summaryrefslogtreecommitdiff
path: root/thirdparty/opus/celt/rate.c
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/opus/celt/rate.c')
-rw-r--r--thirdparty/opus/celt/rate.c639
1 files changed, 0 insertions, 639 deletions
diff --git a/thirdparty/opus/celt/rate.c b/thirdparty/opus/celt/rate.c
deleted file mode 100644
index 7dfa5be8a6..0000000000
--- a/thirdparty/opus/celt/rate.c
+++ /dev/null
@@ -1,639 +0,0 @@
-/* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2009 Xiph.Org Foundation
- Written by Jean-Marc Valin */
-/*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <math.h>
-#include "modes.h"
-#include "cwrs.h"
-#include "arch.h"
-#include "os_support.h"
-
-#include "entcode.h"
-#include "rate.h"
-
-static const unsigned char LOG2_FRAC_TABLE[24]={
- 0,
- 8,13,
- 16,19,21,23,
- 24,26,27,28,29,30,31,32,
- 32,33,34,34,35,36,36,37,37
-};
-
-#ifdef CUSTOM_MODES
-
-/*Determines if V(N,K) fits in a 32-bit unsigned integer.
- N and K are themselves limited to 15 bits.*/
-static int fits_in32(int _n, int _k)
-{
- static const opus_int16 maxN[15] = {
- 32767, 32767, 32767, 1476, 283, 109, 60, 40,
- 29, 24, 20, 18, 16, 14, 13};
- static const opus_int16 maxK[15] = {
- 32767, 32767, 32767, 32767, 1172, 238, 95, 53,
- 36, 27, 22, 18, 16, 15, 13};
- if (_n>=14)
- {
- if (_k>=14)
- return 0;
- else
- return _n <= maxN[_k];
- } else {
- return _k <= maxK[_n];
- }
-}
-
-void compute_pulse_cache(CELTMode *m, int LM)
-{
- int C;
- int i;
- int j;
- int curr=0;
- int nbEntries=0;
- int entryN[100], entryK[100], entryI[100];
- const opus_int16 *eBands = m->eBands;
- PulseCache *cache = &m->cache;
- opus_int16 *cindex;
- unsigned char *bits;
- unsigned char *cap;
-
- cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
- cache->index = cindex;
-
- /* Scan for all unique band sizes */
- for (i=0;i<=LM+1;i++)
- {
- for (j=0;j<m->nbEBands;j++)
- {
- int k;
- int N = (eBands[j+1]-eBands[j])<<i>>1;
- cindex[i*m->nbEBands+j] = -1;
- /* Find other bands that have the same size */
- for (k=0;k<=i;k++)
- {
- int n;
- for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
- {
- if (N == (eBands[n+1]-eBands[n])<<k>>1)
- {
- cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
- break;
- }
- }
- }
- if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
- {
- int K;
- entryN[nbEntries] = N;
- K = 0;
- while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
- K++;
- entryK[nbEntries] = K;
- cindex[i*m->nbEBands+j] = curr;
- entryI[nbEntries] = curr;
-
- curr += K+1;
- nbEntries++;
- }
- }
- }
- bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
- cache->bits = bits;
- cache->size = curr;
- /* Compute the cache for all unique sizes */
- for (i=0;i<nbEntries;i++)
- {
- unsigned char *ptr = bits+entryI[i];
- opus_int16 tmp[CELT_MAX_PULSES+1];
- get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
- for (j=1;j<=entryK[i];j++)
- ptr[j] = tmp[get_pulses(j)]-1;
- ptr[0] = entryK[i];
- }
-
- /* Compute the maximum rate for each band at which we'll reliably use as
- many bits as we ask for. */
- cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
- for (i=0;i<=LM;i++)
- {
- for (C=1;C<=2;C++)
- {
- for (j=0;j<m->nbEBands;j++)
- {
- int N0;
- int max_bits;
- N0 = m->eBands[j+1]-m->eBands[j];
- /* N=1 bands only have a sign bit and fine bits. */
- if (N0<<i == 1)
- max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
- else
- {
- const unsigned char *pcache;
- opus_int32 num;
- opus_int32 den;
- int LM0;
- int N;
- int offset;
- int ndof;
- int qb;
- int k;
- LM0 = 0;
- /* Even-sized bands bigger than N=2 can be split one more time.
- As of commit 44203907 all bands >1 are even, including custom modes.*/
- if (N0 > 2)
- {
- N0>>=1;
- LM0--;
- }
- /* N0=1 bands can't be split down to N<2. */
- else if (N0 <= 1)
- {
- LM0=IMIN(i,1);
- N0<<=LM0;
- }
- /* Compute the cost for the lowest-level PVQ of a fully split
- band. */
- pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
- max_bits = pcache[pcache[0]]+1;
- /* Add in the cost of coding regular splits. */
- N = N0;
- for(k=0;k<i-LM0;k++){
- max_bits <<= 1;
- /* Offset the number of qtheta bits by log2(N)/2
- + QTHETA_OFFSET compared to their "fair share" of
- total/N */
- offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
- /* The number of qtheta bits we'll allocate if the remainder
- is to be max_bits.
- The average measured cost for theta is 0.89701 times qb,
- approximated here as 459/512. */
- num=459*(opus_int32)((2*N-1)*offset+max_bits);
- den=((opus_int32)(2*N-1)<<9)-459;
- qb = IMIN((num+(den>>1))/den, 57);
- celt_assert(qb >= 0);
- max_bits += qb;
- N <<= 1;
- }
- /* Add in the cost of a stereo split, if necessary. */
- if (C==2)
- {
- max_bits <<= 1;
- offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
- ndof = 2*N-1-(N==2);
- /* The average measured cost for theta with the step PDF is
- 0.95164 times qb, approximated here as 487/512. */
- num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
- den = ((opus_int32)ndof<<9)-(N==2?512:487);
- qb = IMIN((num+(den>>1))/den, (N==2?64:61));
- celt_assert(qb >= 0);
- max_bits += qb;
- }
- /* Add the fine bits we'll use. */
- /* Compensate for the extra DoF in stereo */
- ndof = C*N + ((C==2 && N>2) ? 1 : 0);
- /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
- compared to their "fair share" of total/N */
- offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
- /* N=2 is the only point that doesn't match the curve */
- if (N==2)
- offset += 1<<BITRES>>2;
- /* The number of fine bits we'll allocate if the remainder is
- to be max_bits. */
- num = max_bits+ndof*offset;
- den = (ndof-1)<<BITRES;
- qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
- celt_assert(qb >= 0);
- max_bits += C*qb<<BITRES;
- }
- max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
- celt_assert(max_bits >= 0);
- celt_assert(max_bits < 256);
- *cap++ = (unsigned char)max_bits;
- }
- }
- }
-}
-
-#endif /* CUSTOM_MODES */
-
-#define ALLOC_STEPS 6
-
-static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
- const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
- int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
- int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
-{
- opus_int32 psum;
- int lo, hi;
- int i, j;
- int logM;
- int stereo;
- int codedBands=-1;
- int alloc_floor;
- opus_int32 left, percoeff;
- int done;
- opus_int32 balance;
- SAVE_STACK;
-
- alloc_floor = C<<BITRES;
- stereo = C>1;
-
- logM = LM<<BITRES;
- lo = 0;
- hi = 1<<ALLOC_STEPS;
- for (i=0;i<ALLOC_STEPS;i++)
- {
- int mid = (lo+hi)>>1;
- psum = 0;
- done = 0;
- for (j=end;j-->start;)
- {
- int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
- if (tmp >= thresh[j] || done)
- {
- done = 1;
- /* Don't allocate more than we can actually use */
- psum += IMIN(tmp, cap[j]);
- } else {
- if (tmp >= alloc_floor)
- psum += alloc_floor;
- }
- }
- if (psum > total)
- hi = mid;
- else
- lo = mid;
- }
- psum = 0;
- /*printf ("interp bisection gave %d\n", lo);*/
- done = 0;
- for (j=end;j-->start;)
- {
- int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
- if (tmp < thresh[j] && !done)
- {
- if (tmp >= alloc_floor)
- tmp = alloc_floor;
- else
- tmp = 0;
- } else
- done = 1;
- /* Don't allocate more than we can actually use */
- tmp = IMIN(tmp, cap[j]);
- bits[j] = tmp;
- psum += tmp;
- }
-
- /* Decide which bands to skip, working backwards from the end. */
- for (codedBands=end;;codedBands--)
- {
- int band_width;
- int band_bits;
- int rem;
- j = codedBands-1;
- /* Never skip the first band, nor a band that has been boosted by
- dynalloc.
- In the first case, we'd be coding a bit to signal we're going to waste
- all the other bits.
- In the second case, we'd be coding a bit to redistribute all the bits
- we just signaled should be cocentrated in this band. */
- if (j<=skip_start)
- {
- /* Give the bit we reserved to end skipping back. */
- total += skip_rsv;
- break;
- }
- /*Figure out how many left-over bits we would be adding to this band.
- This can include bits we've stolen back from higher, skipped bands.*/
- left = total-psum;
- percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
- left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
- rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
- band_width = m->eBands[codedBands]-m->eBands[j];
- band_bits = (int)(bits[j] + percoeff*band_width + rem);
- /*Only code a skip decision if we're above the threshold for this band.
- Otherwise it is force-skipped.
- This ensures that we have enough bits to code the skip flag.*/
- if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
- {
- if (encode)
- {
- /*This if() block is the only part of the allocation function that
- is not a mandatory part of the bitstream: any bands we choose to
- skip here must be explicitly signaled.*/
- /*Choose a threshold with some hysteresis to keep bands from
- fluctuating in and out.*/
-#ifdef FUZZING
- if ((rand()&0x1) == 0)
-#else
- if (codedBands<=start+2 || (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
-#endif
- {
- ec_enc_bit_logp(ec, 1, 1);
- break;
- }
- ec_enc_bit_logp(ec, 0, 1);
- } else if (ec_dec_bit_logp(ec, 1)) {
- break;
- }
- /*We used a bit to skip this band.*/
- psum += 1<<BITRES;
- band_bits -= 1<<BITRES;
- }
- /*Reclaim the bits originally allocated to this band.*/
- psum -= bits[j]+intensity_rsv;
- if (intensity_rsv > 0)
- intensity_rsv = LOG2_FRAC_TABLE[j-start];
- psum += intensity_rsv;
- if (band_bits >= alloc_floor)
- {
- /*If we have enough for a fine energy bit per channel, use it.*/
- psum += alloc_floor;
- bits[j] = alloc_floor;
- } else {
- /*Otherwise this band gets nothing at all.*/
- bits[j] = 0;
- }
- }
-
- celt_assert(codedBands > start);
- /* Code the intensity and dual stereo parameters. */
- if (intensity_rsv > 0)
- {
- if (encode)
- {
- *intensity = IMIN(*intensity, codedBands);
- ec_enc_uint(ec, *intensity-start, codedBands+1-start);
- }
- else
- *intensity = start+ec_dec_uint(ec, codedBands+1-start);
- }
- else
- *intensity = 0;
- if (*intensity <= start)
- {
- total += dual_stereo_rsv;
- dual_stereo_rsv = 0;
- }
- if (dual_stereo_rsv > 0)
- {
- if (encode)
- ec_enc_bit_logp(ec, *dual_stereo, 1);
- else
- *dual_stereo = ec_dec_bit_logp(ec, 1);
- }
- else
- *dual_stereo = 0;
-
- /* Allocate the remaining bits */
- left = total-psum;
- percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
- left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
- for (j=start;j<codedBands;j++)
- bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
- for (j=start;j<codedBands;j++)
- {
- int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
- bits[j] += tmp;
- left -= tmp;
- }
- /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
-
- balance = 0;
- for (j=start;j<codedBands;j++)
- {
- int N0, N, den;
- int offset;
- int NClogN;
- opus_int32 excess, bit;
-
- celt_assert(bits[j] >= 0);
- N0 = m->eBands[j+1]-m->eBands[j];
- N=N0<<LM;
- bit = (opus_int32)bits[j]+balance;
-
- if (N>1)
- {
- excess = MAX32(bit-cap[j],0);
- bits[j] = bit-excess;
-
- /* Compensate for the extra DoF in stereo */
- den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
-
- NClogN = den*(m->logN[j] + logM);
-
- /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
- compared to their "fair share" of total/N */
- offset = (NClogN>>1)-den*FINE_OFFSET;
-
- /* N=2 is the only point that doesn't match the curve */
- if (N==2)
- offset += den<<BITRES>>2;
-
- /* Changing the offset for allocating the second and third
- fine energy bit */
- if (bits[j] + offset < den*2<<BITRES)
- offset += NClogN>>2;
- else if (bits[j] + offset < den*3<<BITRES)
- offset += NClogN>>3;
-
- /* Divide with rounding */
- ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
- ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
-
- /* Make sure not to bust */
- if (C*ebits[j] > (bits[j]>>BITRES))
- ebits[j] = bits[j] >> stereo >> BITRES;
-
- /* More than that is useless because that's about as far as PVQ can go */
- ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
-
- /* If we rounded down or capped this band, make it a candidate for the
- final fine energy pass */
- fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
-
- /* Remove the allocated fine bits; the rest are assigned to PVQ */
- bits[j] -= C*ebits[j]<<BITRES;
-
- } else {
- /* For N=1, all bits go to fine energy except for a single sign bit */
- excess = MAX32(0,bit-(C<<BITRES));
- bits[j] = bit-excess;
- ebits[j] = 0;
- fine_priority[j] = 1;
- }
-
- /* Fine energy can't take advantage of the re-balancing in
- quant_all_bands().
- Instead, do the re-balancing here.*/
- if(excess > 0)
- {
- int extra_fine;
- int extra_bits;
- extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
- ebits[j] += extra_fine;
- extra_bits = extra_fine*C<<BITRES;
- fine_priority[j] = extra_bits >= excess-balance;
- excess -= extra_bits;
- }
- balance = excess;
-
- celt_assert(bits[j] >= 0);
- celt_assert(ebits[j] >= 0);
- }
- /* Save any remaining bits over the cap for the rebalancing in
- quant_all_bands(). */
- *_balance = balance;
-
- /* The skipped bands use all their bits for fine energy. */
- for (;j<end;j++)
- {
- ebits[j] = bits[j] >> stereo >> BITRES;
- celt_assert(C*ebits[j]<<BITRES == bits[j]);
- bits[j] = 0;
- fine_priority[j] = ebits[j]<1;
- }
- RESTORE_STACK;
- return codedBands;
-}
-
-int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
- opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
-{
- int lo, hi, len, j;
- int codedBands;
- int skip_start;
- int skip_rsv;
- int intensity_rsv;
- int dual_stereo_rsv;
- VARDECL(int, bits1);
- VARDECL(int, bits2);
- VARDECL(int, thresh);
- VARDECL(int, trim_offset);
- SAVE_STACK;
-
- total = IMAX(total, 0);
- len = m->nbEBands;
- skip_start = start;
- /* Reserve a bit to signal the end of manually skipped bands. */
- skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
- total -= skip_rsv;
- /* Reserve bits for the intensity and dual stereo parameters. */
- intensity_rsv = dual_stereo_rsv = 0;
- if (C==2)
- {
- intensity_rsv = LOG2_FRAC_TABLE[end-start];
- if (intensity_rsv>total)
- intensity_rsv = 0;
- else
- {
- total -= intensity_rsv;
- dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
- total -= dual_stereo_rsv;
- }
- }
- ALLOC(bits1, len, int);
- ALLOC(bits2, len, int);
- ALLOC(thresh, len, int);
- ALLOC(trim_offset, len, int);
-
- for (j=start;j<end;j++)
- {
- /* Below this threshold, we're sure not to allocate any PVQ bits */
- thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
- /* Tilt of the allocation curve */
- trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
- *(1<<(LM+BITRES))>>6;
- /* Giving less resolution to single-coefficient bands because they get
- more benefit from having one coarse value per coefficient*/
- if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
- trim_offset[j] -= C<<BITRES;
- }
- lo = 1;
- hi = m->nbAllocVectors - 1;
- do
- {
- int done = 0;
- int psum = 0;
- int mid = (lo+hi) >> 1;
- for (j=end;j-->start;)
- {
- int bitsj;
- int N = m->eBands[j+1]-m->eBands[j];
- bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
- if (bitsj > 0)
- bitsj = IMAX(0, bitsj + trim_offset[j]);
- bitsj += offsets[j];
- if (bitsj >= thresh[j] || done)
- {
- done = 1;
- /* Don't allocate more than we can actually use */
- psum += IMIN(bitsj, cap[j]);
- } else {
- if (bitsj >= C<<BITRES)
- psum += C<<BITRES;
- }
- }
- if (psum > total)
- hi = mid - 1;
- else
- lo = mid + 1;
- /*printf ("lo = %d, hi = %d\n", lo, hi);*/
- }
- while (lo <= hi);
- hi = lo--;
- /*printf ("interp between %d and %d\n", lo, hi);*/
- for (j=start;j<end;j++)
- {
- int bits1j, bits2j;
- int N = m->eBands[j+1]-m->eBands[j];
- bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
- bits2j = hi>=m->nbAllocVectors ?
- cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
- if (bits1j > 0)
- bits1j = IMAX(0, bits1j + trim_offset[j]);
- if (bits2j > 0)
- bits2j = IMAX(0, bits2j + trim_offset[j]);
- if (lo > 0)
- bits1j += offsets[j];
- bits2j += offsets[j];
- if (offsets[j]>0)
- skip_start = j;
- bits2j = IMAX(0,bits2j-bits1j);
- bits1[j] = bits1j;
- bits2[j] = bits2j;
- }
- codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
- total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
- pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
- RESTORE_STACK;
- return codedBands;
-}
-