diff options
Diffstat (limited to 'thirdparty/opus/analysis.c')
-rw-r--r-- | thirdparty/opus/analysis.c | 777 |
1 files changed, 234 insertions, 543 deletions
diff --git a/thirdparty/opus/analysis.c b/thirdparty/opus/analysis.c index cb46dec582..663431a436 100644 --- a/thirdparty/opus/analysis.c +++ b/thirdparty/opus/analysis.c @@ -29,29 +29,20 @@ #include "config.h" #endif -#define ANALYSIS_C - -#include <stdio.h> - -#include "mathops.h" #include "kiss_fft.h" #include "celt.h" #include "modes.h" #include "arch.h" #include "quant_bands.h" +#include <stdio.h> #include "analysis.h" #include "mlp.h" #include "stack_alloc.h" -#include "float_cast.h" #ifndef M_PI #define M_PI 3.141592653 #endif -#ifndef DISABLE_FLOAT_API - -#define TRANSITION_PENALTY 10 - static const float dct_table[128] = { 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, @@ -105,118 +96,52 @@ static const float analysis_window[240] = { }; static const int tbands[NB_TBANDS+1] = { - 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 + 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120 }; -#define NB_TONAL_SKIP_BANDS 9 +static const int extra_bands[NB_TOT_BANDS+1] = { + 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 68, 80, 96, 120, 160, 200 +}; -static opus_val32 silk_resampler_down2_hp( - opus_val32 *S, /* I/O State vector [ 2 ] */ - opus_val32 *out, /* O Output signal [ floor(len/2) ] */ - const opus_val32 *in, /* I Input signal [ len ] */ - int inLen /* I Number of input samples */ -) -{ - int k, len2 = inLen/2; - opus_val32 in32, out32, out32_hp, Y, X; - opus_val64 hp_ener = 0; - /* Internal variables and state are in Q10 format */ - for( k = 0; k < len2; k++ ) { - /* Convert to Q10 */ - in32 = in[ 2 * k ]; - - /* All-pass section for even input sample */ - Y = SUB32( in32, S[ 0 ] ); - X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); - out32 = ADD32( S[ 0 ], X ); - S[ 0 ] = ADD32( in32, X ); - out32_hp = out32; - /* Convert to Q10 */ - in32 = in[ 2 * k + 1 ]; - - /* All-pass section for odd input sample, and add to output of previous section */ - Y = SUB32( in32, S[ 1 ] ); - X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); - out32 = ADD32( out32, S[ 1 ] ); - out32 = ADD32( out32, X ); - S[ 1 ] = ADD32( in32, X ); - - Y = SUB32( -in32, S[ 2 ] ); - X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); - out32_hp = ADD32( out32_hp, S[ 2 ] ); - out32_hp = ADD32( out32_hp, X ); - S[ 2 ] = ADD32( -in32, X ); - - hp_ener += out32_hp*(opus_val64)out32_hp; - /* Add, convert back to int16 and store to output */ - out[ k ] = HALF32(out32); - } -#ifdef FIXED_POINT - /* len2 can be up to 480, so we shift by 8 more to make it fit. */ - hp_ener = hp_ener >> (2*SIG_SHIFT + 8); -#endif - return (opus_val32)hp_ener; -} +/*static const float tweight[NB_TBANDS+1] = { + .3, .4, .5, .6, .7, .8, .9, 1., 1., 1., 1., 1., 1., 1., .8, .7, .6, .5 +};*/ -static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) -{ - VARDECL(opus_val32, tmp); - opus_val32 scale; - int j; - opus_val32 ret = 0; - SAVE_STACK; - - if (subframe==0) return 0; - if (Fs == 48000) - { - subframe *= 2; - offset *= 2; - } else if (Fs == 16000) { - subframe = subframe*2/3; - offset = offset*2/3; - } - ALLOC(tmp, subframe, opus_val32); +#define NB_TONAL_SKIP_BANDS 9 - downmix(_x, tmp, subframe, offset, c1, c2, C); -#ifdef FIXED_POINT - scale = (1<<SIG_SHIFT); -#else - scale = 1.f/32768; -#endif - if (c2==-2) - scale /= C; - else if (c2>-1) - scale /= 2; - for (j=0;j<subframe;j++) - tmp[j] *= scale; - if (Fs == 48000) +#define cA 0.43157974f +#define cB 0.67848403f +#define cC 0.08595542f +#define cE ((float)M_PI/2) +static OPUS_INLINE float fast_atan2f(float y, float x) { + float x2, y2; + /* Should avoid underflow on the values we'll get */ + if (ABS16(x)+ABS16(y)<1e-9f) { - ret = silk_resampler_down2_hp(S, y, tmp, subframe); - } else if (Fs == 24000) { - OPUS_COPY(y, tmp, subframe); - } else if (Fs == 16000) { - VARDECL(opus_val32, tmp3x); - ALLOC(tmp3x, 3*subframe, opus_val32); - /* Don't do this at home! This resampler is horrible and it's only (barely) - usable for the purpose of the analysis because we don't care about all - the aliasing between 8 kHz and 12 kHz. */ - for (j=0;j<subframe;j++) - { - tmp3x[3*j] = tmp[j]; - tmp3x[3*j+1] = tmp[j]; - tmp3x[3*j+2] = tmp[j]; - } - silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); + x*=1e12f; + y*=1e12f; + } + x2 = x*x; + y2 = y*y; + if(x2<y2){ + float den = (y2 + cB*x2) * (y2 + cC*x2); + if (den!=0) + return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); + else + return (y<0 ? -cE : cE); + }else{ + float den = (x2 + cB*y2) * (x2 + cC*y2); + if (den!=0) + return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); + else + return (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); } - RESTORE_STACK; - return ret; } -void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) +void tonality_analysis_init(TonalityAnalysisState *tonal) { /* Initialize reusable fields. */ tonal->arch = opus_select_arch(); - tonal->Fs = Fs; /* Clear remaining fields. */ tonality_analysis_reset(tonal); } @@ -232,34 +157,15 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int { int pos; int curr_lookahead; - float tonality_max; - float tonality_avg; - int tonality_count; + float psum; int i; - int pos0; - float prob_avg; - float prob_count; - float prob_min, prob_max; - float vad_prob; - int mpos, vpos; - int bandwidth_span; pos = tonal->read_pos; curr_lookahead = tonal->write_pos-tonal->read_pos; if (curr_lookahead<0) curr_lookahead += DETECT_SIZE; - tonal->read_subframe += len/(tonal->Fs/400); - while (tonal->read_subframe>=8) - { - tonal->read_subframe -= 8; - tonal->read_pos++; - } - if (tonal->read_pos>=DETECT_SIZE) - tonal->read_pos-=DETECT_SIZE; - - /* On long frames, look at the second analysis window rather than the first. */ - if (len > tonal->Fs/50 && pos != tonal->write_pos) + if (len > 480 && pos != tonal->write_pos) { pos++; if (pos==DETECT_SIZE) @@ -269,177 +175,32 @@ void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int pos--; if (pos<0) pos = DETECT_SIZE-1; - pos0 = pos; OPUS_COPY(info_out, &tonal->info[pos], 1); - if (!info_out->valid) - return; - tonality_max = tonality_avg = info_out->tonality; - tonality_count = 1; - /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */ - bandwidth_span = 6; - /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ - for (i=0;i<3;i++) - { - pos++; - if (pos==DETECT_SIZE) - pos = 0; - if (pos == tonal->write_pos) - break; - tonality_max = MAX32(tonality_max, tonal->info[pos].tonality); - tonality_avg += tonal->info[pos].tonality; - tonality_count++; - info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); - bandwidth_span--; - } - pos = pos0; - /* Look back in time to see if any has a wider bandwidth than the current frame. */ - for (i=0;i<bandwidth_span;i++) - { - pos--; - if (pos < 0) - pos = DETECT_SIZE-1; - if (pos == tonal->write_pos) - break; - info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); - } - info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f); - - mpos = vpos = pos0; - /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and - ~1 frame delay in the VAD prob. */ - if (curr_lookahead > 15) + tonal->read_subframe += len/120; + while (tonal->read_subframe>=4) { - mpos += 5; - if (mpos>=DETECT_SIZE) - mpos -= DETECT_SIZE; - vpos += 1; - if (vpos>=DETECT_SIZE) - vpos -= DETECT_SIZE; - } - - /* The following calculations attempt to minimize a "badness function" - for the transition. When switching from speech to music, the badness - of switching at frame k is - b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) - where - v_i is the activity probability (VAD) at frame i, - p_i is the music probability at frame i - T is the probability threshold for switching - S is the penalty for switching during active audio rather than silence - the current frame has index i=0 - - Rather than apply badness to directly decide when to switch, what we compute - instead is the threshold for which the optimal switching point is now. When - considering whether to switch now (frame 0) or at frame k, we have: - S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) - which gives us: - T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i ) - We take the min threshold across all positive values of k (up to the maximum - amount of lookahead we have) to give us the threshold for which the current - frame is the optimal switch point. - - The last step is that we need to consider whether we want to switch at all. - For that we use the average of the music probability over the entire window. - If the threshold is higher than that average we're not going to - switch, so we compute a min with the average as well. The result of all these - min operations is music_prob_min, which gives the threshold for switching to music - if we're currently encoding for speech. - - We do the exact opposite to compute music_prob_max which is used for switching - from music to speech. - */ - prob_min = 1.f; - prob_max = 0.f; - vad_prob = tonal->info[vpos].activity_probability; - prob_count = MAX16(.1f, vad_prob); - prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob; - while (1) - { - float pos_vad; - mpos++; - if (mpos==DETECT_SIZE) - mpos = 0; - if (mpos == tonal->write_pos) - break; - vpos++; - if (vpos==DETECT_SIZE) - vpos = 0; - if (vpos == tonal->write_pos) - break; - pos_vad = tonal->info[vpos].activity_probability; - prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min); - prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max); - prob_count += MAX16(.1f, pos_vad); - prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob; - } - info_out->music_prob = prob_avg/prob_count; - prob_min = MIN16(prob_avg/prob_count, prob_min); - prob_max = MAX16(prob_avg/prob_count, prob_max); - prob_min = MAX16(prob_min, 0.f); - prob_max = MIN16(prob_max, 1.f); - - /* If we don't have enough look-ahead, do our best to make a decent decision. */ - if (curr_lookahead < 10) - { - float pmin, pmax; - pmin = prob_min; - pmax = prob_max; - pos = pos0; - /* Look for min/max in the past. */ - for (i=0;i<IMIN(tonal->count-1, 15);i++) - { - pos--; - if (pos < 0) - pos = DETECT_SIZE-1; - pmin = MIN16(pmin, tonal->info[pos].music_prob); - pmax = MAX16(pmax, tonal->info[pos].music_prob); - } - /* Bias against switching on active audio. */ - pmin = MAX16(0.f, pmin - .1f*vad_prob); - pmax = MIN16(1.f, pmax + .1f*vad_prob); - prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min); - prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max); + tonal->read_subframe -= 4; + tonal->read_pos++; } - info_out->music_prob_min = prob_min; - info_out->music_prob_max = prob_max; - - /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */ -} - -static const float std_feature_bias[9] = { - 5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f, - 2.163313f, 1.260756f, 1.116868f, 1.918795f -}; - -#define LEAKAGE_OFFSET 2.5f -#define LEAKAGE_SLOPE 2.f - -#ifdef FIXED_POINT -/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to - compensate for that in the energy. */ -#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT))) -#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e)) -#else -#define SCALE_ENER(e) (e) -#endif - -#ifdef FIXED_POINT -static int is_digital_silence32(const opus_val32* pcm, int frame_size, int channels, int lsb_depth) -{ - int silence = 0; - opus_val32 sample_max = 0; -#ifdef MLP_TRAINING - return 0; -#endif - sample_max = celt_maxabs32(pcm, frame_size*channels); + if (tonal->read_pos>=DETECT_SIZE) + tonal->read_pos-=DETECT_SIZE; - silence = (sample_max == 0); - (void)lsb_depth; - return silence; + /* Compensate for the delay in the features themselves. + FIXME: Need a better estimate the 10 I just made up */ + curr_lookahead = IMAX(curr_lookahead-10, 0); + + psum=0; + /* Summing the probability of transition patterns that involve music at + time (DETECT_SIZE-curr_lookahead-1) */ + for (i=0;i<DETECT_SIZE-curr_lookahead;i++) + psum += tonal->pmusic[i]; + for (;i<DETECT_SIZE;i++) + psum += tonal->pspeech[i]; + psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence; + /*printf("%f %f %f\n", psum, info_out->music_prob, info_out->tonality);*/ + + info_out->music_prob = psum; } -#else -#define is_digital_silence32(pcm, frame_size, channels, lsb_depth) is_digital_silence(pcm, frame_size, channels, lsb_depth) -#endif static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) { @@ -469,50 +230,24 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt float alpha, alphaE, alphaE2; float frame_loudness; float bandwidth_mask; - int is_masked[NB_TBANDS+1]; int bandwidth=0; float maxE = 0; float noise_floor; int remaining; AnalysisInfo *info; - float hp_ener; - float tonality2[240]; - float midE[8]; - float spec_variability=0; - float band_log2[NB_TBANDS+1]; - float leakage_from[NB_TBANDS+1]; - float leakage_to[NB_TBANDS+1]; - float layer_out[MAX_NEURONS]; - float below_max_pitch; - float above_max_pitch; - int is_silence; SAVE_STACK; - if (!tonal->initialized) - { - tonal->mem_fill = 240; - tonal->initialized = 1; - } - alpha = 1.f/IMIN(10, 1+tonal->count); - alphaE = 1.f/IMIN(25, 1+tonal->count); - /* Noise floor related decay for bandwidth detection: -2.2 dB/second */ - alphaE2 = 1.f/IMIN(100, 1+tonal->count); - if (tonal->count <= 1) alphaE2 = 1; - - if (tonal->Fs == 48000) - { - /* len and offset are now at 24 kHz. */ - len/= 2; - offset /= 2; - } else if (tonal->Fs == 16000) { - len = 3*len/2; - offset = 3*offset/2; - } + tonal->last_transition++; + alpha = 1.f/IMIN(20, 1+tonal->count); + alphaE = 1.f/IMIN(50, 1+tonal->count); + alphaE2 = 1.f/IMIN(1000, 1+tonal->count); + if (tonal->count<4) + tonal->music_prob = .5; kfft = celt_mode->mdct.kfft[0]; - tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x, - &tonal->inmem[tonal->mem_fill], tonal->downmix_state, - IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); + if (tonal->count==0) + tonal->mem_fill = 240; + downmix(x, &tonal->inmem[tonal->mem_fill], IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C); if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) { tonal->mem_fill += len; @@ -520,13 +255,10 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt RESTORE_STACK; return; } - hp_ener = tonal->hp_ener_accum; info = &tonal->info[tonal->write_pos++]; if (tonal->write_pos>=DETECT_SIZE) tonal->write_pos-=DETECT_SIZE; - is_silence = is_digital_silence32(tonal->inmem, ANALYSIS_BUF_SIZE, 1, lsb_depth); - ALLOC(in, 480, kiss_fft_cpx); ALLOC(out, 480, kiss_fft_cpx); ALLOC(tonality, 240, float); @@ -541,20 +273,8 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); - tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x, - &tonal->inmem[240], tonal->downmix_state, remaining, - offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); + downmix(x, &tonal->inmem[240], remaining, offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C); tonal->mem_fill = 240 + remaining; - if (is_silence) - { - /* On silence, copy the previous analysis. */ - int prev_pos = tonal->write_pos-2; - if (prev_pos < 0) - prev_pos += DETECT_SIZE; - OPUS_COPY(info, &tonal->info[prev_pos], 1); - RESTORE_STACK; - return; - } opus_fft(kfft, in, out, tonal->arch); #ifndef FIXED_POINT /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ @@ -585,31 +305,24 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt d_angle2 = angle2 - angle; d2_angle2 = d_angle2 - d_angle; - mod1 = d2_angle - (float)float2int(d2_angle); + mod1 = d2_angle - (float)floor(.5+d2_angle); noisiness[i] = ABS16(mod1); mod1 *= mod1; mod1 *= mod1; - mod2 = d2_angle2 - (float)float2int(d2_angle2); + mod2 = d2_angle2 - (float)floor(.5+d2_angle2); noisiness[i] += ABS16(mod2); mod2 *= mod2; mod2 *= mod2; - avg_mod = .25f*(d2A[i]+mod1+2*mod2); - /* This introduces an extra delay of 2 frames in the detection. */ + avg_mod = .25f*(d2A[i]+2.f*mod1+mod2); tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; - /* No delay on this detection, but it's less reliable. */ - tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; A[i] = angle2; dA[i] = d_angle2; d2A[i] = mod2; } - for (i=2;i<N2-1;i++) - { - float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); - tonality[i] = .9f*MAX32(tonality[i], tt-.1f); - } + frame_tonality = 0; max_frame_tonality = 0; /*tw_sum = 0;*/ @@ -626,22 +339,6 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt } relativeE = 0; frame_loudness = 0; - /* The energy of the very first band is special because of DC. */ - { - float E = 0; - float X1r, X2r; - X1r = 2*(float)out[0].r; - X2r = 2*(float)out[0].i; - E = X1r*X1r + X2r*X2r; - for (i=1;i<4;i++) - { - float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r - + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; - E += binE; - } - E = SCALE_ENER(E); - band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f); - } for (b=0;b<NB_TBANDS;b++) { float E=0, tE=0, nE=0; @@ -651,9 +348,12 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; - binE = SCALE_ENER(binE); +#ifdef FIXED_POINT + /* FIXME: It's probably best to change the BFCC filter initial state instead */ + binE *= 5.55e-17f; +#endif E += binE; - tE += binE*MAX32(0, tonality[i]); + tE += binE*tonality[i]; nE += binE*2.f*(.5f-noisiness[i]); } #ifndef FIXED_POINT @@ -671,27 +371,14 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt frame_loudness += (float)sqrt(E+1e-10f); logE[b] = (float)log(E+1e-10f); - band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f); - tonal->logE[tonal->E_count][b] = logE[b]; - if (tonal->count==0) - tonal->highE[b] = tonal->lowE[b] = logE[b]; - if (tonal->highE[b] > tonal->lowE[b] + 7.5) + tonal->lowE[b] = MIN32(logE[b], tonal->lowE[b]+.01f); + tonal->highE[b] = MAX32(logE[b], tonal->highE[b]-.1f); + if (tonal->highE[b] < tonal->lowE[b]+1.f) { - if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) - tonal->highE[b] -= .01f; - else - tonal->lowE[b] += .01f; + tonal->highE[b]+=.5f; + tonal->lowE[b]-=.5f; } - if (logE[b] > tonal->highE[b]) - { - tonal->highE[b] = logE[b]; - tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); - } else if (logE[b] < tonal->lowE[b]) - { - tonal->lowE[b] = logE[b]; - tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); - } - relativeE += (logE[b]-tonal->lowE[b])/(1e-5f + (tonal->highE[b]-tonal->lowE[b])); + relativeE += (logE[b]-tonal->lowE[b])/(1e-15f+tonal->highE[b]-tonal->lowE[b]); L1=L2=0; for (i=0;i<NB_FRAMES;i++) @@ -723,135 +410,45 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->prev_band_tonality[b] = band_tonality[b]; } - leakage_from[0] = band_log2[0]; - leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET; - for (b=1;b<NB_TBANDS+1;b++) - { - float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4; - leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]); - leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET); - } - for (b=NB_TBANDS-2;b>=0;b--) - { - float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4; - leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]); - leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]); - } - celt_assert(NB_TBANDS+1 <= LEAK_BANDS); - for (b=0;b<NB_TBANDS+1;b++) - { - /* leak_boost[] is made up of two terms. The first, based on leakage_to[], - represents the boost needed to overcome the amount of analysis leakage - cause in a weaker band b by louder neighbouring bands. - The second, based on leakage_from[], applies to a loud band b for - which the quantization noise causes synthesis leakage to the weaker - neighbouring bands. */ - float boost = MAX16(0, leakage_to[b] - band_log2[b]) + - MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET)); - info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost)); - } - for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0; - - for (i=0;i<NB_FRAMES;i++) - { - int j; - float mindist = 1e15f; - for (j=0;j<NB_FRAMES;j++) - { - int k; - float dist=0; - for (k=0;k<NB_TBANDS;k++) - { - float tmp; - tmp = tonal->logE[i][k] - tonal->logE[j][k]; - dist += tmp*tmp; - } - if (j!=i) - mindist = MIN32(mindist, dist); - } - spec_variability += mindist; - } - spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS); bandwidth_mask = 0; bandwidth = 0; maxE = 0; noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); +#ifdef FIXED_POINT + noise_floor *= 1<<(15+SIG_SHIFT); +#endif noise_floor *= noise_floor; - below_max_pitch=0; - above_max_pitch=0; - for (b=0;b<NB_TBANDS;b++) + for (b=0;b<NB_TOT_BANDS;b++) { float E=0; - float Em; int band_start, band_end; /* Keep a margin of 300 Hz for aliasing */ - band_start = tbands[b]; - band_end = tbands[b+1]; + band_start = extra_bands[b]; + band_end = extra_bands[b+1]; for (i=band_start;i<band_end;i++) { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; E += binE; } - E = SCALE_ENER(E); maxE = MAX32(maxE, E); - if (band_start < 64) - { - below_max_pitch += E; - } else { - above_max_pitch += E; - } tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); - Em = MAX32(E, tonal->meanE[b]); + E = MAX32(E, tonal->meanE[b]); + /* Use a simple follower with 13 dB/Bark slope for spreading function */ + bandwidth_mask = MAX32(.05f*bandwidth_mask, E); /* Consider the band "active" only if all these conditions are met: - 1) less than 90 dB below the peak band (maximal masking possible considering + 1) less than 10 dB below the simple follower + 2) less than 90 dB below the peak band (maximal masking possible considering both the ATH and the loudness-dependent slope of the spreading function) - 2) above the PCM quantization noise floor - We use b+1 because the first CELT band isn't included in tbands[] + 3) above the PCM quantization noise floor */ - if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start))) - bandwidth = b+1; - /* Check if the band is masked (see below). */ - is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask; - /* Use a simple follower with 13 dB/Bark slope for spreading function. */ - bandwidth_mask = MAX32(.05f*bandwidth_mask, E); + if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start)) + bandwidth = b; } - /* Special case for the last two bands, for which we don't have spectrum but only - the energy above 12 kHz. The difficulty here is that the high-pass we use - leaks some LF energy, so we need to increase the threshold without accidentally cutting - off the band. */ - if (tonal->Fs == 48000) { - float noise_ratio; - float Em; - float E = hp_ener*(1.f/(60*60)); - noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f; - -#ifdef FIXED_POINT - /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ - E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE); -#endif - above_max_pitch += E; - tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); - Em = MAX32(E, tonal->meanE[b]); - if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160) - bandwidth = 20; - /* Check if the band is masked (see below). */ - is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask; - } - if (above_max_pitch > below_max_pitch) - info->max_pitch_ratio = below_max_pitch/above_max_pitch; - else - info->max_pitch_ratio = 1; - /* In some cases, resampling aliasing can create a small amount of energy in the first band - being cut. So if the last band is masked, we don't include it. */ - if (bandwidth == 20 && is_masked[NB_TBANDS]) - bandwidth-=2; - else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1]) - bandwidth--; if (tonal->count<=2) bandwidth = 20; frame_loudness = 20*(float)log10(frame_loudness); - tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); + tonal->Etracker = MAX32(tonal->Etracker-.03f, frame_loudness); tonal->lowECount *= (1-alphaE); if (frame_loudness < tonal->Etracker-30) tonal->lowECount += alphaE; @@ -863,18 +460,11 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt sum += dct_table[i*16+b]*logE[b]; BFCC[i] = sum; } - for (i=0;i<8;i++) - { - float sum=0; - for (b=0;b<16;b++) - sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]); - midE[i] = sum; - } frame_stationarity /= NB_TBANDS; relativeE /= NB_TBANDS; if (tonal->count<10) - relativeE = .5f; + relativeE = .5; frame_noisiness /= NB_TBANDS; #if 1 info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; @@ -889,7 +479,7 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt info->tonality_slope = slope; tonal->E_count = (tonal->E_count+1)%NB_FRAMES; - tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); + tonal->count++; info->tonality = frame_tonality; for (i=0;i<4;i++) @@ -908,8 +498,6 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt for (i=0;i<9;i++) tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; } - for (i=0;i<4;i++) - features[i] = BFCC[i]-midE[i]; for (i=0;i<8;i++) { @@ -919,31 +507,136 @@ static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt tonal->mem[i] = BFCC[i]; } for (i=0;i<9;i++) - features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; - features[18] = spec_variability - 0.78f; - features[20] = info->tonality - 0.154723f; - features[21] = info->activity - 0.724643f; - features[22] = frame_stationarity - 0.743717f; - features[23] = info->tonality_slope + 0.069216f; - features[24] = tonal->lowECount - 0.067930f; - - compute_dense(&layer0, layer_out, features); - compute_gru(&layer1, tonal->rnn_state, layer_out); - compute_dense(&layer2, frame_probs, tonal->rnn_state); - - /* Probability of speech or music vs noise */ - info->activity_probability = frame_probs[1]; - info->music_prob = frame_probs[0]; - - /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/ -#ifdef MLP_TRAINING - for (i=0;i<25;i++) - printf("%f ", features[i]); - printf("\n"); + features[11+i] = (float)sqrt(tonal->std[i]); + features[20] = info->tonality; + features[21] = info->activity; + features[22] = frame_stationarity; + features[23] = info->tonality_slope; + features[24] = tonal->lowECount; + +#ifndef DISABLE_FLOAT_API + mlp_process(&net, features, frame_probs); + frame_probs[0] = .5f*(frame_probs[0]+1); + /* Curve fitting between the MLP probability and the actual probability */ + frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10); + /* Probability of active audio (as opposed to silence) */ + frame_probs[1] = .5f*frame_probs[1]+.5f; + /* Consider that silence has a 50-50 probability. */ + frame_probs[0] = frame_probs[1]*frame_probs[0] + (1-frame_probs[1])*.5f; + + /*printf("%f %f ", frame_probs[0], frame_probs[1]);*/ + { + /* Probability of state transition */ + float tau; + /* Represents independence of the MLP probabilities, where + beta=1 means fully independent. */ + float beta; + /* Denormalized probability of speech (p0) and music (p1) after update */ + float p0, p1; + /* Probabilities for "all speech" and "all music" */ + float s0, m0; + /* Probability sum for renormalisation */ + float psum; + /* Instantaneous probability of speech and music, with beta pre-applied. */ + float speech0; + float music0; + float p, q; + + /* One transition every 3 minutes of active audio */ + tau = .00005f*frame_probs[1]; + /* Adapt beta based on how "unexpected" the new prob is */ + p = MAX16(.05f,MIN16(.95f,frame_probs[0])); + q = MAX16(.05f,MIN16(.95f,tonal->music_prob)); + beta = .01f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p)); + /* p0 and p1 are the probabilities of speech and music at this frame + using only information from previous frame and applying the + state transition model */ + p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau; + p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau; + /* We apply the current probability with exponent beta to work around + the fact that the probability estimates aren't independent. */ + p0 *= (float)pow(1-frame_probs[0], beta); + p1 *= (float)pow(frame_probs[0], beta); + /* Normalise the probabilities to get the Marokv probability of music. */ + tonal->music_prob = p1/(p0+p1); + info->music_prob = tonal->music_prob; + + /* This chunk of code deals with delayed decision. */ + psum=1e-20f; + /* Instantaneous probability of speech and music, with beta pre-applied. */ + speech0 = (float)pow(1-frame_probs[0], beta); + music0 = (float)pow(frame_probs[0], beta); + if (tonal->count==1) + { + tonal->pspeech[0]=.5; + tonal->pmusic [0]=.5; + } + /* Updated probability of having only speech (s0) or only music (m0), + before considering the new observation. */ + s0 = tonal->pspeech[0] + tonal->pspeech[1]; + m0 = tonal->pmusic [0] + tonal->pmusic [1]; + /* Updates s0 and m0 with instantaneous probability. */ + tonal->pspeech[0] = s0*(1-tau)*speech0; + tonal->pmusic [0] = m0*(1-tau)*music0; + /* Propagate the transition probabilities */ + for (i=1;i<DETECT_SIZE-1;i++) + { + tonal->pspeech[i] = tonal->pspeech[i+1]*speech0; + tonal->pmusic [i] = tonal->pmusic [i+1]*music0; + } + /* Probability that the latest frame is speech, when all the previous ones were music. */ + tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0; + /* Probability that the latest frame is music, when all the previous ones were speech. */ + tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0; + + /* Renormalise probabilities to 1 */ + for (i=0;i<DETECT_SIZE;i++) + psum += tonal->pspeech[i] + tonal->pmusic[i]; + psum = 1.f/psum; + for (i=0;i<DETECT_SIZE;i++) + { + tonal->pspeech[i] *= psum; + tonal->pmusic [i] *= psum; + } + psum = tonal->pmusic[0]; + for (i=1;i<DETECT_SIZE;i++) + psum += tonal->pspeech[i]; + + /* Estimate our confidence in the speech/music decisions */ + if (frame_probs[1]>.75) + { + if (tonal->music_prob>.9) + { + float adapt; + adapt = 1.f/(++tonal->music_confidence_count); + tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500); + tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence); + } + if (tonal->music_prob<.1) + { + float adapt; + adapt = 1.f/(++tonal->speech_confidence_count); + tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500); + tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence); + } + } else { + if (tonal->music_confidence_count==0) + tonal->music_confidence = .9f; + if (tonal->speech_confidence_count==0) + tonal->speech_confidence = .1f; + } + } + if (tonal->last_music != (tonal->music_prob>.5f)) + tonal->last_transition=0; + tonal->last_music = tonal->music_prob>.5f; +#else + info->music_prob = 0; #endif + /*for (i=0;i<25;i++) + printf("%f ", features[i]); + printf("\n");*/ info->bandwidth = bandwidth; - tonal->prev_bandwidth = bandwidth; /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ info->noisiness = frame_noisiness; info->valid = 1; @@ -957,25 +650,23 @@ void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, co int offset; int pcm_len; - analysis_frame_size -= analysis_frame_size&1; if (analysis_pcm != NULL) { /* Avoid overflow/wrap-around of the analysis buffer */ - analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); + analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/100, analysis_frame_size); pcm_len = analysis_frame_size - analysis->analysis_offset; offset = analysis->analysis_offset; - while (pcm_len>0) { - tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); - offset += Fs/50; - pcm_len -= Fs/50; - } + do { + tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(480, pcm_len), offset, c1, c2, C, lsb_depth, downmix); + offset += 480; + pcm_len -= 480; + } while (pcm_len>0); analysis->analysis_offset = analysis_frame_size; analysis->analysis_offset -= frame_size; } + analysis_info->valid = 0; tonality_get_info(analysis, analysis_info, frame_size); } - -#endif /* DISABLE_FLOAT_API */ |