summaryrefslogtreecommitdiff
path: root/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/opus/silk/float/noise_shape_analysis_FLP.c')
-rw-r--r--thirdparty/opus/silk/float/noise_shape_analysis_FLP.c149
1 files changed, 82 insertions, 67 deletions
diff --git a/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c b/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c
index cb3d8a50b7..65f6ea5870 100644
--- a/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c
+++ b/thirdparty/opus/silk/float/noise_shape_analysis_FLP.c
@@ -55,21 +55,25 @@ static OPUS_INLINE silk_float warped_gain(
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
static OPUS_INLINE void warped_true2monic_coefs(
- silk_float *coefs,
+ silk_float *coefs_syn,
+ silk_float *coefs_ana,
silk_float lambda,
silk_float limit,
opus_int order
) {
opus_int i, iter, ind = 0;
- silk_float tmp, maxabs, chirp, gain;
+ silk_float tmp, maxabs, chirp, gain_syn, gain_ana;
/* Convert to monic coefficients */
for( i = order - 1; i > 0; i-- ) {
- coefs[ i - 1 ] -= lambda * coefs[ i ];
+ coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ];
+ coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ];
}
- gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] );
+ gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] );
+ gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] );
for( i = 0; i < order; i++ ) {
- coefs[ i ] *= gain;
+ coefs_syn[ i ] *= gain_syn;
+ coefs_ana[ i ] *= gain_ana;
}
/* Limit */
@@ -77,7 +81,7 @@ static OPUS_INLINE void warped_true2monic_coefs(
/* Find maximum absolute value */
maxabs = -1.0f;
for( i = 0; i < order; i++ ) {
- tmp = silk_abs_float( coefs[ i ] );
+ tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) );
if( tmp > maxabs ) {
maxabs = tmp;
ind = i;
@@ -90,59 +94,36 @@ static OPUS_INLINE void warped_true2monic_coefs(
/* Convert back to true warped coefficients */
for( i = 1; i < order; i++ ) {
- coefs[ i - 1 ] += lambda * coefs[ i ];
+ coefs_syn[ i - 1 ] += lambda * coefs_syn[ i ];
+ coefs_ana[ i - 1 ] += lambda * coefs_ana[ i ];
}
- gain = 1.0f / gain;
+ gain_syn = 1.0f / gain_syn;
+ gain_ana = 1.0f / gain_ana;
for( i = 0; i < order; i++ ) {
- coefs[ i ] *= gain;
+ coefs_syn[ i ] *= gain_syn;
+ coefs_ana[ i ] *= gain_ana;
}
/* Apply bandwidth expansion */
chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) );
- silk_bwexpander_FLP( coefs, order, chirp );
+ silk_bwexpander_FLP( coefs_syn, order, chirp );
+ silk_bwexpander_FLP( coefs_ana, order, chirp );
/* Convert to monic warped coefficients */
for( i = order - 1; i > 0; i-- ) {
- coefs[ i - 1 ] -= lambda * coefs[ i ];
+ coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ];
+ coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ];
}
- gain = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs[ 0 ] );
+ gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] );
+ gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] );
for( i = 0; i < order; i++ ) {
- coefs[ i ] *= gain;
+ coefs_syn[ i ] *= gain_syn;
+ coefs_ana[ i ] *= gain_ana;
}
}
silk_assert( 0 );
}
-static OPUS_INLINE void limit_coefs(
- silk_float *coefs,
- silk_float limit,
- opus_int order
-) {
- opus_int i, iter, ind = 0;
- silk_float tmp, maxabs, chirp;
-
- for( iter = 0; iter < 10; iter++ ) {
- /* Find maximum absolute value */
- maxabs = -1.0f;
- for( i = 0; i < order; i++ ) {
- tmp = silk_abs_float( coefs[ i ] );
- if( tmp > maxabs ) {
- maxabs = tmp;
- ind = i;
- }
- }
- if( maxabs <= limit ) {
- /* Coefficients are within range - done */
- return;
- }
-
- /* Apply bandwidth expansion */
- chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) );
- silk_bwexpander_FLP( coefs, order, chirp );
- }
- silk_assert( 0 );
-}
-
/* Compute noise shaping coefficients and initial gain values */
void silk_noise_shape_analysis_FLP(
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
@@ -152,13 +133,12 @@ void silk_noise_shape_analysis_FLP(
)
{
silk_shape_state_FLP *psShapeSt = &psEnc->sShape;
- opus_int k, nSamples, nSegs;
- silk_float SNR_adj_dB, HarmShapeGain, Tilt;
- silk_float nrg, log_energy, log_energy_prev, energy_variation;
- silk_float BWExp, gain_mult, gain_add, strength, b, warping;
+ opus_int k, nSamples;
+ silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt;
+ silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation;
+ silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping;
silk_float x_windowed[ SHAPE_LPC_WIN_MAX ];
silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
- silk_float rc[ MAX_SHAPE_LPC_ORDER + 1 ];
const silk_float *x_ptr, *pitch_res_ptr;
/* Point to start of first LPC analysis block */
@@ -196,14 +176,14 @@ void silk_noise_shape_analysis_FLP(
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Initially set to 0; may be overruled in process_gains(..) */
psEnc->sCmn.indices.quantOffsetType = 0;
+ psEncCtrl->sparseness = 0.0f;
} else {
/* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
nSamples = 2 * psEnc->sCmn.fs_kHz;
energy_variation = 0.0f;
log_energy_prev = 0.0f;
pitch_res_ptr = pitch_res;
- nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2;
- for( k = 0; k < nSegs; k++ ) {
+ for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples );
log_energy = silk_log2( nrg );
if( k > 0 ) {
@@ -212,13 +192,17 @@ void silk_noise_shape_analysis_FLP(
log_energy_prev = log_energy;
pitch_res_ptr += nSamples;
}
+ psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) );
/* Set quantization offset depending on sparseness measure */
- if( energy_variation > ENERGY_VARIATION_THRESHOLD_QNT_OFFSET * (nSegs-1) ) {
+ if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) {
psEnc->sCmn.indices.quantOffsetType = 0;
} else {
psEnc->sCmn.indices.quantOffsetType = 1;
}
+
+ /* Increase coding SNR for sparse signals */
+ SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f );
}
/*******************************/
@@ -226,10 +210,19 @@ void silk_noise_shape_analysis_FLP(
/*******************************/
/* More BWE for signals with high prediction gain */
strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */
- BWExp = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength );
-
- /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
- warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
+ BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength );
+ delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality );
+ BWExp1 -= delta;
+ BWExp2 += delta;
+ /* BWExp1 will be applied after BWExp2, so make it relative */
+ BWExp1 /= BWExp2;
+
+ if( psEnc->sCmn.warping_Q16 > 0 ) {
+ /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
+ warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
+ } else {
+ warping = 0.0f;
+ }
/********************************************/
/* Compute noise shaping AR coefs and gains */
@@ -259,28 +252,37 @@ void silk_noise_shape_analysis_FLP(
}
/* Add white noise, as a fraction of energy */
- auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION + 1.0f;
+ auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION;
/* Convert correlations to prediction coefficients, and compute residual energy */
- nrg = silk_schur_FLP( rc, auto_corr, psEnc->sCmn.shapingLPCOrder );
- silk_k2a_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], rc, psEnc->sCmn.shapingLPCOrder );
+ nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder );
psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Adjust gain for warping */
- psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder );
+ psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder );
}
/* Bandwidth expansion for synthesis filter shaping */
- silk_bwexpander_FLP( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp );
+ silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 );
- if( psEnc->sCmn.warping_Q16 > 0 ) {
- /* Convert to monic warped prediction coefficients and limit absolute values */
- warped_true2monic_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], warping, 3.999f, psEnc->sCmn.shapingLPCOrder );
- } else {
- /* Limit absolute values */
- limit_coefs( &psEncCtrl->AR[ k * MAX_SHAPE_LPC_ORDER ], 3.999f, psEnc->sCmn.shapingLPCOrder );
- }
+ /* Compute noise shaping filter coefficients */
+ silk_memcpy(
+ &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
+ &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ],
+ psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) );
+
+ /* Bandwidth expansion for analysis filter shaping */
+ silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 );
+
+ /* Ratio of prediction gains, in energy domain */
+ pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
+ nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
+ psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg );
+
+ /* Convert to monic warped prediction coefficients and limit absolute values */
+ warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
+ warping, 3.999f, psEnc->sCmn.shapingLPCOrder );
}
/*****************/
@@ -294,6 +296,11 @@ void silk_noise_shape_analysis_FLP(
psEncCtrl->Gains[ k ] += gain_add;
}
+ gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT;
+ for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
+ psEncCtrl->GainsPre[ k ] *= gain_mult;
+ }
+
/************************************************/
/* Control low-frequency shaping and noise tilt */
/************************************************/
@@ -324,6 +331,12 @@ void silk_noise_shape_analysis_FLP(
/****************************/
/* HARMONIC SHAPING CONTROL */
/****************************/
+ /* Control boosting of harmonic frequencies */
+ HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr;
+
+ /* More harmonic boost for noisy input signals */
+ HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality );
+
if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Harmonic noise shaping */
HarmShapeGain = HARMONIC_SHAPING;
@@ -342,6 +355,8 @@ void silk_noise_shape_analysis_FLP(
/* Smooth over subframes */
/*************************/
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
+ psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth );
+ psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth;
psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth );
psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth;
psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth );