diff options
Diffstat (limited to 'thirdparty/opus/celt/mathops.c')
| -rw-r--r-- | thirdparty/opus/celt/mathops.c | 208 | 
1 files changed, 208 insertions, 0 deletions
diff --git a/thirdparty/opus/celt/mathops.c b/thirdparty/opus/celt/mathops.c new file mode 100644 index 0000000000..3f8c5dcc0e --- /dev/null +++ b/thirdparty/opus/celt/mathops.c @@ -0,0 +1,208 @@ +/* Copyright (c) 2002-2008 Jean-Marc Valin +   Copyright (c) 2007-2008 CSIRO +   Copyright (c) 2007-2009 Xiph.Org Foundation +   Written by Jean-Marc Valin */ +/** +   @file mathops.h +   @brief Various math functions +*/ +/* +   Redistribution and use in source and binary forms, with or without +   modification, are permitted provided that the following conditions +   are met: + +   - Redistributions of source code must retain the above copyright +   notice, this list of conditions and the following disclaimer. + +   - Redistributions in binary form must reproduce the above copyright +   notice, this list of conditions and the following disclaimer in the +   documentation and/or other materials provided with the distribution. + +   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "mathops.h" + +/*Compute floor(sqrt(_val)) with exact arithmetic. +  This has been tested on all possible 32-bit inputs.*/ +unsigned isqrt32(opus_uint32 _val){ +  unsigned b; +  unsigned g; +  int      bshift; +  /*Uses the second method from +     http://www.azillionmonkeys.com/qed/sqroot.html +    The main idea is to search for the largest binary digit b such that +     (g+b)*(g+b) <= _val, and add it to the solution g.*/ +  g=0; +  bshift=(EC_ILOG(_val)-1)>>1; +  b=1U<<bshift; +  do{ +    opus_uint32 t; +    t=(((opus_uint32)g<<1)+b)<<bshift; +    if(t<=_val){ +      g+=b; +      _val-=t; +    } +    b>>=1; +    bshift--; +  } +  while(bshift>=0); +  return g; +} + +#ifdef FIXED_POINT + +opus_val32 frac_div32(opus_val32 a, opus_val32 b) +{ +   opus_val16 rcp; +   opus_val32 result, rem; +   int shift = celt_ilog2(b)-29; +   a = VSHR32(a,shift); +   b = VSHR32(b,shift); +   /* 16-bit reciprocal */ +   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); +   result = MULT16_32_Q15(rcp, a); +   rem = PSHR32(a,2)-MULT32_32_Q31(result, b); +   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); +   if (result >= 536870912)       /*  2^29 */ +      return 2147483647;          /*  2^31 - 1 */ +   else if (result <= -536870912) /* -2^29 */ +      return -2147483647;         /* -2^31 */ +   else +      return SHL32(result, 2); +} + +/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ +opus_val16 celt_rsqrt_norm(opus_val32 x) +{ +   opus_val16 n; +   opus_val16 r; +   opus_val16 r2; +   opus_val16 y; +   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ +   n = x-32768; +   /* Get a rough initial guess for the root. +      The optimal minimax quadratic approximation (using relative error) is +       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). +      Coefficients here, and the final result r, are Q14.*/ +   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); +   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. +      We can compute the result from n and r using Q15 multiplies with some +       adjustment, carefully done to avoid overflow. +      Range of y is [-1564,1594]. */ +   r2 = MULT16_16_Q15(r, r); +   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); +   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). +      This yields the Q14 reciprocal square root of the Q16 x, with a maximum +       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a +       peak absolute error of 2.26591/16384. */ +   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, +              SUB16(MULT16_16_Q15(y, 12288), 16384)))); +} + +/** Sqrt approximation (QX input, QX/2 output) */ +opus_val32 celt_sqrt(opus_val32 x) +{ +   int k; +   opus_val16 n; +   opus_val32 rt; +   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; +   if (x==0) +      return 0; +   else if (x>=1073741824) +      return 32767; +   k = (celt_ilog2(x)>>1)-7; +   x = VSHR32(x, 2*k); +   n = x-32768; +   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], +              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); +   rt = VSHR32(rt,7-k); +   return rt; +} + +#define L1 32767 +#define L2 -7651 +#define L3 8277 +#define L4 -626 + +static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x) +{ +   opus_val16 x2; + +   x2 = MULT16_16_P15(x,x); +   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 +                                                                                )))))))); +} + +#undef L1 +#undef L2 +#undef L3 +#undef L4 + +opus_val16 celt_cos_norm(opus_val32 x) +{ +   x = x&0x0001ffff; +   if (x>SHL32(EXTEND32(1), 16)) +      x = SUB32(SHL32(EXTEND32(1), 17),x); +   if (x&0x00007fff) +   { +      if (x<SHL32(EXTEND32(1), 15)) +      { +         return _celt_cos_pi_2(EXTRACT16(x)); +      } else { +         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x))); +      } +   } else { +      if (x&0x0000ffff) +         return 0; +      else if (x&0x0001ffff) +         return -32767; +      else +         return 32767; +   } +} + +/** Reciprocal approximation (Q15 input, Q16 output) */ +opus_val32 celt_rcp(opus_val32 x) +{ +   int i; +   opus_val16 n; +   opus_val16 r; +   celt_assert2(x>0, "celt_rcp() only defined for positive values"); +   i = celt_ilog2(x); +   /* n is Q15 with range [0,1). */ +   n = VSHR32(x,i-15)-32768; +   /* Start with a linear approximation: +      r = 1.8823529411764706-0.9411764705882353*n. +      The coefficients and the result are Q14 in the range [15420,30840].*/ +   r = ADD16(30840, MULT16_16_Q15(-15420, n)); +   /* Perform two Newton iterations: +      r -= r*((r*n)-1.Q15) +         = r*((r*n)+(r-1.Q15)). */ +   r = SUB16(r, MULT16_16_Q15(r, +             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); +   /* We subtract an extra 1 in the second iteration to avoid overflow; it also +       neatly compensates for truncation error in the rest of the process. */ +   r = SUB16(r, ADD16(1, MULT16_16_Q15(r, +             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); +   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error +       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute +       error of 1.24665/32768. */ +   return VSHR32(EXTEND32(r),i-16); +} + +#endif  |