate = bitrate_bps + base_bits*(200 - frame_rate); + /* For VBR, further increase the bitrate if we can afford it. It's pretty short + and we'll avoid artefacts. */ + redundancy_rate = 3*redundancy_rate/2; + redundancy_bytes = redundancy_rate/1600; + + /* Compute the max rate we can use given CBR or VBR with cap. */ + available_bits = max_data_bytes*8 - 2*base_bits; + redundancy_bytes_cap = (available_bits*240/(240+48000/frame_rate) + base_bits)/8; + redundancy_bytes = IMIN(redundancy_bytes, redundancy_bytes_cap); + /* It we can't get enough bits for redundancy to be worth it, rely on the decoder PLC. */ + if (redundancy_bytes > 4 + 8*channels) + redundancy_bytes = IMIN(257, redundancy_bytes); + else + redundancy_bytes = 0; + return redundancy_bytes; +} + opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_size, unsigned char *data, opus_int32 out_data_bytes, int lsb_depth, const void *analysis_pcm, opus_int32 analysis_size, int c1, int c2, @@ -971,6 +1100,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ AnalysisInfo analysis_info; int analysis_read_pos_bak=-1; int analysis_read_subframe_bak=-1; + int is_silence = 0; #endif VARDECL(opus_val16, tmp_prefill); @@ -979,15 +1109,19 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ max_data_bytes = IMIN(1276, out_data_bytes); st->rangeFinal = 0; - if ((!st->variable_duration && 400*frame_size != st->Fs && 200*frame_size != st->Fs && 100*frame_size != st->Fs && - 50*frame_size != st->Fs && 25*frame_size != st->Fs && 50*frame_size != 3*st->Fs) - || (400*frame_size < st->Fs) - || max_data_bytes<=0 - ) + if (frame_size <= 0 || max_data_bytes <= 0) { RESTORE_STACK; return OPUS_BAD_ARG; } + + /* Cannot encode 100 ms in 1 byte */ + if (max_data_bytes==1 && st->Fs==(frame_size*10)) + { + RESTORE_STACK; + return OPUS_BUFFER_TOO_SMALL; + } + silk_enc = (char*)st+st->silk_enc_offset; celt_enc = (CELTEncoder*)((char*)st+st->celt_enc_offset); if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) @@ -1001,31 +1135,55 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ #ifndef DISABLE_FLOAT_API analysis_info.valid = 0; #ifdef FIXED_POINT - if (st->silk_mode.complexity >= 10 && st->Fs==48000) + if (st->silk_mode.complexity >= 10 && st->Fs>=16000) #else - if (st->silk_mode.complexity >= 7 && st->Fs==48000) + if (st->silk_mode.complexity >= 7 && st->Fs>=16000) #endif { + is_silence = is_digital_silence(pcm, frame_size, st->channels, lsb_depth); analysis_read_pos_bak = st->analysis.read_pos; analysis_read_subframe_bak = st->analysis.read_subframe; run_analysis(&st->analysis, celt_mode, analysis_pcm, analysis_size, frame_size, c1, c2, analysis_channels, st->Fs, lsb_depth, downmix, &analysis_info); + + /* Track the peak signal energy */ + if (!is_silence && analysis_info.activity_probability > DTX_ACTIVITY_THRESHOLD) + st->peak_signal_energy = MAX32(MULT16_32_Q15(QCONST16(0.999f, 15), st->peak_signal_energy), + compute_frame_energy(pcm, frame_size, st->channels, st->arch)); + } else if (st->analysis.initialized) { + tonality_analysis_reset(&st->analysis); } #else (void)analysis_pcm; (void)analysis_size; + (void)c1; + (void)c2; + (void)analysis_channels; + (void)downmix; #endif - st->voice_ratio = -1; - #ifndef DISABLE_FLOAT_API + /* Reset voice_ratio if this frame is not silent or if analysis is disabled. + * Otherwise, preserve voice_ratio from the last non-silent frame */ + if (!is_silence) + st->voice_ratio = -1; + st->detected_bandwidth = 0; if (analysis_info.valid) { int analysis_bandwidth; if (st->signal_type == OPUS_AUTO) - st->voice_ratio = (int)floor(.5+100*(1-analysis_info.music_prob)); + { + float prob; + if (st->prev_mode == 0) + prob = analysis_info.music_prob; + else if (st->prev_mode == MODE_CELT_ONLY) + prob = analysis_info.music_prob_max; + else + prob = analysis_info.music_prob_min; + st->voice_ratio = (int)floor(.5+100*(1-prob)); + } analysis_bandwidth = analysis_info.bandwidth; if (analysis_bandwidth<=12) @@ -1039,6 +1197,8 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ else st->detected_bandwidth = OPUS_BANDWIDTH_FULLBAND; } +#else + st->voice_ratio = -1; #endif if (st->channels==2 && st->force_channels!=1) @@ -1052,12 +1212,13 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (!st->use_vbr) { int cbrBytes; - /* Multiply by 3 to make sure the division is exact. */ - int frame_rate3 = 3*st->Fs/frame_size; + /* Multiply by 12 to make sure the division is exact. */ + int frame_rate12 = 12*st->Fs/frame_size; /* We need to make sure that "int" values always fit in 16 bits. */ - cbrBytes = IMIN( (3*st->bitrate_bps/8 + frame_rate3/2)/frame_rate3, max_data_bytes); - st->bitrate_bps = cbrBytes*(opus_int32)frame_rate3*8/3; - max_data_bytes = cbrBytes; + cbrBytes = IMIN( (12*st->bitrate_bps/8 + frame_rate12/2)/frame_rate12, max_data_bytes); + st->bitrate_bps = cbrBytes*(opus_int32)frame_rate12*8/12; + /* Make sure we provide at least one byte to avoid failing. */ + max_data_bytes = IMAX(1, cbrBytes); } if (max_data_bytes<3 || st->bitrate_bps < 3*frame_rate*8 || (frame_rate<50 && (max_data_bytes*frame_rate<300 || st->bitrate_bps < 2400))) @@ -1065,25 +1226,63 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ /*If the space is too low to do something useful, emit 'PLC' frames.*/ int tocmode = st->mode; int bw = st->bandwidth == 0 ? OPUS_BANDWIDTH_NARROWBAND : st->bandwidth; + int packet_code = 0; + int num_multiframes = 0; + if (tocmode==0) tocmode = MODE_SILK_ONLY; if (frame_rate>100) tocmode = MODE_CELT_ONLY; - if (frame_rate < 50) - tocmode = MODE_SILK_ONLY; + /* 40 ms -> 2 x 20 ms if in CELT_ONLY or HYBRID mode */ + if (frame_rate==25 && tocmode!=MODE_SILK_ONLY) + { + frame_rate = 50; + packet_code = 1; + } + + /* >= 60 ms frames */ + if (frame_rate<=16) + { + /* 1 x 60 ms, 2 x 40 ms, 2 x 60 ms */ + if (out_data_bytes==1 || (tocmode==MODE_SILK_ONLY && frame_rate!=10)) + { + tocmode = MODE_SILK_ONLY; + + packet_code = frame_rate <= 12; + frame_rate = frame_rate == 12 ? 25 : 16; + } + else + { + num_multiframes = 50/frame_rate; + frame_rate = 50; + packet_code = 3; + } + } + if(tocmode==MODE_SILK_ONLY&&bw>OPUS_BANDWIDTH_WIDEBAND) bw=OPUS_BANDWIDTH_WIDEBAND; else if (tocmode==MODE_CELT_ONLY&&bw==OPUS_BANDWIDTH_MEDIUMBAND) bw=OPUS_BANDWIDTH_NARROWBAND; else if (tocmode==MODE_HYBRID&&bw<=OPUS_BANDWIDTH_SUPERWIDEBAND) bw=OPUS_BANDWIDTH_SUPERWIDEBAND; + data[0] = gen_toc(tocmode, frame_rate, bw, st->stream_channels); - ret = 1; + data[0] |= packet_code; + + ret = packet_code <= 1 ? 1 : 2; + + max_data_bytes = IMAX(max_data_bytes, ret); + + if (packet_code==3) + data[1] = num_multiframes; + if (!st->use_vbr) { ret = opus_packet_pad(data, ret, max_data_bytes); if (ret == OPUS_OK) ret = max_data_bytes; + else + ret = OPUS_INTERNAL_ERROR; } RESTORE_STACK; return ret; @@ -1091,7 +1290,8 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ max_rate = frame_rate*max_data_bytes*8; /* Equivalent 20-ms rate for mode/channel/bandwidth decisions */ - equiv_rate = st->bitrate_bps - (40*st->channels+20)*(st->Fs/frame_size - 50); + equiv_rate = compute_equiv_rate(st->bitrate_bps, st->channels, st->Fs/frame_size, + st->use_vbr, 0, st->silk_mode.complexity, st->silk_mode.packetLossPercentage); if (st->signal_type == OPUS_SIGNAL_VOICE) voice_est = 127; @@ -1132,7 +1332,17 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ } #endif } - equiv_rate = st->bitrate_bps - (40*st->stream_channels+20)*(st->Fs/frame_size - 50); + /* Update equivalent rate for channels decision. */ + equiv_rate = compute_equiv_rate(st->bitrate_bps, st->stream_channels, st->Fs/frame_size, + st->use_vbr, 0, st->silk_mode.complexity, st->silk_mode.packetLossPercentage); + + /* Allow SILK DTX if DTX is enabled but the generalized DTX cannot be used, + e.g. because of the complexity setting or sample rate. */ +#ifndef DISABLE_FLOAT_API + st->silk_mode.useDTX = st->use_dtx && !(analysis_info.valid || is_silence); +#else + st->silk_mode.useDTX = st->use_dtx; +#endif /* Mode selection depending on application and signal type */ if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) @@ -1181,10 +1391,15 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ /* When FEC is enabled and there's enough packet loss, use SILK */ if (st->silk_mode.useInBandFEC && st->silk_mode.packetLossPercentage > (128-voice_est)>>4) st->mode = MODE_SILK_ONLY; - /* When encoding voice and DTX is enabled, set the encoder to SILK mode (at least for now) */ + /* When encoding voice and DTX is enabled but the generalized DTX cannot be used, + use SILK in order to make use of its DTX. */ if (st->silk_mode.useDTX && voice_est > 100) st->mode = MODE_SILK_ONLY; #endif + + /* If max_data_bytes represents less than 6 kb/s, switch to CELT-only mode */ + if (max_data_bytes < (frame_rate > 50 ? 9000 : 6000)*frame_size / (st->Fs * 8)) + st->mode = MODE_CELT_ONLY; } else { st->mode = st->user_forced_mode; } @@ -1194,19 +1409,6 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ st->mode = MODE_CELT_ONLY; if (st->lfe) st->mode = MODE_CELT_ONLY; - /* If max_data_bytes represents less than 8 kb/s, switch to CELT-only mode */ - if (max_data_bytes < (frame_rate > 50 ? 12000 : 8000)*frame_size / (st->Fs * 8)) - st->mode = MODE_CELT_ONLY; - - if (st->stream_channels == 1 && st->prev_channels ==2 && st->silk_mode.toMono==0 - && st->mode != MODE_CELT_ONLY && st->prev_mode != MODE_CELT_ONLY) - { - /* Delay stereo->mono transition by two frames so that SILK can do a smooth downmix */ - st->silk_mode.toMono = 1; - st->stream_channels = 2; - } else { - st->silk_mode.toMono = 0; - } if (st->prev_mode > 0 && ((st->mode != MODE_CELT_ONLY && st->prev_mode == MODE_CELT_ONLY) || @@ -1226,24 +1428,23 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ } } } - /* For the first frame at a new SILK bandwidth */ - if (st->silk_bw_switch) - { - redundancy = 1; - celt_to_silk = 1; - st->silk_bw_switch = 0; - prefill=1; - } - if (redundancy) + /* When encoding multiframes, we can ask for a switch to CELT only in the last frame. This switch + * is processed above as the requested mode shouldn't interrupt stereo->mono transition. */ + if (st->stream_channels == 1 && st->prev_channels ==2 && st->silk_mode.toMono==0 + && st->mode != MODE_CELT_ONLY && st->prev_mode != MODE_CELT_ONLY) { - /* Fair share of the max size allowed */ - redundancy_bytes = IMIN(257, max_data_bytes*(opus_int32)(st->Fs/200)/(frame_size+st->Fs/200)); - /* For VBR, target the actual bitrate (subject to the limit above) */ - if (st->use_vbr) - redundancy_bytes = IMIN(redundancy_bytes, st->bitrate_bps/1600); + /* Delay stereo->mono transition by two frames so that SILK can do a smooth downmix */ + st->silk_mode.toMono = 1; + st->stream_channels = 2; + } else { + st->silk_mode.toMono = 0; } + /* Update equivalent rate with mode decision. */ + equiv_rate = compute_equiv_rate(st->bitrate_bps, st->stream_channels, st->Fs/frame_size, + st->use_vbr, st->mode, st->silk_mode.complexity, st->silk_mode.packetLossPercentage); + if (st->mode != MODE_CELT_ONLY && st->prev_mode == MODE_CELT_ONLY) { silk_EncControlStruct dummy; @@ -1257,17 +1458,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ const opus_int32 *voice_bandwidth_thresholds, *music_bandwidth_thresholds; opus_int32 bandwidth_thresholds[8]; int bandwidth = OPUS_BANDWIDTH_FULLBAND; - opus_int32 equiv_rate2; - equiv_rate2 = equiv_rate; - if (st->mode != MODE_CELT_ONLY) - { - /* Adjust the threshold +/- 10% depending on complexity */ - equiv_rate2 = equiv_rate2 * (45+st->silk_mode.complexity)/50; - /* CBR is less efficient by ~1 kb/s */ - if (!st->use_vbr) - equiv_rate2 -= 1000; - } if (st->channels==2 && st->force_channels!=1) { voice_bandwidth_thresholds = stereo_voice_bandwidth_thresholds; @@ -1288,15 +1479,19 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ hysteresis = bandwidth_thresholds[2*(bandwidth-OPUS_BANDWIDTH_MEDIUMBAND)+1]; if (!st->first) { - if (st->bandwidth >= bandwidth) + if (st->auto_bandwidth >= bandwidth) threshold -= hysteresis; else threshold += hysteresis; } - if (equiv_rate2 >= threshold) + if (equiv_rate >= threshold) break; } while (--bandwidth>OPUS_BANDWIDTH_NARROWBAND); - st->bandwidth = bandwidth; + /* We don't use mediumband anymore, except when explicitly requested or during + mode transitions. */ + if (bandwidth == OPUS_BANDWIDTH_MEDIUMBAND) + bandwidth = OPUS_BANDWIDTH_WIDEBAND; + st->bandwidth = st->auto_bandwidth = bandwidth; /* Prevents any transition to SWB/FB until the SILK layer has fully switched to WB mode and turned the variable LP filter off */ if (!st->first && st->mode != MODE_CELT_ONLY && !st->silk_mode.inWBmodeWithoutVariableLP && st->bandwidth > OPUS_BANDWIDTH_WIDEBAND) @@ -1349,6 +1544,8 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ st->bandwidth = IMIN(st->bandwidth, st->detected_bandwidth); } #endif + st->silk_mode.LBRR_coded = decide_fec(st->silk_mode.useInBandFEC, st->silk_mode.packetLossPercentage, + st->silk_mode.LBRR_coded, st->mode, &st->bandwidth, equiv_rate); celt_encoder_ctl(celt_enc, OPUS_SET_LSB_DEPTH(lsb_depth)); /* CELT mode doesn't support mediumband, use wideband instead */ @@ -1357,15 +1554,34 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (st->lfe) st->bandwidth = OPUS_BANDWIDTH_NARROWBAND; - /* Can't support higher than wideband for >20 ms frames */ - if (frame_size > st->Fs/50 && (st->mode == MODE_CELT_ONLY || st->bandwidth > OPUS_BANDWIDTH_WIDEBAND)) + curr_bandwidth = st->bandwidth; + + /* Chooses the appropriate mode for speech + *NEVER* switch to/from CELT-only mode here as this will invalidate some assumptions */ + if (st->mode == MODE_SILK_ONLY && curr_bandwidth > OPUS_BANDWIDTH_WIDEBAND) + st->mode = MODE_HYBRID; + if (st->mode == MODE_HYBRID && curr_bandwidth <= OPUS_BANDWIDTH_WIDEBAND) + st->mode = MODE_SILK_ONLY; + + /* Can't support higher than >60 ms frames, and >20 ms when in Hybrid or CELT-only modes */ + if ((frame_size > st->Fs/50 && (st->mode != MODE_SILK_ONLY)) || frame_size > 3*st->Fs/50) { - VARDECL(unsigned char, tmp_data); + int enc_frame_size; int nb_frames; - int bak_mode, bak_bandwidth, bak_channels, bak_to_mono; - VARDECL(OpusRepacketizer, rp); - opus_int32 bytes_per_frame; - opus_int32 repacketize_len; + + if (st->mode == MODE_SILK_ONLY) + { + if (frame_size == 2*st->Fs/25) /* 80 ms -> 2x 40 ms */ + enc_frame_size = st->Fs/25; + else if (frame_size == 3*st->Fs/25) /* 120 ms -> 2x 60 ms */ + enc_frame_size = 3*st->Fs/50; + else /* 100 ms -> 5x 20 ms */ + enc_frame_size = st->Fs/50; + } + else + enc_frame_size = st->Fs/50; + + nb_frames = frame_size/enc_frame_size; #ifndef DISABLE_FLOAT_API if (analysis_read_pos_bak!= -1) @@ -1375,74 +1591,34 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ } #endif - nb_frames = frame_size > st->Fs/25 ? 3 : 2; - bytes_per_frame = IMIN(1276,(out_data_bytes-3)/nb_frames); - - ALLOC(tmp_data, nb_frames*bytes_per_frame, unsigned char); - - ALLOC(rp, 1, OpusRepacketizer); - opus_repacketizer_init(rp); - - bak_mode = st->user_forced_mode; - bak_bandwidth = st->user_bandwidth; - bak_channels = st->force_channels; + ret = encode_multiframe_packet(st, pcm, nb_frames, enc_frame_size, data, + out_data_bytes, to_celt, lsb_depth, float_api); - st->user_forced_mode = st->mode; - st->user_bandwidth = st->bandwidth; - st->force_channels = st->stream_channels; - bak_to_mono = st->silk_mode.toMono; - - if (bak_to_mono) - st->force_channels = 1; - else - st->prev_channels = st->stream_channels; - for (i=0;i<nb_frames;i++) - { - int tmp_len; - st->silk_mode.toMono = 0; - /* When switching from SILK/Hybrid to CELT, only ask for a switch at the last frame */ - if (to_celt && i==nb_frames-1) - st->user_forced_mode = MODE_CELT_ONLY; - tmp_len = opus_encode_native(st, pcm+i*(st->channels*st->Fs/50), st->Fs/50, - tmp_data+i*bytes_per_frame, bytes_per_frame, lsb_depth, - NULL, 0, c1, c2, analysis_channels, downmix, float_api); - if (tmp_len<0) - { - RESTORE_STACK; - return OPUS_INTERNAL_ERROR; - } - ret = opus_repacketizer_cat(rp, tmp_data+i*bytes_per_frame, tmp_len); - if (ret<0) - { - RESTORE_STACK; - return OPUS_INTERNAL_ERROR; - } - } - if (st->use_vbr) - repacketize_len = out_data_bytes; - else - repacketize_len = IMIN(3*st->bitrate_bps/(3*8*50/nb_frames), out_data_bytes); - ret = opus_repacketizer_out_range_impl(rp, 0, nb_frames, data, repacketize_len, 0, !st->use_vbr); - if (ret<0) - { - RESTORE_STACK; - return OPUS_INTERNAL_ERROR; - } - st->user_forced_mode = bak_mode; - st->user_bandwidth = bak_bandwidth; - st->force_channels = bak_channels; - st->silk_mode.toMono = bak_to_mono; RESTORE_STACK; return ret; } - curr_bandwidth = st->bandwidth; - /* Chooses the appropriate mode for speech - *NEVER* switch to/from CELT-only mode here as this will invalidate some assumptions */ - if (st->mode == MODE_SILK_ONLY && curr_bandwidth > OPUS_BANDWIDTH_WIDEBAND) - st->mode = MODE_HYBRID; - if (st->mode == MODE_HYBRID && curr_bandwidth <= OPUS_BANDWIDTH_WIDEBAND) - st->mode = MODE_SILK_ONLY; + /* For the first frame at a new SILK bandwidth */ + if (st->silk_bw_switch) + { + redundancy = 1; + celt_to_silk = 1; + st->silk_bw_switch = 0; + /* Do a prefill without reseting the sampling rate control. */ + prefill=2; + } + + /* If we decided to go with CELT, make sure redundancy is off, no matter what + we decided earlier. */ + if (st->mode == MODE_CELT_ONLY) + redundancy = 0; + + if (redundancy) + { + redundancy_bytes = compute_redundancy_bytes(max_data_bytes, st->bitrate_bps, frame_rate, st->stream_channels); + if (redundancy_bytes == 0) + redundancy = 0; + } /* printf("%d %d %d %d\n", st->bitrate_bps, st->stream_channels, st->mode, curr_bandwidth); */ bytes_target = IMIN(max_data_bytes-redundancy_bytes, st->bitrate_bps * frame_size / (st->Fs * 8)) - 1; @@ -1467,7 +1643,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (st->application == OPUS_APPLICATION_VOIP) { - hp_cutoff(pcm, cutoff_Hz, &pcm_buf[total_buffer*st->channels], st->hp_mem, frame_size, st->channels, st->Fs); + hp_cutoff(pcm, cutoff_Hz, &pcm_buf[total_buffer*st->channels], st->hp_mem, frame_size, st->channels, st->Fs, st->arch); } else { dc_reject(pcm, 3, &pcm_buf[total_buffer*st->channels], st->hp_mem, frame_size, st->channels, st->Fs); } @@ -1492,6 +1668,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (st->mode != MODE_CELT_ONLY) { opus_int32 total_bitRate, celt_rate; + opus_int activity; #ifdef FIXED_POINT const opus_int16 *pcm_silk; #else @@ -1499,30 +1676,26 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ ALLOC(pcm_silk, st->channels*frame_size, opus_int16); #endif + activity = VAD_NO_DECISION; +#ifndef DISABLE_FLOAT_API + if( analysis_info.valid ) { + /* Inform SILK about the Opus VAD decision */ + activity = ( analysis_info.activity_probability >= DTX_ACTIVITY_THRESHOLD ); + } +#endif + /* Distribute bits between SILK and CELT */ total_bitRate = 8 * bytes_target * frame_rate; if( st->mode == MODE_HYBRID ) { - int HB_gain_ref; /* Base rate for SILK */ - st->silk_mode.bitRate = st->stream_channels * ( 5000 + 1000 * ( st->Fs == 100 * frame_size ) ); - if( curr_bandwidth == OPUS_BANDWIDTH_SUPERWIDEBAND ) { - /* SILK gets 2/3 of the remaining bits */ - st->silk_mode.bitRate += ( total_bitRate - st->silk_mode.bitRate ) * 2 / 3; - } else { /* FULLBAND */ - /* SILK gets 3/5 of the remaining bits */ - st->silk_mode.bitRate += ( total_bitRate - st->silk_mode.bitRate ) * 3 / 5; - } - /* Don't let SILK use more than 80% */ - if( st->silk_mode.bitRate > total_bitRate * 4/5 ) { - st->silk_mode.bitRate = total_bitRate * 4/5; - } + st->silk_mode.bitRate = compute_silk_rate_for_hybrid(total_bitRate, + curr_bandwidth, st->Fs == 50 * frame_size, st->use_vbr, st->silk_mode.LBRR_coded, + st->stream_channels); if (!st->energy_masking) { /* Increasingly attenuate high band when it gets allocated fewer bits */ celt_rate = total_bitRate - st->silk_mode.bitRate; - HB_gain_ref = (curr_bandwidth == OPUS_BANDWIDTH_SUPERWIDEBAND) ? 3000 : 3600; - HB_gain = SHL32((opus_val32)celt_rate, 9) / SHR32((opus_val32)celt_rate + st->stream_channels * HB_gain_ref, 6); - HB_gain = HB_gain < (opus_val32)Q15ONE*6/7 ? HB_gain + Q15ONE/7 : Q15ONE; + HB_gain = Q15ONE - SHR32(celt_exp2(-celt_rate * QCONST16(1.f/1024, 10)), 1); } } else { /* SILK gets all bits */ @@ -1569,7 +1742,6 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ st->silk_mode.bitRate += 3*rate_offset/5; else st->silk_mode.bitRate += rate_offset; - bytes_target += rate_offset * frame_size / (8 * st->Fs); } st->silk_mode.payloadSize_ms = 1000 * frame_size / st->Fs; @@ -1580,7 +1752,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ } else if (curr_bandwidth == OPUS_BANDWIDTH_MEDIUMBAND) { st->silk_mode.desiredInternalSampleRate = 12000; } else { - silk_assert( st->mode == MODE_HYBRID || curr_bandwidth == OPUS_BANDWIDTH_WIDEBAND ); + celt_assert( st->mode == MODE_HYBRID || curr_bandwidth == OPUS_BANDWIDTH_WIDEBAND ); st->silk_mode.desiredInternalSampleRate = 16000; } if( st->mode == MODE_HYBRID ) { @@ -1590,40 +1762,53 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ st->silk_mode.minInternalSampleRate = 8000; } + st->silk_mode.maxInternalSampleRate = 16000; if (st->mode == MODE_SILK_ONLY) { opus_int32 effective_max_rate = max_rate; - st->silk_mode.maxInternalSampleRate = 16000; if (frame_rate > 50) effective_max_rate = effective_max_rate*2/3; - if (effective_max_rate < 13000) + if (effective_max_rate < 8000) { st->silk_mode.maxInternalSampleRate = 12000; st->silk_mode.desiredInternalSampleRate = IMIN(12000, st->silk_mode.desiredInternalSampleRate); } - if (effective_max_rate < 9600) + if (effective_max_rate < 7000) { st->silk_mode.maxInternalSampleRate = 8000; st->silk_mode.desiredInternalSampleRate = IMIN(8000, st->silk_mode.desiredInternalSampleRate); } - } else { - st->silk_mode.maxInternalSampleRate = 16000; } st->silk_mode.useCBR = !st->use_vbr; /* Call SILK encoder for the low band */ - nBytes = IMIN(1275, max_data_bytes-1-redundancy_bytes); - st->silk_mode.maxBits = nBytes*8; - /* Only allow up to 90% of the bits for hybrid mode*/ - if (st->mode == MODE_HYBRID) - st->silk_mode.maxBits = (opus_int32)st->silk_mode.maxBits*9/10; + /* Max bits for SILK, counting ToC, redundancy bytes, and optionally redundancy. */ + st->silk_mode.maxBits = (max_data_bytes-1)*8; + if (redundancy && redundancy_bytes >= 2) + { + /* Counting 1 bit for redundancy position and 20 bits for flag+size (only for hybrid). */ + st->silk_mode.maxBits -= redundancy_bytes*8 + 1; + if (st->mode == MODE_HYBRID) + st->silk_mode.maxBits -= 20; + } if (st->silk_mode.useCBR) { - st->silk_mode.maxBits = (st->silk_mode.bitRate * frame_size / (st->Fs * 8))*8; - /* Reduce the initial target to make it easier to reach the CBR rate */ - st->silk_mode.bitRate = IMAX(1, st->silk_mode.bitRate-2000); + if (st->mode == MODE_HYBRID) + { + st->silk_mode.maxBits = IMIN(st->silk_mode.maxBits, st->silk_mode.bitRate * frame_size / st->Fs); + } + } else { + /* Constrained VBR. */ + if (st->mode == MODE_HYBRID) + { + /* Compute SILK bitrate corresponding to the max total bits available */ + opus_int32 maxBitRate = compute_silk_rate_for_hybrid(st->silk_mode.maxBits*st->Fs / frame_size, + curr_bandwidth, st->Fs == 50 * frame_size, st->use_vbr, st->silk_mode.LBRR_coded, + st->stream_channels); + st->silk_mode.maxBits = maxBitRate * frame_size / st->Fs; + } } if (prefill) @@ -1646,7 +1831,9 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ for (i=0;i<st->encoder_buffer*st->channels;i++) pcm_silk[i] = FLOAT2INT16(st->delay_buffer[i]); #endif - silk_Encode( silk_enc, &st->silk_mode, pcm_silk, st->encoder_buffer, NULL, &zero, 1 ); + silk_Encode( silk_enc, &st->silk_mode, pcm_silk, st->encoder_buffer, NULL, &zero, prefill, activity ); + /* Prevent a second switch in the real encode call. */ + st->silk_mode.opusCanSwitch = 0; } #ifdef FIXED_POINT @@ -1655,20 +1842,14 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ for (i=0;i<frame_size*st->channels;i++) pcm_silk[i] = FLOAT2INT16(pcm_buf[total_buffer*st->channels + i]); #endif - ret = silk_Encode( silk_enc, &st->silk_mode, pcm_silk, frame_size, &enc, &nBytes, 0 ); + ret = silk_Encode( silk_enc, &st->silk_mode, pcm_silk, frame_size, &enc, &nBytes, 0, activity ); if( ret ) { /*fprintf (stderr, "SILK encode error: %d\n", ret);*/ /* Handle error */ RESTORE_STACK; return OPUS_INTERNAL_ERROR; } - if (nBytes==0) - { - st->rangeFinal = 0; - data[-1] = gen_toc(st->mode, st->Fs/frame_size, curr_bandwidth, st->stream_channels); - RESTORE_STACK; - return 1; - } + /* Extract SILK internal bandwidth for signaling in first byte */ if( st->mode == MODE_SILK_ONLY ) { if( st->silk_mode.internalSampleRate == 8000 ) { @@ -1679,14 +1860,24 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ curr_bandwidth = OPUS_BANDWIDTH_WIDEBAND; } } else { - silk_assert( st->silk_mode.internalSampleRate == 16000 ); + celt_assert( st->silk_mode.internalSampleRate == 16000 ); + } + + st->silk_mode.opusCanSwitch = st->silk_mode.switchReady && !st->nonfinal_frame; + + if (nBytes==0) + { + st->rangeFinal = 0; + data[-1] = gen_toc(st->mode, st->Fs/frame_size, curr_bandwidth, st->stream_channels); + RESTORE_STACK; + return 1; } - st->silk_mode.opusCanSwitch = st->silk_mode.switchReady; /* FIXME: How do we allocate the redundancy for CBR? */ if (st->silk_mode.opusCanSwitch) { - redundancy = 1; + redundancy_bytes = compute_redundancy_bytes(max_data_bytes, st->bitrate_bps, frame_rate, st->stream_channels); + redundancy = (redundancy_bytes != 0); celt_to_silk = 0; st->silk_bw_switch = 1; } @@ -1727,40 +1918,18 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (st->mode == MODE_HYBRID) { - int len; - - len = (ec_tell(&enc)+7)>>3; - if (redundancy) - len += st->mode == MODE_HYBRID ? 3 : 1; if( st->use_vbr ) { - nb_compr_bytes = len + bytes_target - (st->silk_mode.bitRate * frame_size) / (8 * st->Fs); - } else { - /* check if SILK used up too much */ - nb_compr_bytes = len > bytes_target ? len : bytes_target; + celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(st->bitrate_bps-st->silk_mode.bitRate)); + celt_encoder_ctl(celt_enc, OPUS_SET_VBR_CONSTRAINT(0)); } } else { if (st->use_vbr) { - opus_int32 bonus=0; -#ifndef DISABLE_FLOAT_API - if (st->variable_duration==OPUS_FRAMESIZE_VARIABLE && frame_size != st->Fs/50) - { - bonus = (60*st->stream_channels+40)*(st->Fs/frame_size-50); - if (analysis_info.valid) - bonus = (opus_int32)(bonus*(1.f+.5f*analysis_info.tonality)); - } -#endif celt_encoder_ctl(celt_enc, OPUS_SET_VBR(1)); celt_encoder_ctl(celt_enc, OPUS_SET_VBR_CONSTRAINT(st->vbr_constraint)); - celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(st->bitrate_bps+bonus)); - nb_compr_bytes = max_data_bytes-1-redundancy_bytes; - } else { - nb_compr_bytes = bytes_target; + celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(st->bitrate_bps)); } } - - } else { - nb_compr_bytes = 0; } ALLOC(tmp_prefill, st->channels*st->Fs/400, opus_val16); @@ -1786,7 +1955,14 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ } st->prev_HB_gain = HB_gain; if (st->mode != MODE_HYBRID || st->stream_channels==1) - st->silk_mode.stereoWidth_Q14 = IMIN((1<<14),2*IMAX(0,equiv_rate-30000)); + { + if (equiv_rate > 32000) + st->silk_mode.stereoWidth_Q14 = 16384; + else if (equiv_rate < 16000) + st->silk_mode.stereoWidth_Q14 = 0; + else + st->silk_mode.stereoWidth_Q14 = 16384 - 2048*(opus_int32)(32000-equiv_rate)/(equiv_rate-14000); + } if( !st->energy_masking && st->channels == 2 ) { /* Apply stereo width reduction (at low bitrates) */ if( st->hybrid_stereo_width_Q14 < (1 << 14) || st->silk_mode.stereoWidth_Q14 < (1 << 14) ) { @@ -1809,19 +1985,23 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if ( st->mode != MODE_CELT_ONLY && ec_tell(&enc)+17+20*(st->mode == MODE_HYBRID) <= 8*(max_data_bytes-1)) { /* For SILK mode, the redundancy is inferred from the length */ - if (st->mode == MODE_HYBRID && (redundancy || ec_tell(&enc)+37 <= 8*nb_compr_bytes)) + if (st->mode == MODE_HYBRID) ec_enc_bit_logp(&enc, redundancy, 12); if (redundancy) { int max_redundancy; ec_enc_bit_logp(&enc, celt_to_silk, 1); if (st->mode == MODE_HYBRID) - max_redundancy = (max_data_bytes-1)-nb_compr_bytes; + { + /* Reserve the 8 bits needed for the redundancy length, + and at least a few bits for CELT if possible */ + max_redundancy = (max_data_bytes-1)-((ec_tell(&enc)+8+3+7)>>3); + } else max_redundancy = (max_data_bytes-1)-((ec_tell(&enc)+7)>>3); /* Target the same bit-rate for redundancy as for the rest, up to a max of 257 bytes */ - redundancy_bytes = IMIN(max_redundancy, st->bitrate_bps/1600); + redundancy_bytes = IMIN(max_redundancy, redundancy_bytes); redundancy_bytes = IMIN(257, IMAX(2, redundancy_bytes)); if (st->mode == MODE_HYBRID) ec_enc_uint(&enc, redundancy_bytes-2, 256); @@ -1843,7 +2023,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ ec_enc_done(&enc); nb_compr_bytes = ret; } else { - nb_compr_bytes = IMIN((max_data_bytes-1)-redundancy_bytes, nb_compr_bytes); + nb_compr_bytes = (max_data_bytes-1)-redundancy_bytes; ec_enc_shrink(&enc, nb_compr_bytes); } @@ -1851,6 +2031,12 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (redundancy || st->mode != MODE_SILK_ONLY) celt_encoder_ctl(celt_enc, CELT_SET_ANALYSIS(&analysis_info)); #endif + if (st->mode == MODE_HYBRID) { + SILKInfo info; + info.signalType = st->silk_mode.signalType; + info.offset = st->silk_mode.offset; + celt_encoder_ctl(celt_enc, CELT_SET_SILK_INFO(&info)); + } /* 5 ms redundant frame for CELT->SILK */ if (redundancy && celt_to_silk) @@ -1858,6 +2044,7 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ int err; celt_encoder_ctl(celt_enc, CELT_SET_START_BAND(0)); celt_encoder_ctl(celt_enc, OPUS_SET_VBR(0)); + celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(OPUS_BITRATE_MAX)); err = celt_encode_with_ec(celt_enc, pcm_buf, st->Fs/200, data+nb_compr_bytes, redundancy_bytes, NULL); if (err < 0) { @@ -1881,15 +2068,25 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ celt_encode_with_ec(celt_enc, tmp_prefill, st->Fs/400, dummy, 2, NULL); celt_encoder_ctl(celt_enc, CELT_SET_PREDICTION(0)); } - /* If false, we already busted the budget and we'll end up with a "PLC packet" */ + /* If false, we already busted the budget and we'll end up with a "PLC frame" */ if (ec_tell(&enc) <= 8*nb_compr_bytes) { + /* Set the bitrate again if it was overridden in the redundancy code above*/ + if (redundancy && celt_to_silk && st->mode==MODE_HYBRID && st->use_vbr) + celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(st->bitrate_bps-st->silk_mode.bitRate)); + celt_encoder_ctl(celt_enc, OPUS_SET_VBR(st->use_vbr)); ret = celt_encode_with_ec(celt_enc, pcm_buf, frame_size, NULL, nb_compr_bytes, &enc); if (ret < 0) { RESTORE_STACK; return OPUS_INTERNAL_ERROR; } + /* Put CELT->SILK redundancy data in the right place. */ + if (redundancy && celt_to_silk && st->mode==MODE_HYBRID && st->use_vbr) + { + OPUS_MOVE(data+ret, data+nb_compr_bytes, redundancy_bytes); + nb_compr_bytes = nb_compr_bytes+redundancy_bytes; + } } } @@ -1905,7 +2102,15 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ celt_encoder_ctl(celt_enc, OPUS_RESET_STATE); celt_encoder_ctl(celt_enc, CELT_SET_START_BAND(0)); celt_encoder_ctl(celt_enc, CELT_SET_PREDICTION(0)); + celt_encoder_ctl(celt_enc, OPUS_SET_VBR(0)); + celt_encoder_ctl(celt_enc, OPUS_SET_BITRATE(OPUS_BITRATE_MAX)); + if (st->mode == MODE_HYBRID) + { + /* Shrink packet to what the encoder actually used. */ + nb_compr_bytes = ret; + ec_enc_shrink(&enc, nb_compr_bytes); + } /* NOTE: We could speed this up slightly (at the expense of code size) by just adding a function that prefills the buffer */ celt_encode_with_ec(celt_enc, pcm_buf+st->channels*(frame_size-N2-N4), N4, dummy, 2, NULL); @@ -1935,6 +2140,23 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ st->first = 0; + /* DTX decision */ +#ifndef DISABLE_FLOAT_API + if (st->use_dtx && (analysis_info.valid || is_silence)) + { + if (decide_dtx_mode(analysis_info.activity_probability, &st->nb_no_activity_frames, + st->peak_signal_energy, pcm, frame_size, st->channels, is_silence, st->arch)) + { + st->rangeFinal = 0; + data[0] = gen_toc(st->mode, st->Fs/frame_size, curr_bandwidth, st->stream_channels); + RESTORE_STACK; + return 1; + } + } else { + st->nb_no_activity_frames = 0; + } +#endif + /* In the unlikely case that the SILK encoder busted its target, tell the decoder to call the PLC */ if (ec_tell(&enc) > (max_data_bytes-1)*8) @@ -1962,7 +2184,6 @@ opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_ if (!st->use_vbr) { if (opus_packet_pad(data, ret, max_data_bytes) != OPUS_OK) - { RESTORE_STACK; return OPUS_INTERNAL_ERROR; @@ -1981,18 +2202,15 @@ opus_int32 opus_encode_float(OpusEncoder *st, const float *pcm, int analysis_fra { int i, ret; int frame_size; - int delay_compensation; VARDECL(opus_int16, in); ALLOC_STACK; - if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) - delay_compensation = 0; - else - delay_compensation = st->delay_compensation; - frame_size = compute_frame_size(pcm, analysis_frame_size, - st->variable_duration, st->channels, st->Fs, st->bitrate_bps, - delay_compensation, downmix_float, st->analysis.subframe_mem); - + frame_size = frame_size_select(analysis_frame_size, st->variable_duration, st->Fs); + if (frame_size <= 0) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } ALLOC(in, frame_size*st->channels, opus_int16); for (i=0;i<frame_size*st->channels;i++) @@ -2008,18 +2226,7 @@ opus_int32 opus_encode(OpusEncoder *st, const opus_int16 *pcm, int analysis_fram unsigned char *data, opus_int32 out_data_bytes) { int frame_size; - int delay_compensation; - if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) - delay_compensation = 0; - else - delay_compensation = st->delay_compensation; - frame_size = compute_frame_size(pcm, analysis_frame_size, - st->variable_duration, st->channels, st->Fs, st->bitrate_bps, - delay_compensation, downmix_int -#ifndef DISABLE_FLOAT_API - , st->analysis.subframe_mem -#endif - ); + frame_size = frame_size_select(analysis_frame_size, st->variable_duration, st->Fs); return opus_encode_native(st, pcm, frame_size, data, out_data_bytes, 16, pcm, analysis_frame_size, 0, -2, st->channels, downmix_int, 0); } @@ -2030,18 +2237,15 @@ opus_int32 opus_encode(OpusEncoder *st, const opus_int16 *pcm, int analysis_fram { int i, ret; int frame_size; - int delay_compensation; VARDECL(float, in); ALLOC_STACK; - if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) - delay_compensation = 0; - else - delay_compensation = st->delay_compensation; - frame_size = compute_frame_size(pcm, analysis_frame_size, - st->variable_duration, st->channels, st->Fs, st->bitrate_bps, - delay_compensation, downmix_int, st->analysis.subframe_mem); - + frame_size = frame_size_select(analysis_frame_size, st->variable_duration, st->Fs); + if (frame_size <= 0) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } ALLOC(in, frame_size*st->channels, float); for (i=0;i<frame_size*st->channels;i++) @@ -2055,14 +2259,7 @@ opus_int32 opus_encode_float(OpusEncoder *st, const float *pcm, int analysis_fra unsigned char *data, opus_int32 out_data_bytes) { int frame_size; - int delay_compensation; - if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY) - delay_compensation = 0; - else - delay_compensation = st->delay_compensation; - frame_size = compute_frame_size(pcm, analysis_frame_size, - st->variable_duration, st->channels, st->Fs, st->bitrate_bps, - delay_compensation, downmix_float, st->analysis.subframe_mem); + frame_size = frame_size_select(analysis_frame_size, st->variable_duration, st->Fs); return opus_encode_native(st, pcm, frame_size, data, out_data_bytes, 24, pcm, analysis_frame_size, 0, -2, st->channels, downmix_float, 1); } @@ -2093,6 +2290,9 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) break; } st->application = value; +#ifndef DISABLE_FLOAT_API + st->analysis.application = value; +#endif } break; case OPUS_GET_APPLICATION_REQUEST: @@ -2211,7 +2411,7 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) { goto bad_arg; } - st->silk_mode.useDTX = value; + st->use_dtx = value; } break; case OPUS_GET_DTX_REQUEST: @@ -2221,7 +2421,7 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) { goto bad_arg; } - *value = st->silk_mode.useDTX; + *value = st->use_dtx; } break; case OPUS_SET_COMPLEXITY_REQUEST: @@ -2422,15 +2622,15 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); - if (value != OPUS_FRAMESIZE_ARG && value != OPUS_FRAMESIZE_2_5_MS && - value != OPUS_FRAMESIZE_5_MS && value != OPUS_FRAMESIZE_10_MS && - value != OPUS_FRAMESIZE_20_MS && value != OPUS_FRAMESIZE_40_MS && - value != OPUS_FRAMESIZE_60_MS && value != OPUS_FRAMESIZE_VARIABLE) + if (value != OPUS_FRAMESIZE_ARG && value != OPUS_FRAMESIZE_2_5_MS && + value != OPUS_FRAMESIZE_5_MS && value != OPUS_FRAMESIZE_10_MS && + value != OPUS_FRAMESIZE_20_MS && value != OPUS_FRAMESIZE_40_MS && + value != OPUS_FRAMESIZE_60_MS && value != OPUS_FRAMESIZE_80_MS && + value != OPUS_FRAMESIZE_100_MS && value != OPUS_FRAMESIZE_120_MS) { goto bad_arg; } st->variable_duration = value; - celt_encoder_ctl(celt_enc, OPUS_SET_EXPERT_FRAME_DURATION(value)); } break; case OPUS_GET_EXPERT_FRAME_DURATION_REQUEST: @@ -2459,6 +2659,26 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) *value = st->silk_mode.reducedDependency; } break; + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 value = va_arg(ap, opus_int32); + if(value<0 || value>1) + { + goto bad_arg; + } + celt_encoder_ctl(celt_enc, OPUS_SET_PHASE_INVERSION_DISABLED(value)); + } + break; + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + celt_encoder_ctl(celt_enc, OPUS_GET_PHASE_INVERSION_DISABLED(value)); + } + break; case OPUS_RESET_STATE: { void *silk_enc; @@ -2507,6 +2727,33 @@ int opus_encoder_ctl(OpusEncoder *st, int request, ...) ret = celt_encoder_ctl(celt_enc, OPUS_SET_ENERGY_MASK(value)); } break; + case OPUS_GET_IN_DTX_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + if (st->silk_mode.useDTX && (st->prev_mode == MODE_SILK_ONLY || st->prev_mode == MODE_HYBRID)) { + /* DTX determined by Silk. */ + int n; + void *silk_enc = (char*)st+st->silk_enc_offset; + *value = 1; + for (n=0;n<st->silk_mode.nChannelsInternal;n++) { + *value = *value && ((silk_encoder*)silk_enc)->state_Fxx[n].sCmn.noSpeechCounter >= NB_SPEECH_FRAMES_BEFORE_DTX; + } + } +#ifndef DISABLE_FLOAT_API + else if (st->use_dtx) { + /* DTX determined by Opus. */ + *value = st->nb_no_activity_frames >= NB_SPEECH_FRAMES_BEFORE_DTX; + } +#endif + else { + *value = 0; + } + } + break; case CELT_GET_MODE_REQUEST: { diff --git a/thirdparty/opus/opus_multistream_decoder.c b/thirdparty/opus/opus_multistream_decoder.c index b95eaa6eac..0018517aeb 100644 --- a/thirdparty/opus/opus_multistream_decoder.c +++ b/thirdparty/opus/opus_multistream_decoder.c @@ -37,15 +37,18 @@ #include "float_cast.h" #include "os_support.h" -struct OpusMSDecoder { - ChannelLayout layout; - /* Decoder states go here */ -}; - - +/* DECODER */ +#if defined(ENABLE_HARDENING) || defined(ENABLE_ASSERTIONS) +static void validate_ms_decoder(OpusMSDecoder *st) +{ + validate_layout(&st->layout); +} +#define VALIDATE_MS_DECODER(st) validate_ms_decoder(st) +#else +#define VALIDATE_MS_DECODER(st) +#endif -/* DECODER */ opus_int32 opus_multistream_decoder_get_size(int nb_streams, int nb_coupled_streams) { @@ -143,15 +146,6 @@ OpusMSDecoder *opus_multistream_decoder_create( return st; } -typedef void (*opus_copy_channel_out_func)( - void *dst, - int dst_stride, - int dst_channel, - const opus_val16 *src, - int src_stride, - int frame_size -); - static int opus_multistream_packet_validate(const unsigned char *data, opus_int32 len, int nb_streams, opus_int32 Fs) { @@ -181,7 +175,7 @@ static int opus_multistream_packet_validate(const unsigned char *data, return samples; } -static int opus_multistream_decode_native( +int opus_multistream_decode_native( OpusMSDecoder *st, const unsigned char *data, opus_int32 len, @@ -189,7 +183,8 @@ static int opus_multistream_decode_native( opus_copy_channel_out_func copy_channel_out, int frame_size, int decode_fec, - int soft_clip + int soft_clip, + void *user_data ) { opus_int32 Fs; @@ -201,8 +196,14 @@ static int opus_multistream_decode_native( VARDECL(opus_val16, buf); ALLOC_STACK; + VALIDATE_MS_DECODER(st); + if (frame_size <= 0) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } /* Limit frame_size to avoid excessive stack allocations. */ - opus_multistream_decoder_ctl(st, OPUS_GET_SAMPLE_RATE(&Fs)); + MUST_SUCCEED(opus_multistream_decoder_ctl(st, OPUS_GET_SAMPLE_RATE(&Fs))); frame_size = IMIN(frame_size, Fs/25*3); ALLOC(buf, 2*frame_size, opus_val16); ptr = (char*)st + align(sizeof(OpusMSDecoder)); @@ -237,7 +238,8 @@ static int opus_multistream_decode_native( for (s=0;s<st->layout.nb_streams;s++) { OpusDecoder *dec; - int packet_offset, ret; + opus_int32 packet_offset; + int ret; dec = (OpusDecoder*)ptr; ptr += (s < st->layout.nb_coupled_streams) ? align(coupled_size) : align(mono_size); @@ -265,7 +267,7 @@ static int opus_multistream_decode_native( while ( (chan = get_left_channel(&st->layout, s, prev)) != -1) { (*copy_channel_out)(pcm, st->layout.nb_channels, chan, - buf, 2, frame_size); + buf, 2, frame_size, user_data); prev = chan; } prev = -1; @@ -273,7 +275,7 @@ static int opus_multistream_decode_native( while ( (chan = get_right_channel(&st->layout, s, prev)) != -1) { (*copy_channel_out)(pcm, st->layout.nb_channels, chan, - buf+1, 2, frame_size); + buf+1, 2, frame_size, user_data); prev = chan; } } else { @@ -283,7 +285,7 @@ static int opus_multistream_decode_native( while ( (chan = get_mono_channel(&st->layout, s, prev)) != -1) { (*copy_channel_out)(pcm, st->layout.nb_channels, chan, - buf, 1, frame_size); + buf, 1, frame_size, user_data); prev = chan; } } @@ -294,7 +296,7 @@ static int opus_multistream_decode_native( if (st->layout.mapping[c] == 255) { (*copy_channel_out)(pcm, st->layout.nb_channels, c, - NULL, 0, frame_size); + NULL, 0, frame_size, user_data); } } RESTORE_STACK; @@ -308,11 +310,13 @@ static void opus_copy_channel_out_float( int dst_channel, const opus_val16 *src, int src_stride, - int frame_size + int frame_size, + void *user_data ) { float *float_dst; opus_int32 i; + (void)user_data; float_dst = (float*)dst; if (src != NULL) { @@ -337,11 +341,13 @@ static void opus_copy_channel_out_short( int dst_channel, const opus_val16 *src, int src_stride, - int frame_size + int frame_size, + void *user_data ) { opus_int16 *short_dst; opus_int32 i; + (void)user_data; short_dst = (opus_int16*)dst; if (src != NULL) { @@ -372,7 +378,7 @@ int opus_multistream_decode( ) { return opus_multistream_decode_native(st, data, len, - pcm, opus_copy_channel_out_short, frame_size, decode_fec, 0); + pcm, opus_copy_channel_out_short, frame_size, decode_fec, 0, NULL); } #ifndef DISABLE_FLOAT_API @@ -380,7 +386,7 @@ int opus_multistream_decode_float(OpusMSDecoder *st, const unsigned char *data, opus_int32 len, float *pcm, int frame_size, int decode_fec) { return opus_multistream_decode_native(st, data, len, - pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0); + pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0, NULL); } #endif @@ -390,32 +396,30 @@ int opus_multistream_decode(OpusMSDecoder *st, const unsigned char *data, opus_int32 len, opus_int16 *pcm, int frame_size, int decode_fec) { return opus_multistream_decode_native(st, data, len, - pcm, opus_copy_channel_out_short, frame_size, decode_fec, 1); + pcm, opus_copy_channel_out_short, frame_size, decode_fec, 1, NULL); } int opus_multistream_decode_float( OpusMSDecoder *st, const unsigned char *data, opus_int32 len, - float *pcm, + opus_val16 *pcm, int frame_size, int decode_fec ) { return opus_multistream_decode_native(st, data, len, - pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0); + pcm, opus_copy_channel_out_float, frame_size, decode_fec, 0, NULL); } #endif -int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) +int opus_multistream_decoder_ctl_va_list(OpusMSDecoder *st, int request, + va_list ap) { - va_list ap; int coupled_size, mono_size; char *ptr; int ret = OPUS_OK; - va_start(ap, request); - coupled_size = opus_decoder_get_size(2); mono_size = opus_decoder_get_size(1); ptr = (char*)st + align(sizeof(OpusMSDecoder)); @@ -425,6 +429,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) case OPUS_GET_SAMPLE_RATE_REQUEST: case OPUS_GET_GAIN_REQUEST: case OPUS_GET_LAST_PACKET_DURATION_REQUEST: + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: { OpusDecoder *dec; /* For int32* GET params, just query the first stream */ @@ -482,7 +487,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) OpusDecoder **value; stream_id = va_arg(ap, opus_int32); if (stream_id<0 || stream_id >= st->layout.nb_streams) - ret = OPUS_BAD_ARG; + goto bad_arg; value = va_arg(ap, OpusDecoder**); if (!value) { @@ -499,6 +504,7 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) } break; case OPUS_SET_GAIN_REQUEST: + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: { int s; /* This works for int32 params */ @@ -522,14 +528,20 @@ int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) ret = OPUS_UNIMPLEMENTED; break; } - - va_end(ap); return ret; bad_arg: - va_end(ap); return OPUS_BAD_ARG; } +int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) +{ + int ret; + va_list ap; + va_start(ap, request); + ret = opus_multistream_decoder_ctl_va_list(st, request, ap); + va_end(ap); + return ret; +} void opus_multistream_decoder_destroy(OpusMSDecoder *st) { diff --git a/thirdparty/opus/opus_multistream_encoder.c b/thirdparty/opus/opus_multistream_encoder.c index 1698223a16..93204a14c1 100644 --- a/thirdparty/opus/opus_multistream_encoder.c +++ b/thirdparty/opus/opus_multistream_encoder.c @@ -61,38 +61,6 @@ static const VorbisLayout vorbis_mappings[8] = { {5, 3, {0, 6, 1, 2, 3, 4, 5, 7}}, /* 8: 7.1 surround */ }; -typedef void (*opus_copy_channel_in_func)( - opus_val16 *dst, - int dst_stride, - const void *src, - int src_stride, - int src_channel, - int frame_size -); - -typedef enum { - MAPPING_TYPE_NONE, - MAPPING_TYPE_SURROUND -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS - , /* Do not include comma at end of enumerator list */ - MAPPING_TYPE_AMBISONICS -#endif -} MappingType; - -struct OpusMSEncoder { - ChannelLayout layout; - int arch; - int lfe_stream; - int application; - int variable_duration; - MappingType mapping_type; - opus_int32 bitrate_bps; - float subframe_mem[3]; - /* Encoder states go here */ - /* then opus_val32 window_mem[channels*120]; */ - /* then opus_val32 preemph_mem[channels]; */ -}; - static opus_val32 *ms_get_preemph_mem(OpusMSEncoder *st) { int s; @@ -133,6 +101,29 @@ static opus_val32 *ms_get_window_mem(OpusMSEncoder *st) return (opus_val32*)(void*)ptr; } +static int validate_ambisonics(int nb_channels, int *nb_streams, int *nb_coupled_streams) +{ + int order_plus_one; + int acn_channels; + int nondiegetic_channels; + + if (nb_channels < 1 || nb_channels > 227) + return 0; + + order_plus_one = isqrt32(nb_channels); + acn_channels = order_plus_one * order_plus_one; + nondiegetic_channels = nb_channels - acn_channels; + + if (nondiegetic_channels != 0 && nondiegetic_channels != 2) + return 0; + + if (nb_streams) + *nb_streams = acn_channels + (nondiegetic_channels != 0); + if (nb_coupled_streams) + *nb_coupled_streams = nondiegetic_channels != 0; + return 1; +} + static int validate_encoder_layout(const ChannelLayout *layout) { int s; @@ -240,6 +231,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b int pos[8] = {0}; int upsample; int frame_size; + int freq_size; opus_val16 channel_offset; opus_val32 bandE[21]; opus_val16 maskLogE[3][21]; @@ -250,6 +242,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b upsample = resampling_factor(rate); frame_size = len*upsample; + freq_size = IMIN(960, frame_size); /* LM = log2(frame_size / 120) */ for (LM=0;LM<celt_mode->maxLM;LM++) @@ -258,7 +251,7 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b ALLOC(in, frame_size+overlap, opus_val32); ALLOC(x, len, opus_val16); - ALLOC(freq, frame_size, opus_val32); + ALLOC(freq, freq_size, opus_val32); channel_pos(channels, pos); @@ -268,8 +261,11 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b for (c=0;c<channels;c++) { + int frame; + int nb_frames = frame_size/freq_size; + celt_assert(nb_frames*freq_size == frame_size); OPUS_COPY(in, mem+c*overlap, overlap); - (*copy_channel_in)(x, 1, pcm, channels, c, len); + (*copy_channel_in)(x, 1, pcm, channels, c, len, NULL); celt_preemphasis(x, in+overlap, frame_size, 1, upsample, celt_mode->preemph, preemph_mem+c, 0); #ifndef FIXED_POINT { @@ -284,18 +280,26 @@ void surround_analysis(const CELTMode *celt_mode, const void *pcm, opus_val16 *b } } #endif - clt_mdct_forward(&celt_mode->mdct, in, freq, celt_mode->window, - overlap, celt_mode->maxLM-LM, 1, arch); - if (upsample != 1) + OPUS_CLEAR(bandE, 21); + for (frame=0;frame<nb_frames;frame++) { - int bound = len; - for (i=0;i<bound;i++) - freq[i] *= upsample; - for (;i<frame_size;i++) - freq[i] = 0; - } + opus_val32 tmpE[21]; + clt_mdct_forward(&celt_mode->mdct, in+960*frame, freq, celt_mode->window, + overlap, celt_mode->maxLM-LM, 1, arch); + if (upsample != 1) + { + int bound = freq_size/upsample; + for (i=0;i<bound;i++) + freq[i] *= upsample; + for (;i<freq_size;i++) + freq[i] = 0; + } - compute_band_energies(celt_mode, freq, bandE, 21, 1, LM); + compute_band_energies(celt_mode, freq, tmpE, 21, 1, LM, arch); + /* If we have multiple frames, take the max energy. */ + for (i=0;i<21;i++) + bandE[i] = MAX32(bandE[i], tmpE[i]); + } amp2Log2(celt_mode, 21, 21, bandE, bandLogE+21*c, 1); /* Apply spreading function with -6 dB/band going up and -12 dB/band going down. */ for (i=1;i<21;i++) @@ -408,12 +412,10 @@ opus_int32 opus_multistream_surround_encoder_get_size(int channels, int mapping_ { nb_streams=channels; nb_coupled_streams=0; -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS - } else if (mapping_family==254) + } else if (mapping_family==2) { - nb_streams=channels; - nb_coupled_streams=0; -#endif + if (!validate_ambisonics(channels, &nb_streams, &nb_coupled_streams)) + return 0; } else return 0; size = opus_multistream_encoder_get_size(nb_streams, nb_coupled_streams); @@ -448,7 +450,6 @@ static int opus_multistream_encoder_init_impl( st->layout.nb_channels = channels; st->layout.nb_streams = streams; st->layout.nb_coupled_streams = coupled_streams; - st->subframe_mem[0]=st->subframe_mem[1]=st->subframe_mem[2]=0; if (mapping_type != MAPPING_TYPE_SURROUND) st->lfe_stream = -1; st->bitrate_bps = OPUS_AUTO; @@ -456,7 +457,13 @@ static int opus_multistream_encoder_init_impl( st->variable_duration = OPUS_FRAMESIZE_ARG; for (i=0;i<st->layout.nb_channels;i++) st->layout.mapping[i] = mapping[i]; - if (!validate_layout(&st->layout) || !validate_encoder_layout(&st->layout)) + if (!validate_layout(&st->layout)) + return OPUS_BAD_ARG; + if (mapping_type == MAPPING_TYPE_SURROUND && + !validate_encoder_layout(&st->layout)) + return OPUS_BAD_ARG; + if (mapping_type == MAPPING_TYPE_AMBISONICS && + !validate_ambisonics(st->layout.nb_channels, NULL, NULL)) return OPUS_BAD_ARG; ptr = (char*)st + align(sizeof(OpusMSEncoder)); coupled_size = opus_encoder_get_size(2); @@ -549,25 +556,23 @@ int opus_multistream_surround_encoder_init( *coupled_streams=0; for(i=0;i<channels;i++) mapping[i] = i; -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS - } else if (mapping_family==254) + } else if (mapping_family==2) { int i; - *streams=channels; - *coupled_streams=0; - for(i=0;i<channels;i++) - mapping[i] = i; -#endif + if (!validate_ambisonics(channels, streams, coupled_streams)) + return OPUS_BAD_ARG; + for(i = 0; i < (*streams - *coupled_streams); i++) + mapping[i] = i + (*coupled_streams * 2); + for(i = 0; i < *coupled_streams * 2; i++) + mapping[i + (*streams - *coupled_streams)] = i; } else return OPUS_UNIMPLEMENTED; if (channels>2 && mapping_family==1) { mapping_type = MAPPING_TYPE_SURROUND; -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS - } else if (mapping_family==254) + } else if (mapping_family==2) { mapping_type = MAPPING_TYPE_AMBISONICS; -#endif } else { mapping_type = MAPPING_TYPE_NONE; @@ -672,62 +677,62 @@ static void surround_rate_allocation( int lfe_offset; int coupled_ratio; /* Q8 */ int lfe_ratio; /* Q8 */ + int nb_lfe; + int nb_uncoupled; + int nb_coupled; + int nb_normal; + opus_int32 channel_offset; + opus_int32 bitrate; + int total; + + nb_lfe = (st->lfe_stream!=-1); + nb_coupled = st->layout.nb_coupled_streams; + nb_uncoupled = st->layout.nb_streams-nb_coupled-nb_lfe; + nb_normal = 2*nb_coupled + nb_uncoupled; + + /* Give each non-LFE channel enough bits per channel for coding band energy. */ + channel_offset = 40*IMAX(50, Fs/frame_size); - if (st->bitrate_bps > st->layout.nb_channels*40000) - stream_offset = 20000; - else - stream_offset = st->bitrate_bps/st->layout.nb_channels/2; - stream_offset += 60*(Fs/frame_size-50); - /* We start by giving each stream (coupled or uncoupled) the same bitrate. - This models the main saving of coupled channels over uncoupled. */ - /* The LFE stream is an exception to the above and gets fewer bits. */ - lfe_offset = 3500 + 60*(Fs/frame_size-50); - /* Coupled streams get twice the mono rate after the first 20 kb/s. */ - coupled_ratio = 512; - /* Should depend on the bitrate, for now we assume LFE gets 1/8 the bits of mono */ - lfe_ratio = 32; - - /* Compute bitrate allocation between streams */ if (st->bitrate_bps==OPUS_AUTO) { - channel_rate = Fs+60*Fs/frame_size; + bitrate = nb_normal*(channel_offset + Fs + 10000) + 8000*nb_lfe; } else if (st->bitrate_bps==OPUS_BITRATE_MAX) { - channel_rate = 300000; + bitrate = nb_normal*300000 + nb_lfe*128000; } else { - int nb_lfe; - int nb_uncoupled; - int nb_coupled; - int total; - nb_lfe = (st->lfe_stream!=-1); - nb_coupled = st->layout.nb_coupled_streams; - nb_uncoupled = st->layout.nb_streams-nb_coupled-nb_lfe; - total = (nb_uncoupled<<8) /* mono */ - + coupled_ratio*nb_coupled /* stereo */ - + nb_lfe*lfe_ratio; - channel_rate = 256*(st->bitrate_bps-lfe_offset*nb_lfe-stream_offset*(nb_coupled+nb_uncoupled))/total; + bitrate = st->bitrate_bps; } -#ifndef FIXED_POINT - if (st->variable_duration==OPUS_FRAMESIZE_VARIABLE && frame_size != Fs/50) - { - opus_int32 bonus; - bonus = 60*(Fs/frame_size-50); - channel_rate += bonus; - } -#endif + + /* Give LFE some basic stream_channel allocation but never exceed 1/20 of the + total rate for the non-energy part to avoid problems at really low rate. */ + lfe_offset = IMIN(bitrate/20, 3000) + 15*IMAX(50, Fs/frame_size); + + /* We give each stream (coupled or uncoupled) a starting bitrate. + This models the main saving of coupled channels over uncoupled. */ + stream_offset = (bitrate - channel_offset*nb_normal - lfe_offset*nb_lfe)/nb_normal/2; + stream_offset = IMAX(0, IMIN(20000, stream_offset)); + + /* Coupled streams get twice the mono rate after the offset is allocated. */ + coupled_ratio = 512; + /* Should depend on the bitrate, for now we assume LFE gets 1/8 the bits of mono */ + lfe_ratio = 32; + + total = (nb_uncoupled<<8) /* mono */ + + coupled_ratio*nb_coupled /* stereo */ + + nb_lfe*lfe_ratio; + channel_rate = 256*(opus_int64)(bitrate - lfe_offset*nb_lfe - stream_offset*(nb_coupled+nb_uncoupled) - channel_offset*nb_normal)/total; for (i=0;i<st->layout.nb_streams;i++) { if (i<st->layout.nb_coupled_streams) - rate[i] = stream_offset+(channel_rate*coupled_ratio>>8); + rate[i] = 2*channel_offset + IMAX(0, stream_offset+(channel_rate*coupled_ratio>>8)); else if (i!=st->lfe_stream) - rate[i] = stream_offset+channel_rate; + rate[i] = channel_offset + IMAX(0, stream_offset + channel_rate); else - rate[i] = lfe_offset+(channel_rate*lfe_ratio>>8); + rate[i] = IMAX(0, lfe_offset+(channel_rate*lfe_ratio>>8)); } } -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS static void ambisonics_rate_allocation( OpusMSEncoder *st, opus_int32 *rate, @@ -736,50 +741,31 @@ static void ambisonics_rate_allocation( ) { int i; - int non_mono_rate; - int total_rate; + opus_int32 total_rate; + opus_int32 per_stream_rate; - /* The mono channel gets (rate_ratio_num / rate_ratio_den) times as many bits - * as all other channels */ - const int rate_ratio_num = 4; - const int rate_ratio_den = 3; - const int num_channels = st->layout.nb_streams; + const int nb_channels = st->layout.nb_streams + st->layout.nb_coupled_streams; if (st->bitrate_bps==OPUS_AUTO) { - total_rate = num_channels * (20000 + st->layout.nb_streams*(Fs+60*Fs/frame_size)); + total_rate = (st->layout.nb_coupled_streams + st->layout.nb_streams) * + (Fs+60*Fs/frame_size) + st->layout.nb_streams * (opus_int32)15000; } else if (st->bitrate_bps==OPUS_BITRATE_MAX) { - total_rate = num_channels * 320000; - } else { - total_rate = st->bitrate_bps; - } - - /* Let y be the non-mono rate and let p, q be integers such that the mono - * channel rate is (p/q) * y. - * Also let T be the total bitrate to allocate. Then - * (n - 1) y + (p/q) y = T - * y = (T q) / (qn - q + p) - */ - non_mono_rate = - total_rate * rate_ratio_den - / (rate_ratio_den*num_channels + rate_ratio_num - rate_ratio_den); - -#ifndef FIXED_POINT - if (st->variable_duration==OPUS_FRAMESIZE_VARIABLE && frame_size != Fs/50) + total_rate = nb_channels * 320000; + } else { - opus_int32 bonus = 60*(Fs/frame_size-50); - non_mono_rate += bonus; + total_rate = st->bitrate_bps; } -#endif - rate[0] = total_rate - (num_channels - 1) * non_mono_rate; - for (i=1;i<st->layout.nb_streams;i++) + /* Allocate equal number of bits to Ambisonic (uncoupled) and non-diegetic + * (coupled) streams */ + per_stream_rate = total_rate / st->layout.nb_streams; + for (i = 0; i < st->layout.nb_streams; i++) { - rate[i] = non_mono_rate; + rate[i] = per_stream_rate; } } -#endif /* ENABLE_EXPERIMENTAL_AMBISONICS */ static opus_int32 rate_allocation( OpusMSEncoder *st, @@ -795,11 +781,9 @@ static opus_int32 rate_allocation( ptr = (char*)st + align(sizeof(OpusMSEncoder)); opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_SAMPLE_RATE(&Fs)); -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS if (st->mapping_type == MAPPING_TYPE_AMBISONICS) { ambisonics_rate_allocation(st, rate, frame_size, Fs); } else -#endif { surround_rate_allocation(st, rate, frame_size, Fs); } @@ -812,9 +796,9 @@ static opus_int32 rate_allocation( return rate_sum; } -/* Max size in case the encoder decides to return three frames */ -#define MS_FRAME_TMP (3*1275+7) -static int opus_multistream_encode_native +/* Max size in case the encoder decides to return six frames (6 x 20 ms = 120 ms) */ +#define MS_FRAME_TMP (6*1275+12) +int opus_multistream_encode_native ( OpusMSEncoder *st, opus_copy_channel_in_func copy_channel_in, @@ -824,7 +808,8 @@ static int opus_multistream_encode_native opus_int32 max_data_bytes, int lsb_depth, downmix_func downmix, - int float_api + int float_api, + void *user_data ) { opus_int32 Fs; @@ -859,32 +844,8 @@ static int opus_multistream_encode_native opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_VBR(&vbr)); opus_encoder_ctl((OpusEncoder*)ptr, CELT_GET_MODE(&celt_mode)); - { - opus_int32 delay_compensation; - int channels; - - channels = st->layout.nb_streams + st->layout.nb_coupled_streams; - opus_encoder_ctl((OpusEncoder*)ptr, OPUS_GET_LOOKAHEAD(&delay_compensation)); - delay_compensation -= Fs/400; - frame_size = compute_frame_size(pcm, analysis_frame_size, - st->variable_duration, channels, Fs, st->bitrate_bps, - delay_compensation, downmix -#ifndef DISABLE_FLOAT_API - , st->subframe_mem -#endif - ); - } - - if (400*frame_size < Fs) - { - RESTORE_STACK; - return OPUS_BAD_ARG; - } - /* Validate frame_size before using it to allocate stack space. - This mirrors the checks in opus_encode[_float](). */ - if (400*frame_size != Fs && 200*frame_size != Fs && - 100*frame_size != Fs && 50*frame_size != Fs && - 25*frame_size != Fs && 50*frame_size != 3*Fs) + frame_size = frame_size_select(analysis_frame_size, st->variable_duration, Fs); + if (frame_size <= 0) { RESTORE_STACK; return OPUS_BAD_ARG; @@ -892,6 +853,9 @@ static int opus_multistream_encode_native /* Smallest packet the encoder can produce. */ smallest_packet = st->layout.nb_streams*2-1; + /* 100 ms needs an extra byte per stream for the ToC. */ + if (Fs/frame_size == 10) + smallest_packet += st->layout.nb_streams; if (max_data_bytes < smallest_packet) { RESTORE_STACK; @@ -952,11 +916,9 @@ static int opus_multistream_encode_native opus_encoder_ctl(enc, OPUS_SET_FORCE_CHANNELS(2)); } } -#ifdef ENABLE_EXPERIMENTAL_AMBISONICS else if (st->mapping_type == MAPPING_TYPE_AMBISONICS) { opus_encoder_ctl(enc, OPUS_SET_FORCE_MODE(MODE_CELT_ONLY)); } -#endif } ptr = (char*)st + align(sizeof(OpusMSEncoder)); @@ -979,9 +941,9 @@ static int opus_multistream_encode_native left = get_left_channel(&st->layout, s, -1); right = get_right_channel(&st->layout, s, -1); (*copy_channel_in)(buf, 2, - pcm, st->layout.nb_channels, left, frame_size); + pcm, st->layout.nb_channels, left, frame_size, user_data); (*copy_channel_in)(buf+1, 2, - pcm, st->layout.nb_channels, right, frame_size); + pcm, st->layout.nb_channels, right, frame_size, user_data); ptr += align(coupled_size); if (st->mapping_type == MAPPING_TYPE_SURROUND) { @@ -997,7 +959,7 @@ static int opus_multistream_encode_native int i; int chan = get_mono_channel(&st->layout, s, -1); (*copy_channel_in)(buf, 1, - pcm, st->layout.nb_channels, chan, frame_size); + pcm, st->layout.nb_channels, chan, frame_size, user_data); ptr += align(mono_size); if (st->mapping_type == MAPPING_TYPE_SURROUND) { @@ -1013,6 +975,9 @@ static int opus_multistream_encode_native curr_max = max_data_bytes - tot_size; /* Reserve one byte for the last stream and two for the others */ curr_max -= IMAX(0,2*(st->layout.nb_streams-s-1)-1); + /* For 100 ms, reserve an extra byte per stream for the ToC */ + if (Fs/frame_size == 10) + curr_max -= st->layout.nb_streams-s-1; curr_max = IMIN(curr_max,MS_FRAME_TMP); /* Repacketizer will add one or two bytes for self-delimited frames */ if (s != st->layout.nb_streams-1) curr_max -= curr_max>253 ? 2 : 1; @@ -1053,11 +1018,13 @@ static void opus_copy_channel_in_float( const void *src, int src_stride, int src_channel, - int frame_size + int frame_size, + void *user_data ) { const float *float_src; opus_int32 i; + (void)user_data; float_src = (const float *)src; for (i=0;i<frame_size;i++) #if defined(FIXED_POINT) @@ -1074,11 +1041,13 @@ static void opus_copy_channel_in_short( const void *src, int src_stride, int src_channel, - int frame_size + int frame_size, + void *user_data ) { const opus_int16 *short_src; opus_int32 i; + (void)user_data; short_src = (const opus_int16 *)src; for (i=0;i<frame_size;i++) #if defined(FIXED_POINT) @@ -1099,7 +1068,7 @@ int opus_multistream_encode( ) { return opus_multistream_encode_native(st, opus_copy_channel_in_short, - pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0); + pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0, NULL); } #ifndef DISABLE_FLOAT_API @@ -1112,7 +1081,7 @@ int opus_multistream_encode_float( ) { return opus_multistream_encode_native(st, opus_copy_channel_in_float, - pcm, frame_size, data, max_data_bytes, 16, downmix_float, 1); + pcm, frame_size, data, max_data_bytes, 16, downmix_float, 1, NULL); } #endif @@ -1128,7 +1097,7 @@ int opus_multistream_encode_float ) { return opus_multistream_encode_native(st, opus_copy_channel_in_float, - pcm, frame_size, data, max_data_bytes, 24, downmix_float, 1); + pcm, frame_size, data, max_data_bytes, 24, downmix_float, 1, NULL); } int opus_multistream_encode( @@ -1140,19 +1109,17 @@ int opus_multistream_encode( ) { return opus_multistream_encode_native(st, opus_copy_channel_in_short, - pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0); + pcm, frame_size, data, max_data_bytes, 16, downmix_int, 0, NULL); } #endif -int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) +int opus_multistream_encoder_ctl_va_list(OpusMSEncoder *st, int request, + va_list ap) { - va_list ap; int coupled_size, mono_size; char *ptr; int ret = OPUS_OK; - va_start(ap, request); - coupled_size = opus_encoder_get_size(2); mono_size = opus_encoder_get_size(1); ptr = (char*)st + align(sizeof(OpusMSEncoder)); @@ -1161,9 +1128,11 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) case OPUS_SET_BITRATE_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); - if (value<0 && value!=OPUS_AUTO && value!=OPUS_BITRATE_MAX) + if (value != OPUS_AUTO && value != OPUS_BITRATE_MAX) { - goto bad_arg; + if (value <= 0) + goto bad_arg; + value = IMIN(300000*st->layout.nb_channels, IMAX(500*st->layout.nb_channels, value)); } st->bitrate_bps = value; } @@ -1206,6 +1175,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) case OPUS_GET_INBAND_FEC_REQUEST: case OPUS_GET_FORCE_CHANNELS_REQUEST: case OPUS_GET_PREDICTION_DISABLED_REQUEST: + case OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST: { OpusEncoder *enc; /* For int32* GET params, just query the first stream */ @@ -1252,6 +1222,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) case OPUS_SET_FORCE_MODE_REQUEST: case OPUS_SET_FORCE_CHANNELS_REQUEST: case OPUS_SET_PREDICTION_DISABLED_REQUEST: + case OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST: { int s; /* This works for int32 params */ @@ -1278,7 +1249,7 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) OpusEncoder **value; stream_id = va_arg(ap, opus_int32); if (stream_id<0 || stream_id >= st->layout.nb_streams) - ret = OPUS_BAD_ARG; + goto bad_arg; value = va_arg(ap, OpusEncoder**); if (!value) { @@ -1313,7 +1284,6 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) case OPUS_RESET_STATE: { int s; - st->subframe_mem[0] = st->subframe_mem[1] = st->subframe_mem[2] = 0; if (st->mapping_type == MAPPING_TYPE_SURROUND) { OPUS_CLEAR(ms_get_preemph_mem(st), st->layout.nb_channels); @@ -1337,14 +1307,21 @@ int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) ret = OPUS_UNIMPLEMENTED; break; } - - va_end(ap); return ret; bad_arg: - va_end(ap); return OPUS_BAD_ARG; } +int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) +{ + int ret; + va_list ap; + va_start(ap, request); + ret = opus_multistream_encoder_ctl_va_list(st, request, ap); + va_end(ap); + return ret; +} + void opus_multistream_encoder_destroy(OpusMSEncoder *st) { opus_free(st); diff --git a/thirdparty/opus/opus_private.h b/thirdparty/opus/opus_private.h index 3b62eed096..5e2463f546 100644 --- a/thirdparty/opus/opus_private.h +++ b/thirdparty/opus/opus_private.h @@ -33,6 +33,7 @@ #include "opus.h" #include "celt.h" +#include <stdarg.h> /* va_list */ #include <stddef.h> /* offsetof */ struct OpusRepacketizer { @@ -50,12 +51,59 @@ typedef struct ChannelLayout { unsigned char mapping[256]; } ChannelLayout; +typedef enum { + MAPPING_TYPE_NONE, + MAPPING_TYPE_SURROUND, + MAPPING_TYPE_AMBISONICS +} MappingType; + +struct OpusMSEncoder { + ChannelLayout layout; + int arch; + int lfe_stream; + int application; + int variable_duration; + MappingType mapping_type; + opus_int32 bitrate_bps; + /* Encoder states go here */ + /* then opus_val32 window_mem[channels*120]; */ + /* then opus_val32 preemph_mem[channels]; */ +}; + +struct OpusMSDecoder { + ChannelLayout layout; + /* Decoder states go here */ +}; + +int opus_multistream_encoder_ctl_va_list(struct OpusMSEncoder *st, int request, + va_list ap); +int opus_multistream_decoder_ctl_va_list(struct OpusMSDecoder *st, int request, + va_list ap); + int validate_layout(const ChannelLayout *layout); int get_left_channel(const ChannelLayout *layout, int stream_id, int prev); int get_right_channel(const ChannelLayout *layout, int stream_id, int prev); int get_mono_channel(const ChannelLayout *layout, int stream_id, int prev); - +typedef void (*opus_copy_channel_in_func)( + opus_val16 *dst, + int dst_stride, + const void *src, + int src_stride, + int src_channel, + int frame_size, + void *user_data +); + +typedef void (*opus_copy_channel_out_func)( + void *dst, + int dst_stride, + int dst_channel, + const opus_val16 *src, + int src_stride, + int frame_size, + void *user_data +); #define MODE_SILK_ONLY 1000 #define MODE_HYBRID 1001 @@ -87,19 +135,12 @@ int get_mono_channel(const ChannelLayout *layout, int stream_id, int prev); typedef void (*downmix_func)(const void *, opus_val32 *, int, int, int, int, int); void downmix_float(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C); void downmix_int(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C); +int is_digital_silence(const opus_val16* pcm, int frame_size, int channels, int lsb_depth); int encode_size(int size, unsigned char *data); opus_int32 frame_size_select(opus_int32 frame_size, int variable_duration, opus_int32 Fs); -opus_int32 compute_frame_size(const void *analysis_pcm, int frame_size, - int variable_duration, int C, opus_int32 Fs, int bitrate_bps, - int delay_compensation, downmix_func downmix -#ifndef DISABLE_FLOAT_API - , float *subframe_mem -#endif - ); - opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_size, unsigned char *data, opus_int32 out_data_bytes, int lsb_depth, const void *analysis_pcm, opus_int32 analysis_size, int c1, int c2, @@ -131,4 +172,30 @@ opus_int32 opus_repacketizer_out_range_impl(OpusRepacketizer *rp, int begin, int int pad_frame(unsigned char *data, opus_int32 len, opus_int32 new_len); +int opus_multistream_encode_native +( + struct OpusMSEncoder *st, + opus_copy_channel_in_func copy_channel_in, + const void *pcm, + int analysis_frame_size, + unsigned char *data, + opus_int32 max_data_bytes, + int lsb_depth, + downmix_func downmix, + int float_api, + void *user_data +); + +int opus_multistream_decode_native( + struct OpusMSDecoder *st, + const unsigned char *data, + opus_int32 len, + void *pcm, + opus_copy_channel_out_func copy_channel_out, + int frame_size, + int decode_fec, + int soft_clip, + void *user_data +); + #endif /* OPUS_PRIVATE_H */ diff --git a/thirdparty/opus/opus_projection_decoder.c b/thirdparty/opus/opus_projection_decoder.c new file mode 100644 index 0000000000..c2e07d5bcf --- /dev/null +++ b/thirdparty/opus/opus_projection_decoder.c @@ -0,0 +1,258 @@ +/* Copyright (c) 2017 Google Inc. + Written by Andrew Allen */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "mathops.h" +#include "os_support.h" +#include "opus_private.h" +#include "opus_defines.h" +#include "opus_projection.h" +#include "opus_multistream.h" +#include "mapping_matrix.h" +#include "stack_alloc.h" + +struct OpusProjectionDecoder +{ + opus_int32 demixing_matrix_size_in_bytes; + /* Encoder states go here */ +}; + +#if !defined(DISABLE_FLOAT_API) +static void opus_projection_copy_channel_out_float( + void *dst, + int dst_stride, + int dst_channel, + const opus_val16 *src, + int src_stride, + int frame_size, + void *user_data) +{ + float *float_dst; + const MappingMatrix *matrix; + float_dst = (float *)dst; + matrix = (const MappingMatrix *)user_data; + + if (dst_channel == 0) + OPUS_CLEAR(float_dst, frame_size * dst_stride); + + if (src != NULL) + mapping_matrix_multiply_channel_out_float(matrix, src, dst_channel, + src_stride, float_dst, dst_stride, frame_size); +} +#endif + +static void opus_projection_copy_channel_out_short( + void *dst, + int dst_stride, + int dst_channel, + const opus_val16 *src, + int src_stride, + int frame_size, + void *user_data) +{ + opus_int16 *short_dst; + const MappingMatrix *matrix; + short_dst = (opus_int16 *)dst; + matrix = (const MappingMatrix *)user_data; + if (dst_channel == 0) + OPUS_CLEAR(short_dst, frame_size * dst_stride); + + if (src != NULL) + mapping_matrix_multiply_channel_out_short(matrix, src, dst_channel, + src_stride, short_dst, dst_stride, frame_size); +} + +static MappingMatrix *get_dec_demixing_matrix(OpusProjectionDecoder *st) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (MappingMatrix*)(void*)((char*)st + + align(sizeof(OpusProjectionDecoder))); +} + +static OpusMSDecoder *get_multistream_decoder(OpusProjectionDecoder *st) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (OpusMSDecoder*)(void*)((char*)st + + align(sizeof(OpusProjectionDecoder) + + st->demixing_matrix_size_in_bytes)); +} + +opus_int32 opus_projection_decoder_get_size(int channels, int streams, + int coupled_streams) +{ + opus_int32 matrix_size; + opus_int32 decoder_size; + + matrix_size = + mapping_matrix_get_size(streams + coupled_streams, channels); + if (!matrix_size) + return 0; + + decoder_size = opus_multistream_decoder_get_size(streams, coupled_streams); + if (!decoder_size) + return 0; + + return align(sizeof(OpusProjectionDecoder)) + matrix_size + decoder_size; +} + +int opus_projection_decoder_init(OpusProjectionDecoder *st, opus_int32 Fs, + int channels, int streams, int coupled_streams, + unsigned char *demixing_matrix, opus_int32 demixing_matrix_size) +{ + int nb_input_streams; + opus_int32 expected_matrix_size; + int i, ret; + unsigned char mapping[255]; + VARDECL(opus_int16, buf); + ALLOC_STACK; + + /* Verify supplied matrix size. */ + nb_input_streams = streams + coupled_streams; + expected_matrix_size = nb_input_streams * channels * sizeof(opus_int16); + if (expected_matrix_size != demixing_matrix_size) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } + + /* Convert demixing matrix input into internal format. */ + ALLOC(buf, nb_input_streams * channels, opus_int16); + for (i = 0; i < nb_input_streams * channels; i++) + { + int s = demixing_matrix[2*i + 1] << 8 | demixing_matrix[2*i]; + s = ((s & 0xFFFF) ^ 0x8000) - 0x8000; + buf[i] = (opus_int16)s; + } + + /* Assign demixing matrix. */ + st->demixing_matrix_size_in_bytes = + mapping_matrix_get_size(channels, nb_input_streams); + if (!st->demixing_matrix_size_in_bytes) + { + RESTORE_STACK; + return OPUS_BAD_ARG; + } + + mapping_matrix_init(get_dec_demixing_matrix(st), channels, nb_input_streams, 0, + buf, demixing_matrix_size); + + /* Set trivial mapping so each input channel pairs with a matrix column. */ + for (i = 0; i < channels; i++) + mapping[i] = i; + + ret = opus_multistream_decoder_init( + get_multistream_decoder(st), Fs, channels, streams, coupled_streams, mapping); + RESTORE_STACK; + return ret; +} + +OpusProjectionDecoder *opus_projection_decoder_create( + opus_int32 Fs, int channels, int streams, int coupled_streams, + unsigned char *demixing_matrix, opus_int32 demixing_matrix_size, int *error) +{ + int size; + int ret; + OpusProjectionDecoder *st; + + /* Allocate space for the projection decoder. */ + size = opus_projection_decoder_get_size(channels, streams, coupled_streams); + if (!size) { + if (error) + *error = OPUS_ALLOC_FAIL; + return NULL; + } + st = (OpusProjectionDecoder *)opus_alloc(size); + if (!st) + { + if (error) + *error = OPUS_ALLOC_FAIL; + return NULL; + } + + /* Initialize projection decoder with provided settings. */ + ret = opus_projection_decoder_init(st, Fs, channels, streams, coupled_streams, + demixing_matrix, demixing_matrix_size); + if (ret != OPUS_OK) + { + opus_free(st); + st = NULL; + } + if (error) + *error = ret; + return st; +} + +#ifdef FIXED_POINT +int opus_projection_decode(OpusProjectionDecoder *st, const unsigned char *data, + opus_int32 len, opus_int16 *pcm, int frame_size, + int decode_fec) +{ + return opus_multistream_decode_native(get_multistream_decoder(st), data, len, + pcm, opus_projection_copy_channel_out_short, frame_size, decode_fec, 0, + get_dec_demixing_matrix(st)); +} +#else +int opus_projection_decode(OpusProjectionDecoder *st, const unsigned char *data, + opus_int32 len, opus_int16 *pcm, int frame_size, + int decode_fec) +{ + return opus_multistream_decode_native(get_multistream_decoder(st), data, len, + pcm, opus_projection_copy_channel_out_short, frame_size, decode_fec, 1, + get_dec_demixing_matrix(st)); +} +#endif + +#ifndef DISABLE_FLOAT_API +int opus_projection_decode_float(OpusProjectionDecoder *st, const unsigned char *data, + opus_int32 len, float *pcm, int frame_size, int decode_fec) +{ + return opus_multistream_decode_native(get_multistream_decoder(st), data, len, + pcm, opus_projection_copy_channel_out_float, frame_size, decode_fec, 0, + get_dec_demixing_matrix(st)); +} +#endif + +int opus_projection_decoder_ctl(OpusProjectionDecoder *st, int request, ...) +{ + va_list ap; + int ret = OPUS_OK; + + va_start(ap, request); + ret = opus_multistream_decoder_ctl_va_list(get_multistream_decoder(st), + request, ap); + va_end(ap); + return ret; +} + +void opus_projection_decoder_destroy(OpusProjectionDecoder *st) +{ + opus_free(st); +} + diff --git a/thirdparty/opus/opus_projection_encoder.c b/thirdparty/opus/opus_projection_encoder.c new file mode 100644 index 0000000000..06fb2d2526 --- /dev/null +++ b/thirdparty/opus/opus_projection_encoder.c @@ -0,0 +1,468 @@ +/* Copyright (c) 2017 Google Inc. + Written by Andrew Allen */ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "mathops.h" +#include "os_support.h" +#include "opus_private.h" +#include "opus_defines.h" +#include "opus_projection.h" +#include "opus_multistream.h" +#include "stack_alloc.h" +#include "mapping_matrix.h" + +struct OpusProjectionEncoder +{ + opus_int32 mixing_matrix_size_in_bytes; + opus_int32 demixing_matrix_size_in_bytes; + /* Encoder states go here */ +}; + +#if !defined(DISABLE_FLOAT_API) +static void opus_projection_copy_channel_in_float( + opus_val16 *dst, + int dst_stride, + const void *src, + int src_stride, + int src_channel, + int frame_size, + void *user_data +) +{ + mapping_matrix_multiply_channel_in_float((const MappingMatrix*)user_data, + (const float*)src, src_stride, dst, src_channel, dst_stride, frame_size); +} +#endif + +static void opus_projection_copy_channel_in_short( + opus_val16 *dst, + int dst_stride, + const void *src, + int src_stride, + int src_channel, + int frame_size, + void *user_data +) +{ + mapping_matrix_multiply_channel_in_short((const MappingMatrix*)user_data, + (const opus_int16*)src, src_stride, dst, src_channel, dst_stride, frame_size); +} + +static int get_order_plus_one_from_channels(int channels, int *order_plus_one) +{ + int order_plus_one_; + int acn_channels; + int nondiegetic_channels; + + /* Allowed numbers of channels: + * (1 + n)^2 + 2j, for n = 0...14 and j = 0 or 1. + */ + if (channels < 1 || channels > 227) + return OPUS_BAD_ARG; + + order_plus_one_ = isqrt32(channels); + acn_channels = order_plus_one_ * order_plus_one_; + nondiegetic_channels = channels - acn_channels; + if (nondiegetic_channels != 0 && nondiegetic_channels != 2) + return OPUS_BAD_ARG; + + if (order_plus_one) + *order_plus_one = order_plus_one_; + return OPUS_OK; +} + +static int get_streams_from_channels(int channels, int mapping_family, + int *streams, int *coupled_streams, + int *order_plus_one) +{ + if (mapping_family == 3) + { + if (get_order_plus_one_from_channels(channels, order_plus_one) != OPUS_OK) + return OPUS_BAD_ARG; + if (streams) + *streams = (channels + 1) / 2; + if (coupled_streams) + *coupled_streams = channels / 2; + return OPUS_OK; + } + return OPUS_BAD_ARG; +} + +static MappingMatrix *get_mixing_matrix(OpusProjectionEncoder *st) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (MappingMatrix *)(void*)((char*)st + + align(sizeof(OpusProjectionEncoder))); +} + +static MappingMatrix *get_enc_demixing_matrix(OpusProjectionEncoder *st) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (MappingMatrix *)(void*)((char*)st + + align(sizeof(OpusProjectionEncoder) + + st->mixing_matrix_size_in_bytes)); +} + +static OpusMSEncoder *get_multistream_encoder(OpusProjectionEncoder *st) +{ + /* void* cast avoids clang -Wcast-align warning */ + return (OpusMSEncoder *)(void*)((char*)st + + align(sizeof(OpusProjectionEncoder) + + st->mixing_matrix_size_in_bytes + + st->demixing_matrix_size_in_bytes)); +} + +opus_int32 opus_projection_ambisonics_encoder_get_size(int channels, + int mapping_family) +{ + int nb_streams; + int nb_coupled_streams; + int order_plus_one; + int mixing_matrix_rows, mixing_matrix_cols; + int demixing_matrix_rows, demixing_matrix_cols; + opus_int32 mixing_matrix_size, demixing_matrix_size; + opus_int32 encoder_size; + int ret; + + ret = get_streams_from_channels(channels, mapping_family, &nb_streams, + &nb_coupled_streams, &order_plus_one); + if (ret != OPUS_OK) + return 0; + + if (order_plus_one == 2) + { + mixing_matrix_rows = mapping_matrix_foa_mixing.rows; + mixing_matrix_cols = mapping_matrix_foa_mixing.cols; + demixing_matrix_rows = mapping_matrix_foa_demixing.rows; + demixing_matrix_cols = mapping_matrix_foa_demixing.cols; + } + else if (order_plus_one == 3) + { + mixing_matrix_rows = mapping_matrix_soa_mixing.rows; + mixing_matrix_cols = mapping_matrix_soa_mixing.cols; + demixing_matrix_rows = mapping_matrix_soa_demixing.rows; + demixing_matrix_cols = mapping_matrix_soa_demixing.cols; + } + else if (order_plus_one == 4) + { + mixing_matrix_rows = mapping_matrix_toa_mixing.rows; + mixing_matrix_cols = mapping_matrix_toa_mixing.cols; + demixing_matrix_rows = mapping_matrix_toa_demixing.rows; + demixing_matrix_cols = mapping_matrix_toa_demixing.cols; + } + else + return 0; + + mixing_matrix_size = + mapping_matrix_get_size(mixing_matrix_rows, mixing_matrix_cols); + if (!mixing_matrix_size) + return 0; + + demixing_matrix_size = + mapping_matrix_get_size(demixing_matrix_rows, demixing_matrix_cols); + if (!demixing_matrix_size) + return 0; + + encoder_size = + opus_multistream_encoder_get_size(nb_streams, nb_coupled_streams); + if (!encoder_size) + return 0; + + return align(sizeof(OpusProjectionEncoder)) + + mixing_matrix_size + demixing_matrix_size + encoder_size; +} + +int opus_projection_ambisonics_encoder_init(OpusProjectionEncoder *st, opus_int32 Fs, + int channels, int mapping_family, + int *streams, int *coupled_streams, + int application) +{ + MappingMatrix *mixing_matrix; + MappingMatrix *demixing_matrix; + OpusMSEncoder *ms_encoder; + int i; + int ret; + int order_plus_one; + unsigned char mapping[255]; + + if (streams == NULL || coupled_streams == NULL) { + return OPUS_BAD_ARG; + } + + if (get_streams_from_channels(channels, mapping_family, streams, + coupled_streams, &order_plus_one) != OPUS_OK) + return OPUS_BAD_ARG; + + if (mapping_family == 3) + { + /* Assign mixing matrix based on available pre-computed matrices. */ + mixing_matrix = get_mixing_matrix(st); + if (order_plus_one == 2) + { + mapping_matrix_init(mixing_matrix, mapping_matrix_foa_mixing.rows, + mapping_matrix_foa_mixing.cols, mapping_matrix_foa_mixing.gain, + mapping_matrix_foa_mixing_data, + sizeof(mapping_matrix_foa_mixing_data)); + } + else if (order_plus_one == 3) + { + mapping_matrix_init(mixing_matrix, mapping_matrix_soa_mixing.rows, + mapping_matrix_soa_mixing.cols, mapping_matrix_soa_mixing.gain, + mapping_matrix_soa_mixing_data, + sizeof(mapping_matrix_soa_mixing_data)); + } + else if (order_plus_one == 4) + { + mapping_matrix_init(mixing_matrix, mapping_matrix_toa_mixing.rows, + mapping_matrix_toa_mixing.cols, mapping_matrix_toa_mixing.gain, + mapping_matrix_toa_mixing_data, + sizeof(mapping_matrix_toa_mixing_data)); + } + else + return OPUS_BAD_ARG; + + st->mixing_matrix_size_in_bytes = mapping_matrix_get_size( + mixing_matrix->rows, mixing_matrix->cols); + if (!st->mixing_matrix_size_in_bytes) + return OPUS_BAD_ARG; + + /* Assign demixing matrix based on available pre-computed matrices. */ + demixing_matrix = get_enc_demixing_matrix(st); + if (order_plus_one == 2) + { + mapping_matrix_init(demixing_matrix, mapping_matrix_foa_demixing.rows, + mapping_matrix_foa_demixing.cols, mapping_matrix_foa_demixing.gain, + mapping_matrix_foa_demixing_data, + sizeof(mapping_matrix_foa_demixing_data)); + } + else if (order_plus_one == 3) + { + mapping_matrix_init(demixing_matrix, mapping_matrix_soa_demixing.rows, + mapping_matrix_soa_demixing.cols, mapping_matrix_soa_demixing.gain, + mapping_matrix_soa_demixing_data, + sizeof(mapping_matrix_soa_demixing_data)); + } + else if (order_plus_one == 4) + { + mapping_matrix_init(demixing_matrix, mapping_matrix_toa_demixing.rows, + mapping_matrix_toa_demixing.cols, mapping_matrix_toa_demixing.gain, + mapping_matrix_toa_demixing_data, + sizeof(mapping_matrix_toa_demixing_data)); + } + else + return OPUS_BAD_ARG; + + st->demixing_matrix_size_in_bytes = mapping_matrix_get_size( + demixing_matrix->rows, demixing_matrix->cols); + if (!st->demixing_matrix_size_in_bytes) + return OPUS_BAD_ARG; + } + else + return OPUS_UNIMPLEMENTED; + + /* Ensure matrices are large enough for desired coding scheme. */ + if (*streams + *coupled_streams > mixing_matrix->rows || + channels > mixing_matrix->cols || + channels > demixing_matrix->rows || + *streams + *coupled_streams > demixing_matrix->cols) + return OPUS_BAD_ARG; + + /* Set trivial mapping so each input channel pairs with a matrix column. */ + for (i = 0; i < channels; i++) + mapping[i] = i; + + /* Initialize multistream encoder with provided settings. */ + ms_encoder = get_multistream_encoder(st); + ret = opus_multistream_encoder_init(ms_encoder, Fs, channels, *streams, + *coupled_streams, mapping, application); + return ret; +} + +OpusProjectionEncoder *opus_projection_ambisonics_encoder_create( + opus_int32 Fs, int channels, int mapping_family, int *streams, + int *coupled_streams, int application, int *error) +{ + int size; + int ret; + OpusProjectionEncoder *st; + + /* Allocate space for the projection encoder. */ + size = opus_projection_ambisonics_encoder_get_size(channels, mapping_family); + if (!size) { + if (error) + *error = OPUS_ALLOC_FAIL; + return NULL; + } + st = (OpusProjectionEncoder *)opus_alloc(size); + if (!st) + { + if (error) + *error = OPUS_ALLOC_FAIL; + return NULL; + } + + /* Initialize projection encoder with provided settings. */ + ret = opus_projection_ambisonics_encoder_init(st, Fs, channels, + mapping_family, streams, coupled_streams, application); + if (ret != OPUS_OK) + { + opus_free(st); + st = NULL; + } + if (error) + *error = ret; + return st; +} + +int opus_projection_encode(OpusProjectionEncoder *st, const opus_int16 *pcm, + int frame_size, unsigned char *data, + opus_int32 max_data_bytes) +{ + return opus_multistream_encode_native(get_multistream_encoder(st), + opus_projection_copy_channel_in_short, pcm, frame_size, data, + max_data_bytes, 16, downmix_int, 0, get_mixing_matrix(st)); +} + +#ifndef DISABLE_FLOAT_API +#ifdef FIXED_POINT +int opus_projection_encode_float(OpusProjectionEncoder *st, const float *pcm, + int frame_size, unsigned char *data, + opus_int32 max_data_bytes) +{ + return opus_multistream_encode_native(get_multistream_encoder(st), + opus_projection_copy_channel_in_float, pcm, frame_size, data, + max_data_bytes, 16, downmix_float, 1, get_mixing_matrix(st)); +} +#else +int opus_projection_encode_float(OpusProjectionEncoder *st, const float *pcm, + int frame_size, unsigned char *data, + opus_int32 max_data_bytes) +{ + return opus_multistream_encode_native(get_multistream_encoder(st), + opus_projection_copy_channel_in_float, pcm, frame_size, data, + max_data_bytes, 24, downmix_float, 1, get_mixing_matrix(st)); +} +#endif +#endif + +void opus_projection_encoder_destroy(OpusProjectionEncoder *st) +{ + opus_free(st); +} + +int opus_projection_encoder_ctl(OpusProjectionEncoder *st, int request, ...) +{ + va_list ap; + MappingMatrix *demixing_matrix; + OpusMSEncoder *ms_encoder; + int ret = OPUS_OK; + + ms_encoder = get_multistream_encoder(st); + demixing_matrix = get_enc_demixing_matrix(st); + + va_start(ap, request); + switch(request) + { + case OPUS_PROJECTION_GET_DEMIXING_MATRIX_SIZE_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + *value = + ms_encoder->layout.nb_channels * (ms_encoder->layout.nb_streams + + ms_encoder->layout.nb_coupled_streams) * sizeof(opus_int16); + } + break; + case OPUS_PROJECTION_GET_DEMIXING_MATRIX_GAIN_REQUEST: + { + opus_int32 *value = va_arg(ap, opus_int32*); + if (!value) + { + goto bad_arg; + } + *value = demixing_matrix->gain; + } + break; + case OPUS_PROJECTION_GET_DEMIXING_MATRIX_REQUEST: + { + int i, j, k, l; + int nb_input_streams; + int nb_output_streams; + unsigned char *external_char; + opus_int16 *internal_short; + opus_int32 external_size; + opus_int32 internal_size; + + /* (I/O is in relation to the decoder's perspective). */ + nb_input_streams = ms_encoder->layout.nb_streams + + ms_encoder->layout.nb_coupled_streams; + nb_output_streams = ms_encoder->layout.nb_channels; + + external_char = va_arg(ap, unsigned char *); + external_size = va_arg(ap, opus_int32); + if (!external_char) + { + goto bad_arg; + } + internal_short = mapping_matrix_get_data(demixing_matrix); + internal_size = nb_input_streams * nb_output_streams * sizeof(opus_int16); + if (external_size != internal_size) + { + goto bad_arg; + } + + /* Copy demixing matrix subset to output destination. */ + l = 0; + for (i = 0; i < nb_input_streams; i++) { + for (j = 0; j < nb_output_streams; j++) { + k = demixing_matrix->rows * i + j; + external_char[2*l] = (unsigned char)internal_short[k]; + external_char[2*l+1] = (unsigned char)(internal_short[k] >> 8); + l++; + } + } + } + break; + default: + { + ret = opus_multistream_encoder_ctl_va_list(ms_encoder, request, ap); + } + break; + } + va_end(ap); + return ret; + +bad_arg: + va_end(ap); + return OPUS_BAD_ARG; +} + diff --git a/thirdparty/opus/opusfile.c b/thirdparty/opus/opusfile.c index b8b3a354cf..8b000a2c58 100644 --- a/thirdparty/opus/opusfile.c +++ b/thirdparty/opus/opusfile.c @@ -86,14 +86,15 @@ int op_test(OpusHead *_head, This is to prevent us spending a lot of time allocating memory and looking for Ogg pages in non-Ogg files.*/ if(memcmp(_initial_data,"OggS",4)!=0)return OP_ENOTFORMAT; + if(OP_UNLIKELY(_initial_bytes>(size_t)LONG_MAX))return OP_EFAULT; ogg_sync_init(&oy); - data=ogg_sync_buffer(&oy,_initial_bytes); + data=ogg_sync_buffer(&oy,(long)_initial_bytes); if(data!=NULL){ ogg_stream_state os; ogg_page og; int ret; memcpy(data,_initial_data,_initial_bytes); - ogg_sync_wrote(&oy,_initial_bytes); + ogg_sync_wrote(&oy,(long)_initial_bytes); ogg_stream_init(&os,-1); err=OP_FALSE; do{ @@ -147,7 +148,7 @@ static int op_get_data(OggOpusFile *_of,int _nbytes){ int nbytes; OP_ASSERT(_nbytes>0); buffer=(unsigned char *)ogg_sync_buffer(&_of->oy,_nbytes); - nbytes=(int)(*_of->callbacks.read)(_of->source,buffer,_nbytes); + nbytes=(int)(*_of->callbacks.read)(_of->stream,buffer,_nbytes); OP_ASSERT(nbytes<=_nbytes); if(OP_LIKELY(nbytes>0))ogg_sync_wrote(&_of->oy,nbytes); return nbytes; @@ -157,7 +158,7 @@ static int op_get_data(OggOpusFile *_of,int _nbytes){ static int op_seek_helper(OggOpusFile *_of,opus_int64 _offset){ if(_offset==_of->offset)return 0; if(_of->callbacks.seek==NULL - ||(*_of->callbacks.seek)(_of->source,_offset,SEEK_SET)){ + ||(*_of->callbacks.seek)(_of->stream,_offset,SEEK_SET)){ return OP_EREAD; } _of->offset=_offset; @@ -165,7 +166,7 @@ static int op_seek_helper(OggOpusFile *_of,opus_int64 _offset){ return 0; } -/*Get the current position indicator of the underlying source. +/*Get the current position indicator of the underlying stream. This should be the same as the value reported by tell().*/ static opus_int64 op_position(const OggOpusFile *_of){ /*The current position indicator is _not_ simply offset. @@ -369,7 +370,7 @@ static int op_get_prev_page_serial(OggOpusFile *_of,OpusSeekRecord *_sr, search_start=llret+1; } /*We started from the beginning of the stream and found nothing. - This should be impossible unless the contents of the source changed out + This should be impossible unless the contents of the stream changed out from under us after we read from it.*/ if(OP_UNLIKELY(!begin)&&OP_UNLIKELY(_offset<0))return OP_EBADLINK; /*Bump up the chunk size. @@ -455,7 +456,7 @@ static opus_int64 op_get_last_page(OggOpusFile *_of,ogg_int64_t *_gp, } } /*We started from at or before the beginning of the link and found nothing. - This should be impossible unless the contents of the source changed out + This should be impossible unless the contents of the stream changed out from under us after we read from it.*/ if((OP_UNLIKELY(left_link)||OP_UNLIKELY(!begin))&&OP_UNLIKELY(_offset<0)){ return OP_EBADLINK; @@ -855,6 +856,7 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of, /*Fail if the pre-skip is non-zero, since it's asking us to skip more samples than exist.*/ if(_link->head.pre_skip>0)return OP_EBADTIMESTAMP; + _link->pcm_file_offset=0; /*Set pcm_end and end_offset so we can skip the call to op_find_final_pcm_offset().*/ _link->pcm_start=_link->pcm_end=0; @@ -866,7 +868,8 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of, if(_link->head.pre_skip>0)return OP_EBADTIMESTAMP; /*Set pcm_end and end_offset so we can skip the call to op_find_final_pcm_offset().*/ - _link->pcm_end=_link->pcm_start=0; + _link->pcm_file_offset=0; + _link->pcm_start=_link->pcm_end=0; _link->end_offset=_link->data_offset; /*Tell the caller we've got a buffered page for them.*/ return 1; @@ -951,6 +954,7 @@ static int op_find_initial_pcm_offset(OggOpusFile *_of, /*Update the packet count after end-trimming.*/ _of->op_count=pi; _of->cur_discard_count=_link->head.pre_skip; + _link->pcm_file_offset=0; _of->prev_packet_gp=_link->pcm_start=pcm_start; _of->prev_page_offset=page_offset; return 0; @@ -1271,6 +1275,7 @@ static int op_bisect_forward_serialno(OggOpusFile *_of, always starts with a seek.*/ ret=op_find_initial_pcm_offset(_of,links+nlinks,NULL); if(OP_UNLIKELY(ret<0))return ret; + links[nlinks].pcm_file_offset=total_duration; _searched=_of->offset; /*Mark the current link count so it can be cleaned up on error.*/ _of->nlinks=++nlinks; @@ -1390,8 +1395,8 @@ static int op_open_seekable2_impl(OggOpusFile *_of){ opus_int64 data_offset; int ret; /*We can seek, so set out learning all about this file.*/ - (*_of->callbacks.seek)(_of->source,0,SEEK_END); - _of->offset=_of->end=(*_of->callbacks.tell)(_of->source); + (*_of->callbacks.seek)(_of->stream,0,SEEK_END); + _of->offset=_of->end=(*_of->callbacks.tell)(_of->stream); if(OP_UNLIKELY(_of->end<0))return OP_EREAD; data_offset=_of->links[0].data_offset; if(OP_UNLIKELY(_of->end<data_offset))return OP_EBADLINK; @@ -1436,7 +1441,7 @@ static int op_open_seekable2(OggOpusFile *_of){ prev_page_offset=_of->prev_page_offset; start_offset=_of->offset; memcpy(op_start,_of->op,sizeof(*op_start)*start_op_count); - OP_ASSERT((*_of->callbacks.tell)(_of->source)==op_position(_of)); + OP_ASSERT((*_of->callbacks.tell)(_of->stream)==op_position(_of)); ogg_sync_init(&_of->oy); ogg_stream_init(&_of->os,-1); ret=op_open_seekable2_impl(_of); @@ -1454,7 +1459,7 @@ static int op_open_seekable2(OggOpusFile *_of){ _of->cur_discard_count=_of->links[0].head.pre_skip; if(OP_UNLIKELY(ret<0))return ret; /*And restore the position indicator.*/ - ret=(*_of->callbacks.seek)(_of->source,op_position(_of),SEEK_SET); + ret=(*_of->callbacks.seek)(_of->stream,op_position(_of),SEEK_SET); return OP_UNLIKELY(ret<0)?OP_EREAD:0; } @@ -1493,19 +1498,20 @@ static void op_clear(OggOpusFile *_of){ _ogg_free(_of->serialnos); ogg_stream_clear(&_of->os); ogg_sync_clear(&_of->oy); - if(_of->callbacks.close!=NULL)(*_of->callbacks.close)(_of->source); + if(_of->callbacks.close!=NULL)(*_of->callbacks.close)(_of->stream); } static int op_open1(OggOpusFile *_of, - void *_source,const OpusFileCallbacks *_cb, + void *_stream,const OpusFileCallbacks *_cb, const unsigned char *_initial_data,size_t _initial_bytes){ ogg_page og; ogg_page *pog; int seekable; int ret; memset(_of,0,sizeof(*_of)); + if(OP_UNLIKELY(_initial_bytes>(size_t)LONG_MAX))return OP_EFAULT; _of->end=-1; - _of->source=_source; + _of->stream=_stream; *&_of->callbacks=*_cb; /*At a minimum, we need to be able to read data.*/ if(OP_UNLIKELY(_of->callbacks.read==NULL))return OP_EREAD; @@ -1520,18 +1526,18 @@ static int op_open1(OggOpusFile *_of, decoding entire files from RAM.*/ if(_initial_bytes>0){ char *buffer; - buffer=ogg_sync_buffer(&_of->oy,_initial_bytes); + buffer=ogg_sync_buffer(&_of->oy,(long)_initial_bytes); memcpy(buffer,_initial_data,_initial_bytes*sizeof(*buffer)); - ogg_sync_wrote(&_of->oy,_initial_bytes); + ogg_sync_wrote(&_of->oy,(long)_initial_bytes); } /*Can we seek? Stevens suggests the seek test is portable.*/ - seekable=_cb->seek!=NULL&&(*_cb->seek)(_source,0,SEEK_CUR)!=-1; + seekable=_cb->seek!=NULL&&(*_cb->seek)(_stream,0,SEEK_CUR)!=-1; /*If seek is implemented, tell must also be implemented.*/ if(seekable){ opus_int64 pos; if(OP_UNLIKELY(_of->callbacks.tell==NULL))return OP_EINVAL; - pos=(*_of->callbacks.tell)(_of->source); + pos=(*_of->callbacks.tell)(_of->stream); /*If the current position is not equal to the initial bytes consumed, absolute seeking will not work.*/ if(OP_UNLIKELY(pos!=(opus_int64)_initial_bytes))return OP_EINVAL; @@ -1590,14 +1596,14 @@ static int op_open2(OggOpusFile *_of){ return ret; } -OggOpusFile *op_test_callbacks(void *_source,const OpusFileCallbacks *_cb, +OggOpusFile *op_test_callbacks(void *_stream,const OpusFileCallbacks *_cb, const unsigned char *_initial_data,size_t _initial_bytes,int *_error){ OggOpusFile *of; int ret; of=(OggOpusFile *)_ogg_malloc(sizeof(*of)); ret=OP_EFAULT; if(OP_LIKELY(of!=NULL)){ - ret=op_open1(of,_source,_cb,_initial_data,_initial_bytes); + ret=op_open1(of,_stream,_cb,_initial_data,_initial_bytes); if(OP_LIKELY(ret>=0)){ if(_error!=NULL)*_error=0; return of; @@ -1611,10 +1617,10 @@ OggOpusFile *op_test_callbacks(void *_source,const OpusFileCallbacks *_cb, return NULL; } -OggOpusFile *op_open_callbacks(void *_source,const OpusFileCallbacks *_cb, +OggOpusFile *op_open_callbacks(void *_stream,const OpusFileCallbacks *_cb, const unsigned char *_initial_data,size_t _initial_bytes,int *_error){ OggOpusFile *of; - of=op_test_callbacks(_source,_cb,_initial_data,_initial_bytes,_error); + of=op_test_callbacks(_stream,_cb,_initial_data,_initial_bytes,_error); if(OP_LIKELY(of!=NULL)){ int ret; ret=op_open2(of); @@ -1627,15 +1633,15 @@ OggOpusFile *op_open_callbacks(void *_source,const OpusFileCallbacks *_cb, /*Convenience routine to clean up from failure for the open functions that create their own streams.*/ -static OggOpusFile *op_open_close_on_failure(void *_source, +static OggOpusFile *op_open_close_on_failure(void *_stream, const OpusFileCallbacks *_cb,int *_error){ OggOpusFile *of; - if(OP_UNLIKELY(_source==NULL)){ + if(OP_UNLIKELY(_stream==NULL)){ if(_error!=NULL)*_error=OP_EFAULT; return NULL; } - of=op_open_callbacks(_source,_cb,NULL,0,_error); - if(OP_UNLIKELY(of==NULL))(*_cb->close)(_source); + of=op_open_callbacks(_stream,_cb,NULL,0,_error); + if(OP_UNLIKELY(of==NULL))(*_cb->close)(_stream); return of; } @@ -1653,15 +1659,15 @@ OggOpusFile *op_open_memory(const unsigned char *_data,size_t _size, /*Convenience routine to clean up from failure for the open functions that create their own streams.*/ -static OggOpusFile *op_test_close_on_failure(void *_source, +static OggOpusFile *op_test_close_on_failure(void *_stream, const OpusFileCallbacks *_cb,int *_error){ OggOpusFile *of; - if(OP_UNLIKELY(_source==NULL)){ + if(OP_UNLIKELY(_stream==NULL)){ if(_error!=NULL)*_error=OP_EFAULT; return NULL; } - of=op_test_callbacks(_source,_cb,NULL,0,_error); - if(OP_UNLIKELY(of==NULL))(*_cb->close)(_source); + of=op_test_callbacks(_stream,_cb,NULL,0,_error); + if(OP_UNLIKELY(of==NULL))(*_cb->close)(_stream); return of; } @@ -1702,7 +1708,7 @@ int op_link_count(const OggOpusFile *_of){ return _of->nlinks; } -ogg_uint32_t op_serialno(const OggOpusFile *_of,int _li){ +opus_uint32 op_serialno(const OggOpusFile *_of,int _li){ if(OP_UNLIKELY(_li>=_of->nlinks))_li=_of->nlinks-1; if(!_of->seekable)_li=0; return _of->links[_li<0?_of->cur_link:_li].serialno; @@ -1718,13 +1724,14 @@ opus_int64 op_raw_total(const OggOpusFile *_of,int _li){ ||OP_UNLIKELY(_li>=_of->nlinks)){ return OP_EINVAL; } - if(_li<0)return _of->end-_of->links[0].offset; + if(_li<0)return _of->end; return (_li+1>=_of->nlinks?_of->end:_of->links[_li+1].offset) - -_of->links[_li].offset; + -(_li>0?_of->links[_li].offset:0); } ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li){ OggOpusLink *links; + ogg_int64_t pcm_total; ogg_int64_t diff; int nlinks; nlinks=_of->nlinks; @@ -1737,20 +1744,14 @@ ogg_int64_t op_pcm_total(const OggOpusFile *_of,int _li){ /*We verify that the granule position differences are larger than the pre-skip and that the total duration does not overflow during link enumeration, so we don't have to check here.*/ + pcm_total=0; if(_li<0){ - ogg_int64_t pcm_total; - int li; - pcm_total=0; - for(li=0;li<nlinks;li++){ - OP_ALWAYS_TRUE(!op_granpos_diff(&diff, - links[li].pcm_end,links[li].pcm_start)); - pcm_total+=diff-links[li].head.pre_skip; - } - return pcm_total; + pcm_total=links[nlinks-1].pcm_file_offset; + _li=nlinks-1; } OP_ALWAYS_TRUE(!op_granpos_diff(&diff, links[_li].pcm_end,links[_li].pcm_start)); - return diff-links[_li].head.pre_skip; + return pcm_total+diff-links[_li].head.pre_skip; } const OpusHead *op_head(const OggOpusFile *_of,int _li){ @@ -1820,6 +1821,34 @@ opus_int32 op_bitrate_instant(OggOpusFile *_of){ return ret; } +/*Given a serialno, find a link with a corresponding Opus stream, if it exists. + Return: The index of the link to which the page belongs, or a negative number + if it was not a desired Opus bitstream section.*/ +static int op_get_link_from_serialno(const OggOpusFile *_of,int _cur_link, + opus_int64 _page_offset,ogg_uint32_t _serialno){ + const OggOpusLink *links; + int nlinks; + int li_lo; + int li_hi; + OP_ASSERT(_of->seekable); + links=_of->links; + nlinks=_of->nlinks; + li_lo=0; + /*Start off by guessing we're just a multiplexed page in the current link.*/ + li_hi=_cur_link+1<nlinks&&_page_offset<links[_cur_link+1].offset? + _cur_link+1:nlinks; + do{ + if(_page_offset>=links[_cur_link].offset)li_lo=_cur_link; + else li_hi=_cur_link; + _cur_link=li_lo+(li_hi-li_lo>>1); + } + while(li_hi-li_lo>1); + /*We've identified the link that should contain this page. + Make sure it's a page we care about.*/ + if(links[_cur_link].serialno!=_serialno)return OP_FALSE; + return _cur_link; +} + /*Fetch and process a page. This handles the case where we're at a bitstream boundary and dumps the decoding machine. @@ -1876,19 +1905,28 @@ static int op_fetch_and_process_page(OggOpusFile *_of, if(OP_UNLIKELY(_of->ready_state<OP_STREAMSET)){ if(seekable){ ogg_uint32_t serialno; - int nlinks; - int li; serialno=ogg_page_serialno(&og); - /*Match the serialno to bitstream section. - We use this rather than offset positions to avoid problems near - logical bitstream boundaries.*/ - nlinks=_of->nlinks; - for(li=0;li<nlinks&&links[li].serialno!=serialno;li++); - /*Not a desired Opus bitstream section. - Keep trying.*/ - if(li>=nlinks)continue; + /*Match the serialno to bitstream section.*/ + OP_ASSERT(cur_link>=0&&cur_link<_of->nlinks); + if(links[cur_link].serialno!=serialno){ + /*It wasn't a page from the current link. + Is it from the next one?*/ + if(OP_LIKELY(cur_link+1<_of->nlinks&&links[cur_link+1].serialno== + serialno)){ + cur_link++; + } + else{ + int new_link; + new_link= + op_get_link_from_serialno(_of,cur_link,_page_offset,serialno); + /*Not a desired Opus bitstream section. + Keep trying.*/ + if(new_link<0)continue; + cur_link=new_link; + } + } cur_serialno=serialno; - _of->cur_link=cur_link=li; + _of->cur_link=cur_link; ogg_stream_reset_serialno(&_of->os,serialno); _of->ready_state=OP_STREAMSET; /*If we're at the start of this link, initialize the granule position @@ -1942,13 +1980,32 @@ static int op_fetch_and_process_page(OggOpusFile *_of, opus_int32 total_duration; int durations[255]; int op_count; + int report_hole; + report_hole=0; total_duration=op_collect_audio_packets(_of,durations); if(OP_UNLIKELY(total_duration<0)){ - /*Drain the packets from the page anyway.*/ + /*libogg reported a hole (a gap in the page sequence numbers). + Drain the packets from the page anyway. + If we don't, they'll still be there when we fetch the next page. + Then, when we go to pull out packets, we might get more than 255, + which would overrun our packet buffer.*/ total_duration=op_collect_audio_packets(_of,durations); OP_ASSERT(total_duration>=0); - /*Report holes to the caller.*/ - if(!_ignore_holes)return OP_HOLE; + if(!_ignore_holes){ + /*Report the hole to the caller after we finish timestamping the + packets.*/ + report_hole=1; + /*We had lost or damaged pages, so reset our granule position + tracking. + This makes holes behave the same as a small raw seek. + If the next page is the EOS page, we'll discard it (because we + can't perform end trimming properly), and we'll always discard at + least 80 ms of audio (to allow decoder state to re-converge). + We could try to fill in the gap with PLC by looking at timestamps + in the non-EOS case, but that's complicated and error prone and we + can't rely on the timestamps being valid.*/ + _of->prev_packet_gp=-1; + } } op_count=_of->op_count; /*If we found at least one audio data packet, compute per-packet granule @@ -1975,6 +2032,7 @@ static int op_fetch_and_process_page(OggOpusFile *_of, Proceed to the next link, rather than risk playing back some samples that shouldn't have been played.*/ _of->op_count=0; + if(report_hole)return OP_HOLE; continue; } /*By default discard 80 ms of data after a seek, unless we seek @@ -2020,7 +2078,11 @@ static int op_fetch_and_process_page(OggOpusFile *_of, &&OP_LIKELY(diff<total_duration)){ cur_packet_gp=prev_packet_gp; for(pi=0;pi<op_count;pi++){ - diff=durations[pi]-diff; + /*Check for overflow.*/ + if(diff<0&&OP_UNLIKELY(OP_INT64_MAX+diff<durations[pi])){ + diff=durations[pi]+1; + } + else diff=durations[pi]-diff; /*If we have samples to trim...*/ if(diff>0){ /*If we trimmed the entire packet, stop (the spec says encoders @@ -2076,10 +2138,11 @@ static int op_fetch_and_process_page(OggOpusFile *_of, } _of->prev_packet_gp=prev_packet_gp; _of->prev_page_offset=_page_offset; - _of->op_count=pi; - /*If end-trimming didn't trim all the packets, we're done.*/ - if(OP_LIKELY(pi>0))return 0; + _of->op_count=op_count=pi; } + if(report_hole)return OP_HOLE; + /*If end-trimming didn't trim all the packets, we're done.*/ + if(op_count>0)return 0; } } } @@ -2117,35 +2180,41 @@ static ogg_int64_t op_get_granulepos(const OggOpusFile *_of, ogg_int64_t _pcm_offset,int *_li){ const OggOpusLink *links; ogg_int64_t duration; + ogg_int64_t pcm_start; + opus_int32 pre_skip; int nlinks; - int li; + int li_lo; + int li_hi; OP_ASSERT(_pcm_offset>=0); nlinks=_of->nlinks; links=_of->links; - for(li=0;OP_LIKELY(li<nlinks);li++){ - ogg_int64_t pcm_start; - opus_int32 pre_skip; - pcm_start=links[li].pcm_start; - pre_skip=links[li].head.pre_skip; - OP_ALWAYS_TRUE(!op_granpos_diff(&duration,links[li].pcm_end,pcm_start)); - duration-=pre_skip; - if(_pcm_offset<duration){ - _pcm_offset+=pre_skip; - if(OP_UNLIKELY(pcm_start>OP_INT64_MAX-_pcm_offset)){ - /*Adding this amount to the granule position would overflow the positive - half of its 64-bit range. - Since signed overflow is undefined in C, do it in a way the compiler - isn't allowed to screw up.*/ - _pcm_offset-=OP_INT64_MAX-pcm_start+1; - pcm_start=OP_INT64_MIN; - } - pcm_start+=_pcm_offset; - *_li=li; - return pcm_start; - } - _pcm_offset-=duration; - } - return -1; + li_lo=0; + li_hi=nlinks; + do{ + int li; + li=li_lo+(li_hi-li_lo>>1); + if(links[li].pcm_file_offset<=_pcm_offset)li_lo=li; + else li_hi=li; + } + while(li_hi-li_lo>1); + _pcm_offset-=links[li_lo].pcm_file_offset; + pcm_start=links[li_lo].pcm_start; + pre_skip=links[li_lo].head.pre_skip; + OP_ALWAYS_TRUE(!op_granpos_diff(&duration,links[li_lo].pcm_end,pcm_start)); + duration-=pre_skip; + if(_pcm_offset>=duration)return -1; + _pcm_offset+=pre_skip; + if(OP_UNLIKELY(pcm_start>OP_INT64_MAX-_pcm_offset)){ + /*Adding this amount to the granule position would overflow the positive + half of its 64-bit range. + Since signed overflow is undefined in C, do it in a way the compiler + isn't allowed to screw up.*/ + _pcm_offset-=OP_INT64_MAX-pcm_start+1; + pcm_start=OP_INT64_MIN; + } + pcm_start+=_pcm_offset; + *_li=li_lo; + return pcm_start; } /*A small helper to determine if an Ogg page contains data that continues onto @@ -2532,15 +2601,14 @@ int op_pcm_seek(OggOpusFile *_of,ogg_int64_t _pcm_offset){ ogg_int64_t gp; gp=_of->prev_packet_gp; if(OP_LIKELY(gp!=-1)){ - int nbuffered; + ogg_int64_t discard_count; + int nbuffered; nbuffered=OP_MAX(_of->od_buffer_size-_of->od_buffer_pos,0); OP_ALWAYS_TRUE(!op_granpos_add(&gp,gp,-nbuffered)); /*We do _not_ add cur_discard_count to gp. Otherwise the total amount to discard could grow without bound, and it would be better just to do a full seek.*/ - if(OP_LIKELY(!op_granpos_diff(&diff,gp,pcm_start))){ - ogg_int64_t discard_count; - discard_count=_pcm_offset-diff; + if(OP_LIKELY(!op_granpos_diff(&discard_count,target_gp,gp))){ /*We use a threshold of 90 ms instead of 80, since 80 ms is the _minimum_ we would have discarded after a full seek. Assuming 20 ms frames (the default), we'd discard 90 ms on average.*/ @@ -2606,22 +2674,14 @@ static ogg_int64_t op_get_pcm_offset(const OggOpusFile *_of, ogg_int64_t _gp,int _li){ const OggOpusLink *links; ogg_int64_t pcm_offset; - ogg_int64_t delta; - int li; links=_of->links; - pcm_offset=0; - OP_ASSERT(_li<_of->nlinks); - for(li=0;li<_li;li++){ - OP_ALWAYS_TRUE(!op_granpos_diff(&delta, - links[li].pcm_end,links[li].pcm_start)); - delta-=links[li].head.pre_skip; - pcm_offset+=delta; - } - OP_ASSERT(_li>=0); + OP_ASSERT(_li>=0&&_li<_of->nlinks); + pcm_offset=links[_li].pcm_file_offset; if(_of->seekable&&OP_UNLIKELY(op_granpos_cmp(_gp,links[_li].pcm_end)>0)){ _gp=links[_li].pcm_end; } if(OP_LIKELY(op_granpos_cmp(_gp,links[_li].pcm_start)>0)){ + ogg_int64_t delta; if(OP_UNLIKELY(op_granpos_diff(&delta,_gp,links[_li].pcm_start)<0)){ /*This means an unseekable stream claimed to have a page from more than 2 billion days after we joined.*/ diff --git a/thirdparty/opus/repacketizer.c b/thirdparty/opus/repacketizer.c index c80ee7f001..bda44a148a 100644 --- a/thirdparty/opus/repacketizer.c +++ b/thirdparty/opus/repacketizer.c @@ -213,7 +213,8 @@ opus_int32 opus_repacketizer_out_range_impl(OpusRepacketizer *rp, int begin, int { /* Using OPUS_MOVE() instead of OPUS_COPY() in case we're doing in-place padding from opus_packet_pad or opus_packet_unpad(). */ - celt_assert(frames[i] + len[i] <= data || ptr <= frames[i]); + /* assert disabled because it's not valid in C. */ + /* celt_assert(frames[i] + len[i] <= data || ptr <= frames[i]); */ OPUS_MOVE(ptr, frames[i], len[i]); ptr += len[i]; } diff --git a/thirdparty/opus/silk/A2NLSF.c b/thirdparty/opus/silk/A2NLSF.c index b6e9e5ffcc..b487686ff9 100644 --- a/thirdparty/opus/silk/A2NLSF.c +++ b/thirdparty/opus/silk/A2NLSF.c @@ -40,7 +40,7 @@ POSSIBILITY OF SUCH DAMAGE. /* Number of binary divisions, when not in low complexity mode */ #define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */ -#define MAX_ITERATIONS_A2NLSF_FIX 30 +#define MAX_ITERATIONS_A2NLSF_FIX 16 /* Helper function for A2NLSF(..) */ /* Transforms polynomials from cos(n*f) to cos(f)^n */ @@ -130,7 +130,7 @@ void silk_A2NLSF( const opus_int d /* I Filter order (must be even) */ ) { - opus_int i, k, m, dd, root_ix, ffrac; + opus_int i, k, m, dd, root_ix, ffrac; opus_int32 xlo, xhi, xmid; opus_int32 ylo, yhi, ymid, thr; opus_int32 nom, den; @@ -239,13 +239,13 @@ void silk_A2NLSF( /* Set NLSFs to white spectrum and exit */ NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 ); for( k = 1; k < d; k++ ) { - NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] ); + NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] ); } return; } /* Error: Apply progressively more bandwidth expansion and run again */ - silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/ + silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) ); silk_A2NLSF_init( a_Q16, P, Q, dd ); p = P; /* Pointer to polynomial */ diff --git a/thirdparty/opus/silk/API.h b/thirdparty/opus/silk/API.h index 0131acbb08..4d90ff9aa3 100644 --- a/thirdparty/opus/silk/API.h +++ b/thirdparty/opus/silk/API.h @@ -80,7 +80,8 @@ opus_int silk_Encode( /* O Returns error co opus_int nSamplesIn, /* I Number of samples in input vector */ ec_enc *psRangeEnc, /* I/O Compressor data structure */ opus_int32 *nBytesOut, /* I/O Number of bytes in payload (input: Max bytes) */ - const opus_int prefillFlag /* I Flag to indicate prefilling buffers no coding */ + const opus_int prefillFlag, /* I Flag to indicate prefilling buffers no coding */ + int activity /* I Decision of Opus voice activity detector */ ); /****************************************/ diff --git a/thirdparty/opus/silk/CNG.c b/thirdparty/opus/silk/CNG.c index 8443ad63bb..ef8e38df9f 100644 --- a/thirdparty/opus/silk/CNG.c +++ b/thirdparty/opus/silk/CNG.c @@ -138,16 +138,16 @@ void silk_CNG( gain_Q16 = silk_LSHIFT32( silk_SQRT_APPROX( gain_Q16 ), 8 ); } gain_Q10 = silk_RSHIFT( gain_Q16, 6 ); - + silk_CNG_exc( CNG_sig_Q14 + MAX_LPC_ORDER, psCNG->CNG_exc_buf_Q14, length, &psCNG->rand_seed ); /* Convert CNG NLSF to filter representation */ - silk_NLSF2A( A_Q12, psCNG->CNG_smth_NLSF_Q15, psDec->LPC_order ); + silk_NLSF2A( A_Q12, psCNG->CNG_smth_NLSF_Q15, psDec->LPC_order, psDec->arch ); /* Generate CNG signal, by synthesis filtering */ silk_memcpy( CNG_sig_Q14, psCNG->CNG_synth_state, MAX_LPC_ORDER * sizeof( opus_int32 ) ); + celt_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 ); for( i = 0; i < length; i++ ) { - silk_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 ); /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ LPC_pred_Q10 = silk_RSHIFT( psDec->LPC_order, 1 ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, CNG_sig_Q14[ MAX_LPC_ORDER + i - 1 ], A_Q12[ 0 ] ); @@ -170,11 +170,11 @@ void silk_CNG( } /* Update states */ - CNG_sig_Q14[ MAX_LPC_ORDER + i ] = silk_ADD_LSHIFT( CNG_sig_Q14[ MAX_LPC_ORDER + i ], LPC_pred_Q10, 4 ); - + CNG_sig_Q14[ MAX_LPC_ORDER + i ] = silk_ADD_SAT32( CNG_sig_Q14[ MAX_LPC_ORDER + i ], silk_LSHIFT_SAT32( LPC_pred_Q10, 4 ) ); + /* Scale with Gain and add to input signal */ frame[ i ] = (opus_int16)silk_ADD_SAT16( frame[ i ], silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( CNG_sig_Q14[ MAX_LPC_ORDER + i ], gain_Q10 ), 8 ) ) ); - + } silk_memcpy( psCNG->CNG_synth_state, &CNG_sig_Q14[ length ], MAX_LPC_ORDER * sizeof( opus_int32 ) ); } else { diff --git a/thirdparty/opus/silk/LPC_analysis_filter.c b/thirdparty/opus/silk/LPC_analysis_filter.c index 20906673ff..d34b5eb709 100644 --- a/thirdparty/opus/silk/LPC_analysis_filter.c +++ b/thirdparty/opus/silk/LPC_analysis_filter.c @@ -39,6 +39,13 @@ POSSIBILITY OF SUCH DAMAGE. /* first d output samples are set to zero */ /*******************************************/ +/* OPT: Using celt_fir() for this function should be faster, but it may cause + integer overflows in intermediate values (not final results), which the + current implementation silences by casting to unsigned. Enabling + this should be safe in pretty much all cases, even though it is not technically + C89-compliant. */ +#define USE_CELT_FIR 0 + void silk_LPC_analysis_filter( opus_int16 *out, /* O Output signal */ const opus_int16 *in, /* I Input signal */ @@ -49,8 +56,7 @@ void silk_LPC_analysis_filter( ) { opus_int j; -#ifdef FIXED_POINT - opus_int16 mem[SILK_MAX_ORDER_LPC]; +#if defined(FIXED_POINT) && USE_CELT_FIR opus_int16 num[SILK_MAX_ORDER_LPC]; #else int ix; @@ -58,19 +64,16 @@ void silk_LPC_analysis_filter( const opus_int16 *in_ptr; #endif - silk_assert( d >= 6 ); - silk_assert( (d & 1) == 0 ); - silk_assert( d <= len ); + celt_assert( d >= 6 ); + celt_assert( (d & 1) == 0 ); + celt_assert( d <= len ); -#ifdef FIXED_POINT - silk_assert( d <= SILK_MAX_ORDER_LPC ); +#if defined(FIXED_POINT) && USE_CELT_FIR + celt_assert( d <= SILK_MAX_ORDER_LPC ); for ( j = 0; j < d; j++ ) { num[ j ] = -B[ j ]; } - for (j=0;j<d;j++) { - mem[ j ] = in[ d - j - 1 ]; - } - celt_fir( in + d, num, out + d, len - d, d, mem, arch ); + celt_fir( in + d, num, out + d, len - d, d, arch ); for ( j = 0; j < d; j++ ) { out[ j ] = 0; } diff --git a/thirdparty/opus/silk/LPC_fit.c b/thirdparty/opus/silk/LPC_fit.c new file mode 100644 index 0000000000..cdea4f3abc --- /dev/null +++ b/thirdparty/opus/silk/LPC_fit.c @@ -0,0 +1,81 @@ +/*********************************************************************** +Copyright (c) 2013, Koen Vos. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "SigProc_FIX.h" + +/* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */ +void silk_LPC_fit( + opus_int16 *a_QOUT, /* O Output signal */ + opus_int32 *a_QIN, /* I/O Input signal */ + const opus_int QOUT, /* I Input Q domain */ + const opus_int QIN, /* I Input Q domain */ + const opus_int d /* I Filter order */ +) +{ + opus_int i, k, idx = 0; + opus_int32 maxabs, absval, chirp_Q16; + + /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ + for( i = 0; i < 10; i++ ) { + /* Find maximum absolute value and its index */ + maxabs = 0; + for( k = 0; k < d; k++ ) { + absval = silk_abs( a_QIN[k] ); + if( absval > maxabs ) { + maxabs = absval; + idx = k; + } + } + maxabs = silk_RSHIFT_ROUND( maxabs, QIN - QOUT ); + + if( maxabs > silk_int16_MAX ) { + /* Reduce magnitude of prediction coefficients */ + maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */ + chirp_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ), + silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) ); + silk_bwexpander_32( a_QIN, d, chirp_Q16 ); + } else { + break; + } + } + + if( i == 10 ) { + /* Reached the last iteration, clip the coefficients */ + for( k = 0; k < d; k++ ) { + a_QOUT[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT ) ); + a_QIN[ k ] = silk_LSHIFT( (opus_int32)a_QOUT[ k ], QIN - QOUT ); + } + } else { + for( k = 0; k < d; k++ ) { + a_QOUT[ k ] = (opus_int16)silk_RSHIFT_ROUND( a_QIN[ k ], QIN - QOUT ); + } + } +} diff --git a/thirdparty/opus/silk/LPC_inv_pred_gain.c b/thirdparty/opus/silk/LPC_inv_pred_gain.c index 4af89aa5fa..a3746a6ef9 100644 --- a/thirdparty/opus/silk/LPC_inv_pred_gain.c +++ b/thirdparty/opus/silk/LPC_inv_pred_gain.c @@ -30,6 +30,7 @@ POSSIBILITY OF SUCH DAMAGE. #endif #include "SigProc_FIX.h" +#include "define.h" #define QA 24 #define A_LIMIT SILK_FIX_CONST( 0.99975, QA ) @@ -38,117 +39,103 @@ POSSIBILITY OF SUCH DAMAGE. /* Compute inverse of LPC prediction gain, and */ /* test if LPC coefficients are stable (all poles within unit circle) */ -static opus_int32 LPC_inverse_pred_gain_QA( /* O Returns inverse prediction gain in energy domain, Q30 */ - opus_int32 A_QA[ 2 ][ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */ +static opus_int32 LPC_inverse_pred_gain_QA_c( /* O Returns inverse prediction gain in energy domain, Q30 */ + opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */ const opus_int order /* I Prediction order */ ) { opus_int k, n, mult2Q; - opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp_QA; - opus_int32 *Aold_QA, *Anew_QA; + opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2; - Anew_QA = A_QA[ order & 1 ]; - - invGain_Q30 = (opus_int32)1 << 30; + invGain_Q30 = SILK_FIX_CONST( 1, 30 ); for( k = order - 1; k > 0; k-- ) { /* Check for stability */ - if( ( Anew_QA[ k ] > A_LIMIT ) || ( Anew_QA[ k ] < -A_LIMIT ) ) { + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { return 0; } /* Set RC equal to negated AR coef */ - rc_Q31 = -silk_LSHIFT( Anew_QA[ k ], 31 - QA ); + rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA ); /* rc_mult1_Q30 range: [ 1 : 2^30 ] */ - rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) ); silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A_LIMIT if fails */ silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) ); - /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */ - mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) ); - rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 ); - /* Update inverse gain */ /* invGain_Q30 range: [ 0 : 2^30 ] */ invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); silk_assert( invGain_Q30 >= 0 ); silk_assert( invGain_Q30 <= ( 1 << 30 ) ); + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) { + return 0; + } - /* Swap pointers */ - Aold_QA = Anew_QA; - Anew_QA = A_QA[ k & 1 ]; + /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */ + mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) ); + rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 ); /* Update AR coefficient */ - for( n = 0; n < k; n++ ) { - tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( Aold_QA[ k - n - 1 ], rc_Q31, 31 ); - Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q ); + for( n = 0; n < (k + 1) >> 1; n++ ) { + opus_int64 tmp64; + tmp1 = A_QA[ n ]; + tmp2 = A_QA[ k - n - 1 ]; + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1, + MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q); + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { + return 0; + } + A_QA[ n ] = ( opus_int32 )tmp64; + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2, + MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q); + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { + return 0; + } + A_QA[ k - n - 1 ] = ( opus_int32 )tmp64; } } /* Check for stability */ - if( ( Anew_QA[ 0 ] > A_LIMIT ) || ( Anew_QA[ 0 ] < -A_LIMIT ) ) { + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { return 0; } /* Set RC equal to negated AR coef */ - rc_Q31 = -silk_LSHIFT( Anew_QA[ 0 ], 31 - QA ); + rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA ); /* Range: [ 1 : 2^30 ] */ - rc_mult1_Q30 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) ); /* Update inverse gain */ /* Range: [ 0 : 2^30 ] */ invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); - silk_assert( invGain_Q30 >= 0 ); - silk_assert( invGain_Q30 <= 1<<30 ); + silk_assert( invGain_Q30 >= 0 ); + silk_assert( invGain_Q30 <= ( 1 << 30 ) ); + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) { + return 0; + } return invGain_Q30; } /* For input in Q12 domain */ -opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */ +opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */ const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ const opus_int order /* I Prediction order */ ) { opus_int k; - opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ]; - opus_int32 *Anew_QA; + opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 DC_resp = 0; - Anew_QA = Atmp_QA[ order & 1 ]; - /* Increase Q domain of the AR coefficients */ for( k = 0; k < order; k++ ) { DC_resp += (opus_int32)A_Q12[ k ]; - Anew_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 ); + Atmp_QA[ k ] = silk_LSHIFT32( (opus_int32)A_Q12[ k ], QA - 12 ); } /* If the DC is unstable, we don't even need to do the full calculations */ if( DC_resp >= 4096 ) { return 0; } - return LPC_inverse_pred_gain_QA( Atmp_QA, order ); + return LPC_inverse_pred_gain_QA_c( Atmp_QA, order ); } - -#ifdef FIXED_POINT - -/* For input in Q24 domain */ -opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */ - const opus_int32 *A_Q24, /* I Prediction coefficients [order] */ - const opus_int order /* I Prediction order */ -) -{ - opus_int k; - opus_int32 Atmp_QA[ 2 ][ SILK_MAX_ORDER_LPC ]; - opus_int32 *Anew_QA; - - Anew_QA = Atmp_QA[ order & 1 ]; - - /* Increase Q domain of the AR coefficients */ - for( k = 0; k < order; k++ ) { - Anew_QA[ k ] = silk_RSHIFT32( A_Q24[ k ], 24 - QA ); - } - - return LPC_inverse_pred_gain_QA( Atmp_QA, order ); -} -#endif diff --git a/thirdparty/opus/silk/LP_variable_cutoff.c b/thirdparty/opus/silk/LP_variable_cutoff.c index f639e1f899..79112ad354 100644 --- a/thirdparty/opus/silk/LP_variable_cutoff.c +++ b/thirdparty/opus/silk/LP_variable_cutoff.c @@ -130,6 +130,6 @@ void silk_LP_variable_cutoff( /* ARMA low-pass filtering */ silk_assert( TRANSITION_NB == 3 && TRANSITION_NA == 2 ); - silk_biquad_alt( frame, B_Q28, A_Q28, psLP->In_LP_State, frame, frame_length, 1); + silk_biquad_alt_stride1( frame, B_Q28, A_Q28, psLP->In_LP_State, frame, frame_length); } } diff --git a/thirdparty/opus/silk/MacroCount.h b/thirdparty/opus/silk/MacroCount.h index 834817d058..78100ffede 100644 --- a/thirdparty/opus/silk/MacroCount.h +++ b/thirdparty/opus/silk/MacroCount.h @@ -319,14 +319,6 @@ static OPUS_INLINE opus_int32 silk_ADD_POS_SAT32(opus_int64 a, opus_int64 b){ return(tmp); } -#undef silk_ADD_POS_SAT64 -static OPUS_INLINE opus_int64 silk_ADD_POS_SAT64(opus_int64 a, opus_int64 b){ - opus_int64 tmp; - ops_count += 1; - tmp = ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b))); - return(tmp); -} - #undef silk_LSHIFT8 static OPUS_INLINE opus_int8 silk_LSHIFT8(opus_int8 a, opus_int32 shift){ opus_int8 ret; @@ -699,7 +691,7 @@ return(ret); #undef silk_LIMIT_32 -static OPUS_INLINE opus_int silk_LIMIT_32(opus_int32 a, opus_int32 limit1, opus_int32 limit2) +static OPUS_INLINE opus_int32 silk_LIMIT_32(opus_int32 a, opus_int32 limit1, opus_int32 limit2) { opus_int32 ret; ops_count += 6; diff --git a/thirdparty/opus/silk/MacroDebug.h b/thirdparty/opus/silk/MacroDebug.h index 35aedc5c5f..8dd4ce2ee2 100644 --- a/thirdparty/opus/silk/MacroDebug.h +++ b/thirdparty/opus/silk/MacroDebug.h @@ -539,8 +539,7 @@ static OPUS_INLINE opus_int32 silk_DIV32_16_(opus_int32 a32, opus_int32 b32, cha no checking needed for silk_POS_SAT32 no checking needed for silk_ADD_POS_SAT8 no checking needed for silk_ADD_POS_SAT16 - no checking needed for silk_ADD_POS_SAT32 - no checking needed for silk_ADD_POS_SAT64 */ + no checking needed for silk_ADD_POS_SAT32 */ #undef silk_LSHIFT8 #define silk_LSHIFT8(a,b) silk_LSHIFT8_((a), (b), __FILE__, __LINE__) diff --git a/thirdparty/opus/silk/NLSF2A.c b/thirdparty/opus/silk/NLSF2A.c index b1c559ea68..d5b7730638 100644 --- a/thirdparty/opus/silk/NLSF2A.c +++ b/thirdparty/opus/silk/NLSF2A.c @@ -66,7 +66,8 @@ static OPUS_INLINE void silk_NLSF2A_find_poly( void silk_NLSF2A( opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ - const opus_int d /* I filter order (should be even) */ + const opus_int d, /* I filter order (should be even) */ + int arch /* I Run-time architecture */ ) { /* This ordering was found to maximize quality. It improves numerical accuracy of @@ -83,15 +84,14 @@ void silk_NLSF2A( opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; - opus_int32 maxabs, absval, idx=0, sc_Q16; silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); - silk_assert( d==10||d==16 ); + celt_assert( d==10 || d==16 ); /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ ordering = d == 16 ? ordering16 : ordering10; for( k = 0; k < d; k++ ) { - silk_assert(NLSF[k] >= 0 ); + silk_assert( NLSF[k] >= 0 ); /* f_int on a scale 0-127 (rounded down) */ f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); @@ -126,52 +126,15 @@ void silk_NLSF2A( a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ } - /* Limit the maximum absolute value of the prediction coefficients, so that they'll fit in int16 */ - for( i = 0; i < 10; i++ ) { - /* Find maximum absolute value and its index */ - maxabs = 0; - for( k = 0; k < d; k++ ) { - absval = silk_abs( a32_QA1[k] ); - if( absval > maxabs ) { - maxabs = absval; - idx = k; - } - } - maxabs = silk_RSHIFT_ROUND( maxabs, QA + 1 - 12 ); /* QA+1 -> Q12 */ - - if( maxabs > silk_int16_MAX ) { - /* Reduce magnitude of prediction coefficients */ - maxabs = silk_min( maxabs, 163838 ); /* ( silk_int32_MAX >> 14 ) + silk_int16_MAX = 163838 */ - sc_Q16 = SILK_FIX_CONST( 0.999, 16 ) - silk_DIV32( silk_LSHIFT( maxabs - silk_int16_MAX, 14 ), - silk_RSHIFT32( silk_MUL( maxabs, idx + 1), 2 ) ); - silk_bwexpander_32( a32_QA1, d, sc_Q16 ); - } else { - break; - } - } + /* Convert int32 coefficients to Q12 int16 coefs */ + silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d ); - if( i == 10 ) { - /* Reached the last iteration, clip the coefficients */ + for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { + /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ + /* on the unscaled coefficients, convert to Q12 and measure again */ + silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); for( k = 0; k < d; k++ ) { - a_Q12[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ) ); /* QA+1 -> Q12 */ - a32_QA1[ k ] = silk_LSHIFT( (opus_int32)a_Q12[ k ], QA + 1 - 12 ); - } - } else { - for( k = 0; k < d; k++ ) { - a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ - } - } - - for( i = 0; i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { - if( silk_LPC_inverse_pred_gain( a_Q12, d ) < SILK_FIX_CONST( 1.0 / MAX_PREDICTION_POWER_GAIN, 30 ) ) { - /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ - /* on the unscaled coefficients, convert to Q12 and measure again */ - silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); - for( k = 0; k < d; k++ ) { - a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ - } - } else { - break; + a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ } } } diff --git a/thirdparty/opus/silk/NLSF_VQ.c b/thirdparty/opus/silk/NLSF_VQ.c index 69b6e22e18..b83182a79c 100644 --- a/thirdparty/opus/silk/NLSF_VQ.c +++ b/thirdparty/opus/silk/NLSF_VQ.c @@ -33,36 +33,44 @@ POSSIBILITY OF SUCH DAMAGE. /* Compute quantization errors for an LPC_order element input vector for a VQ codebook */ void silk_NLSF_VQ( - opus_int32 err_Q26[], /* O Quantization errors [K] */ + opus_int32 err_Q24[], /* O Quantization errors [K] */ const opus_int16 in_Q15[], /* I Input vectors to be quantized [LPC_order] */ const opus_uint8 pCB_Q8[], /* I Codebook vectors [K*LPC_order] */ + const opus_int16 pWght_Q9[], /* I Codebook weights [K*LPC_order] */ const opus_int K, /* I Number of codebook vectors */ const opus_int LPC_order /* I Number of LPCs */ ) { - opus_int i, m; - opus_int32 diff_Q15, sum_error_Q30, sum_error_Q26; + opus_int i, m; + opus_int32 diff_Q15, diffw_Q24, sum_error_Q24, pred_Q24; + const opus_int16 *w_Q9_ptr; + const opus_uint8 *cb_Q8_ptr; - silk_assert( LPC_order <= 16 ); - silk_assert( ( LPC_order & 1 ) == 0 ); + celt_assert( ( LPC_order & 1 ) == 0 ); /* Loop over codebook */ + cb_Q8_ptr = pCB_Q8; + w_Q9_ptr = pWght_Q9; for( i = 0; i < K; i++ ) { - sum_error_Q26 = 0; - for( m = 0; m < LPC_order; m += 2 ) { - /* Compute weighted squared quantization error for index m */ - diff_Q15 = silk_SUB_LSHIFT32( in_Q15[ m ], (opus_int32)*pCB_Q8++, 7 ); /* range: [ -32767 : 32767 ]*/ - sum_error_Q30 = silk_SMULBB( diff_Q15, diff_Q15 ); + sum_error_Q24 = 0; + pred_Q24 = 0; + for( m = LPC_order-2; m >= 0; m -= 2 ) { + /* Compute weighted absolute predictive quantization error for index m + 1 */ + diff_Q15 = silk_SUB_LSHIFT32( in_Q15[ m + 1 ], (opus_int32)cb_Q8_ptr[ m + 1 ], 7 ); /* range: [ -32767 : 32767 ]*/ + diffw_Q24 = silk_SMULBB( diff_Q15, w_Q9_ptr[ m + 1 ] ); + sum_error_Q24 = silk_ADD32( sum_error_Q24, silk_abs( silk_SUB_RSHIFT32( diffw_Q24, pred_Q24, 1 ) ) ); + pred_Q24 = diffw_Q24; - /* Compute weighted squared quantization error for index m + 1 */ - diff_Q15 = silk_SUB_LSHIFT32( in_Q15[m + 1], (opus_int32)*pCB_Q8++, 7 ); /* range: [ -32767 : 32767 ]*/ - sum_error_Q30 = silk_SMLABB( sum_error_Q30, diff_Q15, diff_Q15 ); + /* Compute weighted absolute predictive quantization error for index m */ + diff_Q15 = silk_SUB_LSHIFT32( in_Q15[ m ], (opus_int32)cb_Q8_ptr[ m ], 7 ); /* range: [ -32767 : 32767 ]*/ + diffw_Q24 = silk_SMULBB( diff_Q15, w_Q9_ptr[ m ] ); + sum_error_Q24 = silk_ADD32( sum_error_Q24, silk_abs( silk_SUB_RSHIFT32( diffw_Q24, pred_Q24, 1 ) ) ); + pred_Q24 = diffw_Q24; - sum_error_Q26 = silk_ADD_RSHIFT32( sum_error_Q26, sum_error_Q30, 4 ); - - silk_assert( sum_error_Q26 >= 0 ); - silk_assert( sum_error_Q30 >= 0 ); + silk_assert( sum_error_Q24 >= 0 ); } - err_Q26[ i ] = sum_error_Q26; + err_Q24[ i ] = sum_error_Q24; + cb_Q8_ptr += LPC_order; + w_Q9_ptr += LPC_order; } } diff --git a/thirdparty/opus/silk/NLSF_VQ_weights_laroia.c b/thirdparty/opus/silk/NLSF_VQ_weights_laroia.c index 04894c59ab..9873bcde10 100644 --- a/thirdparty/opus/silk/NLSF_VQ_weights_laroia.c +++ b/thirdparty/opus/silk/NLSF_VQ_weights_laroia.c @@ -48,8 +48,8 @@ void silk_NLSF_VQ_weights_laroia( opus_int k; opus_int32 tmp1_int, tmp2_int; - silk_assert( D > 0 ); - silk_assert( ( D & 1 ) == 0 ); + celt_assert( D > 0 ); + celt_assert( ( D & 1 ) == 0 ); /* First value */ tmp1_int = silk_max_int( pNLSF_Q15[ 0 ], 1 ); diff --git a/thirdparty/opus/silk/NLSF_decode.c b/thirdparty/opus/silk/NLSF_decode.c index 9f715060b8..eeb0ba8c92 100644 --- a/thirdparty/opus/silk/NLSF_decode.c +++ b/thirdparty/opus/silk/NLSF_decode.c @@ -32,7 +32,7 @@ POSSIBILITY OF SUCH DAMAGE. #include "main.h" /* Predictive dequantizer for NLSF residuals */ -static OPUS_INLINE void silk_NLSF_residual_dequant( /* O Returns RD value in Q30 */ +static OPUS_INLINE void silk_NLSF_residual_dequant( /* O Returns RD value in Q30 */ opus_int16 x_Q10[], /* O Output [ order ] */ const opus_int8 indices[], /* I Quantization indices [ order ] */ const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ @@ -70,15 +70,9 @@ void silk_NLSF_decode( opus_uint8 pred_Q8[ MAX_LPC_ORDER ]; opus_int16 ec_ix[ MAX_LPC_ORDER ]; opus_int16 res_Q10[ MAX_LPC_ORDER ]; - opus_int16 W_tmp_QW[ MAX_LPC_ORDER ]; - opus_int32 W_tmp_Q9, NLSF_Q15_tmp; + opus_int32 NLSF_Q15_tmp; const opus_uint8 *pCB_element; - - /* Decode first stage */ - pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ NLSFIndices[ 0 ] * psNLSF_CB->order ]; - for( i = 0; i < psNLSF_CB->order; i++ ) { - pNLSF_Q15[ i ] = silk_LSHIFT( (opus_int16)pCB_element[ i ], 7 ); - } + const opus_int16 *pCB_Wght_Q9; /* Unpack entropy table indices and predictor for current CB1 index */ silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, NLSFIndices[ 0 ] ); @@ -86,13 +80,11 @@ void silk_NLSF_decode( /* Predictive residual dequantizer */ silk_NLSF_residual_dequant( res_Q10, &NLSFIndices[ 1 ], pred_Q8, psNLSF_CB->quantStepSize_Q16, psNLSF_CB->order ); - /* Weights from codebook vector */ - silk_NLSF_VQ_weights_laroia( W_tmp_QW, pNLSF_Q15, psNLSF_CB->order ); - - /* Apply inverse square-rooted weights and add to output */ + /* Apply inverse square-rooted weights to first stage and add to output */ + pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ NLSFIndices[ 0 ] * psNLSF_CB->order ]; + pCB_Wght_Q9 = &psNLSF_CB->CB1_Wght_Q9[ NLSFIndices[ 0 ] * psNLSF_CB->order ]; for( i = 0; i < psNLSF_CB->order; i++ ) { - W_tmp_Q9 = silk_SQRT_APPROX( silk_LSHIFT( (opus_int32)W_tmp_QW[ i ], 18 - NLSF_W_Q ) ); - NLSF_Q15_tmp = silk_ADD32( pNLSF_Q15[ i ], silk_DIV32_16( silk_LSHIFT( (opus_int32)res_Q10[ i ], 14 ), W_tmp_Q9 ) ); + NLSF_Q15_tmp = silk_ADD_LSHIFT32( silk_DIV32_16( silk_LSHIFT( (opus_int32)res_Q10[ i ], 14 ), pCB_Wght_Q9[ i ] ), (opus_int16)pCB_element[ i ], 7 ); pNLSF_Q15[ i ] = (opus_int16)silk_LIMIT( NLSF_Q15_tmp, 0, 32767 ); } diff --git a/thirdparty/opus/silk/NLSF_del_dec_quant.c b/thirdparty/opus/silk/NLSF_del_dec_quant.c index de88fee060..44a16acd0b 100644 --- a/thirdparty/opus/silk/NLSF_del_dec_quant.c +++ b/thirdparty/opus/silk/NLSF_del_dec_quant.c @@ -84,7 +84,7 @@ opus_int32 silk_NLSF_del_dec_quant( /* O Returns nStates = 1; RD_Q25[ 0 ] = 0; prev_out_Q10[ 0 ] = 0; - for( i = order - 1; ; i-- ) { + for( i = order - 1; i >= 0; i-- ) { rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ]; in_Q10 = x_Q10[ i ]; for( j = 0; j < nStates; j++ ) { @@ -131,7 +131,7 @@ opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 ); } - if( nStates <= ( NLSF_QUANT_DEL_DEC_STATES >> 1 ) ) { + if( nStates <= NLSF_QUANT_DEL_DEC_STATES/2 ) { /* double number of states and copy */ for( j = 0; j < nStates; j++ ) { ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1; @@ -140,7 +140,7 @@ opus_int32 silk_NLSF_del_dec_quant( /* O Returns for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { ind[ j ][ i ] = ind[ j - nStates ][ i ]; } - } else if( i > 0 ) { + } else { /* sort lower and upper half of RD_Q25, pairwise */ for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) { @@ -191,8 +191,6 @@ opus_int32 silk_NLSF_del_dec_quant( /* O Returns for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 ); } - } else { /* i == 0 */ - break; } } diff --git a/thirdparty/opus/silk/NLSF_encode.c b/thirdparty/opus/silk/NLSF_encode.c index f03c3f1c35..01ac7db78c 100644 --- a/thirdparty/opus/silk/NLSF_encode.c +++ b/thirdparty/opus/silk/NLSF_encode.c @@ -37,9 +37,9 @@ POSSIBILITY OF SUCH DAMAGE. /***********************/ opus_int32 silk_NLSF_encode( /* O Returns RD value in Q25 */ opus_int8 *NLSFIndices, /* I Codebook path vector [ LPC_ORDER + 1 ] */ - opus_int16 *pNLSF_Q15, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ + opus_int16 *pNLSF_Q15, /* I/O (Un)quantized NLSF vector [ LPC_ORDER ] */ const silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ - const opus_int16 *pW_QW, /* I NLSF weight vector [ LPC_ORDER ] */ + const opus_int16 *pW_Q2, /* I NLSF weight vector [ LPC_ORDER ] */ const opus_int NLSF_mu_Q20, /* I Rate weight for the RD optimization */ const opus_int nSurvivors, /* I Max survivors after first stage */ const opus_int signalType /* I Signal type: 0/1/2 */ @@ -47,34 +47,32 @@ opus_int32 silk_NLSF_encode( /* O Returns { opus_int i, s, ind1, bestIndex, prob_Q8, bits_q7; opus_int32 W_tmp_Q9, ret; - VARDECL( opus_int32, err_Q26 ); + VARDECL( opus_int32, err_Q24 ); VARDECL( opus_int32, RD_Q25 ); VARDECL( opus_int, tempIndices1 ); VARDECL( opus_int8, tempIndices2 ); - opus_int16 res_Q15[ MAX_LPC_ORDER ]; opus_int16 res_Q10[ MAX_LPC_ORDER ]; opus_int16 NLSF_tmp_Q15[ MAX_LPC_ORDER ]; - opus_int16 W_tmp_QW[ MAX_LPC_ORDER ]; opus_int16 W_adj_Q5[ MAX_LPC_ORDER ]; opus_uint8 pred_Q8[ MAX_LPC_ORDER ]; opus_int16 ec_ix[ MAX_LPC_ORDER ]; const opus_uint8 *pCB_element, *iCDF_ptr; + const opus_int16 *pCB_Wght_Q9; SAVE_STACK; - silk_assert( nSurvivors <= NLSF_VQ_MAX_SURVIVORS ); - silk_assert( signalType >= 0 && signalType <= 2 ); + celt_assert( signalType >= 0 && signalType <= 2 ); silk_assert( NLSF_mu_Q20 <= 32767 && NLSF_mu_Q20 >= 0 ); /* NLSF stabilization */ silk_NLSF_stabilize( pNLSF_Q15, psNLSF_CB->deltaMin_Q15, psNLSF_CB->order ); /* First stage: VQ */ - ALLOC( err_Q26, psNLSF_CB->nVectors, opus_int32 ); - silk_NLSF_VQ( err_Q26, pNLSF_Q15, psNLSF_CB->CB1_NLSF_Q8, psNLSF_CB->nVectors, psNLSF_CB->order ); + ALLOC( err_Q24, psNLSF_CB->nVectors, opus_int32 ); + silk_NLSF_VQ( err_Q24, pNLSF_Q15, psNLSF_CB->CB1_NLSF_Q8, psNLSF_CB->CB1_Wght_Q9, psNLSF_CB->nVectors, psNLSF_CB->order ); /* Sort the quantization errors */ ALLOC( tempIndices1, nSurvivors, opus_int ); - silk_insertion_sort_increasing( err_Q26, tempIndices1, psNLSF_CB->nVectors, nSurvivors ); + silk_insertion_sort_increasing( err_Q24, tempIndices1, psNLSF_CB->nVectors, nSurvivors ); ALLOC( RD_Q25, nSurvivors, opus_int32 ); ALLOC( tempIndices2, nSurvivors * MAX_LPC_ORDER, opus_int8 ); @@ -85,23 +83,12 @@ opus_int32 silk_NLSF_encode( /* O Returns /* Residual after first stage */ pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ]; + pCB_Wght_Q9 = &psNLSF_CB->CB1_Wght_Q9[ ind1 * psNLSF_CB->order ]; for( i = 0; i < psNLSF_CB->order; i++ ) { NLSF_tmp_Q15[ i ] = silk_LSHIFT16( (opus_int16)pCB_element[ i ], 7 ); - res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ]; - } - - /* Weights from codebook vector */ - silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order ); - - /* Apply square-rooted weights */ - for( i = 0; i < psNLSF_CB->order; i++ ) { - W_tmp_Q9 = silk_SQRT_APPROX( silk_LSHIFT( (opus_int32)W_tmp_QW[ i ], 18 - NLSF_W_Q ) ); - res_Q10[ i ] = (opus_int16)silk_RSHIFT( silk_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 ); - } - - /* Modify input weights accordingly */ - for( i = 0; i < psNLSF_CB->order; i++ ) { - W_adj_Q5[ i ] = silk_DIV32_16( silk_LSHIFT( (opus_int32)pW_QW[ i ], 5 ), W_tmp_QW[ i ] ); + W_tmp_Q9 = pCB_Wght_Q9[ i ]; + res_Q10[ i ] = (opus_int16)silk_RSHIFT( silk_SMULBB( pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ], W_tmp_Q9 ), 14 ); + W_adj_Q5[ i ] = silk_DIV32_varQ( (opus_int32)pW_Q2[ i ], silk_SMULBB( W_tmp_Q9, W_tmp_Q9 ), 21 ); } /* Unpack entropy table indices and predictor for current CB1 index */ diff --git a/thirdparty/opus/silk/NSQ.c b/thirdparty/opus/silk/NSQ.c index 43e3fee7e0..1d64d8e257 100644 --- a/thirdparty/opus/silk/NSQ.c +++ b/thirdparty/opus/silk/NSQ.c @@ -37,7 +37,7 @@ POSSIBILITY OF SUCH DAMAGE. static OPUS_INLINE void silk_nsq_scale_states( const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ - const opus_int32 x_Q3[], /* I input in Q3 */ + const opus_int16 x16[], /* I input */ opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ @@ -75,14 +75,14 @@ static OPUS_INLINE void silk_noise_shape_quantizer( void silk_NSQ_c ( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ - const opus_int32 x_Q3[], /* I Prefiltered input signal */ + const opus_int16 x16[], /* I Input */ opus_int8 pulses[], /* O Quantized pulse signal */ const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ - const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ @@ -117,8 +117,7 @@ void silk_NSQ_c LSF_interpolation_flag = 1; } - ALLOC( sLTP_Q15, - psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); + ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); /* Set up pointers to start of sub frame */ @@ -128,7 +127,7 @@ void silk_NSQ_c for( k = 0; k < psEncC->nb_subfr; k++ ) { A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ]; B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; - AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; + AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ]; /* Noise shape parameters */ silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); @@ -144,7 +143,7 @@ void silk_NSQ_c if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { /* Rewhiten with new A coefs */ start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; - silk_assert( start_idx > 0 ); + celt_assert( start_idx > 0 ); silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); @@ -154,13 +153,13 @@ void silk_NSQ_c } } - silk_nsq_scale_states( psEncC, NSQ, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType ); + silk_nsq_scale_states( psEncC, NSQ, x16, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType ); silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch ); - x_Q3 += psEncC->subfr_length; + x16 += psEncC->subfr_length; pulses += psEncC->subfr_length; pxq += psEncC->subfr_length; } @@ -169,7 +168,6 @@ void silk_NSQ_c NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; /* Save quantized speech and noise shaping signals */ - /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[ psEncC->ltp_mem_length ], psEncC->frame_length * sizeof( opus_int16 ) ) */ silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); RESTORE_STACK; @@ -249,15 +247,15 @@ void silk_noise_shape_quantizer( } /* Noise shape feedback */ - silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ - n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(psLPC_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch); + celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ + n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(&NSQ->sDiff_shp_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch); n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 ); n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 ); n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 ); - silk_assert( lag > 0 || signalType != TYPE_VOICED ); + celt_assert( lag > 0 || signalType != TYPE_VOICED ); /* Combine prediction and noise shaping signals */ tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */ @@ -279,14 +277,27 @@ void silk_noise_shape_quantizer( r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */ /* Flip sign depending on dither */ - if ( NSQ->rand_seed < 0 ) { - r_Q10 = -r_Q10; + if( NSQ->rand_seed < 0 ) { + r_Q10 = -r_Q10; } r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 ); /* Find two quantization level candidates and measure their rate-distortion */ q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); + if (Lambda_Q10 > 2048) { + /* For aggressive RDO, the bias becomes more than one pulse. */ + int rdo_offset = Lambda_Q10/2 - 512; + if (q1_Q10 > rdo_offset) { + q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 ); + } else if (q1_Q10 < -rdo_offset) { + q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 ); + } else if (q1_Q10 < 0) { + q1_Q0 = -1; + } else { + q1_Q0 = 0; + } + } if( q1_Q0 > 0 ) { q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); @@ -337,7 +348,8 @@ void silk_noise_shape_quantizer( /* Update states */ psLPC_Q14++; *psLPC_Q14 = xq_Q14; - sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, n_AR_Q12, 2 ); + NSQ->sDiff_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_sc_Q10[ i ], 4 ); + sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( NSQ->sDiff_shp_Q14, n_AR_Q12, 2 ); NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14; NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 ); @@ -356,7 +368,7 @@ void silk_noise_shape_quantizer( static OPUS_INLINE void silk_nsq_scale_states( const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ - const opus_int32 x_Q3[], /* I input in Q3 */ + const opus_int16 x16[], /* I input */ opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */ opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ @@ -368,28 +380,18 @@ static OPUS_INLINE void silk_nsq_scale_states( ) { opus_int i, lag; - opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23; + opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26; lag = pitchL[ subfr ]; inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); silk_assert( inv_gain_Q31 != 0 ); - /* Calculate gain adjustment factor */ - if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { - gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); - } else { - gain_adj_Q16 = (opus_int32)1 << 16; - } - /* Scale input */ - inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 ); + inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 ); for( i = 0; i < psEncC->subfr_length; i++ ) { - x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 ); + x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 ); } - /* Save inverse gain */ - NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; - /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ if( NSQ->rewhite_flag ) { if( subfr == 0 ) { @@ -403,7 +405,9 @@ static OPUS_INLINE void silk_nsq_scale_states( } /* Adjust for changing gain */ - if( gain_adj_Q16 != (opus_int32)1 << 16 ) { + if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { + gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); + /* Scale long-term shaping state */ for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); @@ -417,6 +421,7 @@ static OPUS_INLINE void silk_nsq_scale_states( } NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 ); + NSQ->sDiff_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sDiff_shp_Q14 ); /* Scale short-term prediction and shaping states */ for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { @@ -425,5 +430,8 @@ static OPUS_INLINE void silk_nsq_scale_states( for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] ); } + + /* Save inverse gain */ + NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; } } diff --git a/thirdparty/opus/silk/NSQ_del_dec.c b/thirdparty/opus/silk/NSQ_del_dec.c index ab6feeac98..3fd9fa0d5b 100644 --- a/thirdparty/opus/silk/NSQ_del_dec.c +++ b/thirdparty/opus/silk/NSQ_del_dec.c @@ -43,6 +43,7 @@ typedef struct { opus_int32 Shape_Q14[ DECISION_DELAY ]; opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ]; opus_int32 LF_AR_Q14; + opus_int32 Diff_Q14; opus_int32 Seed; opus_int32 SeedInit; opus_int32 RD_Q10; @@ -53,6 +54,7 @@ typedef struct { opus_int32 RD_Q10; opus_int32 xq_Q14; opus_int32 LF_AR_Q14; + opus_int32 Diff_Q14; opus_int32 sLTP_shp_Q14; opus_int32 LPC_exc_Q14; } NSQ_sample_struct; @@ -66,7 +68,7 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ - const opus_int32 x_Q3[], /* I Input in Q3 */ + const opus_int16 x16[], /* I Input */ opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ @@ -107,20 +109,20 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ - opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ opus_int decisionDelay, /* I */ int arch /* I */ ); void silk_NSQ_del_dec_c( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ - const opus_int32 x_Q3[], /* I Prefiltered input signal */ + const opus_int16 x16[], /* I Input */ opus_int8 pulses[], /* O Quantized pulse signal */ const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ - const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ @@ -159,6 +161,7 @@ void silk_NSQ_del_dec_c( psDD->SeedInit = psDD->Seed; psDD->RD_Q10 = 0; psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14; + psDD->Diff_Q14 = NSQ->sDiff_shp_Q14; psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ]; silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) ); @@ -186,8 +189,7 @@ void silk_NSQ_del_dec_c( LSF_interpolation_flag = 1; } - ALLOC( sLTP_Q15, - psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); + ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 ); @@ -199,7 +201,7 @@ void silk_NSQ_del_dec_c( for( k = 0; k < psEncC->nb_subfr; k++ ) { A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ]; B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; - AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; + AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ]; /* Noise shape parameters */ silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); @@ -235,7 +237,8 @@ void silk_NSQ_del_dec_c( psDD = &psDelDec[ Winner_ind ]; last_smple_idx = smpl_buf_idx + decisionDelay; for( i = 0; i < decisionDelay; i++ ) { - last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; + last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; + if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) ); @@ -247,7 +250,7 @@ void silk_NSQ_del_dec_c( /* Rewhiten with new A coefs */ start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; - silk_assert( start_idx > 0 ); + celt_assert( start_idx > 0 ); silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); @@ -257,7 +260,7 @@ void silk_NSQ_del_dec_c( } } - silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k, + silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k, psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay ); silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, @@ -265,7 +268,7 @@ void silk_NSQ_del_dec_c( Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay, psEncC->arch ); - x_Q3 += psEncC->subfr_length; + x16 += psEncC->subfr_length; pulses += psEncC->subfr_length; pxq += psEncC->subfr_length; } @@ -286,7 +289,9 @@ void silk_NSQ_del_dec_c( last_smple_idx = smpl_buf_idx + decisionDelay; Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 ); for( i = 0; i < decisionDelay; i++ ) { - last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; + last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; + if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; + pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) ); @@ -297,10 +302,10 @@ void silk_NSQ_del_dec_c( /* Update states */ NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14; + NSQ->sDiff_shp_Q14 = psDD->Diff_Q14; NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; /* Save quantized speech signal */ - /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[psEncC->ltp_mem_length], psEncC->frame_length * sizeof( opus_int16 ) ) */ silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); RESTORE_STACK; @@ -335,7 +340,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ - opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ opus_int decisionDelay, /* I */ int arch /* I */ ) @@ -356,7 +361,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( NSQ_sample_struct *psSS; SAVE_STACK; - silk_assert( nStatesDelayedDecision > 0 ); + celt_assert( nStatesDelayedDecision > 0 ); ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair ); shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; @@ -414,9 +419,9 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */ /* Noise shape feedback */ - silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ + celt_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ /* Output of lowpass section */ - tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 ); + tmp2 = silk_SMLAWB( psDD->Diff_Q14, psDD->sAR2_Q14[ 0 ], warping_Q16 ); /* Output of allpass section */ tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 ); psDD->sAR2_Q14[ 0 ] = tmp2; @@ -462,6 +467,19 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( /* Find two quantization level candidates and measure their rate-distortion */ q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); + if (Lambda_Q10 > 2048) { + /* For aggressive RDO, the bias becomes more than one pulse. */ + int rdo_offset = Lambda_Q10/2 - 512; + if (q1_Q10 > rdo_offset) { + q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 ); + } else if (q1_Q10 < -rdo_offset) { + q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 ); + } else if (q1_Q10 < 0) { + q1_Q0 = -1; + } else { + q1_Q0 = 0; + } + } if( q1_Q0 > 0 ) { q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); @@ -515,7 +533,8 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); /* Update states */ - sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); + psSS[ 0 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 ); + sLF_AR_shp_Q14 = silk_SUB32( psSS[ 0 ].Diff_Q14, n_AR_Q14 ); psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14; psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14; @@ -529,21 +548,22 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( exc_Q14 = -exc_Q14; } - /* Add predictions */ LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); /* Update states */ - sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); + psSS[ 1 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 ); + sLF_AR_shp_Q14 = silk_SUB32( psSS[ 1 ].Diff_Q14, n_AR_Q14 ); psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14; psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14; psSS[ 1 ].xq_Q14 = xq_Q14; } - *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */ - last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */ + *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY; + if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY; + last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY; /* Find winner */ RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; @@ -607,6 +627,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec( psDD = &psDelDec[ k ]; psSS = &psSampleState[ k ][ 0 ]; psDD->LF_AR_Q14 = psSS->LF_AR_Q14; + psDD->Diff_Q14 = psSS->Diff_Q14; psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14; psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14; psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10; @@ -631,7 +652,7 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ - const opus_int32 x_Q3[], /* I Input in Q3 */ + const opus_int16 x16[], /* I Input */ opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ @@ -645,29 +666,19 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( ) { opus_int i, k, lag; - opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23; + opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26; NSQ_del_dec_struct *psDD; lag = pitchL[ subfr ]; inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); silk_assert( inv_gain_Q31 != 0 ); - /* Calculate gain adjustment factor */ - if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { - gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); - } else { - gain_adj_Q16 = (opus_int32)1 << 16; - } - /* Scale input */ - inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 ); + inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 ); for( i = 0; i < psEncC->subfr_length; i++ ) { - x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 ); + x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 ); } - /* Save inverse gain */ - NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; - /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ if( NSQ->rewhite_flag ) { if( subfr == 0 ) { @@ -681,7 +692,9 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( } /* Adjust for changing gain */ - if( gain_adj_Q16 != (opus_int32)1 << 16 ) { + if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { + gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); + /* Scale long-term shaping state */ for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) { NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); @@ -699,6 +712,7 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( /* Scale scalar states */ psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 ); + psDD->Diff_Q14 = silk_SMULWW( gain_adj_Q16, psDD->Diff_Q14 ); /* Scale short-term prediction and shaping states */ for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { @@ -712,5 +726,8 @@ static OPUS_INLINE void silk_nsq_del_dec_scale_states( psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] ); } } + + /* Save inverse gain */ + NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; } } diff --git a/thirdparty/opus/silk/PLC.c b/thirdparty/opus/silk/PLC.c index fb6ea887b7..f89391651c 100644 --- a/thirdparty/opus/silk/PLC.c +++ b/thirdparty/opus/silk/PLC.c @@ -275,7 +275,7 @@ static OPUS_INLINE void silk_PLC_conceal( /* Reduce random noise for unvoiced frames with high LPC gain */ opus_int32 invGain_Q30, down_scale_Q30; - invGain_Q30 = silk_LPC_inverse_pred_gain( psPLC->prevLPC_Q12, psDec->LPC_order ); + invGain_Q30 = silk_LPC_inverse_pred_gain( psPLC->prevLPC_Q12, psDec->LPC_order, arch ); down_scale_Q30 = silk_min_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 ); down_scale_Q30 = silk_max_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 ); @@ -291,7 +291,7 @@ static OPUS_INLINE void silk_PLC_conceal( /* Rewhiten LTP state */ idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2; - silk_assert( idx > 0 ); + celt_assert( idx > 0 ); silk_LPC_analysis_filter( &sLTP[ idx ], &psDec->outBuf[ idx ], A_Q12, psDec->ltp_mem_length - idx, psDec->LPC_order, arch ); /* Scale LTP state */ inv_gain_Q30 = silk_INVERSE32_varQ( psPLC->prevGain_Q16[ 1 ], 46 ); @@ -328,8 +328,10 @@ static OPUS_INLINE void silk_PLC_conceal( for( j = 0; j < LTP_ORDER; j++ ) { B_Q14[ j ] = silk_RSHIFT( silk_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 ); } - /* Gradually reduce excitation gain */ - rand_scale_Q14 = silk_RSHIFT( silk_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 ); + if ( psDec->indices.signalType != TYPE_NO_VOICE_ACTIVITY ) { + /* Gradually reduce excitation gain */ + rand_scale_Q14 = silk_RSHIFT( silk_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 ); + } /* Slowly increase pitch lag */ psPLC->pitchL_Q8 = silk_SMLAWB( psPLC->pitchL_Q8, psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 ); @@ -345,7 +347,7 @@ static OPUS_INLINE void silk_PLC_conceal( /* Copy LPC state */ silk_memcpy( sLPC_Q14_ptr, psDec->sLPC_Q14_buf, MAX_LPC_ORDER * sizeof( opus_int32 ) ); - silk_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */ + celt_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */ for( i = 0; i < psDec->frame_length; i++ ) { /* partly unrolled */ /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ diff --git a/thirdparty/opus/silk/SigProc_FIX.h b/thirdparty/opus/silk/SigProc_FIX.h index b63299441e..f9ae326326 100644 --- a/thirdparty/opus/silk/SigProc_FIX.h +++ b/thirdparty/opus/silk/SigProc_FIX.h @@ -35,7 +35,7 @@ extern "C" /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */ -#define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */ +#define SILK_MAX_ORDER_LPC 24 /* max order of the LPC analysis in schur() and k2a() */ #include <string.h> /* for memset(), memcpy(), memmove() */ #include "typedef.h" @@ -47,6 +47,11 @@ extern "C" #include "x86/SigProc_FIX_sse.h" #endif +#if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) +#include "arm/biquad_alt_arm.h" +#include "arm/LPC_inv_pred_gain_arm.h" +#endif + /********************************************************************/ /* SIGNAL PROCESSING FUNCTIONS */ /********************************************************************/ @@ -96,14 +101,22 @@ void silk_resampler_down2_3( * slower than biquad() but uses more precise coefficients * can handle (slowly) varying coefficients */ -void silk_biquad_alt( +void silk_biquad_alt_stride1( const opus_int16 *in, /* I input signal */ const opus_int32 *B_Q28, /* I MA coefficients [3] */ const opus_int32 *A_Q28, /* I AR coefficients [2] */ opus_int32 *S, /* I/O State vector [2] */ opus_int16 *out, /* O output signal */ - const opus_int32 len, /* I signal length (must be even) */ - opus_int stride /* I Operate on interleaved signal if > 1 */ + const opus_int32 len /* I signal length (must be even) */ +); + +void silk_biquad_alt_stride2_c( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ ); /* Variable order MA prediction error filter. */ @@ -132,17 +145,11 @@ void silk_bwexpander_32( /* Compute inverse of LPC prediction gain, and */ /* test if LPC coefficients are stable (all poles within unit circle) */ -opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */ +opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */ const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ const opus_int order /* I Prediction order */ ); -/* For input in Q24 domain */ -opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */ - const opus_int32 *A_Q24, /* I Prediction coefficients [order] */ - const opus_int order /* I Prediction order */ -); - /* Split signal in two decimated bands using first-order allpass filters */ void silk_ana_filt_bank_1( const opus_int16 *in, /* I Input signal [N] */ @@ -152,6 +159,14 @@ void silk_ana_filt_bank_1( const opus_int32 N /* I Number of input samples */ ); +#if !defined(OVERRIDE_silk_biquad_alt_stride2) +#define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((void)(arch), silk_biquad_alt_stride2_c(in, B_Q28, A_Q28, S, out, len)) +#endif + +#if !defined(OVERRIDE_silk_LPC_inverse_pred_gain) +#define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((void)(arch), silk_LPC_inverse_pred_gain_c(A_Q12, order)) +#endif + /********************************************************************/ /* SCALAR FUNCTIONS */ /********************************************************************/ @@ -271,7 +286,17 @@ void silk_A2NLSF( void silk_NLSF2A( opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ - const opus_int d /* I filter order (should be even) */ + const opus_int d, /* I filter order (should be even) */ + int arch /* I Run-time architecture */ +); + +/* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */ +void silk_LPC_fit( + opus_int16 *a_QOUT, /* O Output signal */ + opus_int32 *a_QIN, /* I/O Input signal */ + const opus_int QOUT, /* I Input Q domain */ + const opus_int QIN, /* I Input Q domain */ + const opus_int d /* I Filter order */ ); void silk_insertion_sort_increasing( @@ -471,8 +496,7 @@ static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot ) /* Add with saturation for positive input values */ #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b))) #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b))) -#define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b))) -#define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b))) +#define silk_ADD_POS_SAT32(a, b) ((((opus_uint32)(a)+(opus_uint32)(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b))) #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */ #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */ @@ -572,7 +596,9 @@ static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b) /* Make sure to store the result as the seed for the next call (also in between */ /* frames), otherwise result won't be random at all. When only using some of the */ /* bits, take the most significant bits by right-shifting. */ -#define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165)) +#define RAND_MULTIPLIER 196314165 +#define RAND_INCREMENT 907633515 +#define silk_RAND(seed) (silk_MLA_ovflw((RAND_INCREMENT), (seed), (RAND_MULTIPLIER))) /* Add some multiplication functions that can be easily mapped to ARM. */ diff --git a/thirdparty/opus/silk/VAD.c b/thirdparty/opus/silk/VAD.c index 0a782af2f1..d0cda52162 100644 --- a/thirdparty/opus/silk/VAD.c +++ b/thirdparty/opus/silk/VAD.c @@ -101,9 +101,9 @@ opus_int silk_VAD_GetSA_Q8_c( /* O Return v /* Safety checks */ silk_assert( VAD_N_BANDS == 4 ); - silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); - silk_assert( psEncC->frame_length <= 512 ); - silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); + celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); + celt_assert( psEncC->frame_length <= 512 ); + celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); /***********************/ /* Filter and Decimate */ @@ -252,15 +252,14 @@ opus_int silk_VAD_GetSA_Q8_c( /* O Return v speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); } + if( psEncC->frame_length == 20 * psEncC->fs_kHz ) { + speech_nrg = silk_RSHIFT32( speech_nrg, 1 ); + } /* Power scaling */ if( speech_nrg <= 0 ) { SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); - } else if( speech_nrg < 32768 ) { - if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { - speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 ); - } else { - speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 ); - } + } else if( speech_nrg < 16384 ) { + speech_nrg = silk_LSHIFT32( speech_nrg, 16 ); /* square-root */ speech_nrg = silk_SQRT_APPROX( speech_nrg ); @@ -313,6 +312,8 @@ void silk_VAD_GetNoiseLevels( /* Initially faster smoothing */ if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */ min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 ); + /* Increment frame counter */ + psSilk_VAD->counter++; } else { min_coef = 0; } @@ -356,7 +357,4 @@ void silk_VAD_GetNoiseLevels( /* Store as part of state */ psSilk_VAD->NL[ k ] = nl; } - - /* Increment frame counter */ - psSilk_VAD->counter++; } diff --git a/thirdparty/opus/silk/VQ_WMat_EC.c b/thirdparty/opus/silk/VQ_WMat_EC.c index 7983f1db80..0f3d545c4e 100644 --- a/thirdparty/opus/silk/VQ_WMat_EC.c +++ b/thirdparty/opus/silk/VQ_WMat_EC.c @@ -34,84 +34,95 @@ POSSIBILITY OF SUCH DAMAGE. /* Entropy constrained matrix-weighted VQ, hard-coded to 5-element vectors, for a single input data vector */ void silk_VQ_WMat_EC_c( opus_int8 *ind, /* O index of best codebook vector */ - opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */ + opus_int32 *res_nrg_Q15, /* O best residual energy */ + opus_int32 *rate_dist_Q8, /* O best total bitrate */ opus_int *gain_Q7, /* O sum of absolute LTP coefficients */ - const opus_int16 *in_Q14, /* I input vector to be quantized */ - const opus_int32 *W_Q18, /* I weighting matrix */ + const opus_int32 *XX_Q17, /* I correlation matrix */ + const opus_int32 *xX_Q17, /* I correlation vector */ const opus_int8 *cb_Q7, /* I codebook */ const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */ const opus_uint8 *cl_Q5, /* I code length for each codebook vector */ - const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */ + const opus_int subfr_len, /* I number of samples per subframe */ const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */ - opus_int L /* I number of vectors in codebook */ + const opus_int L /* I number of vectors in codebook */ ) { opus_int k, gain_tmp_Q7; const opus_int8 *cb_row_Q7; - opus_int16 diff_Q14[ 5 ]; - opus_int32 sum1_Q14, sum2_Q16; + opus_int32 neg_xX_Q24[ 5 ]; + opus_int32 sum1_Q15, sum2_Q24; + opus_int32 bits_res_Q8, bits_tot_Q8; + + /* Negate and convert to new Q domain */ + neg_xX_Q24[ 0 ] = -silk_LSHIFT32( xX_Q17[ 0 ], 7 ); + neg_xX_Q24[ 1 ] = -silk_LSHIFT32( xX_Q17[ 1 ], 7 ); + neg_xX_Q24[ 2 ] = -silk_LSHIFT32( xX_Q17[ 2 ], 7 ); + neg_xX_Q24[ 3 ] = -silk_LSHIFT32( xX_Q17[ 3 ], 7 ); + neg_xX_Q24[ 4 ] = -silk_LSHIFT32( xX_Q17[ 4 ], 7 ); /* Loop over codebook */ - *rate_dist_Q14 = silk_int32_MAX; + *rate_dist_Q8 = silk_int32_MAX; + *res_nrg_Q15 = silk_int32_MAX; cb_row_Q7 = cb_Q7; + /* In things go really bad, at least *ind is set to something safe. */ + *ind = 0; for( k = 0; k < L; k++ ) { + opus_int32 penalty; gain_tmp_Q7 = cb_gain_Q7[k]; - - diff_Q14[ 0 ] = in_Q14[ 0 ] - silk_LSHIFT( cb_row_Q7[ 0 ], 7 ); - diff_Q14[ 1 ] = in_Q14[ 1 ] - silk_LSHIFT( cb_row_Q7[ 1 ], 7 ); - diff_Q14[ 2 ] = in_Q14[ 2 ] - silk_LSHIFT( cb_row_Q7[ 2 ], 7 ); - diff_Q14[ 3 ] = in_Q14[ 3 ] - silk_LSHIFT( cb_row_Q7[ 3 ], 7 ); - diff_Q14[ 4 ] = in_Q14[ 4 ] - silk_LSHIFT( cb_row_Q7[ 4 ], 7 ); - /* Weighted rate */ - sum1_Q14 = silk_SMULBB( mu_Q9, cl_Q5[ k ] ); + /* Quantization error: 1 - 2 * xX * cb + cb' * XX * cb */ + sum1_Q15 = SILK_FIX_CONST( 1.001, 15 ); /* Penalty for too large gain */ - sum1_Q14 = silk_ADD_LSHIFT32( sum1_Q14, silk_max( silk_SUB32( gain_tmp_Q7, max_gain_Q7 ), 0 ), 10 ); - - silk_assert( sum1_Q14 >= 0 ); - - /* first row of W_Q18 */ - sum2_Q16 = silk_SMULWB( W_Q18[ 1 ], diff_Q14[ 1 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 2 ], diff_Q14[ 2 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 3 ], diff_Q14[ 3 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 4 ], diff_Q14[ 4 ] ); - sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 0 ], diff_Q14[ 0 ] ); - sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 0 ] ); - - /* second row of W_Q18 */ - sum2_Q16 = silk_SMULWB( W_Q18[ 7 ], diff_Q14[ 2 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 8 ], diff_Q14[ 3 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 9 ], diff_Q14[ 4 ] ); - sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 6 ], diff_Q14[ 1 ] ); - sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 1 ] ); - - /* third row of W_Q18 */ - sum2_Q16 = silk_SMULWB( W_Q18[ 13 ], diff_Q14[ 3 ] ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 14 ], diff_Q14[ 4 ] ); - sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 12 ], diff_Q14[ 2 ] ); - sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 2 ] ); - - /* fourth row of W_Q18 */ - sum2_Q16 = silk_SMULWB( W_Q18[ 19 ], diff_Q14[ 4 ] ); - sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 ); - sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 18 ], diff_Q14[ 3 ] ); - sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 3 ] ); - - /* last row of W_Q18 */ - sum2_Q16 = silk_SMULWB( W_Q18[ 24 ], diff_Q14[ 4 ] ); - sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 4 ] ); - - silk_assert( sum1_Q14 >= 0 ); + penalty = silk_LSHIFT32( silk_max( silk_SUB32( gain_tmp_Q7, max_gain_Q7 ), 0 ), 11 ); + + /* first row of XX_Q17 */ + sum2_Q24 = silk_MLA( neg_xX_Q24[ 0 ], XX_Q17[ 1 ], cb_row_Q7[ 1 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 2 ], cb_row_Q7[ 2 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 3 ], cb_row_Q7[ 3 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 4 ], cb_row_Q7[ 4 ] ); + sum2_Q24 = silk_LSHIFT32( sum2_Q24, 1 ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 0 ], cb_row_Q7[ 0 ] ); + sum1_Q15 = silk_SMLAWB( sum1_Q15, sum2_Q24, cb_row_Q7[ 0 ] ); + + /* second row of XX_Q17 */ + sum2_Q24 = silk_MLA( neg_xX_Q24[ 1 ], XX_Q17[ 7 ], cb_row_Q7[ 2 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 8 ], cb_row_Q7[ 3 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 9 ], cb_row_Q7[ 4 ] ); + sum2_Q24 = silk_LSHIFT32( sum2_Q24, 1 ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 6 ], cb_row_Q7[ 1 ] ); + sum1_Q15 = silk_SMLAWB( sum1_Q15, sum2_Q24, cb_row_Q7[ 1 ] ); + + /* third row of XX_Q17 */ + sum2_Q24 = silk_MLA( neg_xX_Q24[ 2 ], XX_Q17[ 13 ], cb_row_Q7[ 3 ] ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 14 ], cb_row_Q7[ 4 ] ); + sum2_Q24 = silk_LSHIFT32( sum2_Q24, 1 ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 12 ], cb_row_Q7[ 2 ] ); + sum1_Q15 = silk_SMLAWB( sum1_Q15, sum2_Q24, cb_row_Q7[ 2 ] ); + + /* fourth row of XX_Q17 */ + sum2_Q24 = silk_MLA( neg_xX_Q24[ 3 ], XX_Q17[ 19 ], cb_row_Q7[ 4 ] ); + sum2_Q24 = silk_LSHIFT32( sum2_Q24, 1 ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 18 ], cb_row_Q7[ 3 ] ); + sum1_Q15 = silk_SMLAWB( sum1_Q15, sum2_Q24, cb_row_Q7[ 3 ] ); + + /* last row of XX_Q17 */ + sum2_Q24 = silk_LSHIFT32( neg_xX_Q24[ 4 ], 1 ); + sum2_Q24 = silk_MLA( sum2_Q24, XX_Q17[ 24 ], cb_row_Q7[ 4 ] ); + sum1_Q15 = silk_SMLAWB( sum1_Q15, sum2_Q24, cb_row_Q7[ 4 ] ); /* find best */ - if( sum1_Q14 < *rate_dist_Q14 ) { - *rate_dist_Q14 = sum1_Q14; - *ind = (opus_int8)k; - *gain_Q7 = gain_tmp_Q7; + if( sum1_Q15 >= 0 ) { + /* Translate residual energy to bits using high-rate assumption (6 dB ==> 1 bit/sample) */ + bits_res_Q8 = silk_SMULBB( subfr_len, silk_lin2log( sum1_Q15 + penalty) - (15 << 7) ); + /* In the following line we reduce the codelength component by half ("-1"); seems to slghtly improve quality */ + bits_tot_Q8 = silk_ADD_LSHIFT32( bits_res_Q8, cl_Q5[ k ], 3-1 ); + if( bits_tot_Q8 <= *rate_dist_Q8 ) { + *rate_dist_Q8 = bits_tot_Q8; + *res_nrg_Q15 = sum1_Q15 + penalty; + *ind = (opus_int8)k; + *gain_Q7 = gain_tmp_Q7; + } } /* Go to next cbk vector */ diff --git a/thirdparty/opus/silk/arm/LPC_inv_pred_gain_arm.h b/thirdparty/opus/silk/arm/LPC_inv_pred_gain_arm.h new file mode 100644 index 0000000000..9895b555c8 --- /dev/null +++ b/thirdparty/opus/silk/arm/LPC_inv_pred_gain_arm.h @@ -0,0 +1,57 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifndef SILK_LPC_INV_PRED_GAIN_ARM_H +# define SILK_LPC_INV_PRED_GAIN_ARM_H + +# include "celt/arm/armcpu.h" + +# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) +opus_int32 silk_LPC_inverse_pred_gain_neon( /* O Returns inverse prediction gain in energy domain, Q30 */ + const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ + const opus_int order /* I Prediction order */ +); + +# if !defined(OPUS_HAVE_RTCD) && defined(OPUS_ARM_PRESUME_NEON) +# define OVERRIDE_silk_LPC_inverse_pred_gain (1) +# define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((void)(arch), PRESUME_NEON(silk_LPC_inverse_pred_gain)(A_Q12, order)) +# endif +# endif + +# if !defined(OVERRIDE_silk_LPC_inverse_pred_gain) +/*Is run-time CPU detection enabled on this platform?*/ +# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern opus_int32 (*const SILK_LPC_INVERSE_PRED_GAIN_IMPL[OPUS_ARCHMASK+1])(const opus_int16 *A_Q12, const opus_int order); +# define OVERRIDE_silk_LPC_inverse_pred_gain (1) +# define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((*SILK_LPC_INVERSE_PRED_GAIN_IMPL[(arch)&OPUS_ARCHMASK])(A_Q12, order)) +# elif defined(OPUS_ARM_PRESUME_NEON_INTR) +# define OVERRIDE_silk_LPC_inverse_pred_gain (1) +# define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((void)(arch), silk_LPC_inverse_pred_gain_neon(A_Q12, order)) +# endif +# endif + +#endif /* end SILK_LPC_INV_PRED_GAIN_ARM_H */ diff --git a/thirdparty/opus/silk/arm/LPC_inv_pred_gain_neon_intr.c b/thirdparty/opus/silk/arm/LPC_inv_pred_gain_neon_intr.c new file mode 100644 index 0000000000..ab426bcd66 --- /dev/null +++ b/thirdparty/opus/silk/arm/LPC_inv_pred_gain_neon_intr.c @@ -0,0 +1,280 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <arm_neon.h> +#include "SigProc_FIX.h" +#include "define.h" + +#define QA 24 +#define A_LIMIT SILK_FIX_CONST( 0.99975, QA ) + +#define MUL32_FRAC_Q(a32, b32, Q) ((opus_int32)(silk_RSHIFT_ROUND64(silk_SMULL(a32, b32), Q))) + +/* The difficulty is how to judge a 64-bit signed integer tmp64 is 32-bit overflowed, + * since NEON has no 64-bit min, max or comparison instructions. + * A failed idea is to compare the results of vmovn(tmp64) and vqmovn(tmp64) whether they are equal or not. + * However, this idea fails when the tmp64 is something like 0xFFFFFFF980000000. + * Here we know that mult2Q >= 1, so the highest bit (bit 63, sign bit) of tmp64 must equal to bit 62. + * tmp64 was shifted left by 1 and we got tmp64'. If high_half(tmp64') != 0 and high_half(tmp64') != -1, + * then we know that bit 31 to bit 63 of tmp64 can not all be the sign bit, and therefore tmp64 is 32-bit overflowed. + * That is, we judge if tmp64' > 0x00000000FFFFFFFF, or tmp64' <= 0xFFFFFFFF00000000. + * We use narrowing shift right 31 bits to tmp32' to save data bandwidth and instructions. + * That is, we judge if tmp32' > 0x00000000, or tmp32' <= 0xFFFFFFFF. + */ + +/* Compute inverse of LPC prediction gain, and */ +/* test if LPC coefficients are stable (all poles within unit circle) */ +static OPUS_INLINE opus_int32 LPC_inverse_pred_gain_QA_neon( /* O Returns inverse prediction gain in energy domain, Q30 */ + opus_int32 A_QA[ SILK_MAX_ORDER_LPC ], /* I Prediction coefficients */ + const opus_int order /* I Prediction order */ +) +{ + opus_int k, n, mult2Q; + opus_int32 invGain_Q30, rc_Q31, rc_mult1_Q30, rc_mult2, tmp1, tmp2; + opus_int32 max, min; + int32x4_t max_s32x4, min_s32x4; + int32x2_t max_s32x2, min_s32x2; + + max_s32x4 = vdupq_n_s32( silk_int32_MIN ); + min_s32x4 = vdupq_n_s32( silk_int32_MAX ); + invGain_Q30 = SILK_FIX_CONST( 1, 30 ); + for( k = order - 1; k > 0; k-- ) { + int32x2_t rc_Q31_s32x2, rc_mult2_s32x2; + int64x2_t mult2Q_s64x2; + + /* Check for stability */ + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { + return 0; + } + + /* Set RC equal to negated AR coef */ + rc_Q31 = -silk_LSHIFT( A_QA[ k ], 31 - QA ); + + /* rc_mult1_Q30 range: [ 1 : 2^30 ] */ + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) ); + silk_assert( rc_mult1_Q30 > ( 1 << 15 ) ); /* reduce A_LIMIT if fails */ + silk_assert( rc_mult1_Q30 <= ( 1 << 30 ) ); + + /* Update inverse gain */ + /* invGain_Q30 range: [ 0 : 2^30 ] */ + invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); + silk_assert( invGain_Q30 >= 0 ); + silk_assert( invGain_Q30 <= ( 1 << 30 ) ); + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) { + return 0; + } + + /* rc_mult2 range: [ 2^30 : silk_int32_MAX ] */ + mult2Q = 32 - silk_CLZ32( silk_abs( rc_mult1_Q30 ) ); + rc_mult2 = silk_INVERSE32_varQ( rc_mult1_Q30, mult2Q + 30 ); + + /* Update AR coefficient */ + rc_Q31_s32x2 = vdup_n_s32( rc_Q31 ); + mult2Q_s64x2 = vdupq_n_s64( -mult2Q ); + rc_mult2_s32x2 = vdup_n_s32( rc_mult2 ); + + for( n = 0; n < ( ( k + 1 ) >> 1 ) - 3; n += 4 ) { + /* We always calculate extra elements of A_QA buffer when ( k % 4 ) != 0, to take the advantage of SIMD parallelization. */ + int32x4_t tmp1_s32x4, tmp2_s32x4, t0_s32x4, t1_s32x4, s0_s32x4, s1_s32x4, t_QA0_s32x4, t_QA1_s32x4; + int64x2_t t0_s64x2, t1_s64x2, t2_s64x2, t3_s64x2; + tmp1_s32x4 = vld1q_s32( A_QA + n ); + tmp2_s32x4 = vld1q_s32( A_QA + k - n - 4 ); + tmp2_s32x4 = vrev64q_s32( tmp2_s32x4 ); + tmp2_s32x4 = vcombine_s32( vget_high_s32( tmp2_s32x4 ), vget_low_s32( tmp2_s32x4 ) ); + t0_s32x4 = vqrdmulhq_lane_s32( tmp2_s32x4, rc_Q31_s32x2, 0 ); + t1_s32x4 = vqrdmulhq_lane_s32( tmp1_s32x4, rc_Q31_s32x2, 0 ); + t_QA0_s32x4 = vqsubq_s32( tmp1_s32x4, t0_s32x4 ); + t_QA1_s32x4 = vqsubq_s32( tmp2_s32x4, t1_s32x4 ); + t0_s64x2 = vmull_s32( vget_low_s32 ( t_QA0_s32x4 ), rc_mult2_s32x2 ); + t1_s64x2 = vmull_s32( vget_high_s32( t_QA0_s32x4 ), rc_mult2_s32x2 ); + t2_s64x2 = vmull_s32( vget_low_s32 ( t_QA1_s32x4 ), rc_mult2_s32x2 ); + t3_s64x2 = vmull_s32( vget_high_s32( t_QA1_s32x4 ), rc_mult2_s32x2 ); + t0_s64x2 = vrshlq_s64( t0_s64x2, mult2Q_s64x2 ); + t1_s64x2 = vrshlq_s64( t1_s64x2, mult2Q_s64x2 ); + t2_s64x2 = vrshlq_s64( t2_s64x2, mult2Q_s64x2 ); + t3_s64x2 = vrshlq_s64( t3_s64x2, mult2Q_s64x2 ); + t0_s32x4 = vcombine_s32( vmovn_s64( t0_s64x2 ), vmovn_s64( t1_s64x2 ) ); + t1_s32x4 = vcombine_s32( vmovn_s64( t2_s64x2 ), vmovn_s64( t3_s64x2 ) ); + s0_s32x4 = vcombine_s32( vshrn_n_s64( t0_s64x2, 31 ), vshrn_n_s64( t1_s64x2, 31 ) ); + s1_s32x4 = vcombine_s32( vshrn_n_s64( t2_s64x2, 31 ), vshrn_n_s64( t3_s64x2, 31 ) ); + max_s32x4 = vmaxq_s32( max_s32x4, s0_s32x4 ); + min_s32x4 = vminq_s32( min_s32x4, s0_s32x4 ); + max_s32x4 = vmaxq_s32( max_s32x4, s1_s32x4 ); + min_s32x4 = vminq_s32( min_s32x4, s1_s32x4 ); + t1_s32x4 = vrev64q_s32( t1_s32x4 ); + t1_s32x4 = vcombine_s32( vget_high_s32( t1_s32x4 ), vget_low_s32( t1_s32x4 ) ); + vst1q_s32( A_QA + n, t0_s32x4 ); + vst1q_s32( A_QA + k - n - 4, t1_s32x4 ); + } + for( ; n < (k + 1) >> 1; n++ ) { + opus_int64 tmp64; + tmp1 = A_QA[ n ]; + tmp2 = A_QA[ k - n - 1 ]; + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp1, + MUL32_FRAC_Q( tmp2, rc_Q31, 31 ) ), rc_mult2 ), mult2Q); + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { + return 0; + } + A_QA[ n ] = ( opus_int32 )tmp64; + tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( silk_SUB_SAT32(tmp2, + MUL32_FRAC_Q( tmp1, rc_Q31, 31 ) ), rc_mult2), mult2Q); + if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) { + return 0; + } + A_QA[ k - n - 1 ] = ( opus_int32 )tmp64; + } + } + + /* Check for stability */ + if( ( A_QA[ k ] > A_LIMIT ) || ( A_QA[ k ] < -A_LIMIT ) ) { + return 0; + } + + max_s32x2 = vmax_s32( vget_low_s32( max_s32x4 ), vget_high_s32( max_s32x4 ) ); + min_s32x2 = vmin_s32( vget_low_s32( min_s32x4 ), vget_high_s32( min_s32x4 ) ); + max_s32x2 = vmax_s32( max_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( max_s32x2 ), 32 ) ) ); + min_s32x2 = vmin_s32( min_s32x2, vreinterpret_s32_s64( vshr_n_s64( vreinterpret_s64_s32( min_s32x2 ), 32 ) ) ); + max = vget_lane_s32( max_s32x2, 0 ); + min = vget_lane_s32( min_s32x2, 0 ); + if( ( max > 0 ) || ( min < -1 ) ) { + return 0; + } + + /* Set RC equal to negated AR coef */ + rc_Q31 = -silk_LSHIFT( A_QA[ 0 ], 31 - QA ); + + /* Range: [ 1 : 2^30 ] */ + rc_mult1_Q30 = silk_SUB32( SILK_FIX_CONST( 1, 30 ), silk_SMMUL( rc_Q31, rc_Q31 ) ); + + /* Update inverse gain */ + /* Range: [ 0 : 2^30 ] */ + invGain_Q30 = silk_LSHIFT( silk_SMMUL( invGain_Q30, rc_mult1_Q30 ), 2 ); + silk_assert( invGain_Q30 >= 0 ); + silk_assert( invGain_Q30 <= ( 1 << 30 ) ); + if( invGain_Q30 < SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN, 30 ) ) { + return 0; + } + + return invGain_Q30; +} + +/* For input in Q12 domain */ +opus_int32 silk_LPC_inverse_pred_gain_neon( /* O Returns inverse prediction gain in energy domain, Q30 */ + const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ + const opus_int order /* I Prediction order */ +) +{ +#ifdef OPUS_CHECK_ASM + const opus_int32 invGain_Q30_c = silk_LPC_inverse_pred_gain_c( A_Q12, order ); +#endif + + opus_int32 invGain_Q30; + if( ( SILK_MAX_ORDER_LPC != 24 ) || ( order & 1 )) { + invGain_Q30 = silk_LPC_inverse_pred_gain_c( A_Q12, order ); + } + else { + opus_int32 Atmp_QA[ SILK_MAX_ORDER_LPC ]; + opus_int32 DC_resp; + int16x8_t t0_s16x8, t1_s16x8, t2_s16x8; + int32x4_t t0_s32x4; + const opus_int leftover = order & 7; + + /* Increase Q domain of the AR coefficients */ + t0_s16x8 = vld1q_s16( A_Q12 + 0 ); + t1_s16x8 = vld1q_s16( A_Q12 + 8 ); + t2_s16x8 = vld1q_s16( A_Q12 + 16 ); + t0_s32x4 = vpaddlq_s16( t0_s16x8 ); + + switch( order - leftover ) + { + case 24: + t0_s32x4 = vpadalq_s16( t0_s32x4, t2_s16x8 ); + /* FALLTHROUGH */ + + case 16: + t0_s32x4 = vpadalq_s16( t0_s32x4, t1_s16x8 ); + vst1q_s32( Atmp_QA + 16, vshll_n_s16( vget_low_s16 ( t2_s16x8 ), QA - 12 ) ); + vst1q_s32( Atmp_QA + 20, vshll_n_s16( vget_high_s16( t2_s16x8 ), QA - 12 ) ); + /* FALLTHROUGH */ + + case 8: + { + const int32x2_t t_s32x2 = vpadd_s32( vget_low_s32( t0_s32x4 ), vget_high_s32( t0_s32x4 ) ); + const int64x1_t t_s64x1 = vpaddl_s32( t_s32x2 ); + DC_resp = vget_lane_s32( vreinterpret_s32_s64( t_s64x1 ), 0 ); + vst1q_s32( Atmp_QA + 8, vshll_n_s16( vget_low_s16 ( t1_s16x8 ), QA - 12 ) ); + vst1q_s32( Atmp_QA + 12, vshll_n_s16( vget_high_s16( t1_s16x8 ), QA - 12 ) ); + } + break; + + default: + DC_resp = 0; + break; + } + A_Q12 += order - leftover; + + switch( leftover ) + { + case 6: + DC_resp += (opus_int32)A_Q12[ 5 ]; + DC_resp += (opus_int32)A_Q12[ 4 ]; + /* FALLTHROUGH */ + + case 4: + DC_resp += (opus_int32)A_Q12[ 3 ]; + DC_resp += (opus_int32)A_Q12[ 2 ]; + /* FALLTHROUGH */ + + case 2: + DC_resp += (opus_int32)A_Q12[ 1 ]; + DC_resp += (opus_int32)A_Q12[ 0 ]; + /* FALLTHROUGH */ + + default: + break; + } + + /* If the DC is unstable, we don't even need to do the full calculations */ + if( DC_resp >= 4096 ) { + invGain_Q30 = 0; + } else { + vst1q_s32( Atmp_QA + 0, vshll_n_s16( vget_low_s16 ( t0_s16x8 ), QA - 12 ) ); + vst1q_s32( Atmp_QA + 4, vshll_n_s16( vget_high_s16( t0_s16x8 ), QA - 12 ) ); + invGain_Q30 = LPC_inverse_pred_gain_QA_neon( Atmp_QA, order ); + } + } + +#ifdef OPUS_CHECK_ASM + silk_assert( invGain_Q30_c == invGain_Q30 ); +#endif + + return invGain_Q30; +} diff --git a/thirdparty/opus/silk/arm/NSQ_del_dec_arm.h b/thirdparty/opus/silk/arm/NSQ_del_dec_arm.h new file mode 100644 index 0000000000..9e76e16927 --- /dev/null +++ b/thirdparty/opus/silk/arm/NSQ_del_dec_arm.h @@ -0,0 +1,100 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifndef SILK_NSQ_DEL_DEC_ARM_H +#define SILK_NSQ_DEL_DEC_ARM_H + +#include "celt/arm/armcpu.h" + +#if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) +void silk_NSQ_del_dec_neon( + const silk_encoder_state *psEncC, silk_nsq_state *NSQ, + SideInfoIndices *psIndices, const opus_int16 x16[], opus_int8 pulses[], + const opus_int16 PredCoef_Q12[2 * MAX_LPC_ORDER], + const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR], + const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], + const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR], + const opus_int Tilt_Q14[MAX_NB_SUBFR], + const opus_int32 LF_shp_Q14[MAX_NB_SUBFR], + const opus_int32 Gains_Q16[MAX_NB_SUBFR], + const opus_int pitchL[MAX_NB_SUBFR], const opus_int Lambda_Q10, + const opus_int LTP_scale_Q14); + +#if !defined(OPUS_HAVE_RTCD) +#define OVERRIDE_silk_NSQ_del_dec (1) +#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, \ + LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, \ + LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, \ + LTP_scale_Q14, arch) \ + ((void)(arch), \ + PRESUME_NEON(silk_NSQ_del_dec)( \ + psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, \ + AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, \ + Lambda_Q10, LTP_scale_Q14)) +#endif +#endif + +#if !defined(OVERRIDE_silk_NSQ_del_dec) +/*Is run-time CPU detection enabled on this platform?*/ +#if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && \ + !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern void (*const SILK_NSQ_DEL_DEC_IMPL[OPUS_ARCHMASK + 1])( + const silk_encoder_state *psEncC, silk_nsq_state *NSQ, + SideInfoIndices *psIndices, const opus_int16 x16[], opus_int8 pulses[], + const opus_int16 PredCoef_Q12[2 * MAX_LPC_ORDER], + const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR], + const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], + const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR], + const opus_int Tilt_Q14[MAX_NB_SUBFR], + const opus_int32 LF_shp_Q14[MAX_NB_SUBFR], + const opus_int32 Gains_Q16[MAX_NB_SUBFR], + const opus_int pitchL[MAX_NB_SUBFR], const opus_int Lambda_Q10, + const opus_int LTP_scale_Q14); +#define OVERRIDE_silk_NSQ_del_dec (1) +#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, \ + LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, \ + LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, \ + LTP_scale_Q14, arch) \ + ((*SILK_NSQ_DEL_DEC_IMPL[(arch)&OPUS_ARCHMASK])( \ + psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, \ + AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, \ + Lambda_Q10, LTP_scale_Q14)) +#elif defined(OPUS_ARM_PRESUME_NEON_INTR) +#define OVERRIDE_silk_NSQ_del_dec (1) +#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, \ + LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, \ + LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, \ + LTP_scale_Q14, arch) \ + ((void)(arch), \ + silk_NSQ_del_dec_neon(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, \ + LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, \ + LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, \ + LTP_scale_Q14)) +#endif +#endif + +#endif /* end SILK_NSQ_DEL_DEC_ARM_H */ diff --git a/thirdparty/opus/silk/arm/NSQ_del_dec_neon_intr.c b/thirdparty/opus/silk/arm/NSQ_del_dec_neon_intr.c new file mode 100644 index 0000000000..212410f362 --- /dev/null +++ b/thirdparty/opus/silk/arm/NSQ_del_dec_neon_intr.c @@ -0,0 +1,1124 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <arm_neon.h> +#ifdef OPUS_CHECK_ASM +# include <string.h> +#endif +#include "main.h" +#include "stack_alloc.h" + +/* NEON intrinsics optimization now can only parallelize up to 4 delay decision states. */ +/* If there are more states, C function is called, and this optimization must be expanded. */ +#define NEON_MAX_DEL_DEC_STATES 4 + +typedef struct { + opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 RandState[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Q_Q10[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Xq_Q14[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Pred_Q15[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Shape_Q14[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ][ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 LF_AR_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Diff_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Seed[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 SeedInit[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 RD_Q10[ NEON_MAX_DEL_DEC_STATES ]; +} NSQ_del_decs_struct; + +typedef struct { + opus_int32 Q_Q10[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 RD_Q10[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 xq_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 LF_AR_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 Diff_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 sLTP_shp_Q14[ NEON_MAX_DEL_DEC_STATES ]; + opus_int32 LPC_exc_Q14[ NEON_MAX_DEL_DEC_STATES ]; +} NSQ_samples_struct; + +static OPUS_INLINE void silk_nsq_del_dec_scale_states_neon( + const silk_encoder_state *psEncC, /* I Encoder State */ + silk_nsq_state *NSQ, /* I/O NSQ state */ + NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */ + const opus_int16 x16[], /* I Input */ + opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ + const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ + opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ + opus_int subfr, /* I Subframe number */ + const opus_int LTP_scale_Q14, /* I LTP state scaling */ + const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ + const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ + const opus_int signal_type, /* I Signal type */ + const opus_int decisionDelay /* I Decision delay */ +); + +/******************************************/ +/* Noise shape quantizer for one subframe */ +/******************************************/ +static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_neon( + silk_nsq_state *NSQ, /* I/O NSQ state */ + NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */ + opus_int signalType, /* I Signal type */ + const opus_int32 x_Q10[], /* I */ + opus_int8 pulses[], /* O */ + opus_int16 xq[], /* O */ + opus_int32 sLTP_Q15[], /* I/O LTP filter state */ + opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ + const opus_int16 a_Q12[], /* I Short term prediction coefs */ + const opus_int16 b_Q14[], /* I Long term prediction coefs */ + const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ + opus_int lag, /* I Pitch lag */ + opus_int32 HarmShapeFIRPacked_Q14, /* I */ + opus_int Tilt_Q14, /* I Spectral tilt */ + opus_int32 LF_shp_Q14, /* I */ + opus_int32 Gain_Q16, /* I */ + opus_int Lambda_Q10, /* I */ + opus_int offset_Q10, /* I */ + opus_int length, /* I Input length */ + opus_int subfr, /* I Subframe number */ + opus_int shapingLPCOrder, /* I Shaping LPC filter order */ + opus_int predictLPCOrder, /* I Prediction filter order */ + opus_int warping_Q16, /* I */ + opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ + opus_int decisionDelay /* I */ +); + +static OPUS_INLINE void copy_winner_state_kernel( + const NSQ_del_decs_struct *psDelDec, + const opus_int offset, + const opus_int last_smple_idx, + const opus_int Winner_ind, + const int32x2_t gain_lo_s32x2, + const int32x2_t gain_hi_s32x2, + const int32x4_t shift_s32x4, + int32x4_t t0_s32x4, + int32x4_t t1_s32x4, + opus_int8 *const pulses, + opus_int16 *pxq, + silk_nsq_state *NSQ +) +{ + int16x8_t t_s16x8; + int32x4_t o0_s32x4, o1_s32x4; + + t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 ); + t_s16x8 = vcombine_s16( vrshrn_n_s32( t0_s32x4, 10 ), vrshrn_n_s32( t1_s32x4, 10 ) ); + vst1_s8( &pulses[ offset ], vmovn_s16( t_s16x8 ) ); + + t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 ); + o0_s32x4 = vqdmulhq_lane_s32( t0_s32x4, gain_lo_s32x2, 0 ); + o1_s32x4 = vqdmulhq_lane_s32( t1_s32x4, gain_lo_s32x2, 0 ); + o0_s32x4 = vmlaq_lane_s32( o0_s32x4, t0_s32x4, gain_hi_s32x2, 0 ); + o1_s32x4 = vmlaq_lane_s32( o1_s32x4, t1_s32x4, gain_hi_s32x2, 0 ); + o0_s32x4 = vrshlq_s32( o0_s32x4, shift_s32x4 ); + o1_s32x4 = vrshlq_s32( o1_s32x4, shift_s32x4 ); + vst1_s16( &pxq[ offset + 0 ], vqmovn_s32( o0_s32x4 ) ); + vst1_s16( &pxq[ offset + 4 ], vqmovn_s32( o1_s32x4 ) ); + + t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 ); + t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 ); + t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 ); + vst1q_s32( &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx + offset + 0 ], t0_s32x4 ); + vst1q_s32( &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx + offset + 4 ], t1_s32x4 ); +} + +static OPUS_INLINE void copy_winner_state( + const NSQ_del_decs_struct *psDelDec, + const opus_int decisionDelay, + const opus_int smpl_buf_idx, + const opus_int Winner_ind, + const opus_int32 gain, + const opus_int32 shift, + opus_int8 *const pulses, + opus_int16 *pxq, + silk_nsq_state *NSQ +) +{ + opus_int i, last_smple_idx; + const int32x2_t gain_lo_s32x2 = vdup_n_s32( silk_LSHIFT32( gain & 0x0000FFFF, 15 ) ); + const int32x2_t gain_hi_s32x2 = vdup_n_s32( gain >> 16 ); + const int32x4_t shift_s32x4 = vdupq_n_s32( -shift ); + int32x4_t t0_s32x4, t1_s32x4; + + t0_s32x4 = t1_s32x4 = vdupq_n_s32( 0 ); /* initialization */ + last_smple_idx = smpl_buf_idx + decisionDelay - 1 + DECISION_DELAY; + if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY; + if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY; + + for( i = 0; ( i < ( decisionDelay - 7 ) ) && ( last_smple_idx >= 7 ); i += 8, last_smple_idx -= 8 ) { + copy_winner_state_kernel( psDelDec, i - decisionDelay, last_smple_idx, Winner_ind, gain_lo_s32x2, gain_hi_s32x2, shift_s32x4, t0_s32x4, t1_s32x4, pulses, pxq, NSQ ); + } + for( ; ( i < decisionDelay ) && ( last_smple_idx >= 0 ); i++, last_smple_idx-- ) { + pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 ); + pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], gain ), shift ) ); + NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ]; + } + + last_smple_idx += DECISION_DELAY; + for( ; i < ( decisionDelay - 7 ); i++, last_smple_idx-- ) { + copy_winner_state_kernel( psDelDec, i - decisionDelay, last_smple_idx, Winner_ind, gain_lo_s32x2, gain_hi_s32x2, shift_s32x4, t0_s32x4, t1_s32x4, pulses, pxq, NSQ ); + } + for( ; i < decisionDelay; i++, last_smple_idx-- ) { + pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 ); + pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], gain ), shift ) ); + NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ]; + } +} + +void silk_NSQ_del_dec_neon( + const silk_encoder_state *psEncC, /* I Encoder State */ + silk_nsq_state *NSQ, /* I/O NSQ state */ + SideInfoIndices *psIndices, /* I/O Quantization Indices */ + const opus_int16 x16[], /* I Input */ + opus_int8 pulses[], /* O Quantized pulse signal */ + const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ + const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ + const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ + const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ + const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */ + const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ + const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */ + const opus_int LTP_scale_Q14 /* I LTP state scaling */ +) +{ +#ifdef OPUS_CHECK_ASM + silk_nsq_state NSQ_c; + SideInfoIndices psIndices_c; + opus_int8 pulses_c[ MAX_FRAME_LENGTH ]; + const opus_int8 *const pulses_a = pulses; + + ( void )pulses_a; + silk_memcpy( &NSQ_c, NSQ, sizeof( NSQ_c ) ); + silk_memcpy( &psIndices_c, psIndices, sizeof( psIndices_c ) ); + silk_memcpy( pulses_c, pulses, sizeof( pulses_c ) ); + silk_NSQ_del_dec_c( psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, + pitchL, Lambda_Q10, LTP_scale_Q14 ); +#endif + + /* The optimization parallelizes the different delay decision states. */ + if(( psEncC->nStatesDelayedDecision > NEON_MAX_DEL_DEC_STATES ) || ( psEncC->nStatesDelayedDecision <= 2 )) { + /* NEON intrinsics optimization now can only parallelize up to 4 delay decision states. */ + /* If there are more states, C function is called, and this optimization must be expanded. */ + /* When the number of delay decision states is less than 3, there are penalties using this */ + /* optimization, and C function is called. */ + /* When the number of delay decision states is 2, it's better to specialize another */ + /* structure NSQ_del_dec2_struct and optimize with shorter NEON registers. (Low priority) */ + silk_NSQ_del_dec_c( psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, + Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14 ); + } else { + opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr; + opus_int smpl_buf_idx, decisionDelay; + const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13; + opus_int16 *pxq; + VARDECL( opus_int32, sLTP_Q15 ); + VARDECL( opus_int16, sLTP ); + opus_int32 HarmShapeFIRPacked_Q14; + opus_int offset_Q10; + opus_int32 RDmin_Q10, Gain_Q10; + VARDECL( opus_int32, x_sc_Q10 ); + VARDECL( opus_int32, delayedGain_Q10 ); + VARDECL( NSQ_del_decs_struct, psDelDec ); + int32x4_t t_s32x4; + SAVE_STACK; + + /* Set unvoiced lag to the previous one, overwrite later for voiced */ + lag = NSQ->lagPrev; + + silk_assert( NSQ->prev_gain_Q16 != 0 ); + + /* Initialize delayed decision states */ + ALLOC( psDelDec, 1, NSQ_del_decs_struct ); + /* Only RandState and RD_Q10 need to be initialized to 0. */ + silk_memset( psDelDec->RandState, 0, sizeof( psDelDec->RandState ) ); + vst1q_s32( psDelDec->RD_Q10, vdupq_n_s32( 0 ) ); + + for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) { + psDelDec->SeedInit[ k ] = psDelDec->Seed[ k ] = ( k + psIndices->Seed ) & 3; + } + vst1q_s32( psDelDec->LF_AR_Q14, vld1q_dup_s32( &NSQ->sLF_AR_shp_Q14 ) ); + vst1q_s32( psDelDec->Diff_Q14, vld1q_dup_s32( &NSQ->sDiff_shp_Q14 ) ); + vst1q_s32( psDelDec->Shape_Q14[ 0 ], vld1q_dup_s32( &NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ] ) ); + for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { + vst1q_s32( psDelDec->sLPC_Q14[ i ], vld1q_dup_s32( &NSQ->sLPC_Q14[ i ] ) ); + } + for( i = 0; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) ); i++ ) { + vst1q_s32( psDelDec->sAR2_Q14[ i ], vld1q_dup_s32( &NSQ->sAR2_Q14[ i ] ) ); + } + + offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ]; + smpl_buf_idx = 0; /* index of oldest samples */ + + decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length ); + + /* For voiced frames limit the decision delay to lower than the pitch lag */ + if( psIndices->signalType == TYPE_VOICED ) { + opus_int pitch_min = pitchL[ 0 ]; + for( k = 1; k < psEncC->nb_subfr; k++ ) { + pitch_min = silk_min_int( pitch_min, pitchL[ k ] ); + } + decisionDelay = silk_min_int( decisionDelay, pitch_min - LTP_ORDER / 2 - 1 ); + } else { + if( lag > 0 ) { + decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 ); + } + } + + if( psIndices->NLSFInterpCoef_Q2 == 4 ) { + LSF_interpolation_flag = 0; + } else { + LSF_interpolation_flag = 1; + } + + ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 ); + ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 ); + ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 ); + ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 ); + /* Set up pointers to start of sub frame */ + pxq = &NSQ->xq[ psEncC->ltp_mem_length ]; + NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length; + NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; + subfr = 0; + for( k = 0; k < psEncC->nb_subfr; k++ ) { + A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ]; + B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; + AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ]; + + /* Noise shape parameters */ + silk_assert( HarmShapeGain_Q14[ k ] >= 0 ); + HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); + HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); + + NSQ->rewhite_flag = 0; + if( psIndices->signalType == TYPE_VOICED ) { + /* Voiced */ + lag = pitchL[ k ]; + + /* Re-whitening */ + if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { + if( k == 2 ) { + /* RESET DELAYED DECISIONS */ + /* Find winner */ + int32x4_t RD_Q10_s32x4; + RDmin_Q10 = psDelDec->RD_Q10[ 0 ]; + Winner_ind = 0; + for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) { + if( psDelDec->RD_Q10[ i ] < RDmin_Q10 ) { + RDmin_Q10 = psDelDec->RD_Q10[ i ]; + Winner_ind = i; + } + } + psDelDec->RD_Q10[ Winner_ind ] -= ( silk_int32_MAX >> 4 ); + RD_Q10_s32x4 = vld1q_s32( psDelDec->RD_Q10 ); + RD_Q10_s32x4 = vaddq_s32( RD_Q10_s32x4, vdupq_n_s32( silk_int32_MAX >> 4 ) ); + vst1q_s32( psDelDec->RD_Q10, RD_Q10_s32x4 ); + + /* Copy final part of signals from winner state to output and long-term filter states */ + copy_winner_state( psDelDec, decisionDelay, smpl_buf_idx, Winner_ind, Gains_Q16[ 1 ], 14, pulses, pxq, NSQ ); + + subfr = 0; + } + + /* Rewhiten with new A coefs */ + start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; + silk_assert( start_idx > 0 ); + + silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], + A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); + + NSQ->sLTP_buf_idx = psEncC->ltp_mem_length; + NSQ->rewhite_flag = 1; + } + } + + silk_nsq_del_dec_scale_states_neon( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k, + LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay ); + + silk_noise_shape_quantizer_del_dec_neon( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, + delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], + Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, + psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay ); + + x16 += psEncC->subfr_length; + pulses += psEncC->subfr_length; + pxq += psEncC->subfr_length; + } + + /* Find winner */ + RDmin_Q10 = psDelDec->RD_Q10[ 0 ]; + Winner_ind = 0; + for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) { + if( psDelDec->RD_Q10[ k ] < RDmin_Q10 ) { + RDmin_Q10 = psDelDec->RD_Q10[ k ]; + Winner_ind = k; + } + } + + /* Copy final part of signals from winner state to output and long-term filter states */ + psIndices->Seed = psDelDec->SeedInit[ Winner_ind ]; + Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 ); + copy_winner_state( psDelDec, decisionDelay, smpl_buf_idx, Winner_ind, Gain_Q10, 8, pulses, pxq, NSQ ); + + t_s32x4 = vdupq_n_s32( 0 ); /* initialization */ + for( i = 0; i < ( NSQ_LPC_BUF_LENGTH - 3 ); i += 4 ) { + t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 0 ][ Winner_ind ], t_s32x4, 0 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 1 ][ Winner_ind ], t_s32x4, 1 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 2 ][ Winner_ind ], t_s32x4, 2 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 3 ][ Winner_ind ], t_s32x4, 3 ); + vst1q_s32( &NSQ->sLPC_Q14[ i ], t_s32x4 ); + } + + for( ; i < NSQ_LPC_BUF_LENGTH; i++ ) { + NSQ->sLPC_Q14[ i ] = psDelDec->sLPC_Q14[ i ][ Winner_ind ]; + } + + for( i = 0; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) - 3 ); i += 4 ) { + t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 0 ][ Winner_ind ], t_s32x4, 0 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 1 ][ Winner_ind ], t_s32x4, 1 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 2 ][ Winner_ind ], t_s32x4, 2 ); + t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 3 ][ Winner_ind ], t_s32x4, 3 ); + vst1q_s32( &NSQ->sAR2_Q14[ i ], t_s32x4 ); + } + + for( ; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) ); i++ ) { + NSQ->sAR2_Q14[ i ] = psDelDec->sAR2_Q14[ i ][ Winner_ind ]; + } + + /* Update states */ + NSQ->sLF_AR_shp_Q14 = psDelDec->LF_AR_Q14[ Winner_ind ]; + NSQ->sDiff_shp_Q14 = psDelDec->Diff_Q14[ Winner_ind ]; + NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; + + /* Save quantized speech signal */ + silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); + silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); + RESTORE_STACK; + } + +#ifdef OPUS_CHECK_ASM + silk_assert( !memcmp( &NSQ_c, NSQ, sizeof( NSQ_c ) ) ); + silk_assert( !memcmp( &psIndices_c, psIndices, sizeof( psIndices_c ) ) ); + silk_assert( !memcmp( pulses_c, pulses_a, sizeof( pulses_c ) ) ); +#endif +} + +/******************************************/ +/* Noise shape quantizer for one subframe */ +/******************************************/ +/* Note: Function silk_short_prediction_create_arch_coef_neon() defined in NSQ_neon.h is actually a hacking C function. */ +/* Therefore here we append "_local" to the NEON function name to avoid confusion. */ +static OPUS_INLINE void silk_short_prediction_create_arch_coef_neon_local(opus_int32 *out, const opus_int16 *in, opus_int order) +{ + int16x8_t t_s16x8; + int32x4_t t0_s32x4, t1_s32x4, t2_s32x4, t3_s32x4; + silk_assert( order == 10 || order == 16 ); + + t_s16x8 = vld1q_s16( in + 0 ); /* 7 6 5 4 3 2 1 0 */ + t_s16x8 = vrev64q_s16( t_s16x8 ); /* 4 5 6 7 0 1 2 3 */ + t2_s32x4 = vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ); /* 4 5 6 7 */ + t3_s32x4 = vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ); /* 0 1 2 3 */ + + if( order == 16 ) { + t_s16x8 = vld1q_s16( in + 8 ); /* F E D C B A 9 8 */ + t_s16x8 = vrev64q_s16( t_s16x8 ); /* C D E F 8 9 A B */ + t0_s32x4 = vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ); /* C D E F */ + t1_s32x4 = vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ); /* 8 9 A B */ + } else { + int16x4_t t_s16x4; + + t0_s32x4 = vdupq_n_s32( 0 ); /* zero zero zero zero */ + t_s16x4 = vld1_s16( in + 6 ); /* 9 8 7 6 */ + t_s16x4 = vrev64_s16( t_s16x4 ); /* 6 7 8 9 */ + t1_s32x4 = vshll_n_s16( t_s16x4, 15 ); + t1_s32x4 = vcombine_s32( vget_low_s32(t0_s32x4), vget_low_s32( t1_s32x4 ) ); /* 8 9 zero zero */ + } + vst1q_s32( out + 0, t0_s32x4 ); + vst1q_s32( out + 4, t1_s32x4 ); + vst1q_s32( out + 8, t2_s32x4 ); + vst1q_s32( out + 12, t3_s32x4 ); +} + +static OPUS_INLINE int32x4_t silk_SMLAWB_lane0_neon( + const int32x4_t out_s32x4, + const int32x4_t in_s32x4, + const int32x2_t coef_s32x2 +) +{ + return vaddq_s32( out_s32x4, vqdmulhq_lane_s32( in_s32x4, coef_s32x2, 0 ) ); +} + +static OPUS_INLINE int32x4_t silk_SMLAWB_lane1_neon( + const int32x4_t out_s32x4, + const int32x4_t in_s32x4, + const int32x2_t coef_s32x2 +) +{ + return vaddq_s32( out_s32x4, vqdmulhq_lane_s32( in_s32x4, coef_s32x2, 1 ) ); +} + +/* Note: This function has different return value than silk_noise_shape_quantizer_short_prediction_neon(). */ +/* Therefore here we append "_local" to the function name to avoid confusion. */ +static OPUS_INLINE int32x4_t silk_noise_shape_quantizer_short_prediction_neon_local(const opus_int32 *buf32, const opus_int32 *a_Q12_arch, opus_int order) +{ + const int32x4_t a_Q12_arch0_s32x4 = vld1q_s32( a_Q12_arch + 0 ); + const int32x4_t a_Q12_arch1_s32x4 = vld1q_s32( a_Q12_arch + 4 ); + const int32x4_t a_Q12_arch2_s32x4 = vld1q_s32( a_Q12_arch + 8 ); + const int32x4_t a_Q12_arch3_s32x4 = vld1q_s32( a_Q12_arch + 12 ); + int32x4_t LPC_pred_Q14_s32x4; + + silk_assert( order == 10 || order == 16 ); + /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ + LPC_pred_Q14_s32x4 = vdupq_n_s32( silk_RSHIFT( order, 1 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 0 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch0_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 1 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch0_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 2 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch0_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 3 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch0_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 4 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch1_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 5 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch1_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 6 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch1_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 7 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch1_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 8 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch2_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 9 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch2_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 10 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch2_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 11 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch2_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 12 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch3_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 13 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch3_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 14 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch3_s32x4 ) ); + LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 15 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch3_s32x4 ) ); + + return LPC_pred_Q14_s32x4; +} + +static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_neon( + silk_nsq_state *NSQ, /* I/O NSQ state */ + NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */ + opus_int signalType, /* I Signal type */ + const opus_int32 x_Q10[], /* I */ + opus_int8 pulses[], /* O */ + opus_int16 xq[], /* O */ + opus_int32 sLTP_Q15[], /* I/O LTP filter state */ + opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ + const opus_int16 a_Q12[], /* I Short term prediction coefs */ + const opus_int16 b_Q14[], /* I Long term prediction coefs */ + const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ + opus_int lag, /* I Pitch lag */ + opus_int32 HarmShapeFIRPacked_Q14, /* I */ + opus_int Tilt_Q14, /* I Spectral tilt */ + opus_int32 LF_shp_Q14, /* I */ + opus_int32 Gain_Q16, /* I */ + opus_int Lambda_Q10, /* I */ + opus_int offset_Q10, /* I */ + opus_int length, /* I Input length */ + opus_int subfr, /* I Subframe number */ + opus_int shapingLPCOrder, /* I Shaping LPC filter order */ + opus_int predictLPCOrder, /* I Prediction filter order */ + opus_int warping_Q16, /* I */ + opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ + opus_int decisionDelay /* I */ +) +{ + opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx; + opus_int32 Winner_rand_state; + opus_int32 LTP_pred_Q14, n_LTP_Q14; + opus_int32 RDmin_Q10, RDmax_Q10; + opus_int32 Gain_Q10; + opus_int32 *pred_lag_ptr, *shp_lag_ptr; + opus_int32 a_Q12_arch[MAX_LPC_ORDER]; + const int32x2_t warping_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( warping_Q16, 16 ) >> 1 ); + const opus_int32 LF_shp_Q29 = silk_LSHIFT32( LF_shp_Q14, 16 ) >> 1; + opus_int32 AR_shp_Q28[ MAX_SHAPE_LPC_ORDER ]; + const uint32x4_t rand_multiplier_u32x4 = vdupq_n_u32( RAND_MULTIPLIER ); + const uint32x4_t rand_increment_u32x4 = vdupq_n_u32( RAND_INCREMENT ); + + VARDECL( NSQ_samples_struct, psSampleState ); + SAVE_STACK; + + silk_assert( nStatesDelayedDecision > 0 ); + silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ + ALLOC( psSampleState, 2, NSQ_samples_struct ); + + shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; + pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; + Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 ); + + for( i = 0; i < ( MAX_SHAPE_LPC_ORDER - 7 ); i += 8 ) { + const int16x8_t t_s16x8 = vld1q_s16( AR_shp_Q13 + i ); + vst1q_s32( AR_shp_Q28 + i + 0, vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ) ); + vst1q_s32( AR_shp_Q28 + i + 4, vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ) ); + } + + for( ; i < MAX_SHAPE_LPC_ORDER; i++ ) { + AR_shp_Q28[i] = silk_LSHIFT32( AR_shp_Q13[i], 15 ); + } + + silk_short_prediction_create_arch_coef_neon_local( a_Q12_arch, a_Q12, predictLPCOrder ); + + for( i = 0; i < length; i++ ) { + int32x4_t Seed_s32x4, LPC_pred_Q14_s32x4; + int32x4_t sign_s32x4, tmp1_s32x4, tmp2_s32x4; + int32x4_t n_AR_Q14_s32x4, n_LF_Q14_s32x4; + int32x2_t AR_shp_Q28_s32x2; + int16x4_t r_Q10_s16x4, rr_Q10_s16x4; + + /* Perform common calculations used in all states */ + + /* Long-term prediction */ + if( signalType == TYPE_VOICED ) { + /* Unrolled loop */ + /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ + LTP_pred_Q14 = 2; + LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); + LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); + LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); + LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); + LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); + LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */ + pred_lag_ptr++; + } else { + LTP_pred_Q14 = 0; + } + + /* Long-term shaping */ + if( lag > 0 ) { + /* Symmetric, packed FIR coefficients */ + n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); + n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); + n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */ + shp_lag_ptr++; + } else { + n_LTP_Q14 = 0; + } + + /* Generate dither */ + Seed_s32x4 = vld1q_s32( psDelDec->Seed ); + Seed_s32x4 = vreinterpretq_s32_u32( vmlaq_u32( rand_increment_u32x4, vreinterpretq_u32_s32( Seed_s32x4 ), rand_multiplier_u32x4 ) ); + vst1q_s32( psDelDec->Seed, Seed_s32x4 ); + + /* Short-term prediction */ + LPC_pred_Q14_s32x4 = silk_noise_shape_quantizer_short_prediction_neon_local(psDelDec->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 16 + i ], a_Q12_arch, predictLPCOrder); + LPC_pred_Q14_s32x4 = vshlq_n_s32( LPC_pred_Q14_s32x4, 4 ); /* Q10 -> Q14 */ + + /* Noise shape feedback */ + /* Output of lowpass section */ + tmp2_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->Diff_Q14 ), vld1q_s32( psDelDec->sAR2_Q14[ 0 ] ), warping_Q16_s32x2 ); + /* Output of allpass section */ + tmp1_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ 1 ] ), tmp2_s32x4 ); + tmp1_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ 0 ] ), tmp1_s32x4, warping_Q16_s32x2 ); + vst1q_s32( psDelDec->sAR2_Q14[ 0 ], tmp2_s32x4 ); + AR_shp_Q28_s32x2 = vld1_s32( AR_shp_Q28 ); + n_AR_Q14_s32x4 = vaddq_s32( vdupq_n_s32( silk_RSHIFT( shapingLPCOrder, 1 ) ), vqdmulhq_lane_s32( tmp2_s32x4, AR_shp_Q28_s32x2, 0 ) ); + + /* Loop over allpass sections */ + for( j = 2; j < shapingLPCOrder; j += 2 ) { + /* Output of allpass section */ + tmp2_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ j + 0 ] ), tmp1_s32x4 ); + tmp2_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ j - 1 ] ), tmp2_s32x4, warping_Q16_s32x2 ); + vst1q_s32( psDelDec->sAR2_Q14[ j - 1 ], tmp1_s32x4 ); + n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp1_s32x4, AR_shp_Q28_s32x2, 1 ) ); + /* Output of allpass section */ + tmp1_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ j + 1 ] ), tmp2_s32x4 ); + tmp1_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ j + 0 ] ), tmp1_s32x4, warping_Q16_s32x2 ); + vst1q_s32( psDelDec->sAR2_Q14[ j + 0 ], tmp2_s32x4 ); + AR_shp_Q28_s32x2 = vld1_s32( &AR_shp_Q28[ j ] ); + n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp2_s32x4, AR_shp_Q28_s32x2, 0 ) ); + } + vst1q_s32( psDelDec->sAR2_Q14[ shapingLPCOrder - 1 ], tmp1_s32x4 ); + n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp1_s32x4, AR_shp_Q28_s32x2, 1 ) ); + n_AR_Q14_s32x4 = vshlq_n_s32( n_AR_Q14_s32x4, 1 ); /* Q11 -> Q12 */ + n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_n_s32( vld1q_s32( psDelDec->LF_AR_Q14 ), silk_LSHIFT32( Tilt_Q14, 16 ) >> 1 ) ); /* Q12 */ + n_AR_Q14_s32x4 = vshlq_n_s32( n_AR_Q14_s32x4, 2 ); /* Q12 -> Q14 */ + n_LF_Q14_s32x4 = vqdmulhq_n_s32( vld1q_s32( psDelDec->Shape_Q14[ *smpl_buf_idx ] ), LF_shp_Q29 ); /* Q12 */ + n_LF_Q14_s32x4 = vaddq_s32( n_LF_Q14_s32x4, vqdmulhq_n_s32( vld1q_s32( psDelDec->LF_AR_Q14 ), silk_LSHIFT32( LF_shp_Q14 >> 16 , 15 ) ) ); /* Q12 */ + n_LF_Q14_s32x4 = vshlq_n_s32( n_LF_Q14_s32x4, 2 ); /* Q12 -> Q14 */ + + /* Input minus prediction plus noise feedback */ + /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */ + tmp1_s32x4 = vaddq_s32( n_AR_Q14_s32x4, n_LF_Q14_s32x4 ); /* Q14 */ + tmp2_s32x4 = vaddq_s32( vdupq_n_s32( n_LTP_Q14 ), LPC_pred_Q14_s32x4 ); /* Q13 */ + tmp1_s32x4 = vsubq_s32( tmp2_s32x4, tmp1_s32x4 ); /* Q13 */ + tmp1_s32x4 = vrshrq_n_s32( tmp1_s32x4, 4 ); /* Q10 */ + tmp1_s32x4 = vsubq_s32( vdupq_n_s32( x_Q10[ i ] ), tmp1_s32x4 ); /* residual error Q10 */ + + /* Flip sign depending on dither */ + sign_s32x4 = vreinterpretq_s32_u32( vcltq_s32( Seed_s32x4, vdupq_n_s32( 0 ) ) ); + tmp1_s32x4 = veorq_s32( tmp1_s32x4, sign_s32x4 ); + tmp1_s32x4 = vsubq_s32( tmp1_s32x4, sign_s32x4 ); + tmp1_s32x4 = vmaxq_s32( tmp1_s32x4, vdupq_n_s32( -( 31 << 10 ) ) ); + tmp1_s32x4 = vminq_s32( tmp1_s32x4, vdupq_n_s32( 30 << 10 ) ); + r_Q10_s16x4 = vmovn_s32( tmp1_s32x4 ); + + /* Find two quantization level candidates and measure their rate-distortion */ + { + int16x4_t q1_Q10_s16x4 = vsub_s16( r_Q10_s16x4, vdup_n_s16( offset_Q10 ) ); + int16x4_t q1_Q0_s16x4 = vshr_n_s16( q1_Q10_s16x4, 10 ); + int16x4_t q2_Q10_s16x4; + int32x4_t rd1_Q10_s32x4, rd2_Q10_s32x4; + uint32x4_t t_u32x4; + + if( Lambda_Q10 > 2048 ) { + /* For aggressive RDO, the bias becomes more than one pulse. */ + const int rdo_offset = Lambda_Q10/2 - 512; + const uint16x4_t greaterThanRdo = vcgt_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) ); + const uint16x4_t lessThanMinusRdo = vclt_s16( q1_Q10_s16x4, vdup_n_s16( -rdo_offset ) ); + /* If Lambda_Q10 > 32767, then q1_Q0, q1_Q10 and q2_Q10 must change to 32-bit. */ + silk_assert( Lambda_Q10 <= 32767 ); + + q1_Q0_s16x4 = vreinterpret_s16_u16( vclt_s16( q1_Q10_s16x4, vdup_n_s16( 0 ) ) ); + q1_Q0_s16x4 = vbsl_s16( greaterThanRdo, vsub_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) ), q1_Q0_s16x4 ); + q1_Q0_s16x4 = vbsl_s16( lessThanMinusRdo, vadd_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) ), q1_Q0_s16x4 ); + q1_Q0_s16x4 = vshr_n_s16( q1_Q0_s16x4, 10 ); + } + { + const uint16x4_t equal0_u16x4 = vceq_s16( q1_Q0_s16x4, vdup_n_s16( 0 ) ); + const uint16x4_t equalMinus1_u16x4 = vceq_s16( q1_Q0_s16x4, vdup_n_s16( -1 ) ); + const uint16x4_t lessThanMinus1_u16x4 = vclt_s16( q1_Q0_s16x4, vdup_n_s16( -1 ) ); + int16x4_t tmp1_s16x4, tmp2_s16x4; + + q1_Q10_s16x4 = vshl_n_s16( q1_Q0_s16x4, 10 ); + tmp1_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( offset_Q10 - QUANT_LEVEL_ADJUST_Q10 ) ); + q1_Q10_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( offset_Q10 + QUANT_LEVEL_ADJUST_Q10 ) ); + q1_Q10_s16x4 = vbsl_s16( lessThanMinus1_u16x4, q1_Q10_s16x4, tmp1_s16x4 ); + q1_Q10_s16x4 = vbsl_s16( equal0_u16x4, vdup_n_s16( offset_Q10 ), q1_Q10_s16x4 ); + q1_Q10_s16x4 = vbsl_s16( equalMinus1_u16x4, vdup_n_s16( offset_Q10 - ( 1024 - QUANT_LEVEL_ADJUST_Q10 ) ), q1_Q10_s16x4 ); + q2_Q10_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( 1024 ) ); + q2_Q10_s16x4 = vbsl_s16( equal0_u16x4, vdup_n_s16( offset_Q10 + 1024 - QUANT_LEVEL_ADJUST_Q10 ), q2_Q10_s16x4 ); + q2_Q10_s16x4 = vbsl_s16( equalMinus1_u16x4, vdup_n_s16( offset_Q10 ), q2_Q10_s16x4 ); + tmp1_s16x4 = q1_Q10_s16x4; + tmp2_s16x4 = q2_Q10_s16x4; + tmp1_s16x4 = vbsl_s16( vorr_u16( equalMinus1_u16x4, lessThanMinus1_u16x4 ), vneg_s16( tmp1_s16x4 ), tmp1_s16x4 ); + tmp2_s16x4 = vbsl_s16( lessThanMinus1_u16x4, vneg_s16( tmp2_s16x4 ), tmp2_s16x4 ); + rd1_Q10_s32x4 = vmull_s16( tmp1_s16x4, vdup_n_s16( Lambda_Q10 ) ); + rd2_Q10_s32x4 = vmull_s16( tmp2_s16x4, vdup_n_s16( Lambda_Q10 ) ); + } + + rr_Q10_s16x4 = vsub_s16( r_Q10_s16x4, q1_Q10_s16x4 ); + rd1_Q10_s32x4 = vmlal_s16( rd1_Q10_s32x4, rr_Q10_s16x4, rr_Q10_s16x4 ); + rd1_Q10_s32x4 = vshrq_n_s32( rd1_Q10_s32x4, 10 ); + + rr_Q10_s16x4 = vsub_s16( r_Q10_s16x4, q2_Q10_s16x4 ); + rd2_Q10_s32x4 = vmlal_s16( rd2_Q10_s32x4, rr_Q10_s16x4, rr_Q10_s16x4 ); + rd2_Q10_s32x4 = vshrq_n_s32( rd2_Q10_s32x4, 10 ); + + tmp2_s32x4 = vld1q_s32( psDelDec->RD_Q10 ); + tmp1_s32x4 = vaddq_s32( tmp2_s32x4, vminq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 ) ); + tmp2_s32x4 = vaddq_s32( tmp2_s32x4, vmaxq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 ) ); + vst1q_s32( psSampleState[ 0 ].RD_Q10, tmp1_s32x4 ); + vst1q_s32( psSampleState[ 1 ].RD_Q10, tmp2_s32x4 ); + t_u32x4 = vcltq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 ); + tmp1_s32x4 = vbslq_s32( t_u32x4, vmovl_s16( q1_Q10_s16x4 ), vmovl_s16( q2_Q10_s16x4 ) ); + tmp2_s32x4 = vbslq_s32( t_u32x4, vmovl_s16( q2_Q10_s16x4 ), vmovl_s16( q1_Q10_s16x4 ) ); + vst1q_s32( psSampleState[ 0 ].Q_Q10, tmp1_s32x4 ); + vst1q_s32( psSampleState[ 1 ].Q_Q10, tmp2_s32x4 ); + } + + { + /* Update states for best quantization */ + int32x4_t exc_Q14_s32x4, LPC_exc_Q14_s32x4, xq_Q14_s32x4, sLF_AR_shp_Q14_s32x4; + + /* Quantized excitation */ + exc_Q14_s32x4 = vshlq_n_s32( tmp1_s32x4, 4 ); + exc_Q14_s32x4 = veorq_s32( exc_Q14_s32x4, sign_s32x4 ); + exc_Q14_s32x4 = vsubq_s32( exc_Q14_s32x4, sign_s32x4 ); + + /* Add predictions */ + LPC_exc_Q14_s32x4 = vaddq_s32( exc_Q14_s32x4, vdupq_n_s32( LTP_pred_Q14 ) ); + xq_Q14_s32x4 = vaddq_s32( LPC_exc_Q14_s32x4, LPC_pred_Q14_s32x4 ); + + /* Update states */ + tmp1_s32x4 = vsubq_s32( xq_Q14_s32x4, vshlq_n_s32( vdupq_n_s32( x_Q10[ i ] ), 4 ) ); + vst1q_s32( psSampleState[ 0 ].Diff_Q14, tmp1_s32x4 ); + sLF_AR_shp_Q14_s32x4 = vsubq_s32( tmp1_s32x4, n_AR_Q14_s32x4 ); + vst1q_s32( psSampleState[ 0 ].sLTP_shp_Q14, vsubq_s32( sLF_AR_shp_Q14_s32x4, n_LF_Q14_s32x4 ) ); + vst1q_s32( psSampleState[ 0 ].LF_AR_Q14, sLF_AR_shp_Q14_s32x4 ); + vst1q_s32( psSampleState[ 0 ].LPC_exc_Q14, LPC_exc_Q14_s32x4 ); + vst1q_s32( psSampleState[ 0 ].xq_Q14, xq_Q14_s32x4 ); + + /* Quantized excitation */ + exc_Q14_s32x4 = vshlq_n_s32( tmp2_s32x4, 4 ); + exc_Q14_s32x4 = veorq_s32( exc_Q14_s32x4, sign_s32x4 ); + exc_Q14_s32x4 = vsubq_s32( exc_Q14_s32x4, sign_s32x4 ); + + /* Add predictions */ + LPC_exc_Q14_s32x4 = vaddq_s32( exc_Q14_s32x4, vdupq_n_s32( LTP_pred_Q14 ) ); + xq_Q14_s32x4 = vaddq_s32( LPC_exc_Q14_s32x4, LPC_pred_Q14_s32x4 ); + + /* Update states */ + tmp1_s32x4 = vsubq_s32( xq_Q14_s32x4, vshlq_n_s32( vdupq_n_s32( x_Q10[ i ] ), 4 ) ); + vst1q_s32( psSampleState[ 1 ].Diff_Q14, tmp1_s32x4 ); + sLF_AR_shp_Q14_s32x4 = vsubq_s32( tmp1_s32x4, n_AR_Q14_s32x4 ); + vst1q_s32( psSampleState[ 1 ].sLTP_shp_Q14, vsubq_s32( sLF_AR_shp_Q14_s32x4, n_LF_Q14_s32x4 ) ); + vst1q_s32( psSampleState[ 1 ].LF_AR_Q14, sLF_AR_shp_Q14_s32x4 ); + vst1q_s32( psSampleState[ 1 ].LPC_exc_Q14, LPC_exc_Q14_s32x4 ); + vst1q_s32( psSampleState[ 1 ].xq_Q14, xq_Q14_s32x4 ); + } + + *smpl_buf_idx = *smpl_buf_idx ? ( *smpl_buf_idx - 1 ) : ( DECISION_DELAY - 1); + last_smple_idx = *smpl_buf_idx + decisionDelay + DECISION_DELAY; + if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY; + if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY; + + /* Find winner */ + RDmin_Q10 = psSampleState[ 0 ].RD_Q10[ 0 ]; + Winner_ind = 0; + for( k = 1; k < nStatesDelayedDecision; k++ ) { + if( psSampleState[ 0 ].RD_Q10[ k ] < RDmin_Q10 ) { + RDmin_Q10 = psSampleState[ 0 ].RD_Q10[ k ]; + Winner_ind = k; + } + } + + /* Increase RD values of expired states */ + { + uint32x4_t t_u32x4; + Winner_rand_state = psDelDec->RandState[ last_smple_idx ][ Winner_ind ]; + t_u32x4 = vceqq_s32( vld1q_s32( psDelDec->RandState[ last_smple_idx ] ), vdupq_n_s32( Winner_rand_state ) ); + t_u32x4 = vmvnq_u32( t_u32x4 ); + t_u32x4 = vshrq_n_u32( t_u32x4, 5 ); + tmp1_s32x4 = vld1q_s32( psSampleState[ 0 ].RD_Q10 ); + tmp2_s32x4 = vld1q_s32( psSampleState[ 1 ].RD_Q10 ); + tmp1_s32x4 = vaddq_s32( tmp1_s32x4, vreinterpretq_s32_u32( t_u32x4 ) ); + tmp2_s32x4 = vaddq_s32( tmp2_s32x4, vreinterpretq_s32_u32( t_u32x4 ) ); + vst1q_s32( psSampleState[ 0 ].RD_Q10, tmp1_s32x4 ); + vst1q_s32( psSampleState[ 1 ].RD_Q10, tmp2_s32x4 ); + + /* Find worst in first set and best in second set */ + RDmax_Q10 = psSampleState[ 0 ].RD_Q10[ 0 ]; + RDmin_Q10 = psSampleState[ 1 ].RD_Q10[ 0 ]; + RDmax_ind = 0; + RDmin_ind = 0; + for( k = 1; k < nStatesDelayedDecision; k++ ) { + /* find worst in first set */ + if( psSampleState[ 0 ].RD_Q10[ k ] > RDmax_Q10 ) { + RDmax_Q10 = psSampleState[ 0 ].RD_Q10[ k ]; + RDmax_ind = k; + } + /* find best in second set */ + if( psSampleState[ 1 ].RD_Q10[ k ] < RDmin_Q10 ) { + RDmin_Q10 = psSampleState[ 1 ].RD_Q10[ k ]; + RDmin_ind = k; + } + } + } + + /* Replace a state if best from second set outperforms worst in first set */ + if( RDmin_Q10 < RDmax_Q10 ) { + opus_int32 (*ptr)[NEON_MAX_DEL_DEC_STATES] = psDelDec->RandState; + const int numOthers = (int)( ( sizeof( NSQ_del_decs_struct ) - sizeof( ( (NSQ_del_decs_struct *)0 )->sLPC_Q14 ) ) + / ( NEON_MAX_DEL_DEC_STATES * sizeof( opus_int32 ) ) ); + /* Only ( predictLPCOrder - 1 ) of sLPC_Q14 buffer need to be updated, though the first several */ + /* useless sLPC_Q14[] will be different comparing with C when predictLPCOrder < NSQ_LPC_BUF_LENGTH. */ + /* Here just update constant ( NSQ_LPC_BUF_LENGTH - 1 ) for simplicity. */ + for( j = i + 1; j < i + NSQ_LPC_BUF_LENGTH; j++ ) { + psDelDec->sLPC_Q14[ j ][ RDmax_ind ] = psDelDec->sLPC_Q14[ j ][ RDmin_ind ]; + } + for( j = 0; j < numOthers; j++ ) { + ptr[ j ][ RDmax_ind ] = ptr[ j ][ RDmin_ind ]; + } + + psSampleState[ 0 ].Q_Q10[ RDmax_ind ] = psSampleState[ 1 ].Q_Q10[ RDmin_ind ]; + psSampleState[ 0 ].RD_Q10[ RDmax_ind ] = psSampleState[ 1 ].RD_Q10[ RDmin_ind ]; + psSampleState[ 0 ].xq_Q14[ RDmax_ind ] = psSampleState[ 1 ].xq_Q14[ RDmin_ind ]; + psSampleState[ 0 ].LF_AR_Q14[ RDmax_ind ] = psSampleState[ 1 ].LF_AR_Q14[ RDmin_ind ]; + psSampleState[ 0 ].Diff_Q14[ RDmax_ind ] = psSampleState[ 1 ].Diff_Q14[ RDmin_ind ]; + psSampleState[ 0 ].sLTP_shp_Q14[ RDmax_ind ] = psSampleState[ 1 ].sLTP_shp_Q14[ RDmin_ind ]; + psSampleState[ 0 ].LPC_exc_Q14[ RDmax_ind ] = psSampleState[ 1 ].LPC_exc_Q14[ RDmin_ind ]; + } + + /* Write samples from winner to output and long-term filter states */ + if( subfr > 0 || i >= decisionDelay ) { + pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 ); + xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( + silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], delayedGain_Q10[ last_smple_idx ] ), 8 ) ); + NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ]; + sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDelDec->Pred_Q15[ last_smple_idx ][ Winner_ind ]; + } + NSQ->sLTP_shp_buf_idx++; + NSQ->sLTP_buf_idx++; + + /* Update states */ + vst1q_s32( psDelDec->LF_AR_Q14, vld1q_s32( psSampleState[ 0 ].LF_AR_Q14 ) ); + vst1q_s32( psDelDec->Diff_Q14, vld1q_s32( psSampleState[ 0 ].Diff_Q14 ) ); + vst1q_s32( psDelDec->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ], vld1q_s32( psSampleState[ 0 ].xq_Q14 ) ); + vst1q_s32( psDelDec->Xq_Q14[ *smpl_buf_idx ], vld1q_s32( psSampleState[ 0 ].xq_Q14 ) ); + tmp1_s32x4 = vld1q_s32( psSampleState[ 0 ].Q_Q10 ); + vst1q_s32( psDelDec->Q_Q10[ *smpl_buf_idx ], tmp1_s32x4 ); + vst1q_s32( psDelDec->Pred_Q15[ *smpl_buf_idx ], vshlq_n_s32( vld1q_s32( psSampleState[ 0 ].LPC_exc_Q14 ), 1 ) ); + vst1q_s32( psDelDec->Shape_Q14[ *smpl_buf_idx ], vld1q_s32( psSampleState[ 0 ].sLTP_shp_Q14 ) ); + tmp1_s32x4 = vrshrq_n_s32( tmp1_s32x4, 10 ); + tmp1_s32x4 = vaddq_s32( vld1q_s32( psDelDec->Seed ), tmp1_s32x4 ); + vst1q_s32( psDelDec->Seed, tmp1_s32x4 ); + vst1q_s32( psDelDec->RandState[ *smpl_buf_idx ], tmp1_s32x4 ); + vst1q_s32( psDelDec->RD_Q10, vld1q_s32( psSampleState[ 0 ].RD_Q10 ) ); + delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10; + } + /* Update LPC states */ + silk_memcpy( psDelDec->sLPC_Q14[ 0 ], psDelDec->sLPC_Q14[ length ], NEON_MAX_DEL_DEC_STATES * NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); + + RESTORE_STACK; +} + +static OPUS_INLINE void silk_SMULWB_8_neon( + const opus_int16 *a, + const int32x2_t b, + opus_int32 *o +) +{ + const int16x8_t a_s16x8 = vld1q_s16( a ); + int32x4_t o0_s32x4, o1_s32x4; + + o0_s32x4 = vshll_n_s16( vget_low_s16( a_s16x8 ), 15 ); + o1_s32x4 = vshll_n_s16( vget_high_s16( a_s16x8 ), 15 ); + o0_s32x4 = vqdmulhq_lane_s32( o0_s32x4, b, 0 ); + o1_s32x4 = vqdmulhq_lane_s32( o1_s32x4, b, 0 ); + vst1q_s32( o, o0_s32x4 ); + vst1q_s32( o + 4, o1_s32x4 ); +} + +/* Only works when ( b >= -65536 ) && ( b < 65536 ). */ +static OPUS_INLINE void silk_SMULWW_small_b_4_neon( + opus_int32 *a, + const int32x2_t b_s32x2) +{ + int32x4_t o_s32x4; + + o_s32x4 = vld1q_s32( a ); + o_s32x4 = vqdmulhq_lane_s32( o_s32x4, b_s32x2, 0 ); + vst1q_s32( a, o_s32x4 ); +} + +/* Only works when ( b >= -65536 ) && ( b < 65536 ). */ +static OPUS_INLINE void silk_SMULWW_small_b_8_neon( + opus_int32 *a, + const int32x2_t b_s32x2 +) +{ + int32x4_t o0_s32x4, o1_s32x4; + + o0_s32x4 = vld1q_s32( a ); + o1_s32x4 = vld1q_s32( a + 4 ); + o0_s32x4 = vqdmulhq_lane_s32( o0_s32x4, b_s32x2, 0 ); + o1_s32x4 = vqdmulhq_lane_s32( o1_s32x4, b_s32x2, 0 ); + vst1q_s32( a, o0_s32x4 ); + vst1q_s32( a + 4, o1_s32x4 ); +} + +static OPUS_INLINE void silk_SMULWW_4_neon( + opus_int32 *a, + const int32x2_t b_s32x2) +{ + int32x4_t a_s32x4, o_s32x4; + + a_s32x4 = vld1q_s32( a ); + o_s32x4 = vqdmulhq_lane_s32( a_s32x4, b_s32x2, 0 ); + o_s32x4 = vmlaq_lane_s32( o_s32x4, a_s32x4, b_s32x2, 1 ); + vst1q_s32( a, o_s32x4 ); +} + +static OPUS_INLINE void silk_SMULWW_8_neon( + opus_int32 *a, + const int32x2_t b_s32x2 +) +{ + int32x4_t a0_s32x4, a1_s32x4, o0_s32x4, o1_s32x4; + + a0_s32x4 = vld1q_s32( a ); + a1_s32x4 = vld1q_s32( a + 4 ); + o0_s32x4 = vqdmulhq_lane_s32( a0_s32x4, b_s32x2, 0 ); + o1_s32x4 = vqdmulhq_lane_s32( a1_s32x4, b_s32x2, 0 ); + o0_s32x4 = vmlaq_lane_s32( o0_s32x4, a0_s32x4, b_s32x2, 1 ); + o1_s32x4 = vmlaq_lane_s32( o1_s32x4, a1_s32x4, b_s32x2, 1 ); + vst1q_s32( a, o0_s32x4 ); + vst1q_s32( a + 4, o1_s32x4 ); +} + +static OPUS_INLINE void silk_SMULWW_loop_neon( + const opus_int16 *a, + const opus_int32 b, + opus_int32 *o, + const opus_int loop_num +) +{ + opus_int i; + int32x2_t b_s32x2; + + b_s32x2 = vdup_n_s32( b ); + for( i = 0; i < loop_num - 7; i += 8 ) { + silk_SMULWB_8_neon( a + i, b_s32x2, o + i ); + } + for( ; i < loop_num; i++ ) { + o[ i ] = silk_SMULWW( a[ i ], b ); + } +} + +static OPUS_INLINE void silk_nsq_del_dec_scale_states_neon( + const silk_encoder_state *psEncC, /* I Encoder State */ + silk_nsq_state *NSQ, /* I/O NSQ state */ + NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */ + const opus_int16 x16[], /* I Input */ + opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */ + const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */ + opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */ + opus_int subfr, /* I Subframe number */ + const opus_int LTP_scale_Q14, /* I LTP state scaling */ + const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */ + const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */ + const opus_int signal_type, /* I Signal type */ + const opus_int decisionDelay /* I Decision delay */ +) +{ + opus_int i, lag; + opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26; + + lag = pitchL[ subfr ]; + inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 ); + silk_assert( inv_gain_Q31 != 0 ); + + /* Scale input */ + inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 ); + silk_SMULWW_loop_neon( x16, inv_gain_Q26, x_sc_Q10, psEncC->subfr_length ); + + /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ + if( NSQ->rewhite_flag ) { + if( subfr == 0 ) { + /* Do LTP downscaling */ + inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 ); + } + silk_SMULWW_loop_neon( sLTP + NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2, inv_gain_Q31, sLTP_Q15 + NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2, lag + LTP_ORDER / 2 ); + } + + /* Adjust for changing gain */ + if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) { + int32x2_t gain_adj_Q16_s32x2; + gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 ); + + /* Scale long-term shaping state */ + if( ( gain_adj_Q16 >= -65536 ) && ( gain_adj_Q16 < 65536 ) ) { + gain_adj_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( gain_adj_Q16, 15 ) ); + for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 7; i += 8 ) { + silk_SMULWW_small_b_8_neon( NSQ->sLTP_shp_Q14 + i, gain_adj_Q16_s32x2 ); + } + for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) { + NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); + } + + /* Scale long-term prediction state */ + if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) { + for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay - 7; i += 8 ) { + silk_SMULWW_small_b_8_neon( sLTP_Q15 + i, gain_adj_Q16_s32x2 ); + } + for( ; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) { + sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] ); + } + } + + /* Scale scalar states */ + silk_SMULWW_small_b_4_neon( psDelDec->LF_AR_Q14, gain_adj_Q16_s32x2 ); + silk_SMULWW_small_b_4_neon( psDelDec->Diff_Q14, gain_adj_Q16_s32x2 ); + + /* Scale short-term prediction and shaping states */ + for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { + silk_SMULWW_small_b_4_neon( psDelDec->sLPC_Q14[ i ], gain_adj_Q16_s32x2 ); + } + + for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { + silk_SMULWW_small_b_4_neon( psDelDec->sAR2_Q14[ i ], gain_adj_Q16_s32x2 ); + } + + for( i = 0; i < DECISION_DELAY; i++ ) { + silk_SMULWW_small_b_4_neon( psDelDec->Pred_Q15[ i ], gain_adj_Q16_s32x2 ); + silk_SMULWW_small_b_4_neon( psDelDec->Shape_Q14[ i ], gain_adj_Q16_s32x2 ); + } + } else { + gain_adj_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( gain_adj_Q16 & 0x0000FFFF, 15 ) ); + gain_adj_Q16_s32x2 = vset_lane_s32( gain_adj_Q16 >> 16, gain_adj_Q16_s32x2, 1 ); + for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 7; i += 8 ) { + silk_SMULWW_8_neon( NSQ->sLTP_shp_Q14 + i, gain_adj_Q16_s32x2 ); + } + for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) { + NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] ); + } + + /* Scale long-term prediction state */ + if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) { + for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay - 7; i += 8 ) { + silk_SMULWW_8_neon( sLTP_Q15 + i, gain_adj_Q16_s32x2 ); + } + for( ; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) { + sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] ); + } + } + + /* Scale scalar states */ + silk_SMULWW_4_neon( psDelDec->LF_AR_Q14, gain_adj_Q16_s32x2 ); + silk_SMULWW_4_neon( psDelDec->Diff_Q14, gain_adj_Q16_s32x2 ); + + /* Scale short-term prediction and shaping states */ + for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { + silk_SMULWW_4_neon( psDelDec->sLPC_Q14[ i ], gain_adj_Q16_s32x2 ); + } + + for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { + silk_SMULWW_4_neon( psDelDec->sAR2_Q14[ i ], gain_adj_Q16_s32x2 ); + } + + for( i = 0; i < DECISION_DELAY; i++ ) { + silk_SMULWW_4_neon( psDelDec->Pred_Q15[ i ], gain_adj_Q16_s32x2 ); + silk_SMULWW_4_neon( psDelDec->Shape_Q14[ i ], gain_adj_Q16_s32x2 ); + } + } + + /* Save inverse gain */ + NSQ->prev_gain_Q16 = Gains_Q16[ subfr ]; + } +} diff --git a/thirdparty/opus/silk/arm/NSQ_neon.h b/thirdparty/opus/silk/arm/NSQ_neon.h index 77c946af85..b31d9442d6 100644 --- a/thirdparty/opus/silk/arm/NSQ_neon.h +++ b/thirdparty/opus/silk/arm/NSQ_neon.h @@ -28,30 +28,31 @@ POSSIBILITY OF SUCH DAMAGE. #define SILK_NSQ_NEON_H #include "cpu_support.h" +#include "SigProc_FIX.h" #undef silk_short_prediction_create_arch_coef /* For vectorized calc, reverse a_Q12 coefs, convert to 32-bit, and shift for vqdmulhq_s32. */ static OPUS_INLINE void silk_short_prediction_create_arch_coef_neon(opus_int32 *out, const opus_int16 *in, opus_int order) { - out[15] = in[0] << 15; - out[14] = in[1] << 15; - out[13] = in[2] << 15; - out[12] = in[3] << 15; - out[11] = in[4] << 15; - out[10] = in[5] << 15; - out[9] = in[6] << 15; - out[8] = in[7] << 15; - out[7] = in[8] << 15; - out[6] = in[9] << 15; + out[15] = silk_LSHIFT32(in[0], 15); + out[14] = silk_LSHIFT32(in[1], 15); + out[13] = silk_LSHIFT32(in[2], 15); + out[12] = silk_LSHIFT32(in[3], 15); + out[11] = silk_LSHIFT32(in[4], 15); + out[10] = silk_LSHIFT32(in[5], 15); + out[9] = silk_LSHIFT32(in[6], 15); + out[8] = silk_LSHIFT32(in[7], 15); + out[7] = silk_LSHIFT32(in[8], 15); + out[6] = silk_LSHIFT32(in[9], 15); if (order == 16) { - out[5] = in[10] << 15; - out[4] = in[11] << 15; - out[3] = in[12] << 15; - out[2] = in[13] << 15; - out[1] = in[14] << 15; - out[0] = in[15] << 15; + out[5] = silk_LSHIFT32(in[10], 15); + out[4] = silk_LSHIFT32(in[11], 15); + out[3] = silk_LSHIFT32(in[12], 15); + out[2] = silk_LSHIFT32(in[13], 15); + out[1] = silk_LSHIFT32(in[14], 15); + out[0] = silk_LSHIFT32(in[15], 15); } else { diff --git a/thirdparty/opus/silk/arm/arm_silk_map.c b/thirdparty/opus/silk/arm/arm_silk_map.c index 9bd86a7b21..0b9bfec2ca 100644 --- a/thirdparty/opus/silk/arm/arm_silk_map.c +++ b/thirdparty/opus/silk/arm/arm_silk_map.c @@ -28,13 +28,62 @@ POSSIBILITY OF SUCH DAMAGE. # include "config.h" #endif +#include "main_FIX.h" #include "NSQ.h" +#include "SigProc_FIX.h" #if defined(OPUS_HAVE_RTCD) # if (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && \ !defined(OPUS_ARM_PRESUME_NEON_INTR)) +void (*const SILK_BIQUAD_ALT_STRIDE2_IMPL[OPUS_ARCHMASK + 1])( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ +) = { + silk_biquad_alt_stride2_c, /* ARMv4 */ + silk_biquad_alt_stride2_c, /* EDSP */ + silk_biquad_alt_stride2_c, /* Media */ + silk_biquad_alt_stride2_neon, /* Neon */ +}; + +opus_int32 (*const SILK_LPC_INVERSE_PRED_GAIN_IMPL[OPUS_ARCHMASK + 1])( /* O Returns inverse prediction gain in energy domain, Q30 */ + const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ + const opus_int order /* I Prediction order */ +) = { + silk_LPC_inverse_pred_gain_c, /* ARMv4 */ + silk_LPC_inverse_pred_gain_c, /* EDSP */ + silk_LPC_inverse_pred_gain_c, /* Media */ + silk_LPC_inverse_pred_gain_neon, /* Neon */ +}; + +void (*const SILK_NSQ_DEL_DEC_IMPL[OPUS_ARCHMASK + 1])( + const silk_encoder_state *psEncC, /* I Encoder State */ + silk_nsq_state *NSQ, /* I/O NSQ state */ + SideInfoIndices *psIndices, /* I/O Quantization Indices */ + const opus_int16 x16[], /* I Input */ + opus_int8 pulses[], /* O Quantized pulse signal */ + const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ + const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ + const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ + const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ + const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */ + const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ + const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */ + const opus_int LTP_scale_Q14 /* I LTP state scaling */ +) = { + silk_NSQ_del_dec_c, /* ARMv4 */ + silk_NSQ_del_dec_c, /* EDSP */ + silk_NSQ_del_dec_c, /* Media */ + silk_NSQ_del_dec_neon, /* Neon */ +}; + /*There is no table for silk_noise_shape_quantizer_short_prediction because the NEON version takes different parameters than the C version. Instead RTCD is done via if statements at the call sites. @@ -52,4 +101,23 @@ opus_int32 # endif +# if defined(FIXED_POINT) && \ + defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR) + +void (*const SILK_WARPED_AUTOCORRELATION_FIX_IMPL[OPUS_ARCHMASK + 1])( + opus_int32 *corr, /* O Result [order + 1] */ + opus_int *scale, /* O Scaling of the correlation vector */ + const opus_int16 *input, /* I Input data to correlate */ + const opus_int warping_Q16, /* I Warping coefficient */ + const opus_int length, /* I Length of input */ + const opus_int order /* I Correlation order (even) */ +) = { + silk_warped_autocorrelation_FIX_c, /* ARMv4 */ + silk_warped_autocorrelation_FIX_c, /* EDSP */ + silk_warped_autocorrelation_FIX_c, /* Media */ + silk_warped_autocorrelation_FIX_neon, /* Neon */ +}; + +# endif + #endif /* OPUS_HAVE_RTCD */ diff --git a/thirdparty/opus/silk/arm/biquad_alt_arm.h b/thirdparty/opus/silk/arm/biquad_alt_arm.h new file mode 100644 index 0000000000..66ea9f43dd --- /dev/null +++ b/thirdparty/opus/silk/arm/biquad_alt_arm.h @@ -0,0 +1,68 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifndef SILK_BIQUAD_ALT_ARM_H +# define SILK_BIQUAD_ALT_ARM_H + +# include "celt/arm/armcpu.h" + +# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) +void silk_biquad_alt_stride2_neon( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ +); + +# if !defined(OPUS_HAVE_RTCD) && defined(OPUS_ARM_PRESUME_NEON) +# define OVERRIDE_silk_biquad_alt_stride2 (1) +# define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((void)(arch), PRESUME_NEON(silk_biquad_alt_stride2)(in, B_Q28, A_Q28, S, out, len)) +# endif +# endif + +# if !defined(OVERRIDE_silk_biquad_alt_stride2) +/*Is run-time CPU detection enabled on this platform?*/ +# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern void (*const SILK_BIQUAD_ALT_STRIDE2_IMPL[OPUS_ARCHMASK+1])( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ + ); +# define OVERRIDE_silk_biquad_alt_stride2 (1) +# define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((*SILK_BIQUAD_ALT_STRIDE2_IMPL[(arch)&OPUS_ARCHMASK])(in, B_Q28, A_Q28, S, out, len)) +# elif defined(OPUS_ARM_PRESUME_NEON_INTR) +# define OVERRIDE_silk_biquad_alt_stride2 (1) +# define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((void)(arch), silk_biquad_alt_stride2_neon(in, B_Q28, A_Q28, S, out, len)) +# endif +# endif + +#endif /* end SILK_BIQUAD_ALT_ARM_H */ diff --git a/thirdparty/opus/silk/arm/biquad_alt_neon_intr.c b/thirdparty/opus/silk/arm/biquad_alt_neon_intr.c new file mode 100644 index 0000000000..9715733185 --- /dev/null +++ b/thirdparty/opus/silk/arm/biquad_alt_neon_intr.c @@ -0,0 +1,156 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <arm_neon.h> +#ifdef OPUS_CHECK_ASM +# include <string.h> +# include "stack_alloc.h" +#endif +#include "SigProc_FIX.h" + +static inline void silk_biquad_alt_stride2_kernel( const int32x4_t A_L_s32x4, const int32x4_t A_U_s32x4, const int32x4_t B_Q28_s32x4, const int32x2_t t_s32x2, const int32x4_t in_s32x4, int32x4_t *S_s32x4, int32x2_t *out32_Q14_s32x2 ) +{ + int32x4_t t_s32x4, out32_Q14_s32x4; + + *out32_Q14_s32x2 = vadd_s32( vget_low_s32( *S_s32x4 ), t_s32x2 ); /* silk_SMLAWB( S{0,1}, B_Q28[ 0 ], in{0,1} ) */ + *S_s32x4 = vcombine_s32( vget_high_s32( *S_s32x4 ), vdup_n_s32( 0 ) ); /* S{0,1} = S{2,3}; S{2,3} = 0; */ + *out32_Q14_s32x2 = vshl_n_s32( *out32_Q14_s32x2, 2 ); /* out32_Q14_{0,1} = silk_LSHIFT( silk_SMLAWB( S{0,1}, B_Q28[ 0 ], in{0,1} ), 2 ); */ + out32_Q14_s32x4 = vcombine_s32( *out32_Q14_s32x2, *out32_Q14_s32x2 ); /* out32_Q14_{0,1,0,1} */ + t_s32x4 = vqdmulhq_s32( out32_Q14_s32x4, A_L_s32x4 ); /* silk_SMULWB( out32_Q14_{0,1,0,1}, A{0,0,1,1}_L_Q28 ) */ + *S_s32x4 = vrsraq_n_s32( *S_s32x4, t_s32x4, 14 ); /* S{0,1} = S{2,3} + silk_RSHIFT_ROUND(); S{2,3} = silk_RSHIFT_ROUND(); */ + t_s32x4 = vqdmulhq_s32( out32_Q14_s32x4, A_U_s32x4 ); /* silk_SMULWB( out32_Q14_{0,1,0,1}, A{0,0,1,1}_U_Q28 ) */ + *S_s32x4 = vaddq_s32( *S_s32x4, t_s32x4 ); /* S0 = silk_SMLAWB( S{0,1,2,3}, out32_Q14_{0,1,0,1}, A{0,0,1,1}_U_Q28 ); */ + t_s32x4 = vqdmulhq_s32( in_s32x4, B_Q28_s32x4 ); /* silk_SMULWB( B_Q28[ {1,1,2,2} ], in{0,1,0,1} ) */ + *S_s32x4 = vaddq_s32( *S_s32x4, t_s32x4 ); /* S0 = silk_SMLAWB( S0, B_Q28[ {1,1,2,2} ], in{0,1,0,1} ); */ +} + +void silk_biquad_alt_stride2_neon( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ +) +{ + /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */ + opus_int k = 0; + const int32x2_t offset_s32x2 = vdup_n_s32( (1<<14) - 1 ); + const int32x4_t offset_s32x4 = vcombine_s32( offset_s32x2, offset_s32x2 ); + int16x4_t in_s16x4 = vdup_n_s16( 0 ); + int16x4_t out_s16x4; + int32x2_t A_Q28_s32x2, A_L_s32x2, A_U_s32x2, B_Q28_s32x2, t_s32x2; + int32x4_t A_L_s32x4, A_U_s32x4, B_Q28_s32x4, S_s32x4, out32_Q14_s32x4; + int32x2x2_t t0_s32x2x2, t1_s32x2x2, t2_s32x2x2, S_s32x2x2; + +#ifdef OPUS_CHECK_ASM + opus_int32 S_c[ 4 ]; + VARDECL( opus_int16, out_c ); + SAVE_STACK; + ALLOC( out_c, 2 * len, opus_int16 ); + + silk_memcpy( &S_c, S, sizeof( S_c ) ); + silk_biquad_alt_stride2_c( in, B_Q28, A_Q28, S_c, out_c, len ); +#endif + + /* Negate A_Q28 values and split in two parts */ + A_Q28_s32x2 = vld1_s32( A_Q28 ); + A_Q28_s32x2 = vneg_s32( A_Q28_s32x2 ); + A_L_s32x2 = vshl_n_s32( A_Q28_s32x2, 18 ); /* ( -A_Q28[] & 0x00003FFF ) << 18 */ + A_L_s32x2 = vreinterpret_s32_u32( vshr_n_u32( vreinterpret_u32_s32( A_L_s32x2 ), 3 ) ); /* ( -A_Q28[] & 0x00003FFF ) << 15 */ + A_U_s32x2 = vshr_n_s32( A_Q28_s32x2, 14 ); /* silk_RSHIFT( -A_Q28[], 14 ) */ + A_U_s32x2 = vshl_n_s32( A_U_s32x2, 16 ); /* silk_RSHIFT( -A_Q28[], 14 ) << 16 (Clip two leading bits to conform to C function.) */ + A_U_s32x2 = vshr_n_s32( A_U_s32x2, 1 ); /* silk_RSHIFT( -A_Q28[], 14 ) << 15 */ + + B_Q28_s32x2 = vld1_s32( B_Q28 ); + t_s32x2 = vld1_s32( B_Q28 + 1 ); + t0_s32x2x2 = vzip_s32( A_L_s32x2, A_L_s32x2 ); + t1_s32x2x2 = vzip_s32( A_U_s32x2, A_U_s32x2 ); + t2_s32x2x2 = vzip_s32( t_s32x2, t_s32x2 ); + A_L_s32x4 = vcombine_s32( t0_s32x2x2.val[ 0 ], t0_s32x2x2.val[ 1 ] ); /* A{0,0,1,1}_L_Q28 */ + A_U_s32x4 = vcombine_s32( t1_s32x2x2.val[ 0 ], t1_s32x2x2.val[ 1 ] ); /* A{0,0,1,1}_U_Q28 */ + B_Q28_s32x4 = vcombine_s32( t2_s32x2x2.val[ 0 ], t2_s32x2x2.val[ 1 ] ); /* B_Q28[ {1,1,2,2} ] */ + S_s32x4 = vld1q_s32( S ); /* S0 = S[ 0 ]; S3 = S[ 3 ]; */ + S_s32x2x2 = vtrn_s32( vget_low_s32( S_s32x4 ), vget_high_s32( S_s32x4 ) ); /* S2 = S[ 1 ]; S1 = S[ 2 ]; */ + S_s32x4 = vcombine_s32( S_s32x2x2.val[ 0 ], S_s32x2x2.val[ 1 ] ); + + for( ; k < len - 1; k += 2 ) { + int32x4_t in_s32x4[ 2 ], t_s32x4; + int32x2_t out32_Q14_s32x2[ 2 ]; + + /* S[ 2 * i + 0 ], S[ 2 * i + 1 ], S[ 2 * i + 2 ], S[ 2 * i + 3 ]: Q12 */ + in_s16x4 = vld1_s16( &in[ 2 * k ] ); /* in{0,1,2,3} = in[ 2 * k + {0,1,2,3} ]; */ + in_s32x4[ 0 ] = vshll_n_s16( in_s16x4, 15 ); /* in{0,1,2,3} << 15 */ + t_s32x4 = vqdmulhq_lane_s32( in_s32x4[ 0 ], B_Q28_s32x2, 0 ); /* silk_SMULWB( B_Q28[ 0 ], in{0,1,2,3} ) */ + in_s32x4[ 1 ] = vcombine_s32( vget_high_s32( in_s32x4[ 0 ] ), vget_high_s32( in_s32x4[ 0 ] ) ); /* in{2,3,2,3} << 15 */ + in_s32x4[ 0 ] = vcombine_s32( vget_low_s32 ( in_s32x4[ 0 ] ), vget_low_s32 ( in_s32x4[ 0 ] ) ); /* in{0,1,0,1} << 15 */ + silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, vget_low_s32 ( t_s32x4 ), in_s32x4[ 0 ], &S_s32x4, &out32_Q14_s32x2[ 0 ] ); + silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, vget_high_s32( t_s32x4 ), in_s32x4[ 1 ], &S_s32x4, &out32_Q14_s32x2[ 1 ] ); + + /* Scale back to Q0 and saturate */ + out32_Q14_s32x4 = vcombine_s32( out32_Q14_s32x2[ 0 ], out32_Q14_s32x2[ 1 ] ); /* out32_Q14_{0,1,2,3} */ + out32_Q14_s32x4 = vaddq_s32( out32_Q14_s32x4, offset_s32x4 ); /* out32_Q14_{0,1,2,3} + (1<<14) - 1 */ + out_s16x4 = vqshrn_n_s32( out32_Q14_s32x4, 14 ); /* (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,2,3} + (1<<14) - 1, 14 ) ) */ + vst1_s16( &out[ 2 * k ], out_s16x4 ); /* out[ 2 * k + {0,1,2,3} ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,2,3} + (1<<14) - 1, 14 ) ); */ + } + + /* Process leftover. */ + if( k < len ) { + int32x4_t in_s32x4; + int32x2_t out32_Q14_s32x2; + + /* S[ 2 * i + 0 ], S[ 2 * i + 1 ]: Q12 */ + in_s16x4 = vld1_lane_s16( &in[ 2 * k + 0 ], in_s16x4, 0 ); /* in{0,1} = in[ 2 * k + {0,1} ]; */ + in_s16x4 = vld1_lane_s16( &in[ 2 * k + 1 ], in_s16x4, 1 ); /* in{0,1} = in[ 2 * k + {0,1} ]; */ + in_s32x4 = vshll_n_s16( in_s16x4, 15 ); /* in{0,1} << 15 */ + t_s32x2 = vqdmulh_lane_s32( vget_low_s32( in_s32x4 ), B_Q28_s32x2, 0 ); /* silk_SMULWB( B_Q28[ 0 ], in{0,1} ) */ + in_s32x4 = vcombine_s32( vget_low_s32( in_s32x4 ), vget_low_s32( in_s32x4 ) ); /* in{0,1,0,1} << 15 */ + silk_biquad_alt_stride2_kernel( A_L_s32x4, A_U_s32x4, B_Q28_s32x4, t_s32x2, in_s32x4, &S_s32x4, &out32_Q14_s32x2 ); + + /* Scale back to Q0 and saturate */ + out32_Q14_s32x2 = vadd_s32( out32_Q14_s32x2, offset_s32x2 ); /* out32_Q14_{0,1} + (1<<14) - 1 */ + out32_Q14_s32x4 = vcombine_s32( out32_Q14_s32x2, out32_Q14_s32x2 ); /* out32_Q14_{0,1,0,1} + (1<<14) - 1 */ + out_s16x4 = vqshrn_n_s32( out32_Q14_s32x4, 14 ); /* (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_{0,1,0,1} + (1<<14) - 1, 14 ) ) */ + vst1_lane_s16( &out[ 2 * k + 0 ], out_s16x4, 0 ); /* out[ 2 * k + 0 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_0 + (1<<14) - 1, 14 ) ); */ + vst1_lane_s16( &out[ 2 * k + 1 ], out_s16x4, 1 ); /* out[ 2 * k + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14_1 + (1<<14) - 1, 14 ) ); */ + } + + vst1q_lane_s32( &S[ 0 ], S_s32x4, 0 ); /* S[ 0 ] = S0; */ + vst1q_lane_s32( &S[ 1 ], S_s32x4, 2 ); /* S[ 1 ] = S2; */ + vst1q_lane_s32( &S[ 2 ], S_s32x4, 1 ); /* S[ 2 ] = S1; */ + vst1q_lane_s32( &S[ 3 ], S_s32x4, 3 ); /* S[ 3 ] = S3; */ + +#ifdef OPUS_CHECK_ASM + silk_assert( !memcmp( S_c, S, sizeof( S_c ) ) ); + silk_assert( !memcmp( out_c, out, 2 * len * sizeof( opus_int16 ) ) ); + RESTORE_STACK; +#endif +} diff --git a/thirdparty/opus/silk/arm/macros_armv4.h b/thirdparty/opus/silk/arm/macros_armv4.h index 3f30e97288..877eb18dd5 100644 --- a/thirdparty/opus/silk/arm/macros_armv4.h +++ b/thirdparty/opus/silk/arm/macros_armv4.h @@ -28,6 +28,11 @@ POSSIBILITY OF SUCH DAMAGE. #ifndef SILK_MACROS_ARMv4_H #define SILK_MACROS_ARMv4_H +/* This macro only avoids the undefined behaviour from a left shift of + a negative value. It should only be used in macros that can't include + SigProc_FIX.h. In other cases, use silk_LSHIFT32(). */ +#define SAFE_SHL(a,b) ((opus_int32)((opus_uint32)(a) << (b))) + /* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */ #undef silk_SMULWB static OPUS_INLINE opus_int32 silk_SMULWB_armv4(opus_int32 a, opus_int16 b) @@ -38,7 +43,7 @@ static OPUS_INLINE opus_int32 silk_SMULWB_armv4(opus_int32 a, opus_int16 b) "#silk_SMULWB\n\t" "smull %0, %1, %2, %3\n\t" : "=&r"(rd_lo), "=&r"(rd_hi) - : "%r"(a), "r"(b<<16) + : "%r"(a), "r"(SAFE_SHL(b,16)) ); return rd_hi; } @@ -80,7 +85,7 @@ static OPUS_INLINE opus_int32 silk_SMULWW_armv4(opus_int32 a, opus_int32 b) : "=&r"(rd_lo), "=&r"(rd_hi) : "%r"(a), "r"(b) ); - return (rd_hi<<16)+(rd_lo>>16); + return SAFE_SHL(rd_hi,16)+(rd_lo>>16); } #define silk_SMULWW(a, b) (silk_SMULWW_armv4(a, b)) @@ -96,8 +101,10 @@ static OPUS_INLINE opus_int32 silk_SMLAWW_armv4(opus_int32 a, opus_int32 b, : "=&r"(rd_lo), "=&r"(rd_hi) : "%r"(b), "r"(c) ); - return a+(rd_hi<<16)+(rd_lo>>16); + return a+SAFE_SHL(rd_hi,16)+(rd_lo>>16); } #define silk_SMLAWW(a, b, c) (silk_SMLAWW_armv4(a, b, c)) +#undef SAFE_SHL + #endif /* SILK_MACROS_ARMv4_H */ diff --git a/thirdparty/opus/silk/arm/macros_armv5e.h b/thirdparty/opus/silk/arm/macros_armv5e.h index aad4117e46..b14ec65ddb 100644 --- a/thirdparty/opus/silk/arm/macros_armv5e.h +++ b/thirdparty/opus/silk/arm/macros_armv5e.h @@ -29,6 +29,11 @@ POSSIBILITY OF SUCH DAMAGE. #ifndef SILK_MACROS_ARMv5E_H #define SILK_MACROS_ARMv5E_H +/* This macro only avoids the undefined behaviour from a left shift of + a negative value. It should only be used in macros that can't include + SigProc_FIX.h. In other cases, use silk_LSHIFT32(). */ +#define SAFE_SHL(a,b) ((opus_int32)((opus_uint32)(a) << (b))) + /* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */ #undef silk_SMULWB static OPUS_INLINE opus_int32 silk_SMULWB_armv5e(opus_int32 a, opus_int16 b) @@ -190,7 +195,7 @@ static OPUS_INLINE opus_int32 silk_CLZ16_armv5(opus_int16 in16) "#silk_CLZ16\n\t" "clz %0, %1;\n" : "=r"(res) - : "r"(in16<<16|0x8000) + : "r"(SAFE_SHL(in16,16)|0x8000) ); return res; } @@ -210,4 +215,6 @@ static OPUS_INLINE opus_int32 silk_CLZ32_armv5(opus_int32 in32) } #define silk_CLZ32(in32) (silk_CLZ32_armv5(in32)) +#undef SAFE_SHL + #endif /* SILK_MACROS_ARMv5E_H */ diff --git a/thirdparty/opus/silk/biquad_alt.c b/thirdparty/opus/silk/biquad_alt.c index d55f5ee92e..54566a43c0 100644 --- a/thirdparty/opus/silk/biquad_alt.c +++ b/thirdparty/opus/silk/biquad_alt.c @@ -39,14 +39,13 @@ POSSIBILITY OF SUCH DAMAGE. #include "SigProc_FIX.h" /* Second order ARMA filter, alternative implementation */ -void silk_biquad_alt( +void silk_biquad_alt_stride1( const opus_int16 *in, /* I input signal */ const opus_int32 *B_Q28, /* I MA coefficients [3] */ const opus_int32 *A_Q28, /* I AR coefficients [2] */ opus_int32 *S, /* I/O State vector [2] */ opus_int16 *out, /* O output signal */ - const opus_int32 len, /* I signal length (must be even) */ - opus_int stride /* I Operate on interleaved signal if > 1 */ + const opus_int32 len /* I signal length (must be even) */ ) { /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */ @@ -61,7 +60,7 @@ void silk_biquad_alt( for( k = 0; k < len; k++ ) { /* S[ 0 ], S[ 1 ]: Q12 */ - inval = in[ k * stride ]; + inval = in[ k ]; out32_Q14 = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[ 0 ], inval ), 2 ); S[ 0 ] = S[1] + silk_RSHIFT_ROUND( silk_SMULWB( out32_Q14, A0_L_Q28 ), 14 ); @@ -73,6 +72,50 @@ void silk_biquad_alt( S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], inval ); /* Scale back to Q0 and saturate */ - out[ k * stride ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14 + (1<<14) - 1, 14 ) ); + out[ k ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14 + (1<<14) - 1, 14 ) ); + } +} + +void silk_biquad_alt_stride2_c( + const opus_int16 *in, /* I input signal */ + const opus_int32 *B_Q28, /* I MA coefficients [3] */ + const opus_int32 *A_Q28, /* I AR coefficients [2] */ + opus_int32 *S, /* I/O State vector [4] */ + opus_int16 *out, /* O output signal */ + const opus_int32 len /* I signal length (must be even) */ +) +{ + /* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */ + opus_int k; + opus_int32 A0_U_Q28, A0_L_Q28, A1_U_Q28, A1_L_Q28, out32_Q14[ 2 ]; + + /* Negate A_Q28 values and split in two parts */ + A0_L_Q28 = ( -A_Q28[ 0 ] ) & 0x00003FFF; /* lower part */ + A0_U_Q28 = silk_RSHIFT( -A_Q28[ 0 ], 14 ); /* upper part */ + A1_L_Q28 = ( -A_Q28[ 1 ] ) & 0x00003FFF; /* lower part */ + A1_U_Q28 = silk_RSHIFT( -A_Q28[ 1 ], 14 ); /* upper part */ + + for( k = 0; k < len; k++ ) { + /* S[ 0 ], S[ 1 ], S[ 2 ], S[ 3 ]: Q12 */ + out32_Q14[ 0 ] = silk_LSHIFT( silk_SMLAWB( S[ 0 ], B_Q28[ 0 ], in[ 2 * k + 0 ] ), 2 ); + out32_Q14[ 1 ] = silk_LSHIFT( silk_SMLAWB( S[ 2 ], B_Q28[ 0 ], in[ 2 * k + 1 ] ), 2 ); + + S[ 0 ] = S[ 1 ] + silk_RSHIFT_ROUND( silk_SMULWB( out32_Q14[ 0 ], A0_L_Q28 ), 14 ); + S[ 2 ] = S[ 3 ] + silk_RSHIFT_ROUND( silk_SMULWB( out32_Q14[ 1 ], A0_L_Q28 ), 14 ); + S[ 0 ] = silk_SMLAWB( S[ 0 ], out32_Q14[ 0 ], A0_U_Q28 ); + S[ 2 ] = silk_SMLAWB( S[ 2 ], out32_Q14[ 1 ], A0_U_Q28 ); + S[ 0 ] = silk_SMLAWB( S[ 0 ], B_Q28[ 1 ], in[ 2 * k + 0 ] ); + S[ 2 ] = silk_SMLAWB( S[ 2 ], B_Q28[ 1 ], in[ 2 * k + 1 ] ); + + S[ 1 ] = silk_RSHIFT_ROUND( silk_SMULWB( out32_Q14[ 0 ], A1_L_Q28 ), 14 ); + S[ 3 ] = silk_RSHIFT_ROUND( silk_SMULWB( out32_Q14[ 1 ], A1_L_Q28 ), 14 ); + S[ 1 ] = silk_SMLAWB( S[ 1 ], out32_Q14[ 0 ], A1_U_Q28 ); + S[ 3 ] = silk_SMLAWB( S[ 3 ], out32_Q14[ 1 ], A1_U_Q28 ); + S[ 1 ] = silk_SMLAWB( S[ 1 ], B_Q28[ 2 ], in[ 2 * k + 0 ] ); + S[ 3 ] = silk_SMLAWB( S[ 3 ], B_Q28[ 2 ], in[ 2 * k + 1 ] ); + + /* Scale back to Q0 and saturate */ + out[ 2 * k + 0 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14[ 0 ] + (1<<14) - 1, 14 ) ); + out[ 2 * k + 1 ] = (opus_int16)silk_SAT16( silk_RSHIFT( out32_Q14[ 1 ] + (1<<14) - 1, 14 ) ); } } diff --git a/thirdparty/opus/silk/bwexpander.c b/thirdparty/opus/silk/bwexpander.c index 2eb4456695..afa97907ec 100644 --- a/thirdparty/opus/silk/bwexpander.c +++ b/thirdparty/opus/silk/bwexpander.c @@ -45,7 +45,7 @@ void silk_bwexpander( /* Bias in silk_SMULWB can lead to unstable filters */ for( i = 0; i < d - 1; i++ ) { ar[ i ] = (opus_int16)silk_RSHIFT_ROUND( silk_MUL( chirp_Q16, ar[ i ] ), 16 ); - chirp_Q16 += silk_RSHIFT_ROUND( silk_MUL( chirp_Q16, chirp_minus_one_Q16 ), 16 ); + chirp_Q16 += silk_RSHIFT_ROUND( silk_MUL( chirp_Q16, chirp_minus_one_Q16 ), 16 ); } ar[ d - 1 ] = (opus_int16)silk_RSHIFT_ROUND( silk_MUL( chirp_Q16, ar[ d - 1 ] ), 16 ); } diff --git a/thirdparty/opus/silk/check_control_input.c b/thirdparty/opus/silk/check_control_input.c index b5de9ce48d..739fb01f1e 100644 --- a/thirdparty/opus/silk/check_control_input.c +++ b/thirdparty/opus/silk/check_control_input.c @@ -38,7 +38,7 @@ opus_int check_control_input( silk_EncControlStruct *encControl /* I Control structure */ ) { - silk_assert( encControl != NULL ); + celt_assert( encControl != NULL ); if( ( ( encControl->API_sampleRate != 8000 ) && ( encControl->API_sampleRate != 12000 ) && @@ -59,46 +59,46 @@ opus_int check_control_input( ( encControl->minInternalSampleRate > encControl->desiredInternalSampleRate ) || ( encControl->maxInternalSampleRate < encControl->desiredInternalSampleRate ) || ( encControl->minInternalSampleRate > encControl->maxInternalSampleRate ) ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_FS_NOT_SUPPORTED; } if( encControl->payloadSize_ms != 10 && encControl->payloadSize_ms != 20 && encControl->payloadSize_ms != 40 && encControl->payloadSize_ms != 60 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_PACKET_SIZE_NOT_SUPPORTED; } if( encControl->packetLossPercentage < 0 || encControl->packetLossPercentage > 100 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_LOSS_RATE; } if( encControl->useDTX < 0 || encControl->useDTX > 1 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_DTX_SETTING; } if( encControl->useCBR < 0 || encControl->useCBR > 1 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_CBR_SETTING; } if( encControl->useInBandFEC < 0 || encControl->useInBandFEC > 1 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_INBAND_FEC_SETTING; } if( encControl->nChannelsAPI < 1 || encControl->nChannelsAPI > ENCODER_NUM_CHANNELS ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_NUMBER_OF_CHANNELS_ERROR; } if( encControl->nChannelsInternal < 1 || encControl->nChannelsInternal > ENCODER_NUM_CHANNELS ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_NUMBER_OF_CHANNELS_ERROR; } if( encControl->nChannelsInternal > encControl->nChannelsAPI ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_NUMBER_OF_CHANNELS_ERROR; } if( encControl->complexity < 0 || encControl->complexity > 10 ) { - silk_assert( 0 ); + celt_assert( 0 ); return SILK_ENC_INVALID_COMPLEXITY_SETTING; } diff --git a/thirdparty/opus/silk/control.h b/thirdparty/opus/silk/control.h index 747e5426a0..b76ec33cd6 100644 --- a/thirdparty/opus/silk/control.h +++ b/thirdparty/opus/silk/control.h @@ -77,6 +77,9 @@ typedef struct { /* I: Flag to enable in-band Forward Error Correction (FEC); 0/1 */ opus_int useInBandFEC; + /* I: Flag to actually code in-band Forward Error Correction (FEC) in the current packet; 0/1 */ + opus_int LBRR_coded; + /* I: Flag to enable discontinuous transmission (DTX); 0/1 */ opus_int useDTX; @@ -110,6 +113,11 @@ typedef struct { /* O: Tells the Opus encoder we're ready to switch */ opus_int switchReady; + /* O: SILK Signal type */ + opus_int signalType; + + /* O: SILK offset (dithering) */ + opus_int offset; } silk_EncControlStruct; /**************************************************************************/ diff --git a/thirdparty/opus/silk/control_SNR.c b/thirdparty/opus/silk/control_SNR.c index cee87eb0d8..9a6db27543 100644 --- a/thirdparty/opus/silk/control_SNR.c +++ b/thirdparty/opus/silk/control_SNR.c @@ -32,45 +32,82 @@ POSSIBILITY OF SUCH DAMAGE. #include "main.h" #include "tuning_parameters.h" +/* These tables hold SNR values divided by 21 (so they fit in 8 bits) + for different target bitrates spaced at 400 bps interval. The first + 10 values are omitted (0-4 kb/s) because they're all zeros. + These tables were obtained by running different SNRs through the + encoder and measuring the active bitrate. */ +static const unsigned char silk_TargetRate_NB_21[117 - 10] = { + 0, 15, 39, 52, 61, 68, + 74, 79, 84, 88, 92, 95, 99,102,105,108,111,114,117,119,122,124, + 126,129,131,133,135,137,139,142,143,145,147,149,151,153,155,157, + 158,160,162,163,165,167,168,170,171,173,174,176,177,179,180,182, + 183,185,186,187,189,190,192,193,194,196,197,199,200,201,203,204, + 205,207,208,209,211,212,213,215,216,217,219,220,221,223,224,225, + 227,228,230,231,232,234,235,236,238,239,241,242,243,245,246,248, + 249,250,252,253,255 +}; + +static const unsigned char silk_TargetRate_MB_21[165 - 10] = { + 0, 0, 28, 43, 52, 59, + 65, 70, 74, 78, 81, 85, 87, 90, 93, 95, 98,100,102,105,107,109, + 111,113,115,116,118,120,122,123,125,127,128,130,131,133,134,136, + 137,138,140,141,143,144,145,147,148,149,151,152,153,154,156,157, + 158,159,160,162,163,164,165,166,167,168,169,171,172,173,174,175, + 176,177,178,179,180,181,182,183,184,185,186,187,188,188,189,190, + 191,192,193,194,195,196,197,198,199,200,201,202,203,203,204,205, + 206,207,208,209,210,211,212,213,214,214,215,216,217,218,219,220, + 221,222,223,224,224,225,226,227,228,229,230,231,232,233,234,235, + 236,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250, + 251,252,253,254,255 +}; + +static const unsigned char silk_TargetRate_WB_21[201 - 10] = { + 0, 0, 0, 8, 29, 41, + 49, 56, 62, 66, 70, 74, 77, 80, 83, 86, 88, 91, 93, 95, 97, 99, + 101,103,105,107,108,110,112,113,115,116,118,119,121,122,123,125, + 126,127,129,130,131,132,134,135,136,137,138,140,141,142,143,144, + 145,146,147,148,149,150,151,152,153,154,156,157,158,159,159,160, + 161,162,163,164,165,166,167,168,169,170,171,171,172,173,174,175, + 176,177,177,178,179,180,181,181,182,183,184,185,185,186,187,188, + 189,189,190,191,192,192,193,194,195,195,196,197,198,198,199,200, + 200,201,202,203,203,204,205,206,206,207,208,209,209,210,211,211, + 212,213,214,214,215,216,216,217,218,219,219,220,221,221,222,223, + 224,224,225,226,226,227,228,229,229,230,231,232,232,233,234,234, + 235,236,237,237,238,239,240,240,241,242,243,243,244,245,246,246, + 247,248,249,249,250,251,252,253,255 +}; + /* Control SNR of redidual quantizer */ opus_int silk_control_SNR( silk_encoder_state *psEncC, /* I/O Pointer to Silk encoder state */ opus_int32 TargetRate_bps /* I Target max bitrate (bps) */ ) { - opus_int k, ret = SILK_NO_ERROR; - opus_int32 frac_Q6; - const opus_int32 *rateTable; - - /* Set bitrate/coding quality */ - TargetRate_bps = silk_LIMIT( TargetRate_bps, MIN_TARGET_RATE_BPS, MAX_TARGET_RATE_BPS ); - if( TargetRate_bps != psEncC->TargetRate_bps ) { - psEncC->TargetRate_bps = TargetRate_bps; - - /* If new TargetRate_bps, translate to SNR_dB value */ - if( psEncC->fs_kHz == 8 ) { - rateTable = silk_TargetRate_table_NB; - } else if( psEncC->fs_kHz == 12 ) { - rateTable = silk_TargetRate_table_MB; - } else { - rateTable = silk_TargetRate_table_WB; - } + int id; + int bound; + const unsigned char *snr_table; - /* Reduce bitrate for 10 ms modes in these calculations */ - if( psEncC->nb_subfr == 2 ) { - TargetRate_bps -= REDUCE_BITRATE_10_MS_BPS; - } - - /* Find bitrate interval in table and interpolate */ - for( k = 1; k < TARGET_RATE_TAB_SZ; k++ ) { - if( TargetRate_bps <= rateTable[ k ] ) { - frac_Q6 = silk_DIV32( silk_LSHIFT( TargetRate_bps - rateTable[ k - 1 ], 6 ), - rateTable[ k ] - rateTable[ k - 1 ] ); - psEncC->SNR_dB_Q7 = silk_LSHIFT( silk_SNR_table_Q1[ k - 1 ], 6 ) + silk_MUL( frac_Q6, silk_SNR_table_Q1[ k ] - silk_SNR_table_Q1[ k - 1 ] ); - break; - } - } + psEncC->TargetRate_bps = TargetRate_bps; + if( psEncC->nb_subfr == 2 ) { + TargetRate_bps -= 2000 + psEncC->fs_kHz/16; } - - return ret; + if( psEncC->fs_kHz == 8 ) { + bound = sizeof(silk_TargetRate_NB_21); + snr_table = silk_TargetRate_NB_21; + } else if( psEncC->fs_kHz == 12 ) { + bound = sizeof(silk_TargetRate_MB_21); + snr_table = silk_TargetRate_MB_21; + } else { + bound = sizeof(silk_TargetRate_WB_21); + snr_table = silk_TargetRate_WB_21; + } + id = (TargetRate_bps+200)/400; + id = silk_min(id - 10, bound-1); + if( id <= 0 ) { + psEncC->SNR_dB_Q7 = 0; + } else { + psEncC->SNR_dB_Q7 = snr_table[id]*21; + } + return SILK_NO_ERROR; } diff --git a/thirdparty/opus/silk/control_audio_bandwidth.c b/thirdparty/opus/silk/control_audio_bandwidth.c index 4f9bc5cbda..f6d22d8395 100644 --- a/thirdparty/opus/silk/control_audio_bandwidth.c +++ b/thirdparty/opus/silk/control_audio_bandwidth.c @@ -39,9 +39,15 @@ opus_int silk_control_audio_bandwidth( ) { opus_int fs_kHz; + opus_int orig_kHz; opus_int32 fs_Hz; - fs_kHz = psEncC->fs_kHz; + orig_kHz = psEncC->fs_kHz; + /* Handle a bandwidth-switching reset where we need to be aware what the last sampling rate was. */ + if( orig_kHz == 0 ) { + orig_kHz = psEncC->sLP.saved_fs_kHz; + } + fs_kHz = orig_kHz; fs_Hz = silk_SMULBB( fs_kHz, 1000 ); if( fs_Hz == 0 ) { /* Encoder has just been initialized */ @@ -61,7 +67,7 @@ opus_int silk_control_audio_bandwidth( } if( psEncC->allow_bandwidth_switch || encControl->opusCanSwitch ) { /* Check if we should switch down */ - if( silk_SMULBB( psEncC->fs_kHz, 1000 ) > psEncC->desiredInternal_fs_Hz ) + if( silk_SMULBB( orig_kHz, 1000 ) > psEncC->desiredInternal_fs_Hz ) { /* Switch down */ if( psEncC->sLP.mode == 0 ) { @@ -76,7 +82,7 @@ opus_int silk_control_audio_bandwidth( psEncC->sLP.mode = 0; /* Switch to a lower sample frequency */ - fs_kHz = psEncC->fs_kHz == 16 ? 12 : 8; + fs_kHz = orig_kHz == 16 ? 12 : 8; } else { if( psEncC->sLP.transition_frame_no <= 0 ) { encControl->switchReady = 1; @@ -90,12 +96,12 @@ opus_int silk_control_audio_bandwidth( } else /* Check if we should switch up */ - if( silk_SMULBB( psEncC->fs_kHz, 1000 ) < psEncC->desiredInternal_fs_Hz ) + if( silk_SMULBB( orig_kHz, 1000 ) < psEncC->desiredInternal_fs_Hz ) { /* Switch up */ if( encControl->opusCanSwitch ) { /* Switch to a higher sample frequency */ - fs_kHz = psEncC->fs_kHz == 8 ? 12 : 16; + fs_kHz = orig_kHz == 8 ? 12 : 16; /* New transition */ psEncC->sLP.transition_frame_no = 0; diff --git a/thirdparty/opus/silk/control_codec.c b/thirdparty/opus/silk/control_codec.c index 044eea3f2a..52aa8fded3 100644 --- a/thirdparty/opus/silk/control_codec.c +++ b/thirdparty/opus/silk/control_codec.c @@ -57,7 +57,7 @@ static opus_int silk_setup_complexity( static OPUS_INLINE opus_int silk_setup_LBRR( silk_encoder_state *psEncC, /* I/O */ - const opus_int32 TargetRate_bps /* I */ + const silk_EncControlStruct *encControl /* I */ ); @@ -65,7 +65,6 @@ static OPUS_INLINE opus_int silk_setup_LBRR( opus_int silk_control_encoder( silk_encoder_state_Fxx *psEnc, /* I/O Pointer to Silk encoder state */ silk_EncControlStruct *encControl, /* I Control structure */ - const opus_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const opus_int allow_bw_switch, /* I Flag to allow switching audio bandwidth */ const opus_int channelNb, /* I Channel number */ const opus_int force_fs_kHz @@ -125,7 +124,7 @@ opus_int silk_control_encoder( /********************************************/ /* Set LBRR usage */ /********************************************/ - ret += silk_setup_LBRR( &psEnc->sCmn, TargetRate_bps ); + ret += silk_setup_LBRR( &psEnc->sCmn, encControl ); psEnc->sCmn.controlled_since_last_payload = 1; @@ -239,12 +238,11 @@ static opus_int silk_setup_fs( } /* Set internal sampling frequency */ - silk_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 ); - silk_assert( psEnc->sCmn.nb_subfr == 2 || psEnc->sCmn.nb_subfr == 4 ); + celt_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 ); + celt_assert( psEnc->sCmn.nb_subfr == 2 || psEnc->sCmn.nb_subfr == 4 ); if( psEnc->sCmn.fs_kHz != fs_kHz ) { /* reset part of the state */ silk_memset( &psEnc->sShape, 0, sizeof( psEnc->sShape ) ); - silk_memset( &psEnc->sPrefilt, 0, sizeof( psEnc->sPrefilt ) ); silk_memset( &psEnc->sCmn.sNSQ, 0, sizeof( psEnc->sCmn.sNSQ ) ); silk_memset( psEnc->sCmn.prev_NLSFq_Q15, 0, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) ); silk_memset( &psEnc->sCmn.sLP.In_LP_State, 0, sizeof( psEnc->sCmn.sLP.In_LP_State ) ); @@ -255,7 +253,6 @@ static opus_int silk_setup_fs( /* Initialize non-zero parameters */ psEnc->sCmn.prevLag = 100; psEnc->sCmn.first_frame_after_reset = 1; - psEnc->sPrefilt.lagPrev = 100; psEnc->sShape.LastGainIndex = 10; psEnc->sCmn.sNSQ.lagPrev = 100; psEnc->sCmn.sNSQ.prev_gain_Q16 = 65536; @@ -293,19 +290,16 @@ static opus_int silk_setup_fs( psEnc->sCmn.pitch_LPC_win_length = silk_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); } if( psEnc->sCmn.fs_kHz == 16 ) { - psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_WB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform8_iCDF; } else if( psEnc->sCmn.fs_kHz == 12 ) { - psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_MB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform6_iCDF; } else { - psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_NB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform4_iCDF; } } /* Check that settings are valid */ - silk_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length ); + celt_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length ); return ret; } @@ -318,61 +312,76 @@ static opus_int silk_setup_complexity( opus_int ret = 0; /* Set encoding complexity */ - silk_assert( Complexity >= 0 && Complexity <= 10 ); - if( Complexity < 2 ) { + celt_assert( Complexity >= 0 && Complexity <= 10 ); + if( Complexity < 1 ) { psEncC->pitchEstimationComplexity = SILK_PE_MIN_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.8, 16 ); psEncC->pitchEstimationLPCOrder = 6; - psEncC->shapingLPCOrder = 8; + psEncC->shapingLPCOrder = 12; psEncC->la_shape = 3 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 1; psEncC->useInterpolatedNLSFs = 0; - psEncC->LTPQuantLowComplexity = 1; psEncC->NLSF_MSVQ_Survivors = 2; psEncC->warping_Q16 = 0; - } else if( Complexity < 4 ) { + } else if( Complexity < 2 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.76, 16 ); psEncC->pitchEstimationLPCOrder = 8; - psEncC->shapingLPCOrder = 10; + psEncC->shapingLPCOrder = 14; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 1; psEncC->useInterpolatedNLSFs = 0; - psEncC->LTPQuantLowComplexity = 0; + psEncC->NLSF_MSVQ_Survivors = 3; + psEncC->warping_Q16 = 0; + } else if( Complexity < 3 ) { + psEncC->pitchEstimationComplexity = SILK_PE_MIN_COMPLEX; + psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.8, 16 ); + psEncC->pitchEstimationLPCOrder = 6; + psEncC->shapingLPCOrder = 12; + psEncC->la_shape = 3 * psEncC->fs_kHz; + psEncC->nStatesDelayedDecision = 2; + psEncC->useInterpolatedNLSFs = 0; + psEncC->NLSF_MSVQ_Survivors = 2; + psEncC->warping_Q16 = 0; + } else if( Complexity < 4 ) { + psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; + psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.76, 16 ); + psEncC->pitchEstimationLPCOrder = 8; + psEncC->shapingLPCOrder = 14; + psEncC->la_shape = 5 * psEncC->fs_kHz; + psEncC->nStatesDelayedDecision = 2; + psEncC->useInterpolatedNLSFs = 0; psEncC->NLSF_MSVQ_Survivors = 4; psEncC->warping_Q16 = 0; } else if( Complexity < 6 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.74, 16 ); psEncC->pitchEstimationLPCOrder = 10; - psEncC->shapingLPCOrder = 12; + psEncC->shapingLPCOrder = 16; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 2; psEncC->useInterpolatedNLSFs = 1; - psEncC->LTPQuantLowComplexity = 0; - psEncC->NLSF_MSVQ_Survivors = 8; + psEncC->NLSF_MSVQ_Survivors = 6; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } else if( Complexity < 8 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.72, 16 ); psEncC->pitchEstimationLPCOrder = 12; - psEncC->shapingLPCOrder = 14; + psEncC->shapingLPCOrder = 20; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 3; psEncC->useInterpolatedNLSFs = 1; - psEncC->LTPQuantLowComplexity = 0; - psEncC->NLSF_MSVQ_Survivors = 16; + psEncC->NLSF_MSVQ_Survivors = 8; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } else { psEncC->pitchEstimationComplexity = SILK_PE_MAX_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.7, 16 ); psEncC->pitchEstimationLPCOrder = 16; - psEncC->shapingLPCOrder = 16; + psEncC->shapingLPCOrder = 24; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = MAX_DEL_DEC_STATES; psEncC->useInterpolatedNLSFs = 1; - psEncC->LTPQuantLowComplexity = 0; - psEncC->NLSF_MSVQ_Survivors = 32; + psEncC->NLSF_MSVQ_Survivors = 16; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } @@ -381,46 +390,32 @@ static opus_int silk_setup_complexity( psEncC->shapeWinLength = SUB_FRAME_LENGTH_MS * psEncC->fs_kHz + 2 * psEncC->la_shape; psEncC->Complexity = Complexity; - silk_assert( psEncC->pitchEstimationLPCOrder <= MAX_FIND_PITCH_LPC_ORDER ); - silk_assert( psEncC->shapingLPCOrder <= MAX_SHAPE_LPC_ORDER ); - silk_assert( psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES ); - silk_assert( psEncC->warping_Q16 <= 32767 ); - silk_assert( psEncC->la_shape <= LA_SHAPE_MAX ); - silk_assert( psEncC->shapeWinLength <= SHAPE_LPC_WIN_MAX ); - silk_assert( psEncC->NLSF_MSVQ_Survivors <= NLSF_VQ_MAX_SURVIVORS ); + celt_assert( psEncC->pitchEstimationLPCOrder <= MAX_FIND_PITCH_LPC_ORDER ); + celt_assert( psEncC->shapingLPCOrder <= MAX_SHAPE_LPC_ORDER ); + celt_assert( psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES ); + celt_assert( psEncC->warping_Q16 <= 32767 ); + celt_assert( psEncC->la_shape <= LA_SHAPE_MAX ); + celt_assert( psEncC->shapeWinLength <= SHAPE_LPC_WIN_MAX ); return ret; } static OPUS_INLINE opus_int silk_setup_LBRR( silk_encoder_state *psEncC, /* I/O */ - const opus_int32 TargetRate_bps /* I */ + const silk_EncControlStruct *encControl /* I */ ) { opus_int LBRR_in_previous_packet, ret = SILK_NO_ERROR; - opus_int32 LBRR_rate_thres_bps; LBRR_in_previous_packet = psEncC->LBRR_enabled; - psEncC->LBRR_enabled = 0; - if( psEncC->useInBandFEC && psEncC->PacketLoss_perc > 0 ) { - if( psEncC->fs_kHz == 8 ) { - LBRR_rate_thres_bps = LBRR_NB_MIN_RATE_BPS; - } else if( psEncC->fs_kHz == 12 ) { - LBRR_rate_thres_bps = LBRR_MB_MIN_RATE_BPS; + psEncC->LBRR_enabled = encControl->LBRR_coded; + if( psEncC->LBRR_enabled ) { + /* Set gain increase for coding LBRR excitation */ + if( LBRR_in_previous_packet == 0 ) { + /* Previous packet did not have LBRR, and was therefore coded at a higher bitrate */ + psEncC->LBRR_GainIncreases = 7; } else { - LBRR_rate_thres_bps = LBRR_WB_MIN_RATE_BPS; - } - LBRR_rate_thres_bps = silk_SMULWB( silk_MUL( LBRR_rate_thres_bps, 125 - silk_min( psEncC->PacketLoss_perc, 25 ) ), SILK_FIX_CONST( 0.01, 16 ) ); - - if( TargetRate_bps > LBRR_rate_thres_bps ) { - /* Set gain increase for coding LBRR excitation */ - if( LBRR_in_previous_packet == 0 ) { - /* Previous packet did not have LBRR, and was therefore coded at a higher bitrate */ - psEncC->LBRR_GainIncreases = 7; - } else { - psEncC->LBRR_GainIncreases = silk_max_int( 7 - silk_SMULWB( (opus_int32)psEncC->PacketLoss_perc, SILK_FIX_CONST( 0.4, 16 ) ), 2 ); - } - psEncC->LBRR_enabled = 1; + psEncC->LBRR_GainIncreases = silk_max_int( 7 - silk_SMULWB( (opus_int32)psEncC->PacketLoss_perc, SILK_FIX_CONST( 0.4, 16 ) ), 2 ); } } diff --git a/thirdparty/opus/silk/debug.h b/thirdparty/opus/silk/debug.h index efb6d3e99e..6f68c1ca0f 100644 --- a/thirdparty/opus/silk/debug.h +++ b/thirdparty/opus/silk/debug.h @@ -39,23 +39,10 @@ extern "C" unsigned long GetHighResolutionTime(void); /* O time in usec*/ -/* make SILK_DEBUG dependent on compiler's _DEBUG */ -#if defined _WIN32 - #ifdef _DEBUG - #define SILK_DEBUG 1 - #else - #define SILK_DEBUG 0 - #endif - - /* overrule the above */ - #if 0 - /* #define NO_ASSERTS*/ - #undef SILK_DEBUG - #define SILK_DEBUG 1 - #endif -#else - #define SILK_DEBUG 0 -#endif +/* Set to 1 to enable DEBUG_STORE_DATA() macros for dumping + * intermediate signals from the codec. + */ +#define SILK_DEBUG 0 /* Flag for using timers */ #define SILK_TIC_TOC 0 diff --git a/thirdparty/opus/silk/dec_API.c b/thirdparty/opus/silk/dec_API.c index b7d8ed48d8..7d5ca7fb9f 100644 --- a/thirdparty/opus/silk/dec_API.c +++ b/thirdparty/opus/silk/dec_API.c @@ -104,7 +104,7 @@ opus_int silk_Decode( /* O Returns error co int delay_stack_alloc; SAVE_STACK; - silk_assert( decControl->nChannelsInternal == 1 || decControl->nChannelsInternal == 2 ); + celt_assert( decControl->nChannelsInternal == 1 || decControl->nChannelsInternal == 2 ); /**********************************/ /* Test if first frame in payload */ @@ -143,13 +143,13 @@ opus_int silk_Decode( /* O Returns error co channel_state[ n ].nFramesPerPacket = 3; channel_state[ n ].nb_subfr = 4; } else { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return SILK_DEC_INVALID_FRAME_SIZE; } fs_kHz_dec = ( decControl->internalSampleRate >> 10 ) + 1; if( fs_kHz_dec != 8 && fs_kHz_dec != 12 && fs_kHz_dec != 16 ) { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return SILK_DEC_INVALID_SAMPLING_FREQUENCY; } diff --git a/thirdparty/opus/silk/decode_core.c b/thirdparty/opus/silk/decode_core.c index e569c0e72b..1c352a6522 100644 --- a/thirdparty/opus/silk/decode_core.c +++ b/thirdparty/opus/silk/decode_core.c @@ -141,7 +141,7 @@ void silk_decode_core( if( k == 0 || ( k == 2 && NLSF_interpolation_flag ) ) { /* Rewhiten with new A coefs */ start_idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2; - silk_assert( start_idx > 0 ); + celt_assert( start_idx > 0 ); if( k == 2 ) { silk_memcpy( &psDec->outBuf[ psDec->ltp_mem_length ], xq, 2 * psDec->subfr_length * sizeof( opus_int16 ) ); @@ -196,7 +196,7 @@ void silk_decode_core( for( i = 0; i < psDec->subfr_length; i++ ) { /* Short-term prediction */ - silk_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 ); + celt_assert( psDec->LPC_order == 10 || psDec->LPC_order == 16 ); /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ LPC_pred_Q10 = silk_RSHIFT( psDec->LPC_order, 1 ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14[ MAX_LPC_ORDER + i - 1 ], A_Q12_tmp[ 0 ] ); @@ -225,8 +225,6 @@ void silk_decode_core( pxq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( sLPC_Q14[ MAX_LPC_ORDER + i ], Gain_Q10 ), 8 ) ); } - /* DEBUG_STORE_DATA( dec.pcm, pxq, psDec->subfr_length * sizeof( opus_int16 ) ) */ - /* Update LPC filter state */ silk_memcpy( sLPC_Q14, &sLPC_Q14[ psDec->subfr_length ], MAX_LPC_ORDER * sizeof( opus_int32 ) ); pexc_Q14 += psDec->subfr_length; diff --git a/thirdparty/opus/silk/decode_frame.c b/thirdparty/opus/silk/decode_frame.c index a605d95ac6..e73825b267 100644 --- a/thirdparty/opus/silk/decode_frame.c +++ b/thirdparty/opus/silk/decode_frame.c @@ -55,7 +55,7 @@ opus_int silk_decode_frame( psDecCtrl->LTP_scale_Q14 = 0; /* Safety checks */ - silk_assert( L > 0 && L <= MAX_FRAME_LENGTH ); + celt_assert( L > 0 && L <= MAX_FRAME_LENGTH ); if( lostFlag == FLAG_DECODE_NORMAL || ( lostFlag == FLAG_DECODE_LBRR && psDec->LBRR_flags[ psDec->nFramesDecoded ] == 1 ) ) @@ -91,19 +91,20 @@ opus_int silk_decode_frame( psDec->lossCnt = 0; psDec->prevSignalType = psDec->indices.signalType; - silk_assert( psDec->prevSignalType >= 0 && psDec->prevSignalType <= 2 ); + celt_assert( psDec->prevSignalType >= 0 && psDec->prevSignalType <= 2 ); /* A frame has been decoded without errors */ psDec->first_frame_after_reset = 0; } else { /* Handle packet loss by extrapolation */ + psDec->indices.signalType = psDec->prevSignalType; silk_PLC( psDec, psDecCtrl, pOut, 1, arch ); } /*************************/ /* Update output buffer. */ /*************************/ - silk_assert( psDec->ltp_mem_length >= psDec->frame_length ); + celt_assert( psDec->ltp_mem_length >= psDec->frame_length ); mv_len = psDec->ltp_mem_length - psDec->frame_length; silk_memmove( psDec->outBuf, &psDec->outBuf[ psDec->frame_length ], mv_len * sizeof(opus_int16) ); silk_memcpy( &psDec->outBuf[ mv_len ], pOut, psDec->frame_length * sizeof( opus_int16 ) ); diff --git a/thirdparty/opus/silk/decode_indices.c b/thirdparty/opus/silk/decode_indices.c index 7afe5c26c1..0bb4a997a5 100644 --- a/thirdparty/opus/silk/decode_indices.c +++ b/thirdparty/opus/silk/decode_indices.c @@ -79,7 +79,7 @@ void silk_decode_indices( /**********************/ psDec->indices.NLSFIndices[ 0 ] = (opus_int8)ec_dec_icdf( psRangeDec, &psDec->psNLSF_CB->CB1_iCDF[ ( psDec->indices.signalType >> 1 ) * psDec->psNLSF_CB->nVectors ], 8 ); silk_NLSF_unpack( ec_ix, pred_Q8, psDec->psNLSF_CB, psDec->indices.NLSFIndices[ 0 ] ); - silk_assert( psDec->psNLSF_CB->order == psDec->LPC_order ); + celt_assert( psDec->psNLSF_CB->order == psDec->LPC_order ); for( i = 0; i < psDec->psNLSF_CB->order; i++ ) { Ix = ec_dec_icdf( psRangeDec, &psDec->psNLSF_CB->ec_iCDF[ ec_ix[ i ] ], 8 ); if( Ix == 0 ) { diff --git a/thirdparty/opus/silk/decode_parameters.c b/thirdparty/opus/silk/decode_parameters.c index e345b1dcef..a56a409858 100644 --- a/thirdparty/opus/silk/decode_parameters.c +++ b/thirdparty/opus/silk/decode_parameters.c @@ -52,7 +52,7 @@ void silk_decode_parameters( silk_NLSF_decode( pNLSF_Q15, psDec->indices.NLSFIndices, psDec->psNLSF_CB ); /* Convert NLSF parameters to AR prediction filter coefficients */ - silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 1 ], pNLSF_Q15, psDec->LPC_order ); + silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 1 ], pNLSF_Q15, psDec->LPC_order, psDec->arch ); /* If just reset, e.g., because internal Fs changed, do not allow interpolation */ /* improves the case of packet loss in the first frame after a switch */ @@ -69,7 +69,7 @@ void silk_decode_parameters( } /* Convert NLSF parameters to AR prediction filter coefficients */ - silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 0 ], pNLSF0_Q15, psDec->LPC_order ); + silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 0 ], pNLSF0_Q15, psDec->LPC_order, psDec->arch ); } else { /* Copy LPC coefficients for first half from second half */ silk_memcpy( psDecCtrl->PredCoef_Q12[ 0 ], psDecCtrl->PredCoef_Q12[ 1 ], psDec->LPC_order * sizeof( opus_int16 ) ); diff --git a/thirdparty/opus/silk/decode_pitch.c b/thirdparty/opus/silk/decode_pitch.c index fedbc6a525..fd1b6bf551 100644 --- a/thirdparty/opus/silk/decode_pitch.c +++ b/thirdparty/opus/silk/decode_pitch.c @@ -51,7 +51,7 @@ void silk_decode_pitch( Lag_CB_ptr = &silk_CB_lags_stage2[ 0 ][ 0 ]; cbk_size = PE_NB_CBKS_STAGE2_EXT; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1 ); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1 ); Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ]; cbk_size = PE_NB_CBKS_STAGE2_10MS; } @@ -60,7 +60,7 @@ void silk_decode_pitch( Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1 ); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1 ); Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; cbk_size = PE_NB_CBKS_STAGE3_10MS; } diff --git a/thirdparty/opus/silk/decode_pulses.c b/thirdparty/opus/silk/decode_pulses.c index d6bbec9225..a56d2d3074 100644 --- a/thirdparty/opus/silk/decode_pulses.c +++ b/thirdparty/opus/silk/decode_pulses.c @@ -56,7 +56,7 @@ void silk_decode_pulses( silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH ); iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH ); if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) { - silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ + celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ iter++; } diff --git a/thirdparty/opus/silk/decoder_set_fs.c b/thirdparty/opus/silk/decoder_set_fs.c index eef0fd25e1..d9a13d0f0c 100644 --- a/thirdparty/opus/silk/decoder_set_fs.c +++ b/thirdparty/opus/silk/decoder_set_fs.c @@ -40,8 +40,8 @@ opus_int silk_decoder_set_fs( { opus_int frame_length, ret = 0; - silk_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 ); - silk_assert( psDec->nb_subfr == MAX_NB_SUBFR || psDec->nb_subfr == MAX_NB_SUBFR/2 ); + celt_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 ); + celt_assert( psDec->nb_subfr == MAX_NB_SUBFR || psDec->nb_subfr == MAX_NB_SUBFR/2 ); /* New (sub)frame length */ psDec->subfr_length = silk_SMULBB( SUB_FRAME_LENGTH_MS, fs_kHz ); @@ -86,7 +86,7 @@ opus_int silk_decoder_set_fs( psDec->pitch_lag_low_bits_iCDF = silk_uniform4_iCDF; } else { /* unsupported sampling rate */ - silk_assert( 0 ); + celt_assert( 0 ); } psDec->first_frame_after_reset = 1; psDec->lagPrev = 100; @@ -101,7 +101,7 @@ opus_int silk_decoder_set_fs( } /* Check that settings are valid */ - silk_assert( psDec->frame_length > 0 && psDec->frame_length <= MAX_FRAME_LENGTH ); + celt_assert( psDec->frame_length > 0 && psDec->frame_length <= MAX_FRAME_LENGTH ); return ret; } diff --git a/thirdparty/opus/silk/define.h b/thirdparty/opus/silk/define.h index 19c9b00e25..247cb0bf71 100644 --- a/thirdparty/opus/silk/define.h +++ b/thirdparty/opus/silk/define.h @@ -46,7 +46,6 @@ extern "C" /* Limits on bitrate */ #define MIN_TARGET_RATE_BPS 5000 #define MAX_TARGET_RATE_BPS 80000 -#define TARGET_RATE_TAB_SZ 8 /* LBRR thresholds */ #define LBRR_NB_MIN_RATE_BPS 12000 @@ -56,6 +55,12 @@ extern "C" /* DTX settings */ #define NB_SPEECH_FRAMES_BEFORE_DTX 10 /* eq 200 ms */ #define MAX_CONSECUTIVE_DTX 20 /* eq 400 ms */ +#define DTX_ACTIVITY_THRESHOLD 0.1f + +/* VAD decision */ +#define VAD_NO_DECISION -1 +#define VAD_NO_ACTIVITY 0 +#define VAD_ACTIVITY 1 /* Maximum sampling frequency */ #define MAX_FS_KHZ 16 @@ -147,7 +152,7 @@ extern "C" #define USE_HARM_SHAPING 1 /* Max LPC order of noise shaping filters */ -#define MAX_SHAPE_LPC_ORDER 16 +#define MAX_SHAPE_LPC_ORDER 24 #define HARM_SHAPE_FIR_TAPS 3 @@ -157,8 +162,7 @@ extern "C" #define LTP_BUF_LENGTH 512 #define LTP_MASK ( LTP_BUF_LENGTH - 1 ) -#define DECISION_DELAY 32 -#define DECISION_DELAY_MASK ( DECISION_DELAY - 1 ) +#define DECISION_DELAY 40 /* Number of subframes for excitation entropy coding */ #define SHELL_CODEC_FRAME_LENGTH 16 @@ -173,11 +177,7 @@ extern "C" #define MAX_MATRIX_SIZE MAX_LPC_ORDER /* Max of LPC Order and LTP order */ -#if( MAX_LPC_ORDER > DECISION_DELAY ) # define NSQ_LPC_BUF_LENGTH MAX_LPC_ORDER -#else -# define NSQ_LPC_BUF_LENGTH DECISION_DELAY -#endif /***************************/ /* Voice activity detector */ @@ -205,7 +205,6 @@ extern "C" /******************/ #define NLSF_W_Q 2 #define NLSF_VQ_MAX_VECTORS 32 -#define NLSF_VQ_MAX_SURVIVORS 32 #define NLSF_QUANT_MAX_AMPLITUDE 4 #define NLSF_QUANT_MAX_AMPLITUDE_EXT 10 #define NLSF_QUANT_LEVEL_ADJ 0.1 diff --git a/thirdparty/opus/silk/enc_API.c b/thirdparty/opus/silk/enc_API.c index f8060286db..55a33f37e9 100644 --- a/thirdparty/opus/silk/enc_API.c +++ b/thirdparty/opus/silk/enc_API.c @@ -82,7 +82,7 @@ opus_int silk_InitEncoder( /* O Returns error co silk_memset( psEnc, 0, sizeof( silk_encoder ) ); for( n = 0; n < ENCODER_NUM_CHANNELS; n++ ) { if( ret += silk_init_encoder( &psEnc->state_Fxx[ n ], arch ) ) { - silk_assert( 0 ); + celt_assert( 0 ); } } @@ -91,7 +91,7 @@ opus_int silk_InitEncoder( /* O Returns error co /* Read control structure */ if( ret += silk_QueryEncoder( encState, encStatus ) ) { - silk_assert( 0 ); + celt_assert( 0 ); } return ret; @@ -144,7 +144,8 @@ opus_int silk_Encode( /* O Returns error co opus_int nSamplesIn, /* I Number of samples in input vector */ ec_enc *psRangeEnc, /* I/O Compressor data structure */ opus_int32 *nBytesOut, /* I/O Number of bytes in payload (input: Max bytes) */ - const opus_int prefillFlag /* I Flag to indicate prefilling buffers no coding */ + const opus_int prefillFlag, /* I Flag to indicate prefilling buffers no coding */ + opus_int activity /* I Decision of Opus voice activity detector */ ) { opus_int n, i, nBits, flags, tmp_payloadSize_ms = 0, tmp_complexity = 0, ret = 0; @@ -166,7 +167,7 @@ opus_int silk_Encode( /* O Returns error co /* Check values in encoder control structure */ if( ( ret = check_control_input( encControl ) ) != 0 ) { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return ret; } @@ -199,16 +200,26 @@ opus_int silk_Encode( /* O Returns error co tot_blocks = ( nBlocksOf10ms > 1 ) ? nBlocksOf10ms >> 1 : 1; curr_block = 0; if( prefillFlag ) { + silk_LP_state save_LP; /* Only accept input length of 10 ms */ if( nBlocksOf10ms != 1 ) { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } + if ( prefillFlag == 2 ) { + save_LP = psEnc->state_Fxx[ 0 ].sCmn.sLP; + /* Save the sampling rate so the bandwidth switching code can keep handling transitions. */ + save_LP.saved_fs_kHz = psEnc->state_Fxx[ 0 ].sCmn.fs_kHz; + } /* Reset Encoder */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { ret = silk_init_encoder( &psEnc->state_Fxx[ n ], psEnc->state_Fxx[ n ].sCmn.arch ); - silk_assert( !ret ); + /* Restore the variable LP state. */ + if ( prefillFlag == 2 ) { + psEnc->state_Fxx[ n ].sCmn.sLP = save_LP; + } + celt_assert( !ret ); } tmp_payloadSize_ms = encControl->payloadSize_ms; encControl->payloadSize_ms = 10; @@ -221,23 +232,22 @@ opus_int silk_Encode( /* O Returns error co } else { /* Only accept input lengths that are a multiple of 10 ms */ if( nBlocksOf10ms * encControl->API_sampleRate != 100 * nSamplesIn || nSamplesIn < 0 ) { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } /* Make sure no more than one packet can be produced */ if( 1000 * (opus_int32)nSamplesIn > encControl->payloadSize_ms * encControl->API_sampleRate ) { - silk_assert( 0 ); + celt_assert( 0 ); RESTORE_STACK; return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES; } } - TargetRate_bps = silk_RSHIFT32( encControl->bitRate, encControl->nChannelsInternal - 1 ); for( n = 0; n < encControl->nChannelsInternal; n++ ) { /* Force the side channel to the same rate as the mid */ opus_int force_fs_kHz = (n==1) ? psEnc->state_Fxx[0].sCmn.fs_kHz : 0; - if( ( ret = silk_control_encoder( &psEnc->state_Fxx[ n ], encControl, TargetRate_bps, psEnc->allowBandwidthSwitch, n, force_fs_kHz ) ) != 0 ) { + if( ( ret = silk_control_encoder( &psEnc->state_Fxx[ n ], encControl, psEnc->allowBandwidthSwitch, n, force_fs_kHz ) ) != 0 ) { silk_assert( 0 ); RESTORE_STACK; return ret; @@ -249,7 +259,7 @@ opus_int silk_Encode( /* O Returns error co } psEnc->state_Fxx[ n ].sCmn.inDTX = psEnc->state_Fxx[ n ].sCmn.useDTX; } - silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == psEnc->state_Fxx[ 1 ].sCmn.fs_kHz ); + celt_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == psEnc->state_Fxx[ 1 ].sCmn.fs_kHz ); /* Input buffering/resampling and encoding */ nSamplesToBufferMax = @@ -307,7 +317,7 @@ opus_int silk_Encode( /* O Returns error co } psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer; } else { - silk_assert( encControl->nChannelsAPI == 1 && encControl->nChannelsInternal == 1 ); + celt_assert( encControl->nChannelsAPI == 1 && encControl->nChannelsInternal == 1 ); silk_memcpy(buf, samplesIn, nSamplesFromInput*sizeof(opus_int16)); ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput ); @@ -323,8 +333,8 @@ opus_int silk_Encode( /* O Returns error co /* Silk encoder */ if( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx >= psEnc->state_Fxx[ 0 ].sCmn.frame_length ) { /* Enough data in input buffer, so encode */ - silk_assert( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx == psEnc->state_Fxx[ 0 ].sCmn.frame_length ); - silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inputBufIx == psEnc->state_Fxx[ 1 ].sCmn.frame_length ); + celt_assert( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx == psEnc->state_Fxx[ 0 ].sCmn.frame_length ); + celt_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inputBufIx == psEnc->state_Fxx[ 1 ].sCmn.frame_length ); /* Deal with LBRR data */ if( psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == 0 && !prefillFlag ) { @@ -416,7 +426,6 @@ opus_int silk_Encode( /* O Returns error co /* Reset side channel encoder memory for first frame with side coding */ if( psEnc->prev_decode_only_middle == 1 ) { silk_memset( &psEnc->state_Fxx[ 1 ].sShape, 0, sizeof( psEnc->state_Fxx[ 1 ].sShape ) ); - silk_memset( &psEnc->state_Fxx[ 1 ].sPrefilt, 0, sizeof( psEnc->state_Fxx[ 1 ].sPrefilt ) ); silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sNSQ, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sNSQ ) ); silk_memset( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15 ) ); silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State ) ); @@ -427,7 +436,7 @@ opus_int silk_Encode( /* O Returns error co psEnc->state_Fxx[ 1 ].sCmn.sNSQ.prev_gain_Q16 = 65536; psEnc->state_Fxx[ 1 ].sCmn.first_frame_after_reset = 1; } - silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 1 ] ); + silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 1 ], activity ); } else { psEnc->state_Fxx[ 1 ].sCmn.VAD_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] = 0; } @@ -442,7 +451,7 @@ opus_int silk_Encode( /* O Returns error co silk_memcpy( psEnc->state_Fxx[ 0 ].sCmn.inputBuf, psEnc->sStereo.sMid, 2 * sizeof( opus_int16 ) ); silk_memcpy( psEnc->sStereo.sMid, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.frame_length ], 2 * sizeof( opus_int16 ) ); } - silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 0 ] ); + silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 0 ], activity ); /* Encode */ for( n = 0; n < encControl->nChannelsInternal; n++ ) { @@ -557,6 +566,10 @@ opus_int silk_Encode( /* O Returns error co } } + encControl->signalType = psEnc->state_Fxx[0].sCmn.indices.signalType; + encControl->offset = silk_Quantization_Offsets_Q10 + [ psEnc->state_Fxx[0].sCmn.indices.signalType >> 1 ] + [ psEnc->state_Fxx[0].sCmn.indices.quantOffsetType ]; RESTORE_STACK; return ret; } diff --git a/thirdparty/opus/silk/encode_indices.c b/thirdparty/opus/silk/encode_indices.c index 666c8c0b13..4bcbc3347b 100644 --- a/thirdparty/opus/silk/encode_indices.c +++ b/thirdparty/opus/silk/encode_indices.c @@ -56,8 +56,8 @@ void silk_encode_indices( /* Encode signal type and quantizer offset */ /*******************************************/ typeOffset = 2 * psIndices->signalType + psIndices->quantOffsetType; - silk_assert( typeOffset >= 0 && typeOffset < 6 ); - silk_assert( encode_LBRR == 0 || typeOffset >= 2 ); + celt_assert( typeOffset >= 0 && typeOffset < 6 ); + celt_assert( encode_LBRR == 0 || typeOffset >= 2 ); if( encode_LBRR || typeOffset >= 2 ) { ec_enc_icdf( psRangeEnc, typeOffset - 2, silk_type_offset_VAD_iCDF, 8 ); } else { @@ -90,7 +90,7 @@ void silk_encode_indices( /****************/ ec_enc_icdf( psRangeEnc, psIndices->NLSFIndices[ 0 ], &psEncC->psNLSF_CB->CB1_iCDF[ ( psIndices->signalType >> 1 ) * psEncC->psNLSF_CB->nVectors ], 8 ); silk_NLSF_unpack( ec_ix, pred_Q8, psEncC->psNLSF_CB, psIndices->NLSFIndices[ 0 ] ); - silk_assert( psEncC->psNLSF_CB->order == psEncC->predictLPCOrder ); + celt_assert( psEncC->psNLSF_CB->order == psEncC->predictLPCOrder ); for( i = 0; i < psEncC->psNLSF_CB->order; i++ ) { if( psIndices->NLSFIndices[ i+1 ] >= NLSF_QUANT_MAX_AMPLITUDE ) { ec_enc_icdf( psRangeEnc, 2 * NLSF_QUANT_MAX_AMPLITUDE, &psEncC->psNLSF_CB->ec_iCDF[ ec_ix[ i ] ], 8 ); diff --git a/thirdparty/opus/silk/encode_pulses.c b/thirdparty/opus/silk/encode_pulses.c index ab00264f99..8a1999138b 100644 --- a/thirdparty/opus/silk/encode_pulses.c +++ b/thirdparty/opus/silk/encode_pulses.c @@ -86,7 +86,7 @@ void silk_encode_pulses( silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH ); iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH ); if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) { - silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ + celt_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */ iter++; silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8)); } diff --git a/thirdparty/opus/silk/fixed/apply_sine_window_FIX.c b/thirdparty/opus/silk/fixed/apply_sine_window_FIX.c index 4502b7130e..03e088a6de 100644 --- a/thirdparty/opus/silk/fixed/apply_sine_window_FIX.c +++ b/thirdparty/opus/silk/fixed/apply_sine_window_FIX.c @@ -57,15 +57,15 @@ void silk_apply_sine_window( opus_int k, f_Q16, c_Q16; opus_int32 S0_Q16, S1_Q16; - silk_assert( win_type == 1 || win_type == 2 ); + celt_assert( win_type == 1 || win_type == 2 ); /* Length must be in a range from 16 to 120 and a multiple of 4 */ - silk_assert( length >= 16 && length <= 120 ); - silk_assert( ( length & 3 ) == 0 ); + celt_assert( length >= 16 && length <= 120 ); + celt_assert( ( length & 3 ) == 0 ); /* Frequency */ k = ( length >> 2 ) - 4; - silk_assert( k >= 0 && k <= 26 ); + celt_assert( k >= 0 && k <= 26 ); f_Q16 = (opus_int)freq_table_Q16[ k ]; /* Factor used for cosine approximation */ diff --git a/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_arm.h b/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_arm.h new file mode 100644 index 0000000000..1992e43288 --- /dev/null +++ b/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_arm.h @@ -0,0 +1,68 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifndef SILK_WARPED_AUTOCORRELATION_FIX_ARM_H +# define SILK_WARPED_AUTOCORRELATION_FIX_ARM_H + +# include "celt/arm/armcpu.h" + +# if defined(FIXED_POINT) + +# if defined(OPUS_ARM_MAY_HAVE_NEON_INTR) +void silk_warped_autocorrelation_FIX_neon( + opus_int32 *corr, /* O Result [order + 1] */ + opus_int *scale, /* O Scaling of the correlation vector */ + const opus_int16 *input, /* I Input data to correlate */ + const opus_int warping_Q16, /* I Warping coefficient */ + const opus_int length, /* I Length of input */ + const opus_int order /* I Correlation order (even) */ +); + +# if !defined(OPUS_HAVE_RTCD) && defined(OPUS_ARM_PRESUME_NEON) +# define OVERRIDE_silk_warped_autocorrelation_FIX (1) +# define silk_warped_autocorrelation_FIX(corr, scale, input, warping_Q16, length, order, arch) \ + ((void)(arch), PRESUME_NEON(silk_warped_autocorrelation_FIX)(corr, scale, input, warping_Q16, length, order)) +# endif +# endif + +# if !defined(OVERRIDE_silk_warped_autocorrelation_FIX) +/*Is run-time CPU detection enabled on this platform?*/ +# if defined(OPUS_HAVE_RTCD) && (defined(OPUS_ARM_MAY_HAVE_NEON_INTR) && !defined(OPUS_ARM_PRESUME_NEON_INTR)) +extern void (*const SILK_WARPED_AUTOCORRELATION_FIX_IMPL[OPUS_ARCHMASK+1])(opus_int32*, opus_int*, const opus_int16*, const opus_int, const opus_int, const opus_int); +# define OVERRIDE_silk_warped_autocorrelation_FIX (1) +# define silk_warped_autocorrelation_FIX(corr, scale, input, warping_Q16, length, order, arch) \ + ((*SILK_WARPED_AUTOCORRELATION_FIX_IMPL[(arch)&OPUS_ARCHMASK])(corr, scale, input, warping_Q16, length, order)) +# elif defined(OPUS_ARM_PRESUME_NEON_INTR) +# define OVERRIDE_silk_warped_autocorrelation_FIX (1) +# define silk_warped_autocorrelation_FIX(corr, scale, input, warping_Q16, length, order, arch) \ + ((void)(arch), silk_warped_autocorrelation_FIX_neon(corr, scale, input, warping_Q16, length, order)) +# endif +# endif + +# endif /* end FIXED_POINT */ + +#endif /* end SILK_WARPED_AUTOCORRELATION_FIX_ARM_H */ diff --git a/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_neon_intr.c b/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_neon_intr.c new file mode 100644 index 0000000000..00a70cb51f --- /dev/null +++ b/thirdparty/opus/silk/fixed/arm/warped_autocorrelation_FIX_neon_intr.c @@ -0,0 +1,260 @@ +/*********************************************************************** +Copyright (c) 2017 Google Inc., Jean-Marc Valin +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include <arm_neon.h> +#ifdef OPUS_CHECK_ASM +# include <string.h> +#endif +#include "stack_alloc.h" +#include "main_FIX.h" + +static OPUS_INLINE void calc_corr( const opus_int32 *const input_QS, opus_int64 *const corr_QC, const opus_int offset, const int32x4_t state_QS_s32x4 ) +{ + int64x2_t corr_QC_s64x2[ 2 ], t_s64x2[ 2 ]; + const int32x4_t input_QS_s32x4 = vld1q_s32( input_QS + offset ); + corr_QC_s64x2[ 0 ] = vld1q_s64( corr_QC + offset + 0 ); + corr_QC_s64x2[ 1 ] = vld1q_s64( corr_QC + offset + 2 ); + t_s64x2[ 0 ] = vmull_s32( vget_low_s32( state_QS_s32x4 ), vget_low_s32( input_QS_s32x4 ) ); + t_s64x2[ 1 ] = vmull_s32( vget_high_s32( state_QS_s32x4 ), vget_high_s32( input_QS_s32x4 ) ); + corr_QC_s64x2[ 0 ] = vsraq_n_s64( corr_QC_s64x2[ 0 ], t_s64x2[ 0 ], 2 * QS - QC ); + corr_QC_s64x2[ 1 ] = vsraq_n_s64( corr_QC_s64x2[ 1 ], t_s64x2[ 1 ], 2 * QS - QC ); + vst1q_s64( corr_QC + offset + 0, corr_QC_s64x2[ 0 ] ); + vst1q_s64( corr_QC + offset + 2, corr_QC_s64x2[ 1 ] ); +} + +static OPUS_INLINE int32x4_t calc_state( const int32x4_t state_QS0_s32x4, const int32x4_t state_QS0_1_s32x4, const int32x4_t state_QS1_1_s32x4, const int32x4_t warping_Q16_s32x4 ) +{ + int32x4_t t_s32x4 = vsubq_s32( state_QS0_s32x4, state_QS0_1_s32x4 ); + t_s32x4 = vqdmulhq_s32( t_s32x4, warping_Q16_s32x4 ); + return vaddq_s32( state_QS1_1_s32x4, t_s32x4 ); +} + +void silk_warped_autocorrelation_FIX_neon( + opus_int32 *corr, /* O Result [order + 1] */ + opus_int *scale, /* O Scaling of the correlation vector */ + const opus_int16 *input, /* I Input data to correlate */ + const opus_int warping_Q16, /* I Warping coefficient */ + const opus_int length, /* I Length of input */ + const opus_int order /* I Correlation order (even) */ +) +{ + if( ( MAX_SHAPE_LPC_ORDER > 24 ) || ( order < 6 ) ) { + silk_warped_autocorrelation_FIX_c( corr, scale, input, warping_Q16, length, order ); + } else { + opus_int n, i, lsh; + opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* In reverse order */ + opus_int64 corr_QC_orderT; + int64x2_t lsh_s64x2; + const opus_int orderT = ( order + 3 ) & ~3; + opus_int64 *corr_QCT; + opus_int32 *input_QS; + VARDECL( opus_int32, input_QST ); + VARDECL( opus_int32, state ); + SAVE_STACK; + + /* Order must be even */ + silk_assert( ( order & 1 ) == 0 ); + silk_assert( 2 * QS - QC >= 0 ); + + ALLOC( input_QST, length + 2 * MAX_SHAPE_LPC_ORDER, opus_int32 ); + + input_QS = input_QST; + /* input_QS has zero paddings in the beginning and end. */ + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + + /* Loop over samples */ + for( n = 0; n < length - 7; n += 8, input_QS += 8 ) { + const int16x8_t t0_s16x4 = vld1q_s16( input + n ); + vst1q_s32( input_QS + 0, vshll_n_s16( vget_low_s16( t0_s16x4 ), QS ) ); + vst1q_s32( input_QS + 4, vshll_n_s16( vget_high_s16( t0_s16x4 ), QS ) ); + } + for( ; n < length; n++, input_QS++ ) { + input_QS[ 0 ] = silk_LSHIFT32( (opus_int32)input[ n ], QS ); + } + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS += 4; + vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); + input_QS = input_QST + MAX_SHAPE_LPC_ORDER - orderT; + + /* The following loop runs ( length + order ) times, with ( order ) extra epilogues. */ + /* The zero paddings in input_QS guarantee corr_QC's correctness even with the extra epilogues. */ + /* The values of state_QS will be polluted by the extra epilogues, however they are temporary values. */ + + /* Keep the C code here to help understand the intrinsics optimization. */ + /* + { + opus_int32 state_QS[ 2 ][ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; + opus_int32 *state_QST[ 3 ]; + state_QST[ 0 ] = state_QS[ 0 ]; + state_QST[ 1 ] = state_QS[ 1 ]; + for( n = 0; n < length + order; n++, input_QS++ ) { + state_QST[ 0 ][ orderT ] = input_QS[ orderT ]; + for( i = 0; i < orderT; i++ ) { + corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( state_QST[ 0 ][ i ], input_QS[ i ] ), 2 * QS - QC ); + state_QST[ 1 ][ i ] = silk_SMLAWB( state_QST[ 1 ][ i + 1 ], state_QST[ 0 ][ i ] - state_QST[ 0 ][ i + 1 ], warping_Q16 ); + } + state_QST[ 2 ] = state_QST[ 0 ]; + state_QST[ 0 ] = state_QST[ 1 ]; + state_QST[ 1 ] = state_QST[ 2 ]; + } + } + */ + + { + const int32x4_t warping_Q16_s32x4 = vdupq_n_s32( warping_Q16 << 15 ); + const opus_int32 *in = input_QS + orderT; + opus_int o = orderT; + int32x4_t state_QS_s32x4[ 3 ][ 2 ]; + + ALLOC( state, length + orderT, opus_int32 ); + state_QS_s32x4[ 2 ][ 1 ] = vdupq_n_s32( 0 ); + + /* Calculate 8 taps of all inputs in each loop. */ + do { + state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 0 ][ 1 ] = + state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 1 ][ 1 ] = vdupq_n_s32( 0 ); + n = 0; + do { + calc_corr( input_QS + n, corr_QC, o - 8, state_QS_s32x4[ 0 ][ 0 ] ); + calc_corr( input_QS + n, corr_QC, o - 4, state_QS_s32x4[ 0 ][ 1 ] ); + state_QS_s32x4[ 2 ][ 1 ] = vld1q_s32( in + n ); + vst1q_lane_s32( state + n, state_QS_s32x4[ 0 ][ 0 ], 0 ); + state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 0 ][ 1 ], 1 ); + state_QS_s32x4[ 2 ][ 1 ] = vextq_s32( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], 1 ); + state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); + state_QS_s32x4[ 0 ][ 1 ] = calc_state( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], state_QS_s32x4[ 1 ][ 1 ], warping_Q16_s32x4 ); + state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; + state_QS_s32x4[ 1 ][ 1 ] = state_QS_s32x4[ 2 ][ 1 ]; + } while( ++n < ( length + order ) ); + in = state; + o -= 8; + } while( o > 4 ); + + if( o ) { + /* Calculate the last 4 taps of all inputs. */ + opus_int32 *stateT = state; + silk_assert( o == 4 ); + state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 1 ][ 0 ] = vdupq_n_s32( 0 ); + n = length + order; + do { + calc_corr( input_QS, corr_QC, 0, state_QS_s32x4[ 0 ][ 0 ] ); + state_QS_s32x4[ 2 ][ 0 ] = vld1q_s32( stateT ); + vst1q_lane_s32( stateT, state_QS_s32x4[ 0 ][ 0 ], 0 ); + state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], 1 ); + state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); + state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; + input_QS++; + stateT++; + } while( --n ); + } + } + + { + const opus_int16 *inputT = input; + int32x4_t t_s32x4; + int64x1_t t_s64x1; + int64x2_t t_s64x2 = vdupq_n_s64( 0 ); + for( n = 0; n <= length - 8; n += 8 ) { + int16x8_t input_s16x8 = vld1q_s16( inputT ); + t_s32x4 = vmull_s16( vget_low_s16( input_s16x8 ), vget_low_s16( input_s16x8 ) ); + t_s32x4 = vmlal_s16( t_s32x4, vget_high_s16( input_s16x8 ), vget_high_s16( input_s16x8 ) ); + t_s64x2 = vaddw_s32( t_s64x2, vget_low_s32( t_s32x4 ) ); + t_s64x2 = vaddw_s32( t_s64x2, vget_high_s32( t_s32x4 ) ); + inputT += 8; + } + t_s64x1 = vadd_s64( vget_low_s64( t_s64x2 ), vget_high_s64( t_s64x2 ) ); + corr_QC_orderT = vget_lane_s64( t_s64x1, 0 ); + for( ; n < length; n++ ) { + corr_QC_orderT += silk_SMULL( input[ n ], input[ n ] ); + } + corr_QC_orderT = silk_LSHIFT64( corr_QC_orderT, QC ); + corr_QC[ orderT ] = corr_QC_orderT; + } + + corr_QCT = corr_QC + orderT - order; + lsh = silk_CLZ64( corr_QC_orderT ) - 35; + lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC ); + *scale = -( QC + lsh ); + silk_assert( *scale >= -30 && *scale <= 12 ); + lsh_s64x2 = vdupq_n_s64( lsh ); + for( i = 0; i <= order - 3; i += 4 ) { + int32x4_t corr_s32x4; + int64x2_t corr_QC0_s64x2, corr_QC1_s64x2; + corr_QC0_s64x2 = vld1q_s64( corr_QCT + i ); + corr_QC1_s64x2 = vld1q_s64( corr_QCT + i + 2 ); + corr_QC0_s64x2 = vshlq_s64( corr_QC0_s64x2, lsh_s64x2 ); + corr_QC1_s64x2 = vshlq_s64( corr_QC1_s64x2, lsh_s64x2 ); + corr_s32x4 = vcombine_s32( vmovn_s64( corr_QC1_s64x2 ), vmovn_s64( corr_QC0_s64x2 ) ); + corr_s32x4 = vrev64q_s32( corr_s32x4 ); + vst1q_s32( corr + order - i - 3, corr_s32x4 ); + } + if( lsh >= 0 ) { + for( ; i < order + 1; i++ ) { + corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QCT[ i ], lsh ) ); + } + } else { + for( ; i < order + 1; i++ ) { + corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QCT[ i ], -lsh ) ); + } + } + silk_assert( corr_QCT[ order ] >= 0 ); /* If breaking, decrease QC*/ + RESTORE_STACK; + } + +#ifdef OPUS_CHECK_ASM + { + opus_int32 corr_c[ MAX_SHAPE_LPC_ORDER + 1 ]; + opus_int scale_c; + silk_warped_autocorrelation_FIX_c( corr_c, &scale_c, input, warping_Q16, length, order ); + silk_assert( !memcmp( corr_c, corr, sizeof( corr_c[ 0 ] ) * ( order + 1 ) ) ); + silk_assert( scale_c == *scale ); + } +#endif +} diff --git a/thirdparty/opus/silk/fixed/burg_modified_FIX.c b/thirdparty/opus/silk/fixed/burg_modified_FIX.c index 17d0e0993c..274d4b28e1 100644 --- a/thirdparty/opus/silk/fixed/burg_modified_FIX.c +++ b/thirdparty/opus/silk/fixed/burg_modified_FIX.c @@ -37,7 +37,7 @@ POSSIBILITY OF SUCH DAMAGE. #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */ #define QA 25 -#define N_BITS_HEAD_ROOM 2 +#define N_BITS_HEAD_ROOM 3 #define MIN_RSHIFTS -16 #define MAX_RSHIFTS (32 - QA) @@ -65,7 +65,7 @@ void silk_burg_modified_c( opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; opus_int64 C0_64; - silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); + celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch ); diff --git a/thirdparty/opus/silk/fixed/corrMatrix_FIX.c b/thirdparty/opus/silk/fixed/corrMatrix_FIX.c index c1d437c785..1b4a29c232 100644 --- a/thirdparty/opus/silk/fixed/corrMatrix_FIX.c +++ b/thirdparty/opus/silk/fixed/corrMatrix_FIX.c @@ -58,7 +58,7 @@ void silk_corrVector_FIX( for( lag = 0; lag < order; lag++ ) { inner_prod = 0; for( i = 0; i < L; i++ ) { - inner_prod += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts ); + inner_prod = silk_ADD_RSHIFT32( inner_prod, silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts ); } Xt[ lag ] = inner_prod; /* X[:,lag]'*t */ ptr1--; /* Go to next column of X */ @@ -77,61 +77,54 @@ void silk_corrMatrix_FIX( const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */ const opus_int L, /* I Length of vectors */ const opus_int order, /* I Max lag for correlation */ - const opus_int head_room, /* I Desired headroom */ opus_int32 *XX, /* O Pointer to X'*X correlation matrix [ order x order ] */ - opus_int *rshifts, /* I/O Right shifts of correlations */ + opus_int32 *nrg, /* O Energy of x vector */ + opus_int *rshifts, /* O Right shifts of correlations and energy */ int arch /* I Run-time architecture */ ) { - opus_int i, j, lag, rshifts_local, head_room_rshifts; + opus_int i, j, lag; opus_int32 energy; const opus_int16 *ptr1, *ptr2; /* Calculate energy to find shift used to fit in 32 bits */ - silk_sum_sqr_shift( &energy, &rshifts_local, x, L + order - 1 ); - /* Add shifts to get the desired head room */ - head_room_rshifts = silk_max( head_room - silk_CLZ32( energy ), 0 ); - - energy = silk_RSHIFT32( energy, head_room_rshifts ); - rshifts_local += head_room_rshifts; + silk_sum_sqr_shift( nrg, rshifts, x, L + order - 1 ); + energy = *nrg; /* Calculate energy of first column (0) of X: X[:,0]'*X[:,0] */ /* Remove contribution of first order - 1 samples */ for( i = 0; i < order - 1; i++ ) { - energy -= silk_RSHIFT32( silk_SMULBB( x[ i ], x[ i ] ), rshifts_local ); - } - if( rshifts_local < *rshifts ) { - /* Adjust energy */ - energy = silk_RSHIFT32( energy, *rshifts - rshifts_local ); - rshifts_local = *rshifts; + energy -= silk_RSHIFT32( silk_SMULBB( x[ i ], x[ i ] ), *rshifts ); } /* Calculate energy of remaining columns of X: X[:,j]'*X[:,j] */ /* Fill out the diagonal of the correlation matrix */ matrix_ptr( XX, 0, 0, order ) = energy; + silk_assert( energy >= 0 ); ptr1 = &x[ order - 1 ]; /* First sample of column 0 of X */ for( j = 1; j < order; j++ ) { - energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr1[ L - j ] ), rshifts_local ) ); - energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr1[ -j ] ), rshifts_local ) ); + energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr1[ L - j ] ), *rshifts ) ); + energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr1[ -j ] ), *rshifts ) ); matrix_ptr( XX, j, j, order ) = energy; + silk_assert( energy >= 0 ); } ptr2 = &x[ order - 2 ]; /* First sample of column 1 of X */ /* Calculate the remaining elements of the correlation matrix */ - if( rshifts_local > 0 ) { + if( *rshifts > 0 ) { /* Right shifting used */ for( lag = 1; lag < order; lag++ ) { /* Inner product of column 0 and column lag: X[:,0]'*X[:,lag] */ energy = 0; for( i = 0; i < L; i++ ) { - energy += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts_local ); + energy += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), *rshifts ); } /* Calculate remaining off diagonal: X[:,j]'*X[:,j + lag] */ matrix_ptr( XX, lag, 0, order ) = energy; matrix_ptr( XX, 0, lag, order ) = energy; for( j = 1; j < ( order - lag ); j++ ) { - energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ), rshifts_local ) ); - energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr2[ -j ] ), rshifts_local ) ); + energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ), *rshifts ) ); + energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr2[ -j ] ), *rshifts ) ); matrix_ptr( XX, lag + j, j, order ) = energy; matrix_ptr( XX, j, lag + j, order ) = energy; } @@ -153,6 +146,5 @@ void silk_corrMatrix_FIX( ptr2--;/* Update pointer to first sample of next column (lag) in X */ } } - *rshifts = rshifts_local; } diff --git a/thirdparty/opus/silk/fixed/encode_frame_FIX.c b/thirdparty/opus/silk/fixed/encode_frame_FIX.c index 5ef44b03fc..a02bf87dbb 100644 --- a/thirdparty/opus/silk/fixed/encode_frame_FIX.c +++ b/thirdparty/opus/silk/fixed/encode_frame_FIX.c @@ -29,6 +29,7 @@ POSSIBILITY OF SUCH DAMAGE. #include "config.h" #endif +#include <stdlib.h> #include "main_FIX.h" #include "stack_alloc.h" #include "tuning_parameters.h" @@ -37,26 +38,33 @@ POSSIBILITY OF SUCH DAMAGE. static OPUS_INLINE void silk_LBRR_encode_FIX( silk_encoder_state_FIX *psEnc, /* I/O Pointer to Silk FIX encoder state */ silk_encoder_control_FIX *psEncCtrl, /* I/O Pointer to Silk FIX encoder control struct */ - const opus_int32 xfw_Q3[], /* I Input signal */ + const opus_int16 x16[], /* I Input signal */ opus_int condCoding /* I The type of conditional coding used so far for this frame */ ); void silk_encode_do_VAD_FIX( - silk_encoder_state_FIX *psEnc /* I/O Pointer to Silk FIX encoder state */ + silk_encoder_state_FIX *psEnc, /* I/O Pointer to Silk FIX encoder state */ + opus_int activity /* I Decision of Opus voice activity detector */ ) { + const opus_int activity_threshold = SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ); + /****************************/ /* Voice Activity Detection */ /****************************/ silk_VAD_GetSA_Q8( &psEnc->sCmn, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.arch ); + /* If Opus VAD is inactive and Silk VAD is active: lower Silk VAD to just under the threshold */ + if( activity == VAD_NO_ACTIVITY && psEnc->sCmn.speech_activity_Q8 >= activity_threshold ) { + psEnc->sCmn.speech_activity_Q8 = activity_threshold - 1; + } /**************************************************/ /* Convert speech activity into VAD and DTX flags */ /**************************************************/ - if( psEnc->sCmn.speech_activity_Q8 < SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ) ) { + if( psEnc->sCmn.speech_activity_Q8 < activity_threshold ) { psEnc->sCmn.indices.signalType = TYPE_NO_VOICE_ACTIVITY; psEnc->sCmn.noSpeechCounter++; - if( psEnc->sCmn.noSpeechCounter < NB_SPEECH_FRAMES_BEFORE_DTX ) { + if( psEnc->sCmn.noSpeechCounter <= NB_SPEECH_FRAMES_BEFORE_DTX ) { psEnc->sCmn.inDTX = 0; } else if( psEnc->sCmn.noSpeechCounter > MAX_CONSECUTIVE_DTX + NB_SPEECH_FRAMES_BEFORE_DTX ) { psEnc->sCmn.noSpeechCounter = NB_SPEECH_FRAMES_BEFORE_DTX; @@ -94,6 +102,9 @@ opus_int silk_encode_frame_FIX( opus_int16 ec_prevLagIndex_copy; opus_int ec_prevSignalType_copy; opus_int8 LastGainIndex_copy2; + opus_int gain_lock[ MAX_NB_SUBFR ] = {0}; + opus_int16 best_gain_mult[ MAX_NB_SUBFR ]; + opus_int best_sum[ MAX_NB_SUBFR ]; SAVE_STACK; /* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */ @@ -118,7 +129,6 @@ opus_int silk_encode_frame_FIX( silk_memcpy( x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length * sizeof( opus_int16 ) ); if( !psEnc->sCmn.prefillFlag ) { - VARDECL( opus_int32, xfw_Q3 ); VARDECL( opus_int16, res_pitch ); VARDECL( opus_uint8, ec_buf_copy ); opus_int16 *res_pitch_frame; @@ -132,7 +142,7 @@ opus_int silk_encode_frame_FIX( /*****************************************/ /* Find pitch lags, initial LPC analysis */ /*****************************************/ - silk_find_pitch_lags_FIX( psEnc, &sEncCtrl, res_pitch, x_frame, psEnc->sCmn.arch ); + silk_find_pitch_lags_FIX( psEnc, &sEncCtrl, res_pitch, x_frame - psEnc->sCmn.ltp_mem_length, psEnc->sCmn.arch ); /************************/ /* Noise shape analysis */ @@ -142,23 +152,17 @@ opus_int silk_encode_frame_FIX( /***************************************************/ /* Find linear prediction coefficients (LPC + LTP) */ /***************************************************/ - silk_find_pred_coefs_FIX( psEnc, &sEncCtrl, res_pitch, x_frame, condCoding ); + silk_find_pred_coefs_FIX( psEnc, &sEncCtrl, res_pitch_frame, x_frame, condCoding ); /****************************************/ /* Process gains */ /****************************************/ silk_process_gains_FIX( psEnc, &sEncCtrl, condCoding ); - /*****************************************/ - /* Prefiltering for noise shaper */ - /*****************************************/ - ALLOC( xfw_Q3, psEnc->sCmn.frame_length, opus_int32 ); - silk_prefilter_FIX( psEnc, &sEncCtrl, xfw_Q3, x_frame ); - /****************************************/ /* Low Bitrate Redundant Encoding */ /****************************************/ - silk_LBRR_encode_FIX( psEnc, &sEncCtrl, xfw_Q3, condCoding ); + silk_LBRR_encode_FIX( psEnc, &sEncCtrl, x_frame, condCoding ); /* Loop over quantizer and entropy coding to control bitrate */ maxIter = 6; @@ -194,17 +198,21 @@ opus_int silk_encode_frame_FIX( /* Noise shaping quantization */ /*****************************************/ if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) { - silk_NSQ_del_dec( &psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, xfw_Q3, psEnc->sCmn.pulses, - sEncCtrl.PredCoef_Q12[ 0 ], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR2_Q13, sEncCtrl.HarmShapeGain_Q14, + silk_NSQ_del_dec( &psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, x_frame, psEnc->sCmn.pulses, + sEncCtrl.PredCoef_Q12[ 0 ], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR_Q13, sEncCtrl.HarmShapeGain_Q14, sEncCtrl.Tilt_Q14, sEncCtrl.LF_shp_Q14, sEncCtrl.Gains_Q16, sEncCtrl.pitchL, sEncCtrl.Lambda_Q10, sEncCtrl.LTP_scale_Q14, psEnc->sCmn.arch ); } else { - silk_NSQ( &psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, xfw_Q3, psEnc->sCmn.pulses, - sEncCtrl.PredCoef_Q12[ 0 ], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR2_Q13, sEncCtrl.HarmShapeGain_Q14, + silk_NSQ( &psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, x_frame, psEnc->sCmn.pulses, + sEncCtrl.PredCoef_Q12[ 0 ], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR_Q13, sEncCtrl.HarmShapeGain_Q14, sEncCtrl.Tilt_Q14, sEncCtrl.LF_shp_Q14, sEncCtrl.Gains_Q16, sEncCtrl.pitchL, sEncCtrl.Lambda_Q10, sEncCtrl.LTP_scale_Q14, psEnc->sCmn.arch); } + if ( iter == maxIter && !found_lower ) { + silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) ); + } + /****************************************/ /* Encode Parameters */ /****************************************/ @@ -218,6 +226,33 @@ opus_int silk_encode_frame_FIX( nBits = ec_tell( psRangeEnc ); + /* If we still bust after the last iteration, do some damage control. */ + if ( iter == maxIter && !found_lower && nBits > maxBits ) { + silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) ); + + /* Keep gains the same as the last frame. */ + psEnc->sShape.LastGainIndex = sEncCtrl.lastGainIndexPrev; + for ( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { + psEnc->sCmn.indices.GainsIndices[ i ] = 4; + } + if (condCoding != CODE_CONDITIONALLY) { + psEnc->sCmn.indices.GainsIndices[ 0 ] = sEncCtrl.lastGainIndexPrev; + } + psEnc->sCmn.ec_prevLagIndex = ec_prevLagIndex_copy; + psEnc->sCmn.ec_prevSignalType = ec_prevSignalType_copy; + /* Clear all pulses. */ + for ( i = 0; i < psEnc->sCmn.frame_length; i++ ) { + psEnc->sCmn.pulses[ i ] = 0; + } + + silk_encode_indices( &psEnc->sCmn, psRangeEnc, psEnc->sCmn.nFramesEncoded, 0, condCoding ); + + silk_encode_pulses( psRangeEnc, psEnc->sCmn.indices.signalType, psEnc->sCmn.indices.quantOffsetType, + psEnc->sCmn.pulses, psEnc->sCmn.frame_length ); + + nBits = ec_tell( psRangeEnc ); + } + if( useCBR == 0 && iter == 0 && nBits <= maxBits ) { break; } @@ -227,7 +262,7 @@ opus_int silk_encode_frame_FIX( if( found_lower && ( gainsID == gainsID_lower || nBits > maxBits ) ) { /* Restore output state from earlier iteration that did meet the bitrate budget */ silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) ); - silk_assert( sRangeEnc_copy2.offs <= 1275 ); + celt_assert( sRangeEnc_copy2.offs <= 1275 ); silk_memcpy( psRangeEnc->buf, ec_buf_copy, sRangeEnc_copy2.offs ); silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy2, sizeof( silk_nsq_state ) ); psEnc->sShape.LastGainIndex = LastGainIndex_copy2; @@ -255,7 +290,7 @@ opus_int silk_encode_frame_FIX( gainsID_lower = gainsID; /* Copy part of the output state */ silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) ); - silk_assert( psRangeEnc->offs <= 1275 ); + celt_assert( psRangeEnc->offs <= 1275 ); silk_memcpy( ec_buf_copy, psRangeEnc->buf, psRangeEnc->offs ); silk_memcpy( &sNSQ_copy2, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) ); LastGainIndex_copy2 = psEnc->sShape.LastGainIndex; @@ -265,15 +300,35 @@ opus_int silk_encode_frame_FIX( break; } + if ( !found_lower && nBits > maxBits ) { + int j; + for ( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { + int sum=0; + for ( j = i*psEnc->sCmn.subfr_length; j < (i+1)*psEnc->sCmn.subfr_length; j++ ) { + sum += abs( psEnc->sCmn.pulses[j] ); + } + if ( iter == 0 || (sum < best_sum[i] && !gain_lock[i]) ) { + best_sum[i] = sum; + best_gain_mult[i] = gainMult_Q8; + } else { + gain_lock[i] = 1; + } + } + } if( ( found_lower & found_upper ) == 0 ) { /* Adjust gain according to high-rate rate/distortion curve */ - opus_int32 gain_factor_Q16; - gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) ); - gain_factor_Q16 = silk_min_32( gain_factor_Q16, SILK_FIX_CONST( 2, 16 ) ); if( nBits > maxBits ) { - gain_factor_Q16 = silk_max_32( gain_factor_Q16, SILK_FIX_CONST( 1.3, 16 ) ); + if (gainMult_Q8 < 16384) { + gainMult_Q8 *= 2; + } else { + gainMult_Q8 = 32767; + } + } else { + opus_int32 gain_factor_Q16; + gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) ); + gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 ); } - gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 ); + } else { /* Adjust gain by interpolating */ gainMult_Q8 = gainMult_lower + silk_DIV32_16( silk_MUL( gainMult_upper - gainMult_lower, maxBits - nBits_lower ), nBits_upper - nBits_lower ); @@ -287,7 +342,13 @@ opus_int silk_encode_frame_FIX( } for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { - sEncCtrl.Gains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], gainMult_Q8 ), 8 ); + opus_int16 tmp; + if ( gain_lock[i] ) { + tmp = best_gain_mult[i]; + } else { + tmp = gainMult_Q8; + } + sEncCtrl.Gains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], tmp ), 8 ); } /* Quantize gains */ @@ -331,7 +392,7 @@ opus_int silk_encode_frame_FIX( static OPUS_INLINE void silk_LBRR_encode_FIX( silk_encoder_state_FIX *psEnc, /* I/O Pointer to Silk FIX encoder state */ silk_encoder_control_FIX *psEncCtrl, /* I/O Pointer to Silk FIX encoder control struct */ - const opus_int32 xfw_Q3[], /* I Input signal */ + const opus_int16 x16[], /* I Input signal */ opus_int condCoding /* I The type of conditional coding used so far for this frame */ ) { @@ -370,14 +431,14 @@ static OPUS_INLINE void silk_LBRR_encode_FIX( /* Noise shaping quantization */ /*****************************************/ if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) { - silk_NSQ_del_dec( &psEnc->sCmn, &sNSQ_LBRR, psIndices_LBRR, xfw_Q3, + silk_NSQ_del_dec( &psEnc->sCmn, &sNSQ_LBRR, psIndices_LBRR, x16, psEnc->sCmn.pulses_LBRR[ psEnc->sCmn.nFramesEncoded ], psEncCtrl->PredCoef_Q12[ 0 ], psEncCtrl->LTPCoef_Q14, - psEncCtrl->AR2_Q13, psEncCtrl->HarmShapeGain_Q14, psEncCtrl->Tilt_Q14, psEncCtrl->LF_shp_Q14, + psEncCtrl->AR_Q13, psEncCtrl->HarmShapeGain_Q14, psEncCtrl->Tilt_Q14, psEncCtrl->LF_shp_Q14, psEncCtrl->Gains_Q16, psEncCtrl->pitchL, psEncCtrl->Lambda_Q10, psEncCtrl->LTP_scale_Q14, psEnc->sCmn.arch ); } else { - silk_NSQ( &psEnc->sCmn, &sNSQ_LBRR, psIndices_LBRR, xfw_Q3, + silk_NSQ( &psEnc->sCmn, &sNSQ_LBRR, psIndices_LBRR, x16, psEnc->sCmn.pulses_LBRR[ psEnc->sCmn.nFramesEncoded ], psEncCtrl->PredCoef_Q12[ 0 ], psEncCtrl->LTPCoef_Q14, - psEncCtrl->AR2_Q13, psEncCtrl->HarmShapeGain_Q14, psEncCtrl->Tilt_Q14, psEncCtrl->LF_shp_Q14, + psEncCtrl->AR_Q13, psEncCtrl->HarmShapeGain_Q14, psEncCtrl->Tilt_Q14, psEncCtrl->LF_shp_Q14, psEncCtrl->Gains_Q16, psEncCtrl->pitchL, psEncCtrl->Lambda_Q10, psEncCtrl->LTP_scale_Q14, psEnc->sCmn.arch ); } diff --git a/thirdparty/opus/silk/fixed/find_LPC_FIX.c b/thirdparty/opus/silk/fixed/find_LPC_FIX.c index e11cdc86e6..c762a0f2a2 100644 --- a/thirdparty/opus/silk/fixed/find_LPC_FIX.c +++ b/thirdparty/opus/silk/fixed/find_LPC_FIX.c @@ -92,7 +92,7 @@ void silk_find_LPC_FIX( silk_interpolate( NLSF0_Q15, psEncC->prev_NLSFq_Q15, NLSF_Q15, k, psEncC->predictLPCOrder ); /* Convert to LPC for residual energy evaluation */ - silk_NLSF2A( a_tmp_Q12, NLSF0_Q15, psEncC->predictLPCOrder ); + silk_NLSF2A( a_tmp_Q12, NLSF0_Q15, psEncC->predictLPCOrder, psEncC->arch ); /* Calculate residual energy with NLSF interpolation */ silk_LPC_analysis_filter( LPC_res, x, a_tmp_Q12, 2 * subfr_length, psEncC->predictLPCOrder, psEncC->arch ); @@ -146,6 +146,6 @@ void silk_find_LPC_FIX( silk_A2NLSF( NLSF_Q15, a_Q16, psEncC->predictLPCOrder ); } - silk_assert( psEncC->indices.NLSFInterpCoef_Q2 == 4 || ( psEncC->useInterpolatedNLSFs && !psEncC->first_frame_after_reset && psEncC->nb_subfr == MAX_NB_SUBFR ) ); + celt_assert( psEncC->indices.NLSFInterpCoef_Q2 == 4 || ( psEncC->useInterpolatedNLSFs && !psEncC->first_frame_after_reset && psEncC->nb_subfr == MAX_NB_SUBFR ) ); RESTORE_STACK; } diff --git a/thirdparty/opus/silk/fixed/find_LTP_FIX.c b/thirdparty/opus/silk/fixed/find_LTP_FIX.c index 1314a28137..62d4afb250 100644 --- a/thirdparty/opus/silk/fixed/find_LTP_FIX.c +++ b/thirdparty/opus/silk/fixed/find_LTP_FIX.c @@ -32,214 +32,68 @@ POSSIBILITY OF SUCH DAMAGE. #include "main_FIX.h" #include "tuning_parameters.h" -/* Head room for correlations */ -#define LTP_CORRS_HEAD_ROOM 2 - -void silk_fit_LTP( - opus_int32 LTP_coefs_Q16[ LTP_ORDER ], - opus_int16 LTP_coefs_Q14[ LTP_ORDER ] -); - void silk_find_LTP_FIX( - opus_int16 b_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ - opus_int32 WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ - opus_int *LTPredCodGain_Q7, /* O LTP coding gain */ - const opus_int16 r_lpc[], /* I residual signal after LPC signal + state for first 10 ms */ + opus_int32 XXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Correlation matrix */ + opus_int32 xXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER ], /* O Correlation vector */ + const opus_int16 r_ptr[], /* I Residual signal after LPC */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ - const opus_int32 Wght_Q15[ MAX_NB_SUBFR ], /* I weights */ - const opus_int subfr_length, /* I subframe length */ - const opus_int nb_subfr, /* I number of subframes */ - const opus_int mem_offset, /* I number of samples in LTP memory */ - opus_int corr_rshifts[ MAX_NB_SUBFR ], /* O right shifts applied to correlations */ + const opus_int subfr_length, /* I Subframe length */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ) { - opus_int i, k, lshift; - const opus_int16 *r_ptr, *lag_ptr; - opus_int16 *b_Q14_ptr; - - opus_int32 regu; - opus_int32 *WLTP_ptr; - opus_int32 b_Q16[ LTP_ORDER ], delta_b_Q14[ LTP_ORDER ], d_Q14[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], g_Q26; - opus_int32 w[ MAX_NB_SUBFR ], WLTP_max, max_abs_d_Q14, max_w_bits; - - opus_int32 temp32, denom32; - opus_int extra_shifts; - opus_int rr_shifts, maxRshifts, maxRshifts_wxtra, LZs; - opus_int32 LPC_res_nrg, LPC_LTP_res_nrg, div_Q16; - opus_int32 Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ]; - opus_int32 wd, m_Q12; - - b_Q14_ptr = b_Q14; - WLTP_ptr = WLTP; - r_ptr = &r_lpc[ mem_offset ]; + opus_int i, k, extra_shifts; + opus_int xx_shifts, xX_shifts, XX_shifts; + const opus_int16 *lag_ptr; + opus_int32 *XXLTP_Q17_ptr, *xXLTP_Q17_ptr; + opus_int32 xx, nrg, temp; + + xXLTP_Q17_ptr = xXLTP_Q17; + XXLTP_Q17_ptr = XXLTP_Q17; for( k = 0; k < nb_subfr; k++ ) { lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 ); - silk_sum_sqr_shift( &rr[ k ], &rr_shifts, r_ptr, subfr_length ); /* rr[ k ] in Q( -rr_shifts ) */ - - /* Assure headroom */ - LZs = silk_CLZ32( rr[k] ); - if( LZs < LTP_CORRS_HEAD_ROOM ) { - rr[ k ] = silk_RSHIFT_ROUND( rr[ k ], LTP_CORRS_HEAD_ROOM - LZs ); - rr_shifts += ( LTP_CORRS_HEAD_ROOM - LZs ); - } - corr_rshifts[ k ] = rr_shifts; - silk_corrMatrix_FIX( lag_ptr, subfr_length, LTP_ORDER, LTP_CORRS_HEAD_ROOM, WLTP_ptr, &corr_rshifts[ k ], arch ); /* WLTP_fix_ptr in Q( -corr_rshifts[ k ] ) */ - - /* The correlation vector always has lower max abs value than rr and/or RR so head room is assured */ - silk_corrVector_FIX( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr, corr_rshifts[ k ], arch ); /* Rr_fix_ptr in Q( -corr_rshifts[ k ] ) */ - if( corr_rshifts[ k ] > rr_shifts ) { - rr[ k ] = silk_RSHIFT( rr[ k ], corr_rshifts[ k ] - rr_shifts ); /* rr[ k ] in Q( -corr_rshifts[ k ] ) */ + silk_sum_sqr_shift( &xx, &xx_shifts, r_ptr, subfr_length + LTP_ORDER ); /* xx in Q( -xx_shifts ) */ + silk_corrMatrix_FIX( lag_ptr, subfr_length, LTP_ORDER, XXLTP_Q17_ptr, &nrg, &XX_shifts, arch ); /* XXLTP_Q17_ptr and nrg in Q( -XX_shifts ) */ + extra_shifts = xx_shifts - XX_shifts; + if( extra_shifts > 0 ) { + /* Shift XX */ + xX_shifts = xx_shifts; + for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { + XXLTP_Q17_ptr[ i ] = silk_RSHIFT32( XXLTP_Q17_ptr[ i ], extra_shifts ); /* Q( -xX_shifts ) */ + } + nrg = silk_RSHIFT32( nrg, extra_shifts ); /* Q( -xX_shifts ) */ + } else if( extra_shifts < 0 ) { + /* Shift xx */ + xX_shifts = XX_shifts; + xx = silk_RSHIFT32( xx, -extra_shifts ); /* Q( -xX_shifts ) */ + } else { + xX_shifts = xx_shifts; } - silk_assert( rr[ k ] >= 0 ); - - regu = 1; - regu = silk_SMLAWB( regu, rr[ k ], SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); - regu = silk_SMLAWB( regu, matrix_ptr( WLTP_ptr, 0, 0, LTP_ORDER ), SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); - regu = silk_SMLAWB( regu, matrix_ptr( WLTP_ptr, LTP_ORDER-1, LTP_ORDER-1, LTP_ORDER ), SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); - silk_regularize_correlations_FIX( WLTP_ptr, &rr[k], regu, LTP_ORDER ); - - silk_solve_LDL_FIX( WLTP_ptr, LTP_ORDER, Rr, b_Q16 ); /* WLTP_fix_ptr and Rr_fix_ptr both in Q(-corr_rshifts[k]) */ - - /* Limit and store in Q14 */ - silk_fit_LTP( b_Q16, b_Q14_ptr ); - - /* Calculate residual energy */ - nrg[ k ] = silk_residual_energy16_covar_FIX( b_Q14_ptr, WLTP_ptr, Rr, rr[ k ], LTP_ORDER, 14 ); /* nrg_fix in Q( -corr_rshifts[ k ] ) */ - - /* temp = Wght[ k ] / ( nrg[ k ] * Wght[ k ] + 0.01f * subfr_length ); */ - extra_shifts = silk_min_int( corr_rshifts[ k ], LTP_CORRS_HEAD_ROOM ); - denom32 = silk_LSHIFT_SAT32( silk_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 + extra_shifts ) + /* Q( -corr_rshifts[ k ] + extra_shifts ) */ - silk_RSHIFT( silk_SMULWB( (opus_int32)subfr_length, 655 ), corr_rshifts[ k ] - extra_shifts ); /* Q( -corr_rshifts[ k ] + extra_shifts ) */ - denom32 = silk_max( denom32, 1 ); - silk_assert( ((opus_int64)Wght_Q15[ k ] << 16 ) < silk_int32_MAX ); /* Wght always < 0.5 in Q0 */ - temp32 = silk_DIV32( silk_LSHIFT( (opus_int32)Wght_Q15[ k ], 16 ), denom32 ); /* Q( 15 + 16 + corr_rshifts[k] - extra_shifts ) */ - temp32 = silk_RSHIFT( temp32, 31 + corr_rshifts[ k ] - extra_shifts - 26 ); /* Q26 */ + silk_corrVector_FIX( lag_ptr, r_ptr, subfr_length, LTP_ORDER, xXLTP_Q17_ptr, xX_shifts, arch ); /* xXLTP_Q17_ptr in Q( -xX_shifts ) */ - /* Limit temp such that the below scaling never wraps around */ - WLTP_max = 0; + /* At this point all correlations are in Q(-xX_shifts) */ + temp = silk_SMLAWB( 1, nrg, SILK_FIX_CONST( LTP_CORR_INV_MAX, 16 ) ); + temp = silk_max( temp, xx ); +TIC(div) +#if 0 for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { - WLTP_max = silk_max( WLTP_ptr[ i ], WLTP_max ); + XXLTP_Q17_ptr[ i ] = silk_DIV32_varQ( XXLTP_Q17_ptr[ i ], temp, 17 ); } - lshift = silk_CLZ32( WLTP_max ) - 1 - 3; /* keep 3 bits free for vq_nearest_neighbor_fix */ - silk_assert( 26 - 18 + lshift >= 0 ); - if( 26 - 18 + lshift < 31 ) { - temp32 = silk_min_32( temp32, silk_LSHIFT( (opus_int32)1, 26 - 18 + lshift ) ); - } - - silk_scale_vector32_Q26_lshift_18( WLTP_ptr, temp32, LTP_ORDER * LTP_ORDER ); /* WLTP_ptr in Q( 18 - corr_rshifts[ k ] ) */ - - w[ k ] = matrix_ptr( WLTP_ptr, LTP_ORDER/2, LTP_ORDER/2, LTP_ORDER ); /* w in Q( 18 - corr_rshifts[ k ] ) */ - silk_assert( w[k] >= 0 ); - - r_ptr += subfr_length; - b_Q14_ptr += LTP_ORDER; - WLTP_ptr += LTP_ORDER * LTP_ORDER; - } - - maxRshifts = 0; - for( k = 0; k < nb_subfr; k++ ) { - maxRshifts = silk_max_int( corr_rshifts[ k ], maxRshifts ); - } - - /* Compute LTP coding gain */ - if( LTPredCodGain_Q7 != NULL ) { - LPC_LTP_res_nrg = 0; - LPC_res_nrg = 0; - silk_assert( LTP_CORRS_HEAD_ROOM >= 2 ); /* Check that no overflow will happen when adding */ - for( k = 0; k < nb_subfr; k++ ) { - LPC_res_nrg = silk_ADD32( LPC_res_nrg, silk_RSHIFT( silk_ADD32( silk_SMULWB( rr[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */ - LPC_LTP_res_nrg = silk_ADD32( LPC_LTP_res_nrg, silk_RSHIFT( silk_ADD32( silk_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */ - } - LPC_LTP_res_nrg = silk_max( LPC_LTP_res_nrg, 1 ); /* avoid division by zero */ - - div_Q16 = silk_DIV32_varQ( LPC_res_nrg, LPC_LTP_res_nrg, 16 ); - *LTPredCodGain_Q7 = ( opus_int )silk_SMULBB( 3, silk_lin2log( div_Q16 ) - ( 16 << 7 ) ); - - silk_assert( *LTPredCodGain_Q7 == ( opus_int )silk_SAT16( silk_MUL( 3, silk_lin2log( div_Q16 ) - ( 16 << 7 ) ) ) ); - } - - /* smoothing */ - /* d = sum( B, 1 ); */ - b_Q14_ptr = b_Q14; - for( k = 0; k < nb_subfr; k++ ) { - d_Q14[ k ] = 0; for( i = 0; i < LTP_ORDER; i++ ) { - d_Q14[ k ] += b_Q14_ptr[ i ]; - } - b_Q14_ptr += LTP_ORDER; - } - - /* m = ( w * d' ) / ( sum( w ) + 1e-3 ); */ - - /* Find maximum absolute value of d_Q14 and the bits used by w in Q0 */ - max_abs_d_Q14 = 0; - max_w_bits = 0; - for( k = 0; k < nb_subfr; k++ ) { - max_abs_d_Q14 = silk_max_32( max_abs_d_Q14, silk_abs( d_Q14[ k ] ) ); - /* w[ k ] is in Q( 18 - corr_rshifts[ k ] ) */ - /* Find bits needed in Q( 18 - maxRshifts ) */ - max_w_bits = silk_max_32( max_w_bits, 32 - silk_CLZ32( w[ k ] ) + corr_rshifts[ k ] - maxRshifts ); - } - - /* max_abs_d_Q14 = (5 << 15); worst case, i.e. LTP_ORDER * -silk_int16_MIN */ - silk_assert( max_abs_d_Q14 <= ( 5 << 15 ) ); - - /* How many bits is needed for w*d' in Q( 18 - maxRshifts ) in the worst case, of all d_Q14's being equal to max_abs_d_Q14 */ - extra_shifts = max_w_bits + 32 - silk_CLZ32( max_abs_d_Q14 ) - 14; - - /* Subtract what we got available; bits in output var plus maxRshifts */ - extra_shifts -= ( 32 - 1 - 2 + maxRshifts ); /* Keep sign bit free as well as 2 bits for accumulation */ - extra_shifts = silk_max_int( extra_shifts, 0 ); - - maxRshifts_wxtra = maxRshifts + extra_shifts; - - temp32 = silk_RSHIFT( 262, maxRshifts + extra_shifts ) + 1; /* 1e-3f in Q( 18 - (maxRshifts + extra_shifts) ) */ - wd = 0; - for( k = 0; k < nb_subfr; k++ ) { - /* w has at least 2 bits of headroom so no overflow should happen */ - temp32 = silk_ADD32( temp32, silk_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ) ); /* Q( 18 - maxRshifts_wxtra ) */ - wd = silk_ADD32( wd, silk_LSHIFT( silk_SMULWW( silk_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ), d_Q14[ k ] ), 2 ) ); /* Q( 18 - maxRshifts_wxtra ) */ - } - m_Q12 = silk_DIV32_varQ( wd, temp32, 12 ); - - b_Q14_ptr = b_Q14; - for( k = 0; k < nb_subfr; k++ ) { - /* w_fix[ k ] from Q( 18 - corr_rshifts[ k ] ) to Q( 16 ) */ - if( 2 - corr_rshifts[k] > 0 ) { - temp32 = silk_RSHIFT( w[ k ], 2 - corr_rshifts[ k ] ); - } else { - temp32 = silk_LSHIFT_SAT32( w[ k ], corr_rshifts[ k ] - 2 ); + xXLTP_Q17_ptr[ i ] = silk_DIV32_varQ( xXLTP_Q17_ptr[ i ], temp, 17 ); } - - g_Q26 = silk_MUL( - silk_DIV32( - SILK_FIX_CONST( LTP_SMOOTHING, 26 ), - silk_RSHIFT( SILK_FIX_CONST( LTP_SMOOTHING, 26 ), 10 ) + temp32 ), /* Q10 */ - silk_LSHIFT_SAT32( silk_SUB_SAT32( (opus_int32)m_Q12, silk_RSHIFT( d_Q14[ k ], 2 ) ), 4 ) ); /* Q16 */ - - temp32 = 0; - for( i = 0; i < LTP_ORDER; i++ ) { - delta_b_Q14[ i ] = silk_max_16( b_Q14_ptr[ i ], 1638 ); /* 1638_Q14 = 0.1_Q0 */ - temp32 += delta_b_Q14[ i ]; /* Q14 */ +#else + for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { + XXLTP_Q17_ptr[ i ] = (opus_int32)( silk_LSHIFT64( (opus_int64)XXLTP_Q17_ptr[ i ], 17 ) / temp ); } - temp32 = silk_DIV32( g_Q26, temp32 ); /* Q14 -> Q12 */ for( i = 0; i < LTP_ORDER; i++ ) { - b_Q14_ptr[ i ] = silk_LIMIT_32( (opus_int32)b_Q14_ptr[ i ] + silk_SMULWB( silk_LSHIFT_SAT32( temp32, 4 ), delta_b_Q14[ i ] ), -16000, 28000 ); + xXLTP_Q17_ptr[ i ] = (opus_int32)( silk_LSHIFT64( (opus_int64)xXLTP_Q17_ptr[ i ], 17 ) / temp ); } - b_Q14_ptr += LTP_ORDER; - } -} - -void silk_fit_LTP( - opus_int32 LTP_coefs_Q16[ LTP_ORDER ], - opus_int16 LTP_coefs_Q14[ LTP_ORDER ] -) -{ - opus_int i; - - for( i = 0; i < LTP_ORDER; i++ ) { - LTP_coefs_Q14[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( LTP_coefs_Q16[ i ], 2 ) ); +#endif +TOC(div) + r_ptr += subfr_length; + XXLTP_Q17_ptr += LTP_ORDER * LTP_ORDER; + xXLTP_Q17_ptr += LTP_ORDER; } } diff --git a/thirdparty/opus/silk/fixed/find_pitch_lags_FIX.c b/thirdparty/opus/silk/fixed/find_pitch_lags_FIX.c index b8440a8247..6c3379f2bb 100644 --- a/thirdparty/opus/silk/fixed/find_pitch_lags_FIX.c +++ b/thirdparty/opus/silk/fixed/find_pitch_lags_FIX.c @@ -44,7 +44,7 @@ void silk_find_pitch_lags_FIX( { opus_int buf_len, i, scale; opus_int32 thrhld_Q13, res_nrg; - const opus_int16 *x_buf, *x_buf_ptr; + const opus_int16 *x_ptr; VARDECL( opus_int16, Wsig ); opus_int16 *Wsig_ptr; opus_int32 auto_corr[ MAX_FIND_PITCH_LPC_ORDER + 1 ]; @@ -59,9 +59,7 @@ void silk_find_pitch_lags_FIX( buf_len = psEnc->sCmn.la_pitch + psEnc->sCmn.frame_length + psEnc->sCmn.ltp_mem_length; /* Safety check */ - silk_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length ); - - x_buf = x - psEnc->sCmn.ltp_mem_length; + celt_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length ); /*************************************/ /* Estimate LPC AR coefficients */ @@ -72,19 +70,19 @@ void silk_find_pitch_lags_FIX( ALLOC( Wsig, psEnc->sCmn.pitch_LPC_win_length, opus_int16 ); /* First LA_LTP samples */ - x_buf_ptr = x_buf + buf_len - psEnc->sCmn.pitch_LPC_win_length; + x_ptr = x + buf_len - psEnc->sCmn.pitch_LPC_win_length; Wsig_ptr = Wsig; - silk_apply_sine_window( Wsig_ptr, x_buf_ptr, 1, psEnc->sCmn.la_pitch ); + silk_apply_sine_window( Wsig_ptr, x_ptr, 1, psEnc->sCmn.la_pitch ); /* Middle un - windowed samples */ Wsig_ptr += psEnc->sCmn.la_pitch; - x_buf_ptr += psEnc->sCmn.la_pitch; - silk_memcpy( Wsig_ptr, x_buf_ptr, ( psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ) ) * sizeof( opus_int16 ) ); + x_ptr += psEnc->sCmn.la_pitch; + silk_memcpy( Wsig_ptr, x_ptr, ( psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ) ) * sizeof( opus_int16 ) ); /* Last LA_LTP samples */ Wsig_ptr += psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ); - x_buf_ptr += psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ); - silk_apply_sine_window( Wsig_ptr, x_buf_ptr, 2, psEnc->sCmn.la_pitch ); + x_ptr += psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ); + silk_apply_sine_window( Wsig_ptr, x_ptr, 2, psEnc->sCmn.la_pitch ); /* Calculate autocorrelation sequence */ silk_autocorr( auto_corr, &scale, Wsig, psEnc->sCmn.pitch_LPC_win_length, psEnc->sCmn.pitchEstimationLPCOrder + 1, arch ); @@ -112,7 +110,7 @@ void silk_find_pitch_lags_FIX( /*****************************************/ /* LPC analysis filtering */ /*****************************************/ - silk_LPC_analysis_filter( res, x_buf, A_Q12, buf_len, psEnc->sCmn.pitchEstimationLPCOrder, psEnc->sCmn.arch ); + silk_LPC_analysis_filter( res, x, A_Q12, buf_len, psEnc->sCmn.pitchEstimationLPCOrder, psEnc->sCmn.arch ); if( psEnc->sCmn.indices.signalType != TYPE_NO_VOICE_ACTIVITY && psEnc->sCmn.first_frame_after_reset == 0 ) { /* Threshold for pitch estimator */ diff --git a/thirdparty/opus/silk/fixed/find_pred_coefs_FIX.c b/thirdparty/opus/silk/fixed/find_pred_coefs_FIX.c index d308e9cf5f..606d863347 100644 --- a/thirdparty/opus/silk/fixed/find_pred_coefs_FIX.c +++ b/thirdparty/opus/silk/fixed/find_pred_coefs_FIX.c @@ -41,13 +41,12 @@ void silk_find_pred_coefs_FIX( ) { opus_int i; - opus_int32 invGains_Q16[ MAX_NB_SUBFR ], local_gains[ MAX_NB_SUBFR ], Wght_Q15[ MAX_NB_SUBFR ]; + opus_int32 invGains_Q16[ MAX_NB_SUBFR ], local_gains[ MAX_NB_SUBFR ]; opus_int16 NLSF_Q15[ MAX_LPC_ORDER ]; const opus_int16 *x_ptr; opus_int16 *x_pre_ptr; VARDECL( opus_int16, LPC_in_pre ); - opus_int32 tmp, min_gain_Q16, minInvGain_Q30; - opus_int LTP_corrs_rshift[ MAX_NB_SUBFR ]; + opus_int32 min_gain_Q16, minInvGain_Q30; SAVE_STACK; /* weighting for weighted least squares */ @@ -61,13 +60,11 @@ void silk_find_pred_coefs_FIX( /* Invert and normalize gains, and ensure that maximum invGains_Q16 is within range of a 16 bit int */ invGains_Q16[ i ] = silk_DIV32_varQ( min_gain_Q16, psEncCtrl->Gains_Q16[ i ], 16 - 2 ); - /* Ensure Wght_Q15 a minimum value 1 */ - invGains_Q16[ i ] = silk_max( invGains_Q16[ i ], 363 ); + /* Limit inverse */ + invGains_Q16[ i ] = silk_max( invGains_Q16[ i ], 100 ); /* Square the inverted gains */ silk_assert( invGains_Q16[ i ] == silk_SAT16( invGains_Q16[ i ] ) ); - tmp = silk_SMULWB( invGains_Q16[ i ], invGains_Q16[ i ] ); - Wght_Q15[ i ] = silk_RSHIFT( tmp, 1 ); /* Invert the inverted and normalized gains */ local_gains[ i ] = silk_DIV32( ( (opus_int32)1 << 16 ), invGains_Q16[ i ] ); @@ -77,24 +74,24 @@ void silk_find_pred_coefs_FIX( psEnc->sCmn.nb_subfr * psEnc->sCmn.predictLPCOrder + psEnc->sCmn.frame_length, opus_int16 ); if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { - VARDECL( opus_int32, WLTP ); + VARDECL( opus_int32, xXLTP_Q17 ); + VARDECL( opus_int32, XXLTP_Q17 ); /**********/ /* VOICED */ /**********/ - silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 ); + celt_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 ); - ALLOC( WLTP, psEnc->sCmn.nb_subfr * LTP_ORDER * LTP_ORDER, opus_int32 ); + ALLOC( xXLTP_Q17, psEnc->sCmn.nb_subfr * LTP_ORDER, opus_int32 ); + ALLOC( XXLTP_Q17, psEnc->sCmn.nb_subfr * LTP_ORDER * LTP_ORDER, opus_int32 ); /* LTP analysis */ - silk_find_LTP_FIX( psEncCtrl->LTPCoef_Q14, WLTP, &psEncCtrl->LTPredCodGain_Q7, - res_pitch, psEncCtrl->pitchL, Wght_Q15, psEnc->sCmn.subfr_length, - psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length, LTP_corrs_rshift, psEnc->sCmn.arch ); + silk_find_LTP_FIX( XXLTP_Q17, xXLTP_Q17, res_pitch, + psEncCtrl->pitchL, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.arch ); /* Quantize LTP gain parameters */ silk_quant_LTP_gains( psEncCtrl->LTPCoef_Q14, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex, - &psEnc->sCmn.sum_log_gain_Q7, WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr, - psEnc->sCmn.arch); + &psEnc->sCmn.sum_log_gain_Q7, &psEncCtrl->LTPredCodGain_Q7, XXLTP_Q17, xXLTP_Q17, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.arch ); /* Control LTP scaling */ silk_LTP_scale_ctrl_FIX( psEnc, psEncCtrl, condCoding ); diff --git a/thirdparty/opus/silk/fixed/k2a_FIX.c b/thirdparty/opus/silk/fixed/k2a_FIX.c index 5fee599bcb..549f6eadaa 100644 --- a/thirdparty/opus/silk/fixed/k2a_FIX.c +++ b/thirdparty/opus/silk/fixed/k2a_FIX.c @@ -39,14 +39,15 @@ void silk_k2a( ) { opus_int k, n; - opus_int32 Atmp[ SILK_MAX_ORDER_LPC ]; + opus_int32 rc, tmp1, tmp2; for( k = 0; k < order; k++ ) { - for( n = 0; n < k; n++ ) { - Atmp[ n ] = A_Q24[ n ]; - } - for( n = 0; n < k; n++ ) { - A_Q24[ n ] = silk_SMLAWB( A_Q24[ n ], silk_LSHIFT( Atmp[ k - n - 1 ], 1 ), rc_Q15[ k ] ); + rc = rc_Q15[ k ]; + for( n = 0; n < (k + 1) >> 1; n++ ) { + tmp1 = A_Q24[ n ]; + tmp2 = A_Q24[ k - n - 1 ]; + A_Q24[ n ] = silk_SMLAWB( tmp1, silk_LSHIFT( tmp2, 1 ), rc ); + A_Q24[ k - n - 1 ] = silk_SMLAWB( tmp2, silk_LSHIFT( tmp1, 1 ), rc ); } A_Q24[ k ] = -silk_LSHIFT( (opus_int32)rc_Q15[ k ], 9 ); } diff --git a/thirdparty/opus/silk/fixed/k2a_Q16_FIX.c b/thirdparty/opus/silk/fixed/k2a_Q16_FIX.c index 3b03987544..1595aa6212 100644 --- a/thirdparty/opus/silk/fixed/k2a_Q16_FIX.c +++ b/thirdparty/opus/silk/fixed/k2a_Q16_FIX.c @@ -39,15 +39,16 @@ void silk_k2a_Q16( ) { opus_int k, n; - opus_int32 Atmp[ SILK_MAX_ORDER_LPC ]; + opus_int32 rc, tmp1, tmp2; for( k = 0; k < order; k++ ) { - for( n = 0; n < k; n++ ) { - Atmp[ n ] = A_Q24[ n ]; + rc = rc_Q16[ k ]; + for( n = 0; n < (k + 1) >> 1; n++ ) { + tmp1 = A_Q24[ n ]; + tmp2 = A_Q24[ k - n - 1 ]; + A_Q24[ n ] = silk_SMLAWW( tmp1, tmp2, rc ); + A_Q24[ k - n - 1 ] = silk_SMLAWW( tmp2, tmp1, rc ); } - for( n = 0; n < k; n++ ) { - A_Q24[ n ] = silk_SMLAWW( A_Q24[ n ], Atmp[ k - n - 1 ], rc_Q16[ k ] ); - } - A_Q24[ k ] = -silk_LSHIFT( rc_Q16[ k ], 8 ); + A_Q24[ k ] = -silk_LSHIFT( rc, 8 ); } } diff --git a/thirdparty/opus/silk/fixed/main_FIX.h b/thirdparty/opus/silk/fixed/main_FIX.h index 375b5eb32e..6d2112e511 100644 --- a/thirdparty/opus/silk/fixed/main_FIX.h +++ b/thirdparty/opus/silk/fixed/main_FIX.h @@ -36,6 +36,11 @@ POSSIBILITY OF SUCH DAMAGE. #include "debug.h" #include "entenc.h" +#if ((defined(OPUS_ARM_ASM) && defined(FIXED_POINT)) \ + || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) +#include "fixed/arm/warped_autocorrelation_FIX_arm.h" +#endif + #ifndef FORCE_CPP_BUILD #ifdef __cplusplus extern "C" @@ -47,6 +52,9 @@ extern "C" #define silk_encode_do_VAD_Fxx silk_encode_do_VAD_FIX #define silk_encode_frame_Fxx silk_encode_frame_FIX +#define QC 10 +#define QS 13 + /*********************/ /* Encoder Functions */ /*********************/ @@ -58,7 +66,8 @@ void silk_HP_variable_cutoff( /* Encoder main function */ void silk_encode_do_VAD_FIX( - silk_encoder_state_FIX *psEnc /* I/O Pointer to Silk FIX encoder state */ + silk_encoder_state_FIX *psEnc, /* I/O Pointer to Silk FIX encoder state */ + opus_int activity /* I Decision of Opus voice activity detector */ ); /* Encoder main function */ @@ -81,33 +90,11 @@ opus_int silk_init_encoder( opus_int silk_control_encoder( silk_encoder_state_Fxx *psEnc, /* I/O Pointer to Silk encoder state */ silk_EncControlStruct *encControl, /* I Control structure */ - const opus_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const opus_int allow_bw_switch, /* I Flag to allow switching audio bandwidth */ const opus_int channelNb, /* I Channel number */ const opus_int force_fs_kHz ); -/****************/ -/* Prefiltering */ -/****************/ -void silk_prefilter_FIX( - silk_encoder_state_FIX *psEnc, /* I/O Encoder state */ - const silk_encoder_control_FIX *psEncCtrl, /* I Encoder control */ - opus_int32 xw_Q10[], /* O Weighted signal */ - const opus_int16 x[] /* I Speech signal */ -); - -void silk_warped_LPC_analysis_filter_FIX_c( - opus_int32 state[], /* I/O State [order + 1] */ - opus_int32 res_Q2[], /* O Residual signal [length] */ - const opus_int16 coef_Q13[], /* I Coefficients [order] */ - const opus_int16 input[], /* I Input signal [length] */ - const opus_int16 lambda_Q16, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -); - - /**************************/ /* Noise shaping analysis */ /**************************/ @@ -121,7 +108,7 @@ void silk_noise_shape_analysis_FIX( ); /* Autocorrelations for a warped frequency axis */ -void silk_warped_autocorrelation_FIX( +void silk_warped_autocorrelation_FIX_c( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ @@ -130,6 +117,11 @@ void silk_warped_autocorrelation_FIX( const opus_int order /* I Correlation order (even) */ ); +#if !defined(OVERRIDE_silk_warped_autocorrelation_FIX) +#define silk_warped_autocorrelation_FIX(corr, scale, input, warping_Q16, length, order, arch) \ + ((void)(arch), silk_warped_autocorrelation_FIX_c(corr, scale, input, warping_Q16, length, order)) +#endif + /* Calculation of LTP state scaling */ void silk_LTP_scale_ctrl_FIX( silk_encoder_state_FIX *psEnc, /* I/O encoder state */ @@ -168,16 +160,12 @@ void silk_find_LPC_FIX( /* LTP analysis */ void silk_find_LTP_FIX( - opus_int16 b_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ - opus_int32 WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ - opus_int *LTPredCodGain_Q7, /* O LTP coding gain */ - const opus_int16 r_lpc[], /* I residual signal after LPC signal + state for first 10 ms */ + opus_int32 XXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Correlation matrix */ + opus_int32 xXLTP_Q17[ MAX_NB_SUBFR * LTP_ORDER ], /* O Correlation vector */ + const opus_int16 r_lpc[], /* I Residual signal after LPC */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ - const opus_int32 Wght_Q15[ MAX_NB_SUBFR ], /* I weights */ - const opus_int subfr_length, /* I subframe length */ - const opus_int nb_subfr, /* I number of subframes */ - const opus_int mem_offset, /* I number of samples in LTP memory */ - opus_int corr_rshifts[ MAX_NB_SUBFR ], /* O right shifts applied to correlations */ + const opus_int subfr_length, /* I Subframe length */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ); @@ -231,9 +219,9 @@ void silk_corrMatrix_FIX( const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */ const opus_int L, /* I Length of vectors */ const opus_int order, /* I Max lag for correlation */ - const opus_int head_room, /* I Desired headroom */ opus_int32 *XX, /* O Pointer to X'*X correlation matrix [ order x order ] */ - opus_int *rshifts, /* I/O Right shifts of correlations */ + opus_int32 *nrg, /* O Energy of x vector */ + opus_int *rshifts, /* O Right shifts of correlations */ int arch /* I Run-time architecture */ ); @@ -248,22 +236,6 @@ void silk_corrVector_FIX( int arch /* I Run-time architecture */ ); -/* Add noise to matrix diagonal */ -void silk_regularize_correlations_FIX( - opus_int32 *XX, /* I/O Correlation matrices */ - opus_int32 *xx, /* I/O Correlation values */ - opus_int32 noise, /* I Noise to add */ - opus_int D /* I Dimension of XX */ -); - -/* Solves Ax = b, assuming A is symmetric */ -void silk_solve_LDL_FIX( - opus_int32 *A, /* I Pointer to symetric square matrix A */ - opus_int M, /* I Size of matrix */ - const opus_int32 *b, /* I Pointer to b vector */ - opus_int32 *x_Q16 /* O Pointer to x solution vector */ -); - #ifndef FORCE_CPP_BUILD #ifdef __cplusplus } diff --git a/thirdparty/opus/silk/fixed/mips/noise_shape_analysis_FIX_mipsr1.h b/thirdparty/opus/silk/fixed/mips/noise_shape_analysis_FIX_mipsr1.h index c30481e437..3999b5bd09 100644 --- a/thirdparty/opus/silk/fixed/mips/noise_shape_analysis_FIX_mipsr1.h +++ b/thirdparty/opus/silk/fixed/mips/noise_shape_analysis_FIX_mipsr1.h @@ -169,7 +169,7 @@ void silk_noise_shape_analysis_FIX( if( psEnc->sCmn.warping_Q16 > 0 ) { /* Calculate warped auto correlation */ - silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); + silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); } else { /* Calculate regular auto correlation */ silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); @@ -224,8 +224,8 @@ void silk_noise_shape_analysis_FIX( silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); /* Ratio of prediction gains, in energy domain */ - pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder ); - nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder ); + pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder, arch ); + nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder, arch ); /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/ pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 ); diff --git a/thirdparty/opus/silk/fixed/mips/warped_autocorrelation_FIX_mipsr1.h b/thirdparty/opus/silk/fixed/mips/warped_autocorrelation_FIX_mipsr1.h index e803ef0fce..66eb2ed26d 100644 --- a/thirdparty/opus/silk/fixed/mips/warped_autocorrelation_FIX_mipsr1.h +++ b/thirdparty/opus/silk/fixed/mips/warped_autocorrelation_FIX_mipsr1.h @@ -41,8 +41,8 @@ POSSIBILITY OF SUCH DAMAGE. #define QS 14 /* Autocorrelations for a warped frequency axis */ -#define OVERRIDE_silk_warped_autocorrelation_FIX -void silk_warped_autocorrelation_FIX( +#define OVERRIDE_silk_warped_autocorrelation_FIX_c +void silk_warped_autocorrelation_FIX_c( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ diff --git a/thirdparty/opus/silk/fixed/noise_shape_analysis_FIX.c b/thirdparty/opus/silk/fixed/noise_shape_analysis_FIX.c index 22a89f75ae..85fea0bf09 100644 --- a/thirdparty/opus/silk/fixed/noise_shape_analysis_FIX.c +++ b/thirdparty/opus/silk/fixed/noise_shape_analysis_FIX.c @@ -57,88 +57,79 @@ static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ static OPUS_INLINE void limit_warped_coefs( - opus_int32 *coefs_syn_Q24, - opus_int32 *coefs_ana_Q24, + opus_int32 *coefs_Q24, opus_int lambda_Q16, opus_int32 limit_Q24, opus_int order ) { opus_int i, iter, ind = 0; - opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16; + opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16; opus_int32 nom_Q16, den_Q24; + opus_int32 limit_Q20, maxabs_Q20; /* Convert to monic coefficients */ lambda_Q16 = -lambda_Q16; for( i = order - 1; i > 0; i-- ) { - coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); - coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); } lambda_Q16 = -lambda_Q16; - nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); - den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); - gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); - den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); - gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); + nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); + gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); for( i = 0; i < order; i++ ) { - coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); - coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); } - + limit_Q20 = silk_RSHIFT(limit_Q24, 4); for( iter = 0; iter < 10; iter++ ) { /* Find maximum absolute value */ maxabs_Q24 = -1; for( i = 0; i < order; i++ ) { - tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) ); + tmp = silk_abs_int32( coefs_Q24[ i ] ); if( tmp > maxabs_Q24 ) { maxabs_Q24 = tmp; ind = i; } } - if( maxabs_Q24 <= limit_Q24 ) { + /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */ + maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4); + if( maxabs_Q20 <= limit_Q20 ) { /* Coefficients are within range - done */ return; } /* Convert back to true warped coefficients */ for( i = 1; i < order; i++ ) { - coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); - coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); } - gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 ); - gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 ); + gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 ); for( i = 0; i < order; i++ ) { - coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); - coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); } /* Apply bandwidth expansion */ chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( - silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), - silk_MUL( maxabs_Q24, ind + 1 ), 22 ); - silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 ); - silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 ); + silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), + silk_MUL( maxabs_Q20, ind + 1 ), 22 ); + silk_bwexpander_32( coefs_Q24, order, chirp_Q16 ); /* Convert to monic warped coefficients */ lambda_Q16 = -lambda_Q16; for( i = order - 1; i > 0; i-- ) { - coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 ); - coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 ); + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); } lambda_Q16 = -lambda_Q16; nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); - den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 ); - gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); - den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 ); - gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); + gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); for( i = 0; i < order; i++ ) { - coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); - coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); } } silk_assert( 0 ); } -#if defined(MIPSr1_ASM) +/* Disable MIPS version until it's updated. */ +#if 0 && defined(MIPSr1_ASM) #include "mips/noise_shape_analysis_FIX_mipsr1.h" #endif @@ -155,14 +146,13 @@ void silk_noise_shape_analysis_FIX( ) { silk_shape_state_FIX *psShapeSt = &psEnc->sShape; - opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0; - opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32; - opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; - opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; + opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0; + opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32; + opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; + opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; - opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ]; - opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ]; + opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ]; VARDECL( opus_int16, x_windowed ); const opus_int16 *x_ptr, *pitch_res_ptr; SAVE_STACK; @@ -209,14 +199,14 @@ void silk_noise_shape_analysis_FIX( if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Initially set to 0; may be overruled in process_gains(..) */ psEnc->sCmn.indices.quantOffsetType = 0; - psEncCtrl->sparseness_Q8 = 0; } else { /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); energy_variation_Q7 = 0; log_energy_prev_Q7 = 0; pitch_res_ptr = pitch_res; - for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { + nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; + for( k = 0; k < nSegs; k++ ) { silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ @@ -228,18 +218,12 @@ void silk_noise_shape_analysis_FIX( pitch_res_ptr += nSamples; } - psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 - - SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 ); - /* Set quantization offset depending on sparseness measure */ - if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) { + if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) { psEnc->sCmn.indices.quantOffsetType = 0; } else { psEnc->sCmn.indices.quantOffsetType = 1; } - - /* Increase coding SNR for sparse signals */ - SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) ); } /*******************************/ @@ -247,14 +231,8 @@ void silk_noise_shape_analysis_FIX( /*******************************/ /* More BWE for signals with high prediction gain */ strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); - BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), + BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); - delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), - SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) ); - BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 ); - BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 ); - /* BWExp1 will be applied after BWExp2, so make it relative */ - BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) ); if( psEnc->sCmn.warping_Q16 > 0 ) { /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ @@ -284,7 +262,7 @@ void silk_noise_shape_analysis_FIX( if( psEnc->sCmn.warping_Q16 > 0 ) { /* Calculate warped auto correlation */ - silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); + silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); } else { /* Calculate regular auto correlation */ silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); @@ -299,7 +277,7 @@ void silk_noise_shape_analysis_FIX( silk_assert( nrg >= 0 ); /* Convert reflection coefficients to prediction coefficients */ - silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); + silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); Qnrg = -scale; /* range: -12...30*/ silk_assert( Qnrg >= -12 ); @@ -318,40 +296,34 @@ void silk_noise_shape_analysis_FIX( if( psEnc->sCmn.warping_Q16 > 0 ) { /* Adjust gain for warping */ - gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); - silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); - if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) { - psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; + gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); + silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); + if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) { + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); } else { - psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ); + if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) { + psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; + } else { + psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 ); + } } + silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); } - /* Bandwidth expansion for synthesis filter shaping */ - silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); - - /* Compute noise shaping filter coefficients */ - silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) ); - - /* Bandwidth expansion for analysis filter shaping */ - silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) ); - silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); - - /* Ratio of prediction gains, in energy domain */ - pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder ); - nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder ); - - /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/ - pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 ); - psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 ); + /* Bandwidth expansion */ + silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 ); - /* Convert to monic warped prediction coefficients and limit absolute values */ - limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Convert to monic warped prediction coefficients and limit absolute values */ + limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); - /* Convert from Q24 to Q13 and store in int16 */ - for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { - psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) ); - psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) ); + /* Convert from Q24 to Q13 and store in int16 */ + for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { + psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) ); + } + } else { + silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder ); } } @@ -368,11 +340,6 @@ void silk_noise_shape_analysis_FIX( psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); } - gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ), - psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 ); - for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] ); - } /************************************************/ /* Control low-frequency shaping and noise tilt */ @@ -410,14 +377,6 @@ void silk_noise_shape_analysis_FIX( /****************************/ /* HARMONIC SHAPING CONTROL */ /****************************/ - /* Control boosting of harmonic frequencies */ - HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ), - psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) ); - - /* More harmonic boost for noisy input signals */ - HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16, - SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) ); - if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* More harmonic noise shaping for high bitrates or noisy input */ HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), @@ -435,14 +394,11 @@ void silk_noise_shape_analysis_FIX( /* Smooth over subframes */ /*************************/ for( k = 0; k < MAX_NB_SUBFR; k++ ) { - psShapeSt->HarmBoost_smth_Q16 = - silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); psShapeSt->HarmShapeGain_smth_Q16 = silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); psShapeSt->Tilt_smth_Q16 = silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); - psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 ); psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); } diff --git a/thirdparty/opus/silk/fixed/pitch_analysis_core_FIX.c b/thirdparty/opus/silk/fixed/pitch_analysis_core_FIX.c index 01bb9fc0a8..14729046d2 100644 --- a/thirdparty/opus/silk/fixed/pitch_analysis_core_FIX.c +++ b/thirdparty/opus/silk/fixed/pitch_analysis_core_FIX.c @@ -80,7 +80,7 @@ static void silk_P_Ana_calc_energy_st3( /* FIXED POINT CORE PITCH ANALYSIS FUNCTION */ /*************************************************************/ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */ - const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ + const opus_int16 *frame_unscaled, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ opus_int *pitch_out, /* O 4 pitch lag values */ opus_int16 *lagIndex, /* O Lag Index */ opus_int8 *contourIndex, /* O Pitch contour Index */ @@ -94,16 +94,17 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 int arch /* I Run-time architecture */ ) { - VARDECL( opus_int16, frame_8kHz ); + VARDECL( opus_int16, frame_8kHz_buf ); VARDECL( opus_int16, frame_4kHz ); + VARDECL( opus_int16, frame_scaled ); opus_int32 filt_state[ 6 ]; - const opus_int16 *input_frame_ptr; + const opus_int16 *frame, *frame_8kHz; opus_int i, k, d, j; VARDECL( opus_int16, C ); VARDECL( opus_int32, xcorr32 ); const opus_int16 *target_ptr, *basis_ptr; - opus_int32 cross_corr, normalizer, energy, shift, energy_basis, energy_target; - opus_int d_srch[ PE_D_SRCH_LENGTH ], Cmax, length_d_srch, length_d_comp; + opus_int32 cross_corr, normalizer, energy, energy_basis, energy_target; + opus_int d_srch[ PE_D_SRCH_LENGTH ], Cmax, length_d_srch, length_d_comp, shift; VARDECL( opus_int16, d_comp ); opus_int32 sum, threshold, lag_counter; opus_int CBimax, CBimax_new, CBimax_old, lag, start_lag, end_lag, lag_new; @@ -119,12 +120,13 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 opus_int32 delta_lag_log2_sqr_Q7, lag_log2_Q7, prevLag_log2_Q7, prev_lag_bias_Q13; const opus_int8 *Lag_CB_ptr; SAVE_STACK; + /* Check for valid sampling frequency */ - silk_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); + celt_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); /* Check for valid complexity setting */ - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); silk_assert( search_thres1_Q16 >= 0 && search_thres1_Q16 <= (1<<16) ); silk_assert( search_thres2_Q13 >= 0 && search_thres2_Q13 <= (1<<13) ); @@ -137,17 +139,33 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 min_lag = PE_MIN_LAG_MS * Fs_kHz; max_lag = PE_MAX_LAG_MS * Fs_kHz - 1; + /* Downscale input if necessary */ + silk_sum_sqr_shift( &energy, &shift, frame_unscaled, frame_length ); + shift += 3 - silk_CLZ32( energy ); /* at least two bits headroom */ + ALLOC( frame_scaled, frame_length, opus_int16 ); + if( shift > 0 ) { + shift = silk_RSHIFT( shift + 1, 1 ); + for( i = 0; i < frame_length; i++ ) { + frame_scaled[ i ] = silk_RSHIFT( frame_unscaled[ i ], shift ); + } + frame = frame_scaled; + } else { + frame = frame_unscaled; + } + + ALLOC( frame_8kHz_buf, ( Fs_kHz == 8 ) ? 1 : frame_length_8kHz, opus_int16 ); /* Resample from input sampled at Fs_kHz to 8 kHz */ - ALLOC( frame_8kHz, frame_length_8kHz, opus_int16 ); if( Fs_kHz == 16 ) { silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) ); - silk_resampler_down2( filt_state, frame_8kHz, frame, frame_length ); + silk_resampler_down2( filt_state, frame_8kHz_buf, frame, frame_length ); + frame_8kHz = frame_8kHz_buf; } else if( Fs_kHz == 12 ) { silk_memset( filt_state, 0, 6 * sizeof( opus_int32 ) ); - silk_resampler_down2_3( filt_state, frame_8kHz, frame, frame_length ); + silk_resampler_down2_3( filt_state, frame_8kHz_buf, frame, frame_length ); + frame_8kHz = frame_8kHz_buf; } else { - silk_assert( Fs_kHz == 8 ); - silk_memcpy( frame_8kHz, frame, frame_length_8kHz * sizeof(opus_int16) ); + celt_assert( Fs_kHz == 8 ); + frame_8kHz = frame; } /* Decimate again to 4 kHz */ @@ -160,19 +178,6 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 frame_4kHz[ i ] = silk_ADD_SAT16( frame_4kHz[ i ], frame_4kHz[ i - 1 ] ); } - /******************************************************************************* - ** Scale 4 kHz signal down to prevent correlations measures from overflowing - ** find scaling as max scaling for each 8kHz(?) subframe - *******************************************************************************/ - - /* Inner product is calculated with different lengths, so scale for the worst case */ - silk_sum_sqr_shift( &energy, &shift, frame_4kHz, frame_length_4kHz ); - if( shift > 0 ) { - shift = silk_RSHIFT( shift, 1 ); - for( i = 0; i < frame_length_4kHz; i++ ) { - frame_4kHz[ i ] = silk_RSHIFT( frame_4kHz[ i ], shift ); - } - } /****************************************************************************** * FIRST STAGE, operating in 4 khz @@ -183,14 +188,14 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 target_ptr = &frame_4kHz[ silk_LSHIFT( SF_LENGTH_4KHZ, 2 ) ]; for( k = 0; k < nb_subfr >> 1; k++ ) { /* Check that we are within range of the array */ - silk_assert( target_ptr >= frame_4kHz ); - silk_assert( target_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz ); + celt_assert( target_ptr >= frame_4kHz ); + celt_assert( target_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz ); basis_ptr = target_ptr - MIN_LAG_4KHZ; /* Check that we are within range of the array */ - silk_assert( basis_ptr >= frame_4kHz ); - silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz ); + celt_assert( basis_ptr >= frame_4kHz ); + celt_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz ); celt_pitch_xcorr( target_ptr, target_ptr - MAX_LAG_4KHZ, xcorr32, SF_LENGTH_8KHZ, MAX_LAG_4KHZ - MIN_LAG_4KHZ + 1, arch ); @@ -244,7 +249,7 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 /* Sort */ length_d_srch = silk_ADD_LSHIFT32( 4, complexity, 1 ); - silk_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); + celt_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); silk_insertion_sort_decreasing_int16( C, d_srch, CSTRIDE_4KHZ, length_d_srch ); @@ -269,7 +274,7 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 break; } } - silk_assert( length_d_srch > 0 ); + celt_assert( length_d_srch > 0 ); ALLOC( d_comp, D_COMP_STRIDE, opus_int16 ); for( i = D_COMP_MIN; i < D_COMP_MAX; i++ ) { @@ -311,18 +316,6 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 ** SECOND STAGE, operating at 8 kHz, on lag sections with high correlation *************************************************************************************/ - /****************************************************************************** - ** Scale signal down to avoid correlations measures from overflowing - *******************************************************************************/ - /* find scaling as max scaling for each subframe */ - silk_sum_sqr_shift( &energy, &shift, frame_8kHz, frame_length_8kHz ); - if( shift > 0 ) { - shift = silk_RSHIFT( shift, 1 ); - for( i = 0; i < frame_length_8kHz; i++ ) { - frame_8kHz[ i ] = silk_RSHIFT( frame_8kHz[ i ], shift ); - } - } - /********************************************************************************* * Find energy of each subframe projected onto its history, for a range of delays *********************************************************************************/ @@ -332,8 +325,8 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 for( k = 0; k < nb_subfr; k++ ) { /* Check that we are within range of the array */ - silk_assert( target_ptr >= frame_8kHz ); - silk_assert( target_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz ); + celt_assert( target_ptr >= frame_8kHz ); + celt_assert( target_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz ); energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, SF_LENGTH_8KHZ, arch ), 1 ); for( j = 0; j < length_d_comp; j++ ) { @@ -462,24 +455,6 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 silk_assert( *LTPCorr_Q15 >= 0 ); if( Fs_kHz > 8 ) { - VARDECL( opus_int16, scratch_mem ); - /***************************************************************************/ - /* Scale input signal down to avoid correlations measures from overflowing */ - /***************************************************************************/ - /* find scaling as max scaling for each subframe */ - silk_sum_sqr_shift( &energy, &shift, frame, frame_length ); - ALLOC( scratch_mem, shift > 0 ? frame_length : ALLOC_NONE, opus_int16 ); - if( shift > 0 ) { - /* Move signal to scratch mem because the input signal should be unchanged */ - shift = silk_RSHIFT( shift, 1 ); - for( i = 0; i < frame_length; i++ ) { - scratch_mem[ i ] = silk_RSHIFT( frame[ i ], shift ); - } - input_frame_ptr = scratch_mem; - } else { - input_frame_ptr = frame; - } - /* Search in original signal */ CBimax_old = CBimax; @@ -519,14 +494,14 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 /* Calculate the correlations and energies needed in stage 3 */ ALLOC( energies_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals ); ALLOC( cross_corr_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals ); - silk_P_Ana_calc_corr_st3( cross_corr_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity, arch ); - silk_P_Ana_calc_energy_st3( energies_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity, arch ); + silk_P_Ana_calc_corr_st3( cross_corr_st3, frame, start_lag, sf_length, nb_subfr, complexity, arch ); + silk_P_Ana_calc_energy_st3( energies_st3, frame, start_lag, sf_length, nb_subfr, complexity, arch ); lag_counter = 0; silk_assert( lag == silk_SAT16( lag ) ); contour_bias_Q15 = silk_DIV32_16( SILK_FIX_CONST( PE_FLATCONTOUR_BIAS, 15 ), lag ); - target_ptr = &input_frame_ptr[ PE_LTP_MEM_LENGTH_MS * Fs_kHz ]; + target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * Fs_kHz ]; energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, nb_subfr * sf_length, arch ), 1 ); for( d = start_lag; d <= end_lag; d++ ) { for( j = 0; j < nb_cbk_search; j++ ) { @@ -575,7 +550,7 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 *lagIndex = (opus_int16)( lag - MIN_LAG_8KHZ ); *contourIndex = (opus_int8)CBimax; } - silk_assert( *lagIndex >= 0 ); + celt_assert( *lagIndex >= 0 ); /* return as voiced */ RESTORE_STACK; return 0; @@ -612,8 +587,8 @@ static void silk_P_Ana_calc_corr_st3( const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SAVE_STACK; - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ) { Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; @@ -621,7 +596,7 @@ static void silk_P_Ana_calc_corr_st3( nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; @@ -637,7 +612,7 @@ static void silk_P_Ana_calc_corr_st3( /* Calculate the correlations for each subframe */ lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 ); lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 ); - silk_assert(lag_high-lag_low+1 <= SCRATCH_SIZE); + celt_assert(lag_high-lag_low+1 <= SCRATCH_SIZE); celt_pitch_xcorr( target_ptr, target_ptr - start_lag - lag_high, xcorr32, sf_length, lag_high - lag_low + 1, arch ); for( j = lag_low; j <= lag_high; j++ ) { silk_assert( lag_counter < SCRATCH_SIZE ); @@ -684,8 +659,8 @@ static void silk_P_Ana_calc_energy_st3( const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SAVE_STACK; - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ) { Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; @@ -693,7 +668,7 @@ static void silk_P_Ana_calc_energy_st3( nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; diff --git a/thirdparty/opus/silk/fixed/prefilter_FIX.c b/thirdparty/opus/silk/fixed/prefilter_FIX.c deleted file mode 100644 index 6a8e35152e..0000000000 --- a/thirdparty/opus/silk/fixed/prefilter_FIX.c +++ /dev/null @@ -1,221 +0,0 @@ -/*********************************************************************** -Copyright (c) 2006-2011, Skype Limited. All rights reserved. -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: -- Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. -- Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the -documentation and/or other materials provided with the distribution. -- Neither the name of Internet Society, IETF or IETF Trust, nor the -names of specific contributors, may be used to endorse or promote -products derived from this software without specific prior written -permission. -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -***********************************************************************/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "main_FIX.h" -#include "stack_alloc.h" -#include "tuning_parameters.h" - -#if defined(MIPSr1_ASM) -#include "mips/prefilter_FIX_mipsr1.h" -#endif - - -#if !defined(OVERRIDE_silk_warped_LPC_analysis_filter_FIX) -#define silk_warped_LPC_analysis_filter_FIX(state, res_Q2, coef_Q13, input, lambda_Q16, length, order, arch) \ - ((void)(arch),silk_warped_LPC_analysis_filter_FIX_c(state, res_Q2, coef_Q13, input, lambda_Q16, length, order)) -#endif - -/* Prefilter for finding Quantizer input signal */ -static OPUS_INLINE void silk_prefilt_FIX( - silk_prefilter_state_FIX *P, /* I/O state */ - opus_int32 st_res_Q12[], /* I short term residual signal */ - opus_int32 xw_Q3[], /* O prefiltered signal */ - opus_int32 HarmShapeFIRPacked_Q12, /* I Harmonic shaping coeficients */ - opus_int Tilt_Q14, /* I Tilt shaping coeficient */ - opus_int32 LF_shp_Q14, /* I Low-frequancy shaping coeficients */ - opus_int lag, /* I Lag for harmonic shaping */ - opus_int length /* I Length of signals */ -); - -void silk_warped_LPC_analysis_filter_FIX_c( - opus_int32 state[], /* I/O State [order + 1] */ - opus_int32 res_Q2[], /* O Residual signal [length] */ - const opus_int16 coef_Q13[], /* I Coefficients [order] */ - const opus_int16 input[], /* I Input signal [length] */ - const opus_int16 lambda_Q16, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -) -{ - opus_int n, i; - opus_int32 acc_Q11, tmp1, tmp2; - - /* Order must be even */ - silk_assert( ( order & 1 ) == 0 ); - - for( n = 0; n < length; n++ ) { - /* Output of lowpass section */ - tmp2 = silk_SMLAWB( state[ 0 ], state[ 1 ], lambda_Q16 ); - state[ 0 ] = silk_LSHIFT( input[ n ], 14 ); - /* Output of allpass section */ - tmp1 = silk_SMLAWB( state[ 1 ], state[ 2 ] - tmp2, lambda_Q16 ); - state[ 1 ] = tmp2; - acc_Q11 = silk_RSHIFT( order, 1 ); - acc_Q11 = silk_SMLAWB( acc_Q11, tmp2, coef_Q13[ 0 ] ); - /* Loop over allpass sections */ - for( i = 2; i < order; i += 2 ) { - /* Output of allpass section */ - tmp2 = silk_SMLAWB( state[ i ], state[ i + 1 ] - tmp1, lambda_Q16 ); - state[ i ] = tmp1; - acc_Q11 = silk_SMLAWB( acc_Q11, tmp1, coef_Q13[ i - 1 ] ); - /* Output of allpass section */ - tmp1 = silk_SMLAWB( state[ i + 1 ], state[ i + 2 ] - tmp2, lambda_Q16 ); - state[ i + 1 ] = tmp2; - acc_Q11 = silk_SMLAWB( acc_Q11, tmp2, coef_Q13[ i ] ); - } - state[ order ] = tmp1; - acc_Q11 = silk_SMLAWB( acc_Q11, tmp1, coef_Q13[ order - 1 ] ); - res_Q2[ n ] = silk_LSHIFT( (opus_int32)input[ n ], 2 ) - silk_RSHIFT_ROUND( acc_Q11, 9 ); - } -} - -void silk_prefilter_FIX( - silk_encoder_state_FIX *psEnc, /* I/O Encoder state */ - const silk_encoder_control_FIX *psEncCtrl, /* I Encoder control */ - opus_int32 xw_Q3[], /* O Weighted signal */ - const opus_int16 x[] /* I Speech signal */ -) -{ - silk_prefilter_state_FIX *P = &psEnc->sPrefilt; - opus_int j, k, lag; - opus_int32 tmp_32; - const opus_int16 *AR1_shp_Q13; - const opus_int16 *px; - opus_int32 *pxw_Q3; - opus_int HarmShapeGain_Q12, Tilt_Q14; - opus_int32 HarmShapeFIRPacked_Q12, LF_shp_Q14; - VARDECL( opus_int32, x_filt_Q12 ); - VARDECL( opus_int32, st_res_Q2 ); - opus_int16 B_Q10[ 2 ]; - SAVE_STACK; - - /* Set up pointers */ - px = x; - pxw_Q3 = xw_Q3; - lag = P->lagPrev; - ALLOC( x_filt_Q12, psEnc->sCmn.subfr_length, opus_int32 ); - ALLOC( st_res_Q2, psEnc->sCmn.subfr_length, opus_int32 ); - for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - /* Update Variables that change per sub frame */ - if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { - lag = psEncCtrl->pitchL[ k ]; - } - - /* Noise shape parameters */ - HarmShapeGain_Q12 = silk_SMULWB( (opus_int32)psEncCtrl->HarmShapeGain_Q14[ k ], 16384 - psEncCtrl->HarmBoost_Q14[ k ] ); - silk_assert( HarmShapeGain_Q12 >= 0 ); - HarmShapeFIRPacked_Q12 = silk_RSHIFT( HarmShapeGain_Q12, 2 ); - HarmShapeFIRPacked_Q12 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q12, 1 ), 16 ); - Tilt_Q14 = psEncCtrl->Tilt_Q14[ k ]; - LF_shp_Q14 = psEncCtrl->LF_shp_Q14[ k ]; - AR1_shp_Q13 = &psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER ]; - - /* Short term FIR filtering*/ - silk_warped_LPC_analysis_filter_FIX( P->sAR_shp, st_res_Q2, AR1_shp_Q13, px, - psEnc->sCmn.warping_Q16, psEnc->sCmn.subfr_length, psEnc->sCmn.shapingLPCOrder, psEnc->sCmn.arch ); - - /* Reduce (mainly) low frequencies during harmonic emphasis */ - B_Q10[ 0 ] = silk_RSHIFT_ROUND( psEncCtrl->GainsPre_Q14[ k ], 4 ); - tmp_32 = silk_SMLABB( SILK_FIX_CONST( INPUT_TILT, 26 ), psEncCtrl->HarmBoost_Q14[ k ], HarmShapeGain_Q12 ); /* Q26 */ - tmp_32 = silk_SMLABB( tmp_32, psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ); /* Q26 */ - tmp_32 = silk_SMULWB( tmp_32, -psEncCtrl->GainsPre_Q14[ k ] ); /* Q24 */ - tmp_32 = silk_RSHIFT_ROUND( tmp_32, 14 ); /* Q10 */ - B_Q10[ 1 ]= silk_SAT16( tmp_32 ); - x_filt_Q12[ 0 ] = silk_MLA( silk_MUL( st_res_Q2[ 0 ], B_Q10[ 0 ] ), P->sHarmHP_Q2, B_Q10[ 1 ] ); - for( j = 1; j < psEnc->sCmn.subfr_length; j++ ) { - x_filt_Q12[ j ] = silk_MLA( silk_MUL( st_res_Q2[ j ], B_Q10[ 0 ] ), st_res_Q2[ j - 1 ], B_Q10[ 1 ] ); - } - P->sHarmHP_Q2 = st_res_Q2[ psEnc->sCmn.subfr_length - 1 ]; - - silk_prefilt_FIX( P, x_filt_Q12, pxw_Q3, HarmShapeFIRPacked_Q12, Tilt_Q14, LF_shp_Q14, lag, psEnc->sCmn.subfr_length ); - - px += psEnc->sCmn.subfr_length; - pxw_Q3 += psEnc->sCmn.subfr_length; - } - - P->lagPrev = psEncCtrl->pitchL[ psEnc->sCmn.nb_subfr - 1 ]; - RESTORE_STACK; -} - -#ifndef OVERRIDE_silk_prefilt_FIX -/* Prefilter for finding Quantizer input signal */ -static OPUS_INLINE void silk_prefilt_FIX( - silk_prefilter_state_FIX *P, /* I/O state */ - opus_int32 st_res_Q12[], /* I short term residual signal */ - opus_int32 xw_Q3[], /* O prefiltered signal */ - opus_int32 HarmShapeFIRPacked_Q12, /* I Harmonic shaping coeficients */ - opus_int Tilt_Q14, /* I Tilt shaping coeficient */ - opus_int32 LF_shp_Q14, /* I Low-frequancy shaping coeficients */ - opus_int lag, /* I Lag for harmonic shaping */ - opus_int length /* I Length of signals */ -) -{ - opus_int i, idx, LTP_shp_buf_idx; - opus_int32 n_LTP_Q12, n_Tilt_Q10, n_LF_Q10; - opus_int32 sLF_MA_shp_Q12, sLF_AR_shp_Q12; - opus_int16 *LTP_shp_buf; - - /* To speed up use temp variables instead of using the struct */ - LTP_shp_buf = P->sLTP_shp; - LTP_shp_buf_idx = P->sLTP_shp_buf_idx; - sLF_AR_shp_Q12 = P->sLF_AR_shp_Q12; - sLF_MA_shp_Q12 = P->sLF_MA_shp_Q12; - - for( i = 0; i < length; i++ ) { - if( lag > 0 ) { - /* unrolled loop */ - silk_assert( HARM_SHAPE_FIR_TAPS == 3 ); - idx = lag + LTP_shp_buf_idx; - n_LTP_Q12 = silk_SMULBB( LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 - 1) & LTP_MASK ], HarmShapeFIRPacked_Q12 ); - n_LTP_Q12 = silk_SMLABT( n_LTP_Q12, LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 ) & LTP_MASK ], HarmShapeFIRPacked_Q12 ); - n_LTP_Q12 = silk_SMLABB( n_LTP_Q12, LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 + 1) & LTP_MASK ], HarmShapeFIRPacked_Q12 ); - } else { - n_LTP_Q12 = 0; - } - - n_Tilt_Q10 = silk_SMULWB( sLF_AR_shp_Q12, Tilt_Q14 ); - n_LF_Q10 = silk_SMLAWB( silk_SMULWT( sLF_AR_shp_Q12, LF_shp_Q14 ), sLF_MA_shp_Q12, LF_shp_Q14 ); - - sLF_AR_shp_Q12 = silk_SUB32( st_res_Q12[ i ], silk_LSHIFT( n_Tilt_Q10, 2 ) ); - sLF_MA_shp_Q12 = silk_SUB32( sLF_AR_shp_Q12, silk_LSHIFT( n_LF_Q10, 2 ) ); - - LTP_shp_buf_idx = ( LTP_shp_buf_idx - 1 ) & LTP_MASK; - LTP_shp_buf[ LTP_shp_buf_idx ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( sLF_MA_shp_Q12, 12 ) ); - - xw_Q3[i] = silk_RSHIFT_ROUND( silk_SUB32( sLF_MA_shp_Q12, n_LTP_Q12 ), 9 ); - } - - /* Copy temp variable back to state */ - P->sLF_AR_shp_Q12 = sLF_AR_shp_Q12; - P->sLF_MA_shp_Q12 = sLF_MA_shp_Q12; - P->sLTP_shp_buf_idx = LTP_shp_buf_idx; -} -#endif /* OVERRIDE_silk_prefilt_FIX */ diff --git a/thirdparty/opus/silk/fixed/residual_energy16_FIX.c b/thirdparty/opus/silk/fixed/residual_energy16_FIX.c index ebffb2a66f..7f130f3d3d 100644 --- a/thirdparty/opus/silk/fixed/residual_energy16_FIX.c +++ b/thirdparty/opus/silk/fixed/residual_energy16_FIX.c @@ -47,10 +47,10 @@ opus_int32 silk_residual_energy16_covar_FIX( const opus_int32 *pRow; /* Safety checks */ - silk_assert( D >= 0 ); - silk_assert( D <= 16 ); - silk_assert( cQ > 0 ); - silk_assert( cQ < 16 ); + celt_assert( D >= 0 ); + celt_assert( D <= 16 ); + celt_assert( cQ > 0 ); + celt_assert( cQ < 16 ); lshifts = 16 - cQ; Qxtra = lshifts; diff --git a/thirdparty/opus/silk/fixed/residual_energy_FIX.c b/thirdparty/opus/silk/fixed/residual_energy_FIX.c index 41f74778e8..6c7cade9a0 100644 --- a/thirdparty/opus/silk/fixed/residual_energy_FIX.c +++ b/thirdparty/opus/silk/fixed/residual_energy_FIX.c @@ -58,7 +58,7 @@ void silk_residual_energy_FIX( /* Filter input to create the LPC residual for each frame half, and measure subframe energies */ ALLOC( LPC_res, ( MAX_NB_SUBFR >> 1 ) * offset, opus_int16 ); - silk_assert( ( nb_subfr >> 1 ) * ( MAX_NB_SUBFR >> 1 ) == nb_subfr ); + celt_assert( ( nb_subfr >> 1 ) * ( MAX_NB_SUBFR >> 1 ) == nb_subfr ); for( i = 0; i < nb_subfr >> 1; i++ ) { /* Calculate half frame LPC residual signal including preceding samples */ silk_LPC_analysis_filter( LPC_res, x_ptr, a_Q12[ i ], ( MAX_NB_SUBFR >> 1 ) * offset, LPC_order, arch ); diff --git a/thirdparty/opus/silk/fixed/schur64_FIX.c b/thirdparty/opus/silk/fixed/schur64_FIX.c index 764a10ef3e..4b7e19ea59 100644 --- a/thirdparty/opus/silk/fixed/schur64_FIX.c +++ b/thirdparty/opus/silk/fixed/schur64_FIX.c @@ -43,7 +43,7 @@ opus_int32 silk_schur64( /* O returns residual ene opus_int32 C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ]; opus_int32 Ctmp1_Q30, Ctmp2_Q30, rc_tmp_Q31; - silk_assert( order==6||order==8||order==10||order==12||order==14||order==16 ); + celt_assert( order >= 0 && order <= SILK_MAX_ORDER_LPC ); /* Check for invalid input */ if( c[ 0 ] <= 0 ) { @@ -51,9 +51,10 @@ opus_int32 silk_schur64( /* O returns residual ene return 0; } - for( k = 0; k < order + 1; k++ ) { + k = 0; + do { C[ k ][ 0 ] = C[ k ][ 1 ] = c[ k ]; - } + } while( ++k <= order ); for( k = 0; k < order; k++ ) { /* Check that we won't be getting an unstable rc, otherwise stop here. */ diff --git a/thirdparty/opus/silk/fixed/schur_FIX.c b/thirdparty/opus/silk/fixed/schur_FIX.c index c4c0ef23b4..2840f6b1aa 100644 --- a/thirdparty/opus/silk/fixed/schur_FIX.c +++ b/thirdparty/opus/silk/fixed/schur_FIX.c @@ -43,28 +43,29 @@ opus_int32 silk_schur( /* O Returns residual ene opus_int32 C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ]; opus_int32 Ctmp1, Ctmp2, rc_tmp_Q15; - silk_assert( order==6||order==8||order==10||order==12||order==14||order==16 ); + celt_assert( order >= 0 && order <= SILK_MAX_ORDER_LPC ); /* Get number of leading zeros */ lz = silk_CLZ32( c[ 0 ] ); /* Copy correlations and adjust level to Q30 */ + k = 0; if( lz < 2 ) { /* lz must be 1, so shift one to the right */ - for( k = 0; k < order + 1; k++ ) { + do { C[ k ][ 0 ] = C[ k ][ 1 ] = silk_RSHIFT( c[ k ], 1 ); - } + } while( ++k <= order ); } else if( lz > 2 ) { /* Shift to the left */ lz -= 2; - for( k = 0; k < order + 1; k++ ) { + do { C[ k ][ 0 ] = C[ k ][ 1 ] = silk_LSHIFT( c[ k ], lz ); - } + } while( ++k <= order ); } else { /* No need to shift */ - for( k = 0; k < order + 1; k++ ) { + do { C[ k ][ 0 ] = C[ k ][ 1 ] = c[ k ]; - } + } while( ++k <= order ); } for( k = 0; k < order; k++ ) { diff --git a/thirdparty/opus/silk/fixed/solve_LS_FIX.c b/thirdparty/opus/silk/fixed/solve_LS_FIX.c deleted file mode 100644 index 51d7d49d02..0000000000 --- a/thirdparty/opus/silk/fixed/solve_LS_FIX.c +++ /dev/null @@ -1,249 +0,0 @@ -/*********************************************************************** -Copyright (c) 2006-2011, Skype Limited. All rights reserved. -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: -- Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. -- Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the -documentation and/or other materials provided with the distribution. -- Neither the name of Internet Society, IETF or IETF Trust, nor the -names of specific contributors, may be used to endorse or promote -products derived from this software without specific prior written -permission. -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -***********************************************************************/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "main_FIX.h" -#include "stack_alloc.h" -#include "tuning_parameters.h" - -/*****************************/ -/* Internal function headers */ -/*****************************/ - -typedef struct { - opus_int32 Q36_part; - opus_int32 Q48_part; -} inv_D_t; - -/* Factorize square matrix A into LDL form */ -static OPUS_INLINE void silk_LDL_factorize_FIX( - opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ - opus_int M, /* I Size of Matrix */ - opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ - inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ -); - -/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ -static OPUS_INLINE void silk_LS_SolveFirst_FIX( - const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const opus_int32 *b, /* I b Vector */ - opus_int32 *x_Q16 /* O x Vector */ -); - -/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ -static OPUS_INLINE void silk_LS_SolveLast_FIX( - const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ - const opus_int M, /* I Dim of Matrix equation */ - const opus_int32 *b, /* I b Vector */ - opus_int32 *x_Q16 /* O x Vector */ -); - -static OPUS_INLINE void silk_LS_divide_Q16_FIX( - opus_int32 T[], /* I/O Numenator vector */ - inv_D_t *inv_D, /* I 1 / D vector */ - opus_int M /* I dimension */ -); - -/* Solves Ax = b, assuming A is symmetric */ -void silk_solve_LDL_FIX( - opus_int32 *A, /* I Pointer to symetric square matrix A */ - opus_int M, /* I Size of matrix */ - const opus_int32 *b, /* I Pointer to b vector */ - opus_int32 *x_Q16 /* O Pointer to x solution vector */ -) -{ - VARDECL( opus_int32, L_Q16 ); - opus_int32 Y[ MAX_MATRIX_SIZE ]; - inv_D_t inv_D[ MAX_MATRIX_SIZE ]; - SAVE_STACK; - - silk_assert( M <= MAX_MATRIX_SIZE ); - ALLOC( L_Q16, M * M, opus_int32 ); - - /*************************************************** - Factorize A by LDL such that A = L*D*L', - where L is lower triangular with ones on diagonal - ****************************************************/ - silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); - - /**************************************************** - * substitute D*L'*x = Y. ie: - L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b - ******************************************************/ - silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); - - /**************************************************** - D*L'*x = Y <=> L'*x = inv(D)*Y, because D is - diagonal just multiply with 1/d_i - ****************************************************/ - silk_LS_divide_Q16_FIX( Y, inv_D, M ); - - /**************************************************** - x = inv(L') * inv(D) * Y - *****************************************************/ - silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); - RESTORE_STACK; -} - -static OPUS_INLINE void silk_LDL_factorize_FIX( - opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ - opus_int M, /* I Size of Matrix */ - opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ - inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ -) -{ - opus_int i, j, k, status, loop_count; - const opus_int32 *ptr1, *ptr2; - opus_int32 diag_min_value, tmp_32, err; - opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; - opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; - - silk_assert( M <= MAX_MATRIX_SIZE ); - - status = 1; - diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); - for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { - status = 0; - for( j = 0; j < M; j++ ) { - ptr1 = matrix_adr( L_Q16, j, 0, M ); - tmp_32 = 0; - for( i = 0; i < j; i++ ) { - v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */ - tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */ - } - tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); - - if( tmp_32 < diag_min_value ) { - tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 ); - /* Matrix not positive semi-definite, or ill conditioned */ - for( i = 0; i < M; i++ ) { - matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 ); - } - status = 1; - break; - } - D_Q0[ j ] = tmp_32; /* always < max(Correlation) */ - - /* two-step division */ - one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */ - one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */ - err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */ - one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */ - - /* Save 1/Ds */ - inv_D[ j ].Q36_part = one_div_diag_Q36; - inv_D[ j ].Q48_part = one_div_diag_Q48; - - matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ - ptr1 = matrix_adr( A, j, 0, M ); - ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); - for( i = j + 1; i < M; i++ ) { - tmp_32 = 0; - for( k = 0; k < j; k++ ) { - tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */ - } - tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */ - - /* tmp_32 / D_Q0[j] : Divide to Q16 */ - matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), - silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); - - /* go to next column */ - ptr2 += M; - } - } - } - - silk_assert( status == 0 ); -} - -static OPUS_INLINE void silk_LS_divide_Q16_FIX( - opus_int32 T[], /* I/O Numenator vector */ - inv_D_t *inv_D, /* I 1 / D vector */ - opus_int M /* I dimension */ -) -{ - opus_int i; - opus_int32 tmp_32; - opus_int32 one_div_diag_Q36, one_div_diag_Q48; - - for( i = 0; i < M; i++ ) { - one_div_diag_Q36 = inv_D[ i ].Q36_part; - one_div_diag_Q48 = inv_D[ i ].Q48_part; - - tmp_32 = T[ i ]; - T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); - } -} - -/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ -static OPUS_INLINE void silk_LS_SolveFirst_FIX( - const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const opus_int32 *b, /* I b Vector */ - opus_int32 *x_Q16 /* O x Vector */ -) -{ - opus_int i, j; - const opus_int32 *ptr32; - opus_int32 tmp_32; - - for( i = 0; i < M; i++ ) { - ptr32 = matrix_adr( L_Q16, i, 0, M ); - tmp_32 = 0; - for( j = 0; j < i; j++ ) { - tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); - } - x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); - } -} - -/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ -static OPUS_INLINE void silk_LS_SolveLast_FIX( - const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ - const opus_int M, /* I Dim of Matrix equation */ - const opus_int32 *b, /* I b Vector */ - opus_int32 *x_Q16 /* O x Vector */ -) -{ - opus_int i, j; - const opus_int32 *ptr32; - opus_int32 tmp_32; - - for( i = M - 1; i >= 0; i-- ) { - ptr32 = matrix_adr( L_Q16, 0, i, M ); - tmp_32 = 0; - for( j = M - 1; j > i; j-- ) { - tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] ); - } - x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); - } -} diff --git a/thirdparty/opus/silk/fixed/structs_FIX.h b/thirdparty/opus/silk/fixed/structs_FIX.h index 3294b25128..2774a97b24 100644 --- a/thirdparty/opus/silk/fixed/structs_FIX.h +++ b/thirdparty/opus/silk/fixed/structs_FIX.h @@ -48,30 +48,16 @@ typedef struct { } silk_shape_state_FIX; /********************************/ -/* Prefilter state */ -/********************************/ -typedef struct { - opus_int16 sLTP_shp[ LTP_BUF_LENGTH ]; - opus_int32 sAR_shp[ MAX_SHAPE_LPC_ORDER + 1 ]; - opus_int sLTP_shp_buf_idx; - opus_int32 sLF_AR_shp_Q12; - opus_int32 sLF_MA_shp_Q12; - opus_int32 sHarmHP_Q2; - opus_int32 rand_seed; - opus_int lagPrev; -} silk_prefilter_state_FIX; - -/********************************/ /* Encoder state FIX */ /********************************/ typedef struct { silk_encoder_state sCmn; /* Common struct, shared with floating-point code */ silk_shape_state_FIX sShape; /* Shape state */ - silk_prefilter_state_FIX sPrefilt; /* Prefilter State */ /* Buffer for find pitch and noise shape analysis */ silk_DWORD_ALIGN opus_int16 x_buf[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ];/* Buffer for find pitch and noise shape analysis */ opus_int LTPCorr_Q15; /* Normalized correlation from pitch lag estimator */ + opus_int32 resNrgSmth; } silk_encoder_state_FIX; /************************/ @@ -87,11 +73,8 @@ typedef struct { /* Noise shaping parameters */ /* Testing */ - silk_DWORD_ALIGN opus_int16 AR1_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; - silk_DWORD_ALIGN opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; + silk_DWORD_ALIGN opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ]; /* Packs two int16 coefficients per int32 value */ - opus_int GainsPre_Q14[ MAX_NB_SUBFR ]; - opus_int HarmBoost_Q14[ MAX_NB_SUBFR ]; opus_int Tilt_Q14[ MAX_NB_SUBFR ]; opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ]; opus_int Lambda_Q10; @@ -99,7 +82,6 @@ typedef struct { opus_int coding_quality_Q14; /* measures */ - opus_int sparseness_Q8; opus_int32 predGain_Q16; opus_int LTPredCodGain_Q7; opus_int32 ResNrg[ MAX_NB_SUBFR ]; /* Residual energy per subframe */ diff --git a/thirdparty/opus/silk/fixed/warped_autocorrelation_FIX.c b/thirdparty/opus/silk/fixed/warped_autocorrelation_FIX.c index 6ca6c1184d..5c79553bc0 100644 --- a/thirdparty/opus/silk/fixed/warped_autocorrelation_FIX.c +++ b/thirdparty/opus/silk/fixed/warped_autocorrelation_FIX.c @@ -31,17 +31,14 @@ POSSIBILITY OF SUCH DAMAGE. #include "main_FIX.h" -#define QC 10 -#define QS 14 - #if defined(MIPSr1_ASM) #include "mips/warped_autocorrelation_FIX_mipsr1.h" #endif -#ifndef OVERRIDE_silk_warped_autocorrelation_FIX /* Autocorrelations for a warped frequency axis */ -void silk_warped_autocorrelation_FIX( +#ifndef OVERRIDE_silk_warped_autocorrelation_FIX_c +void silk_warped_autocorrelation_FIX_c( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ @@ -56,7 +53,7 @@ void silk_warped_autocorrelation_FIX( opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* Order must be even */ - silk_assert( ( order & 1 ) == 0 ); + celt_assert( ( order & 1 ) == 0 ); silk_assert( 2 * QS - QC >= 0 ); /* Loop over samples */ @@ -92,4 +89,4 @@ void silk_warped_autocorrelation_FIX( } silk_assert( corr_QC[ 0 ] >= 0 ); /* If breaking, decrease QC*/ } -#endif /* OVERRIDE_silk_warped_autocorrelation_FIX */ +#endif /* OVERRIDE_silk_warped_autocorrelation_FIX_c */ diff --git a/thirdparty/opus/silk/fixed/x86/burg_modified_FIX_sse.c b/thirdparty/opus/silk/fixed/x86/burg_modified_FIX_sse4_1.c index 3c3583c5fc..bbb1ce0fcc 100644 --- a/thirdparty/opus/silk/fixed/x86/burg_modified_FIX_sse.c +++ b/thirdparty/opus/silk/fixed/x86/burg_modified_FIX_sse4_1.c @@ -72,7 +72,7 @@ void silk_burg_modified_sse4_1( __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210; __m128i CONST1 = _mm_set1_epi32(1); - silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); + celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); diff --git a/thirdparty/opus/silk/fixed/x86/prefilter_FIX_sse.c b/thirdparty/opus/silk/fixed/x86/prefilter_FIX_sse.c index 488a603f5d..555432cd96 100644 --- a/thirdparty/opus/silk/fixed/x86/prefilter_FIX_sse.c +++ b/thirdparty/opus/silk/fixed/x86/prefilter_FIX_sse.c @@ -49,7 +49,7 @@ void silk_warped_LPC_analysis_filter_FIX_sse4_1( opus_int32 acc_Q11, tmp1, tmp2; /* Order must be even */ - silk_assert( ( order & 1 ) == 0 ); + celt_assert( ( order & 1 ) == 0 ); if (order == 10) { @@ -65,7 +65,7 @@ void silk_warped_LPC_analysis_filter_FIX_sse4_1( register opus_int32 state_8, state_9, state_a; register opus_int64 coef_Q13_8, coef_Q13_9; - silk_assert( length > 0 ); + celt_assert( length > 0 ); coef_Q13_3210 = OP_CVTEPI16_EPI32_M64( &coef_Q13[ 0 ] ); coef_Q13_7654 = OP_CVTEPI16_EPI32_M64( &coef_Q13[ 4 ] ); @@ -107,8 +107,8 @@ void silk_warped_LPC_analysis_filter_FIX_sse4_1( xmm_tempb = _mm_add_epi32( xmm_tempb, xmm_product2 ); xmm_tempa = _mm_add_epi32( xmm_tempa, xmm_tempb ); - sum = (coef_Q13_8 * state_8) >> 16; - sum += (coef_Q13_9 * state_9) >> 16; + sum = (opus_int32)((coef_Q13_8 * state_8) >> 16); + sum += (opus_int32)((coef_Q13_9 * state_9) >> 16); xmm_tempa = _mm_add_epi32( xmm_tempa, _mm_shuffle_epi32( xmm_tempa, _MM_SHUFFLE( 0, 0, 0, 2 ) ) ); sum += _mm_cvtsi128_si32( xmm_tempa); diff --git a/thirdparty/opus/silk/fixed/x86/vector_ops_FIX_sse.c b/thirdparty/opus/silk/fixed/x86/vector_ops_FIX_sse4_1.c index c1e90564d0..c1e90564d0 100644 --- a/thirdparty/opus/silk/fixed/x86/vector_ops_FIX_sse.c +++ b/thirdparty/opus/silk/fixed/x86/vector_ops_FIX_sse4_1.c diff --git a/thirdparty/opus/silk/float/LPC_analysis_filter_FLP.c b/thirdparty/opus/silk/float/LPC_analysis_filter_FLP.c index cae89a0a18..0e1a1fed0f 100644 --- a/thirdparty/opus/silk/float/LPC_analysis_filter_FLP.c +++ b/thirdparty/opus/silk/float/LPC_analysis_filter_FLP.c @@ -215,7 +215,7 @@ void silk_LPC_analysis_filter_FLP( const opus_int Order /* I LPC order */ ) { - silk_assert( Order <= length ); + celt_assert( Order <= length ); switch( Order ) { case 6: @@ -239,7 +239,7 @@ void silk_LPC_analysis_filter_FLP( break; default: - silk_assert( 0 ); + celt_assert( 0 ); break; } diff --git a/thirdparty/opus/silk/float/LPC_inv_pred_gain_FLP.c b/thirdparty/opus/silk/float/LPC_inv_pred_gain_FLP.c index 25178bacdd..2be2122d61 100644 --- a/thirdparty/opus/silk/float/LPC_inv_pred_gain_FLP.c +++ b/thirdparty/opus/silk/float/LPC_inv_pred_gain_FLP.c @@ -31,8 +31,7 @@ POSSIBILITY OF SUCH DAMAGE. #include "SigProc_FIX.h" #include "SigProc_FLP.h" - -#define RC_THRESHOLD 0.9999f +#include "define.h" /* compute inverse of LPC prediction gain, and */ /* test if LPC coefficients are stable (all poles within unit circle) */ @@ -43,34 +42,32 @@ silk_float silk_LPC_inverse_pred_gain_FLP( /* O return inverse prediction ga ) { opus_int k, n; - double invGain, rc, rc_mult1, rc_mult2; - silk_float Atmp[ 2 ][ SILK_MAX_ORDER_LPC ]; - silk_float *Aold, *Anew; + double invGain, rc, rc_mult1, rc_mult2, tmp1, tmp2; + silk_float Atmp[ SILK_MAX_ORDER_LPC ]; - Anew = Atmp[ order & 1 ]; - silk_memcpy( Anew, A, order * sizeof(silk_float) ); + silk_memcpy( Atmp, A, order * sizeof(silk_float) ); invGain = 1.0; for( k = order - 1; k > 0; k-- ) { - rc = -Anew[ k ]; - if( rc > RC_THRESHOLD || rc < -RC_THRESHOLD ) { + rc = -Atmp[ k ]; + rc_mult1 = 1.0f - rc * rc; + invGain *= rc_mult1; + if( invGain * MAX_PREDICTION_POWER_GAIN < 1.0f ) { return 0.0f; } - rc_mult1 = 1.0f - rc * rc; rc_mult2 = 1.0f / rc_mult1; - invGain *= rc_mult1; - /* swap pointers */ - Aold = Anew; - Anew = Atmp[ k & 1 ]; - for( n = 0; n < k; n++ ) { - Anew[ n ] = (silk_float)( ( Aold[ n ] - Aold[ k - n - 1 ] * rc ) * rc_mult2 ); + for( n = 0; n < (k + 1) >> 1; n++ ) { + tmp1 = Atmp[ n ]; + tmp2 = Atmp[ k - n - 1 ]; + Atmp[ n ] = (silk_float)( ( tmp1 - tmp2 * rc ) * rc_mult2 ); + Atmp[ k - n - 1 ] = (silk_float)( ( tmp2 - tmp1 * rc ) * rc_mult2 ); } } - rc = -Anew[ 0 ]; - if( rc > RC_THRESHOLD || rc < -RC_THRESHOLD ) { - return 0.0f; - } + rc = -Atmp[ 0 ]; rc_mult1 = 1.0f - rc * rc; invGain *= rc_mult1; + if( invGain * MAX_PREDICTION_POWER_GAIN < 1.0f ) { + return 0.0f; + } return (silk_float)invGain; } diff --git a/thirdparty/opus/silk/float/SigProc_FLP.h b/thirdparty/opus/silk/float/SigProc_FLP.h index f0cb3733be..953de8b09e 100644 --- a/thirdparty/opus/silk/float/SigProc_FLP.h +++ b/thirdparty/opus/silk/float/SigProc_FLP.h @@ -68,13 +68,6 @@ void silk_k2a_FLP( opus_int32 order /* I prediction order */ ); -/* Solve the normal equations using the Levinson-Durbin recursion */ -silk_float silk_levinsondurbin_FLP( /* O prediction error energy */ - silk_float A[], /* O prediction coefficients [order] */ - const silk_float corr[], /* I input auto-correlations [order + 1] */ - const opus_int order /* I prediction order */ -); - /* compute autocorrelation */ void silk_autocorrelation_FLP( silk_float *results, /* O result (length correlationCount) */ diff --git a/thirdparty/opus/silk/float/apply_sine_window_FLP.c b/thirdparty/opus/silk/float/apply_sine_window_FLP.c index 6aae57c0ab..e49e717991 100644 --- a/thirdparty/opus/silk/float/apply_sine_window_FLP.c +++ b/thirdparty/opus/silk/float/apply_sine_window_FLP.c @@ -45,10 +45,10 @@ void silk_apply_sine_window_FLP( opus_int k; silk_float freq, c, S0, S1; - silk_assert( win_type == 1 || win_type == 2 ); + celt_assert( win_type == 1 || win_type == 2 ); /* Length must be multiple of 4 */ - silk_assert( ( length & 3 ) == 0 ); + celt_assert( ( length & 3 ) == 0 ); freq = PI / ( length + 1 ); diff --git a/thirdparty/opus/silk/float/burg_modified_FLP.c b/thirdparty/opus/silk/float/burg_modified_FLP.c index ea5dc25a93..756b76a35b 100644 --- a/thirdparty/opus/silk/float/burg_modified_FLP.c +++ b/thirdparty/opus/silk/float/burg_modified_FLP.c @@ -52,7 +52,7 @@ silk_float silk_burg_modified_FLP( /* O returns residual energy double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; double Af[ SILK_MAX_ORDER_LPC ]; - silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); + celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); diff --git a/thirdparty/opus/silk/float/encode_frame_FLP.c b/thirdparty/opus/silk/float/encode_frame_FLP.c index 2092a4d9e2..b029c3f5ca 100644 --- a/thirdparty/opus/silk/float/encode_frame_FLP.c +++ b/thirdparty/opus/silk/float/encode_frame_FLP.c @@ -29,6 +29,7 @@ POSSIBILITY OF SUCH DAMAGE. #include "config.h" #endif +#include <stdlib.h> #include "main_FLP.h" #include "tuning_parameters.h" @@ -41,21 +42,28 @@ static OPUS_INLINE void silk_LBRR_encode_FLP( ); void silk_encode_do_VAD_FLP( - silk_encoder_state_FLP *psEnc /* I/O Encoder state FLP */ + silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ + opus_int activity /* I Decision of Opus voice activity detector */ ) { + const opus_int activity_threshold = SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ); + /****************************/ /* Voice Activity Detection */ /****************************/ silk_VAD_GetSA_Q8( &psEnc->sCmn, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.arch ); + /* If Opus VAD is inactive and Silk VAD is active: lower Silk VAD to just under the threshold */ + if( activity == VAD_NO_ACTIVITY && psEnc->sCmn.speech_activity_Q8 >= activity_threshold ) { + psEnc->sCmn.speech_activity_Q8 = activity_threshold - 1; + } /**************************************************/ /* Convert speech activity into VAD and DTX flags */ /**************************************************/ - if( psEnc->sCmn.speech_activity_Q8 < SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ) ) { + if( psEnc->sCmn.speech_activity_Q8 < activity_threshold ) { psEnc->sCmn.indices.signalType = TYPE_NO_VOICE_ACTIVITY; psEnc->sCmn.noSpeechCounter++; - if( psEnc->sCmn.noSpeechCounter < NB_SPEECH_FRAMES_BEFORE_DTX ) { + if( psEnc->sCmn.noSpeechCounter <= NB_SPEECH_FRAMES_BEFORE_DTX ) { psEnc->sCmn.inDTX = 0; } else if( psEnc->sCmn.noSpeechCounter > MAX_CONSECUTIVE_DTX + NB_SPEECH_FRAMES_BEFORE_DTX ) { psEnc->sCmn.noSpeechCounter = NB_SPEECH_FRAMES_BEFORE_DTX; @@ -85,7 +93,6 @@ opus_int silk_encode_frame_FLP( silk_encoder_control_FLP sEncCtrl; opus_int i, iter, maxIter, found_upper, found_lower, ret = 0; silk_float *x_frame, *res_pitch_frame; - silk_float xfw[ MAX_FRAME_LENGTH ]; silk_float res_pitch[ 2 * MAX_FRAME_LENGTH + LA_PITCH_MAX ]; ec_enc sRangeEnc_copy, sRangeEnc_copy2; silk_nsq_state sNSQ_copy, sNSQ_copy2; @@ -97,6 +104,9 @@ opus_int silk_encode_frame_FLP( opus_int8 LastGainIndex_copy2; opus_int32 pGains_Q16[ MAX_NB_SUBFR ]; opus_uint8 ec_buf_copy[ 1275 ]; + opus_int gain_lock[ MAX_NB_SUBFR ] = {0}; + opus_int16 best_gain_mult[ MAX_NB_SUBFR ]; + opus_int best_sum[ MAX_NB_SUBFR ]; /* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */ LastGainIndex_copy2 = nBits_lower = nBits_upper = gainMult_lower = gainMult_upper = 0; @@ -139,22 +149,17 @@ opus_int silk_encode_frame_FLP( /***************************************************/ /* Find linear prediction coefficients (LPC + LTP) */ /***************************************************/ - silk_find_pred_coefs_FLP( psEnc, &sEncCtrl, res_pitch, x_frame, condCoding ); + silk_find_pred_coefs_FLP( psEnc, &sEncCtrl, res_pitch_frame, x_frame, condCoding ); /****************************************/ /* Process gains */ /****************************************/ silk_process_gains_FLP( psEnc, &sEncCtrl, condCoding ); - /*****************************************/ - /* Prefiltering for noise shaper */ - /*****************************************/ - silk_prefilter_FLP( psEnc, &sEncCtrl, xfw, x_frame ); - /****************************************/ /* Low Bitrate Redundant Encoding */ /****************************************/ - silk_LBRR_encode_FLP( psEnc, &sEncCtrl, xfw, condCoding ); + silk_LBRR_encode_FLP( psEnc, &sEncCtrl, x_frame, condCoding ); /* Loop over quantizer and entroy coding to control bitrate */ maxIter = 6; @@ -188,7 +193,11 @@ opus_int silk_encode_frame_FLP( /*****************************************/ /* Noise shaping quantization */ /*****************************************/ - silk_NSQ_wrapper_FLP( psEnc, &sEncCtrl, &psEnc->sCmn.indices, &psEnc->sCmn.sNSQ, psEnc->sCmn.pulses, xfw ); + silk_NSQ_wrapper_FLP( psEnc, &sEncCtrl, &psEnc->sCmn.indices, &psEnc->sCmn.sNSQ, psEnc->sCmn.pulses, x_frame ); + + if ( iter == maxIter && !found_lower ) { + silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) ); + } /****************************************/ /* Encode Parameters */ @@ -203,6 +212,33 @@ opus_int silk_encode_frame_FLP( nBits = ec_tell( psRangeEnc ); + /* If we still bust after the last iteration, do some damage control. */ + if ( iter == maxIter && !found_lower && nBits > maxBits ) { + silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) ); + + /* Keep gains the same as the last frame. */ + psEnc->sShape.LastGainIndex = sEncCtrl.lastGainIndexPrev; + for ( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { + psEnc->sCmn.indices.GainsIndices[ i ] = 4; + } + if (condCoding != CODE_CONDITIONALLY) { + psEnc->sCmn.indices.GainsIndices[ 0 ] = sEncCtrl.lastGainIndexPrev; + } + psEnc->sCmn.ec_prevLagIndex = ec_prevLagIndex_copy; + psEnc->sCmn.ec_prevSignalType = ec_prevSignalType_copy; + /* Clear all pulses. */ + for ( i = 0; i < psEnc->sCmn.frame_length; i++ ) { + psEnc->sCmn.pulses[ i ] = 0; + } + + silk_encode_indices( &psEnc->sCmn, psRangeEnc, psEnc->sCmn.nFramesEncoded, 0, condCoding ); + + silk_encode_pulses( psRangeEnc, psEnc->sCmn.indices.signalType, psEnc->sCmn.indices.quantOffsetType, + psEnc->sCmn.pulses, psEnc->sCmn.frame_length ); + + nBits = ec_tell( psRangeEnc ); + } + if( useCBR == 0 && iter == 0 && nBits <= maxBits ) { break; } @@ -212,7 +248,7 @@ opus_int silk_encode_frame_FLP( if( found_lower && ( gainsID == gainsID_lower || nBits > maxBits ) ) { /* Restore output state from earlier iteration that did meet the bitrate budget */ silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) ); - silk_assert( sRangeEnc_copy2.offs <= 1275 ); + celt_assert( sRangeEnc_copy2.offs <= 1275 ); silk_memcpy( psRangeEnc->buf, ec_buf_copy, sRangeEnc_copy2.offs ); silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy2, sizeof( silk_nsq_state ) ); psEnc->sShape.LastGainIndex = LastGainIndex_copy2; @@ -223,7 +259,9 @@ opus_int silk_encode_frame_FLP( if( nBits > maxBits ) { if( found_lower == 0 && iter >= 2 ) { /* Adjust the quantizer's rate/distortion tradeoff and discard previous "upper" results */ - sEncCtrl.Lambda *= 1.5f; + sEncCtrl.Lambda = silk_max_float(sEncCtrl.Lambda*1.5f, 1.5f); + /* Reducing dithering can help us hit the target. */ + psEnc->sCmn.indices.quantOffsetType = 0; found_upper = 0; gainsID_upper = -1; } else { @@ -240,7 +278,7 @@ opus_int silk_encode_frame_FLP( gainsID_lower = gainsID; /* Copy part of the output state */ silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) ); - silk_assert( psRangeEnc->offs <= 1275 ); + celt_assert( psRangeEnc->offs <= 1275 ); silk_memcpy( ec_buf_copy, psRangeEnc->buf, psRangeEnc->offs ); silk_memcpy( &sNSQ_copy2, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) ); LastGainIndex_copy2 = psEnc->sShape.LastGainIndex; @@ -250,15 +288,34 @@ opus_int silk_encode_frame_FLP( break; } + if ( !found_lower && nBits > maxBits ) { + int j; + for ( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { + int sum=0; + for ( j = i*psEnc->sCmn.subfr_length; j < (i+1)*psEnc->sCmn.subfr_length; j++ ) { + sum += abs( psEnc->sCmn.pulses[j] ); + } + if ( iter == 0 || (sum < best_sum[i] && !gain_lock[i]) ) { + best_sum[i] = sum; + best_gain_mult[i] = gainMult_Q8; + } else { + gain_lock[i] = 1; + } + } + } if( ( found_lower & found_upper ) == 0 ) { /* Adjust gain according to high-rate rate/distortion curve */ - opus_int32 gain_factor_Q16; - gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) ); - gain_factor_Q16 = silk_min_32( gain_factor_Q16, SILK_FIX_CONST( 2, 16 ) ); if( nBits > maxBits ) { - gain_factor_Q16 = silk_max_32( gain_factor_Q16, SILK_FIX_CONST( 1.3, 16 ) ); + if (gainMult_Q8 < 16384) { + gainMult_Q8 *= 2; + } else { + gainMult_Q8 = 32767; + } + } else { + opus_int32 gain_factor_Q16; + gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) ); + gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 ); } - gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 ); } else { /* Adjust gain by interpolating */ gainMult_Q8 = gainMult_lower + ( ( gainMult_upper - gainMult_lower ) * ( maxBits - nBits_lower ) ) / ( nBits_upper - nBits_lower ); @@ -272,7 +329,13 @@ opus_int silk_encode_frame_FLP( } for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { - pGains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], gainMult_Q8 ), 8 ); + opus_int16 tmp; + if ( gain_lock[i] ) { + tmp = best_gain_mult[i]; + } else { + tmp = gainMult_Q8; + } + pGains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], tmp ), 8 ); } /* Quantize gains */ diff --git a/thirdparty/opus/silk/float/energy_FLP.c b/thirdparty/opus/silk/float/energy_FLP.c index 24b8179f9e..7bc7173c9c 100644 --- a/thirdparty/opus/silk/float/energy_FLP.c +++ b/thirdparty/opus/silk/float/energy_FLP.c @@ -37,13 +37,12 @@ double silk_energy_FLP( opus_int dataSize ) { - opus_int i, dataSize4; + opus_int i; double result; /* 4x unrolled loop */ result = 0.0; - dataSize4 = dataSize & 0xFFFC; - for( i = 0; i < dataSize4; i += 4 ) { + for( i = 0; i < dataSize - 3; i += 4 ) { result += data[ i + 0 ] * (double)data[ i + 0 ] + data[ i + 1 ] * (double)data[ i + 1 ] + data[ i + 2 ] * (double)data[ i + 2 ] + diff --git a/thirdparty/opus/silk/float/find_LPC_FLP.c b/thirdparty/opus/silk/float/find_LPC_FLP.c index fcfe1c3681..fa3ffe7f8b 100644 --- a/thirdparty/opus/silk/float/find_LPC_FLP.c +++ b/thirdparty/opus/silk/float/find_LPC_FLP.c @@ -73,7 +73,7 @@ void silk_find_LPC_FLP( silk_interpolate( NLSF0_Q15, psEncC->prev_NLSFq_Q15, NLSF_Q15, k, psEncC->predictLPCOrder ); /* Convert to LPC for residual energy evaluation */ - silk_NLSF2A_FLP( a_tmp, NLSF0_Q15, psEncC->predictLPCOrder ); + silk_NLSF2A_FLP( a_tmp, NLSF0_Q15, psEncC->predictLPCOrder, psEncC->arch ); /* Calculate residual energy with LSF interpolation */ silk_LPC_analysis_filter_FLP( LPC_res, a_tmp, x, 2 * subfr_length, psEncC->predictLPCOrder ); @@ -99,6 +99,6 @@ void silk_find_LPC_FLP( silk_A2NLSF_FLP( NLSF_Q15, a, psEncC->predictLPCOrder ); } - silk_assert( psEncC->indices.NLSFInterpCoef_Q2 == 4 || + celt_assert( psEncC->indices.NLSFInterpCoef_Q2 == 4 || ( psEncC->useInterpolatedNLSFs && !psEncC->first_frame_after_reset && psEncC->nb_subfr == MAX_NB_SUBFR ) ); } diff --git a/thirdparty/opus/silk/float/find_LTP_FLP.c b/thirdparty/opus/silk/float/find_LTP_FLP.c index 7229996014..f97064930e 100644 --- a/thirdparty/opus/silk/float/find_LTP_FLP.c +++ b/thirdparty/opus/silk/float/find_LTP_FLP.c @@ -33,100 +33,32 @@ POSSIBILITY OF SUCH DAMAGE. #include "tuning_parameters.h" void silk_find_LTP_FLP( - silk_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ - silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ - silk_float *LTPredCodGain, /* O LTP coding gain */ - const silk_float r_lpc[], /* I LPC residual */ - const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ - const silk_float Wght[ MAX_NB_SUBFR ], /* I Weights */ + silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ + silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* O Weight for LTP quantization */ + const silk_float r_ptr[], /* I LPC residual */ + const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ const opus_int subfr_length, /* I Subframe length */ - const opus_int nb_subfr, /* I number of subframes */ - const opus_int mem_offset /* I Number of samples in LTP memory */ + const opus_int nb_subfr /* I number of subframes */ ) { - opus_int i, k; - silk_float *b_ptr, temp, *WLTP_ptr; - silk_float LPC_res_nrg, LPC_LTP_res_nrg; - silk_float d[ MAX_NB_SUBFR ], m, g, delta_b[ LTP_ORDER ]; - silk_float w[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], regu; - silk_float Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ]; - const silk_float *r_ptr, *lag_ptr; + opus_int k; + silk_float *xX_ptr, *XX_ptr; + const silk_float *lag_ptr; + silk_float xx, temp; - b_ptr = b; - WLTP_ptr = WLTP; - r_ptr = &r_lpc[ mem_offset ]; + xX_ptr = xX; + XX_ptr = XX; for( k = 0; k < nb_subfr; k++ ) { lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 ); + silk_corrMatrix_FLP( lag_ptr, subfr_length, LTP_ORDER, XX_ptr ); + silk_corrVector_FLP( lag_ptr, r_ptr, subfr_length, LTP_ORDER, xX_ptr ); + xx = ( silk_float )silk_energy_FLP( r_ptr, subfr_length + LTP_ORDER ); + temp = 1.0f / silk_max( xx, LTP_CORR_INV_MAX * 0.5f * ( XX_ptr[ 0 ] + XX_ptr[ 24 ] ) + 1.0f ); + silk_scale_vector_FLP( XX_ptr, temp, LTP_ORDER * LTP_ORDER ); + silk_scale_vector_FLP( xX_ptr, temp, LTP_ORDER ); - silk_corrMatrix_FLP( lag_ptr, subfr_length, LTP_ORDER, WLTP_ptr ); - silk_corrVector_FLP( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr ); - - rr[ k ] = ( silk_float )silk_energy_FLP( r_ptr, subfr_length ); - regu = 1.0f + rr[ k ] + - matrix_ptr( WLTP_ptr, 0, 0, LTP_ORDER ) + - matrix_ptr( WLTP_ptr, LTP_ORDER-1, LTP_ORDER-1, LTP_ORDER ); - regu *= LTP_DAMPING / 3; - silk_regularize_correlations_FLP( WLTP_ptr, &rr[ k ], regu, LTP_ORDER ); - silk_solve_LDL_FLP( WLTP_ptr, LTP_ORDER, Rr, b_ptr ); - - /* Calculate residual energy */ - nrg[ k ] = silk_residual_energy_covar_FLP( b_ptr, WLTP_ptr, Rr, rr[ k ], LTP_ORDER ); - - temp = Wght[ k ] / ( nrg[ k ] * Wght[ k ] + 0.01f * subfr_length ); - silk_scale_vector_FLP( WLTP_ptr, temp, LTP_ORDER * LTP_ORDER ); - w[ k ] = matrix_ptr( WLTP_ptr, LTP_ORDER / 2, LTP_ORDER / 2, LTP_ORDER ); - - r_ptr += subfr_length; - b_ptr += LTP_ORDER; - WLTP_ptr += LTP_ORDER * LTP_ORDER; - } - - /* Compute LTP coding gain */ - if( LTPredCodGain != NULL ) { - LPC_LTP_res_nrg = 1e-6f; - LPC_res_nrg = 0.0f; - for( k = 0; k < nb_subfr; k++ ) { - LPC_res_nrg += rr[ k ] * Wght[ k ]; - LPC_LTP_res_nrg += nrg[ k ] * Wght[ k ]; - } - - silk_assert( LPC_LTP_res_nrg > 0 ); - *LTPredCodGain = 3.0f * silk_log2( LPC_res_nrg / LPC_LTP_res_nrg ); - } - - /* Smoothing */ - /* d = sum( B, 1 ); */ - b_ptr = b; - for( k = 0; k < nb_subfr; k++ ) { - d[ k ] = 0; - for( i = 0; i < LTP_ORDER; i++ ) { - d[ k ] += b_ptr[ i ]; - } - b_ptr += LTP_ORDER; - } - /* m = ( w * d' ) / ( sum( w ) + 1e-3 ); */ - temp = 1e-3f; - for( k = 0; k < nb_subfr; k++ ) { - temp += w[ k ]; - } - m = 0; - for( k = 0; k < nb_subfr; k++ ) { - m += d[ k ] * w[ k ]; - } - m = m / temp; - - b_ptr = b; - for( k = 0; k < nb_subfr; k++ ) { - g = LTP_SMOOTHING / ( LTP_SMOOTHING + w[ k ] ) * ( m - d[ k ] ); - temp = 0; - for( i = 0; i < LTP_ORDER; i++ ) { - delta_b[ i ] = silk_max_float( b_ptr[ i ], 0.1f ); - temp += delta_b[ i ]; - } - temp = g / temp; - for( i = 0; i < LTP_ORDER; i++ ) { - b_ptr[ i ] = b_ptr[ i ] + delta_b[ i ] * temp; - } - b_ptr += LTP_ORDER; + r_ptr += subfr_length; + XX_ptr += LTP_ORDER * LTP_ORDER; + xX_ptr += LTP_ORDER; } } diff --git a/thirdparty/opus/silk/float/find_pitch_lags_FLP.c b/thirdparty/opus/silk/float/find_pitch_lags_FLP.c index f3b22d25ce..dedbcd2836 100644 --- a/thirdparty/opus/silk/float/find_pitch_lags_FLP.c +++ b/thirdparty/opus/silk/float/find_pitch_lags_FLP.c @@ -56,7 +56,7 @@ void silk_find_pitch_lags_FLP( buf_len = psEnc->sCmn.la_pitch + psEnc->sCmn.frame_length + psEnc->sCmn.ltp_mem_length; /* Safety check */ - silk_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length ); + celt_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length ); x_buf = x - psEnc->sCmn.ltp_mem_length; diff --git a/thirdparty/opus/silk/float/find_pred_coefs_FLP.c b/thirdparty/opus/silk/float/find_pred_coefs_FLP.c index 1af4fe5f1b..dcf7c5202d 100644 --- a/thirdparty/opus/silk/float/find_pred_coefs_FLP.c +++ b/thirdparty/opus/silk/float/find_pred_coefs_FLP.c @@ -41,8 +41,9 @@ void silk_find_pred_coefs_FLP( ) { opus_int i; - silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ]; - silk_float invGains[ MAX_NB_SUBFR ], Wght[ MAX_NB_SUBFR ]; + silk_float XXLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ]; + silk_float xXLTP[ MAX_NB_SUBFR * LTP_ORDER ]; + silk_float invGains[ MAX_NB_SUBFR ]; opus_int16 NLSF_Q15[ MAX_LPC_ORDER ]; const silk_float *x_ptr; silk_float *x_pre_ptr, LPC_in_pre[ MAX_NB_SUBFR * MAX_LPC_ORDER + MAX_FRAME_LENGTH ]; @@ -52,23 +53,20 @@ void silk_find_pred_coefs_FLP( for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { silk_assert( psEncCtrl->Gains[ i ] > 0.0f ); invGains[ i ] = 1.0f / psEncCtrl->Gains[ i ]; - Wght[ i ] = invGains[ i ] * invGains[ i ]; } if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /**********/ /* VOICED */ /**********/ - silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 ); + celt_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 ); /* LTP analysis */ - silk_find_LTP_FLP( psEncCtrl->LTPCoef, WLTP, &psEncCtrl->LTPredCodGain, res_pitch, - psEncCtrl->pitchL, Wght, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length ); + silk_find_LTP_FLP( XXLTP, xXLTP, res_pitch, psEncCtrl->pitchL, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr ); /* Quantize LTP gain parameters */ silk_quant_LTP_gains_FLP( psEncCtrl->LTPCoef, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex, - &psEnc->sCmn.sum_log_gain_Q7, WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr, - psEnc->sCmn.arch ); + &psEnc->sCmn.sum_log_gain_Q7, &psEncCtrl->LTPredCodGain, XXLTP, xXLTP, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.arch ); /* Control LTP scaling */ silk_LTP_scale_ctrl_FLP( psEnc, psEncCtrl, condCoding ); diff --git a/thirdparty/opus/silk/float/inner_product_FLP.c b/thirdparty/opus/silk/float/inner_product_FLP.c index 029c012911..cdd39d24ce 100644 --- a/thirdparty/opus/silk/float/inner_product_FLP.c +++ b/thirdparty/opus/silk/float/inner_product_FLP.c @@ -38,13 +38,12 @@ double silk_inner_product_FLP( opus_int dataSize ) { - opus_int i, dataSize4; + opus_int i; double result; /* 4x unrolled loop */ result = 0.0; - dataSize4 = dataSize & 0xFFFC; - for( i = 0; i < dataSize4; i += 4 ) { + for( i = 0; i < dataSize - 3; i += 4 ) { result += data1[ i + 0 ] * (double)data2[ i + 0 ] + data1[ i + 1 ] * (double)data2[ i + 1 ] + data1[ i + 2 ] * (double)data2[ i + 2 ] + diff --git a/thirdparty/opus/silk/float/k2a_FLP.c b/thirdparty/opus/silk/float/k2a_FLP.c index 12af4e7669..1448008dbb 100644 --- a/thirdparty/opus/silk/float/k2a_FLP.c +++ b/thirdparty/opus/silk/float/k2a_FLP.c @@ -39,15 +39,16 @@ void silk_k2a_FLP( ) { opus_int k, n; - silk_float Atmp[ SILK_MAX_ORDER_LPC ]; + silk_float rck, tmp1, tmp2; for( k = 0; k < order; k++ ) { - for( n = 0; n < k; n++ ) { - Atmp[ n ] = A[ n ]; + rck = rc[ k ]; + for( n = 0; n < (k + 1) >> 1; n++ ) { + tmp1 = A[ n ]; + tmp2 = A[ k - n - 1 ]; + A[ n ] = tmp1 + tmp2 * rck; + A[ k - n - 1 ] = tmp2 + tmp1 * rck; } - for( n = 0; n < k; n++ ) { - A[ n ] += Atmp[ k - n - 1 ] * rc[ k ]; - } - A[ k ] = -rc[ k ]; + A[ k ] = -rck; } } diff --git a/thirdparty/opus/silk/float/levinsondurbin_FLP.c b/thirdparty/opus/silk/float/levinsondurbin_FLP.c deleted file mode 100644 index f0ba606981..0000000000 --- a/thirdparty/opus/silk/float/levinsondurbin_FLP.c +++ /dev/null @@ -1,81 +0,0 @@ -/*********************************************************************** -Copyright (c) 2006-2011, Skype Limited. All rights reserved. -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: -- Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. -- Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the -documentation and/or other materials provided with the distribution. -- Neither the name of Internet Society, IETF or IETF Trust, nor the -names of specific contributors, may be used to endorse or promote -products derived from this software without specific prior written -permission. -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -***********************************************************************/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "SigProc_FLP.h" - -/* Solve the normal equations using the Levinson-Durbin recursion */ -silk_float silk_levinsondurbin_FLP( /* O prediction error energy */ - silk_float A[], /* O prediction coefficients [order] */ - const silk_float corr[], /* I input auto-correlations [order + 1] */ - const opus_int order /* I prediction order */ -) -{ - opus_int i, mHalf, m; - silk_float min_nrg, nrg, t, km, Atmp1, Atmp2; - - min_nrg = 1e-12f * corr[ 0 ] + 1e-9f; - nrg = corr[ 0 ]; - nrg = silk_max_float(min_nrg, nrg); - A[ 0 ] = corr[ 1 ] / nrg; - nrg -= A[ 0 ] * corr[ 1 ]; - nrg = silk_max_float(min_nrg, nrg); - - for( m = 1; m < order; m++ ) - { - t = corr[ m + 1 ]; - for( i = 0; i < m; i++ ) { - t -= A[ i ] * corr[ m - i ]; - } - - /* reflection coefficient */ - km = t / nrg; - - /* residual energy */ - nrg -= km * t; - nrg = silk_max_float(min_nrg, nrg); - - mHalf = m >> 1; - for( i = 0; i < mHalf; i++ ) { - Atmp1 = A[ i ]; - Atmp2 = A[ m - i - 1 ]; - A[ m - i - 1 ] -= km * Atmp1; - A[ i ] -= km * Atmp2; - } - if( m & 1 ) { - A[ mHalf ] -= km * A[ mHalf ]; - } - A[ m ] = km; - } - - /* return the residual energy */ - return nrg; -} - diff --git a/thirdparty/opus/silk/float/main_FLP.h b/thirdparty/opus/silk/float/main_FLP.h index e5a75972e5..5dc0ccf4a4 100644 --- a/thirdparty/opus/silk/float/main_FLP.h +++ b/thirdparty/opus/silk/float/main_FLP.h @@ -56,7 +56,8 @@ void silk_HP_variable_cutoff( /* Encoder main function */ void silk_encode_do_VAD_FLP( - silk_encoder_state_FLP *psEnc /* I/O Encoder state FLP */ + silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ + opus_int activity /* I Decision of Opus voice activity detector */ ); /* Encoder main function */ @@ -79,22 +80,11 @@ opus_int silk_init_encoder( opus_int silk_control_encoder( silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ silk_EncControlStruct *encControl, /* I Control structure */ - const opus_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const opus_int allow_bw_switch, /* I Flag to allow switching audio bandwidth */ const opus_int channelNb, /* I Channel number */ const opus_int force_fs_kHz ); -/****************/ -/* Prefiltering */ -/****************/ -void silk_prefilter_FLP( - silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ - const silk_encoder_control_FLP *psEncCtrl, /* I Encoder control FLP */ - silk_float xw[], /* O Weighted signal */ - const silk_float x[] /* I Speech signal */ -); - /**************************/ /* Noise shaping analysis */ /**************************/ @@ -153,15 +143,12 @@ void silk_find_LPC_FLP( /* LTP analysis */ void silk_find_LTP_FLP( - silk_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ - silk_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ - silk_float *LTPredCodGain, /* O LTP coding gain */ - const silk_float r_lpc[], /* I LPC residual */ + silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ + silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* O Weight for LTP quantization */ + const silk_float r_ptr[], /* I LPC residual */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ - const silk_float Wght[ MAX_NB_SUBFR ], /* I Weights */ const opus_int subfr_length, /* I Subframe length */ - const opus_int nb_subfr, /* I number of subframes */ - const opus_int mem_offset /* I Number of samples in LTP memory */ + const opus_int nb_subfr /* I number of subframes */ ); void silk_LTP_analysis_filter_FLP( @@ -198,14 +185,15 @@ void silk_LPC_analysis_filter_FLP( /* LTP tap quantizer */ void silk_quant_LTP_gains_FLP( - silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */ + silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */ opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */ opus_int8 *periodicity_index, /* O Periodicity index */ opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */ - const silk_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */ - const opus_int mu_Q10, /* I Mu value (R/D tradeoff) */ - const opus_int lowComplexity, /* I Flag for low complexity */ - const opus_int nb_subfr, /* I number of subframes */ + silk_float *pred_gain_dB, /* O LTP prediction gain */ + const silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Correlation matrix */ + const silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* I Correlation vector */ + const opus_int subfr_len, /* I Number of samples per subframe */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ); @@ -245,22 +233,6 @@ void silk_corrVector_FLP( silk_float *Xt /* O X'*t correlation vector [order] */ ); -/* Add noise to matrix diagonal */ -void silk_regularize_correlations_FLP( - silk_float *XX, /* I/O Correlation matrices */ - silk_float *xx, /* I/O Correlation values */ - const silk_float noise, /* I Noise energy to add */ - const opus_int D /* I Dimension of XX */ -); - -/* Function to solve linear equation Ax = b, where A is an MxM symmetric matrix */ -void silk_solve_LDL_FLP( - silk_float *A, /* I/O Symmetric square matrix, out: reg. */ - const opus_int M, /* I Size of matrix */ - const silk_float *b, /* I Pointer to b vector */ - silk_float *x /* O Pointer to x solution vector */ -); - /* Apply sine window to signal vector. */ /* Window types: */ /* 1 -> sine window from 0 to pi/2 */ @@ -285,7 +257,8 @@ void silk_A2NLSF_FLP( void silk_NLSF2A_FLP( silk_float *pAR, /* O LPC coefficients [ LPC_order ] */ const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */ - const opus_int LPC_order /* I LPC order */ + const opus_int LPC_order, /* I LPC order */ + int arch /* I Run-time architecture */ ); /* Limit, stabilize, and quantize NLSFs */ diff --git a/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c b/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c index 65f6ea5870..cb3d8a50b7 100644 --- a/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c +++ b/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c @@ -55,25 +55,21 @@ static OPUS_INLINE silk_float warped_gain( /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ static OPUS_INLINE void warped_true2monic_coefs( - silk_float *coefs_syn, - silk_float *coefs_ana, + silk_float *coefs, silk_float lambda, silk_float limit, opus_int order ) { opus_int i, iter, ind = 0; - silk_float tmp, maxabs, chirp, gain_syn, gain_ana; + silk_float tmp, maxabs, chirp, gain; /* Convert to monic coefficients */ for( i = order - 1; i > 0; i-- ) { - coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; + coefs[ i - 1 ] -= lambda * coefs[ i ]; } - gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); - gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); + gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } /* Limit */ @@ -81,7 +77,7 @@ static OPUS_INLINE void warped_true2monic_coefs( /* Find maximum absolute value */ maxabs = -1.0f; for( i = 0; i < order; i++ ) { - tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) ); + tmp = silk_abs_float( coefs[ i ] ); if( tmp > maxabs ) { maxabs = tmp; ind = i; @@ -94,36 +90,59 @@ static OPUS_INLINE void warped_true2monic_coefs( /* Convert back to true warped coefficients */ for( i = 1; i < order; i++ ) { - coefs_syn[ i - 1 ] += lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] += lambda * coefs_ana[ i ]; + coefs[ i - 1 ] += lambda * coefs[ i ]; } - gain_syn = 1.0f / gain_syn; - gain_ana = 1.0f / gain_ana; + gain = 1.0f / gain; for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } /* Apply bandwidth expansion */ chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); - silk_bwexpander_FLP( coefs_syn, order, chirp ); - silk_bwexpander_FLP( coefs_ana, order, chirp ); + silk_bwexpander_FLP( coefs, order, chirp ); /* Convert to monic warped coefficients */ for( i = order - 1; i > 0; i-- ) { - coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ]; - coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ]; + coefs[ i - 1 ] -= lambda * coefs[ i ]; } - gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] ); - gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] ); + gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] ); for( i = 0; i < order; i++ ) { - coefs_syn[ i ] *= gain_syn; - coefs_ana[ i ] *= gain_ana; + coefs[ i ] *= gain; } } silk_assert( 0 ); } +static OPUS_INLINE void limit_coefs( + silk_float *coefs, + silk_float limit, + opus_int order +) { + opus_int i, iter, ind = 0; + silk_float tmp, maxabs, chirp; + + for( iter = 0; iter < 10; iter++ ) { + /* Find maximum absolute value */ + maxabs = -1.0f; + for( i = 0; i < order; i++ ) { + tmp = silk_abs_float( coefs[ i ] ); + if( tmp > maxabs ) { + maxabs = tmp; + ind = i; + } + } + if( maxabs <= limit ) { + /* Coefficients are within range - done */ + return; + } + + /* Apply bandwidth expansion */ + chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) ); + silk_bwexpander_FLP( coefs, order, chirp ); + } + silk_assert( 0 ); +} + /* Compute noise shaping coefficients and initial gain values */ void silk_noise_shape_analysis_FLP( silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ @@ -133,12 +152,13 @@ void silk_noise_shape_analysis_FLP( ) { silk_shape_state_FLP *psShapeSt = &psEnc->sShape; - opus_int k, nSamples; - silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt; - silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation; - silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping; + opus_int k, nSamples, nSegs; + silk_float SNR_adj_dB, HarmShapeGain, Tilt; + silk_float nrg, log_energy, log_energy_prev, energy_variation; + silk_float BWExp, gain_mult, gain_add, strength, b, warping; silk_float x_windowed[ SHAPE_LPC_WIN_MAX ]; silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; + silk_float rc[ MAX_SHAPE_LPC_ORDER + 1 ]; const silk_float *x_ptr, *pitch_res_ptr; /* Point to start of first LPC analysis block */ @@ -176,14 +196,14 @@ void silk_noise_shape_analysis_FLP( if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Initially set to 0; may be overruled in process_gains(..) */ psEnc->sCmn.indices.quantOffsetType = 0; - psEncCtrl->sparseness = 0.0f; } else { /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ nSamples = 2 * psEnc->sCmn.fs_kHz; energy_variation = 0.0f; log_energy_prev = 0.0f; pitch_res_ptr = pitch_res; - for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) { + nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; + for( k = 0; k < nSegs; k++ ) { nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples ); log_energy = silk_log2( nrg ); if( k > 0 ) { @@ -192,17 +212,13 @@ void silk_noise_shape_analysis_FLP( log_energy_prev = log_energy; pitch_res_ptr += nSamples; } - psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) ); /* Set quantization offset depending on sparseness measure */ - if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) { + if( energy_variation > ENERGY_VARIATION_THRESHOLD_QNT_OFFSET * (nSegs-1) ) { psEnc->sCmn.indices.quantOffsetType = 0; } else { psEnc->sCmn.indices.quantOffsetType = 1; } - - /* Increase coding SNR for sparse signals */ - SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f ); } /*******************************/ @@ -210,19 +226,10 @@ void silk_noise_shape_analysis_FLP( /*******************************/ /* More BWE for signals with high prediction gain */ strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */ - BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); - delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality ); - BWExp1 -= delta; - BWExp2 += delta; - /* BWExp1 will be applied after BWExp2, so make it relative */ - BWExp1 /= BWExp2; - - if( psEnc->sCmn.warping_Q16 > 0 ) { - /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ - warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; - } else { - warping = 0.0f; - } + BWExp = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength ); + + /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ + warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality; /********************************************/ /* Compute noise shaping AR coefs and gains */ @@ -252,37 +259,28 @@ void silk_noise_shape_analysis_FLP( } /* Add white noise, as a fraction of energy */ - auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION; + auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION + 1.0f; /* Convert correlations to prediction coefficients, and compute residual energy */ - nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder ); + nrg = silk_schur_FLP( rc, auto_corr, psEnc->sCmn.shapingLPCOrder ); + silk_k2a_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], rc, psEnc->sCmn.shapingLPCOrder ); psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg ); if( psEnc->sCmn.warping_Q16 > 0 ) { /* Adjust gain for warping */ - psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); + psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder ); } /* Bandwidth expansion for synthesis filter shaping */ - silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 ); - - /* Compute noise shaping filter coefficients */ - silk_memcpy( - &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], - &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], - psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) ); + silk_bwexpander_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp ); - /* Bandwidth expansion for analysis filter shaping */ - silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 ); - - /* Ratio of prediction gains, in energy domain */ - pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); - nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder ); - psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ); - - /* Convert to monic warped prediction coefficients and limit absolute values */ - warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], - warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Convert to monic warped prediction coefficients and limit absolute values */ + warped_true2monic_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, 3.999f, psEnc->sCmn.shapingLPCOrder ); + } else { + /* Limit absolute values */ + limit_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], 3.999f, psEnc->sCmn.shapingLPCOrder ); + } } /*****************/ @@ -296,11 +294,6 @@ void silk_noise_shape_analysis_FLP( psEncCtrl->Gains[ k ] += gain_add; } - gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT; - for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - psEncCtrl->GainsPre[ k ] *= gain_mult; - } - /************************************************/ /* Control low-frequency shaping and noise tilt */ /************************************************/ @@ -331,12 +324,6 @@ void silk_noise_shape_analysis_FLP( /****************************/ /* HARMONIC SHAPING CONTROL */ /****************************/ - /* Control boosting of harmonic frequencies */ - HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr; - - /* More harmonic boost for noisy input signals */ - HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality ); - if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /* Harmonic noise shaping */ HarmShapeGain = HARMONIC_SHAPING; @@ -355,8 +342,6 @@ void silk_noise_shape_analysis_FLP( /* Smooth over subframes */ /*************************/ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth ); - psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth; psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth ); psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth; psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth ); diff --git a/thirdparty/opus/silk/float/pitch_analysis_core_FLP.c b/thirdparty/opus/silk/float/pitch_analysis_core_FLP.c index d0e637a29d..f351bc3718 100644 --- a/thirdparty/opus/silk/float/pitch_analysis_core_FLP.c +++ b/thirdparty/opus/silk/float/pitch_analysis_core_FLP.c @@ -109,11 +109,11 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, const opus_int8 *Lag_CB_ptr; /* Check for valid sampling frequency */ - silk_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); + celt_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); /* Check for valid complexity setting */ - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); silk_assert( search_thres1 >= 0.0f && search_thres1 <= 1.0f ); silk_assert( search_thres2 >= 0.0f && search_thres2 <= 1.0f ); @@ -148,7 +148,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, silk_resampler_down2_3( filt_state, frame_8_FIX, frame_12_FIX, frame_length ); silk_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz ); } else { - silk_assert( Fs_kHz == 8 ); + celt_assert( Fs_kHz == 8 ); silk_float2short_array( frame_8_FIX, frame, frame_length_8kHz ); } @@ -159,7 +159,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, /* Low-pass filter */ for( i = frame_length_4kHz - 1; i > 0; i-- ) { - frame_4kHz[ i ] += frame_4kHz[ i - 1 ]; + frame_4kHz[ i ] = silk_ADD_SAT16( frame_4kHz[ i ], frame_4kHz[ i - 1 ] ); } /****************************************************************************** @@ -169,14 +169,14 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, target_ptr = &frame_4kHz[ silk_LSHIFT( sf_length_4kHz, 2 ) ]; for( k = 0; k < nb_subfr >> 1; k++ ) { /* Check that we are within range of the array */ - silk_assert( target_ptr >= frame_4kHz ); - silk_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); + celt_assert( target_ptr >= frame_4kHz ); + celt_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); basis_ptr = target_ptr - min_lag_4kHz; /* Check that we are within range of the array */ - silk_assert( basis_ptr >= frame_4kHz ); - silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); + celt_assert( basis_ptr >= frame_4kHz ); + celt_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); celt_pitch_xcorr( target_ptr, target_ptr-max_lag_4kHz, xcorr, sf_length_8kHz, max_lag_4kHz - min_lag_4kHz + 1, arch ); @@ -215,7 +215,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, /* Sort */ length_d_srch = 4 + 2 * complexity; - silk_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); + celt_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); silk_insertion_sort_decreasing_FLP( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch ); /* Escape if correlation is very low already here */ @@ -238,7 +238,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, break; } } - silk_assert( length_d_srch > 0 ); + celt_assert( length_d_srch > 0 ); for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) { d_comp[ i ] = 0; @@ -471,7 +471,7 @@ opus_int silk_pitch_analysis_core_FLP( /* O Voicing estimate: 0 voiced, *lagIndex = (opus_int16)( lag - min_lag_8kHz ); *contourIndex = (opus_int8)CBimax; } - silk_assert( *lagIndex >= 0 ); + celt_assert( *lagIndex >= 0 ); /* return as voiced */ return 0; } @@ -506,8 +506,8 @@ static void silk_P_Ana_calc_corr_st3( opus_val32 xcorr[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ) { Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; @@ -515,7 +515,7 @@ static void silk_P_Ana_calc_corr_st3( nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; @@ -572,8 +572,8 @@ static void silk_P_Ana_calc_energy_st3( silk_float scratch_mem[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; - silk_assert( complexity >= SILK_PE_MIN_COMPLEX ); - silk_assert( complexity <= SILK_PE_MAX_COMPLEX ); + celt_assert( complexity >= SILK_PE_MIN_COMPLEX ); + celt_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ) { Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; @@ -581,7 +581,7 @@ static void silk_P_Ana_calc_energy_st3( nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { - silk_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); + celt_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; diff --git a/thirdparty/opus/silk/float/prefilter_FLP.c b/thirdparty/opus/silk/float/prefilter_FLP.c deleted file mode 100644 index 8bc32fb410..0000000000 --- a/thirdparty/opus/silk/float/prefilter_FLP.c +++ /dev/null @@ -1,206 +0,0 @@ -/*********************************************************************** -Copyright (c) 2006-2011, Skype Limited. All rights reserved. -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: -- Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. -- Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the -documentation and/or other materials provided with the distribution. -- Neither the name of Internet Society, IETF or IETF Trust, nor the -names of specific contributors, may be used to endorse or promote -products derived from this software without specific prior written -permission. -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -***********************************************************************/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "main_FLP.h" -#include "tuning_parameters.h" - -/* -* Prefilter for finding Quantizer input signal -*/ -static OPUS_INLINE void silk_prefilt_FLP( - silk_prefilter_state_FLP *P, /* I/O state */ - silk_float st_res[], /* I */ - silk_float xw[], /* O */ - silk_float *HarmShapeFIR, /* I */ - silk_float Tilt, /* I */ - silk_float LF_MA_shp, /* I */ - silk_float LF_AR_shp, /* I */ - opus_int lag, /* I */ - opus_int length /* I */ -); - -static void silk_warped_LPC_analysis_filter_FLP( - silk_float state[], /* I/O State [order + 1] */ - silk_float res[], /* O Residual signal [length] */ - const silk_float coef[], /* I Coefficients [order] */ - const silk_float input[], /* I Input signal [length] */ - const silk_float lambda, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -) -{ - opus_int n, i; - silk_float acc, tmp1, tmp2; - - /* Order must be even */ - silk_assert( ( order & 1 ) == 0 ); - - for( n = 0; n < length; n++ ) { - /* Output of lowpass section */ - tmp2 = state[ 0 ] + lambda * state[ 1 ]; - state[ 0 ] = input[ n ]; - /* Output of allpass section */ - tmp1 = state[ 1 ] + lambda * ( state[ 2 ] - tmp2 ); - state[ 1 ] = tmp2; - acc = coef[ 0 ] * tmp2; - /* Loop over allpass sections */ - for( i = 2; i < order; i += 2 ) { - /* Output of allpass section */ - tmp2 = state[ i ] + lambda * ( state[ i + 1 ] - tmp1 ); - state[ i ] = tmp1; - acc += coef[ i - 1 ] * tmp1; - /* Output of allpass section */ - tmp1 = state[ i + 1 ] + lambda * ( state[ i + 2 ] - tmp2 ); - state[ i + 1 ] = tmp2; - acc += coef[ i ] * tmp2; - } - state[ order ] = tmp1; - acc += coef[ order - 1 ] * tmp1; - res[ n ] = input[ n ] - acc; - } -} - -/* -* silk_prefilter. Main prefilter function -*/ -void silk_prefilter_FLP( - silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ - const silk_encoder_control_FLP *psEncCtrl, /* I Encoder control FLP */ - silk_float xw[], /* O Weighted signal */ - const silk_float x[] /* I Speech signal */ -) -{ - silk_prefilter_state_FLP *P = &psEnc->sPrefilt; - opus_int j, k, lag; - silk_float HarmShapeGain, Tilt, LF_MA_shp, LF_AR_shp; - silk_float B[ 2 ]; - const silk_float *AR1_shp; - const silk_float *px; - silk_float *pxw; - silk_float HarmShapeFIR[ 3 ]; - silk_float st_res[ MAX_SUB_FRAME_LENGTH + MAX_LPC_ORDER ]; - - /* Set up pointers */ - px = x; - pxw = xw; - lag = P->lagPrev; - for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { - /* Update Variables that change per sub frame */ - if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { - lag = psEncCtrl->pitchL[ k ]; - } - - /* Noise shape parameters */ - HarmShapeGain = psEncCtrl->HarmShapeGain[ k ] * ( 1.0f - psEncCtrl->HarmBoost[ k ] ); - HarmShapeFIR[ 0 ] = 0.25f * HarmShapeGain; - HarmShapeFIR[ 1 ] = 32767.0f / 65536.0f * HarmShapeGain; - HarmShapeFIR[ 2 ] = 0.25f * HarmShapeGain; - Tilt = psEncCtrl->Tilt[ k ]; - LF_MA_shp = psEncCtrl->LF_MA_shp[ k ]; - LF_AR_shp = psEncCtrl->LF_AR_shp[ k ]; - AR1_shp = &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ]; - - /* Short term FIR filtering */ - silk_warped_LPC_analysis_filter_FLP( P->sAR_shp, st_res, AR1_shp, px, - (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f, psEnc->sCmn.subfr_length, psEnc->sCmn.shapingLPCOrder ); - - /* Reduce (mainly) low frequencies during harmonic emphasis */ - B[ 0 ] = psEncCtrl->GainsPre[ k ]; - B[ 1 ] = -psEncCtrl->GainsPre[ k ] * - ( psEncCtrl->HarmBoost[ k ] * HarmShapeGain + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT ); - pxw[ 0 ] = B[ 0 ] * st_res[ 0 ] + B[ 1 ] * P->sHarmHP; - for( j = 1; j < psEnc->sCmn.subfr_length; j++ ) { - pxw[ j ] = B[ 0 ] * st_res[ j ] + B[ 1 ] * st_res[ j - 1 ]; - } - P->sHarmHP = st_res[ psEnc->sCmn.subfr_length - 1 ]; - - silk_prefilt_FLP( P, pxw, pxw, HarmShapeFIR, Tilt, LF_MA_shp, LF_AR_shp, lag, psEnc->sCmn.subfr_length ); - - px += psEnc->sCmn.subfr_length; - pxw += psEnc->sCmn.subfr_length; - } - P->lagPrev = psEncCtrl->pitchL[ psEnc->sCmn.nb_subfr - 1 ]; -} - -/* -* Prefilter for finding Quantizer input signal -*/ -static OPUS_INLINE void silk_prefilt_FLP( - silk_prefilter_state_FLP *P, /* I/O state */ - silk_float st_res[], /* I */ - silk_float xw[], /* O */ - silk_float *HarmShapeFIR, /* I */ - silk_float Tilt, /* I */ - silk_float LF_MA_shp, /* I */ - silk_float LF_AR_shp, /* I */ - opus_int lag, /* I */ - opus_int length /* I */ -) -{ - opus_int i; - opus_int idx, LTP_shp_buf_idx; - silk_float n_Tilt, n_LF, n_LTP; - silk_float sLF_AR_shp, sLF_MA_shp; - silk_float *LTP_shp_buf; - - /* To speed up use temp variables instead of using the struct */ - LTP_shp_buf = P->sLTP_shp; - LTP_shp_buf_idx = P->sLTP_shp_buf_idx; - sLF_AR_shp = P->sLF_AR_shp; - sLF_MA_shp = P->sLF_MA_shp; - - for( i = 0; i < length; i++ ) { - if( lag > 0 ) { - silk_assert( HARM_SHAPE_FIR_TAPS == 3 ); - idx = lag + LTP_shp_buf_idx; - n_LTP = LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 - 1) & LTP_MASK ] * HarmShapeFIR[ 0 ]; - n_LTP += LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 ) & LTP_MASK ] * HarmShapeFIR[ 1 ]; - n_LTP += LTP_shp_buf[ ( idx - HARM_SHAPE_FIR_TAPS / 2 + 1) & LTP_MASK ] * HarmShapeFIR[ 2 ]; - } else { - n_LTP = 0; - } - - n_Tilt = sLF_AR_shp * Tilt; - n_LF = sLF_AR_shp * LF_AR_shp + sLF_MA_shp * LF_MA_shp; - - sLF_AR_shp = st_res[ i ] - n_Tilt; - sLF_MA_shp = sLF_AR_shp - n_LF; - - LTP_shp_buf_idx = ( LTP_shp_buf_idx - 1 ) & LTP_MASK; - LTP_shp_buf[ LTP_shp_buf_idx ] = sLF_MA_shp; - - xw[ i ] = sLF_MA_shp - n_LTP; - } - /* Copy temp variable back to state */ - P->sLF_AR_shp = sLF_AR_shp; - P->sLF_MA_shp = sLF_MA_shp; - P->sLTP_shp_buf_idx = LTP_shp_buf_idx; -} diff --git a/thirdparty/opus/silk/float/residual_energy_FLP.c b/thirdparty/opus/silk/float/residual_energy_FLP.c index b2e03a86a4..1bd07b33a4 100644 --- a/thirdparty/opus/silk/float/residual_energy_FLP.c +++ b/thirdparty/opus/silk/float/residual_energy_FLP.c @@ -47,7 +47,7 @@ silk_float silk_residual_energy_covar_FLP( /* O silk_float tmp, nrg = 0.0f, regularization; /* Safety checks */ - silk_assert( D >= 0 ); + celt_assert( D >= 0 ); regularization = REGULARIZATION_FACTOR * ( wXX[ 0 ] + wXX[ D * D - 1 ] ); for( k = 0; k < MAX_ITERATIONS_RESIDUAL_NRG; k++ ) { diff --git a/thirdparty/opus/silk/float/schur_FLP.c b/thirdparty/opus/silk/float/schur_FLP.c index ee436f8351..8526c748d3 100644 --- a/thirdparty/opus/silk/float/schur_FLP.c +++ b/thirdparty/opus/silk/float/schur_FLP.c @@ -38,22 +38,23 @@ silk_float silk_schur_FLP( /* O returns residual energy ) { opus_int k, n; - silk_float C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ]; - silk_float Ctmp1, Ctmp2, rc_tmp; + double C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ]; + double Ctmp1, Ctmp2, rc_tmp; - silk_assert( order==6||order==8||order==10||order==12||order==14||order==16 ); + celt_assert( order >= 0 && order <= SILK_MAX_ORDER_LPC ); /* Copy correlations */ - for( k = 0; k < order+1; k++ ) { + k = 0; + do { C[ k ][ 0 ] = C[ k ][ 1 ] = auto_corr[ k ]; - } + } while( ++k <= order ); for( k = 0; k < order; k++ ) { /* Get reflection coefficient */ rc_tmp = -C[ k + 1 ][ 0 ] / silk_max_float( C[ 0 ][ 1 ], 1e-9f ); /* Save the output */ - refl_coef[ k ] = rc_tmp; + refl_coef[ k ] = (silk_float)rc_tmp; /* Update correlations */ for( n = 0; n < order - k; n++ ) { @@ -65,6 +66,5 @@ silk_float silk_schur_FLP( /* O returns residual energy } /* Return residual energy */ - return C[ 0 ][ 1 ]; + return (silk_float)C[ 0 ][ 1 ]; } - diff --git a/thirdparty/opus/silk/float/solve_LS_FLP.c b/thirdparty/opus/silk/float/solve_LS_FLP.c deleted file mode 100644 index 7c90d665a0..0000000000 --- a/thirdparty/opus/silk/float/solve_LS_FLP.c +++ /dev/null @@ -1,207 +0,0 @@ -/*********************************************************************** -Copyright (c) 2006-2011, Skype Limited. All rights reserved. -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions -are met: -- Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. -- Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the -documentation and/or other materials provided with the distribution. -- Neither the name of Internet Society, IETF or IETF Trust, nor the -names of specific contributors, may be used to endorse or promote -products derived from this software without specific prior written -permission. -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. -***********************************************************************/ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "main_FLP.h" -#include "tuning_parameters.h" - -/********************************************************************** - * LDL Factorisation. Finds the upper triangular matrix L and the diagonal - * Matrix D (only the diagonal elements returned in a vector)such that - * the symmetric matric A is given by A = L*D*L'. - **********************************************************************/ -static OPUS_INLINE void silk_LDL_FLP( - silk_float *A, /* I/O Pointer to Symetric Square Matrix */ - opus_int M, /* I Size of Matrix */ - silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */ - silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */ -); - -/********************************************************************** - * Function to solve linear equation Ax = b, when A is a MxM lower - * triangular matrix, with ones on the diagonal. - **********************************************************************/ -static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP( - const silk_float *L, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const silk_float *b, /* I b Vector */ - silk_float *x /* O x Vector */ -); - -/********************************************************************** - * Function to solve linear equation (A^T)x = b, when A is a MxM lower - * triangular, with ones on the diagonal. (ie then A^T is upper triangular) - **********************************************************************/ -static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( - const silk_float *L, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const silk_float *b, /* I b Vector */ - silk_float *x /* O x Vector */ -); - -/********************************************************************** - * Function to solve linear equation Ax = b, when A is a MxM - * symmetric square matrix - using LDL factorisation - **********************************************************************/ -void silk_solve_LDL_FLP( - silk_float *A, /* I/O Symmetric square matrix, out: reg. */ - const opus_int M, /* I Size of matrix */ - const silk_float *b, /* I Pointer to b vector */ - silk_float *x /* O Pointer to x solution vector */ -) -{ - opus_int i; - silk_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ]; - silk_float T[ MAX_MATRIX_SIZE ]; - silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/ - - silk_assert( M <= MAX_MATRIX_SIZE ); - - /*************************************************** - Factorize A by LDL such that A = L*D*(L^T), - where L is lower triangular with ones on diagonal - ****************************************************/ - silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv ); - - /**************************************************** - * substitute D*(L^T) = T. ie: - L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b - ******************************************************/ - silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T ); - - /**************************************************** - D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is - diagonal just multiply with 1/d_i - ****************************************************/ - for( i = 0; i < M; i++ ) { - T[ i ] = T[ i ] * Dinv[ i ]; - } - /**************************************************** - x = inv(L') * inv(D) * T - *****************************************************/ - silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x ); -} - -static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( - const silk_float *L, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const silk_float *b, /* I b Vector */ - silk_float *x /* O x Vector */ -) -{ - opus_int i, j; - silk_float temp; - const silk_float *ptr1; - - for( i = M - 1; i >= 0; i-- ) { - ptr1 = matrix_adr( L, 0, i, M ); - temp = 0; - for( j = M - 1; j > i ; j-- ) { - temp += ptr1[ j * M ] * x[ j ]; - } - temp = b[ i ] - temp; - x[ i ] = temp; - } -} - -static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP( - const silk_float *L, /* I Pointer to Lower Triangular Matrix */ - opus_int M, /* I Dim of Matrix equation */ - const silk_float *b, /* I b Vector */ - silk_float *x /* O x Vector */ -) -{ - opus_int i, j; - silk_float temp; - const silk_float *ptr1; - - for( i = 0; i < M; i++ ) { - ptr1 = matrix_adr( L, i, 0, M ); - temp = 0; - for( j = 0; j < i; j++ ) { - temp += ptr1[ j ] * x[ j ]; - } - temp = b[ i ] - temp; - x[ i ] = temp; - } -} - -static OPUS_INLINE void silk_LDL_FLP( - silk_float *A, /* I/O Pointer to Symetric Square Matrix */ - opus_int M, /* I Size of Matrix */ - silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */ - silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */ -) -{ - opus_int i, j, k, loop_count, err = 1; - silk_float *ptr1, *ptr2; - double temp, diag_min_value; - silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/ - - silk_assert( M <= MAX_MATRIX_SIZE ); - - diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] ); - for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) { - err = 0; - for( j = 0; j < M; j++ ) { - ptr1 = matrix_adr( L, j, 0, M ); - temp = matrix_ptr( A, j, j, M ); /* element in row j column j*/ - for( i = 0; i < j; i++ ) { - v[ i ] = ptr1[ i ] * D[ i ]; - temp -= ptr1[ i ] * v[ i ]; - } - if( temp < diag_min_value ) { - /* Badly conditioned matrix: add white noise and run again */ - temp = ( loop_count + 1 ) * diag_min_value - temp; - for( i = 0; i < M; i++ ) { - matrix_ptr( A, i, i, M ) += ( silk_float )temp; - } - err = 1; - break; - } - D[ j ] = ( silk_float )temp; - Dinv[ j ] = ( silk_float )( 1.0f / temp ); - matrix_ptr( L, j, j, M ) = 1.0f; - - ptr1 = matrix_adr( A, j, 0, M ); - ptr2 = matrix_adr( L, j + 1, 0, M); - for( i = j + 1; i < M; i++ ) { - temp = 0.0; - for( k = 0; k < j; k++ ) { - temp += ptr2[ k ] * v[ k ]; - } - matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] ); - ptr2 += M; /* go to next column*/ - } - } - } - silk_assert( err == 0 ); -} - diff --git a/thirdparty/opus/silk/float/sort_FLP.c b/thirdparty/opus/silk/float/sort_FLP.c index f08d7592c5..0e18f31950 100644 --- a/thirdparty/opus/silk/float/sort_FLP.c +++ b/thirdparty/opus/silk/float/sort_FLP.c @@ -47,9 +47,9 @@ void silk_insertion_sort_decreasing_FLP( opus_int i, j; /* Safety checks */ - silk_assert( K > 0 ); - silk_assert( L > 0 ); - silk_assert( L >= K ); + celt_assert( K > 0 ); + celt_assert( L > 0 ); + celt_assert( L >= K ); /* Write start indices in index vector */ for( i = 0; i < K; i++ ) { diff --git a/thirdparty/opus/silk/float/structs_FLP.h b/thirdparty/opus/silk/float/structs_FLP.h index 14d647ced2..3150b386e4 100644 --- a/thirdparty/opus/silk/float/structs_FLP.h +++ b/thirdparty/opus/silk/float/structs_FLP.h @@ -42,32 +42,16 @@ extern "C" /********************************/ typedef struct { opus_int8 LastGainIndex; - silk_float HarmBoost_smth; silk_float HarmShapeGain_smth; silk_float Tilt_smth; } silk_shape_state_FLP; /********************************/ -/* Prefilter state */ -/********************************/ -typedef struct { - silk_float sLTP_shp[ LTP_BUF_LENGTH ]; - silk_float sAR_shp[ MAX_SHAPE_LPC_ORDER + 1 ]; - opus_int sLTP_shp_buf_idx; - silk_float sLF_AR_shp; - silk_float sLF_MA_shp; - silk_float sHarmHP; - opus_int32 rand_seed; - opus_int lagPrev; -} silk_prefilter_state_FLP; - -/********************************/ /* Encoder state FLP */ /********************************/ typedef struct { silk_encoder_state sCmn; /* Common struct, shared with fixed-point code */ silk_shape_state_FLP sShape; /* Noise shaping state */ - silk_prefilter_state_FLP sPrefilt; /* Prefilter State */ /* Buffer for find pitch and noise shape analysis */ silk_float x_buf[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ];/* Buffer for find pitch and noise shape analysis */ @@ -86,12 +70,9 @@ typedef struct { opus_int pitchL[ MAX_NB_SUBFR ]; /* Noise shaping parameters */ - silk_float AR1[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; - silk_float AR2[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; + silk_float AR[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; silk_float LF_MA_shp[ MAX_NB_SUBFR ]; silk_float LF_AR_shp[ MAX_NB_SUBFR ]; - silk_float GainsPre[ MAX_NB_SUBFR ]; - silk_float HarmBoost[ MAX_NB_SUBFR ]; silk_float Tilt[ MAX_NB_SUBFR ]; silk_float HarmShapeGain[ MAX_NB_SUBFR ]; silk_float Lambda; @@ -99,7 +80,6 @@ typedef struct { silk_float coding_quality; /* Measures */ - silk_float sparseness; silk_float predGain; silk_float LTPredCodGain; silk_float ResNrg[ MAX_NB_SUBFR ]; /* Residual energy per subframe */ diff --git a/thirdparty/opus/silk/float/warped_autocorrelation_FLP.c b/thirdparty/opus/silk/float/warped_autocorrelation_FLP.c index 542414f48e..09186e73d4 100644 --- a/thirdparty/opus/silk/float/warped_autocorrelation_FLP.c +++ b/thirdparty/opus/silk/float/warped_autocorrelation_FLP.c @@ -42,11 +42,11 @@ void silk_warped_autocorrelation_FLP( { opus_int n, i; double tmp1, tmp2; - double state[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; - double C[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; + double state[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; + double C[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* Order must be even */ - silk_assert( ( order & 1 ) == 0 ); + celt_assert( ( order & 1 ) == 0 ); /* Loop over samples */ for( n = 0; n < length; n++ ) { diff --git a/thirdparty/opus/silk/float/wrappers_FLP.c b/thirdparty/opus/silk/float/wrappers_FLP.c index 6666b8efaa..ad90b874a4 100644 --- a/thirdparty/opus/silk/float/wrappers_FLP.c +++ b/thirdparty/opus/silk/float/wrappers_FLP.c @@ -54,13 +54,14 @@ void silk_A2NLSF_FLP( void silk_NLSF2A_FLP( silk_float *pAR, /* O LPC coefficients [ LPC_order ] */ const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */ - const opus_int LPC_order /* I LPC order */ + const opus_int LPC_order, /* I LPC order */ + int arch /* I Run-time architecture */ ) { opus_int i; opus_int16 a_fix_Q12[ MAX_LPC_ORDER ]; - silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order ); + silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order, arch ); for( i = 0; i < LPC_order; i++ ) { pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f ); @@ -102,14 +103,14 @@ void silk_NSQ_wrapper_FLP( ) { opus_int i, j; - opus_int32 x_Q3[ MAX_FRAME_LENGTH ]; + opus_int16 x16[ MAX_FRAME_LENGTH ]; opus_int32 Gains_Q16[ MAX_NB_SUBFR ]; silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ]; opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ]; opus_int LTP_scale_Q14; /* Noise shaping parameters */ - opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; + opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ]; opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ]; /* Packs two int16 coefficients per int32 value */ opus_int Lambda_Q10; opus_int Tilt_Q14[ MAX_NB_SUBFR ]; @@ -119,7 +120,7 @@ void silk_NSQ_wrapper_FLP( /* Noise shape parameters */ for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) { - AR2_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR2[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f ); + AR_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f ); } } @@ -155,16 +156,16 @@ void silk_NSQ_wrapper_FLP( /* Convert input to fix */ for( i = 0; i < psEnc->sCmn.frame_length; i++ ) { - x_Q3[ i ] = silk_float2int( 8.0f * x[ i ] ); + x16[ i ] = silk_float2int( x[ i ] ); } /* Call NSQ */ if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) { - silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14, - AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch ); + silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14, + AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch ); } else { - silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14, - AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch ); + silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x16, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14, + AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14, psEnc->sCmn.arch ); } } @@ -172,31 +173,35 @@ void silk_NSQ_wrapper_FLP( /* Floating-point Silk LTP quantiation wrapper */ /***********************************************/ void silk_quant_LTP_gains_FLP( - silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */ + silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */ opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */ opus_int8 *periodicity_index, /* O Periodicity index */ opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */ - const silk_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */ - const opus_int mu_Q10, /* I Mu value (R/D tradeoff) */ - const opus_int lowComplexity, /* I Flag for low complexity */ - const opus_int nb_subfr, /* I number of subframes */ + silk_float *pred_gain_dB, /* O LTP prediction gain */ + const silk_float XX[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Correlation matrix */ + const silk_float xX[ MAX_NB_SUBFR * LTP_ORDER ], /* I Correlation vector */ + const opus_int subfr_len, /* I Number of samples per subframe */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ) { - opus_int i; + opus_int i, pred_gain_dB_Q7; opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ]; - opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ]; + opus_int32 XX_Q17[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ]; + opus_int32 xX_Q17[ MAX_NB_SUBFR * LTP_ORDER ]; - for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) { - B_Q14[ i ] = (opus_int16)silk_float2int( B[ i ] * 16384.0f ); - } for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) { - W_Q18[ i ] = (opus_int32)silk_float2int( W[ i ] * 262144.0f ); + XX_Q17[ i ] = (opus_int32)silk_float2int( XX[ i ] * 131072.0f ); + } + for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) { + xX_Q17[ i ] = (opus_int32)silk_float2int( xX[ i ] * 131072.0f ); } - silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, W_Q18, mu_Q10, lowComplexity, nb_subfr, arch ); + silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, &pred_gain_dB_Q7, XX_Q17, xX_Q17, subfr_len, nb_subfr, arch ); for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) { B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f ); } + + *pred_gain_dB = (silk_float)pred_gain_dB_Q7 * ( 1.0f / 128.0f ); } diff --git a/thirdparty/opus/silk/gain_quant.c b/thirdparty/opus/silk/gain_quant.c index 64ccd0611b..ee65245aa3 100644 --- a/thirdparty/opus/silk/gain_quant.c +++ b/thirdparty/opus/silk/gain_quant.c @@ -76,6 +76,7 @@ void silk_gains_quant( /* Accumulate deltas */ if( ind[ k ] > double_step_size_threshold ) { *prev_ind += silk_LSHIFT( ind[ k ], 1 ) - double_step_size_threshold; + *prev_ind = silk_min_int( *prev_ind, N_LEVELS_QGAIN - 1 ); } else { *prev_ind += ind[ k ]; } diff --git a/thirdparty/opus/silk/init_decoder.c b/thirdparty/opus/silk/init_decoder.c index f887c67886..16c03dcd1c 100644 --- a/thirdparty/opus/silk/init_decoder.c +++ b/thirdparty/opus/silk/init_decoder.c @@ -44,6 +44,7 @@ opus_int silk_init_decoder( /* Used to deactivate LSF interpolation */ psDec->first_frame_after_reset = 1; psDec->prev_gain_Q16 = 65536; + psDec->arch = opus_select_arch(); /* Reset CNG state */ silk_CNG_Reset( psDec ); diff --git a/thirdparty/opus/silk/interpolate.c b/thirdparty/opus/silk/interpolate.c index 1bd8ca4d53..833c28ef8e 100644 --- a/thirdparty/opus/silk/interpolate.c +++ b/thirdparty/opus/silk/interpolate.c @@ -42,8 +42,8 @@ void silk_interpolate( { opus_int i; - silk_assert( ifact_Q2 >= 0 ); - silk_assert( ifact_Q2 <= 4 ); + celt_assert( ifact_Q2 >= 0 ); + celt_assert( ifact_Q2 <= 4 ); for( i = 0; i < d; i++ ) { xi[ i ] = (opus_int16)silk_ADD_RSHIFT( x0[ i ], silk_SMULBB( x1[ i ] - x0[ i ], ifact_Q2 ), 2 ); diff --git a/thirdparty/opus/silk/lin2log.c b/thirdparty/opus/silk/lin2log.c index d4fe515321..0d5155aa86 100644 --- a/thirdparty/opus/silk/lin2log.c +++ b/thirdparty/opus/silk/lin2log.c @@ -41,6 +41,6 @@ opus_int32 silk_lin2log( silk_CLZ_FRAC( inLin, &lz, &frac_Q7 ); /* Piece-wise parabolic approximation */ - return silk_LSHIFT( 31 - lz, 7 ) + silk_SMLAWB( frac_Q7, silk_MUL( frac_Q7, 128 - frac_Q7 ), 179 ); + return silk_ADD_LSHIFT32( silk_SMLAWB( frac_Q7, silk_MUL( frac_Q7, 128 - frac_Q7 ), 179 ), 31 - lz, 7 ); } diff --git a/thirdparty/opus/silk/macros.h b/thirdparty/opus/silk/macros.h index d3ca347520..3c67b6e5d9 100644 --- a/thirdparty/opus/silk/macros.h +++ b/thirdparty/opus/silk/macros.h @@ -36,14 +36,6 @@ POSSIBILITY OF SUCH DAMAGE. #include "opus_defines.h" #include "arch.h" -#if OPUS_GNUC_PREREQ(3, 0) -#define opus_likely(x) (__builtin_expect(!!(x), 1)) -#define opus_unlikely(x) (__builtin_expect(!!(x), 0)) -#else -#define opus_likely(x) (!!(x)) -#define opus_unlikely(x) (!!(x)) -#endif - /* This is an OPUS_INLINE header file for general platform. */ /* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */ diff --git a/thirdparty/opus/silk/main.h b/thirdparty/opus/silk/main.h index 2f90d68f7d..1a33eed549 100644 --- a/thirdparty/opus/silk/main.h +++ b/thirdparty/opus/silk/main.h @@ -42,6 +42,10 @@ POSSIBILITY OF SUCH DAMAGE. #include "x86/main_sse.h" #endif +#if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) +#include "arm/NSQ_del_dec_arm.h" +#endif + /* Convert Left/Right stereo signal to adaptive Mid/Side representation */ void silk_stereo_LR_to_MS( stereo_enc_state *state, /* I/O State */ @@ -109,22 +113,22 @@ void silk_stereo_decode_mid_only( /* Encodes signs of excitation */ void silk_encode_signs( - ec_enc *psRangeEnc, /* I/O Compressor data structure */ - const opus_int8 pulses[], /* I pulse signal */ - opus_int length, /* I length of input */ - const opus_int signalType, /* I Signal type */ - const opus_int quantOffsetType, /* I Quantization offset type */ - const opus_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ + ec_enc *psRangeEnc, /* I/O Compressor data structure */ + const opus_int8 pulses[], /* I pulse signal */ + opus_int length, /* I length of input */ + const opus_int signalType, /* I Signal type */ + const opus_int quantOffsetType, /* I Quantization offset type */ + const opus_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ ); /* Decodes signs of excitation */ void silk_decode_signs( - ec_dec *psRangeDec, /* I/O Compressor data structure */ - opus_int16 pulses[], /* I/O pulse signal */ - opus_int length, /* I length of input */ - const opus_int signalType, /* I Signal type */ - const opus_int quantOffsetType, /* I Quantization offset type */ - const opus_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ + ec_dec *psRangeDec, /* I/O Compressor data structure */ + opus_int16 pulses[], /* I/O pulse signal */ + opus_int length, /* I length of input */ + const opus_int signalType, /* I Signal type */ + const opus_int quantOffsetType, /* I Quantization offset type */ + const opus_int sum_pulses[ MAX_NB_SHELL_BLOCKS ] /* I Sum of absolute pulses per block */ ); /* Check encoder control struct */ @@ -205,37 +209,37 @@ void silk_interpolate( /* LTP tap quantizer */ void silk_quant_LTP_gains( - opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (un)quantized LTP gains */ + opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */ opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook Index */ opus_int8 *periodicity_index, /* O Periodicity Index */ opus_int32 *sum_gain_dB_Q7, /* I/O Cumulative max prediction gain */ - const opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ], /* I Error Weights in Q18 */ - opus_int mu_Q9, /* I Mu value (R/D tradeoff) */ - opus_int lowComplexity, /* I Flag for low complexity */ - const opus_int nb_subfr, /* I number of subframes */ + opus_int *pred_gain_dB_Q7, /* O LTP prediction gain */ + const opus_int32 XX_Q17[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ], /* I Correlation matrix in Q18 */ + const opus_int32 xX_Q17[ MAX_NB_SUBFR*LTP_ORDER ], /* I Correlation vector in Q18 */ + const opus_int subfr_len, /* I Number of samples per subframe */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ); /* Entropy constrained matrix-weighted VQ, for a single input data vector */ void silk_VQ_WMat_EC_c( opus_int8 *ind, /* O index of best codebook vector */ - opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */ + opus_int32 *res_nrg_Q15, /* O best residual energy */ + opus_int32 *rate_dist_Q8, /* O best total bitrate */ opus_int *gain_Q7, /* O sum of absolute LTP coefficients */ - const opus_int16 *in_Q14, /* I input vector to be quantized */ - const opus_int32 *W_Q18, /* I weighting matrix */ + const opus_int32 *XX_Q17, /* I correlation matrix */ + const opus_int32 *xX_Q17, /* I correlation vector */ const opus_int8 *cb_Q7, /* I codebook */ const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */ const opus_uint8 *cl_Q5, /* I code length for each codebook vector */ - const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */ + const opus_int subfr_len, /* I number of samples per subframe */ const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */ - opus_int L /* I number of vectors in codebook */ + const opus_int L /* I number of vectors in codebook */ ); #if !defined(OVERRIDE_silk_VQ_WMat_EC) -#define silk_VQ_WMat_EC(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \ - mu_Q9, max_gain_Q7, L, arch) \ - ((void)(arch),silk_VQ_WMat_EC_c(ind, rate_dist_Q14, gain_Q7, in_Q14, W_Q18, cb_Q7, cb_gain_Q7, cl_Q5, \ - mu_Q9, max_gain_Q7, L)) +#define silk_VQ_WMat_EC(ind, res_nrg_Q15, rate_dist_Q8, gain_Q7, XX_Q17, xX_Q17, cb_Q7, cb_gain_Q7, cl_Q5, subfr_len, max_gain_Q7, L, arch) \ + ((void)(arch),silk_VQ_WMat_EC_c(ind, res_nrg_Q15, rate_dist_Q8, gain_Q7, XX_Q17, xX_Q17, cb_Q7, cb_gain_Q7, cl_Q5, subfr_len, max_gain_Q7, L)) #endif /************************************/ @@ -243,14 +247,14 @@ void silk_VQ_WMat_EC_c( /************************************/ void silk_NSQ_c( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ - const opus_int32 x_Q3[], /* I Prefiltered input signal */ + const opus_int16 x16[], /* I Input */ opus_int8 pulses[], /* O Quantized pulse signal */ const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ - const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ @@ -261,22 +265,22 @@ void silk_NSQ_c( ); #if !defined(OVERRIDE_silk_NSQ) -#define silk_NSQ(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \ +#define silk_NSQ(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, \ HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \ - ((void)(arch),silk_NSQ_c(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \ + ((void)(arch),silk_NSQ_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, \ HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14)) #endif /* Noise shaping using delayed decision */ void silk_NSQ_del_dec_c( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ - const opus_int32 x_Q3[], /* I Prefiltered input signal */ + const opus_int16 x16[], /* I Input */ opus_int8 pulses[], /* O Quantized pulse signal */ const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */ const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */ - const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ + const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */ const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */ const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */ const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */ @@ -287,9 +291,9 @@ void silk_NSQ_del_dec_c( ); #if !defined(OVERRIDE_silk_NSQ_del_dec) -#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \ +#define silk_NSQ_del_dec(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, \ HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14, arch) \ - ((void)(arch),silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x_Q3, pulses, PredCoef_Q12, LTPCoef_Q14, AR2_Q13, \ + ((void)(arch),silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, \ HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14)) #endif @@ -346,6 +350,7 @@ void silk_NLSF_VQ( opus_int32 err_Q26[], /* O Quantization errors [K] */ const opus_int16 in_Q15[], /* I Input vectors to be quantized [LPC_order] */ const opus_uint8 pCB_Q8[], /* I Codebook vectors [K*LPC_order] */ + const opus_int16 pWght_Q9[], /* I Codebook weights [K*LPC_order] */ const opus_int K, /* I Number of codebook vectors */ const opus_int LPC_order /* I Number of LPCs */ ); diff --git a/thirdparty/opus/silk/mips/NSQ_del_dec_mipsr1.h b/thirdparty/opus/silk/mips/NSQ_del_dec_mipsr1.h index ad1cfe2a9b..cd70713a8f 100644 --- a/thirdparty/opus/silk/mips/NSQ_del_dec_mipsr1.h +++ b/thirdparty/opus/silk/mips/NSQ_del_dec_mipsr1.h @@ -61,7 +61,7 @@ static inline void silk_noise_shape_quantizer_del_dec( opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ - opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ opus_int decisionDelay, /* I */ int arch /* I */ ) @@ -323,8 +323,9 @@ static inline void silk_noise_shape_quantizer_del_dec( psSS[ 1 ].xq_Q14 = xq_Q14; } - *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */ - last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */ + *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY; + if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY; + last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY; /* Find winner */ RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; diff --git a/thirdparty/opus/silk/mips/sigproc_fix_mipsr1.h b/thirdparty/opus/silk/mips/sigproc_fix_mipsr1.h index 3b0a695365..51520c0a6f 100644 --- a/thirdparty/opus/silk/mips/sigproc_fix_mipsr1.h +++ b/thirdparty/opus/silk/mips/sigproc_fix_mipsr1.h @@ -28,11 +28,6 @@ POSSIBILITY OF SUCH DAMAGE. #ifndef SILK_SIGPROC_FIX_MIPSR1_H #define SILK_SIGPROC_FIX_MIPSR1_H -#ifdef __cplusplus -extern "C" -{ -#endif - #undef silk_SAT16 static inline short int silk_SAT16(int a) { diff --git a/thirdparty/opus/silk/process_NLSFs.c b/thirdparty/opus/silk/process_NLSFs.c index 0ab71f0163..d130809541 100644 --- a/thirdparty/opus/silk/process_NLSFs.c +++ b/thirdparty/opus/silk/process_NLSFs.c @@ -48,7 +48,7 @@ void silk_process_NLSFs( silk_assert( psEncC->speech_activity_Q8 >= 0 ); silk_assert( psEncC->speech_activity_Q8 <= SILK_FIX_CONST( 1.0, 8 ) ); - silk_assert( psEncC->useInterpolatedNLSFs == 1 || psEncC->indices.NLSFInterpCoef_Q2 == ( 1 << 2 ) ); + celt_assert( psEncC->useInterpolatedNLSFs == 1 || psEncC->indices.NLSFInterpCoef_Q2 == ( 1 << 2 ) ); /***********************/ /* Calculate mu values */ @@ -60,7 +60,7 @@ void silk_process_NLSFs( NLSF_mu_Q20 = silk_ADD_RSHIFT( NLSF_mu_Q20, NLSF_mu_Q20, 1 ); } - silk_assert( NLSF_mu_Q20 > 0 ); + celt_assert( NLSF_mu_Q20 > 0 ); silk_assert( NLSF_mu_Q20 <= SILK_FIX_CONST( 0.005, 20 ) ); /* Calculate NLSF weights */ @@ -89,7 +89,7 @@ void silk_process_NLSFs( NLSF_mu_Q20, psEncC->NLSF_MSVQ_Survivors, psEncC->indices.signalType ); /* Convert quantized NLSFs back to LPC coefficients */ - silk_NLSF2A( PredCoef_Q12[ 1 ], pNLSF_Q15, psEncC->predictLPCOrder ); + silk_NLSF2A( PredCoef_Q12[ 1 ], pNLSF_Q15, psEncC->predictLPCOrder, psEncC->arch ); if( doInterpolate ) { /* Calculate the interpolated, quantized LSF vector for the first half */ @@ -97,11 +97,11 @@ void silk_process_NLSFs( psEncC->indices.NLSFInterpCoef_Q2, psEncC->predictLPCOrder ); /* Convert back to LPC coefficients */ - silk_NLSF2A( PredCoef_Q12[ 0 ], pNLSF0_temp_Q15, psEncC->predictLPCOrder ); + silk_NLSF2A( PredCoef_Q12[ 0 ], pNLSF0_temp_Q15, psEncC->predictLPCOrder, psEncC->arch ); } else { /* Copy LPC coefficients for first half from second half */ - silk_assert( psEncC->predictLPCOrder <= MAX_LPC_ORDER ); + celt_assert( psEncC->predictLPCOrder <= MAX_LPC_ORDER ); silk_memcpy( PredCoef_Q12[ 0 ], PredCoef_Q12[ 1 ], psEncC->predictLPCOrder * sizeof( opus_int16 ) ); } } diff --git a/thirdparty/opus/silk/quant_LTP_gains.c b/thirdparty/opus/silk/quant_LTP_gains.c index 513a8c4468..d6b8eff8d1 100644 --- a/thirdparty/opus/silk/quant_LTP_gains.c +++ b/thirdparty/opus/silk/quant_LTP_gains.c @@ -33,14 +33,15 @@ POSSIBILITY OF SUCH DAMAGE. #include "tuning_parameters.h" void silk_quant_LTP_gains( - opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (un)quantized LTP gains */ + opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* O Quantized LTP gains */ opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook Index */ opus_int8 *periodicity_index, /* O Periodicity Index */ opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */ - const opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ], /* I Error Weights in Q18 */ - opus_int mu_Q9, /* I Mu value (R/D tradeoff) */ - opus_int lowComplexity, /* I Flag for low complexity */ - const opus_int nb_subfr, /* I number of subframes */ + opus_int *pred_gain_dB_Q7, /* O LTP prediction gain */ + const opus_int32 XX_Q17[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ], /* I Correlation matrix in Q18 */ + const opus_int32 xX_Q17[ MAX_NB_SUBFR*LTP_ORDER ], /* I Correlation vector in Q18 */ + const opus_int subfr_len, /* I Number of samples per subframe */ + const opus_int nb_subfr, /* I Number of subframes */ int arch /* I Run-time architecture */ ) { @@ -49,16 +50,16 @@ void silk_quant_LTP_gains( const opus_uint8 *cl_ptr_Q5; const opus_int8 *cbk_ptr_Q7; const opus_uint8 *cbk_gain_ptr_Q7; - const opus_int16 *b_Q14_ptr; - const opus_int32 *W_Q18_ptr; - opus_int32 rate_dist_Q14_subfr, rate_dist_Q14, min_rate_dist_Q14; - opus_int32 sum_log_gain_tmp_Q7, best_sum_log_gain_Q7, max_gain_Q7, gain_Q7; + const opus_int32 *XX_Q17_ptr, *xX_Q17_ptr; + opus_int32 res_nrg_Q15_subfr, res_nrg_Q15, rate_dist_Q7_subfr, rate_dist_Q7, min_rate_dist_Q7; + opus_int32 sum_log_gain_tmp_Q7, best_sum_log_gain_Q7, max_gain_Q7; + opus_int gain_Q7; /***************************************************/ /* iterate over different codebooks with different */ /* rates/distortions, and choose best */ /***************************************************/ - min_rate_dist_Q14 = silk_int32_MAX; + min_rate_dist_Q7 = silk_int32_MAX; best_sum_log_gain_Q7 = 0; for( k = 0; k < 3; k++ ) { /* Safety margin for pitch gain control, to take into account factors @@ -70,53 +71,47 @@ void silk_quant_LTP_gains( cbk_gain_ptr_Q7 = silk_LTP_vq_gain_ptrs_Q7[ k ]; cbk_size = silk_LTP_vq_sizes[ k ]; - /* Set up pointer to first subframe */ - W_Q18_ptr = W_Q18; - b_Q14_ptr = B_Q14; + /* Set up pointers to first subframe */ + XX_Q17_ptr = XX_Q17; + xX_Q17_ptr = xX_Q17; - rate_dist_Q14 = 0; + res_nrg_Q15 = 0; + rate_dist_Q7 = 0; sum_log_gain_tmp_Q7 = *sum_log_gain_Q7; for( j = 0; j < nb_subfr; j++ ) { max_gain_Q7 = silk_log2lin( ( SILK_FIX_CONST( MAX_SUM_LOG_GAIN_DB / 6.0, 7 ) - sum_log_gain_tmp_Q7 ) + SILK_FIX_CONST( 7, 7 ) ) - gain_safety; - silk_VQ_WMat_EC( &temp_idx[ j ], /* O index of best codebook vector */ - &rate_dist_Q14_subfr, /* O best weighted quantization error + mu * rate */ + &res_nrg_Q15_subfr, /* O residual energy */ + &rate_dist_Q7_subfr, /* O best weighted quantization error + mu * rate */ &gain_Q7, /* O sum of absolute LTP coefficients */ - b_Q14_ptr, /* I input vector to be quantized */ - W_Q18_ptr, /* I weighting matrix */ + XX_Q17_ptr, /* I correlation matrix */ + xX_Q17_ptr, /* I correlation vector */ cbk_ptr_Q7, /* I codebook */ cbk_gain_ptr_Q7, /* I codebook effective gains */ cl_ptr_Q5, /* I code length for each codebook vector */ - mu_Q9, /* I tradeoff between weighted error and rate */ + subfr_len, /* I number of samples per subframe */ max_gain_Q7, /* I maximum sum of absolute LTP coefficients */ cbk_size, /* I number of vectors in codebook */ arch /* I Run-time architecture */ ); - rate_dist_Q14 = silk_ADD_POS_SAT32( rate_dist_Q14, rate_dist_Q14_subfr ); + res_nrg_Q15 = silk_ADD_POS_SAT32( res_nrg_Q15, res_nrg_Q15_subfr ); + rate_dist_Q7 = silk_ADD_POS_SAT32( rate_dist_Q7, rate_dist_Q7_subfr ); sum_log_gain_tmp_Q7 = silk_max(0, sum_log_gain_tmp_Q7 + silk_lin2log( gain_safety + gain_Q7 ) - SILK_FIX_CONST( 7, 7 )); - b_Q14_ptr += LTP_ORDER; - W_Q18_ptr += LTP_ORDER * LTP_ORDER; + XX_Q17_ptr += LTP_ORDER * LTP_ORDER; + xX_Q17_ptr += LTP_ORDER; } - /* Avoid never finding a codebook */ - rate_dist_Q14 = silk_min( silk_int32_MAX - 1, rate_dist_Q14 ); - - if( rate_dist_Q14 < min_rate_dist_Q14 ) { - min_rate_dist_Q14 = rate_dist_Q14; + if( rate_dist_Q7 <= min_rate_dist_Q7 ) { + min_rate_dist_Q7 = rate_dist_Q7; *periodicity_index = (opus_int8)k; silk_memcpy( cbk_index, temp_idx, nb_subfr * sizeof( opus_int8 ) ); best_sum_log_gain_Q7 = sum_log_gain_tmp_Q7; } - - /* Break early in low-complexity mode if rate distortion is below threshold */ - if( lowComplexity && ( rate_dist_Q14 < silk_LTP_gain_middle_avg_RD_Q14 ) ) { - break; - } } cbk_ptr_Q7 = silk_LTP_vq_ptrs_Q7[ *periodicity_index ]; @@ -125,5 +120,13 @@ void silk_quant_LTP_gains( B_Q14[ j * LTP_ORDER + k ] = silk_LSHIFT( cbk_ptr_Q7[ cbk_index[ j ] * LTP_ORDER + k ], 7 ); } } + + if( nb_subfr == 2 ) { + res_nrg_Q15 = silk_RSHIFT32( res_nrg_Q15, 1 ); + } else { + res_nrg_Q15 = silk_RSHIFT32( res_nrg_Q15, 2 ); + } + *sum_log_gain_Q7 = best_sum_log_gain_Q7; + *pred_gain_dB_Q7 = (opus_int)silk_SMULBB( -3, silk_lin2log( res_nrg_Q15 ) - ( 15 << 7 ) ); } diff --git a/thirdparty/opus/silk/resampler.c b/thirdparty/opus/silk/resampler.c index 374fbb3722..1f11e50891 100644 --- a/thirdparty/opus/silk/resampler.c +++ b/thirdparty/opus/silk/resampler.c @@ -91,14 +91,14 @@ opus_int silk_resampler_init( if( forEnc ) { if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 && Fs_Hz_in != 24000 && Fs_Hz_in != 48000 ) || ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) { - silk_assert( 0 ); + celt_assert( 0 ); return -1; } S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ]; } else { if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 ) || ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) { - silk_assert( 0 ); + celt_assert( 0 ); return -1; } S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ]; @@ -151,7 +151,7 @@ opus_int silk_resampler_init( S->Coefs = silk_Resampler_1_6_COEFS; } else { /* None available */ - silk_assert( 0 ); + celt_assert( 0 ); return -1; } } else { @@ -181,9 +181,9 @@ opus_int silk_resampler( opus_int nSamples; /* Need at least 1 ms of input data */ - silk_assert( inLen >= S->Fs_in_kHz ); + celt_assert( inLen >= S->Fs_in_kHz ); /* Delay can't exceed the 1 ms of buffering */ - silk_assert( S->inputDelay <= S->Fs_in_kHz ); + celt_assert( S->inputDelay <= S->Fs_in_kHz ); nSamples = S->Fs_in_kHz - S->inputDelay; diff --git a/thirdparty/opus/silk/resampler_down2.c b/thirdparty/opus/silk/resampler_down2.c index cec3634640..971d7bfd4a 100644 --- a/thirdparty/opus/silk/resampler_down2.c +++ b/thirdparty/opus/silk/resampler_down2.c @@ -43,8 +43,8 @@ void silk_resampler_down2( opus_int32 k, len2 = silk_RSHIFT32( inLen, 1 ); opus_int32 in32, out32, Y, X; - silk_assert( silk_resampler_down2_0 > 0 ); - silk_assert( silk_resampler_down2_1 < 0 ); + celt_assert( silk_resampler_down2_0 > 0 ); + celt_assert( silk_resampler_down2_1 < 0 ); /* Internal variables and state are in Q10 format */ for( k = 0; k < len2; k++ ) { diff --git a/thirdparty/opus/silk/resampler_private_down_FIR.c b/thirdparty/opus/silk/resampler_private_down_FIR.c index 783e42b356..3e8735a35a 100644 --- a/thirdparty/opus/silk/resampler_private_down_FIR.c +++ b/thirdparty/opus/silk/resampler_private_down_FIR.c @@ -136,7 +136,7 @@ static OPUS_INLINE opus_int16 *silk_resampler_private_down_FIR_INTERPOL( } break; default: - silk_assert( 0 ); + celt_assert( 0 ); } return out; } diff --git a/thirdparty/opus/silk/sort.c b/thirdparty/opus/silk/sort.c index 7187c9efb1..4fba16f831 100644 --- a/thirdparty/opus/silk/sort.c +++ b/thirdparty/opus/silk/sort.c @@ -48,9 +48,9 @@ void silk_insertion_sort_increasing( opus_int i, j; /* Safety checks */ - silk_assert( K > 0 ); - silk_assert( L > 0 ); - silk_assert( L >= K ); + celt_assert( K > 0 ); + celt_assert( L > 0 ); + celt_assert( L >= K ); /* Write start indices in index vector */ for( i = 0; i < K; i++ ) { @@ -96,9 +96,9 @@ void silk_insertion_sort_decreasing_int16( opus_int value; /* Safety checks */ - silk_assert( K > 0 ); - silk_assert( L > 0 ); - silk_assert( L >= K ); + celt_assert( K > 0 ); + celt_assert( L > 0 ); + celt_assert( L >= K ); /* Write start indices in index vector */ for( i = 0; i < K; i++ ) { @@ -141,7 +141,7 @@ void silk_insertion_sort_increasing_all_values_int16( opus_int i, j; /* Safety checks */ - silk_assert( L > 0 ); + celt_assert( L > 0 ); /* Sort vector elements by value, increasing order */ for( i = 1; i < L; i++ ) { diff --git a/thirdparty/opus/silk/stereo_LR_to_MS.c b/thirdparty/opus/silk/stereo_LR_to_MS.c index dda0298de2..c8226663c8 100644 --- a/thirdparty/opus/silk/stereo_LR_to_MS.c +++ b/thirdparty/opus/silk/stereo_LR_to_MS.c @@ -109,7 +109,7 @@ void silk_stereo_LR_to_MS( if( total_rate_bps < 1 ) { total_rate_bps = 1; } - min_mid_rate_bps = silk_SMLABB( 2000, fs_kHz, 900 ); + min_mid_rate_bps = silk_SMLABB( 2000, fs_kHz, 600 ); silk_assert( min_mid_rate_bps < 32767 ); /* Default bitrate distribution: 8 parts for Mid and (5+3*frac) parts for Side. so: mid_rate = ( 8 / ( 13 + 3 * frac ) ) * total_ rate */ frac_3_Q16 = silk_MUL( 3, frac_Q16 ); diff --git a/thirdparty/opus/silk/stereo_encode_pred.c b/thirdparty/opus/silk/stereo_encode_pred.c index e6dd195066..03becb6736 100644 --- a/thirdparty/opus/silk/stereo_encode_pred.c +++ b/thirdparty/opus/silk/stereo_encode_pred.c @@ -41,11 +41,11 @@ void silk_stereo_encode_pred( /* Entropy coding */ n = 5 * ix[ 0 ][ 2 ] + ix[ 1 ][ 2 ]; - silk_assert( n < 25 ); + celt_assert( n < 25 ); ec_enc_icdf( psRangeEnc, n, silk_stereo_pred_joint_iCDF, 8 ); for( n = 0; n < 2; n++ ) { - silk_assert( ix[ n ][ 0 ] < 3 ); - silk_assert( ix[ n ][ 1 ] < STEREO_QUANT_SUB_STEPS ); + celt_assert( ix[ n ][ 0 ] < 3 ); + celt_assert( ix[ n ][ 1 ] < STEREO_QUANT_SUB_STEPS ); ec_enc_icdf( psRangeEnc, ix[ n ][ 0 ], silk_uniform3_iCDF, 8 ); ec_enc_icdf( psRangeEnc, ix[ n ][ 1 ], silk_uniform5_iCDF, 8 ); } diff --git a/thirdparty/opus/silk/structs.h b/thirdparty/opus/silk/structs.h index 827829dc6f..3380c757b2 100644 --- a/thirdparty/opus/silk/structs.h +++ b/thirdparty/opus/silk/structs.h @@ -48,6 +48,7 @@ typedef struct { opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ]; opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ]; opus_int32 sLF_AR_shp_Q14; + opus_int32 sDiff_shp_Q14; opus_int lagPrev; opus_int sLTP_buf_idx; opus_int sLTP_shp_buf_idx; @@ -77,6 +78,7 @@ typedef struct { opus_int32 In_LP_State[ 2 ]; /* Low pass filter state */ opus_int32 transition_frame_no; /* Counter which is mapped to a cut-off frequency */ opus_int mode; /* Operating mode, <0: switch down, >0: switch up; 0: do nothing */ + opus_int32 saved_fs_kHz; /* If non-zero, holds the last sampling rate before a bandwidth switching reset. */ } silk_LP_state; /* Structure containing NLSF codebook */ @@ -86,6 +88,7 @@ typedef struct { const opus_int16 quantStepSize_Q16; const opus_int16 invQuantStepSize_Q6; const opus_uint8 *CB1_NLSF_Q8; + const opus_int16 *CB1_Wght_Q9; const opus_uint8 *CB1_iCDF; const opus_uint8 *pred_Q8; const opus_uint8 *ec_sel; @@ -169,8 +172,6 @@ typedef struct { opus_int pitchEstimationComplexity; /* Complexity level for pitch estimator */ opus_int pitchEstimationLPCOrder; /* Whitening filter order for pitch estimator */ opus_int32 pitchEstimationThreshold_Q16; /* Threshold for pitch estimator */ - opus_int LTPQuantLowComplexity; /* Flag for low complexity LTP quantization */ - opus_int mu_LTP_Q9; /* Rate-distortion tradeoff in LTP quantization */ opus_int32 sum_log_gain_Q7; /* Cumulative max prediction gain */ opus_int NLSF_MSVQ_Survivors; /* Number of survivors in NLSF MSVQ */ opus_int first_frame_after_reset; /* Flag for deactivating NLSF interpolation, pitch prediction */ @@ -301,6 +302,7 @@ typedef struct { /* Stuff used for PLC */ opus_int lossCnt; opus_int prevSignalType; + int arch; silk_PLC_struct sPLC; diff --git a/thirdparty/opus/silk/sum_sqr_shift.c b/thirdparty/opus/silk/sum_sqr_shift.c index 129df191d8..4fd0c3d7d5 100644 --- a/thirdparty/opus/silk/sum_sqr_shift.c +++ b/thirdparty/opus/silk/sum_sqr_shift.c @@ -41,43 +41,40 @@ void silk_sum_sqr_shift( ) { opus_int i, shft; - opus_int32 nrg_tmp, nrg; + opus_uint32 nrg_tmp; + opus_int32 nrg; - nrg = 0; - shft = 0; - len--; - for( i = 0; i < len; i += 2 ) { - nrg = silk_SMLABB_ovflw( nrg, x[ i ], x[ i ] ); - nrg = silk_SMLABB_ovflw( nrg, x[ i + 1 ], x[ i + 1 ] ); - if( nrg < 0 ) { - /* Scale down */ - nrg = (opus_int32)silk_RSHIFT_uint( (opus_uint32)nrg, 2 ); - shft = 2; - i+=2; - break; - } + /* Do a first run with the maximum shift we could have. */ + shft = 31-silk_CLZ32(len); + /* Let's be conservative with rounding and start with nrg=len. */ + nrg = len; + for( i = 0; i < len - 1; i += 2 ) { + nrg_tmp = silk_SMULBB( x[ i ], x[ i ] ); + nrg_tmp = silk_SMLABB_ovflw( nrg_tmp, x[ i + 1 ], x[ i + 1 ] ); + nrg = (opus_int32)silk_ADD_RSHIFT_uint( nrg, nrg_tmp, shft ); } - for( ; i < len; i += 2 ) { + if( i < len ) { + /* One sample left to process */ + nrg_tmp = silk_SMULBB( x[ i ], x[ i ] ); + nrg = (opus_int32)silk_ADD_RSHIFT_uint( nrg, nrg_tmp, shft ); + } + silk_assert( nrg >= 0 ); + /* Make sure the result will fit in a 32-bit signed integer with two bits + of headroom. */ + shft = silk_max_32(0, shft+3 - silk_CLZ32(nrg)); + nrg = 0; + for( i = 0 ; i < len - 1; i += 2 ) { nrg_tmp = silk_SMULBB( x[ i ], x[ i ] ); nrg_tmp = silk_SMLABB_ovflw( nrg_tmp, x[ i + 1 ], x[ i + 1 ] ); - nrg = (opus_int32)silk_ADD_RSHIFT_uint( nrg, (opus_uint32)nrg_tmp, shft ); - if( nrg < 0 ) { - /* Scale down */ - nrg = (opus_int32)silk_RSHIFT_uint( (opus_uint32)nrg, 2 ); - shft += 2; - } + nrg = (opus_int32)silk_ADD_RSHIFT_uint( nrg, nrg_tmp, shft ); } - if( i == len ) { + if( i < len ) { /* One sample left to process */ nrg_tmp = silk_SMULBB( x[ i ], x[ i ] ); nrg = (opus_int32)silk_ADD_RSHIFT_uint( nrg, nrg_tmp, shft ); } - /* Make sure to have at least one extra leading zero (two leading zeros in total) */ - if( nrg & 0xC0000000 ) { - nrg = silk_RSHIFT_uint( (opus_uint32)nrg, 2 ); - shft += 2; - } + silk_assert( nrg >= 0 ); /* Output arguments */ *shift = shft; diff --git a/thirdparty/opus/silk/tables.h b/thirdparty/opus/silk/tables.h index 7fea6fda39..95230c451a 100644 --- a/thirdparty/opus/silk/tables.h +++ b/thirdparty/opus/silk/tables.h @@ -76,10 +76,8 @@ extern const opus_uint8 silk_NLSF_EXT_iCDF[ 7 ]; extern const opus_uint8 silk_LTP_per_index_iCDF[ 3 ]; /* 3 */ extern const opus_uint8 * const silk_LTP_gain_iCDF_ptrs[ NB_LTP_CBKS ]; /* 3 */ extern const opus_uint8 * const silk_LTP_gain_BITS_Q5_ptrs[ NB_LTP_CBKS ]; /* 3 */ -extern const opus_int16 silk_LTP_gain_middle_avg_RD_Q14; extern const opus_int8 * const silk_LTP_vq_ptrs_Q7[ NB_LTP_CBKS ]; /* 168 */ extern const opus_uint8 * const silk_LTP_vq_gain_ptrs_Q7[NB_LTP_CBKS]; - extern const opus_int8 silk_LTP_vq_sizes[ NB_LTP_CBKS ]; /* 3 */ extern const opus_uint8 silk_LTPscale_iCDF[ 3 ]; /* 4 */ @@ -99,12 +97,6 @@ extern const opus_uint8 silk_NLSF_interpolation_factor_iCDF[ 5 ]; extern const silk_NLSF_CB_struct silk_NLSF_CB_WB; /* 1040 */ extern const silk_NLSF_CB_struct silk_NLSF_CB_NB_MB; /* 728 */ -/* Piece-wise linear mapping from bitrate in kbps to coding quality in dB SNR */ -extern const opus_int32 silk_TargetRate_table_NB[ TARGET_RATE_TAB_SZ ]; /* 32 */ -extern const opus_int32 silk_TargetRate_table_MB[ TARGET_RATE_TAB_SZ ]; /* 32 */ -extern const opus_int32 silk_TargetRate_table_WB[ TARGET_RATE_TAB_SZ ]; /* 32 */ -extern const opus_int16 silk_SNR_table_Q1[ TARGET_RATE_TAB_SZ ]; /* 32 */ - /* Quantization offsets */ extern const opus_int16 silk_Quantization_Offsets_Q10[ 2 ][ 2 ]; /* 8 */ diff --git a/thirdparty/opus/silk/tables_LTP.c b/thirdparty/opus/silk/tables_LTP.c index 0e6a0254d5..5e12c8643e 100644 --- a/thirdparty/opus/silk/tables_LTP.c +++ b/thirdparty/opus/silk/tables_LTP.c @@ -51,8 +51,6 @@ static const opus_uint8 silk_LTP_gain_iCDF_2[32] = { 24, 20, 16, 12, 9, 5, 2, 0 }; -const opus_int16 silk_LTP_gain_middle_avg_RD_Q14 = 12304; - static const opus_uint8 silk_LTP_gain_BITS_Q5_0[8] = { 15, 131, 138, 138, 155, 155, 173, 173 }; diff --git a/thirdparty/opus/silk/tables_NLSF_CB_NB_MB.c b/thirdparty/opus/silk/tables_NLSF_CB_NB_MB.c index 8c59d207aa..195d5b95bd 100644 --- a/thirdparty/opus/silk/tables_NLSF_CB_NB_MB.c +++ b/thirdparty/opus/silk/tables_NLSF_CB_NB_MB.c @@ -74,6 +74,41 @@ static const opus_uint8 silk_NLSF_CB1_NB_MB_Q8[ 320 ] = { 64, 84, 104, 118, 156, 177, 201, 230 }; +static const opus_int16 silk_NLSF_CB1_Wght_Q9[ 320 ] = { + 2897, 2314, 2314, 2314, 2287, 2287, 2314, 2300, 2327, 2287, + 2888, 2580, 2394, 2367, 2314, 2274, 2274, 2274, 2274, 2194, + 2487, 2340, 2340, 2314, 2314, 2314, 2340, 2340, 2367, 2354, + 3216, 2766, 2340, 2340, 2314, 2274, 2221, 2207, 2261, 2194, + 2460, 2474, 2367, 2394, 2394, 2394, 2394, 2367, 2407, 2314, + 3479, 3056, 2127, 2207, 2274, 2274, 2274, 2287, 2314, 2261, + 3282, 3141, 2580, 2394, 2247, 2221, 2207, 2194, 2194, 2114, + 4096, 3845, 2221, 2620, 2620, 2407, 2314, 2394, 2367, 2074, + 3178, 3244, 2367, 2221, 2553, 2434, 2340, 2314, 2167, 2221, + 3338, 3488, 2726, 2194, 2261, 2460, 2354, 2367, 2207, 2101, + 2354, 2420, 2327, 2367, 2394, 2420, 2420, 2420, 2460, 2367, + 3779, 3629, 2434, 2527, 2367, 2274, 2274, 2300, 2207, 2048, + 3254, 3225, 2713, 2846, 2447, 2327, 2300, 2300, 2274, 2127, + 3263, 3300, 2753, 2806, 2447, 2261, 2261, 2247, 2127, 2101, + 2873, 2981, 2633, 2367, 2407, 2354, 2194, 2247, 2247, 2114, + 3225, 3197, 2633, 2580, 2274, 2181, 2247, 2221, 2221, 2141, + 3178, 3310, 2740, 2407, 2274, 2274, 2274, 2287, 2194, 2114, + 3141, 3272, 2460, 2061, 2287, 2500, 2367, 2487, 2434, 2181, + 3507, 3282, 2314, 2700, 2647, 2474, 2367, 2394, 2340, 2127, + 3423, 3535, 3038, 3056, 2300, 1950, 2221, 2274, 2274, 2274, + 3404, 3366, 2087, 2687, 2873, 2354, 2420, 2274, 2474, 2540, + 3760, 3488, 1950, 2660, 2897, 2527, 2394, 2367, 2460, 2261, + 3028, 3272, 2740, 2888, 2740, 2154, 2127, 2287, 2234, 2247, + 3695, 3657, 2025, 1969, 2660, 2700, 2580, 2500, 2327, 2367, + 3207, 3413, 2354, 2074, 2888, 2888, 2340, 2487, 2247, 2167, + 3338, 3366, 2846, 2780, 2327, 2154, 2274, 2287, 2114, 2061, + 2327, 2300, 2181, 2167, 2181, 2367, 2633, 2700, 2700, 2553, + 2407, 2434, 2221, 2261, 2221, 2221, 2340, 2420, 2607, 2700, + 3038, 3244, 2806, 2888, 2474, 2074, 2300, 2314, 2354, 2380, + 2221, 2154, 2127, 2287, 2500, 2793, 2793, 2620, 2580, 2367, + 3676, 3713, 2234, 1838, 2181, 2753, 2726, 2673, 2513, 2207, + 2793, 3160, 2726, 2553, 2846, 2513, 2181, 2394, 2221, 2181 +}; + static const opus_uint8 silk_NLSF_CB1_iCDF_NB_MB[ 64 ] = { 212, 178, 148, 129, 108, 96, 85, 82, 79, 77, 61, 59, 57, 56, 51, 49, @@ -150,6 +185,7 @@ const silk_NLSF_CB_struct silk_NLSF_CB_NB_MB = SILK_FIX_CONST( 0.18, 16 ), SILK_FIX_CONST( 1.0 / 0.18, 6 ), silk_NLSF_CB1_NB_MB_Q8, + silk_NLSF_CB1_Wght_Q9, silk_NLSF_CB1_iCDF_NB_MB, silk_NLSF_PRED_NB_MB_Q8, silk_NLSF_CB2_SELECT_NB_MB, diff --git a/thirdparty/opus/silk/tables_NLSF_CB_WB.c b/thirdparty/opus/silk/tables_NLSF_CB_WB.c index 50af87eb2e..5cc9f57bff 100644 --- a/thirdparty/opus/silk/tables_NLSF_CB_WB.c +++ b/thirdparty/opus/silk/tables_NLSF_CB_WB.c @@ -98,6 +98,41 @@ static const opus_uint8 silk_NLSF_CB1_WB_Q8[ 512 ] = { 110, 119, 129, 141, 175, 198, 218, 237 }; +static const opus_int16 silk_NLSF_CB1_WB_Wght_Q9[ 512 ] = { + 3657, 2925, 2925, 2925, 2925, 2925, 2925, 2925, 2925, 2925, 2925, 2925, 2963, 2963, 2925, 2846, + 3216, 3085, 2972, 3056, 3056, 3010, 3010, 3010, 2963, 2963, 3010, 2972, 2888, 2846, 2846, 2726, + 3920, 4014, 2981, 3207, 3207, 2934, 3056, 2846, 3122, 3244, 2925, 2846, 2620, 2553, 2780, 2925, + 3516, 3197, 3010, 3103, 3019, 2888, 2925, 2925, 2925, 2925, 2888, 2888, 2888, 2888, 2888, 2753, + 5054, 5054, 2934, 3573, 3385, 3056, 3085, 2793, 3160, 3160, 2972, 2846, 2513, 2540, 2753, 2888, + 4428, 4149, 2700, 2753, 2972, 3010, 2925, 2846, 2981, 3019, 2925, 2925, 2925, 2925, 2888, 2726, + 3620, 3019, 2972, 3056, 3056, 2873, 2806, 3056, 3216, 3047, 2981, 3291, 3291, 2981, 3310, 2991, + 5227, 5014, 2540, 3338, 3526, 3385, 3197, 3094, 3376, 2981, 2700, 2647, 2687, 2793, 2846, 2673, + 5081, 5174, 4615, 4428, 2460, 2897, 3047, 3207, 3169, 2687, 2740, 2888, 2846, 2793, 2846, 2700, + 3122, 2888, 2963, 2925, 2925, 2925, 2925, 2963, 2963, 2963, 2963, 2925, 2925, 2963, 2963, 2963, + 4202, 3207, 2981, 3103, 3010, 2888, 2888, 2925, 2972, 2873, 2916, 3019, 2972, 3010, 3197, 2873, + 3760, 3760, 3244, 3103, 2981, 2888, 2925, 2888, 2972, 2934, 2793, 2793, 2846, 2888, 2888, 2660, + 3854, 4014, 3207, 3122, 3244, 2934, 3047, 2963, 2963, 3085, 2846, 2793, 2793, 2793, 2793, 2580, + 3845, 4080, 3357, 3516, 3094, 2740, 3010, 2934, 3122, 3085, 2846, 2846, 2647, 2647, 2846, 2806, + 5147, 4894, 3225, 3845, 3441, 3169, 2897, 3413, 3451, 2700, 2580, 2673, 2740, 2846, 2806, 2753, + 4109, 3789, 3291, 3160, 2925, 2888, 2888, 2925, 2793, 2740, 2793, 2740, 2793, 2846, 2888, 2806, + 5081, 5054, 3047, 3545, 3244, 3056, 3085, 2944, 3103, 2897, 2740, 2740, 2740, 2846, 2793, 2620, + 4309, 4309, 2860, 2527, 3207, 3376, 3376, 3075, 3075, 3376, 3056, 2846, 2647, 2580, 2726, 2753, + 3056, 2916, 2806, 2888, 2740, 2687, 2897, 3103, 3150, 3150, 3216, 3169, 3056, 3010, 2963, 2846, + 4375, 3882, 2925, 2888, 2846, 2888, 2846, 2846, 2888, 2888, 2888, 2846, 2888, 2925, 2888, 2846, + 2981, 2916, 2916, 2981, 2981, 3056, 3122, 3216, 3150, 3056, 3010, 2972, 2972, 2972, 2925, 2740, + 4229, 4149, 3310, 3347, 2925, 2963, 2888, 2981, 2981, 2846, 2793, 2740, 2846, 2846, 2846, 2793, + 4080, 4014, 3103, 3010, 2925, 2925, 2925, 2888, 2925, 2925, 2846, 2846, 2846, 2793, 2888, 2780, + 4615, 4575, 3169, 3441, 3207, 2981, 2897, 3038, 3122, 2740, 2687, 2687, 2687, 2740, 2793, 2700, + 4149, 4269, 3789, 3657, 2726, 2780, 2888, 2888, 3010, 2972, 2925, 2846, 2687, 2687, 2793, 2888, + 4215, 3554, 2753, 2846, 2846, 2888, 2888, 2888, 2925, 2925, 2888, 2925, 2925, 2925, 2963, 2888, + 5174, 4921, 2261, 3432, 3789, 3479, 3347, 2846, 3310, 3479, 3150, 2897, 2460, 2487, 2753, 2925, + 3451, 3685, 3122, 3197, 3357, 3047, 3207, 3207, 2981, 3216, 3085, 2925, 2925, 2687, 2540, 2434, + 2981, 3010, 2793, 2793, 2740, 2793, 2846, 2972, 3056, 3103, 3150, 3150, 3150, 3103, 3010, 3010, + 2944, 2873, 2687, 2726, 2780, 3010, 3432, 3545, 3357, 3244, 3056, 3010, 2963, 2925, 2888, 2846, + 3019, 2944, 2897, 3010, 3010, 2972, 3019, 3103, 3056, 3056, 3010, 2888, 2846, 2925, 2925, 2888, + 3920, 3967, 3010, 3197, 3357, 3216, 3291, 3291, 3479, 3704, 3441, 2726, 2181, 2460, 2580, 2607 +}; + static const opus_uint8 silk_NLSF_CB1_iCDF_WB[ 64 ] = { 225, 204, 201, 184, 183, 175, 158, 154, 153, 135, 119, 115, 113, 110, 109, 99, @@ -188,6 +223,7 @@ const silk_NLSF_CB_struct silk_NLSF_CB_WB = SILK_FIX_CONST( 0.15, 16 ), SILK_FIX_CONST( 1.0 / 0.15, 6 ), silk_NLSF_CB1_WB_Q8, + silk_NLSF_CB1_WB_Wght_Q9, silk_NLSF_CB1_iCDF_WB, silk_NLSF_PRED_WB_Q8, silk_NLSF_CB2_SELECT_WB, diff --git a/thirdparty/opus/silk/tables_other.c b/thirdparty/opus/silk/tables_other.c index 398686bf26..e34d90777b 100644 --- a/thirdparty/opus/silk/tables_other.c +++ b/thirdparty/opus/silk/tables_other.c @@ -38,20 +38,6 @@ extern "C" { #endif -/* Piece-wise linear mapping from bitrate in kbps to coding quality in dB SNR */ -const opus_int32 silk_TargetRate_table_NB[ TARGET_RATE_TAB_SZ ] = { - 0, 8000, 9400, 11500, 13500, 17500, 25000, MAX_TARGET_RATE_BPS -}; -const opus_int32 silk_TargetRate_table_MB[ TARGET_RATE_TAB_SZ ] = { - 0, 9000, 12000, 14500, 18500, 24500, 35500, MAX_TARGET_RATE_BPS -}; -const opus_int32 silk_TargetRate_table_WB[ TARGET_RATE_TAB_SZ ] = { - 0, 10500, 14000, 17000, 21500, 28500, 42000, MAX_TARGET_RATE_BPS -}; -const opus_int16 silk_SNR_table_Q1[ TARGET_RATE_TAB_SZ ] = { - 18, 29, 38, 40, 46, 52, 62, 84 -}; - /* Tables for stereo predictor coding */ const opus_int16 silk_stereo_pred_quant_Q13[ STEREO_QUANT_TAB_SIZE ] = { -13732, -10050, -8266, -7526, -6500, -5000, -2950, -820, diff --git a/thirdparty/opus/silk/tuning_parameters.h b/thirdparty/opus/silk/tuning_parameters.h index 5b8f404235..d70275fd8f 100644 --- a/thirdparty/opus/silk/tuning_parameters.h +++ b/thirdparty/opus/silk/tuning_parameters.h @@ -53,19 +53,12 @@ extern "C" /* LPC analysis regularization */ #define FIND_LPC_COND_FAC 1e-5f -/* LTP analysis defines */ -#define FIND_LTP_COND_FAC 1e-5f -#define LTP_DAMPING 0.05f -#define LTP_SMOOTHING 0.1f - -/* LTP quantization settings */ -#define MU_LTP_QUANT_NB 0.03f -#define MU_LTP_QUANT_MB 0.025f -#define MU_LTP_QUANT_WB 0.02f - /* Max cumulative LTP gain */ #define MAX_SUM_LOG_GAIN_DB 250.0f +/* LTP analysis defines */ +#define LTP_CORR_INV_MAX 0.03f + /***********************/ /* High pass filtering */ /***********************/ @@ -103,25 +96,16 @@ extern "C" #define SPARSE_SNR_INCR_dB 2.0f /* threshold for sparseness measure above which to use lower quantization offset during unvoiced */ -#define SPARSENESS_THRESHOLD_QNT_OFFSET 0.75f +#define ENERGY_VARIATION_THRESHOLD_QNT_OFFSET 0.6f /* warping control */ #define WARPING_MULTIPLIER 0.015f /* fraction added to first autocorrelation value */ -#define SHAPE_WHITE_NOISE_FRACTION 5e-5f +#define SHAPE_WHITE_NOISE_FRACTION 3e-5f /* noise shaping filter chirp factor */ -#define BANDWIDTH_EXPANSION 0.95f - -/* difference between chirp factors for analysis and synthesis noise shaping filters at low bitrates */ -#define LOW_RATE_BANDWIDTH_EXPANSION_DELTA 0.01f - -/* extra harmonic boosting (signal shaping) at low bitrates */ -#define LOW_RATE_HARMONIC_BOOST 0.1f - -/* extra harmonic boosting (signal shaping) for noisy input signals */ -#define LOW_INPUT_QUALITY_HARMONIC_BOOST 0.1f +#define BANDWIDTH_EXPANSION 0.94f /* harmonic noise shaping */ #define HARMONIC_SHAPING 0.3f diff --git a/thirdparty/opus/silk/x86/NSQ_del_dec_sse.c b/thirdparty/opus/silk/x86/NSQ_del_dec_sse4_1.c index 21d4a8bc1e..2c75ede2dd 100644 --- a/thirdparty/opus/silk/x86/NSQ_del_dec_sse.c +++ b/thirdparty/opus/silk/x86/NSQ_del_dec_sse4_1.c @@ -107,12 +107,12 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1( opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ - opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ opus_int decisionDelay /* I */ ); void silk_NSQ_del_dec_sse4_1( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -234,7 +234,8 @@ void silk_NSQ_del_dec_sse4_1( psDD = &psDelDec[ Winner_ind ]; last_smple_idx = smpl_buf_idx + decisionDelay; for( i = 0; i < decisionDelay; i++ ) { - last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; + last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; + if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) ); @@ -246,7 +247,7 @@ void silk_NSQ_del_dec_sse4_1( /* Rewhiten with new A coefs */ start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; - silk_assert( start_idx > 0 ); + celt_assert( start_idx > 0 ); silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); @@ -285,7 +286,8 @@ void silk_NSQ_del_dec_sse4_1( last_smple_idx = smpl_buf_idx + decisionDelay; Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 ); for( i = 0; i < decisionDelay; i++ ) { - last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK; + last_smple_idx = ( last_smple_idx - 1 ) % DECISION_DELAY; + if( last_smple_idx < 0 ) last_smple_idx += DECISION_DELAY; pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) ); @@ -299,7 +301,6 @@ void silk_NSQ_del_dec_sse4_1( NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; /* Save quantized speech signal */ - /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[psEncC->ltp_mem_length], psEncC->frame_length * sizeof( opus_int16 ) ) */ silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); RESTORE_STACK; @@ -333,7 +334,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1( opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ - opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ + opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */ opus_int decisionDelay /* I */ ) { @@ -352,7 +353,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1( __m128i b_Q12_0123, b_sr_Q12_0123; SAVE_STACK; - silk_assert( nStatesDelayedDecision > 0 ); + celt_assert( nStatesDelayedDecision > 0 ); ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair ); shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; @@ -638,8 +639,9 @@ static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_sse4_1( psSS[ 1 ].xq_Q14 = xq_Q14; } } - *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */ - last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */ + *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY; + if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY; + last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY; /* Find winner */ RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; diff --git a/thirdparty/opus/silk/x86/NSQ_sse.c b/thirdparty/opus/silk/x86/NSQ_sse4_1.c index bb3c5f1955..b0315e35fc 100644 --- a/thirdparty/opus/silk/x86/NSQ_sse.c +++ b/thirdparty/opus/silk/x86/NSQ_sse4_1.c @@ -71,7 +71,7 @@ static OPUS_INLINE void silk_noise_shape_quantizer_10_16_sse4_1( ); void silk_NSQ_sse4_1( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -199,7 +199,7 @@ void silk_NSQ_sse4_1( if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { /* Rewhiten with new A coefs */ start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; - silk_assert( start_idx > 0 ); + celt_assert( start_idx > 0 ); silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ], A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch ); @@ -233,7 +233,6 @@ void silk_NSQ_sse4_1( NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ]; /* Save quantized speech and noise shaping signals */ - /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[ psEncC->ltp_mem_length ], psEncC->frame_length * sizeof( opus_int16 ) ) */ silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) ); silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) ); RESTORE_STACK; diff --git a/thirdparty/opus/silk/x86/VAD_sse.c b/thirdparty/opus/silk/x86/VAD_sse4_1.c index 4e90f4410d..d02ddf4ad0 100644 --- a/thirdparty/opus/silk/x86/VAD_sse.c +++ b/thirdparty/opus/silk/x86/VAD_sse4_1.c @@ -65,9 +65,9 @@ opus_int silk_VAD_GetSA_Q8_sse4_1( /* O Return value, 0 if s /* Safety checks */ silk_assert( VAD_N_BANDS == 4 ); - silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); - silk_assert( psEncC->frame_length <= 512 ); - silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); + celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); + celt_assert( psEncC->frame_length <= 512 ); + celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); /***********************/ /* Filter and Decimate */ diff --git a/thirdparty/opus/silk/x86/VQ_WMat_EC_sse.c b/thirdparty/opus/silk/x86/VQ_WMat_EC_sse4_1.c index 74d6c6d0ec..74d6c6d0ec 100644 --- a/thirdparty/opus/silk/x86/VQ_WMat_EC_sse.c +++ b/thirdparty/opus/silk/x86/VQ_WMat_EC_sse4_1.c diff --git a/thirdparty/opus/silk/x86/main_sse.h b/thirdparty/opus/silk/x86/main_sse.h index d8d61310ed..2f15d44869 100644 --- a/thirdparty/opus/silk/x86/main_sse.h +++ b/thirdparty/opus/silk/x86/main_sse.h @@ -34,6 +34,7 @@ # if defined(OPUS_X86_MAY_HAVE_SSE4_1) +#if 0 /* FIXME: SSE disabled until silk_VQ_WMat_EC_sse4_1() gets updated. */ # define OVERRIDE_silk_VQ_WMat_EC void silk_VQ_WMat_EC_sse4_1( @@ -79,11 +80,13 @@ extern void (*const SILK_VQ_WMAT_EC_IMPL[OPUS_ARCHMASK + 1])( mu_Q9, max_gain_Q7, L)) #endif +#endif +#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */ # define OVERRIDE_silk_NSQ void silk_NSQ_sse4_1( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -110,7 +113,7 @@ void silk_NSQ_sse4_1( #else extern void (*const SILK_NSQ_IMPL[OPUS_ARCHMASK + 1])( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -137,7 +140,7 @@ extern void (*const SILK_NSQ_IMPL[OPUS_ARCHMASK + 1])( # define OVERRIDE_silk_NSQ_del_dec void silk_NSQ_del_dec_sse4_1( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -164,7 +167,7 @@ void silk_NSQ_del_dec_sse4_1( #else extern void (*const SILK_NSQ_DEL_DEC_IMPL[OPUS_ARCHMASK + 1])( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -187,6 +190,7 @@ extern void (*const SILK_NSQ_DEL_DEC_IMPL[OPUS_ARCHMASK + 1])( HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14)) #endif +#endif void silk_noise_shape_quantizer( silk_nsq_state *NSQ, /* I/O NSQ state */ @@ -238,39 +242,6 @@ extern opus_int (*const SILK_VAD_GETSA_Q8_IMPL[OPUS_ARCHMASK + 1])( silk_encoder_state *psEnC, const opus_int16 pIn[]); -# define OVERRIDE_silk_warped_LPC_analysis_filter_FIX - -#endif - -void silk_warped_LPC_analysis_filter_FIX_sse4_1( - opus_int32 state[], /* I/O State [order + 1] */ - opus_int32 res_Q2[], /* O Residual signal [length] */ - const opus_int16 coef_Q13[], /* I Coefficients [order] */ - const opus_int16 input[], /* I Input signal [length] */ - const opus_int16 lambda_Q16, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -); - -#if defined(OPUS_X86_PRESUME_SSE4_1) -#define silk_warped_LPC_analysis_filter_FIX(state, res_Q2, coef_Q13, input, lambda_Q16, length, order, arch) \ - ((void)(arch),silk_warped_LPC_analysis_filter_FIX_c(state, res_Q2, coef_Q13, input, lambda_Q16, length, order)) - -#else - -extern void (*const SILK_WARPED_LPC_ANALYSIS_FILTER_FIX_IMPL[OPUS_ARCHMASK + 1])( - opus_int32 state[], /* I/O State [order + 1] */ - opus_int32 res_Q2[], /* O Residual signal [length] */ - const opus_int16 coef_Q13[], /* I Coefficients [order] */ - const opus_int16 input[], /* I Input signal [length] */ - const opus_int16 lambda_Q16, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -); - -# define silk_warped_LPC_analysis_filter_FIX(state, res_Q2, coef_Q13, input, lambda_Q16, length, order, arch) \ - ((*SILK_WARPED_LPC_ANALYSIS_FILTER_FIX_IMPL[(arch) & OPUS_ARCHMASK])(state, res_Q2, coef_Q13, input, lambda_Q16, length, order)) - #endif # endif diff --git a/thirdparty/opus/silk/x86/x86_silk_map.c b/thirdparty/opus/silk/x86/x86_silk_map.c index 818841f2c1..32dcc3cab7 100644 --- a/thirdparty/opus/silk/x86/x86_silk_map.c +++ b/thirdparty/opus/silk/x86/x86_silk_map.c @@ -66,8 +66,9 @@ opus_int (*const SILK_VAD_GETSA_Q8_IMPL[ OPUS_ARCHMASK + 1 ] )( MAY_HAVE_SSE4_1( silk_VAD_GetSA_Q8 ) /* avx */ }; +#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */ void (*const SILK_NSQ_IMPL[ OPUS_ARCHMASK + 1 ] )( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -89,7 +90,9 @@ void (*const SILK_NSQ_IMPL[ OPUS_ARCHMASK + 1 ] )( MAY_HAVE_SSE4_1( silk_NSQ ), /* sse4.1 */ MAY_HAVE_SSE4_1( silk_NSQ ) /* avx */ }; +#endif +#if 0 /* FIXME: SSE disabled until silk_VQ_WMat_EC_sse4_1() gets updated. */ void (*const SILK_VQ_WMAT_EC_IMPL[ OPUS_ARCHMASK + 1 ] )( opus_int8 *ind, /* O index of best codebook vector */ opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */ @@ -109,9 +112,11 @@ void (*const SILK_VQ_WMAT_EC_IMPL[ OPUS_ARCHMASK + 1 ] )( MAY_HAVE_SSE4_1( silk_VQ_WMat_EC ), /* sse4.1 */ MAY_HAVE_SSE4_1( silk_VQ_WMat_EC ) /* avx */ }; +#endif +#if 0 /* FIXME: SSE disabled until the NSQ code gets updated. */ void (*const SILK_NSQ_DEL_DEC_IMPL[ OPUS_ARCHMASK + 1 ] )( - const silk_encoder_state *psEncC, /* I/O Encoder State */ + const silk_encoder_state *psEncC, /* I Encoder State */ silk_nsq_state *NSQ, /* I/O NSQ state */ SideInfoIndices *psIndices, /* I/O Quantization Indices */ const opus_int32 x_Q3[], /* I Prefiltered input signal */ @@ -133,25 +138,10 @@ void (*const SILK_NSQ_DEL_DEC_IMPL[ OPUS_ARCHMASK + 1 ] )( MAY_HAVE_SSE4_1( silk_NSQ_del_dec ), /* sse4.1 */ MAY_HAVE_SSE4_1( silk_NSQ_del_dec ) /* avx */ }; +#endif #if defined(FIXED_POINT) -void (*const SILK_WARPED_LPC_ANALYSIS_FILTER_FIX_IMPL[ OPUS_ARCHMASK + 1 ] )( - opus_int32 state[], /* I/O State [order + 1] */ - opus_int32 res_Q2[], /* O Residual signal [length] */ - const opus_int16 coef_Q13[], /* I Coefficients [order] */ - const opus_int16 input[], /* I Input signal [length] */ - const opus_int16 lambda_Q16, /* I Warping factor */ - const opus_int length, /* I Length of input signal */ - const opus_int order /* I Filter order (even) */ -) = { - silk_warped_LPC_analysis_filter_FIX_c, /* non-sse */ - silk_warped_LPC_analysis_filter_FIX_c, - silk_warped_LPC_analysis_filter_FIX_c, - MAY_HAVE_SSE4_1( silk_warped_LPC_analysis_filter_FIX ), /* sse4.1 */ - MAY_HAVE_SSE4_1( silk_warped_LPC_analysis_filter_FIX ) /* avx */ -}; - void (*const SILK_BURG_MODIFIED_IMPL[ OPUS_ARCHMASK + 1 ] )( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ diff --git a/thirdparty/opus/stream.c b/thirdparty/opus/stream.c index 0238a6b31b..6a85197a66 100644 --- a/thirdparty/opus/stream.c +++ b/thirdparty/opus/stream.c @@ -235,8 +235,7 @@ void *op_fopen(OpusFileCallbacks *_cb,const char *_path,const char *_mode){ fp=fopen(_path,_mode); #else fp=NULL; - if(_path==NULL||_mode==NULL)errno=EINVAL; - else{ + { wchar_t *wpath; wchar_t *wmode; wpath=op_utf8_to_utf16(_path); @@ -266,8 +265,7 @@ void *op_freopen(OpusFileCallbacks *_cb,const char *_path,const char *_mode, fp=freopen(_path,_mode,(FILE *)_stream); #else fp=NULL; - if(_path==NULL||_mode==NULL)errno=EINVAL; - else{ + { wchar_t *wpath; wchar_t *wmode; wpath=op_utf8_to_utf16(_path); |