diff options
Diffstat (limited to 'thirdparty/openssl/crypto/ec/ecp_nistz256.c')
-rw-r--r-- | thirdparty/openssl/crypto/ec/ecp_nistz256.c | 1568 |
1 files changed, 0 insertions, 1568 deletions
diff --git a/thirdparty/openssl/crypto/ec/ecp_nistz256.c b/thirdparty/openssl/crypto/ec/ecp_nistz256.c deleted file mode 100644 index 99b8d613c8..0000000000 --- a/thirdparty/openssl/crypto/ec/ecp_nistz256.c +++ /dev/null @@ -1,1568 +0,0 @@ -/****************************************************************************** - * * - * Copyright 2014 Intel Corporation * - * * - * Licensed under the Apache License, Version 2.0 (the "License"); * - * you may not use this file except in compliance with the License. * - * You may obtain a copy of the License at * - * * - * http://www.apache.org/licenses/LICENSE-2.0 * - * * - * Unless required by applicable law or agreed to in writing, software * - * distributed under the License is distributed on an "AS IS" BASIS, * - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * - * See the License for the specific language governing permissions and * - * limitations under the License. * - * * - ****************************************************************************** - * * - * Developers and authors: * - * Shay Gueron (1, 2), and Vlad Krasnov (1) * - * (1) Intel Corporation, Israel Development Center * - * (2) University of Haifa * - * Reference: * - * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with * - * 256 Bit Primes" * - * * - ******************************************************************************/ - -#include <string.h> - -#include <openssl/bn.h> -#include <openssl/err.h> -#include <openssl/ec.h> -#include "cryptlib.h" - -#include "ec_lcl.h" - -#if BN_BITS2 != 64 -# define TOBN(hi,lo) lo,hi -#else -# define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo) -#endif - -#if defined(__GNUC__) -# define ALIGN32 __attribute((aligned(32))) -#elif defined(_MSC_VER) -# define ALIGN32 __declspec(align(32)) -#else -# define ALIGN32 -#endif - -#define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N) -#define P256_LIMBS (256/BN_BITS2) - -typedef unsigned short u16; - -typedef struct { - BN_ULONG X[P256_LIMBS]; - BN_ULONG Y[P256_LIMBS]; - BN_ULONG Z[P256_LIMBS]; -} P256_POINT; - -typedef struct { - BN_ULONG X[P256_LIMBS]; - BN_ULONG Y[P256_LIMBS]; -} P256_POINT_AFFINE; - -typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; - -/* structure for precomputed multiples of the generator */ -typedef struct ec_pre_comp_st { - const EC_GROUP *group; /* Parent EC_GROUP object */ - size_t w; /* Window size */ - /* - * Constant time access to the X and Y coordinates of the pre-computed, - * generator multiplies, in the Montgomery domain. Pre-calculated - * multiplies are stored in affine form. - */ - PRECOMP256_ROW *precomp; - void *precomp_storage; - int references; -} EC_PRE_COMP; - -/* Functions implemented in assembly */ -/* - * Most of below mentioned functions *preserve* the property of inputs - * being fully reduced, i.e. being in [0, modulus) range. Simply put if - * inputs are fully reduced, then output is too. Note that reverse is - * not true, in sense that given partially reduced inputs output can be - * either, not unlikely reduced. And "most" in first sentence refers to - * the fact that given the calculations flow one can tolerate that - * addition, 1st function below, produces partially reduced result *if* - * multiplications by 2 and 3, which customarily use addition, fully - * reduce it. This effectively gives two options: a) addition produces - * fully reduced result [as long as inputs are, just like remaining - * functions]; b) addition is allowed to produce partially reduced - * result, but multiplications by 2 and 3 perform additional reduction - * step. Choice between the two can be platform-specific, but it was a) - * in all cases so far... - */ -/* Modular add: res = a+b mod P */ -void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS], - const BN_ULONG b[P256_LIMBS]); -/* Modular mul by 2: res = 2*a mod P */ -void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS]); -/* Modular mul by 3: res = 3*a mod P */ -void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS]); - -/* Modular div by 2: res = a/2 mod P */ -void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS]); -/* Modular sub: res = a-b mod P */ -void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS], - const BN_ULONG b[P256_LIMBS]); -/* Modular neg: res = -a mod P */ -void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); -/* Montgomery mul: res = a*b*2^-256 mod P */ -void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS], - const BN_ULONG b[P256_LIMBS]); -/* Montgomery sqr: res = a*a*2^-256 mod P */ -void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], - const BN_ULONG a[P256_LIMBS]); -/* Convert a number from Montgomery domain, by multiplying with 1 */ -void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], - const BN_ULONG in[P256_LIMBS]); -/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ -void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], - const BN_ULONG in[P256_LIMBS]); -/* Functions that perform constant time access to the precomputed tables */ -void ecp_nistz256_select_w5(P256_POINT * val, - const P256_POINT * in_t, int index); -void ecp_nistz256_select_w7(P256_POINT_AFFINE * val, - const P256_POINT_AFFINE * in_t, int index); - -/* One converted into the Montgomery domain */ -static const BN_ULONG ONE[P256_LIMBS] = { - TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), - TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe) -}; - -static void *ecp_nistz256_pre_comp_dup(void *); -static void ecp_nistz256_pre_comp_free(void *); -static void ecp_nistz256_pre_comp_clear_free(void *); -static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group); - -/* Precomputed tables for the default generator */ -#include "ecp_nistz256_table.c" - -/* Recode window to a signed digit, see ecp_nistputil.c for details */ -static unsigned int _booth_recode_w5(unsigned int in) -{ - unsigned int s, d; - - s = ~((in >> 5) - 1); - d = (1 << 6) - in - 1; - d = (d & s) | (in & ~s); - d = (d >> 1) + (d & 1); - - return (d << 1) + (s & 1); -} - -static unsigned int _booth_recode_w7(unsigned int in) -{ - unsigned int s, d; - - s = ~((in >> 7) - 1); - d = (1 << 8) - in - 1; - d = (d & s) | (in & ~s); - d = (d >> 1) + (d & 1); - - return (d << 1) + (s & 1); -} - -static void copy_conditional(BN_ULONG dst[P256_LIMBS], - const BN_ULONG src[P256_LIMBS], BN_ULONG move) -{ - BN_ULONG mask1 = -move; - BN_ULONG mask2 = ~mask1; - - dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); - dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); - dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); - dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); - if (P256_LIMBS == 8) { - dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); - dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); - dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); - dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); - } -} - -static BN_ULONG is_zero(BN_ULONG in) -{ - in |= (0 - in); - in = ~in; - in &= BN_MASK2; - in >>= BN_BITS2 - 1; - return in; -} - -static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], - const BN_ULONG b[P256_LIMBS]) -{ - BN_ULONG res; - - res = a[0] ^ b[0]; - res |= a[1] ^ b[1]; - res |= a[2] ^ b[2]; - res |= a[3] ^ b[3]; - if (P256_LIMBS == 8) { - res |= a[4] ^ b[4]; - res |= a[5] ^ b[5]; - res |= a[6] ^ b[6]; - res |= a[7] ^ b[7]; - } - - return is_zero(res); -} - -static BN_ULONG is_one(const BIGNUM *z) -{ - BN_ULONG res = 0; - BN_ULONG *a = z->d; - - if (z->top == (P256_LIMBS - P256_LIMBS / 8)) { - res = a[0] ^ ONE[0]; - res |= a[1] ^ ONE[1]; - res |= a[2] ^ ONE[2]; - res |= a[3] ^ ONE[3]; - if (P256_LIMBS == 8) { - res |= a[4] ^ ONE[4]; - res |= a[5] ^ ONE[5]; - res |= a[6] ^ ONE[6]; - /* - * no check for a[7] (being zero) on 32-bit platforms, - * because value of "one" takes only 7 limbs. - */ - } - res = is_zero(res); - } - - return res; -} - -static int ecp_nistz256_set_words(BIGNUM *a, BN_ULONG words[P256_LIMBS]) - { - if (bn_wexpand(a, P256_LIMBS) == NULL) { - ECerr(EC_F_ECP_NISTZ256_SET_WORDS, ERR_R_MALLOC_FAILURE); - return 0; - } - memcpy(a->d, words, sizeof(BN_ULONG) * P256_LIMBS); - a->top = P256_LIMBS; - bn_correct_top(a); - return 1; -} - -#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION -void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); -void ecp_nistz256_point_add(P256_POINT *r, - const P256_POINT *a, const P256_POINT *b); -void ecp_nistz256_point_add_affine(P256_POINT *r, - const P256_POINT *a, - const P256_POINT_AFFINE *b); -#else -/* Point double: r = 2*a */ -static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a) -{ - BN_ULONG S[P256_LIMBS]; - BN_ULONG M[P256_LIMBS]; - BN_ULONG Zsqr[P256_LIMBS]; - BN_ULONG tmp0[P256_LIMBS]; - - const BN_ULONG *in_x = a->X; - const BN_ULONG *in_y = a->Y; - const BN_ULONG *in_z = a->Z; - - BN_ULONG *res_x = r->X; - BN_ULONG *res_y = r->Y; - BN_ULONG *res_z = r->Z; - - ecp_nistz256_mul_by_2(S, in_y); - - ecp_nistz256_sqr_mont(Zsqr, in_z); - - ecp_nistz256_sqr_mont(S, S); - - ecp_nistz256_mul_mont(res_z, in_z, in_y); - ecp_nistz256_mul_by_2(res_z, res_z); - - ecp_nistz256_add(M, in_x, Zsqr); - ecp_nistz256_sub(Zsqr, in_x, Zsqr); - - ecp_nistz256_sqr_mont(res_y, S); - ecp_nistz256_div_by_2(res_y, res_y); - - ecp_nistz256_mul_mont(M, M, Zsqr); - ecp_nistz256_mul_by_3(M, M); - - ecp_nistz256_mul_mont(S, S, in_x); - ecp_nistz256_mul_by_2(tmp0, S); - - ecp_nistz256_sqr_mont(res_x, M); - - ecp_nistz256_sub(res_x, res_x, tmp0); - ecp_nistz256_sub(S, S, res_x); - - ecp_nistz256_mul_mont(S, S, M); - ecp_nistz256_sub(res_y, S, res_y); -} - -/* Point addition: r = a+b */ -static void ecp_nistz256_point_add(P256_POINT *r, - const P256_POINT *a, const P256_POINT *b) -{ - BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; - BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; - BN_ULONG Z1sqr[P256_LIMBS]; - BN_ULONG Z2sqr[P256_LIMBS]; - BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; - BN_ULONG Hsqr[P256_LIMBS]; - BN_ULONG Rsqr[P256_LIMBS]; - BN_ULONG Hcub[P256_LIMBS]; - - BN_ULONG res_x[P256_LIMBS]; - BN_ULONG res_y[P256_LIMBS]; - BN_ULONG res_z[P256_LIMBS]; - - BN_ULONG in1infty, in2infty; - - const BN_ULONG *in1_x = a->X; - const BN_ULONG *in1_y = a->Y; - const BN_ULONG *in1_z = a->Z; - - const BN_ULONG *in2_x = b->X; - const BN_ULONG *in2_y = b->Y; - const BN_ULONG *in2_z = b->Z; - - /* - * Infinity in encoded as (,,0) - */ - in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); - if (P256_LIMBS == 8) - in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); - - in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]); - if (P256_LIMBS == 8) - in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]); - - in1infty = is_zero(in1infty); - in2infty = is_zero(in2infty); - - ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */ - ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ - - ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */ - ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ - - ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */ - ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ - ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */ - - ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */ - ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ - ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */ - - /* - * This should not happen during sign/ecdh, so no constant time violation - */ - if (is_equal(U1, U2) && !in1infty && !in2infty) { - if (is_equal(S1, S2)) { - ecp_nistz256_point_double(r, a); - return; - } else { - memset(r, 0, sizeof(*r)); - return; - } - } - - ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ - ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ - ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ - ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ - ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ - - ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */ - ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ - - ecp_nistz256_sub(res_x, Rsqr, Hsqr); - ecp_nistz256_sub(res_x, res_x, Hcub); - - ecp_nistz256_sub(res_y, U2, res_x); - - ecp_nistz256_mul_mont(S2, S1, Hcub); - ecp_nistz256_mul_mont(res_y, R, res_y); - ecp_nistz256_sub(res_y, res_y, S2); - - copy_conditional(res_x, in2_x, in1infty); - copy_conditional(res_y, in2_y, in1infty); - copy_conditional(res_z, in2_z, in1infty); - - copy_conditional(res_x, in1_x, in2infty); - copy_conditional(res_y, in1_y, in2infty); - copy_conditional(res_z, in1_z, in2infty); - - memcpy(r->X, res_x, sizeof(res_x)); - memcpy(r->Y, res_y, sizeof(res_y)); - memcpy(r->Z, res_z, sizeof(res_z)); -} - -/* Point addition when b is known to be affine: r = a+b */ -static void ecp_nistz256_point_add_affine(P256_POINT *r, - const P256_POINT *a, - const P256_POINT_AFFINE *b) -{ - BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; - BN_ULONG Z1sqr[P256_LIMBS]; - BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; - BN_ULONG Hsqr[P256_LIMBS]; - BN_ULONG Rsqr[P256_LIMBS]; - BN_ULONG Hcub[P256_LIMBS]; - - BN_ULONG res_x[P256_LIMBS]; - BN_ULONG res_y[P256_LIMBS]; - BN_ULONG res_z[P256_LIMBS]; - - BN_ULONG in1infty, in2infty; - - const BN_ULONG *in1_x = a->X; - const BN_ULONG *in1_y = a->Y; - const BN_ULONG *in1_z = a->Z; - - const BN_ULONG *in2_x = b->X; - const BN_ULONG *in2_y = b->Y; - - /* - * Infinity in encoded as (,,0) - */ - in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); - if (P256_LIMBS == 8) - in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); - - /* - * In affine representation we encode infinity as (0,0), which is - * not on the curve, so it is OK - */ - in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | - in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]); - if (P256_LIMBS == 8) - in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | - in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]); - - in1infty = is_zero(in1infty); - in2infty = is_zero(in2infty); - - ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ - - ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ - ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */ - - ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ - - ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ - - ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ - ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */ - - ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ - ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ - ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ - - ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */ - ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ - - ecp_nistz256_sub(res_x, Rsqr, Hsqr); - ecp_nistz256_sub(res_x, res_x, Hcub); - ecp_nistz256_sub(H, U2, res_x); - - ecp_nistz256_mul_mont(S2, in1_y, Hcub); - ecp_nistz256_mul_mont(H, H, R); - ecp_nistz256_sub(res_y, H, S2); - - copy_conditional(res_x, in2_x, in1infty); - copy_conditional(res_x, in1_x, in2infty); - - copy_conditional(res_y, in2_y, in1infty); - copy_conditional(res_y, in1_y, in2infty); - - copy_conditional(res_z, ONE, in1infty); - copy_conditional(res_z, in1_z, in2infty); - - memcpy(r->X, res_x, sizeof(res_x)); - memcpy(r->Y, res_y, sizeof(res_y)); - memcpy(r->Z, res_z, sizeof(res_z)); -} -#endif - -/* r = in^-1 mod p */ -static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], - const BN_ULONG in[P256_LIMBS]) -{ - /* - * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff - * ffffffff ffffffff We use FLT and used poly-2 as exponent - */ - BN_ULONG p2[P256_LIMBS]; - BN_ULONG p4[P256_LIMBS]; - BN_ULONG p8[P256_LIMBS]; - BN_ULONG p16[P256_LIMBS]; - BN_ULONG p32[P256_LIMBS]; - BN_ULONG res[P256_LIMBS]; - int i; - - ecp_nistz256_sqr_mont(res, in); - ecp_nistz256_mul_mont(p2, res, in); /* 3*p */ - - ecp_nistz256_sqr_mont(res, p2); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(p4, res, p2); /* f*p */ - - ecp_nistz256_sqr_mont(res, p4); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */ - - ecp_nistz256_sqr_mont(res, p8); - for (i = 0; i < 7; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */ - - ecp_nistz256_sqr_mont(res, p16); - for (i = 0; i < 15; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */ - - ecp_nistz256_sqr_mont(res, p32); - for (i = 0; i < 31; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, in); - - for (i = 0; i < 32 * 4; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p32); - - for (i = 0; i < 32; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p32); - - for (i = 0; i < 16; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p16); - - for (i = 0; i < 8; i++) - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p8); - - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p4); - - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, p2); - - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_sqr_mont(res, res); - ecp_nistz256_mul_mont(res, res, in); - - memcpy(r, res, sizeof(res)); -} - -/* - * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and - * returns one if it fits. Otherwise it returns zero. - */ -static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], - const BIGNUM *in) -{ - if (in->top > P256_LIMBS) - return 0; - - memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS); - memcpy(out, in->d, sizeof(BN_ULONG) * in->top); - return 1; -} - -/* r = sum(scalar[i]*point[i]) */ -static int ecp_nistz256_windowed_mul(const EC_GROUP *group, - P256_POINT *r, - const BIGNUM **scalar, - const EC_POINT **point, - int num, BN_CTX *ctx) -{ - - int i, j, ret = 0; - unsigned int index; - unsigned char (*p_str)[33] = NULL; - const unsigned int window_size = 5; - const unsigned int mask = (1 << (window_size + 1)) - 1; - unsigned int wvalue; - BN_ULONG tmp[P256_LIMBS]; - ALIGN32 P256_POINT h; - const BIGNUM **scalars = NULL; - P256_POINT (*table)[16] = NULL; - void *table_storage = NULL; - - if ((table_storage = - OPENSSL_malloc(num * 16 * sizeof(P256_POINT) + 64)) == NULL - || (p_str = - OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL - || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { - ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE); - goto err; - } else { - table = (void *)ALIGNPTR(table_storage, 64); - } - - for (i = 0; i < num; i++) { - P256_POINT *row = table[i]; - - /* This is an unusual input, we don't guarantee constant-timeness. */ - if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { - BIGNUM *mod; - - if ((mod = BN_CTX_get(ctx)) == NULL) - goto err; - if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) { - ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB); - goto err; - } - scalars[i] = mod; - } else - scalars[i] = scalar[i]; - - for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) { - BN_ULONG d = scalars[i]->d[j / BN_BYTES]; - - p_str[i][j + 0] = d & 0xff; - p_str[i][j + 1] = (d >> 8) & 0xff; - p_str[i][j + 2] = (d >> 16) & 0xff; - p_str[i][j + 3] = (d >>= 24) & 0xff; - if (BN_BYTES == 8) { - d >>= 8; - p_str[i][j + 4] = d & 0xff; - p_str[i][j + 5] = (d >> 8) & 0xff; - p_str[i][j + 6] = (d >> 16) & 0xff; - p_str[i][j + 7] = (d >> 24) & 0xff; - } - } - for (; j < 33; j++) - p_str[i][j] = 0; - - /* table[0] is implicitly (0,0,0) (the point at infinity), - * therefore it is not stored. All other values are actually - * stored with an offset of -1 in table. - */ - - if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &point[i]->X) - || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &point[i]->Y) - || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &point[i]->Z)) { - ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, EC_R_COORDINATES_OUT_OF_RANGE); - goto err; - } - - ecp_nistz256_point_double(&row[ 2 - 1], &row[ 1 - 1]); - ecp_nistz256_point_add (&row[ 3 - 1], &row[ 2 - 1], &row[1 - 1]); - ecp_nistz256_point_double(&row[ 4 - 1], &row[ 2 - 1]); - ecp_nistz256_point_double(&row[ 6 - 1], &row[ 3 - 1]); - ecp_nistz256_point_double(&row[ 8 - 1], &row[ 4 - 1]); - ecp_nistz256_point_double(&row[12 - 1], &row[ 6 - 1]); - ecp_nistz256_point_add (&row[ 5 - 1], &row[ 4 - 1], &row[1 - 1]); - ecp_nistz256_point_add (&row[ 7 - 1], &row[ 6 - 1], &row[1 - 1]); - ecp_nistz256_point_add (&row[ 9 - 1], &row[ 8 - 1], &row[1 - 1]); - ecp_nistz256_point_add (&row[13 - 1], &row[12 - 1], &row[1 - 1]); - ecp_nistz256_point_double(&row[14 - 1], &row[ 7 - 1]); - ecp_nistz256_point_double(&row[10 - 1], &row[ 5 - 1]); - ecp_nistz256_point_add (&row[15 - 1], &row[14 - 1], &row[1 - 1]); - ecp_nistz256_point_add (&row[11 - 1], &row[10 - 1], &row[1 - 1]); - ecp_nistz256_point_add (&row[16 - 1], &row[15 - 1], &row[1 - 1]); - } - - index = 255; - - wvalue = p_str[0][(index - 1) / 8]; - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - - ecp_nistz256_select_w5(r, table[0], _booth_recode_w5(wvalue) >> 1); - - while (index >= 5) { - for (i = (index == 255 ? 1 : 0); i < num; i++) { - unsigned int off = (index - 1) / 8; - - wvalue = p_str[i][off] | p_str[i][off + 1] << 8; - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - - wvalue = _booth_recode_w5(wvalue); - - ecp_nistz256_select_w5(&h, table[i], wvalue >> 1); - - ecp_nistz256_neg(tmp, h.Y); - copy_conditional(h.Y, tmp, (wvalue & 1)); - - ecp_nistz256_point_add(r, r, &h); - } - - index -= window_size; - - ecp_nistz256_point_double(r, r); - ecp_nistz256_point_double(r, r); - ecp_nistz256_point_double(r, r); - ecp_nistz256_point_double(r, r); - ecp_nistz256_point_double(r, r); - } - - /* Final window */ - for (i = 0; i < num; i++) { - wvalue = p_str[i][0]; - wvalue = (wvalue << 1) & mask; - - wvalue = _booth_recode_w5(wvalue); - - ecp_nistz256_select_w5(&h, table[i], wvalue >> 1); - - ecp_nistz256_neg(tmp, h.Y); - copy_conditional(h.Y, tmp, wvalue & 1); - - ecp_nistz256_point_add(r, r, &h); - } - - ret = 1; - err: - if (table_storage) - OPENSSL_free(table_storage); - if (p_str) - OPENSSL_free(p_str); - if (scalars) - OPENSSL_free(scalars); - return ret; -} - -/* Coordinates of G, for which we have precomputed tables */ -const static BN_ULONG def_xG[P256_LIMBS] = { - TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), - TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6) -}; - -const static BN_ULONG def_yG[P256_LIMBS] = { - TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), - TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) -}; - -/* - * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 - * generator. - */ -static int ecp_nistz256_is_affine_G(const EC_POINT *generator) -{ - return (generator->X.top == P256_LIMBS) && - (generator->Y.top == P256_LIMBS) && - is_equal(generator->X.d, def_xG) && - is_equal(generator->Y.d, def_yG) && is_one(&generator->Z); -} - -static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx) -{ - /* - * We precompute a table for a Booth encoded exponent (wNAF) based - * computation. Each table holds 64 values for safe access, with an - * implicit value of infinity at index zero. We use window of size 7, and - * therefore require ceil(256/7) = 37 tables. - */ - BIGNUM *order; - EC_POINT *P = NULL, *T = NULL; - const EC_POINT *generator; - EC_PRE_COMP *pre_comp; - BN_CTX *new_ctx = NULL; - int i, j, k, ret = 0; - size_t w; - - PRECOMP256_ROW *preComputedTable = NULL; - unsigned char *precomp_storage = NULL; - - /* if there is an old EC_PRE_COMP object, throw it away */ - EC_EX_DATA_free_data(&group->extra_data, ecp_nistz256_pre_comp_dup, - ecp_nistz256_pre_comp_free, - ecp_nistz256_pre_comp_clear_free); - - generator = EC_GROUP_get0_generator(group); - if (generator == NULL) { - ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR); - return 0; - } - - if (ecp_nistz256_is_affine_G(generator)) { - /* - * No need to calculate tables for the standard generator because we - * have them statically. - */ - return 1; - } - - if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL) - return 0; - - if (ctx == NULL) { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - goto err; - } - - BN_CTX_start(ctx); - order = BN_CTX_get(ctx); - - if (order == NULL) - goto err; - - if (!EC_GROUP_get_order(group, order, ctx)) - goto err; - - if (BN_is_zero(order)) { - ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER); - goto err; - } - - w = 7; - - if ((precomp_storage = - OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { - ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE); - goto err; - } else { - preComputedTable = (void *)ALIGNPTR(precomp_storage, 64); - } - - P = EC_POINT_new(group); - T = EC_POINT_new(group); - if (P == NULL || T == NULL) - goto err; - - /* - * The zero entry is implicitly infinity, and we skip it, storing other - * values with -1 offset. - */ - if (!EC_POINT_copy(T, generator)) - goto err; - - for (k = 0; k < 64; k++) { - if (!EC_POINT_copy(P, T)) - goto err; - for (j = 0; j < 37; j++) { - /* - * It would be faster to use EC_POINTs_make_affine and - * make multiple points affine at the same time. - */ - if (!EC_POINT_make_affine(group, P, ctx)) - goto err; - if (!ecp_nistz256_bignum_to_field_elem(preComputedTable[j][k].X, - &P->X) || - !ecp_nistz256_bignum_to_field_elem(preComputedTable[j][k].Y, - &P->Y)) { - ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, - EC_R_COORDINATES_OUT_OF_RANGE); - goto err; - } - for (i = 0; i < 7; i++) { - if (!EC_POINT_dbl(group, P, P, ctx)) - goto err; - } - } - if (!EC_POINT_add(group, T, T, generator, ctx)) - goto err; - } - - pre_comp->group = group; - pre_comp->w = w; - pre_comp->precomp = preComputedTable; - pre_comp->precomp_storage = precomp_storage; - - precomp_storage = NULL; - - if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, - ecp_nistz256_pre_comp_dup, - ecp_nistz256_pre_comp_free, - ecp_nistz256_pre_comp_clear_free)) { - goto err; - } - - pre_comp = NULL; - - ret = 1; - - err: - if (ctx != NULL) - BN_CTX_end(ctx); - BN_CTX_free(new_ctx); - - if (pre_comp) - ecp_nistz256_pre_comp_free(pre_comp); - if (precomp_storage) - OPENSSL_free(precomp_storage); - if (P) - EC_POINT_free(P); - if (T) - EC_POINT_free(T); - return ret; -} - -/* - * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great - * code processing 4 points in parallel, corresponding serial operation - * is several times slower, because it uses 29x29=58-bit multiplication - * as opposite to 64x64=128-bit in integer-only scalar case. As result - * it doesn't provide *significant* performance improvement. Note that - * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work, - * you'd need to compile even asm/ecp_nistz256-avx.pl module. - */ -#if defined(ECP_NISTZ256_AVX2) -# if !(defined(__x86_64) || defined(__x86_64__)) || \ - defined(_M_AMD64) || defined(_MX64)) || \ - !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */ -# undef ECP_NISTZ256_AVX2 -# else -/* Constant time access, loading four values, from four consecutive tables */ -void ecp_nistz256_avx2_select_w7(P256_POINT_AFFINE * val, - const P256_POINT_AFFINE * in_t, int index); -void ecp_nistz256_avx2_multi_select_w7(void *result, const void *in, int index0, - int index1, int index2, int index3); -void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in); -void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4); -void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4, - const void *Bx4); -void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4, - const void *Bx4); -void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4); -void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4); -void ecp_nistz256_avx2_set1(void *RESULTx4); -int ecp_nistz_avx2_eligible(void); - -static void booth_recode_w7(unsigned char *sign, - unsigned char *digit, unsigned char in) -{ - unsigned char s, d; - - s = ~((in >> 7) - 1); - d = (1 << 8) - in - 1; - d = (d & s) | (in & ~s); - d = (d >> 1) + (d & 1); - - *sign = s & 1; - *digit = d; -} - -/* - * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the - * precomputed table. It does 4 affine point additions in parallel, - * significantly speeding up point multiplication for a fixed value. - */ -static void ecp_nistz256_avx2_mul_g(P256_POINT *r, - unsigned char p_str[33], - const P256_POINT_AFFINE(*preComputedTable)[64]) -{ - const unsigned int window_size = 7; - const unsigned int mask = (1 << (window_size + 1)) - 1; - unsigned int wvalue; - /* Using 4 windows at a time */ - unsigned char sign0, digit0; - unsigned char sign1, digit1; - unsigned char sign2, digit2; - unsigned char sign3, digit3; - unsigned int index = 0; - BN_ULONG tmp[P256_LIMBS]; - int i; - - ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 }; - ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 }; - ALIGN32 P256_POINT_AFFINE point_arr[P256_LIMBS]; - ALIGN32 P256_POINT res_point_arr[P256_LIMBS]; - - /* Initial four windows */ - wvalue = *((u16 *) & p_str[0]); - wvalue = (wvalue << 1) & mask; - index += window_size; - booth_recode_w7(&sign0, &digit0, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign1, &digit1, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign2, &digit2, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign3, &digit3, wvalue); - - ecp_nistz256_avx2_multi_select_w7(point_arr, preComputedTable[0], - digit0, digit1, digit2, digit3); - - ecp_nistz256_neg(tmp, point_arr[0].Y); - copy_conditional(point_arr[0].Y, tmp, sign0); - ecp_nistz256_neg(tmp, point_arr[1].Y); - copy_conditional(point_arr[1].Y, tmp, sign1); - ecp_nistz256_neg(tmp, point_arr[2].Y); - copy_conditional(point_arr[2].Y, tmp, sign2); - ecp_nistz256_neg(tmp, point_arr[3].Y); - copy_conditional(point_arr[3].Y, tmp, sign3); - - ecp_nistz256_avx2_transpose_convert(aX4, point_arr); - ecp_nistz256_avx2_to_mont(aX4, aX4); - ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]); - ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]); - - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign0, &digit0, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign1, &digit1, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign2, &digit2, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign3, &digit3, wvalue); - - ecp_nistz256_avx2_multi_select_w7(point_arr, preComputedTable[4 * 1], - digit0, digit1, digit2, digit3); - - ecp_nistz256_neg(tmp, point_arr[0].Y); - copy_conditional(point_arr[0].Y, tmp, sign0); - ecp_nistz256_neg(tmp, point_arr[1].Y); - copy_conditional(point_arr[1].Y, tmp, sign1); - ecp_nistz256_neg(tmp, point_arr[2].Y); - copy_conditional(point_arr[2].Y, tmp, sign2); - ecp_nistz256_neg(tmp, point_arr[3].Y); - copy_conditional(point_arr[3].Y, tmp, sign3); - - ecp_nistz256_avx2_transpose_convert(bX4, point_arr); - ecp_nistz256_avx2_to_mont(bX4, bX4); - ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); - /* Optimized when both inputs are affine */ - ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4); - - for (i = 2; i < 9; i++) { - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign0, &digit0, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign1, &digit1, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign2, &digit2, wvalue); - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - booth_recode_w7(&sign3, &digit3, wvalue); - - ecp_nistz256_avx2_multi_select_w7(point_arr, - preComputedTable[4 * i], - digit0, digit1, digit2, digit3); - - ecp_nistz256_neg(tmp, point_arr[0].Y); - copy_conditional(point_arr[0].Y, tmp, sign0); - ecp_nistz256_neg(tmp, point_arr[1].Y); - copy_conditional(point_arr[1].Y, tmp, sign1); - ecp_nistz256_neg(tmp, point_arr[2].Y); - copy_conditional(point_arr[2].Y, tmp, sign2); - ecp_nistz256_neg(tmp, point_arr[3].Y); - copy_conditional(point_arr[3].Y, tmp, sign3); - - ecp_nistz256_avx2_transpose_convert(bX4, point_arr); - ecp_nistz256_avx2_to_mont(bX4, bX4); - ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); - - ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4); - } - - ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]); - ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]); - ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]); - - ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4); - /* Last window is performed serially */ - wvalue = *((u16 *) & p_str[(index - 1) / 8]); - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - booth_recode_w7(&sign0, &digit0, wvalue); - ecp_nistz256_avx2_select_w7((P256_POINT_AFFINE *) r, - preComputedTable[36], digit0); - ecp_nistz256_neg(tmp, r->Y); - copy_conditional(r->Y, tmp, sign0); - memcpy(r->Z, ONE, sizeof(ONE)); - /* Sum the four windows */ - ecp_nistz256_point_add(r, r, &res_point_arr[0]); - ecp_nistz256_point_add(r, r, &res_point_arr[1]); - ecp_nistz256_point_add(r, r, &res_point_arr[2]); - ecp_nistz256_point_add(r, r, &res_point_arr[3]); -} -# endif -#endif - -static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group, - const P256_POINT_AFFINE *in, - BN_CTX *ctx) -{ - BIGNUM x, y; - BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS]; - int ret = 0; - - memcpy(d_x, in->X, sizeof(d_x)); - x.d = d_x; - x.dmax = x.top = P256_LIMBS; - x.neg = 0; - x.flags = BN_FLG_STATIC_DATA; - - memcpy(d_y, in->Y, sizeof(d_y)); - y.d = d_y; - y.dmax = y.top = P256_LIMBS; - y.neg = 0; - y.flags = BN_FLG_STATIC_DATA; - - ret = EC_POINT_set_affine_coordinates_GFp(group, out, &x, &y, ctx); - - return ret; -} - -/* r = scalar*G + sum(scalars[i]*points[i]) */ -static int ecp_nistz256_points_mul(const EC_GROUP *group, - EC_POINT *r, - const BIGNUM *scalar, - size_t num, - const EC_POINT *points[], - const BIGNUM *scalars[], BN_CTX *ctx) -{ - int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; - size_t j; - unsigned char p_str[33] = { 0 }; - const PRECOMP256_ROW *preComputedTable = NULL; - const EC_PRE_COMP *pre_comp = NULL; - const EC_POINT *generator = NULL; - unsigned int index = 0; - BN_CTX *new_ctx = NULL; - const BIGNUM **new_scalars = NULL; - const EC_POINT **new_points = NULL; - const unsigned int window_size = 7; - const unsigned int mask = (1 << (window_size + 1)) - 1; - unsigned int wvalue; - ALIGN32 union { - P256_POINT p; - P256_POINT_AFFINE a; - } t, p; - BIGNUM *tmp_scalar; - - if (group->meth != r->meth) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); - return 0; - } - - if ((scalar == NULL) && (num == 0)) - return EC_POINT_set_to_infinity(group, r); - - for (j = 0; j < num; j++) { - if (group->meth != points[j]->meth) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); - return 0; - } - } - - if (ctx == NULL) { - ctx = new_ctx = BN_CTX_new(); - if (ctx == NULL) - goto err; - } - - BN_CTX_start(ctx); - - if (scalar) { - generator = EC_GROUP_get0_generator(group); - if (generator == NULL) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); - goto err; - } - - /* look if we can use precomputed multiples of generator */ - pre_comp = - EC_EX_DATA_get_data(group->extra_data, ecp_nistz256_pre_comp_dup, - ecp_nistz256_pre_comp_free, - ecp_nistz256_pre_comp_clear_free); - - if (pre_comp) { - /* - * If there is a precomputed table for the generator, check that - * it was generated with the same generator. - */ - EC_POINT *pre_comp_generator = EC_POINT_new(group); - if (pre_comp_generator == NULL) - goto err; - - if (!ecp_nistz256_set_from_affine - (pre_comp_generator, group, pre_comp->precomp[0], ctx)) { - EC_POINT_free(pre_comp_generator); - goto err; - } - - if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx)) - preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp; - - EC_POINT_free(pre_comp_generator); - } - - if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { - /* - * If there is no precomputed data, but the generator - * is the default, a hardcoded table of precomputed - * data is used. This is because applications, such as - * Apache, do not use EC_KEY_precompute_mult. - */ - preComputedTable = (const PRECOMP256_ROW *)ecp_nistz256_precomputed; - } - - if (preComputedTable) { - if ((BN_num_bits(scalar) > 256) - || BN_is_negative(scalar)) { - if ((tmp_scalar = BN_CTX_get(ctx)) == NULL) - goto err; - - if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB); - goto err; - } - scalar = tmp_scalar; - } - - for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) { - BN_ULONG d = scalar->d[i / BN_BYTES]; - - p_str[i + 0] = d & 0xff; - p_str[i + 1] = (d >> 8) & 0xff; - p_str[i + 2] = (d >> 16) & 0xff; - p_str[i + 3] = (d >>= 24) & 0xff; - if (BN_BYTES == 8) { - d >>= 8; - p_str[i + 4] = d & 0xff; - p_str[i + 5] = (d >> 8) & 0xff; - p_str[i + 6] = (d >> 16) & 0xff; - p_str[i + 7] = (d >> 24) & 0xff; - } - } - - for (; i < 33; i++) - p_str[i] = 0; - -#if defined(ECP_NISTZ256_AVX2) - if (ecp_nistz_avx2_eligible()) { - ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable); - } else -#endif - { - BN_ULONG infty; - - /* First window */ - wvalue = (p_str[0] << 1) & mask; - index += window_size; - - wvalue = _booth_recode_w7(wvalue); - - ecp_nistz256_select_w7(&p.a, preComputedTable[0], wvalue >> 1); - - ecp_nistz256_neg(p.p.Z, p.p.Y); - copy_conditional(p.p.Y, p.p.Z, wvalue & 1); - - /* - * Since affine infinity is encoded as (0,0) and - * Jacobian ias (,,0), we need to harmonize them - * by assigning "one" or zero to Z. - */ - infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | - p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]); - if (P256_LIMBS == 8) - infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | - p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]); - - infty = 0 - is_zero(infty); - infty = ~infty; - - p.p.Z[0] = ONE[0] & infty; - p.p.Z[1] = ONE[1] & infty; - p.p.Z[2] = ONE[2] & infty; - p.p.Z[3] = ONE[3] & infty; - if (P256_LIMBS == 8) { - p.p.Z[4] = ONE[4] & infty; - p.p.Z[5] = ONE[5] & infty; - p.p.Z[6] = ONE[6] & infty; - p.p.Z[7] = ONE[7] & infty; - } - - for (i = 1; i < 37; i++) { - unsigned int off = (index - 1) / 8; - wvalue = p_str[off] | p_str[off + 1] << 8; - wvalue = (wvalue >> ((index - 1) % 8)) & mask; - index += window_size; - - wvalue = _booth_recode_w7(wvalue); - - ecp_nistz256_select_w7(&t.a, - preComputedTable[i], wvalue >> 1); - - ecp_nistz256_neg(t.p.Z, t.a.Y); - copy_conditional(t.a.Y, t.p.Z, wvalue & 1); - - ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); - } - } - } else { - p_is_infinity = 1; - no_precomp_for_generator = 1; - } - } else - p_is_infinity = 1; - - if (no_precomp_for_generator) { - /* - * Without a precomputed table for the generator, it has to be - * handled like a normal point. - */ - new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); - if (!new_scalars) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); - goto err; - } - - new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); - if (!new_points) { - ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); - goto err; - } - - memcpy(new_scalars, scalars, num * sizeof(BIGNUM *)); - new_scalars[num] = scalar; - memcpy(new_points, points, num * sizeof(EC_POINT *)); - new_points[num] = generator; - - scalars = new_scalars; - points = new_points; - num++; - } - - if (num) { - P256_POINT *out = &t.p; - if (p_is_infinity) - out = &p.p; - - if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx)) - goto err; - - if (!p_is_infinity) - ecp_nistz256_point_add(&p.p, &p.p, out); - } - - /* Not constant-time, but we're only operating on the public output. */ - if (!ecp_nistz256_set_words(&r->X, p.p.X) || - !ecp_nistz256_set_words(&r->Y, p.p.Y) || - !ecp_nistz256_set_words(&r->Z, p.p.Z)) { - goto err; - } - r->Z_is_one = is_one(&r->Z) & 1; - - ret = 1; - -err: - if (ctx) - BN_CTX_end(ctx); - BN_CTX_free(new_ctx); - if (new_points) - OPENSSL_free(new_points); - if (new_scalars) - OPENSSL_free(new_scalars); - return ret; -} - -static int ecp_nistz256_get_affine(const EC_GROUP *group, - const EC_POINT *point, - BIGNUM *x, BIGNUM *y, BN_CTX *ctx) -{ - BN_ULONG z_inv2[P256_LIMBS]; - BN_ULONG z_inv3[P256_LIMBS]; - BN_ULONG x_aff[P256_LIMBS]; - BN_ULONG y_aff[P256_LIMBS]; - BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; - BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS]; - - if (EC_POINT_is_at_infinity(group, point)) { - ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY); - return 0; - } - - if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) || - !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) || - !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) { - ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE); - return 0; - } - - ecp_nistz256_mod_inverse(z_inv3, point_z); - ecp_nistz256_sqr_mont(z_inv2, z_inv3); - ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); - - if (x != NULL) { - ecp_nistz256_from_mont(x_ret, x_aff); - if (!ecp_nistz256_set_words(x, x_ret)) - return 0; - } - - if (y != NULL) { - ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); - ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); - ecp_nistz256_from_mont(y_ret, y_aff); - if (!ecp_nistz256_set_words(y, y_ret)) - return 0; - } - - return 1; -} - -static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group) -{ - EC_PRE_COMP *ret = NULL; - - if (!group) - return NULL; - - ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP)); - - if (!ret) { - ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); - return ret; - } - - ret->group = group; - ret->w = 6; /* default */ - ret->precomp = NULL; - ret->precomp_storage = NULL; - ret->references = 1; - return ret; -} - -static void *ecp_nistz256_pre_comp_dup(void *src_) -{ - EC_PRE_COMP *src = src_; - - /* no need to actually copy, these objects never change! */ - CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); - - return src_; -} - -static void ecp_nistz256_pre_comp_free(void *pre_) -{ - int i; - EC_PRE_COMP *pre = pre_; - - if (!pre) - return; - - i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); - if (i > 0) - return; - - if (pre->precomp_storage) - OPENSSL_free(pre->precomp_storage); - - OPENSSL_free(pre); -} - -static void ecp_nistz256_pre_comp_clear_free(void *pre_) -{ - int i; - EC_PRE_COMP *pre = pre_; - - if (!pre) - return; - - i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); - if (i > 0) - return; - - if (pre->precomp_storage) { - OPENSSL_cleanse(pre->precomp, - 32 * sizeof(unsigned char) * (1 << pre->w) * 2 * 37); - OPENSSL_free(pre->precomp_storage); - } - OPENSSL_cleanse(pre, sizeof *pre); - OPENSSL_free(pre); -} - -static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group) -{ - /* There is a hard-coded table for the default generator. */ - const EC_POINT *generator = EC_GROUP_get0_generator(group); - if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { - /* There is a hard-coded table for the default generator. */ - return 1; - } - - return EC_EX_DATA_get_data(group->extra_data, ecp_nistz256_pre_comp_dup, - ecp_nistz256_pre_comp_free, - ecp_nistz256_pre_comp_clear_free) != NULL; -} - -const EC_METHOD *EC_GFp_nistz256_method(void) -{ - static const EC_METHOD ret = { - EC_FLAGS_DEFAULT_OCT, - NID_X9_62_prime_field, - ec_GFp_mont_group_init, - ec_GFp_mont_group_finish, - ec_GFp_mont_group_clear_finish, - ec_GFp_mont_group_copy, - ec_GFp_mont_group_set_curve, - ec_GFp_simple_group_get_curve, - ec_GFp_simple_group_get_degree, - ec_GFp_simple_group_check_discriminant, - ec_GFp_simple_point_init, - ec_GFp_simple_point_finish, - ec_GFp_simple_point_clear_finish, - ec_GFp_simple_point_copy, - ec_GFp_simple_point_set_to_infinity, - ec_GFp_simple_set_Jprojective_coordinates_GFp, - ec_GFp_simple_get_Jprojective_coordinates_GFp, - ec_GFp_simple_point_set_affine_coordinates, - ecp_nistz256_get_affine, - 0, 0, 0, - ec_GFp_simple_add, - ec_GFp_simple_dbl, - ec_GFp_simple_invert, - ec_GFp_simple_is_at_infinity, - ec_GFp_simple_is_on_curve, - ec_GFp_simple_cmp, - ec_GFp_simple_make_affine, - ec_GFp_simple_points_make_affine, - ecp_nistz256_points_mul, /* mul */ - ecp_nistz256_mult_precompute, /* precompute_mult */ - ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */ - ec_GFp_mont_field_mul, - ec_GFp_mont_field_sqr, - 0, /* field_div */ - ec_GFp_mont_field_encode, - ec_GFp_mont_field_decode, - ec_GFp_mont_field_set_to_one - }; - - return &ret; -} |