diff options
Diffstat (limited to 'thirdparty/opus/analysis.c')
-rw-r--r-- | thirdparty/opus/analysis.c | 777 |
1 files changed, 543 insertions, 234 deletions
diff --git a/thirdparty/opus/analysis.c b/thirdparty/opus/analysis.c index 663431a436..cb46dec582 100644 --- a/thirdparty/opus/analysis.c +++ b/thirdparty/opus/analysis.c @@ -29,20 +29,29 @@ #include "config.h" #endif +#define ANALYSIS_C + +#include <stdio.h> + +#include "mathops.h" #include "kiss_fft.h" #include "celt.h" #include "modes.h" #include "arch.h" #include "quant_bands.h" -#include <stdio.h> #include "analysis.h" #include "mlp.h" #include "stack_alloc.h" +#include "float_cast.h" #ifndef M_PI #define M_PI 3.141592653 #endif +#ifndef DISABLE_FLOAT_API + +#define TRANSITION_PENALTY 10 + static const float dct_table[128] = { 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, @@ -96,52 +105,118 @@ static const float analysis_window[240] = { }; static const int tbands[NB_TBANDS+1] = { - 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120 -}; - -static const int extra_bands[NB_TOT_BANDS+1] = { - 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120, 160, 200 + 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 }; -/*static const float tweight[NB_TBANDS+1] = { - .3, .4, .5, .6, .7, .8, .9, 1., 1., 1., 1., 1., 1., 1., .8, .7, .6, .5 -};*/ - #define NB_TONAL_SKIP_BANDS 9 -#define cA 0.43157974f -#define cB 0.67848403f -#define cC 0.08595542f -#define cE ((float)M_PI/2) -static OPUS_INLINE float fast_atan2f(float y, float x) { - float x2, y2; - /* Should avoid underflow on the values we'll get */ - if (ABS16(x)+ABS16(y)<1e-9f) +static opus_val32 silk_resampler_down2_hp( + opus_val32 *S, /* I/O State vector [ 2 ] */ + opus_val32 *out, /* O Output signal [ floor(len/2) ] */ + const opus_val32 *in, /* I Input signal [ len ] */ + int inLen /* I Number of input samples */ +) +{ + int k, len2 = inLen/2; + opus_val32 in32, out32, out32_hp, Y, X; + opus_val64 hp_ener = 0; + /* Internal variables and state are in Q10 format */ + for( k = 0; k < len2; k++ ) { + /* Convert to Q10 */ + in32 = in[ 2 * k ]; + + /* All-pass section for even input sample */ + Y = SUB32( in32, S[ 0 ] ); + X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); + out32 = ADD32( S[ 0 ], X ); + S[ 0 ] = ADD32( in32, X ); + out32_hp = out32; + /* Convert to Q10 */ + in32 = in[ 2 * k + 1 ]; + + /* All-pass section for odd input sample, and add to output of previous section */ + Y = SUB32( in32, S[ 1 ] ); + X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); + out32 = ADD32( out32, S[ 1 ] ); + out32 = ADD32( out32, X ); + S[ 1 ] = ADD32( in32, X ); + + Y = SUB32( -in32, S[ 2 ] ); + X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); + out32_hp = ADD32( out32_hp, S[ 2 ] ); + out32_hp = ADD32( out32_hp, X ); + S[ 2 ] = ADD32( -in32, X ); + + hp_ener += out32_hp*(opus_val64)out32_hp; + /* Add, convert back to int16 and store to output */ + out[ k ] = HALF32(out32); + } +#ifdef FIXED_POINT + /* len2 can be up to 480, so we shift by 8 more to make it fit. */ + hp_ener = hp_ener >> (2*SIG_SHIFT + 8); +#endif + return (opus_val32)hp_ener; +} + +static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) +{ + VARDECL(opus_val32, tmp); + opus_val32 scale; + int j; + opus_val32 ret = 0; + SAVE_STACK; + + if (subframe==0) return 0; + if (Fs == 48000) { - x*=1e12f; - y*=1e12f; + subframe *= 2; + offset *= 2; + } else if (Fs == 16000) { + subframe = subframe*2/3; + offset = offset*2/3; } - x2 = x*x; - y2 = y*y; - if(x2<y2){ - float den = (y2 + cB*x2) * (y2 + cC*x2); - if (den!=0) - return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); - else - return (y<0 ? -cE : cE); - }else{ - float den = (x2 + cB*y2) * (x2 + cC*y2); - if (den!=0) - return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); - else - return (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); + ALLOC(tmp, subframe, opus_val32); + + downmix(_x, tmp, subframe, offset, c1, c2, C); +#ifdef FIXED_POINT + scale = (1<<SIG_SHIFT); +#else + scale = 1.f/32768; +#endif + if (c2==-2) + scale /= C; + else if (c2>-1) + scale /= 2; + for (j=0;j<subframe;j++) + tmp[j] *= scale; + if (Fs == 48000) + { + ret = silk_resampler_down2_hp(S, y, tmp, subframe); + } else if (Fs == 24000) { + OPUS_COPY(y, tmp, subframe); + } else if (Fs == 16000) { + VARDECL(opus_val32, tmp3x); + ALLOC(tmp3x, 3*subframe, opus_val32); + /* Don't do this at home! This resampler is horrible and it's only (barely) + usable for the purpose of the analysis because we don't care about all + the aliasing between 8 kHz and 12 kHz. */ + for (j=0;j<subframe;j++) + { + tmp3x[3*j] = tmp[j]; + tmp3x[3*j+1] = tmp[j]; + tmp3x[3*j+2] = tmp[j]; + } + silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); } + RESTORE_STACK; + return ret; } -void tonality_analysis_init(TonalityAnalysisState *tonal) +void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) { /* Initialize reusable fields. */ tonal->arch = opus_select_arch(); + tonal->Fs = Fs; /* Clear remaining fields. */ tonality_analysis_reset(tonal); } @@ -157,15 +232,34 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int { int pos; int curr_lookahead; - float psum; + float tonality_max; + float tonality_avg; + int tonality_count; int i; + int pos0; + float prob_avg; + float prob_count; + float prob_min, prob_max; + float vad_prob; + int mpos, vpos; + int bandwidth_span; pos = tonal->read_pos; curr_lookahead = tonal->write_pos-tonal->read_pos; if (curr_lookahead<0) curr_lookahead += DETECT_SIZE; - if (len > 480 && pos != tonal->write_pos) + tonal->read_subframe += len/(tonal->Fs/400); + while (tonal->read_subframe>=8) + { + tonal->read_subframe -= 8; + tonal->read_pos++; + } + if (tonal->read_pos>=DETECT_SIZE) + tonal->read_pos-=DETECT_SIZE; + + /* On long frames, look at the second analysis window rather than the first. */ + if (len > tonal->Fs/50 && pos != tonal->write_pos) { pos++; if (pos==DETECT_SIZE) @@ -175,33 +269,178 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int pos--; if (pos<0) pos = DETECT_SIZE-1; + pos0 = pos; OPUS_COPY(info_out, &tonal->info[pos], 1); - tonal->read_subframe += len/120; - while (tonal->read_subframe>=4) + if (!info_out->valid) + return; + tonality_max = tonality_avg = info_out->tonality; + tonality_count = 1; + /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */ + bandwidth_span = 6; + /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ + for (i=0;i<3;i++) { - tonal->read_subframe -= 4; - tonal->read_pos++; + pos++; + if (pos==DETECT_SIZE) + pos = 0; + if (pos == tonal->write_pos) + break; + tonality_max = MAX32(tonality_max, tonal->info[pos].tonality); + tonality_avg += tonal->info[pos].tonality; + tonality_count++; + info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); + bandwidth_span--; } - if (tonal->read_pos>=DETECT_SIZE) - tonal->read_pos-=DETECT_SIZE; + pos = pos0; + /* Look back in time to see if any has a wider bandwidth than the current frame. */ + for (i=0;i<bandwidth_span;i++) + { + pos--; + if (pos < 0) + pos = DETECT_SIZE-1; + if (pos == tonal->write_pos) + break; + info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); + } + info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f); + + mpos = vpos = pos0; + /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and + ~1 frame delay in the VAD prob. */ + if (curr_lookahead > 15) + { + mpos += 5; + if (mpos>=DETECT_SIZE) + mpos -= DETECT_SIZE; + vpos += 1; + if (vpos>=DETECT_SIZE) + vpos -= DETECT_SIZE; + } + + /* The following calculations attempt to minimize a "badness function" + for the transition. When switching from speech to music, the badness + of switching at frame k is + b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) + where + v_i is the activity probability (VAD) at frame i, + p_i is the music probability at frame i + T is the probability threshold for switching + S is the penalty for switching during active audio rather than silence + the current frame has index i=0 + + Rather than apply badness to directly decide when to switch, what we compute + instead is the threshold for which the optimal switching point is now. When + considering whether to switch now (frame 0) or at frame k, we have: + S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) + which gives us: + T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i ) + We take the min threshold across all positive values of k (up to the maximum + amount of lookahead we have) to give us the threshold for which the current + frame is the optimal switch point. + + The last step is that we need to consider whether we want to switch at all. + For that we use the average of the music probability over the entire window. + If the threshold is higher than that average we're not going to + switch, so we compute a min with the average as well. The result of all these + min operations is music_prob_min, which gives the threshold for switching to music + if we're currently encoding for speech. + + We do the exact opposite to compute music_prob_max which is used for switching + from music to speech. + */ + prob_min = 1.f; + prob_max = 0.f; + vad_prob = tonal->info[vpos].activity_probability; + prob_count = MAX16(.1f, vad_prob); + prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob; + while (1) + { + float pos_vad; + mpos++; + if (mpos==DETECT_SIZE) + mpos = 0; + if (mpos == tonal->write_pos) + break; + vpos++; + if (vpos==DETECT_SIZE) + vpos = 0; + if (vpos == tonal->write_pos) + break; + pos_vad = tonal->info[vpos].activity_probability; + prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min); + prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max); + prob_count += MAX16(.1f, pos_vad); + prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob; + } + info_out->music_prob = prob_avg/prob_count; + prob_min = MIN16(prob_avg/prob_count, prob_min); + prob_max = MAX16(prob_avg/prob_count, prob_max); + prob_min = MAX16(prob_min, 0.f); + prob_max = MIN16(prob_max, 1.f); + + /* If we don't have enough look-ahead, do our best to make a decent decision. */ + if (curr_lookahead < 10) + { + float pmin, pmax; + pmin = prob_min; + pmax = prob_max; + pos = pos0; + /* Look for min/max in the past. */ + for (i=0;i<IMIN(tonal->count-1, 15);i++) + { + pos--; + if (pos < 0) + pos = DETECT_SIZE-1; + pmin = MIN16(pmin, tonal->info[pos].music_prob); + pmax = MAX16(pmax, tonal->info[pos].music_prob); + } + /* Bias against switching on active audio. */ + pmin = MAX16(0.f, pmin - .1f*vad_prob); + pmax = MIN16(1.f, pmax + .1f*vad_prob); + prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min); + prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max); + } + info_out->music_prob_min = prob_min; + info_out->music_prob_max = prob_max; - /* Compensate for the delay in the features themselves. - FIXME: Need a better estimate the 10 I just made up */ - curr_lookahead = IMAX(curr_lookahead-10, 0); - - psum=0; - /* Summing the probability of transition patterns that involve music at - time (DETECT_SIZE-curr_lookahead-1) */ - for (i=0;i<DETECT_SIZE-curr_lookahead;i++) - psum += tonal->pmusic[i]; - for (;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i]; - psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence; - /*printf("%f %f %f\n", psum, info_out->music_prob, info_out->tonality);*/ - - info_out->music_prob = psum; + /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */ } +static const float std_feature_bias[9] = { + 5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f, + 2.163313f, 1.260756f, 1.116868f, 1.918795f +}; + +#define LEAKAGE_OFFSET 2.5f +#define LEAKAGE_SLOPE 2.f + +#ifdef FIXED_POINT +/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to + compensate for that in the energy. */ +#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT))) +#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e)) +#else +#define SCALE_ENER(e) (e) +#endif + +#ifdef FIXED_POINT +static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth) +{ + int silence = 0; + opus_val32 sample_max = 0; +#ifdef MLP_TRAINING + return 0; +#endif + sample_max = celt_maxabs32(pcm, frame_size*channels); + + silence = (sample_max == 0); + (void)lsb_depth; + return silence; +} +#else +#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth) +#endif + static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) { int i, b; @@ -230,24 +469,50 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt float alpha, alphaE, alphaE2; float frame_loudness; float bandwidth_mask; + int is_masked[NB_TBANDS+1]; int bandwidth=0; float maxE = 0; float noise_floor; int remaining; AnalysisInfo *info; + float hp_ener; + float tonality2[240]; + float midE[8]; + float spec_variability=0; + float band_log2[NB_TBANDS+1]; + float leakage_from[NB_TBANDS+1]; + float leakage_to[NB_TBANDS+1]; + float layer_out[MAX_NEURONS]; + float below_max_pitch; + float above_max_pitch; + int is_silence; SAVE_STACK; - tonal->last_transition++; - alpha = 1.f/IMIN(20, 1+tonal->count); - alphaE = 1.f/IMIN(50, 1+tonal->count); - alphaE2 = 1.f/IMIN(1000, 1+tonal->count); + if (!tonal->initialized) + { + tonal->mem_fill = 240; + tonal->initialized = 1; + } + alpha = 1.f/IMIN(10, 1+tonal->count); + alphaE = 1.f/IMIN(25, 1+tonal->count); + /* Noise floor related decay for bandwidth detection: -2.2 dB/second */ + alphaE2 = 1.f/IMIN(100, 1+tonal->count); + if (tonal->count <= 1) alphaE2 = 1; + + if (tonal->Fs == 48000) + { + /* len and offset are now at 24 kHz. */ + len/= 2; + offset /= 2; + } else if (tonal->Fs == 16000) { + len = 3*len/2; + offset = 3*offset/2; + } - if (tonal->count<4) - tonal->music_prob = .5; kfft = celt_mode->mdct.kfft[0]; - if (tonal->count==0) - tonal->mem_fill = 240; - downmix(x, &tonal->inmem[tonal->mem_fill], IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C); + tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x, + &tonal->inmem[tonal->mem_fill], tonal->downmix_state, + IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) { tonal->mem_fill += len; @@ -255,10 +520,13 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt RESTORE_STACK; return; } + hp_ener = tonal->hp_ener_accum; info = &tonal->info[tonal->write_pos++]; if (tonal->write_pos>=DETECT_SIZE) tonal->write_pos-=DETECT_SIZE; + is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth); + ALLOC(in, 480, kiss_fft_cpx); ALLOC(out, 480, kiss_fft_cpx); ALLOC(tonality, 240, float); @@ -273,8 +541,20 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); - downmix(x, &tonal->inmem[240], remaining, offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C); + tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x, + &tonal->inmem[240], tonal->downmix_state, remaining, + offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); tonal->mem_fill = 240 + remaining; + if (is_silence) + { + /* On silence, copy the previous analysis. */ + int prev_pos = tonal->write_pos-2; + if (prev_pos < 0) + prev_pos += DETECT_SIZE; + OPUS_COPY(info, &tonal->info[prev_pos], 1); + RESTORE_STACK; + return; + } opus_fft(kfft, in, out, tonal->arch); #ifndef FIXED_POINT /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ @@ -305,24 +585,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt d_angle2 = angle2 - angle; d2_angle2 = d_angle2 - d_angle; - mod1 = d2_angle - (float)floor(.5+d2_angle); + mod1 = d2_angle - (float)float2int(d2_angle); noisiness[i] = ABS16(mod1); mod1 *= mod1; mod1 *= mod1; - mod2 = d2_angle2 - (float)floor(.5+d2_angle2); + mod2 = d2_angle2 - (float)float2int(d2_angle2); noisiness[i] += ABS16(mod2); mod2 *= mod2; mod2 *= mod2; - avg_mod = .25f*(d2A[i]+2.f*mod1+mod2); + avg_mod = .25f*(d2A[i]+mod1+2*mod2); + /* This introduces an extra delay of 2 frames in the detection. */ tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; + /* No delay on this detection, but it's less reliable. */ + tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; A[i] = angle2; dA[i] = d_angle2; d2A[i] = mod2; } - + for (i=2;i<N2-1;i++) + { + float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); + tonality[i] = .9f*MAX32(tonality[i], tt-.1f); + } frame_tonality = 0; max_frame_tonality = 0; /*tw_sum = 0;*/ @@ -339,6 +626,22 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } relativeE = 0; frame_loudness = 0; + /* The energy of the very first band is special because of DC. */ + { + float E = 0; + float X1r, X2r; + X1r = 2*(float)out[0].r; + X2r = 2*(float)out[0].i; + E = X1r*X1r + X2r*X2r; + for (i=1;i<4;i++) + { + float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; + E += binE; + } + E = SCALE_ENER(E); + band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f); + } for (b=0;b<NB_TBANDS;b++) { float E=0, tE=0, nE=0; @@ -348,12 +651,9 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; -#ifdef FIXED_POINT - /* FIXME: It's probably best to change the BFCC filter initial state instead */ - binE *= 5.55e-17f; -#endif + binE = SCALE_ENER(binE); E += binE; - tE += binE*tonality[i]; + tE += binE*MAX32(0, tonality[i]); nE += binE*2.f*(.5f-noisiness[i]); } #ifndef FIXED_POINT @@ -371,14 +671,27 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt frame_loudness += (float)sqrt(E+1e-10f); logE[b] = (float)log(E+1e-10f); - tonal->lowE[b] = MIN32(logE[b], tonal->lowE[b]+.01f); - tonal->highE[b] = MAX32(logE[b], tonal->highE[b]-.1f); - if (tonal->highE[b] < tonal->lowE[b]+1.f) + band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f); + tonal->logE[tonal->E_count][b] = logE[b]; + if (tonal->count==0) + tonal->highE[b] = tonal->lowE[b] = logE[b]; + if (tonal->highE[b] > tonal->lowE[b] + 7.5) { - tonal->highE[b]+=.5f; - tonal->lowE[b]-=.5f; + if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) + tonal->highE[b] -= .01f; + else + tonal->lowE[b] += .01f; } - relativeE += (logE[b]-tonal->lowE[b])/(1e-15f+tonal->highE[b]-tonal->lowE[b]); + if (logE[b] > tonal->highE[b]) + { + tonal->highE[b] = logE[b]; + tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); + } else if (logE[b] < tonal->lowE[b]) + { + tonal->lowE[b] = logE[b]; + tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); + } + relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b])); L1=L2=0; for (i=0;i<NB_FRAMES;i++) @@ -410,45 +723,135 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->prev_band_tonality[b] = band_tonality[b]; } + leakage_from[0] = band_log2[0]; + leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET; + for (b=1;b<NB_TBANDS+1;b++) + { + float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4; + leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]); + leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET); + } + for (b=NB_TBANDS-2;b>=0;b--) + { + float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4; + leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]); + leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]); + } + celt_assert(NB_TBANDS+1 <= LEAK_BANDS); + for (b=0;b<NB_TBANDS+1;b++) + { + /* leak_boost[] is made up of two terms. The first, based on leakage_to[], + represents the boost needed to overcome the amount of analysis leakage + cause in a weaker band b by louder neighbouring bands. + The second, based on leakage_from[], applies to a loud band b for + which the quantization noise causes synthesis leakage to the weaker + neighbouring bands. */ + float boost = MAX16(0, leakage_to[b] - band_log2[b]) + + MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET)); + info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost)); + } + for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0; + + for (i=0;i<NB_FRAMES;i++) + { + int j; + float mindist = 1e15f; + for (j=0;j<NB_FRAMES;j++) + { + int k; + float dist=0; + for (k=0;k<NB_TBANDS;k++) + { + float tmp; + tmp = tonal->logE[i][k] - tonal->logE[j][k]; + dist += tmp*tmp; + } + if (j!=i) + mindist = MIN32(mindist, dist); + } + spec_variability += mindist; + } + spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS); bandwidth_mask = 0; bandwidth = 0; maxE = 0; noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); -#ifdef FIXED_POINT - noise_floor *= 1<<(15+SIG_SHIFT); -#endif noise_floor *= noise_floor; - for (b=0;b<NB_TOT_BANDS;b++) + below_max_pitch=0; + above_max_pitch=0; + for (b=0;b<NB_TBANDS;b++) { float E=0; + float Em; int band_start, band_end; /* Keep a margin of 300 Hz for aliasing */ - band_start = extra_bands[b]; - band_end = extra_bands[b+1]; + band_start = tbands[b]; + band_end = tbands[b+1]; for (i=band_start;i<band_end;i++) { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; E += binE; } + E = SCALE_ENER(E); maxE = MAX32(maxE, E); + if (band_start < 64) + { + below_max_pitch += E; + } else { + above_max_pitch += E; + } tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); - E = MAX32(E, tonal->meanE[b]); - /* Use a simple follower with 13 dB/Bark slope for spreading function */ - bandwidth_mask = MAX32(.05f*bandwidth_mask, E); + Em = MAX32(E, tonal->meanE[b]); /* Consider the band "active" only if all these conditions are met: - 1) less than 10 dB below the simple follower - 2) less than 90 dB below the peak band (maximal masking possible considering + 1) less than 90 dB below the peak band (maximal masking possible considering both the ATH and the loudness-dependent slope of the spreading function) - 3) above the PCM quantization noise floor + 2) above the PCM quantization noise floor + We use b+1 because the first CELT band isn't included in tbands[] */ - if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start)) - bandwidth = b; + if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start))) + bandwidth = b+1; + /* Check if the band is masked (see below). */ + is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask; + /* Use a simple follower with 13 dB/Bark slope for spreading function. */ + bandwidth_mask = MAX32(.05f*bandwidth_mask, E); } + /* Special case for the last two bands, for which we don't have spectrum but only + the energy above 12 kHz. The difficulty here is that the high-pass we use + leaks some LF energy, so we need to increase the threshold without accidentally cutting + off the band. */ + if (tonal->Fs == 48000) { + float noise_ratio; + float Em; + float E = hp_ener*(1.f/(60*60)); + noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f; + +#ifdef FIXED_POINT + /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ + E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE); +#endif + above_max_pitch += E; + tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); + Em = MAX32(E, tonal->meanE[b]); + if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160) + bandwidth = 20; + /* Check if the band is masked (see below). */ + is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask; + } + if (above_max_pitch > below_max_pitch) + info->max_pitch_ratio = below_max_pitch/above_max_pitch; + else + info->max_pitch_ratio = 1; + /* In some cases, resampling aliasing can create a small amount of energy in the first band + being cut. So if the last band is masked, we don't include it. */ + if (bandwidth == 20 && is_masked[NB_TBANDS]) + bandwidth-=2; + else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1]) + bandwidth--; if (tonal->count<=2) bandwidth = 20; frame_loudness = 20*(float)log10(frame_loudness); - tonal->Etracker = MAX32(tonal->Etracker-.03f, frame_loudness); + tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); tonal->lowECount *= (1-alphaE); if (frame_loudness < tonal->Etracker-30) tonal->lowECount += alphaE; @@ -460,11 +863,18 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt sum += dct_table[i*16+b]*logE[b]; BFCC[i] = sum; } + for (i=0;i<8;i++) + { + float sum=0; + for (b=0;b<16;b++) + sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]); + midE[i] = sum; + } frame_stationarity /= NB_TBANDS; relativeE /= NB_TBANDS; if (tonal->count<10) - relativeE = .5; + relativeE = .5f; frame_noisiness /= NB_TBANDS; #if 1 info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; @@ -479,7 +889,7 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt info->tonality_slope = slope; tonal->E_count = (tonal->E_count+1)%NB_FRAMES; - tonal->count++; + tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); info->tonality = frame_tonality; for (i=0;i<4;i++) @@ -498,6 +908,8 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt for (i=0;i<9;i++) tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; } + for (i=0;i<4;i++) + features[i] = BFCC[i]-midE[i]; for (i=0;i<8;i++) { @@ -507,136 +919,31 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->mem[i] = BFCC[i]; } for (i=0;i<9;i++) - features[11+i] = (float)sqrt(tonal->std[i]); - features[20] = info->tonality; - features[21] = info->activity; - features[22] = frame_stationarity; - features[23] = info->tonality_slope; - features[24] = tonal->lowECount; - -#ifndef DISABLE_FLOAT_API - mlp_process(&net, features, frame_probs); - frame_probs[0] = .5f*(frame_probs[0]+1); - /* Curve fitting between the MLP probability and the actual probability */ - frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10); - /* Probability of active audio (as opposed to silence) */ - frame_probs[1] = .5f*frame_probs[1]+.5f; - /* Consider that silence has a 50-50 probability. */ - frame_probs[0] = frame_probs[1]*frame_probs[0] + (1-frame_probs[1])*.5f; - - /*printf("%f %f ", frame_probs[0], frame_probs[1]);*/ - { - /* Probability of state transition */ - float tau; - /* Represents independence of the MLP probabilities, where - beta=1 means fully independent. */ - float beta; - /* Denormalized probability of speech (p0) and music (p1) after update */ - float p0, p1; - /* Probabilities for "all speech" and "all music" */ - float s0, m0; - /* Probability sum for renormalisation */ - float psum; - /* Instantaneous probability of speech and music, with beta pre-applied. */ - float speech0; - float music0; - float p, q; - - /* One transition every 3 minutes of active audio */ - tau = .00005f*frame_probs[1]; - /* Adapt beta based on how "unexpected" the new prob is */ - p = MAX16(.05f,MIN16(.95f,frame_probs[0])); - q = MAX16(.05f,MIN16(.95f,tonal->music_prob)); - beta = .01f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p)); - /* p0 and p1 are the probabilities of speech and music at this frame - using only information from previous frame and applying the - state transition model */ - p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau; - p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau; - /* We apply the current probability with exponent beta to work around - the fact that the probability estimates aren't independent. */ - p0 *= (float)pow(1-frame_probs[0], beta); - p1 *= (float)pow(frame_probs[0], beta); - /* Normalise the probabilities to get the Marokv probability of music. */ - tonal->music_prob = p1/(p0+p1); - info->music_prob = tonal->music_prob; - - /* This chunk of code deals with delayed decision. */ - psum=1e-20f; - /* Instantaneous probability of speech and music, with beta pre-applied. */ - speech0 = (float)pow(1-frame_probs[0], beta); - music0 = (float)pow(frame_probs[0], beta); - if (tonal->count==1) - { - tonal->pspeech[0]=.5; - tonal->pmusic [0]=.5; - } - /* Updated probability of having only speech (s0) or only music (m0), - before considering the new observation. */ - s0 = tonal->pspeech[0] + tonal->pspeech[1]; - m0 = tonal->pmusic [0] + tonal->pmusic [1]; - /* Updates s0 and m0 with instantaneous probability. */ - tonal->pspeech[0] = s0*(1-tau)*speech0; - tonal->pmusic [0] = m0*(1-tau)*music0; - /* Propagate the transition probabilities */ - for (i=1;i<DETECT_SIZE-1;i++) - { - tonal->pspeech[i] = tonal->pspeech[i+1]*speech0; - tonal->pmusic [i] = tonal->pmusic [i+1]*music0; - } - /* Probability that the latest frame is speech, when all the previous ones were music. */ - tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0; - /* Probability that the latest frame is music, when all the previous ones were speech. */ - tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0; - - /* Renormalise probabilities to 1 */ - for (i=0;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i] + tonal->pmusic[i]; - psum = 1.f/psum; - for (i=0;i<DETECT_SIZE;i++) - { - tonal->pspeech[i] *= psum; - tonal->pmusic [i] *= psum; - } - psum = tonal->pmusic[0]; - for (i=1;i<DETECT_SIZE;i++) - psum += tonal->pspeech[i]; - - /* Estimate our confidence in the speech/music decisions */ - if (frame_probs[1]>.75) - { - if (tonal->music_prob>.9) - { - float adapt; - adapt = 1.f/(++tonal->music_confidence_count); - tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500); - tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence); - } - if (tonal->music_prob<.1) - { - float adapt; - adapt = 1.f/(++tonal->speech_confidence_count); - tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500); - tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence); - } - } else { - if (tonal->music_confidence_count==0) - tonal->music_confidence = .9f; - if (tonal->speech_confidence_count==0) - tonal->speech_confidence = .1f; - } - } - if (tonal->last_music != (tonal->music_prob>.5f)) - tonal->last_transition=0; - tonal->last_music = tonal->music_prob>.5f; -#else - info->music_prob = 0; -#endif - /*for (i=0;i<25;i++) + features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; + features[18] = spec_variability - 0.78f; + features[20] = info->tonality - 0.154723f; + features[21] = info->activity - 0.724643f; + features[22] = frame_stationarity - 0.743717f; + features[23] = info->tonality_slope + 0.069216f; + features[24] = tonal->lowECount - 0.067930f; + + compute_dense(&layer0, layer_out, features); + compute_gru(&layer1, tonal->rnn_state, layer_out); + compute_dense(&layer2, frame_probs, tonal->rnn_state); + + /* Probability of speech or music vs noise */ + info->activity_probability = frame_probs[1]; + info->music_prob = frame_probs[0]; + + /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/ +#ifdef MLP_TRAINING + for (i=0;i<25;i++) printf("%f ", features[i]); - printf("\n");*/ + printf("\n"); +#endif info->bandwidth = bandwidth; + tonal->prev_bandwidth = bandwidth; /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ info->noisiness = frame_noisiness; info->valid = 1; @@ -650,23 +957,25 @@ void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, co int offset; int pcm_len; + analysis_frame_size -= analysis_frame_size&1; if (analysis_pcm != NULL) { /* Avoid overflow/wrap-around of the analysis buffer */ - analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/100, analysis_frame_size); + analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); pcm_len = analysis_frame_size - analysis->analysis_offset; offset = analysis->analysis_offset; - do { - tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(480, pcm_len), offset, c1, c2, C, lsb_depth, downmix); - offset += 480; - pcm_len -= 480; - } while (pcm_len>0); + while (pcm_len>0) { + tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); + offset += Fs/50; + pcm_len -= Fs/50; + } analysis->analysis_offset = analysis_frame_size; analysis->analysis_offset -= frame_size; } - analysis_info->valid = 0; tonality_get_info(analysis, analysis_info, frame_size); } + +#endif /* DISABLE_FLOAT_API */ |